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ABSTRACT

Natural rubber is one of the most important agricultural product of Thailand.
Since the movement of the natural rubber price is similar to the stock price, it is
interesting to study its pattern. Most of the work considered prices as continuous
processes which are modeled based on Brownian motion having a continuous sample
paths. However, many small and large changes of the rubber price observed by eyes
brought to the question of jumps. This research aims to simulate the Unsmoked Sheet
Rubber (USS) price of Hat Yai market starting from January 3, 2007 to February 27,
2015 with two models. One is when the price is assumed to be continuous, the other is
when it is assumed to have jumps. A better simulation result is measured by a smaller
value of Average Relative Percentage Error (ARPE), showing that the model with
jump provided an approximately better fit than the continuous model. Moreover, this
research also studies stability analysis of the USS price in a short interval of time in
which the price is fitted with the polynomials up to degree three. The results showed
that the number of equilibrium points and their stability behaviors varied by the
polynomial fitting and the price. However, no matter the equilibrium point is stable or
not a farmer can make an appropriate decision according to the stability behaviors and

the current price.
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Chapter 1

Introduction and Literature Reviews

1.1 Background and Literature reviews

Natural rubber is one of the most important agricultural product of Thailand. In
fact, Thailand is the world’s largest natural rubber producer following by Indonesia
and Vietnam (Workman, 2015) as in Figure 1.1. Rubber plantations are wildly planted
in Thailand according to the promoting by the Thai government from 1961 forwards
through special policies and programs. There are many rubber smallholders around the
country, they collect the rubber latex and sell to the agents or companies for producing
rubber products. In the south of Thailand, there is the central rubber market in Hat
Yai city, Songkhla province where there is rubber pricing activity. Rubber pricing in
the market depends on demand and supply of rubber production and also on economics
situations. According to information from 1999-2014, Thailand exports rubber prod-
ucts increasing in each year especially for China which the rubber demand is continue
increasing shown in Figure 1.2.

It is interesting to study the pattern of Thai rubber price. There are many models
in finance that can describe the pattern of the asset prices. One famous model was
suggested by two mathematicians: Fischer Sheffey Black and Myron Samuel Scholes

in 1973 (Black and Scholes, 1973). The model is wildly used for describing the pattern



of an asset price S; which is assumed to be continuous as follows:

dSt = MStdt + O'StdBt, (11)

where B; is Brownian motion, and parameters p and o are called drift and volatility,
respectively.

However, one of the shortcoming of the model (1.1) is that it does not consider the
random jumps which can occur in the prices at any time. In 1976, a mathematician,
Robert Cox Merton (Merton, 1976) improved the continuous model by considering the
jump parts. In other word, it is assumed that the pattern of an asset prices S; is not

purely continuous:

dSt = MStdt + O'StdBt + (yt — 1)Stht (12)

where y; is absolute price jump size and /V; is counting process which is Poisson pro-
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Figure 1.1 Eight countries that exported the highest dollar value worth of natural rubber

during 2015.



There are many researches which studied the results between the continuous model
(Black and Scholes, 1973; Klein, 1996; Khaled and Samia, 2010) and the model with
jump (Merton, 1976; Kou, 2002; Maekawa et al., 2008; Gondal, 2011; Yan, 2011; El-
Khatib and Al-Mdallal, 2012). For example, Maekawa and his research team (Maekawa
et al., 2008) compared the results between the continuous model and the jump model
(Kou, 1996) which both models applied to Japanese stock market. The result has shown
that the model with jump outperforms the continuous model. Neupane and Calkins
(Neupane and Calkins, 2013) studied the statistical models to capture price volatility of
latex type Ribbed Smoked Rubber Sheet No.3 (RSS3) in Thailand for the period 2004-
2011 which the daily price of latex type RSS3 was modeled by GARCH, GARCH-GJR
and EGARCH models. The results showed that the price volatility of RSS3 was strongly
persistent and the estimated results were statistically valid. The pricing model for such
a jump diffusion model did not have a closed form formula since the market is incom-
plete (El-Khatib and Al-Mdallal, 2012). This study is considered the historical data of
Unsmoked Sheet Rubber (USS) price in Hat Yai market (the Thai rubber association,
2015) starting from Jan 3, 2007 to Feb 27, 2015 (see Figure 1.3). During this period,
there is 1584 daily prices which are observed in the official trade day which is around 7
years. The maximum price and minimum price in this period are 186 and 30 bahts/kg,
respectively. In general, the log return R is calculated by the difference of the log of

today price, S;, and the log of yesterday price, S;_1, of formula (1.3)

