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ABSTRACT

The Cantor set € or the Cantor middle thirds set was constructed by Georg Cantor
(Nelson, n.d.). In this thesis, we define the generalization of the Cantor set namely
Cantor p-ary set €,, where p is an odd prime. Then we give the definitions of spawning
p-ary set AP and child p-ary set Agkn where k = 1,2,3,....

This thesis consists of two parts. The first part, we prove the relation of cardinal-
= (Il = o)

|AP|, where K = {0,2,4,...,p— 1} . The second part, we define a transformation R

ity of spawning p-ary set A? and child p-ary set Ag v, thatis ‘Aﬁ .

by swapping a digit a; with its complement a; and denote a transformation 7" by cycle

the digit a; in 0.ajas - .. a@; - - - a; to the left. Then we construct a group G which its el-
ements are generated by the transformation R and the transformation 7" and we prove

that

(1) T" = I, R?* = I, where [ is an identity function and [ be the period length of

elements in spawning p-ary sets AP
(2) T and R commute
(3) G is isomorphic to Z; x Zs

(4) Gr, the subgroup generated by 7" alone, is a faithful cyclic subgroup of order /.

Moreover, we prove that [ | |AP| and [ | ‘Ap ko | -
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Chapter 1

Introduction

1.1 Background and rationale

The Cantor set or the Cantor middle thirds set was constructed by Georg Cantor (Nel-
son, n.d.). It has interesting properties and special construction. In the first step, if
set Ag = {[0, 1]}, then divide the closed interval into three equal subintervals and re-
move the middle third (3,2). It follows that the new set A; = {[0,%],[3,1]} is
obtained. In the second step, we again subdivide each element in A; into three equal
subintervals and remove the middle thirds { (5, 2), (5, 5)}. Hence, the set A, will be
{[0,2].,[3.5],[3. %] . [5,1] }. The next step, we divide again each element in the set

As into three equal subintervals and delete the middle thirds, this follows that set A3

will be as

A= Lo L] 1217 [2 7] [£.1] [2.19] [20 7] [8 25] [26
5 P27 72779797277 |2773] 713727 7277979727 |27 '

We divide all elements in the set As and remove the middle thirds, this leads to get
all elements in a set A,. If we repeat this process, subdivide each element in A, 1,
where n = 1,2,3, ..., and remove the middle thirds respectively, these will generate

all elements in A,,. Therefore, the Cantor set ¢ defined as

is the intersection of all UA,,, where UA,, is the union of all elements in A,,. To clarify

the construction of the set, it will be shown as Figure 1.1.
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Figure 1.1: The construction of the Cantor set

The Cantor set has several properties that are non-empty set, closed, perfect,
compact, nowhere dense and totally disconnected. It was stated in (Nelson, n.d.), (kunczyn-
ski, 1968), (Rosen, 1993) and (Woolley, 2008). Moreover, kunczynski (1968), Rosen
(1993) and Woolley (2008) described that the complement of € is [0, 1]\ € has length 1,
this concludes that € has measure zero.

There is a property obtaining from the construction of the Cantor set, namely

uncountable. We will use the following theorem and corollary for proving the property.

Theorem 1.1.1. (Sella, n.d.) Leth : X — Y be a surjection. If the set X is countable,

then the set Y is countable.

Corollary 1.1.2. Let h : X — Y be a surjection. If the set Y is uncountable, then X

is uncountable.
Theorem 1.1.3. The Cantor set € is uncountable.

Proof. Define f : € — [0, 1] such that

- i - bi
((55) %3

i=1 =1



where
a; if a; = 0,
a; — 1 if a; = 2.
It is clear that f is well-define.

We will show that f is onto. Fory = >°°° % consider

=1 217
_ i 4
i=1 3
where
a; =
b, +1 ifb;, = 1.
Since z = ) °, & € €, we have
00 bz
2z
=1

Therefore, f is onto. Since [0, 1] is uncountable, by corollary 1.1.2 we imply that € is

uncountable.

According to the Cantor set is uncountable, so it contained both rational and

irrational numbers. Nevertheless, we will focus our attention on rational numbers in the

Cantor set. Now, there is an observation of characteristic of elements in the Cantor set.

Before describing the observation, we introduce some definitions that are helpful for

understanding the elements in the Cantor set.

Definition 1.1.4. Suppose that x is real number satisfying 0 < = < 1. Then x will be

written in the ternary expansion as

[e.e]

3"

=1



where a; = 0,1 or 2, for all <.

Now we can see the characteristic of elements in the Cantor set as follows:
Let S be an interval, and let sg, s1, so be subintervals of .S which are labelled
as 0,1, 2, respectively. These were ordered from the left hand side to the right of the

interval S. Hence, all z € € will be determined with the following process.

(1) Divide the set Cy = [0, 1] into three subintervals and then remove the middle
subinterval or subintervals s;. Another way to do, delete the interval which ternary

expansion of its elements has a; = 1. Therefore, x € C'| will be as

0.0&2&3 A\

0.2@20,3 e

(2) We divide each element in C'; into three subintervals again, and remove all subin-
tervals s;. This means that we delete the intervals which ternary expansion of its

elements has a5, = 1. Hence, we conclude that z € C, will be as

0.00asay . ..
0.02&3(1,4 c.
0.20@3@4 c.

0.22&3@4 c.

(3) Now to construct ('3, we remove subintervals s; from each element in C5. In
conclusion, delete the intervals whose elements contain a; = 1 in the ternary

expansion form. So that x € (53 can be expressed in the form of

0.000@40,5 ey 0.002&4(15 c.



0.020@4&5 ey 0.022&4(15 .
0.200@4@5 ey 0.202&4(15 e

0.220(1405 ceey 0.222@4@5 c

(4) In the general case n, we continue with removing subintervals s; from each ele-
ment in C),_1, to construct C,,. In the similar way, we delete the intervals which its
element contains a; = 1 in the ternary expansion. Therefore, the form of z € C),

will be shown as

0.@1@2 N ai_l()aiﬂ il

O.(IICLQ A CL,'_12CL1‘+1 .

wherei =1,2,...,1 — 1and a; € {0,2}.

The previous process tells us, if x € € then z = 0.a1as . .. a; ..., where a; € {0,2}.

There were some researches related to with the Cantor set. Nagy (2001) proved
that if a prime number p > 3 such that 3 is a primitive root modulo p?, then there is no
fractions 3 € € (where a and b are relatively prime numbers ) such that b is a power of
p- Nevertheless, for each prime p > 3, there are finitely many fractions ¢ € € such that
b is a power of p.

In unpublished paper, Jordan and Schayer (n.d.) described a characteristic of
Cantor rationals in the Cantor set by showing that the period length of the ternary ex-
pansion of all elements divides the number of all elements with the same denominator.

Also an unpublished paper (Schayer and Jordan, n.d.) showed the sums of all

Cantor rational in the spawning set S; and all its child sets with denominators 1 < ¢ < N,



denoted by C'y, that is
1 log2 N log 2
082 ,_log2
CN Z §N10g3 Zl ‘S’L‘ 72 logB’
where N is a positive integer.
The generalization of the Cantor set will be called The Cantor p-ary set €, and
rational numbers in €, will be called Cantor p-ary rationals. Phon-On (2013) showed

that the Cantor p-ary set €, is homeomorphic to €, and the total number of Cantor p-ary

rational in €, with denominator 1 <4 < N, written by T,

1
Ty > —1LN,

where

log(

4 N log p
Ly = A pe3+— (2
N= ) |4l |p 3+p+1<i)

and S(N) ={i e N|1<i < N,gcd(i,p) = 1,and A? is a spawning p-ary set} .

p;l)

The following theorem leads us to the first objective of this thesis.

Theorem 1.1.5. (Phon-On, 2013) Let A? = {ay,as, ..., ar} be a spawning p-ary set,
where p does not divide n and a; € €,. Let AL = {b1,by,...,b.} be a child p-ary set

of AL, where b; € €,. Then, for eachi € {1,...,r}, there exists j € {1,....k} and

I € K such that pb;—1 = a;. Consequently, }A§n| > |AP| and ‘Azkn ‘k—1 |A£n

= |1
forall k > 2, and if p = 3, then |A3},| > |A3| and hence | A3, | = 281 | A3] for all

k> 1

We know that [A? | > |A| and ‘Aikn — ]K;‘k_l 42| where

Ky = {0,2,4,...,p — 1} . Therefore, the first objective of this thesis is to determine
a positive integer k£ which satisfying ‘Agn‘ = k - |AP|. Consequently, a relationship of

AP, and | AP| will be presented.
pkn n




One of the important research mentioned to the Cantor set and group action on
the set, Jordan and Schayer (n.d.) give the period length [ of elements in spawning set
A, can divided the number of all Cantor rationals in A,. Moreover, they constructed
a transformation R and a transformation 7" which generated a group action GG on each

spawning set A,. The results are given as follows,

() T'=1,R*=1

(2) T and R commute

(3) G is isomorphic to Z; X Zs

(4) Gr, the subgroup generated by 7" alone, is a faithful cyclic subgroup of order /.

Follows the work of Jordan and Schayer above, we obtain a motivation that we can
consider a group structure of the generalization of the spawning set A,. Therefore, the

second objective of this thesis is to find the group structure on spawning p-ary sets AZ.

1.2 Basic definitions and notations

We provide here a list of basic definitions and notations that will be used throughout this

thesis.

1.2.1 Functions

Definition 1.2.1. Let A and B be a nonempty sets. A relation f from A into B is called

a function from A into B if

(i) dom (f) = A



(i) forall (z,y), (z',y) € f,z = 2 impliesy = y/.
When (ii) is satisfied by a relation f, we say that f is well defined.
Definition 1.2.2. Let f be a function from a set A into a set B. Then
« f is called one-one (injective) if forall z, 2" € A, f(x) = f(z') implies z = 2’
« fis called onto (surjective) if Im (f) = B.

Definition 1.2.3. A function f : A — B is bijective (a bijection) if it is both one-one

and onto.

Definition 1.2.4. Let A, B and C' be nonempty setsand f : A —+ Bandg: B — C.
The composition o of f and g, written g o f, is the relation from A into C defined as

follows:
gof={(z,2) |z €A zeC, thereexists y € B such that f(z) =y and ¢g(y) = z}.

Definition 1.2.5. Let = be a real number. |z] is a floor function of z, it is the greatest

integer number less than or equal to z.

Definition 1.2.6. Let n be a positive integer. Define the Euler ¢—function ¢ (n) to be

the number of integer j with 1 < j < n such that ged (j,n) = 1.

Theorem 1.2.7. (Rosen,1993) If p is a prime, then ¢(p) = p — 1. Conversely, if p is a
positive integer with ¢(p) = p — 1, then p is prime.

Theorem 1.2.8. (Rosen, 1993) Let p be a prime and n be a positive integer. Then
o) =p" —p" "t =p"H(p—1).

Theorem 1.2.9. (Rosen,1993) Let n = p'py? ... pi* be the prime-power factorization

of the positive integer n. Then ¢(n) = n (1 — pil) (1 — piz) ( — p%) .



1.2.2 Countable and Uncountable sets

Definition 1.2.10. Let A and B be sets. We say that A and B have the same cardinality
if there is a function f from A to B which is both one-one and onto. We write card(A) =

card(B), or |A| = |B|.

Theorem 1.2.11. (Kraft and Washington, 2015) Let A, B be sets. If there is a one-one
function f : A — B and a one-one function g : B — A, then A and B have the same

cardinality.

Definition 1.2.12. If a set A has the same cardinality as N then we say that A is count-

able.

Definition 1.2.13. A set A will be said uncountable if A is not countable.

1.2.3 Divisibility
Definition 1.2.14. If a and b are integers, we say that a divides b if there is an integer ¢
such that b = ac. If a divides b, we say that a is a divisor or factor of b.

Definition 1.2.15. (The Division Algorithm) Let @ and b be integers with b > 0. Then

there exist unique integers ¢ (the quotient) and r (the remainder) so that
a=0bq+r

with 0 < r < b.

1.2.4 Relation

Definition 1.2.16. A binary relation or a relation ~ from a set A into a set B is a

subset of A X B.
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Definition 1.2.17. Let ~ be a binary relation on a set A. Then ~ is called

¢ reflexive forall z € A,z ~ x.

» symmetric forall z,y € A, ifz ~ y, theny ~ z.

* transitive forall z,y,z € A, ifx ~yand y ~ z, then x ~ z.

Definition 1.2.18. A binary relation ~ on a set A is called an equivalence relation on

A if ~ is reflexive, symmetric, and transitive.

Definition 1.2.19. Let ~ be an equivalence relation on a set A. For all z € A, let [z]

denote the set
] ={ye Aly~ux}.

The set [z] is called the equivalence class ( with respect to ~) determined by =.

Theorem 1.2.20. (Malik et al., 1997) Let ~ be an equivalence relation on the set A.

Then

(i) forall x € A, [x] # ¢,

(ii) if'y € [z], then [x] = [y], where z,y € A,

(iii) forall x,y € A, either [x] = [y] or [x] N [y] = ¢,

(iv) A = Ugealz], ie., Ais the union of all equivalence classes with respect to ~ .

Definition 1.2.21. Let A be a set and P be a collection of nonempty subsets of A. Then

P is called a partition of A if the following properties are satisfied:

(1) forall B,C € P,either B=Cor BNC = ¢.



1
(ii) A= UpepB.

Theorem 1.2.22. (Malik et al., 1997) Let ~ be an equivalence relation on the set A.
Then

P=A{[z] |z € A}

is a partition of A.

1.2.5 Congruences

Definition 1.2.23. Two numbers a and b are congruent (mod m), writtena = b (mod m),
if a — b is a multiple of m. The integer m is called the modulus of the congruence and

is assumed to be positive.

Proposition 1.2.24. (Kraft and Washington, 2015) a = b (mod m) if and only if a =

b+ km for some integers k.

Proposition 1.2.25. (Kraft and Washington, 2015) If a is an integer and m is a positive
integer, then there is a unique integer r with 0 < r < m — 1 so that a = r (mod m).

This integer r is called the least nonnegative residue of a (mod m).

Proposition 1.2.26. (Kraft and Washington, 2015) If a,b,c and m are integers with m >

0, then

(1) a=a (mod m)

(2) Ifa=0b (mod m), then b = a (mod m)

(3) Ifa=0b (mod m) and b = ¢ (mod m), then a = ¢ (mod m).
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Proposition 1.2.27. (Kraft and Washington, 2015) Assume that a,b,c,d and m are inte-

gers with m positive. If a = b (mod m) and ¢ = d (mod m), then
(1) a+c=0b+d (mod m).
(2) a—c=b—d (mod m).
(3) ac = bd (mod m).

Corollary 1.2.28. (Kraft and Washington, 2015) If a = b (mod m), then a" = b"

(mod m) for any positive integers n.

Theorem 1.2.29. (Euler’s Theorem) Let n be a positive integer and let b be an integer
with ged (b,n) = 1. Then

b*™ =1 (mod n).

1.2.6 Group

Definition 1.2.30. A group is an ordered pair (G, *), where G is a nonempty set and

is a binary operation on G such that the following properties hold:
(i) Forall a,b,c € G satisfy a* (b*c) = (a*b) x c.
(i1) Forall a € G, there exists e € G suchthata xe =a = e * a.
(ii1) Forall a € G, there exists b € G suchthataxb=e =0 x*a.

Definition 1.2.31. Let (G, ) and (G, *;) be groups and f is a function from G into
G. Then f is called a homomorphism of G into G, if for all a,b € G, f(a *b) =

f(a)*1 f(b).
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Definition 1.2.32. A homomorphism f of a group G into a group G, is called an iso-
morphism of G onto GGy, if f is one-one and onto GG;. We write G = (G, and say that

G and G are isomorphic.

Definition 1.2.33. Let (G, ) be a group and H be a nonempty subset of G. Then (H, x)

is called a subgroup of (G, x) if (H, %) is a group.

Definition 1.2.34. A group (G, *) is called a finite group if G has only a finite number

of elements. The order, written |G|, of a group (G, *) is the number of elements of G.

Definition 1.2.35. Let (G, *) be a group and a € G. If there exists a positive integer n
such that ™ = e, then the smallest such that positive integer is called the order of a. If
no such positive integer n exists, then we say that a is of infinite order. We denote the

order of an element a of a group (G, %) by o(a).