R:zog<sftl);t:2,3,...,n. (1.3)

The small and large changes of the log return observed by eyes (see Figure 1.4),

brought to the question of jumps. So that, it is interesting to simulate and fit the price



with both the continuous model and the model with jump. Moreover, the stability of the
rubber price during short interval of time will be considered. The price model is fitted
by polynomials up to degree three while the stability is studied by cobweb analysis.
Even though, the linear cobweb model is recommended to be used for the assessment of
impact of policy decision (Anokye and Oduro, 2012) but in the real economic situations

sometimes the nonlinear approach is needed to make a better prediction (Anokye et al.,

2014).
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1.2 Objectives of Research

The aims of this study are as follows:

1. To simulate and fit the Unsmoked Sheet Rubber (USS) price with the continuous

model and the model with jump.
2. To compare the results obtained by both models.

3. To study stability analysis of the USS price in a short period of time by applying
cobweb analysis in which case the USS price is fitted by polynomials up to degree

three.

1.3 Expected Advantages

This study contains two expected advantages.

1. An investor can decide to choose an appropriate model for rubber pricing.

2. A farmer can behave appropriately corresponding to the stability analysis.

1.4 Scope of the research

The scopes of this study are as follows:

1. Use 1584 observation prices of the USS price starting from 3 January 2007 to 27

February 2015 obtained by the Thai Rubber Association.

2. Use the continuous model and the model with jump to fit the USS price.



3. Apply cobweb analysis to study the behavior of the USS price in term of stable

and unstable price in each short interval of time.



Chapter 2

Theories and Methods

This chapter introduces the models for simulating the USS price as the stochastic
differential equations and the methods involving in the simulation. Also, this chapter

introduces all theorems and methods for studying the stability of the USS price.

2.1 Simulation and fitting of the data

In this section, let us describe the two models that will be used to fit the data which

is mentioned in Chapter 1.

2.1.1 The continuous model and the model with jump

Fischer Sheffey Black and Myron Samuel Scholes (Black and Scholes, 1973) sug-
gested the models for describing the pattern of an asset price assumes to has a constant
drift and a constant volatility driven by a Brownian motion which is called the diffusion

part as the Stochastic Differential Equation (SDE):
dSt = ,LLStdt + O'StdBt. (21)

Eq.(2.1) assumes that has a continuous solution which is the model for simulating the
asset price.
However, the pattern of the asset price in the real situation is not actually continuous.

This means that Eq.(2.1) ignores the random jumps which can occur at any time. In the



case, the pattern of an asset price is not purely continuous, Merton (Merton, 1976)
improved the pattern of the asset price in Eq.(2.1) by adding an independently and
identically jump part which has Poisson distribution. The probability that the asset
price jumps in a small interval At can be used a Poisson process d/N; with E(dNt) =
Var (dNt) = AA as follows.

B The probability of the asset price has once jump in a small interval At:
P(dNt = 1) = M\AL.
B The probability of the asset price has more than once jump in a small interval At:
P(dN; > 2) = 0.
B The probability of the asset price has no jump in a small interval At:
P(dN; =0) =1 — AA¢,

where the parameter A € R is the intensity of the process IV; which is independent of
time ¢ .

Suppose that in a small interval At the asset price jumps from S; to ¥;.S;. The y; is
called an absolute price jump size. Then, the relative price jump size is

@_ytst—l
S, S

=Yt — 17
where 1, is assumed to be non-negative random variable drawn from log-normal distri-
bution which is In (y;) having independent and identical normal distribution with mean

0 and variance 6. Merton (Merton, 1976) introduced a new equation for describing the

pattern of an asset price with jump as follows:

dSt = /.LStdt + O'StdBt + (yt — ].)Stht (22)
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To solve Eq.(2.2) in order to obtain a model of asset price, we apply the following

proposition (Cont and Tankov, 2004).

Proposition 2.1. (Ito’s formula for jump diffusion process) Let X be a diffusion process
with jumps, defined as the sum of a drift term, a Brownian stochastic integral and a

compound Poisson process

t t Ny
Xt = X() + / asds + / bSdBS + Z AXZ,
0 0

i=1

where a; and b, are continuous non anticipating processes with

T
E{/ b.dt
0

Then, for any C** function, f : [0,T] x R — R, the process Y; = f(t,X;) can be

< 0Q.

represented as

‘1o 9
f<t,Xt> —f(O,Xo) i {—f(s,Xs)+a—)J;(s,Xs)a8]ds
+ / {%(S,Xs)bi]ds

/ t {g_f (s, Xs)bs} 4B,
{ f(Xp- +AX;) - f(XT,_)] (2.3)

+

+

(3

{i>1,1;>1}

Now, Eq.(2.2) will be solved by applying Eq.(2.3) with f(¢, X;) = In (S;). When

the parameters are constant and w is fixed, then

a; = pSt, by = 05, AX; = (yt - ]-)Sta

of B af 1 o2f 1
at(t’st)_o’ 0S8, S’ oS¢ S
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All calculations are substituted into Eq.(2.3):

t t
In (S;) —In(Sp) = /0[0+Sisu851ds+%/00285(—%>d3
t
# [ Josi(5)|am. +z[m (- 15|
0
SN & 1 )
ln<§0> = /O/J,ds—i/oads—i-/oast

(g

t_

In (§> — -0y — %(72@ —0)+ o (B, — Bo) + Z ()]

(2 - N—Lﬂ t+aB+§t:[ln(y)] (2.4)
So 2 ' gy '

i=1

Take an exponential function both sides of Eq.(2.4), so

o ((2)) = o (s 127} omis 35 )

S, = Syexp ((;1 = %&)t 0B+ ﬁ: [ln(yt)}>

i=1

Nt
S, = Spexp ((u — %02>t + 0B + ZY}), (2.5)

i=1
where 1 is again the drift, o is again the volatility, A is the intensity of the jump process,
vy 1s the absolute value of random jumps size and NV, is the counting process which is a
Poisson process with intensity A. The ) | ?21 Y, represents the jump part of the process.

Note that for A\ = 0 it means that there is no any jumps occur in the process. Then the

solution in Eq.(2.5) is reduced to be the solution of Eq.(2.1) as

Sy = Spexp ((/1, — %Ug)t + O'Bt> . (2.6)

Eq.(2.6) is known as the Geometric Brownian Motion (GBM) and wildly used in finan-

cial mathematics as the behavior of underlying asset price of the Black-Scholes model.



12
2.1.2 The simulations

This section explains how to simulate the USS price with Eq.(2.5) and Eq.(2.6) so

that it fits the data. Suppose that a fixed set of dates ¢; is given as follows:
0:t0<t1:t0+At<...<ti:ti_1+At:T

with time step At. Let us first consider the continuous model with constants p and o .

For the today price at ¢t = ¢; , the discretization version of (2.6) is

1
S;, = Spexp ((,u - 502> ti + aBtZ)

and for the price of the next day att = ¢; is

1
Sti—i-At = SO exp ((/,L - §U2> (tl + At) + O'BtH_At) .
Then the return can be obtained by

Sp exp <(,u — %02> (t; + At) + aBtiJrAt)
Sti-i-At

St Sp exp ((/1, — %02> t; + (TBtl.>

With some mathematical manipulations and property of exponential functions, the above

formula becomes
Sy, 1
At exp | | p—=0? At ) exp | 0B, nr — 0By,
St, 2
St 1
i AE U exp | (p— =0 | At + 0AB, A
St 2 ’
1
Stz‘-i-At = Sti exXp ((M - §O'Q> At + O-ABti—i-At) s (27)