Definition 1.2.36. A group G is called a cyclic group if there exists a € G such that

G =(a),

where (a) = {a" |n € Z}.

Theorem 1.2.37. (Malik et al., 1997) Let {a) be a finite cyclic group of order n. Then

(a) = {e,a,a?, ...,a" 1} .

Corollary 1.2.38. (Malik et al., 1997) Let {a) be a finite cyclic group.

Then o(a) = |{a)| .

Corollary 1.2.39. (Malik et al., 1997) A finite group G is a cyclic group if and only if

there exists an element a € G such that o(a) = |G]|.
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Definition 1.2.40. Let G be a group and S' a nonempty set. A (left) action of G on S is

a function - : G x S — S such that

(i) (9192) v =9g1-(92-7)

(i) e -x = x, where e is the identity of G

forallz € Sand ¢1,90 € G.

Definition 1.2.41. Let X be a nonempty set. A permutation 7 of X is an one-one

function from X to X.

Definition 1.2.42. Let S be a nonempty set, an action of G on S is faithful, if any two

distinct elements g, h € G give distinct permutations of .S.
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Chapter 2

The Cantor p—ary Sets

We begin this chapter with the construction of the Cantor p-ary set €,. Its construction

is similar to the construction of the Cantor set €.

2.1 Construction of the Cantor p—ary sets

The construction of the Cantor p-ary set €, will be described as follows: given p an odd

prime.
(1) Denote Cy = {[0, 1]}.

(2) Divide the closed interval in C into p equal subintervals, and denote open subin-

tervals s, 53, ..., S(p—a1), S(p—2) 0f Cy be the odd parts.

(3) Remove the odd parts

(1 2) <3 4) (p—4 p—S) (p—2 p—l)
p’p)’\p'p) "\ p  p )\ p  p )

Hence, set C as

- o) G2 B2 52

It follows that C'; consists of ’%1 closed subintervals.

(4) Subdivide again all the remain intervals in ' into p equal subintervals, and re-
move the odd parts of C';. Thus C5 will be a set that contains the following closed

subintervals,
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_ 1 2 3 p—3 p—2 p—1 p
027{[071?}’[1?71?]""’[172’p2 ) 271? 3

[2p 2p41 2+2 2p+3 3p—3 3p—2 3p—1 3p
Pa P2 ) P2 p? PRI P2 ) p2 ) P2 7? P
[(@=3)p (@=3p+1] [(@=3p+2 (p-3)p+3 (p=2p—1 (p—2)p
p2 9 p2 I p2 9 p2 9ttt p2 9 p2 )
[p=Lp (p=tpt1] [(=Lpt+2 (p-1)p+3 -1
[72 9 p2 9 p2 ) p2 /AR p2 ) .

. 2
Consequently, we have that C5 consists of (’%1) elements.

(5) To find the set C'3, we can subdivide each element in C’ into p equal subintervals

and then remove the odd parts.

(6) Repeating this process, for each n, subdivide each elements in C),_; into p equal
subintervals and remove the odd parts, the remain intervals will be the elements

in C,,. Hence, C,, contains (’%l)n elements.
(7) Finally, for each set C),, the Cantor p-ary set €, will be defined as
€, =Mty (UCh),
is the intersection of all UC),,, where UC, is the union of all elements in C,,.

Phon-On (2013) showed that the Cantor p—ary set is homeomorphic to Cantor set, hence

the Cantor p-ary set also satisfies the following properties:
(1) nonempty set
(2) closed
(3) perfect

(4) compact
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(5) nowhere dense

(6) totally disconnected

(7) uncountable.

Considering the constructions of the Cantor p-ary set €,. The initial interval of these
construction is [0, 1] . So then a real number  which is in €, satisfies 0 < v < 1, and

can be written as base p-expansion according to the following theorem.

Theorem 2.1.1. (Rosen, 1993) Let y be a real number with 0 < v < 1, and let p be an

odd prime. Then ~ can be uniquely written as

oo
Q;
5 — v
i=1 p

where the coefficients a; are integers with O < a; < p — 1 fori = 1,2,3,... with the

restriction that for every positive integer N there is n withn > N and a,, # p — 1.

In the chapter 1, we have shown that all elements in the Cantor set can be written
as the ternary expansion ) °, & where a; € {0,2} for all i € N. While, in this chapter

we will show that each element in Cantor p-ary set €, can be written as the base p

< gy
i=1 p

expansion ) | where a; € {0,2,...,p— 1} forall i € N. The observation will be
described in the following process.

Begin our process by denote S be an interval, and divide S to be s, s1, ..., Sp-1
subintervals of .S which are labelled as 0, 1,2, ...,p — 1, respectively. These were or-

dered from the left hand side to the right of the interval S. We can see the elements in

Cantor p-ary sets €, as follows:
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(1) The initial set Cy = [0, 1] will be divided into p equal subintervals. Then subinter-
vals sq, 53, ..., 5,2 will be removed. This highlights delete the intervals which
its element have a; = 1,3,5,..., or p — 2 in the base p expansion. Therefore,

z € (' will be as

0.0@2&3 c.
0.2&2&3 ce

0.4(12&3 e

0.([)—1)@2&3...

(2) Now, we divide each element in C; into p equal subintervals and remove the subin-
tervals si, s3, S5, . .., Sp—o to create C5. This means that we delete the intervals,
which its elements contain a; = 1,3,5,... or p — 2 in the base p expansion.

Hence, this implies that = € C5 will be as

0.00aszay ..., 0.02azay ..., 0.04azay ..., ... ,0.0(p—1)azay...
0.20azay . .., 0.22azay ..., 0.24agay ..., ... ,0.2(p—1)agay...
0.(p—1)0agay..., 0.(p—1)2azaq, ... ,0.(p—1)(p—1)azgay...
(3) Next, to construct Cs, we remove the subintervals s, S3, 55, . . ., 5,2 from each

element in (5. These considerations imply that delete the intervals whose ele-

ments contain az = 1,3,5,..., or p — 2 in the base p expansion form. So that
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z € ('3 can be shown in the form as
0.a1a2a304 . . .
where a1, as,a3 € {0,2,...,p—1}.

(4) Inthe general case n, we continue with removing subintervals si, s3, S5, ..., Sp—2
from each element in C),,_1, to construct C),,. Otherwise, we delete the intervals
which its element contain a; = 1,3,5,..., or p — 2 in the base p expansion.

Therefore, the form of x € C), will be shown as
O.arasas...a;...
where Vi, a; € {0,2,4,...,p—1}.
From above description, it is easy to see that z € €, will be as
0.ara0a3...a;...
where a; € {0,2,...,p — 1} . We state the theorem as follows:

Theorem 2.1.2. For each x € €,, then x can be written uniquely in the base p expan-
sions of the form

o
a;
T = E —Z.OVIZO.QlCLQ(lg...(IZ'...
i P

where a; € {0,2,4,...,p— 1}.
Example 2.1.3. 0.024024 . . . is a rational number in €5.

Example 2.1.4. 0.044226024 . .. is an irrational number in €.
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Chapter 3

Rational Points in Cantor p—ary Sets

One of'the properties of the Cantor p-ary set is uncountable. It shows that the set consists
of rational and irrational numbers. We begin this chapter by recalling the definitions and

examples related to the rational and irrational numbers.

Definition 3.0.1. A real number v = “* will be called rational number, if m,n be

integers with n # 0 and the greatest common divisor (gcd) of m and n equal to 1.

Example 3.0.2. 2,6, %, % and % all are rational numbers, since the greatest common

divisor of numerators and denominators equal to 1. Also, a decimal expansion 3.2020 . . .

317
99 -

can be written in the rational form as

Inreal system, a number which is not rational number will be called irrational number.

The following example shows us some irrational numbers.

Example 3.0.3. We cannot write m = 3.1415926 ..., e = 2.7182818 ...and 0.3214752. ..

in form 7 with n # 0. Then these are irrational numbers.

At this point, we will focus our attention on rational numbers in Cantor p-ary
set, since it has obvious pattern and simple understanding.

Before we find out the rational numbers in the Cantor p-ary set, we introduce
the important formula that will convert a rational number ”* to the base p expansions. It

was introduced by Rosen in (Rosen, 1993).The formula is given as follows:

a;=p-vi-1l,  vi=p Y- P v (3.0.1)
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where 79 = 2, and 1 = 1,2,3,. ..

Therefore, the base p expansion can be expressed in the form

o0
m a; a a a
n “~p p p p

Next, Examples 3.0.4 and 3.0.5 will illustrate the transformation --- 171 to the base 7 ex-

pansion and 2 122 to the base 11 expansion.

Example 3.0.4. Applying the formula, convert —= 171 to the base 7 expansion.

a2=_7-17_771_:3, 72:7.%_3:%,
a;;:[.%_:l, 7327-12—761—1:11—7117

and so on. Therefore,

1 0 3 1 0 3 1 —
=4 — 4 — 4 — 4+ — 0.031),,.
171 7—’—72—1—73—i_74+75+76+ ( )7

Example 3.0.5. Using the formula to convert -= 122 to the base 11 expansion.

23 23 9

— 112 =2 —11 2 9=
e e U= ] R 122 122°
9 9 99
— 1| = —11. S
= | =0 m 2 VT
99 99 113
— |12 = —11- =
0= | g =8 s 2 8T
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113 113 23
= [11-—=2] =10 —11 e 10 =
a‘* { 122J oo 122 122°
23 23 9
=112 =2 —11 2 9=
5 { 122J b 122 122’
9 9 99
= 11— | = 1l — — 0= —
6 { 122J 0. % 22 VT 1

In the base 11, denote 10 = A we have

22 2 0 8 A 2 0 S
s S D T = (0.2084),,.
SRR A T EA TR TER YU ( Ju

We now give some definitions and examples that useful to understanding this thesis.

Definition 3.0.6. (Phon-On, 2013) A rational number * € Q is called a Cantor p-ary

rational if it satisfies the following conditions:
(1) = is in the Cantor p-ary set.
(2) m and n are relatively prime, i.e. ged (m,n) = 1.
Example 3.0.7. 2 is a Cantor 5-ary rational, since 2> € €5 and (25,62) = 1.

For convenience, we denote K the set of zero and even numbers less than p.
For example, where p = 13, then K¢, = {0, 2,4, 6,8, 10, 12}.
In paper (Phon-On, 2013), the author categorized Cantor p-ary rationals to three

types. If ™t € €, denote

m
— = (Oblbg c. bkCLlCLQ .. CLZ)

n P’
where by, a; € K,k € {0} UNandn € N. We call (b;b; . .. bk)p a pre-period part and

(aras ... a) , aperiod part of 7. The values k, [ are defined as a pre-period length and

[ a period length, respectively. Moreover, 2 will be called
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(1) Terminating if no period part. Then ** = (0.b1bs ... bg),, -

(2) Purely periodic if no pre-period part. Then ** = (0.a1az .-~ @), -

(3) Mix periodic if there are both pre-period and period parts.

Then 2 = (0.b1by ... byaraz .- @), -

Example 3.0.8. Consider on the base 7 expansion, we obtain £13 = 0.224, 22 = 0.4026

and 22 t i

393 is terminate

= 0.0224. Consequently, we say tha is purely periodic and

’50

19

395 18 mix periodic.

Example 3.0.9. The base 5 expansion of 2 = 0.0420242. Thus (042), and (0242);

represent the pre-period and period part of -2, respectively. Furthermore, the pre-period

130 4

length is 3 and the period length is 4.

Note that all Cantor p—ary rationals can be written in the reduce form * which
ged(m, n) = 1. We collect the elements whose denominator is 7 in a set namely spawn-
ing p—ary set and denoted by AP. Next, we define and illustrate the spawning p—ary set

with the following definition and example.

Definition 3.0.10. (Phon-On, 2013) The spawning p-ary set (A?) is a set of Cantor

p-ary rational which satisfies two conditions:
(1) AL # o
(2) p does not divide n, where n € N.

11 13 23 37 47 49 591 ; .
Example 3.0.11. A}} @,@,@,@,@,@,@,@} 1s a spawning 11-ary set.

Phon-On (2013) gave a condition on n so that A? is a spawning p-ary set stated

as follows:
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Theorem 3.0.12. Let p be an odd prime and n € N. Then, A? will be a spawning p—ary

set if and only if there exist k,l € N and a1, as, ..

% <pk:+l _ 1)

n =

., ar, by, b,

where d = gcd ((pk+l —1) Zle bip* Tt + 22:1 a;p" T ph (pF T — 1)> .

Theorem 3.0.13. Azn w1 and A%, | are spawning p-ary sets.

2

- by € K, such that

Definition 3.0.14. Let A2 be the spawning p-ary set, the sets Ai »,, are child p-ary sets

of AP where k =1,2,3,....

The following tables show us some spawning p-ary sets and child p-ary sets.

Table 3.1: Some spawning p-ary sets

P 5 7 11 13

n Agn+1 A%"Lz—l A;n+1 A77n271 Aﬂmrl Allb% Agnﬂ Allganl
Vo s A | A | oA | oar | oam | oap
2| Al At Al ALy Als Agp At A
3| Abg | A% | Alw | Aln | Al | A | Adles | Aldes
4 Alog Ao Ay Al Alloa Alzz0 Asdseo Ao




Table 3.2: Some child p-ary sets, where p = 5,7, 11 and 13

25

spawning spawning
5-ary child 5-ary sets 7-ary child 7-ary sets
sets sets
5 5 7 7
An A5’“n An A?’“n
5 5 5 5 5 7 7 7 7
A2 AlO? A507 A250’ A1250’ ct A3 A217 A1477 A10297 ce
5 5 5 5 5 7 7 7 7
AG A307 A1507 A7507 A37507 cee As A567 A392> A2744> e
5 5 5 5 7 7 7 7
A12 A607 A3007 A15007 e A24 A1687 A11767 A82327 ce
5 5 5 5 7 7 7 7
A26 A1307 A6507 A32507 tee A50 A3507 A24507 A171507 5
5 5 5 5 7 7 7 7
A62 A310’ A15507 A77507 Tt A171 A11977 A83797 A586537 V4
spawning spawning
11-ary child 11-ary sets 13-ary child 13-ary sets
sets sets
11 11 13 13
An All’“n An Al?)kn
11 11 11 11 3 13 13 13
A5 A557 A605’ A66557 ce Aﬁ A?S’ A10147 A131827 te
11 11 11 11 13 13 13 13
A12 A1327 A14527 A159727 te A14 A1827 A23667 A307587 te
11 11 11 11 13 13 13 13
AG() A6607 A72607 A79860= LR A84 A10927 A141967 A1845487 te
11 11 11 11 13 13 13 13
A122 A13427 A147627 A1623827 cee A170 A22107 A287307 A3734907 s

There are some useful theorems that concern with types of rational numbers in

spawning p-ary sets and child p-ary sets.

Theorem 3.0.15. (Rosen, 1993) The real number v,0 < v < 1, has a terminating base

b expansion if and only if vy is rational and v = 7>, where 0 < m < n and every prime

factor of n also divides b.

Theorem 3.0.16. (Kraft and Washington, 2015) A decimal expansion of a real number

7y is eventually (purely or mix) periodic if and only if 7y is rational.
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Remark 3.0.17. Given n be a positive integer and ged (a,n) = 1. Define ord,a the

order ofa (mod n), it means the smallest positive integer m such thata™ = 1 (mod n).
To determine the ord,,a, we need the following corollary.
Corollary 3.0.18. (Kraft and Washington, 2015)
(1) Let p be prime and let a be an integer with a # 0 (mod p). Then ord,a | (p—1).

(2) Let n be a positive integer and let a be an integer with gcd (a,n) = 1. Then

ordpa | ¢ (n).

Example 3.0.19. Calculate the ordyg5, we know that ord,a | (p — 1), then ordag5 | 28.
The possible answers are 1, 2,7, 14 or 28. By computation, the smallest number is 14

such that 5'* = 1 (mod 29). Therefore, ordyg5 = 14.

Theorem 3.0.20. (Rosen, 1993) Denote 0 < v < 1,y = ™, where m and n are rel-
atively prime positive integers, and n = TU where every prime factor of T divides b
and (U,b) = 1, then the period length of the base b expansion of v is ordyb, and the

pre-period length is N, where N is the smallest positive such that T | b".
By Theorem 3.0.20, we have the following corollaries.
Corollary 3.0.21. Let AP be a spawning p-ary set. If v € AP then x is a purely periodic.

Corollary 3.0.22. Let Aikm where k > 1, be a child p-ary set. If v € Aikn, then x is a

mix periodic.

Example 3.0.23. Determine the pre-period and the period length of rational number

7255 in the base 7 expansion. Since 2450 = (2-5%) - 7%, we have T = 7> = 49 and
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U =2-52=50and ged (50,7) = 1. Then 49 | 7% and ords,7 = 4, the pre-period length

is 2 and period length is 4. These are corresponding with 5= = (0.000066).. .

2450

The following example illustrates the way of checking rational numbers in spawn-

ing p-ary sets.

Example 3.0.24. Let A}, be a spawning 5-ary set. Then we convert 7 and 3 to the

base 5 expansion. We have

7 0 2 4 0 2 4 __
— = — — 0.024
62 5+52+5+54+5+56+ ( )5

and

3 0 1 1 0 1\ 1 —
— =4 — 4+ — 4+ — 4+ — 4+ 4. .. =(0.011)..
62 5+52+53+54+55+56+ ( )5

We see that for all a; in base 5 expansion of ¢ are elements in {0, 2,4} , then we

have 5 € Al In contrast, there exist a; in the base 5 expansion of 5 are not elements

in {0,2,4}, then we conclude that & ¢ A%,

Example 3.0.25. Letn = 62, p = 5. Consider g5 where 1 < m < 62 and ged(m, 62) =

1. Using the formula to convert ¢ to the base 5 expansion, we have the following table.

Table 3.3: Rational numbers with denominator 62 on base 5

5 =0002 | §=0442 | 5 =0011 | £=0132 | 2 =0.321
5 =0020 | 3=0424 | 5 =0033 | 2Z=0141 | 55 =0330
2=0200 | F=0244 | §=0101 | =0213 |  =0.334
& =10024 | 2=0420 | £=0110 | £=0231 | 5 =0.343
$=0240 | £=0204 | =0114 | 3=0303 | 2 =0411
5 =0402 | 5=0042 | §=0123 | 5=0312 | 25 =0433
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According to Table 3.3, rational numbers which are in the first two column, each
a; 15 0,2 or 4 in base 5 expansion. This means that those are Cantor p-ary rationals in
A2,. Whereas, all remain rational numbers in the next three columns are not in A3, since
they are not in €.

To obtain the Cantor p-ary rationals in child p-ary sets, we used the same method
that we check elements in spawning p-ary sets. The following table illustrates some of

Cantor p-ary rationals in child p-ary sets.

Table 3.4: Rational numbers with denominator 56 on base 7

1 _ Y05} 55 __ ~N 9 __ Ne 29 __ YD)
L =0.060 | 3 =06060 | %=0106 | 2 =0.342

3 _ A 53 __ 19 11 91 31 8}
320024 | B=0642 | L=0124 | 2 =0.360

5 __ YD) 51 __ Y 13 __ D) 41 _ ne
3 =002 | B=0624 | B=0122 | & =0.506

17\ NS 39 \r G0N 15 __ =0} 43 __ Yl
T~ 0.206 | 2 =0460 | 2 =0.160 | £ =052

L'—0224 | 32 =0442 | 2 =0.306 | L =0.542

56 56 56 56
— A — 1 o
202060 | 2=0406 | Z=0.321 | I =0.560

Tables 3.3 and 3.4 give important observation, Cantor p-ary rationals in spawn-

ing p-ary sets will be purely periodic and mix periodic in child p-ary sets.
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Chapter 4

Cardinality of Child p—ary Sets

This chapter presents an interesting theorem concerning with cardinality of child p-ary
sets. The theorem gives a relation of Cantor p-ary rationals in spawning p-ary sets and
child p-ary sets. It is useful for determining the number of elements in child p-ary sets.
In the first section, we show the cardinality of some spawning p-ary sets and
child p-ary sets. Then, we prove the main theorem. The second section, we apply the
main theorem by giving the several numbers of Cantor p-ary rationals in the sets.
Our aim of the first section is to determine a relationship of cardinality of Cantor

p-ary set and their child p-ary sets.

4.1 Spawning p—ary sets and child p—ary sets

In order to find out a cardinality of a spawning p-ary sets and child p-ary sets, we firstly

consider some example of those sets.

Table 4.1: Cardinality of some spawning p-ary sets

spawning 5-ary spawning 7-ary spawning 11-ary spawning 13-ary
set set set set

A A0 Al A7 A Al AT | AT
A3 1 Al 2 Al 4 A 2

Ag 2 Al 4 Afd 4 A 6
A3, 4 A, 4 A 8 A3 16
Adg 8 Al 12 AL, 36 EEN 40
Ag, 12 Al 60 Al 146
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We now particularly focus on elements in child p-ary sets Az x, Where k = 1.
Table 4.2 presents the number of all Cantor p-ary rationals in child p-ary sets AP where

p=2>5,7,11 and 13.

Table 4.2: Cardinality of some child p-ary sets

spawning spawning
5-ary child 5-ary sets 7-ary child 7-ary sets
sets sets
AS A3, A3, AT A%, | A
AS Aga = A?o 2 A§ A;?) = Agl 6
A Azg = A3 4 AT AT, = AT, 12
A?g Ag-m = Ago 8 A;; A;24 = A&s 12
A§6 Ag-% = A?30 16 AQU A;50 = Agso 36
spawning spawning
11-ary child 11-ary sets 13-ary child 13-ary sets
sets sets
Al Al | Ay, Al Al | At3,
Al Afts = Ags 20 AP Al = AR 12
Aﬁ Aﬂ.u = A%:laz 20 Aﬁ A%%-M = A}g2 36
Aé(l) Aﬂ-ﬁo = Aétlso 40

We now compare the cardinalities of spawning p-ary sets and their child p-ary

sets, where k£ = 1. Table 4.3 will show the cardinalities of some spawning p-ary sets

and their child p-ary sets.
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Table 4.3: Cardinality of some spawning p-ary sets and child p-ary sets

pP=295 p="7
|47 |43 A7 | A7,
A3 =1 | [Af|=2 | |Af=2 AL =6
[Agl =2 | [ASl=4 | [Af]=4 | |AL|=12
|A | =4 |A0|—8 |A4|—4 ‘A168|_12
|43 6l =8 | A7 30| = 16 |A50| =12 ‘A350| = 36
p=11 p=13
B A, A AL,
[As' =4 | A5l =20 | [AP°|=2 | |Ag|=12
[Aip| =4 | [Alp| =20 | Al =6 | |A| =36
Aol =8 | |Agol =40 | [Agil =16 | [Ajfg| =96

As we can see from Table 4.3, we conjecture that [AP | = (|K¢| —1) - |Az],
where K = {0,2,4,...,p— 1} . The conjecture will be proved in Theorem 4.1.2 and
the relationship of cardinality of spawning p-ary sets A? and child p-ary sets Az k,, Will
be stated as the corollary.

Before proving the main theorem, we need the following theorem.

Theorem 4.1.1. (Phon-On, 2013) Let A? = {ay,as,...,ar} be a spawning p-ary set,
where p does not divide n and a; € €,. Let AL = {b1,by,...,b.} be a child p-ary set
of AL where b; € €,. Then, for eachi € {1,...,r}, there exists j € {1,...,k} and

I € K¢ such that pb; — | = a;. Consequently, | AP, | > |A? AV | = ‘K;‘kil |Az,

forall k > 2, and if p = 3, then |A3},| > |A3| and hence | A3, | = 281 | A3] for all

k> 1
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Theorem 4.1.2. Let p be an odd prime and K; = {0,2,4,...,p — 1}. If AP is a child

p-ary set of spawning p—ary set AP then !Agn = (‘Kg‘ — 1) - |AP|.

Proof. By Theorem 4.1.1, we have

pbi—l=a,
where | € K;j. Thus
b~ _ CLJ' +l
p
Since a; = 7+ € AP, then
m]
b ==
p
)\ m -+ nl
>

Let

z
B:{”H" |ZGK;,@eAg},
n n

We will assert that, if =+, =2 € AP [, 1, € K and

my +nly  ma +nly

- )

pn pn

then m; = mg and l; = [5.

Consider
my+nly  me+nly

pn pn

then, we have

ml—mgzn(lg—ll).

Consequently,

my —ma| = |n(lo — 1y)|
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\ml—mgl :n’lg—h’

Since both =1, ™2 € AP it follows that 0 < m; <nand 0 < my < n.

Hence

|my —ma| <n
n|l2—ll\<n

Since [y, l; € K, then

l2—l1:0

ll == lg.
Therefore,

ml—m2|:0
ml—mgzo

myp = Ma.

It is clear that

|B| = |Kg| - 1A2) 4.1.1)

The elements in the set B can be categorized by considering the greatest common divisor

of m + nl and p, that is

p, ifm+nl=0 (mod p);
ged (m +nl, p) =

1, ifm+nl#0 (mod p).
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Let

+ nl
Ag*nz{m i !gcd(m+nl,p)=p}>
pn

and

l
AP = {m+n |gcd(m+nl,p):1}.
pn

Note that A7, and A?  are disjoint sets. We then have B = A?., U AP |

p —
where Aj., N AP = ¢.

For A?

»n» We Will claim that for each ™t € AP, there exists a unique lop € K

such that

p | (m+nly).

Let 7 € AP and consider

m
E = (0.0162 \.. Cn)

p

Pt e Cp, p" c1 Cy o
= ==+ + 2 += — 4+
pn < D pZ pn> pn (pn—H pn+2 p2n)
Pt @ Co Cn
+= +oo+— )+
n <p2n+1 2n+2 p3n>
Clpnfl c2pn72 Cn Clpnfl Cgpn72 Cn
- U T _n 2n + 2n + Tn
b p b p p p
c n—1 c n—2 Cn
+<1p3n + 2 +'~+E)+~~
p p p
(e ep" 4 4 ) N (cip™ L+ cop 2+ ... +cn)
pn pZn
ap” 4 ep i+ ..+,
+ ( 1p 2]73 ) o
p n

n—1 n—2 n—3 1 1 1
= (cp" " e+ ) E+_+_+_+'”

L
= (ap" "+ P Hep" P ) (1 = L)



m n—1 n—2 n—3 1

— = (eap" ' Hep" e+ )

n pr—1
B P e esp P+ e
= 1

mo P ep" P et e

n pr—1 '

Thus,

n(ap" " +op" P Hep" P o) =m(pt—1)
n—1 n—2 n—3 - n
n(ewp" 4 ep" P +ep" 7+ eep) +ne, = mp” —m
n(ep™ " Hep" P+ ep" P+ gip) — mpt = —m = ne,

mp" —n (clpn_1 +eop" P esp" R+ cn_lp) =m -+ nc,
mp" — np (clpn_2 +oeap" B egpm T L+ Cn—1) =m + nc,.
Since p | mp™ and p | np (c1p™ 2 + cop™ 3 + e3p" T+ ...+ D)

this implies that

pl(m+nc,).

Therefore, there exists [ = ¢,, € K b such that
p | (m+nl).

Afterwards, we will prove the uniqueness of /.
Assume that

p | (m+nl),

and

p | (m+nly),

35
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where (1, [, € K;.

Then

p| (m-+nl) — (m+nly)
p | (nly — nls)
pln(l—1l)
Since (p,n) = 1, it follows that
pl(h—12).
Since l1, [, € K;, we have
L —1l=0
Iy =15

By the claim above, for each 2 € AP, there exists a unique [ = [y € K such that

p | (m+nly),

which implies that
ng (m + nl07p) =D

Since the number of ™ € AP is | AP |, this implies that

A7

= |A?] (4.1.2)
Since B = A.,, U AP and A7., N AP = ¢, this concludes that

+ |4z |. (4.1.3)
Substituting the equations (4.1.1) and (4.1.2) into the equation (4.1.3), we have

+ 45,
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(K| - [AR] = [AL] + |47,

AP, = |K5| - 14| — A7)

= (|53 = 1) - A7),

Therefore,

Ar | = (|Ky| 1) - |Az]. 0

From the previous theorem and Theorem 4.1.1, we will show a new relation of

cardinality of child p—ary set Aﬁ r, and AP stated as the following corollary.

Corollary 4.1.3. IfAzkn, k=1,2,3,... arechildp-arysetsand K; = {0,2,4,...,p — 1},

then

p
Apkn

— (sl = gl ) -z

Proof. Follows from Theorems 4.1.1 and 4.1.2. [l

4.2 Examples

As mentioned in the Corollary 4.1.3, the cardinality of child p-ary sets can be found

as | AP,
pEn

= <‘K5‘k - ‘Kg‘hl) - |AP| . The next four tables show that cardinality of

spawning p-ary sets and child p-ary sets, where £ = 1,2, 3.
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Table 4.4: Cardinality of spawning 5-ary sets A’ and child 5-ary sets A7, , where k =

1,2,3

spawning child 5-ary sets
S-ary sets
43 |45, A3z A3

A3 =1 ATyl =2 | ASo| = 6 | A50l = 18
‘Ag’ =2 |A ol =4 ’A?50| =12 ‘A?5o| = 36
|AY,| =4 | AGo| =8 | A300| = 24 | A¥500] = 72
|AJg| =8 |[A%30| = 16 | ABs0| = 48 | A3g50] = 144
‘Agz‘ =12 |A310| =24 |A1550| =72 |A7750\ = 216
|ASyg| = 18 | |Agsol =36 | [A3150] = 108 | [AT5750] = 324
’A312| =32 |A 560/ = 04 ‘Agsool =192 |A29000| = 576

Table 4.5: Cardinality of spawning 7-ary sets A7 and child 7-ary sets A7k ,
1,23
;?;:;T;i child 7-ary sets
A7) AT [A%z0 | [Afsa|
|A§| =2 |Ag1| =6 |Az47| =24 |AI029| =96
‘Ag‘ =4 |Ago| =12 ’A392| =48 ’Agwﬂ =192
|AZ| =4 | Afgs| = 12 | Afy76] = 48 | Afpss| = 192
|A57,0’ =12 |A§5o| = 36 ’A 450’ = 144 |AI7150| = 576
|AT1| =60 | [Afigr| =180 | [Adgpe| =720 | |Afggs3] = 2880

where k =
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Table 4.6: Cardinality of spawning 11-ary sets A'! and child 11-ary sets A}, , where

k=1,2,3
lsf-ziv;isr;%s child 11-ary sets
A Al |Afte| AL,
|Aél| =4 |A%}>’ =20 |Aéé5| =120 |Aéé55| =720
|Aﬁ| =4 |A%é2‘ =20 |Aﬁs2| =120 |A%972| =720
‘Aels(l)’ =38 |A660‘ = 40 |A7260| = 240 |A79860| = 1440
| Afd| = 36 | Atzae| = 180 | [Afizeol = 1080 | |Afgasse| = 6480
|Agés| = 146 |Atzis| = 730 | |Aggaes| = 4380 | |Aggsiis] = 26280

Table 4.7: Cardinality of spawning 13-ary sets A3 and child 13-ary sets Alg,c , Where
k=1,2,3
spawning child 13-ary sets
13-ary sets
A AL, | Atz A
|A6| =2 |A%§| =12 |A1814| =384 |AE§182| = 588
| A =6 | A13,| = 36 | A3366] = 252 | Aztrss| = 1764
|Ags| = 16 | Atfge| = 96 | Atdig6] = 672 | Atdasas] = 4704
|Avzo] =40 | [A3310l =240 | [Axdrs0] = 1680 | |Ajs90] = 11760
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Chapter 5

Group Structure on Cantor p—ary Sets

This chapter consists of three sections. The first section begins with definitions of some
transformation which later will be called transformation R and transformation 7'. The
second section provides a group action GG, which is generated by transformation R and
transformation 7', that acts on spawning p-ary sets. Finally, in the section three, we
prove the main result involving group structure on Cantor p-ary sets.

We begin this chapter by presenting the definitions of transformation R and
transformation 7" on a spawning set A, as in (Jordan and Schayer, n.d.). Then, we
can extend the definitions of the transfromations on the spawning set to the spawning

p-ary sets, where p is an odd prime.