where ABy, ;ar = Bi,+ar — B:,. By the properties of Brownian motion (independent

and identically increment), AB; a; = Biyar — By, = Bisnr—t, = Bar = VALB,
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which this notation = means that both sides has the same distribution and B is standard
normal distribution A/(0, 1).
Next, the model with jump (2.5) will be discretized and manipulated as similarly as

the continuous case. Then, the today price S;;:
1, al
Sy, = Spexp ((,u - 50 )ti + oDy, +;Yi)
and the next day price S;, yas:
1 Ny, +at
St at = So €xp ((/1, — 502> (t; + At) + 0By yae + Z Y}),

=1

are obtained. Then also the return can be obtained by
Sp exp ((# 1 %02> (ti + At) + 0By, rar + Zf\ifm Yz’)
Stz‘-i-At o

St Sp exp ((u — %(72> t;+ 0By, + EZN;i Y})

Again, with some mathematical manipulations and property of exponential functions,

the above formula becomes

N 1at Ny,
S, 1 ; l
tgrm — exp ((ﬂ B §U2> At + JABtH-At) exp ( Z Y, — Z YZ).
’ i=1 i=1

i

Ni,+at N, . Ni,+at
Asy T Yi—> Y= Zz’:NtiH Y; , then we get

Nyt ae
1 1
Sti+ar = St exp ((M - 502) At + UABtZ-JrAt + Z Yz) (2.8)

1=N¢, 1
where N;, < N;,1a; and NV, A, has Poisson distribution with parameter AA¢.

2.1.3 The Parameters of two models

Throughout this study the parameters of both models will be investigated by Monte

Carlo method. The Monte Carlo method is a simple and effective tool to simulate
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the asset prices that do not have closed form formulas and the method has been used
by many researches (Prahl et al., 1989; Boyle et al., 1997; El-Khatib and Al-Mdallal,
2012). The formulas for parameters ;. and o of the continuous case (2.7) are obtained

by the expectation and the variance of the log return

R=1In Sttar = w— 102 At +0ABy ia |,
St, 2 :

respectively. Indeed,

1
E[R] = E|:(/J, - 5 2) At + O'ABti+At:|
=F |:(/L — %U2> At:| + E |:O-ABti+At:|
1 —
= <,u - §U2> At o= oF |:ABti+At:| ) Bti-I—At i AtBl
1 2
=|\n-30 At 40
= (u — %02> At

If there are n observations of the log return (R, ..., R,,) by the law of large number the

expectation of the log return can be obtained by

1
FE ~ — i
[R) ~ ~ Z R
Therefore,
1 & 1
_ZR’ =~ M——02>At
n = 2
. R;

N
=
|
DO | =
ql\D
N——
Q
N
<y

o’ (2.9)

=

¢
E,
| —
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Now, the formula for o is obtained by computing the variance of the log return R. In

fact,

Var[R] = Var Ku — %02> At + UABti+At:|
= Var [(M — %(72> At} +Var [0ABti+At]
= 0+ 0*Var lABtﬁAt] ; By at L V/AtB,
= o*Var [\/KtBl]

= Ato*Var [Bl} = Ato?. (2.10)

On the other hand, the variance of R is calculated by

Var[R]mnilz(Ri—Rf; R:% R;. 2.11)

i=1 =

Therefore, the final equation for o is obtained by equating Eq.(2.10) and Eq.(2.11):

1 =\ 2
Var[R] = Ato®~ n_liz:;(Ri—R)
2 1 - 5\ 2
Ato* = —— (R~ R)
=1
n —\2
o2 ﬁ i=1 (Ri_R)
At
1 n ) 2
Tz‘:1 (Rz‘ _R)
n—1 2
o = \/ At , (2.12)

where \/ LS (R; — R)” is standard deviation of the log return,

For the calculation of parameters of the model with jump, the method of moment is
used. The method was probably first introduced by Johannes (Johannes, 1999). Valachy
(Valachy, 2004) applied this method to the currencies exchange rate from the Central

European (CE) region. Note that the jump sizes are assumed to be normally distributed
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N (0, 6?). Let us assume that all parameters are constant. The formula for diffusion part
of the Eq.(2.5) is

o = 02 — \6%, (2.13)

where o2 is the diffusion of the continuous part, 0% is the total diffusion (or 2"¢ mo-
ment), and 42 is the variance of jump sizes.