5.1 Transformation X and transformation 7’

Before giving the definition of transformation R, we introduce some notations that are
helpful to understanding the transformation.

Let p be an odd prime, define a complement digit of a; by
a;=(p—1)—a;

where a; € K.

Table 5.1 will show the complement digit in base 3,5, 7 and 11.



41

Table 5.1: The complement digits in base 3,5, 7 and 11

p=3 p=>5 p="7T p=11
a; | a; | a; | a; | a; | a; a; a;
0 2 0| 4 0 6 0 10
2 0 2 2 2 4 2 8
4 0 | 4 2 4 6

6 0 6 4

8 2

10 | O

We next consider the definition of the transformation R.

5.1.1 Transformation R

Let AP be a spawning p-ary set and suppose that * = 0.a1a; .- a; € AP. Then define

the transformation R : A? — AP as follows:

or
R ((0.@1@2 tee al)p> = (Odldg tee dl)p .

It is easy to see that, the transformation R means swapping a; with its complement ;.

We illustrate the use of the transformation with the following example.

Example 5.1.1. R (+5) = 55 = 121 or R (£5) = R ((0.046).) = 0.620-.



5.1.2 Transformation 7’

Given 7 € AP, where A? is a spawning p-ary set. The transformation 7" : A? — AP,

where p = 5,7, 11 and 13, respectively, can be defined as follows:

57, if bm < n;
m
T(W)={5-2. itim<n<om
\R(5R(%)), ifn<§m.
(
7 if 7m < n;
m 7(%—%), if§m§n<7m;
r(2)-
n
7(%—‘—;), if§m§n<§m;
\R(?R(%)), ifn < Im.
.
-2, if 11m < n;
(2 —-2), ifdm<n<llm
m 11(m—%), 1f%m<n<%m;
r(2)-
n
11(%—%), 1f1—71m§n<151m;
11(m—%), 1f%m<n<l—71m;
kR(llR(%)), ifn < Ym.
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13-, if 13m < n;

13(%—3), if%m§n<13m;

13(%—%), if%m§n<1§3m;
(%) =
(3) =130z -5), irtm<n<in
13(%—%), if%m§n<1—7‘?’m;
13(%—%), if%m§n<1§’m;

R(13R(2)), ifn < Bm.

\
Then, a general form of the transformation 7" can be written as

P, ifpm <mn;

m
T(2) = p(2-2), iffm <n< g2 wherei=1,2,..,[52]

R (pR (%)) , ifn < p%zm.

\

It is great to point out that transformation 7" is cycle the digit a; to the left in its period

form. This process is shown in Example 5.1.2

Example 5.1.2. Consider 22 = 2> € A{}, onbase 11. Since 5 - 23 < 122 < 1. 23, it

follows that

(i) - (5 1)
:11.(23'<11)—2-(122))

12211
253244 9

122 122°
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On the other hand,

T (%) — 7 ((0.2084),)

= 00814211

_ 9
1227

Hence, T’ (%) = %2.

5.2 Group action on spawning p—ary sets

Let (G, 0) be a group with G = {T°R’/,;1 < i < 1,0 < j < 1}, where [ is the period
length of a rational number ™ in the spawning p-ary sets A?. It is straightforward to
check that (G, o) is a group.

By determining a group action GG on spawning set A, in (Jordan and Schayer,
n.d.), we can extend the set into the spawning p-ary set A?. This section will show a
group action GG on spawning p-ary sets A? and will state some observations.

We first show that GG acts on spawning p-ary sets. Define an action G on A? |
*x: G x AP — AP
via
*:(g.7) =g 7 =yg(x),

forge Gandx € AP.

We claim that
(M) (g1og2) - v=g1- (92" )

(2) ez = x where e is an identity of G.
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Consider

*((g1092),2) = (g1092) - &
= (910 92) (2)
= 91 (92 (2))
= g1+ (92 (7))
=91 (92-2).
Clearly, the first condition for a group action holds.

Note that e = I is the identity function of GG, then

x([,x)=1-x

= 1(2)

Thus, [ -z =x
We see that the second condition is also satisfied.
The following theorem reveals some interesting observations of group action G

on spawning p-ary sets A?.

Theorem 5.2.1. Let | be the period length of elements in a spawning p-ary set AV. T

and R generate a group action G on AP with the following properties:

() T'=1R=1.

(2) T and R commute.

(3) G is isomorphic to Z; X Zs.
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(4) G, the subgroup generated by T' alone, is a faithful cyclic subgroup of order .

Proof. (1)T'=1,R*=1.
We will show that 7", R? are identity functions. This means that 7" (2) = =
and R? () = 2

Given * = (0.a1az - . .al)p has the period length /.

Consider
m
= (0.araz al>p
m
T <E> = (0.az - @a),
T2 (T) — T <T T)) . (0 ag . alaxla2)p
n n
i (m m
1 (2) 1 (2 (2)) =
(MY my Y
T (o) =T <t (z)) = 0ma @),
m
T <E> = (0.a1a3 .-~ @),
(-
n n
Hence, 7" = I.

Next, we consider
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Hence R? = I, therefore, T' = I, R* = I.

(2) T and R commute.

We claim that 7" (R (2)) = R (T (2)) .
Let 2 = (0.a1az .- ar),

Notice that

R ((0.0305 ), )
R (7 (0. —m),))
(=)

Hence T° (R (%)) R (T (%)) . It implies that 7" and R commute.

(3) G is isomorphic to Z; X Zs.

Let g = T'R’ € G and assume that a function ¢: G — Z; X Zy such that ¢ (T R’) =
(4,7) fori = 1,2,...,land j = 0,1. Where i € Z,ori = {p|i=p (mod [)} and
J € Zyorj={q|j=q (mod2)}. This is well defined. Then we will prove that
¢ (T'R7) = (i,7) is isomorphism, by showing that ¢ is 1-1, onto and homomorphism
(¢ (gh) = & (9) + ¢ (h)).

« To see that ¢ is 1 — 1, we assume thatif ¢ (T"R?) = ¢ (TP RY) then T" R/ = TP Rq.

Since

¢ (T'R) = (i, ])



and
¢ (TPR?) = (p, q) -
By assumption, we have
(i,7) = (7, q) -
Thus
i=p (mod ).

This concludes that there exists ¢t € Z such that: = p + [t.

Hence
T? Tp-Ht
— 77 (1"’
=17 (1)
=1TP,
Then 7% = TP.
Also we have
Jj=gq (mod 2).

This implies that there exists ¢ € Z such that j = g + 2t.

Then

48
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Thus R = RY.

From the two previous results, we have TR/ = TP R4. Consequently ¢ is 1-1.

* Let(i,7) € Z; X Zy. There exists T°R? € G such that ¢ (T"R’) = (i, j) , therefore

¢ 1s onto.

« Let g,h € G such that g = T"R’ and h = TP R, for some integers i, j, p and q.
To show that ¢ is homomorphism, we claim that ¢ (gh) = ¢ (g) + & (h).

Observe that

¢(gh) = ¢ [(T'R’) (T*R")]
= ¢ [T'"R'T"R1]
= o [(T'T") (R R)]

_ gb (Tz‘+pRj+q)

=(i+pJj+q)
=(i+p,j+7)
= ¢ (T"R’) + ¢ (T"R7)
= ¢ (9) + ¢ (h)

¢ (gh) =¢(g9) +o(h).
Therefore, ¢ is homomorphism.

Since ¢ is 1-1, onto and homomorphism, it implies that GG is isomorphic to Z; x
Zy. Further, the number of elements in the group G must be equal to the number of

elements in Z; X Zs.
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(4) G'r, the subgroup generated by 1" alone, is a faithful cyclic subgroup of order
L.
Any two distinct elements 7%, TV € G wherei # jandi,j € {1,2,...,1} give distinct
permutation of A2. < T' > is a generator of G, and the number of all elements in G’

is [, these implies that G is a faithful cyclic subgroup of order /. ]

Furthermore, we then discuss a partition of spawning p-ary sets A?. This topic
gives us numbers of elements in each partition and a characteristic of the elements in

the partition. All observation will be explained in section 5.3.

5.3 Group structure on Cantor p—ary sets

We begin this section by defining equivalence relation on A2.

5.3.1 Equivalence relation

Definition 5.3.1. Letz = ~ and y = b be elements in A? and denote ~ be an equiva-

T on

lence relation with the following condition:
T~y a~beb=(=1)"ap (modn),
for some j € {0,1,...,1—1},m € {0,1}.

Then, we now show that ~ is an equivalence relation.
Reflexive: a ~ a, Va.

Since

a=(—1)"ap’ (mod n)



a=a (mod n).

Then a ~ a.
Symmetric: If a ~ b, then b ~ a.

We will prove in 2 cases.

Case 1. Assume that b = ap’ (mod n), for some j € {0,1,...,1 —1}.

To show that ~ is symmetric, we claim that
a = bp' (mod n)

forsomei € {0,1,...,1—1}.

We know that (p,n) = 1, by Euler’s theorem, we have
p*™ =1 (mod n).
By division Algorithm, 3r, s € Z such that
j=r(gn))+s,

where 0 < s < ¢(n).

Notice that

b=ap’ (mod n)
= ap" M+ (mod n)

= ap"®™ . p* (mod n)
Since p?™ =1 (mod n), hence

b=ap® (mod n)
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bp? M= = qp° . p?)—s (mod n)
= ap®™ (mod n)
= a (mod n)

bp®™=* = 4 (mod n)

a = bp®™~* (mod n)

It is clear that a = bp’ (mod n), where i = ¢(n) — s.

Therefore, b ~ a.

Case 2. Letb = —ap’ (mod n), for some j.
We will show that

a= —bp' (mod n),

for some i.

We know that (p,n) = 1, and by Euler’s theorem, we have
p*™ =1 (mod n).
By division algorithm, 3r; s € Z such that

j=r(@n)+s
where 0 < s < ¢ (n).
Consider
b= —ap’ (mod n)
= —qp)+s (mod n)

= —ap"®™) . p* (mod n).
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Since p?™ =1 (mod n), we have

= —ap® (mod n)
b p¢(n)—s = —ap’ .p¢(n)—s (mod n)
= —ap®™ (mod n)
= —a (mod n)
—a=b-p*™=* (mod n)
a=—b-p?™=* (mod n).

Hence, a = (—1)" bp' (mod n), where i = ¢ (n) — s.
Therefore, b ~ a.

Transitive: Ifa ~ band b ~ cthena ~ c.

We will prove in 4 cases.

Casel. a~b<s b=ap’ (mod n)and b ~ c < ¢ =bp' (mod n).

Suppose that

b=ap’ (mod n),

then

bp' = ap™ (mod n).
Since ¢ = bp' (mod n), we have
c=ap’™ (mod n)
c=(-1)"ap’™ (mod n).

Therefore, ¢ = (—=1)° ap* (mod n), where k = j + i.

Consequently, a ~ c.
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Case2. a~b& b=ap’ (mod n)andb ~ c < c= —bp' (mod n).

Given
b=ap’ (mod n),
hence
bp' = ap’™ (mod n)

—bp' = —ap’™" (mod n).
Also given ¢ = —bp' (mod n), then

c=—ap’™ (mod n)

c=(=1)"ap’™ (mod n).

Therefore, ¢ = (—1)" ap® (mod n), where k = j + i.

Consequently, a ~ c.

Case3. a~b< b= —ap’ (modn)andb~ c< c=bp' (mod n).

Assume that
= —ap’ (mod n),
then
bp' = —ap’** (mod n).

We give ¢ = bp’ (mod n), so then

c=—ap’™ (mod n)

c= (=1 ap’™ (mod n).
Therefore, ¢ = (—1)" ap* (mod n) ,where k = j + i.

Consequently, a ~ c.
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Cased. a~b< b= —ap’ (mod n)andb ~ c< c= —bp' (mod n).
Consider
b= —ap’ (mod n)
b(—p') = —ap’(—p') (mod n)

—bp' = ap’™ (mod n).
Since ¢ = —bp’ (mod n), then

c=ap’™ (mod n)

c=(—=1)"ap’* (mod n).
Therefore, ¢ = (—1)" ap* (mod n), where k = j + i.
Consequently, a ~ c.

As we have shown the proofs of Reflexive, Symmetric and Transitive, we conclude

that ~ is an equivalence relation.

5.3.2 Partition of spawning p—ary sets

Recall that ~ is an equivalence relation. Define a partition of A? by

Afz/N = {[ml] ) [mQ] Y [mz]} )

where 7 be a positive integer and [m;| be an equivalence class (with respect to ~) deter-
mined by m;.

By the definition of the partition of spawning p-ary sets above, we discover some
interesting observations that will be shown in Table 5.2. The table shows some spawning
p-ary sets together with the period length of elements, the number of elements in the

partition, the number of the partition and the number of all elements in the sets.



Table 5.2: Some results of partition of some spawning p—ary

sets
period number of
number of
AP length elements in | AL
partition
(1) each partition
spawning 5-ary set
A3 1 1 1 1
AR 2 2 1 2
A3, 2 4 1 4
A 4 4 2 8
A2, 3 6 2 12
Ads 6 6 3 18
A3, 4 8 4 32
spawning 7-ary set
AT 1 2 1 2
Af 2 2 2 4
AL, 2 4 1 4
Al 4 4 3 12
AT 3 6 10 60
spawning 11-ary set
Al 1 2 2 4
Al 2 2 2 4
AR 2 4 2 8
Al 1 4 9 36
ALk 3 6 24 150
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period number of
number of
AP length elements in | A7
partition
(1) each partition

spawning 13-ary set

AP 1 2 1 2
Al 2 2 3 6
Agi 2 4 4 16
A 4 4 10 40

Table 5.2 gives two guideline results about the number of element in partition. First,
we can see that each A? /. contains either [ or 2/ elements, where [ is the period length
of the elements in A”. The second guideline result is [ divides |A?] .

The following theorem and two corollaries will assert the two guideline results.
Theorem 5.3.2. Each partition of AP by group G consists of | or 21 elements.
Proof. Recall that (G, o) be a group with G = {T"R’}, where i € {1,2,...,(},

j € {0,1} and Gy = {T,T? ..., T""', I} be a subgroup of G. Note that G acts

faithfully on the partition, that is

JORIO

where i # j,i,j € {1,2,...,l} and ™ € AP,

It concludes that the set

(). (2).r (2) 1 (2)

give [ distinct elements.

We classify the group action G on the partition of A? into two cases.



(1) Group G acts faithfully on the partition.

(2) Group G does not acts faithfully on the partition.

Case 1: Group G acts faithfully.

Letz = = € AD

Then
T(z) =,
T?(x) = 29
TN w) = 2,

I(z) =T (z) = x;
give [ distinct elements, and

RT(z) = 141

RT?(z) = 142

RTl_l(l') = Ti(1-1)
R(z) = RT"(x) = 2144 = xy

also give [ distinct elements.

Hence

{T(z),T*(z),...,T"(x), RT(x),...,RT"(x) }| = 2L.

Consequently, the size of the partition is 21.

Case 2: Group G does not acts faithfully.
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Let £ be a size of the partition.

59

By assumption, G does not acts faithfully, we have £ < 2/ and there exist x € A? and

m < [ suchthat R (T™)x = x.

Notice that
r=R(T")z
=R(T™)(R(T™)x)
=(RT™-RT™)x
= R*T?"y
= IT?"x
=Ty,
Hence,

x=T""z.

Since T*™ € Gt and G acts faithfully on the partition, we have

z="T%
and hence by the equations we have
Ty = Tz
It follows that
2m =
l
m= —

(5.3.1)

(5.3.2)
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Therefore, RT'2 (z) = x or RT' (Z) =12,

Assume that = = <O.a1a2 Sar al,lal)

Thus,
L/m m
RT2 <_> T
n n
(0.aé+1aé+2...ana1...a%> = (O.alag...a%aéﬂ...al) .
p p

Comparing each digit and taking its complements, we obtain

9

:a1—>aé+1:a1,

Q¢

je

:CLQ—)CL%+2:CL2,

N~

Hence

s|3

Now we show that

where j = 1,2,...,1.

Notice that
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o (2) 100 (2)
n n/’
We conclude that RT" (22) = T3+ ().

Applying the transformation 7" on both sides and commute 7" and R, we have

R () =7 (BT () =7 (T4 () =74 (5)
Consequently, RT7 () = T3+ (Z) forall j =1,2,...,1.

n

Therefore, all RT”(x), where z = ™, are redundant. That are

RT(z) = T2\ (z)

RT= () = T (x)

It is clear that the elements in the partition reduce into [ elements, hence
{T(2),T*(2),....T"(2) ,RT (x),...,RT (2)} = {T (2), T*(2),....T" ()} .
Then, we have
{T (z), T (x),....T" (2)}| =1,
this implies that the size of the partition is /.

Finally, from the proof of the Case 1 and the Case 2, we conclude that each partition of

AP by group G contains [ or 2/ elements. O
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The following corollaries provide the group structure on Cantor p-ary sets.

Corollary 5.3.3. Let AL be a spawning p-ary set and | be the period length of elements

in the set, then l | |AP].

Proof. Suppose that k1, ko are numbers of the partition that contains [ and 2/ elements,
respectively. It is obvious that k; and k, are non-negative integers.

Then
|AP| = Ky (1) + k2 (21)
=1 (k1 + 2k2) .
It implies that [ | |A?] . O

Corollary 5.3.4. Let A;I; v, be the childs p-ary sets of spawning p-ary set AL,

then U || A7, |

Proof. Corollary 4.1.3 in Chapter 4 tells us

p
Apkn

= (Irsl" = g ) -z
It follows that

[ AL T | Ak -

(5.3.3)
The above theorem shows that

L] AR (5.3.4)
Following the results in (5.3.3) and (5.3.4), we then have

LAz
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By using the equivalence relation ~ from the section 5.3.1 to partition some
spawning p-ary sets AP, we can see the relationship between elements and the smallest
element in their partition.

Therefore, the characteristic of elements in each partition can be expressed and

proved in the Theorem 5.3.5

Theorem 5.3.5. Let AP be a spawning p-ary set with a period length | of elements in
AP Let P = {%, mo %} , where k < 2l and my is the least element among

n

Mo, . .., Mg, be a partition of AP. Then
mep’ (mod n),  if0<j<I;
—mop’ (mod n), ifl <j <2l

Proof. As mentioned in Theorem 5.3.2, each partition will contain [ or 2/ elements.

Then we have to consider two cases.
(1) |P| =1
() |P|=2

Case 1: Assume that |[P| = {,and P = {Z0 ™ 21
let0 <j <, “¢=(0.a.. a),and 2 = min P.
Suppose that % =T (%) , and we know that by the division algorithm, there exist

r,s € Z* such that

mopj:rn—i-s

where 0 < s < n. Then

s =mop’ — rn.



Consider
mop! —rn mep?  rn
n on n
_ mopj_
n
; 0
= ()
= ' (0.a; al)p—"r’
mopj—rn i 1 a2 l ay
T = p ?_'_I? +E+m+ ..>—7“
. - [ ay a9 7]
= p’ —+—2 +—]
p p p
i Q41 A2 aj ai
+p7<ﬁ+ﬁ+ + o+t
p p
= (0P tap’ P o tay)
a; a a a
+(J+1+ et l—l'+ l+11—
p p7 p 4
_ i1 -2
= (alp’ + asp’ +...—i—aj)—r
a; a; a a
+<”—“+’—“ ot
D D J J

Since a1p’ '+ asgp? 2+ ...+ a; €EZ,r € Zand 0 < W < 1, we have

("t +ap’ 2 +...+a;) —r=0.

Then

aj+2
2

mep? —rn Qg .

n p p

— (0w —a),
=7 ((0ar—a),)

(2

m;

n

+ .+

ap ai
_|_

— 1
pl J pl+ J

+ ..

a.
4=+

pl

aj+1
1
it

+ ...

64
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mopl —rn

Hence, = =L This implies that m; = mop’ — rn.

Since mop’ — rn = mop’ (mod n), Therefore, m; = mop’ (mod n).

Case 2: Assume that |P| = 2/,and P = {0 ™ Dol my T T2l

n'n’ Y n Ynpn? o qp 2ttt p

We will prove on 2 cases.
Subcase 2.1 I[f 0 < j < [, then the way to prove for this case is similarly with case 1.
Subcase 2.2 If [ < j < 2[, then we will describe as follows.

We observe that

Ti — THG=D
= Tl . ijl

Hence 77 = T71,

We know that by division algorithm, there exists » > 0 and s € Z such that
—mop’ = (—=1r)n + s,

where 0 < s < n.

Then
s = —mop’ — (—rn)
= —mopj +rn.
Notice that
—mop’ +rn _ —mop? L




—mop’ +1n —mop’
n n
Crm
)
n
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. : Qi1 a; aq
= —p’ (E+...+—+]D—+...+++...+E+W+...)

| aj 3]
—p’ (—+...+ﬁ+—+.

pj+1 p2l+1

= —(ap/ " Hap T+ ap T+

BEY

—i—aj_l)

B (aj—z+1 +aj—l+2 4 4 aj
D p2 p2l—]

aq Qj—|
p21+1_j + P +... )+

= T — (alpjfl—l—agpj*z—l—...—i—alp]””—l—...—i—aj,l)

. (aj—z+1 i Q5142 NI ap .
p p? pA

aq Qi1
p2l+1—j + p2l + . )

Since ay ! +agp 2 . 4 agp 4. 4 aj € Z,r € Zand 0 < TmeE

we have
_ j—1 i—2 i1 N
r—(ap T Fagp! a4 ay ) = 1

It follows that

_mopj +rn —1_ (aj_lH 1 Q5142 I ap

n P p2 o pQZ—j

=1- (O.aj_l+1aj_l+2 ...quaqasg ... aj_l)p

—1- 17 ((0ara), )

—1-7 ()
n

I )
P21 P2

Since | < j < 2I, then 0 < j — [ < [. By assumption in the Case 1, 7V (Z2) = &4

where 0 < j < [, we have

—mop’ +1n 1 mj_y
n n
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—mop +1rn n—mjy
n o
_my
n
Hence, %j”n = =L This implies that m; = —mop’ + rn.
Since —mop’ + rn = —mep’ (mod n), Therefore, m; = —moep’ (mod n).

This completes the proof.

]

Finally, we give the advantage of the previous theorem. The theorem will be

used to identify the elements in the same partition and we then determine all elements

in spawning p-ary sets AZ. This observation is shown in Tables 5.3 and 5.4.

Table 5.3: Characteristic of elements in each partition of the set A1},

P

P,

Ps

1=1-11° (mod 122)

3=3-11° (mod 122)

5=5-11° (mod 122)

11=1-11' (mod 122)

33=3-11' (mod 122)

55=15-11' (mod 122)

121 =1-11% (mod 122)

119 =3-11% (mod 122)

117=5-11% (mod 122)

111 =1-11% (mod 122)

89 =3-11% (mod 122)

67=5-11° (mod 122)

Py Ps Fs
7=7-11° (mod 122) 9=9-11° (mod 122) | 25=25-11° (mod 122)
77=7-11' (mod 122) | 99=9-11"' (mod 122) | 31=25-11! (mod 122)

115=7-112 (mod 122) | 113=19-112 (mod 122) | 97 =25-112 (mod 122)
45=7-113 (mod 122) | 23=9-113 (mod 122) | 91=25-11% (mod 122)
Py Ps Py
27 =27-11° (mod 122) | 29=29-11° (mod 122) | 49 =49-11° (mod 122)
53=127-11"' (mod 122) | 75=29-11' (mod 122) | 51 =49- 11! (mod 122)
95 =27-112 (mod 122) | 93=29-112 (mod 122) | 73=49-11% (mod 122)
69 =27-113 (mod 122) | 47=29-11% (mod 122) | 71 =49-11® (mod 122)
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To clarify the observation, we found that the partition P; consist of four elements,

555 LT 454 57 are all elements

1
these are =, ==, == and = . Also we observe that 1537 1537 125 155

11 121 111
1227 1227 122 122

in the partition Ps.

Table 5.4: Characteristic of elements in each partition of the set A3,

Py

P

1=1-5 (mod 312)

7=7-5" (mod 312)

5=1-5" (mod 312)

35=7-5" (mod 312)

25=1-52 (mod 312)

175 = 7-5% (mod 312)

125 =1-5% (mod 312)

251 =7-53 (mod 312)

311=—1-5% (mod 312) | 305= —7-5% (mod 312)
307 = —1-5° (mod 312) | 277=—7-5 (mod 312)
287 = —1-5% (mod 312) | 137=—7-5% (mod 312)
187 = —1-57 (mod 312) | 61=—7-57 (mod 312)

Py

Py

11=11-5° (mod 312)

31 =31-5° (mod 312)

55=11-5' (mod 312) 155 = 31 -5 (mod 312)
275 =11-5% (mod 312) | 151 =31-52 (mod 312)
127 =11-5° (mod 312) | 131=31-5° (mod 312)
301 = —11-5* (mod 312) | 281 = —31-5% (mod 312)
257 = —11-5° (mod 312) | 157 = —31-5° (mod 312)
37=—11-5% (mod 312) | 161 = —31-5° (mod 312)
185 = —11-57 (mod 312) | 181 = —31-57 (mod 312)

15 25 125 311 307 287 187 . : .
The above table tell us 535, 5155 315 379> 312 319 315 and 375 will be elements in

B s - 7 35 175 251 305 277 137
the partition P;. Further, the partition P, contains the elements T13° 3157 3197 3137 3197 3127 319

61
and n3-
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Conclusion

This thesis consists of five chapters.

Chapter 1: We give the definition of the Cantor set € and show that it is uncountable.
Then we present objectives of the thesis. The first objective is to determine the relation
of cardinality of spawning p-ary set A? and child p-ary sets Aﬁ r,- Lhe second objective is
to find a group structure on Cantor p-ary sets €,. Finally, we introduce some definitions
and notation that will be used throughout this thesis.

Chapter 2: We show the construction of the Cantor p-ary sets €, and prove that all

elements in €, can be written in the base p expansion of the formz = >~ % orx =

i=1p
0.aiasas . ..a; ... where a; € {0,2,4,...,p—1}.

Chapter 3: We illustrate the using of the formula for transformation rational numbers

to the base p expansion. The formula is

a; = LP § %‘—1J ) Yi =P Yi-1— U? : %—1J

where vy = o, and k = 1,2, 3,.... Then, we categorized the elements in Cantor p-ary
sets into three types by considering the pre-period and the period length. The elements
either be terminating, purely periodic or mix periodic. Moreover, we discover that if
x € AP then z is a purely periodic.

Chapter 4: This chapter presents the first objective of thesis. We determine the rela-
tionship of cardinality of spawning p-ary set Al and their child p-ary sets AP . The

theorem states that

Let p be an odd prime and K; = {0,2,4,...,p — 1}. If AP isa child p-ary

o = (K5 = 1) - 143,

set of spawning p—ary set A2, then |A§
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Furthermore, the relation of cardinality of spawning p-ary set A? and their child p-ary
sets A”, will be as
pEn

P

elk olk—1
- <|Kp| - |Kp| ) A%
Chapter 5: This chapter presents the second objective of the thesis. We construct a

group G which its elements are generated by the transformation R and the transforma-

tion 7" and we prove that

(1) T" = I, R?* = I, where I is an identity function and [ be the period length of

elements in spawning p-ary sets AP
(2) T and R commute
(3) G is isomorphic to Z; x Zs

(4) G, the subgroup generated by 7" alone, is a faithful cyclic subgroup of order /.

Then we define the equivalence relation ~ as follows:

Letz = % andy = ® be elements in AP and denote

T~y a~beb=(—1)"ap (modn),
forsome j € {0,1,...,1—1},m € {0,1}.
We found that each A7, contains [ or 2/ elements, [ | [A?] and [ | |A?,|. Finally, the
characteristic of elements in each partition expressed by letting A? be a spawning p-ary
set with a period length [ of elements in A?. Let P = {%, P %} , where k£ < 2]

and my is the least element among my, . . ., my, be a partition of A?. Then

mop’ (mod n), if0<j <lI;

—mgp’ (mod n), ifl <j <2l
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Cardinality of Child p—ary Sets in Cantor p—ary Sets
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Abstract

Let p be an odd prime number. For a positive integer n with p t n, denote the set of
all Cantor p-ary rationals with denominator n by A,,, and call it a spawning p-ary set. For k € N,
define Ak, to be the set of all Cantor p-ary rationals with denominator p*n, and call it a child
Apeal = (K51 = 1757) - 1Al
where K; = {0,2,...,p — 1}. In addition, examples of spawning p-ary sets with child p-ary sets

p-ary set of A,. In this paper, we show that for k € N,

are provided.

Mathematics Subject Classification: 03E10

Keywords: cantor p-ary sets, spawning p-ary sets, child p-ary sets, cardinality of sets

1 Introduction

The Cantor set or the Cantor middle thirds set was constructed by Georg Cantor [5]. It has in-
teresting properties and special construction. In the first step, we set Ay = [0,1], then divide the
closed interval into 3 equal intervals and remove the middle third (3,2). It follows that the new
set Ay = {[0,4],[2,1]} is obtained. In the second step, we again subdivide each element in 4,
1 2

into three subintervals and remove the middle thirds {(&,2),(Z,8)}. Hence, the set Ay will be

{[0,4].[3.%].[3,%].[5,1]} . If we repeat this process, subdivide each element in A,_1, where n =
1,2,3, ..., and remove the middle thirds respectively, these will generate all elements in A,,. Therefore,
the Cantor set € defined as € = N2, (UA,,) is the intersection of all UA,,, where UA,, is the union of all
elements in A,. For more details see [2] and [4]. We generalize the Cantor set by dividing the interval
[0,1] and each subinterval which are subsets of the interval into p subintervals, where p is an odd prime

and call it a Cantor p-ary set. See more details in [1] and [6].

In [2], [3] and [5], the authors proved that the Cantor set is an uncountable set. Then, in [6],
Phon-On defined the set of all rational numbers with denominator n and call it a spawning p-ary set A,

where p does not divide n and A,, # ¢. Furthermore, the set of all rational numbers with denominator

*Corresponding author
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pFn, where k =1,2,3, ... will be called a child p-ary set Ak, Of Ay, Also he showed that |4y, | > |4,

and |Ape,| = |K§|k*1 - |Apnl, where Kf = {0,2,4,...,p—1}. In this paper, we aim to improve the

previous formula in order to complete the results.

2 Preliminaries

Before proving the main results, we should understand some definitions and theorems in [6] that

will be used in this paper.

Definition 2.1. Let n € Z* and p € N, where p is an odd prime. Define an interval © (k1,...,k,) by

@(k,...,kn):l =y =+ ]

fork; € Kp, where K, = {0,1,2,...,p — 1} and denote K; = {0,2,4,...,p — 1}, K7 = {1,3,5,...,p — 2}
and C? = {O (k1, ks, ... . kn) |ki € K;}. The Cantor p-ary set €, is defined as:

1
pn

¢ = i’f:o (UC£)~

Definition 2.2. Arational number ™ € Q is a Cantor p-ary rational if it satisfies the following conditions:

1. 2 is in the Cantor p-ary set &, .
2. m and n are relatively prime, i.e. gcd (m,n) = 1.
Denote A,, the set of all Cantor p-ary rationals with denominator n and |A4,,| the number of all
Cantor p-ary rationals with denominator n.

Definition 2.3. Let n € N be such that p does not divide n. Then A,, is said to be a spawning p-ary set
if A,, # ¢ and the sets Ay, A2y, Apsy, ... are called the child p-ary sets of A,,.

Example 2.4. In the base 5 expansion, we found that -, 2, & and 1 all are Cantor 5-ary rationals in
the set Ay, whereas &, 2,3, ..., 19 are not Cantor 5-ary rationals in the set A;. Since Ao # ¢ and

gcd (5,12) =1, A15 will be called a spawning 5-ary set. In contrast, A1 = ¢ and gcd (5,11) = 1, 417 will

not be said a spawning 5-ary set.