Under the assumption of constant jump intensity, the proposed estimation procedure
is as follows:

B Estimate parametrically the drift u
E[ln Sy ae —In Sy & 1 Zn: WECEARY (2.14)
= St

B Estimate )\ and 62 based on the calculation of moments, the ratio of the 4" and

6" moment will give us the estimate of 52. Consequently, the estimate of \ will be

4% Moment

A= —55 (2.15)

The particular moments are calculated as follows:

n 4
4™ Moment = %Z (ln (St;:m)) = 3X(6%)%,

i=1 t

n 6
6" Moment = %Z (ln (%)) = 15M(6%)%.

i=1 t

B The estimation of o can be completely identified by subtracting the 2"¢Moment

estimated nonparametrically from constant volatility, this means
o2 = 2" Moment — \0?, (2.16)

2
where 2" Moment = %Z?:l (hl (Stétft)) :
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2.1.4 Error calculation

In order to compare the results by the two models, the error between the empirical
data and the simulated data are considered. In this study, the Average Relative Percent-
age Error (ARPE) is used to compare the results which is similar to the research by

Maekawa and his research team (Maekawa et al., 2008). The ARPE is defined as

Tr; — S;

ARPE — - > x 100, (2.17)

m <
=1

T
where x; is empirical data, s; is simulated data and m is data size. The better result is

measured in term of the lower value of the ARPE.

2.2 Stability Analysis

This section explains polynomials fit based on least squares method and all neces-

sary definitions and theories for stability analysis.

2.2.1 Polynomial Fits

It is well known that for the data set of size n, one can try to fit it with the polynomial

function of degree m which is defined as

(@) = ama™ + amor @™+ -+ axx® + a1 + aq. (2.18)

In order to fit the data set (x;, v;),7 = 1,2, 3, ..., n, by the polynomial function y = f(z)
of degree m, the parameters ag, ay, as, ..., a,, need to be estimated. Based on the least
squares error, the parameters are estimated by the linear system of m + 1 equations as

follows:
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n dowp o e Yo o > Ui

)DETIEED O ANEEED DE Sl Il I > Ty
- . (2.19)

Yoap apth e Yaim U, POERT

It is indeed the polynomial function (2.18) with parameters estimated by (2.19) is the
model of our interest. Hence, from now on, the polynomial function could also be
referred to as polynomial, polynomial model or just model. Moreover, the goodness of

fit of the model can be measured by value of R-squared (/%) and defined by

i(ﬁz‘ —7)°
R2 Sy zzl 7
> (i —9)?

where § = % > y; and y;, y; are the empirical data and modeled data, respectively.
=1

2.2.2 The definitions and theorems in stability analysis

In order to study stability of rubber price, the stability of the fixed points of polyno-
mial (2.18) will be considered. Here are the definitions and theories which involved in

this study.

Definition 2.2 (Cobweb plot). A cobweb plot is a visual tool used in the dynamical

systems to investigate the qualitative behaviour of one-dimensional iterated functions.

Definition 2.3 (Fixed point). A point p is called a fixed point or equilibrium point of

Zni1 = f(z,) , or more simply a fixed point of f(z) ,if f(p) = p.
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In general, if an equilibrium p of f is nonzero, one can always has a zero as an
equilibrium of g(x) = f(p — x) — p. Therefore, instead of considering the equilibrium

p of f, one can consider the equilibrium zero of g.

Definition 2.4 (Stability). An equilibrium z = 0 is said to be:

(a) stable if for any positive scalar ¢ there exists a positive scalar ¢ such that |z,| < 0

implies |x,| < ¢ foralln > 0.

(b) asymptotically stable if in addition z,, — 0 as n — oc.

(c) unstable if there exists an ¢ > 0 such that for every 6 > 0 there exists an |zo| < J,

|x,| > € for some n > 0.

In case f is a linear function of the form f(x) = axz + b, the following theorems

give criteria for the stability of the fixed point.

Theorem 2.5 (Stability of dynamical linear equations). The fixed point of the equation

y = ax + bis stable if |a| < 1 or unstable if |a| > 1.

Proof: [Marotto, 2006].

Theorem 2.6 (Oscillation of dynamical linear equations). For a > 0, all solutions of
y = az + b are monotonic (step) converge or diverge, but for a < 0 all solutions

oscillate around the fixed point.

Proof: [Marotto, 2006].

In case f is non-linear function that is f is a polynomial of degree greater than or

equal to two, the following theorem gives a criterion for the stability of the fixed points.
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Theorem 2.7 (Stability and Oscillation of Non-linear equations). For any fixed point
pof tns1 = f(xn), if |f (p)| < 1 then p is locally stable, but if | f (p)| > 1 then p is
unstable. Also, if ' (p) < 0, then solution oscillates locally around p, but if f'(p) > 0

they do not.

Proof: [Marotto, 2006].

Besides, the criteria given by theorems 2.5-2.7 can also be confirmed numerically by
cobweb graphing. In fact, for a given iterated function z,,,; = f(x,) where f : R — R,

with an initial value x, the cobweb graphing will be created by the following steps:

1. Find the point on the function curve with an x-coordinate of x,. This has the

coordinates (g, f(zo)).

2. Plot horizontally across from the point in step 1 to the equilibrium line. This has

the coordinates (f(zo), f(xo))-

3. Plot vertically from the point on the equilibrium line to the function curve. This

has the coordinates (f(zo), f(f(z0)))-

4. Repeat from step 2 as required.

For the examples of the cobweb feature, we can see in Figures 2.1, 2.2, 2.3 and 2.4
which the inward directions to the fixed points mean that the fixed points are stable and

the outwards directions mean that the fixed points are unstable.
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Chapter 3

Results

This chapter provides the simulation and the stability analysis results. In the sim-
ulation results, there are two subsections which are jump behavior in USS price and
comparison of the simulation results. For the stability analysis results, there are three
subsections which are the analytical results, the numerical results and note on stability

of fixed point.

3.1 The simulation results

This section includes jump testing in the USS price and the simulation results.

3.1.1 Jump behavior in USS price

Before fitting the USS price with the model with jump, the jump behavior of the
price is confirmed by the Bipower Variation test (Barndorff-Nielsen and Shepard, 2004).
The test can be performed as following. Let Y; be the log price of an asset and Y be the

discretization version of Y}, then the log return can be seen as
yj =Y — Y157 =12,.., [t/d] 3.1)

where § > 0 is a time interval and |¢/J ] is the largest integer that does not exceed /.

Barndorff-Nielsen and Shepard (Barndorff-Nielsen and Shepard, 2004) introduced the



24

Table 3.1 The result of jump testing in USS price.

Wale | {YaHY | 2y = va) < 0

0.8584 | 0.4370 —0.1720

calculating of Quadratic Variation (QV), [Y;]; by

[¢/d]
Yile =Y u2, (32)
j=1

and the Bipower Variation (BV), {Yj ,[51’1} by

[¢/d]
= lyallyil, (3.3)
7j=2

where [Y;]; and {YZ;}LI’H are said to be the realized quadratic and bipower variations,
respectively. If the data has jump, the difference between the realized quadratic and

bipower variations will be non-positive, i.e.,
ur{Yaht = vl <o, (3:4)

where 11y = El|u]] = \/2/7 ~ 0.79788 and v ~ N(0, 1). The results in Table 3.1 have

shown that the value of
2 s (vs), = —0.1720 < 0.

It means that there are jumps in this USS price.