3 Cardinality of Child p—ary sets

In order to determine a cardinality of a spawning p-ary set and child p-ary sets, we firstly consider

some example of those sets. According to [6], for given n, Apn41 and Ay are general forms of spawning
2

p-ary sets. We substitute p = 5,7,11,13 and n = 1,2, 3,4 on the forms. Then some spawning p-ary sets

will be shown in the following table.
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P 5 7 11 13
n | Asngq AL; Ay AWT—l Ar1ngr Au"%l Aqzn A&;l
1 Ag Az As Az A1z As A1g Ag
2 Ase A1z Aso Azy Ai22 Ago A17o Asga
3| Az Ag2 Asaq Ain A1sz2 Ages As190s A1o9s
4 | Aee Asi2 Agao2 | Ar200 | Araeaz Az320 Asssez | Arazso

Table 1: Some spawning p-ary sets

We illustrate the child p-ary sets, where p = 5,7,11, and 13, of some A4,, in Table 2.

A, A5kn Ay A7’°n
Ay Aqo, Aso, Azso, A1250, - - - As Aoy, Argr, Avozg, - -
Ag Aszg, A1s0, A7s0, Az750, - - - Ag Ase, Azga, Aoraa, . ..
A12 As0, A300, A1500, - - - Aoy Ates, A1176, As232, - - -
A A130, Ags0, A3250, - - - Aso A3s0, A2450, A17150, - - -
Ag2 A310, A1s50, A77505 - - - Ain Ai197, Agsro, Asges3, - - -
A, Ay A, Aysen
As Ass, Agos, Asess, - - - Ag Azg, A1014, A13182, - - -
A1 Ai3g, Avas2, A1sora, - - - Ay Aiga, Aazee, A30758, - - -
Aso A0, A72605 A798605 - - - Aga | A1092, A14196, A184548; - - -
Ar2o | Aizaz, Araren, Are2sse, .- | Airo | A2210, A2s730, A373490, - - -

Table 2: Some child p-ary sets, where p =5,7,11 and 13

To investigate the elements in a spawning p-ary set A,, and its child p-ary sets, we use the following

method.

First we check all rational numbers with denominator n which are Cantor p-ary rationals. Given a
rational number ™ if gcd (m,n) # 1, it suffices to say that ™ ¢ A,,. Since A, is a spawning p-ary set
and it is a subset of Cantor p-ary set &,. If ™ € A,, then 0 < ™ < 1 and we have that 0 < m < n.
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Consequently, we conclude that gcd (m,n) = 1. We then use the following formula in [2] to convert ™

to the base p expansions. The main formula can be expressed in the following form,

ck = p-Ve-1], Ve =D Vh—1— [P Vh—1] (3.1)

where 79 = %, and k = 1,2,3,...

From the above formula a rational number ™ can either be written in the base p expansions as ™ =
% + ;—% 1% + ...+ ;—;1 + p,fﬁ + p,f% + ... or the period form as o = (O.clcQ...cn)p. Then, if
ck ¢ {0,2,4,...,p — 1} for some k, it implies that ™ ¢ A,,. While, if ¢, € {0,2,4,...,p — 1} for all k, we
conclude that @ € A,,. To clarify the transformation to the base p expansions, we will illustrate three

following examples.

Example 3.1. On base 7, the numbers 2,13 23 ¢ Asq. Since gcd (2,50), gcd (10,50) and gcd(25,50)

are not equal to 1.

Example 3.2. We convert a rational number 53—0 to the base 7 expansion by applying the above formula.

01:{7.5?”:0, n=Ti% 0=,
02:{7-;”:2, 7227'%—22%,
03:{7.%%J:6’ 7327'%—6=%a
04:_7-22_:4, 7427'%—4:5%7
05—_7 530_—0, 75:7-%—0*%,
06:{7-2(”:2, %:7'%—2:%’

and so on. Hence, the rational number % can be written either in base 7 expansion as 53—0 = % + % +

2 + #r + 2% + 2 + ... or the period form as & = (0.0264)...

Example 3.3. We will convert 2% to the base 7 expansion.

97 97 166
= VmJ =3 M=l 3=y
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022{7-1?“:6, 72:7'%—6:%?7
032_7-%—:57 73:7.%_5:;97771’
64:_7'197771_:37 7427-%—3:?7?,
cs{TﬁJG, 75:7'%76:%,
CG—{7~13;15J_5, 76:7.%75:%’
Thus, we can write %5 = 3 + & + & + &% + & + &% + ... = (0.365).. Since there exists

cx & {0,2,4,6} for some k, this implies that 2= ¢ A;7;.

Secondly, we will determine all elements in spawning p-ary sets. The initial step has shown a
transformation 2t to the period form as (0.¢1¢2---¢y),. In this step, all elements 2 = (0.c1c2---¢y),,
which all ¢, are in {0,2,4,...,p— 1}, will be collected in spawning p-ary set. Then the following tables

show us all Cantor p-ary rationals in some spawning p-ary sets.

1 0GR 49
55 = 0.0066 | z5 = 0.6600

2 =0.0264 | 2 =0.6402

=+ =0.0660 | 22 =0.6006

i =02244 | 3 =0.4422

19 __ 31
19 —02442 | ¥ =04221

2L =0.2640 | 22 =0.4026

Table 3: All elements in a spawning 7-ary set with denominator 50

Assume that A and C' represent the number 10 and the number 12, respectively, in the base 13
expansion. Then Table 4 shows us all Cantor 13-ary rationals in spawning 13-ary set with denominator
84.



£ =002 | =004 | =020 | £=040
2 =004 | B=0C2 | £2=046 | 22=0386
$£=02 | F=04C | =044 | B =082
T=0®/ | =041 | §=061 | £=068

Table 4: All elements in a spawning 13-ary set with denominator 84
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Consequently, we show the number of Cantor p-ary rationals in some spawning p-ary sets in the

following table.

spawning 5-ary set | spawning 7-ary set | spawning 11-ary set | spawning 13-ary set
A, | An| A, | Ay A, | Ay A, | A

Az 1 As 2 As 4 Ag 2

Ag 2 Ag 4 Ais 4 Alg 6

Ajs 4 Aoy 4 Aso 8 Asga 16

Asgg 8 Aso 12 Ajao 36 Ai7o 40

Aga 12 A7 60 Aces 150

Table 5: Cardinality of some spawning p-ary sets

Thirdly, we will find out elements in the child p-ary sets A,x,,.

convert all elements -

pkn?

We use the same formula to

where k =1,2,3,... and gcd (m, p*n) = 1 to the base p expansions. Also, all

elements P,%L whose all ¢ are in {0,2,4,...,p — 1} will be collected into A,x,,. Table 6 represents the

number of all elements in some child p-ary sets, where k = 1.
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spawning 5-ary set child 5-ary set spawning 7-ary set child 7-ary set

Ay Asn |Asn| Ap Az, |A7n|
Ay As o 2 Aj Arg 6
Ag As.g 4 Ag Arg 12
A1z As.12 8 Az Az.28 12
Asg As.26 16 Aso A7.50 36

spawning 11-ary set | child 11-ary set | spawning 13-ary set | child 13-ary set

Ap, Arn | A1l Ay, Azn | |A1zn
As Airs 20 Asg A1z 12
Ai2 A1z 20 Arg Aiz.14 36
Ago A11.60 40

Table 6: Cardinality of some child p-ary sets

We have illustrated the method for investigating the elements in spawning p-ary sets and child

p-ary sets. In the last process we will compare the number of elements in a spawning set with its child
p-ary sets.

Finally, we now compare the cardinalities of spawning p-ary sets and their child p-ary sets, where

k = 1. Table 7 will show the cardinalities of some spawning p-ary sets and their child p-ary sets.
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p=5 p="7T
|[An| | Asn| | An| |A7n|
|[As| =1 |Ajg] =2 |As| =2 |A21| =6
|Ag] =2 |Azo| =4 |As| =4 |Asg| = 12
|A12| =4 |A6o| =8 |A2a| =4 | |Ases| = 12
Ass| = 8 | [Arso| = 16 | |Aso| =12 | |Asso| = 36
p=11 p=13
|[An| |A11n] | An| | A1sn
|As| =4 |Ass] = 20 |Ag] =2 |Azg| = 12
|A12| =4 | |A132| =20 |A14| =6 |A1s2] = 36
|Aeo| =8 | [Ageo| =40

Table 7: Cardinality of spawning p-ary sets and child p-ary sets

As we can see from the table, we conjecture that |A4,,| = (‘Kg‘ —1) - |4,|, where K, =
{0,2,4,...,p— 1}. The conjecture will be proved in the following main theorem and the relationship of

cardinality of spawning p-ary sets and child p-ary sets will be stated as the corollary.

4 Main Theorem

Before proving the main result, we need the following theorem.

Theorem 4.1. [6] Let A, = {a1,as,...,a} be a spawning p-ary set, where p does not divide n and
a; € €, Let A,, = {b1,ba,...,b.} be a child p-ary set of A,,, where b, € &,. Then, for each i €
{1,...,7}, there exist j € {1,...,k} and | € K, such that pb; — | = a;. Consequently, |A,,| > |A,| and
|Apin| = |K§|k_1 |Apn| for all k > 2, and if p = 3, then |As,| > |A,| and hence |Ask,| = 271 |A,,| for
all k > 1.

We then prove Theorem 4.2 as the main theorem of this article.

Theorem 4.2. Let p be an odd prime and K = {0,2,4, ...
p—ary set Ay, then [Apn| = (|K5| —1) - |Ayl.

.0 — 1} If Ay, is a child p-ary set of spawning

Proof. By Theorem 4.1, we have
pb; —l=a,,



where [ € K;. Thus

Since a; = 7+ € Ay, then

Let

We will assert that, if 2, M2

n’n

then mip = Mg and 1 =1s.

Consider

then

Consequently,

Since both ™1 ™2 ¢ A, it follows that 0 < m; <nand 0 < mo < n.

n’n

Hence

Since 11,1y € ZT, then

B:{m+nl |leK1‘j,meAn},
n n

€ A, l,ls € K; and

mi +n11 - mo +TL12

pn pn

)

mi + nly mo + nlsy
pn bn

my1 +nly = ma + nls
mip — Mg = ’I’ng — TLll

ml—TTLQ:TL(ZQ—ll).

my —m2| = |n(l2 _ll)|

=n|l2—l1|.

|my —ma| <n
nlls — | <n

0§‘l2—11|<1.

12—11:0

82
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I = 1.
Therefore,

ml—m2|:O
ml—m2:0

mip = mao.

It is clear that
|B| = |K§| - An| (4.1)

The elements in the set B can be categorized by considering the greatest common divisor of m + nl and
p, that is

, ifm+nl=0 (modp);
ged (m +nl,p) = ! (mod #)

1, fm+nl#0 (modp).

Let

I
Apey = {ern | gcd (m + nl, p) :p}
n

and

m~+ nl
> { v | scd (m + nl, p) }

Note that A,-,, and A, are disjoint sets. We then have B = Ap-, U Ay, where Ay, N Ay, = ¢.

For Ay, we will claim that for each 7@ € A, there exists a unique Iy € K such that

p| (m+nly).
Let 2 € A, and consider
m
Pl (0.c1e5 -~ cn)p

C1 C2 Cp, C1 C2 Cp, C1 C2 Cp,
= <p + »? +eot pn) + (pn+1 R 2n) (p2n+1 p2nt2 o 3n> +
Pt fa | e Cn Pt a C2 Cn
SGrRrr R GR e

Pt a Co Cn

+ = <p2n+1 2n+2 tooot 3n> +

c n—1 c n—2 c c n—1 c n—2 c
= ( 1pn + 2pn + + Z) + ( 1p2n + 2p2n tot 22)

p p p p p p

cp”t | eop™? Cn
+( o + o +...+ﬁ +
B (cp™ t+ep" P+ Hen)  (ap"rtep" i+t )
- pn + p2n

n—1 n—2
(clp + cop + ...—|—cn)

+ o +

1 1 1 1

= (Clpn71+02pn72+03pn73+...+6n) <pn+p2n+p3n+p4n+)
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1
m =
— = (e e P tep" T ) [
n j——
pn
1
= (c1p" M Hep" Pt esp" P+ ) < — )
pr—1
B ap” e eap" 2 Hept 3 4. F e
= ]
m_eap” ep" P tap" Pt
n o pn—1 ’
Thus,

n (clpn_1 +eap™ P e 4L+ cn) =m((p" —1)
n (clpn_1 +eop" P egpt i+ 4+ cn,lp) +ne, =mp" —m
n (clpnf1 Feop" P egp" i 4+ cn_lp) —mp" = —m —nc,
mp™ —n (crp™ 4 eap" P +esp™ P+ L+ euo1p) = m+ne,
mp" — np (01])"_2 +eap" P egpn T+ 4+ cn,l) =m + nc,.
Since p | mp™ and p | np (c1p™ 2 + cop™ 3 + c3p™ "+ ...+ cam1p)
this implies that
p | (m+ne,).

Therefore, there exists I = ¢, € Ky such that

p| (m+nly).

Afterwards, we will prove the uniqueness of lo.

Assume that
p | (m + nll) )
and

p|(m+nlg),

where 1,1, € K.

Then

p| (m+nly) — (m+nly)

p | (nly —nly)
pln(l—I2)
Since (p,n) = 1, it follows that
pl(li—1l2).

Since 1,12 € K, we have

11—1220
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I =1s.
By the claim above, for each 7 € Ay, there exists a unique [ =g € Ky such that
D | (m + ’I’Llo) 5

which implies that
gcd (m + nlg, p) = p.

Since the number of ™ € A,, is [A,|, this implies that
‘Ap*n| = |An| (4.2)
Since B = Ap-p, U Ay, and Ayx, N Ay, = ¢, this conclude that

Bl = [Apn

+ |Apn| - (4.3)
Substituting the equations 4.1 and 4.2 into the equation 4.3, we have

|B| = |Ap+n

+ |Apn|
| K5 | [An] = [An] + [ Apn|
|[Apn| = | K7 | - [An] — [ 4n]
= (K5 = 1) - [An].
Therefore, [Apn| = (K| — 1) - |Ay]. ]
From the previous theorem and Theorem 4.1, we will show a new relation of cardinality of child

p—ary set A, and A,, stated as the following corollary.

Corollary 4.3. For all child p-ary sets Ay, where k =1,2,3,... and K; = {0,2,4,...,p — 1}. Then
ok ok—1
Al = (1551~ K51 ) - Al

Proof. Follows from Theorems 4.1 and 4.2. []
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(2) Elements in spawning p-ary sets A?

Table 1: All elements in spawning 5-ary set A2

1 _nna 5
1—001 | 5=040

Table 2: All elements in spawning 5-ary set A3,

Table 3: All elements in spawning 5-ary set A3

3 = 0.0044 | 2 =0.4400
= =0.0242 | 2 =0.4202
5 = 0.0440 | % = 0.4004
5 =02024 | £ =02420

Table 4: All elements in spawning 5-ary set A2,

—0.002 | & =012

—0.020 | % =072

62

—0.021 | B =072

1
62
5
62
25 _ nonn 37 _ 0944
%5 —0.200 | T =0244
7
62
35

=0.240 | 21 =10.204

62 62

2 =0402 | & =0.042
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Table 5: All elements in spawning 5-ary set Ay

126

L —=0.000444 | 1% =0.000444

126

126

5 — (0.004440 | 12 = 0.440004

126

126

25— (.044400 | L —0.400044

126

1
126

0.020424 % = 0.424020

126

55— 0.204240 | - = 0.240204

126

126

B —0.042402 | 19 —0.402042

126

13
126

0.022422 % = 0.422022

126

55 —0.224220 | SL =0.220224

126

126

B —0.242202 | X =0.202242

126

Table 6: All elements in spawning 5-ary set A3,

53 = 0.0002 | 35 =04442 | 5 =0.0042 | 25 =0.4402
5 =0.0020 | 2% =04424 | 25 =0.0420 | 2% =0.4024
25 =0.0200 | 22 =04244 | 38 =0.4200 | 25 =0.0244
32 =02000 | £ =02444 | BT =0.2004 | 2 =0.2440
o5 = 0.0024 | 395 =04420 | 25 =0.0222 | 25 =0.4222
a5 =0.0402 | £2=04204 | 22 =0.2220 | 2% =0.2224
52 =102400 | £ =02044 | 323 =0.2202 | 5 = 02242
25 =104002 | 25 =0.0442 | 21 =0.2022 | ;5 =02422

Table 7: All elements in spawning 7-ary set A%

2-04

P
1-02 |2

3
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Table 8: All elements in spawning 7-ary set A%

Table 9: All elements in spawning 7-ary set A7,

Table 10:

=
(@)

2l
)

®lw ool
I

o | o
=l

=~

colut (ool

o | o

&l
(]

5 =002 | 2=0064
o =020 | 35 =046
5 =006 | 2 =0.60

All elements in spawning 7-ary set AZ,
= =0.0066 | 22 = 0.6600
2.=0.0264 | 2% =0.6402
= =0.0660 | £ = 0.6006
£=02244 | 28 =04422
8=02442 | & =04224
2L =0.2640 | 2 =0.4026

50

50
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Table 11: All elements in spawning 7-ary set A7,

77 = 0.002 | {8 =00664 | 55 =0.026 | 15 =0.640
7 = 0020 | 12 =0646 | &~ =0.260 | 1% =0.406
2 =0200 | 2 =0466 | 72 =0602 | 2 =0.064
27 = 0004 | {2 =00662 | {5 =0042 | 12 =00624
7 =0040 | 21 =0626 | {2 =0420 | & =0.246
2 =0400 | £ =0266 | 3 =0204 | £=0.462
2 =0.006 | 12 =0660 | ==0.044 | 12 =0.622
£ =0.060 | 22 =0606 | 1 =0440 | & =0.226
57 =0.600 | & =0.066 | {2 =0404 | & =0.262
71 =0.022 | {2 =0644 | {7 =0.046 | 3} =0.620
2 =10220 | 2 =0446 | 9 =0460 | 2 =0.206
25 =0202 | $;=0464 | 37 =0604 | 2 =0.062
7= 0024 | 2 =0642 | 3 =0224 | {2 =0442
2=0240 | £ =042 | 35 =0242 | L =0424
2 =0402 | £ =02064 | (¥ =0422 | & =0244

171

171

171

171

Table 12: All elements in spawning 11-ary set Ai!

ol

ool

[N | o=
I

|

[ RS

o | o
=]

Table 13: All elements in spawning 11-ary set Al

5 =004 | 4 =040
2=028 | $=082
5 =046 | 5 =064

—_
[\
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Table 14: All elements in spawning 11-ary set A¢}

& 1002 | 2| 048
&1020 ] 2| 084
21024 | & ] 086
21042 | 2| 068

Table 15: All elements in spawning 11-ary set A},

755 = 0.0044 | {3 =0.4400 | £5=104862 | % =0.6248
5 =0.0248 | 15 =0.4802 | 35 =0.2684 | 5 =0.8426
25 =0.0446 | 1L =0.4604 | 25 =02882 | 2L =0.8228

i p— — =1t R — P —
o3 = 0.0644 | 12 =0.4406 | 35 =0.2A480 | 5 =0.8024

2 =0.0842 | 13=0.4208 | &£ = 04064 | 1L =0.6440
355 = 00440 | 132 =0.4A004 | ;55 =04268 | 5 =0.6842
2 =02084 | 2 =08420 | ;5 =0.4466 | 2 =0.6644
13 = 02288 155 = 0.8822 2L =0.4664 | L =0.6446
25 =02486 | 2 =08624 | 25 =04A460 | 5 =0.6044

Table 16: All elements in spawning 11-ary set Ajg-

L0002 | 8% —0AAS | BT -0366 | =034
2 =0004 | 8 =0AA6 | ¥ =-0268 | X =0842
2. =0.006 | 92 =0A442 | 12 =0264 | 3% (3840
oo = 0008 | S —0AA2 | 1% —-0282 | -—08%8
o= =0020 | B1—0ABA | &L =038 | 28-082%
b2 —0022 | 2 =0488 | W =0288 | &6-082
o =0024 | ®2-0486 | §10=0240 | 2 -0804




A6 — 0024 | 992 =048 | M —0242 | & -0808
w2 =0040 | 92 =0A46A | §8=0244 | ¥ =0806
o =0042 | 920468 | §2=0246 | &0 =080
g5 = 0044 | §2 =0.466 | g =0244 | g2 =0.800
o =0.048 | B2 —0A62 | 22-=0400 | 32 =0.644
doe = 0044 | B8 =0460 | 32 =0402 | §2=00643
&8 —0060 | $2-0AdA | 24 -0401 | 2£1-0646
ok =0062 | ®L—0A48 | 20 =0408 | #?=0642
o =00066 | 22—0Ad4 | 22=0420 | 42 =0.684
3 -0068 | 2 =0442 | 22=0422 | 2 =0688
Gk =0080 | 210424 | 20—0426 | 22 —0.684
Go=0084 | S9-0A42 | XT—042 | 28-0.682
L —0086 | SE=0424 | Z=0424 | X 0680
G = 0088 | I =0A22 | 2=0440 | 4% =0.66A4
o5 = 0046 | ST =0A04 | 20-0446 | 2% —0.664
29 = 0048 | 50 —0A02 | 28 -0448 | 21 -—0.662
Ll — 0200 | 24 =0844 | 22 =0444 | 26 =0.660
2 =0202 | 8 -0848 | M0—0462 | 29 -0.648
12— 0204 | 22-08A46 | I —0464 | 2% -—0.646
120-0206 | Ml—08A4 | ZE—0466 | 257-0644
12 -0220 | 28 -08A | H2-0468 | 20-0.642
L4 _ 0997 | 80836 | 26-0480 | 2 =0624
186 — 0228 | 2 -0882 | B=-0484 | T =0.0526
17 0224 | 28-0880 | 22=0486 | =062
180240 | 22 -0864 | BL=0484 | 1 -062
2 =0242 | 21—03868 | 2 =0440 | 2% -0604
6s = 0246 | 32 =0864 | Z¢=0442 | FH =0.608




48 _ 514 17 _ =0 | 299 — 0744 | 366 — () Eng
2 =0244 | 21=0860 | 2 =04A44 | 28 =0.606
156 _ 9@ 09 _n=aE | 302 _a7a4 | 363 — 0 @Enn
156 _ 0964 | 29— 086 | 32 —0TAA | 28— (600
Table 17: All elements in spawning 13-ary set A}?
1_05 | 504
1_02 | 2=04
Table 18: All elements in spawning 13-ary set A{?
£ =00C | £=0.C0
£ =024 | =042
=048 | 2 =084
Table 19: All elements in spawning 13-ary set A}}
=002 | 8=0CA | 2=02C | £=0.40
_ 004 | 7 o5} — 9% — 0%
3004 | =002 | 2=0%] | =056
—_090 | L _oA0 — 9% 0
2=02 | 5=0AC | =028 | 2=0382
H=028 | =044 | 5£=028 | 2=068
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Table 20: All elements in spawning 13-ary set A}3,

2-=10.00CC | £ =0.0C00 | 4L =0.24A2 | 18 =(0.4224
2 - 00204 | W 0.CAR | £ —02CA0 | - 0A02C
I-=0.06C6 | 18 =0.C606 | 22 =0408C | I =0.8C40
2 =00804 | 18 =00108 | L =04488 | 1B =084
= 0.04C2 | 2 =0.0C204 | £ =0468 | 1 =0.8646
43 = 0.0CC0 | £ =0.C00C | & =04884 | 10 —0.8448
2L = 0.20AC | ¥ =0.4C20 | & =0.4A482 | 1% =0.8244
2 = 0.224A | #=0A4422 | 2 =00606C | 2 =0.6C60
2 =024A8 | B =0A4824 | 2 =006264 | 5 =0.6462
3302646 | 137 =0.4626 | 2 =06468 | 3L =0.6864

(3) Elements in child p-ary sets Aﬁ AN

Table 21: All elements in child 5-ary set A3,

1 —

9 —_

Table 22: All elements in child 5-ary set A3,

a = 0.004

30

2 _ 0410

13 LYl
15— 0.204

17 _ Y1)
T —0.240

Table 23: All elements in child 5-ary set A2,

1 _ 5} 49 __ b)
L =0.002 | £=0442
9 _ b} 41 __ 5)
2 =0.042 | 8 =0402
21 __ 5) 29 __ 5
A -0202 | B=0.242
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Table 24: All elements in child 5-ary set A,

55 =0.002 | 3 =0442
& =0.024 | 2=0420
& =0042 | 2=0402
2-0220 | £ =022

Table 25: All elements in child 5-ary set A3,

735 = 0.00044 | {33 = 0.44400
o5 = 0.00242 | 137 = 0.44202
T35 = 0.02024 | {3 = 0.42420
2L =0.04004 | 1% =0.40440
o =0.04202 | 135 = 0.40242
I3 =0.20044 | 5 = 0.24400
I =0.20440 | £ =0.24004
T =0.22024 | 35 =0.22420

Table 26: All elements in child 5-ary set A3,

L —0.0004 | 2 =0.4440

150 150

— 04 7 _ 10
£.=0.0204 | 27 =0.4240

LT —0.0240 | 13 =0.4204

150 150

29 _ T 121 _ vl
=5 = 0.0440 itc = 0.4004
61 _ Ry 89 __ T
o5 = 0.2004 165 = 0.2440

73 _ NA o A0
B —0.2204 | & =0.2240




Table 27: All elements in child 5-ary set A3,

55 =0.0002 | 28 =04442 | 2 =0.0420 | 2 =0.4024
a5 =0.0024 | 23 =04420 | 2 =0.0442 | 2 =0.4002
3o =0.0042 | 28 =0.4402 | 5 =0.2002 | 15 =0.2442
2.=0.0220 | 2 =04224 | 21 =02024 | 12 =0.2420
3L=0.0224 | 289 =04220 | $81=02042 | 18 =0.2402
A9 00402 | BL=04022 | 19 = 02220 | 131 = 02224

Table 28: All elements in child 7-ary set A7,

Table 29: All elements in child 7-ary set Al

1 _ 5) 20 __ 1
L =002 | =061
2 A 19 __ 5)
2 =001 | =062
S =02 | B-o42

= =0.006 | 22 =0.660
2 =0.024 | 2=0.0642
= =0.042 | 2 =0.624
=0.206 | £ =0.460
9-0224 | % =0442
2 -0.260 | 2 =0.460
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Table 30: All elements in child 7-ary set A7,

7 = 0.002 | 132 =100664 | = =0202 | §=0.464
o =0.004 | 12 =0662 | 4 =0204 | 2 =0.462
2=0024 | 18 =0642 | 32 =022 | T =0442
= =0042 | $2=0624 | = =0242 | £ =042
= =0.062 | 2=00604 | 3=0262 | 52=0.404
20 =0.064 | BT =0606 | 22 =0264 | ¥ =0402
Table 31: All elements in child 7-ary set Al
65 = 0.002 | 158 = 0.664
o =0.046 | £ =0.620
22=0.064 | 12 =0.602
T =0.220 | 152 =0.446
o =0.246 | 152 =0.420
e =0.264 | 2T =0.402
Table 32: All elements in child 7-ary set A%,
- =0.00066 | 222 =0.66600 | 1% —0.20066 | 23 = 0.46600
2-=0.00264 | 3T =0.66402 | 12 —=0.20264 | 2 =0.46402
AL =0.02244 | 2 =0.64422 | 1% =0.20660 | 2 = 0.46006
19— 002442 | Bl —0.62224 | 1T =022244 | 2 — 044422
2. =0.04026 | 221 =0.62640 | 25 =0.22640 | 22 =0.44026
2L =0.04224 | 32 =0.62442 | 22 =0.24026 | 2 =0.42640
2.=0.04422 | 3T =0.62244 | 25 =0.24224 | 28 =0.42442
8. =0.06006 | 3 =0.60660 | 12 =0.26006 | 22 = 0.40660
AT =0.06402 | 3B =0.60264 | 12 =0.26600 | 22 = 0.40066
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Table 33: All elements in child 7-ary set A%,

— 0@ | 391 _ a0 _ s 79 _ =
=0.0006 | 55 = 0.6600 % = 0.2006 % = (0.4660

_ 5y 389 __ YD) 115 __ A o YD)
=0.0021 | 29 =0.6612 | L2 =0.2024 | 2T = 0.4642

_ YD) 387 __ 51 117 __ 19 275 __ SYi
=0.0022 | 37 =0.6624 | LT =0.2042 | 25 =0.4624

— N3 375 __ an 29 __ s 263 __ an
=0.0206 | 305 =0.6460 | 122 =0.2206 | 2 = 0.4460

— Yl 373 __ 19 131 __ Y 261 __ 19
=0.0221 | 3B =0.6442 | 131 =0.2224 | 2! = (.4442

— I1s) 369 __ NA 35 __ an 257 __ YR
=0.0260 | %9 =0.6406 | 132 =0.2260 | 2T =0.4406

— s 359 __ an 145 __ TS 247 -
= 0.0406 | ¥9=0.6260 | 1 =0.2406 | 2 =0.4260

— 19 355 __ Y1 149 __ 19 243 __ 5Y1
=0.0422 | 355206224 | L9 =0.2442 | 2 = 0.4221

— an 353 __ NA 151 __ I8} 241 nRYR
= 0.0460 | 38 =0.6206 | 131 =0.2460 | 2 =0.4206

— Sy 341 __ 19 163 __ 5Yi 229 __ YD)
=0.0624 | 2 =0.6012 | 1 =0.2624 | 22 =0.4042

— 19 339 __ Y1 165 __ 19 227 __ A
=0.0642 | 239 =0.6024 | 1 =0.2642 | 2T =0.4024

— s 337 __ YA 167 __ N _ TS
=0.0660 | T =0.6006 | 17 =02660 | 22 =0.4006

Table 34: All elements in child 11-ary set Al

=002 | Z2=0A8 | £=0206 | 2=084

1
55
2=004 | 2=0A46 | £=028 | £=082
3

55 55 55

=006 | 2=0A4 | 2=042 | 2 =068

55

4 _ Q 51 __ 5) 23 __ I3 32 __ "1
L =008 | 2=042 | B=046 | 2Z=061

12 A 43 __ I3 24 Q 31 5)
2_024 | 8=08 | 2=048 | =062

55 55




Table 35: All elements in child 11-ary set A},

755 = 0.004 | 12 =0A440 | Z5=0264 | 135 =0.846
25 =0.046 | 25 =0.464 | & =0.240 | 35 =0.804
5 = 0.064 | 2 =0.A446 | 5 =0404 | 35 =0.640
25 =0204 | 12 =0840 | 25=0446 | &5 =0.664
2 =0246 | 192 =0864 | 25 =04A40 | & =0.604

132

132

132

132

Table 36: All elements in

child 11-ary set A%,

s = 0002 | 82 =0.A448 | ;32 =0262 | 32 =0848
2 =0.004 | 88 —-0446 | £2=02064 | 2% =0.846
- =0.006 | 320444 | 22=0268 | 2% =0.842
2 =0.008 | 80442 | Bl=0282 | 251=0.828
2 —0021 | =048 | 52=0281 | 2 =082
32 =002 | 22=0A84 | 22=0286 | 2=0.824
a4 =0.028 | 21=0.482 | $81=0242 | 2 =0.808
2L =0.042 | 21 =0.A468 | (2=0244 | $2=0.806
2 =0.046 | 22 =0.A4064 | 2 =0246 | Z=0.804
2L =0.048 | B =0.462 | % =0248 | 4 =0.802
3L=0.062 | 22 =0.448 | 2l=0402 | 31 =0.648
32 —0.064 | 28 =0.446 | 22=0404 | 3 =0.646
3L —=0.068 | 21 =0.442 | 25=0406 | 32 =0.6A44
L =0.082 | 2—-0.428 | 21=0408 | 38l =0.642
&2 —=0.084 | 2—-0426 | 22=0424 | 31=0.686
2B =0.086 | 220424 | 25=0426 | 3 =0.684
2L =0.042 | 3B1=0A408 | 21 =0428 | 32 =0.682
22 =0.0A4 | 38 =0A406 | 21 =0442 | 3 =0.668
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23 —0.046 | 352=0.4A04 | 22 =0446 | 32 =10.664
24 =0.048 | B1=0A402 | 2 =0448 | 30 =0.662
Ml —0202 | 22 =0848 | Bl=0462 | 3 =0.648
H2—0204 | 22 -0.846 | 22=0464 | 35 =0.646
03 -0206 | 22 =0.844 | B1=0468 | 35l =0.642
1 —0208 | 21 =0842 | 2l=0482 | 3 =0.628
1220224 | 28-0886 | 22=0484 | 313=0.626
15 - 0226 | 3820881 | 22 =0486 | 32 =(.624
Li_0.228 | BL_0g82 | 2l =0442 | 3 =608
Bl—0242 | 21 =0868 | 22 =04A4 | 33 =0.606
83 -0246 | 22=0.864 | 28 =04A46 | 332 =0.604
Bl —0248 | 21 =0862 | 21 =04A48 | 3l =0.602
Table 37: All elements in child 11-ary set A,
A =0.002 | 99 =0AA8 | =028 | 4% =824
a3 =0.024 | %1 —-0.486 | 19 =0.284 | &1 =0.820
2.=0.042 | BL=0.A468 | {2 =0248 | 2L =0.802
ST =0.068 | $2-0442 | 2l =0402 | 48 =0.648
o =0.086 | 93—-0.424 | B1=0420 | 48 =0.684
B =0.084 | 91=0A420 | 28 =0442 | 2T =0.668
29 =0.0A8 | S8l =0.A402 | 27 =0.468 | 32 =0.642
BL_ 990 | 320 = 0884 | 20486 | =062
L8 _ 0990 | 3200886 | ¥ —0602 | 22 =0448
LT _ 0968 | 28 —0813 | ¥ —0620 | 22 =0484