3.1.2 Comparison of simulation results

To compare the results obtained by the continuous model

1
StH—At = Sti exp ((,LL - §U2> At + O-ABti—i-At) y (35)
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and the model with jump

N,y at
1 K
Sy +ar = i, exp ((u - §a2> At +0ABn+ Y Y) (3.6)
1=Nt, 41

with all parameters of both models are calculated separately. The parameters y =
0.0310 and o = 0.3499 for the continuous model (3.5) are calculated from formulas
(2.9) and (2.12), respectively. While the parameters = —0.0001, ¢ = 0.0137, A =
0.0907 and 6% = 0.0627 of the model with jump (3.6) are calculated from formulas
(2.14), (2.16) and (2.15), respectively. In simulation, 10000 trajectories for each models
((3.5) and (3.6)) are generated. Then, the results by both models are compared by
ARPE:

T — S

ARPE = ii

m <
=1

% 100, (3.7)

X

where z; is empirical data, s; is simulated data and m is data size. The smaller error
indicates the better model. The average of ARPE are 54.78% and 47.54% for the model
(3.5) and (3.6), respectively. In term of average of ARPE, we can see that the model
with jump provides a little better estimate than the continuous model. As an example,
the price trajectories with ARPE = 17.35% from model (3.5) and ARPE = 17.25%
from model (3.6) are shown in Figures 3.1 and 3.2.

However, it is noticed that the average of ARPE of both models are quite large
comparing to the result by Maekawa and his research team (Maekawa et al., 2008)
which is = 36.46% for the continuous model, and = 28.95% for model with jump with
sample size 50955. In fact, the variation of the result is affected by random number
and parameters of the model. Indeed, the effect of randomness can be reduced by
simply increase the sample size. So that the most potential effect should be on the

choices of parameters. In particular, Hull (Hull, 2000) suggested that the volatility in
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Mu=0.021 Sigma = 0.3409 Erar= 17.345004 %
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— — — Simulated data wich is obtained by the continuous model
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Figure 3.1 The simulated trajectory which is obtained by continuous model with calcu-

lated parameters.

the real market could vary from 15% to 60%. A question arises whether there is a more
appropriately volatility other than the one obtained by calculation. For simplicity, the
Brute-force method can be applied for this problem.

Brute-force method (Paar and Pelzl, 2009) is a straightforward approach based on
statement of problem and definitions of concept involved. In this case, the method is
applied in searching for appropriate parameters  and o in some given intervals that
would give a better estimate for the continuous model and the model with jump as fol-

lows:
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Mu =-00001 Sigma= 00137 Lambda = 0.0907 Ermar=17.75759 %
200

Empirical data

— — — Simulated data wich is obtained by the model with jump
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[u] 200 400 600 200 1000 1200 1 400 1600

Time (Days)

Figure 3.2 The simulated trajectory which is obtained by the model jump with calcu-

lated parameters.

1. Set the intervals of parameters . and o for the simulations.

2. Simulate the price trajectories with all pairs of x and o in step 1. and calculate

the average ARPE for each pairs of 1 and o.

3. Collect the pairs of p and o that provide the minimum average ARPE.

In particular, the interval [—0.05, 0.05], increasing by 0.01, is given for parameter
u. Together with suggestion by Hull (Hull, 2000), the interval [0.05, 0.60], increasing
by 0.01, is given for parameters o. The results give © = 0.01 and ¢ = 0.15 for the
continuous model (3.5) with a better estimate of average ARPE = 33.39% and the best
estimate of ARPE = 19.19%. For the model with jump (3.6) searching by the Brute-
force method gives ;1 = 0.02 and o = 0.05 resulting the average ARPE = 35.67% with

the best estimate of ARPE = 22.41%.
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Concerning the model with jump, another parameter which is also important is the
intensity A indicating the average number of jumps in the period. The value of A =
0.0907 obtained by formula (2.15) seems to be quite small comparing to the empirical
plot in Figure 1.3 in Chapter 1. Therefore, with (u,0) = (0.02,0.05) obtained by the
Brute-force method, it is also interesting that whether other value of A would give a
better result. In searching for an appropriate A, the parameters (u, o) is kept fixed and
then varies values of A starting from 1 stepping up by 0.5 and found that A = 3 gives the
least average of ARPE = 31.80%. Table 3.2 shows comparing of average ARPE from
both models with the calculated parameters and the parameters obtained by Brute-force

method.