Table 38:

All elements in child 13-ary set A%
£=002 | Z=0CA
2 =004 | =002
H=024 | £=042
£-042 | 2=084
=044 | 2=082
=062 | 7x=064

Table 39: All elements in child 13-ary set Aj3,

o =0.00C | £ =0.0C0 | & =02C0 | 3 =0.A0C
2 =0024 | 18 =0CA2 | 2L =040C | £ =0.8C0
2> =0048 | £ =0084 | 22 =0424 | 2 =0.842
2 =0084 | 18=0048 | & =0448 | 121 =0.884
A =0042 | 1L =0.C24 | &L =0442 | 12 =0824
2 =0.20C | 12 =0.AC0 | £ =04C0 | 1 =0.80C
3L 0974 | Bl _0AA3 | 55 —0604 | L =060
33 0918 | M9 _0A81 | L —0624 | L =064A2
2L =0284 | {2=0A448 | 2 =00648 | £ =0.684

182

182

182

182

Table 40: All elements in child 13-ary set Al3,,

o =0.002 | 8 =0CCA | 2L =0242 | BT =0.424
27 =0.004 | ¥ =0CC2 | 2. =0202 | 2L =0.404
AT =0.024 | PL=0.CA2 | 25 =0204 | BL =0.402
2o =0.042 | P =0.C84 | 23=0402 | 2L =0.8CA
2 =0044 | 5 =008 | AL =0404 | 2L =0.8C2




o =0.062 | 4T =0C64 | 32 =0424 | 25 =0.842
o =0064 | $5=0062 | 2L =0442 | T =0.884
o =0.082 | $5=0C4A | 3L =0444 | S =0.882
28=0084 | ML 0042 | 2 =0462 | 55 =0.864
S =0.042 | 28 =0.024 | 38 =0464 | B =0.862
5.=0.002 | $L=0C04 | XL =0482 | 22 =0844
o =0.0CA | BL =002 | 35 =0484 | 39 =0.842
BL=0.202 | 2T =0ACA | 38 =0442 | 3L =0.824
ML =0.204 | $=0AC2 | & =0402 | 22 =0.804
48 = 0224 | ML =0A442 | 3 =0404 | 5 =0.802
8L —0.242 | 38 =0484 | 9 =0602 | 25 =0.6CA
85 =0.24A4 | 22=0482 | 5B =0604 | 2L =0.6C2
28 =0.262 | 2L =046A4 | 85 =0624 | 22 =0.6A2
WL =0264 | AL =0.462 | 22 =00642 | 2L =0.684
205.=0.282 | 39 =0.A44A4 | PL=00644 | 2T =0.682
209 — 0284 | 2 =0.442 | 25 =0662 | 22 =0.664
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(4) Characteristic of elements in partitions

Table 41: Characteristic of elements in each partition of the set A2,

Py

P,

1=1-5% (mod 62)

7=7-5" (mod 62)

5=1-5" (mod 62)

35=7-5" (mod 62)

25=1-5 (mod 62) | 51=7-5 (mod 62)
61=—1-5 (mod 62) | 55=—7-5° (mod 62)
57=—1-5% (mod 62) | 27=—7-5* (mod 62)
37=-1-5 (mod 62) | 11 =-7-5° (mod 62)

Table 42: Characteristic of elements in each partition of the set A%,

P

P

P

1=1-5" (mod 126)

11=11-5° (mod 126)

13 =13-5° (mod 126)

5=1-5' (mod 126)

55=11-5' (mod 126)

65 =13-5' (mod 126)

25 =1-5% (mod 126)

23 =11-5% (mod 126)

73 = 13- 5% (mod 126)

125 =1-5% (mod 126)

115 =11 -5% (mod 126)

113 =13 -5 (mod 126)

121 =1-5* (mod 126)

71 =11-5* (mod 126)

61 =13-5* (mod 126)

101 =1-5° (mod 126)

103 =11-5° (mod 126)

53 = 13- 5° (mod 126)

Table 43: Characteristic of elements in each partition of the set AZ,

P P Py
1=1-7 (mod 50) 3=3-7" (mod 50) | 17=17-7° (mod 50)
7=1-7" (mod 50) | 21=3-7' (mod 50) | 19 =17-7" (mod 50)
49=1-7 (mod 50) | 47=3-72 (mod 50) | 33 =17-7* (mod 50)
43=1-7% (mod 50) | 20=3-73 (mod 50) | 31=17-7* (mod 50)




Table 44: Characteristic of elements in each partition of the

7
set A{

Py

P

1=1-7" (mod 171)

2=2-7° (mod 171)

7=1-7" (mod 171)

14=2-7" (mod 171)

49 =1-7* (mod 171)

98 =2-7* (mod 171)

170 = —1-7% (mod 171)

169 = —2- 7% (mod 171)

164 = —1-7* (mod 171)

157 = —2-7* (mod 171)

122 =—1-7° (mod 171)

73=-2-7 (mod 171)

Py

Py

3=3-7" (mod 171)

8=8-7% (mod 171)

21=3-7" (mod 171)

56 =8 7" (mod 171)

147 =3-7? (mod 171)

50 =8-7% (mod 171)

168 = —3- 7% (mod 171)

163 = —8- 7% (mod 171)

150 = =3 - 7* (mod 171)

115 = —8-7* (mod 171)

24=-3-7 (mod 171)

121 = —8-7° (mod 171)

P

P

9=9-7" (mod 171)

10=10-7° (mod 171)

63=9-7" (mod 171)

70=10-7" (mod 171)

99=9-72 (mod 171)

148 =10 - 72 (mod 171)

162 = —9- 7% (mod 171)

161 = —10- 7 (mod 171)

108 = —9-7* (mod 171)

101 = —10-7* (mod 171)

72=-9-7° (mod 171)

23=-10-7 (mod 171)

P

Py

15=15-7° (mod 171)

16 =16-7° (mod 171)

105 =15-7" (mod 171)

112=16-7' (mod 171)
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51 =15-7* (mod 171)

100 = 16 - 7% (mod 171)

156 = —15- 7% (mod 171)

155 = —16 - 7 (mod 171)

66 = —15-7* (mod 171)

59 = —16 - 7* (mod 171)

120 = —15 - 7° (mod 171)

71=—16-7° (mod 171)

Fy

PlO

17=17-7° (mod 171)

58 =58 - 7% (mod 171)

119 =177 (mod 171)

64 =58- 7" (mod 171)

149 = 17 - 7% (mod 171)

106 =58 - 7% (mod 171)

154 = —17- 7 (mod 171)

113 = —58- 7 (mod 171)

52 = —17-7* (mod 171)

107 = —58 - 7* (mod 171)

22 =—17-7° (mod 171)

65 = —58 - 7° (mod 171)

Table 45: Characteristic of elements in each partition of the set A}3

P

b

Ps

1=1-11° (mod 12)

3=3-11° (mod 12) | 5=5-11° (mod 12)

11=1-11' (mod 12)

9=3-11' (mod 12)

7=5-11' (mod 12)

Table 46: Characteristic of elements in each partition of the

11
set Aggs

P

P

1=1-11° (mod 665)

2=2-11° (mod 665)

11=1-11' (mod 665)

22 =2-11' (mod 665)

121 =1-11% (mod 665)

242 = 2-11? (mod 665)

664 = —1-11% (mod 665)

663 = —2- 113 (mod 665)

654 = —1-11* (mod 665)

643 = —2-11* (mod 665)
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544 = —1-115 (mod 665)

423 = —2-11° (mod 665)

Py

Py

3=3-11° (mod 665)

4=4-11° (mod 665)

33=3-11' (mod 665)

44 =4-11" (mod 665)

363 = 3-11% (mod 665)

484 =4 -11% (mod 665)

662 = —3- 11 (mod 665)

661 = —4-11% (mod 665)

632 = —3-11* (mod 665)

621 = —4 - 11* (mod 665)

302 = —3-11° (mod 665)

181 = —4-11° (mod 665)

Ps

Fs

12=12-11° (mod 665)

13 =13-11° (mod 665)

132=12-11' (mod 665)

143 =13 - 11 (mod 665)

122 =12-11% (mod 665)

243 =13 - 112 (mod 665)

653 = —12- 113 (mod 665)

652 = —13- 113 (mod 665)

533 = —12 - 11* (mod 665)

522 = —13-11* (mod 665)

543 = —12-11° (mod 665)

422 = —13-11° (mod 665)

P

Py

16 =16-11° (mod 665)

23 =23-11° (mod 665)

176 = 16 - 11! (mod 665)

253 = 23-11' (mod 665)

606 = 16 - 112 (mod 665)

123 = 23 - 112 (mod 665)

649 = —16 - 11° (mod 665)

642 = —23- 113 (mod 665)

489 = —16- 114 (mod 665)

412 = —23- 114 (mod 665)

59 = —16- 11° (mod 665)

542 = —23 - 11° (mod 665)

Py

Prg

24 =24-11° (mod 665)

26 =26 - 11° (mod 665)

264 = 24 - 11! (mod 665)

286 = 26 - 111 (mod 665)

244 = 24 - 112 (mod 665)

486 = 26 - 11? (mod 665)

641 = —24- 113 (mod 665)

639 = —26 - 113 (mod 665)
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401 = —24 - 114 (mod 665)

379 = —26 - 11* (mod 665)

421 = —24-11° (mod 665)

179 = —26 - 11° (mod 665)

Pry

Pry

27 =27-11° (mod 665)

34 =34-11° (mod 665)

297 = 27 - 11' (mod 665)

374 =34 -11' (mod 665)

607 = 27 - 11 (mod 665)

124 = 34 - 112 (mod 665)

638 = —27 - 113 (mod 665)

631 = —34- 113 (mod 665)

368 = —27-11* (mod 665)

291 = —34-11* (mod 665)

58 = —27-11° (mod 665)

541 = —34 - 115 (mod 665)

Py

P14

36 =36 - 11° (mod 665)

37 =37-11° (mod 665)

396 = 36 - 11' (mod 665)

407 = 37- 11! (mod 665)

366 = 36 - 112 (mod 665)

487 = 37 112 (mod 665)

629 = —36 - 113 (mod 665)

628 = —37 - 11% (mod 665)

269 = —36 - 11* (mod 665)

258 = —37 - 11* (mod 665)

299 = —36-11° (mod 665)

178 = —37-11° (mod 665)

Pis

Pig

46 = 46 - 11° (mod 665)

47 =47-11° (mod 665)

506 = 46 - 11! (mod 665)

517 = 47-11' (mod 665)

246 = 46 - 112 (mod 665)

367 = 47 - 112 (mod 665)

619 = —46 - 113 (mod 665)

618 = —47- 113 (mod 665)

159 = —46 - 11* (mod 665)

148 = —47 - 11* (mod 665)

419 = —46 - 115 (mod 665)

208 = —47-11° (mod 665)

Py7

Pig

48 = 48 - 11° (mod 665)

134 =134 - 11° (mod 665)

528 = 48 - 11' (mod 665)

144 = 134 - 11! (mod 665)

488 = 48 - 11? (mod 665)

254 = 134 - 11% (mod 665)
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617 = —48 - 113 (mod 665)

531 = —134 - 11* (mod 665)

137 = —48 - 11* (mod 665)

521 = —134 - 11* (mod 665)

177 = —48 - 11° (mod 665)

411 = —134 - 11° (mod 665)

Prg

P20

136 = 136 - 11° (mod 665)

146 = 146 - 11° (mod 665)

166 = 136 - 11! (mod 665)

276 = 146 - 111 (mod 665)

496 = 136 - 112 (mod 665)

376 = 146 - 11% (mod 665)

529 = —136 - 11% (mod 665)

519 = —146 - 11° (mod 665)

499 = —136 - 11* (mod 665)

389 = —146 - 11* (mod 665)

169 = —136 - 11° (mod 665)

289 = —146 - 11° (mod 665)

P21

P22

156 = 134 - 11° (mod 665)

157 = 157 - 11° (mod 665)

386 = 156 - 11 (mod 665)

397 = 157 - 11! (mod 665)

256 = 156 - 112 (mod 665)

377 = 157 112 (mod 665)

509 = —156 - 113 (mod 665)

508 = —157 - 113 (mod 665)

279 = —156 - 11* (mod 665)

268 = —157 - 11* (mod 665)

409 = —156 - 11° (mod 665)

288 = —157-11° (mod 665)

Py

P24

158 = 158 - 11° (mod 665

267 = 267 - 11° (mod 665

)
408 = 158 - 11! (mod 665)
498 = 158 - 112 (mod 665)

)
277 = 267 11' (mod 665)
387 = 267 112 (mod 665)

507 = —158 - 11* (mod 665)

398 = —267 - 11% (mod 665)

257 = —158 - 11* (mod 665)

388 = —267 - 11* (mod 665)

167 = —158 - 115 (mod 665)

278 = —267 - 11° (mod 665)
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Table 47: Characteristic of elements in each partition of the set AL

Py

P

1=1-13° (mod 84)

5=5-13% (mod 84)

13=1-13" (mod 84)

65=5-13" (mod 84)

83 = —1-13? (mod 84)

79 = —5-13? (mod 84)

71=—1-13 (mod 84)

19=—5-13% (mod 84)

Py

Py

17=17-13" (mod 84)

29 =29-13° (mod 84)

53 = 17-13' (mod 84)

41 =29 -13' (mod 84)

67 = —17- 132 (mod 84)

55 = —29 - 13% (mod 84)

31=—17-13% (mod 84)

43 = —29-13% (mod 84)

Table 48: Characteristic of elements in each partition of the

13
set A2,

P

P

1=1-13° (mod 170)

3=3-13" (mod 170)

13=1-13" (mod 170)

39 =3-13! (mod 170)

169 = 1-132 (mod 170)

167 = 3 - 132 (mod 170)

157 = 1- 133 (mod 170)

131 = 3-13% (mod 170)

Ps

Py

7=7-13% (mod 170)

9=9-13° (mod 170)

91 = 7-13! (mod 170)

117=9-13' (mod 170)

163 = 7-13% (mod 170)

161 =9-13% (mod 170)

79 =7-13% (mod 170)

53 =9-13% (mod 170)

P

P

11=11-13" (mod 170)

29 =29 -13° (mod 170)
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143 = 11- 13! (mod 170)

37 =29-13! (mod 170)

159 = 11 - 13% (mod 170)

141 =29 - 13% (mod 170)

27 =11-13% (mod 170)

133 =29 -13% (mod 170)

Py

Py

31 =31-13° (mod 170)

33 =33-13° (mod 170)

63 = 31-13! (mod 170)

89 = 33- 13! (mod 170)

139 = 31-13% (mod 170)

137 = 33 - 13% (mod 170)

107 = 31-13% (mod 170)

81 =33-13% (mod 170)

Fy

Py

57 = 57-13° (mod 170)

59 = 59 - 13° (mod 170)

61 = 57- 13" (mod 170)

87 =59 - 13! (mod 170)

113 = 57132 (mod 170)

111 =59 - 132 (mod 170)

109 = 57 - 133 (mod 170)

83 =59 -13% (mod 170)
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