Table 3.2 The comparison of average ARPE from both models with differences choices

of parameters.
Calculated parameters | Parameters by Brure-force
The continuous model 54.78% 33.39%
The model with jump 47.54% 31.80%

3.2 The stability analysis

In this section, the USS price (.S;, S;;1) in some short period of times are fitted by
polynomials of degree one, two and three. Then, the model (polynomial) y = f(z) that
is most fitted in term of the highest values of 12? is chosen. Recall that the real number
p such that p = f(p) is a fixed point of f. Consequently, the intersections of the model

y = f(x) and the equilibrium line y = x gives fixed points of the model. However,
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fixed points of the model can also be calculated theoretically as will be described in the

following section.

3.2.1 The analytical results

This section first gives methods of obtaining fixed points of the models for all cases:
linear, quadratic and cubic polynomials. After that the criteria for stability behavior of
those fixed points are also given. According to the polynomial (2.18) of degree m, the
linear, quadratic and cubic models can be written as f(z) = ax+0b, f(z) = ar®+br+c
and f(z) = ax® + bz* + cx + d, respectively where a, b, c and d are real numbers. The
method of locating the fixed points 2* such that 2* = f(z*) of those three models are
described as follows.

Firstly, for the linear model f(z) = az + b, if 2* is a fixed point of f then z* =

ax* + bor

7t = a1, (3.8)

As stated in theorem 2.5, the fixed point z* is stable if |a| < 1 and unstable if |a| > 1.
Secondly, for the quadratic model f(x) = ax? + bx + ¢, if x* is a fixed point of f

then z* = a(z*)? + bx* + c. Applying the quadratic formula to obtain z* and then

v = —(b-1)+ (19—1)2—46107 (3.9)
2a

v = —(b-1) - (b—1)2—4ac‘ (3.10)
2a

As stated in theorem 2.7, the fixed point z* is locally stable if | f'(z*)| < 1 and unstable
if |f'(z*)| > 1. In particular, the fixed point z* is locally stable if |2ax* + b| < 1 and

unstable if |2az* + b| > 1.
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Finally, for the cubic model f(z) = az® + ba? 4+ cx + d, if z* is a fixed point of f

then z* = a(z*)* + b(2z*)* + ca* + d or

AR Clud) JUR B G.11)

Recall the cubic formula (Dunham, 1990) to find all fixed points. If xy, x5, z3 be the
solutions of the cubic equation f(z) = az® + Sz + vx + w, then it can be factorize as

following:
ar® + B2° +yr +w = alr — z1)(z — 29) (v — 13) = 0.
Together with

~ 9afy — 27aPw — 2°
1= hdas ’

3
. 3ay — P2\ 2
9q2 ’

s= VT,

t=qg—r,

the three solutions of f(z) = az® + 82? + vz + w can be calculated as follows:

T, = Ss+1— %,

- —%(s+t) _ 3% 4 */75(3 1),

x3 = —%(34—0 — 3% — \/75(3 — t)i,
where 7 is an imaginary unit which is 72 = —1.

In particular, the solution of Eq.(3.11) can be calculated by formulas of x;, z, and x5

withao=1,=2~y=landw = <.
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As stated in theorem 2.7, the fixed point z* is locally stable if | f'(z*)| < 1 and unstable

if | f/(z*)| > 1. In particular, the fixed point z* is locally stable if

13a(z*)* + 20 + | < 1

and unstable if

|3a(x*)? + 2bx* 4 ¢| > 1.

3.2.2 The results by graphing

It should be noticed here that, according to Hat Yai market, the number of price
in each month is ranging from 11 to 20 points. This is because there is no price an-
nounced for trading on weekend and other national holidays. In this section, the daily
price of each month starting from January 3, 2007 to February 27, 2015 is considered.
In fact, the daily price in each month is fitted by all models of linear, quadratic and
cubic polynomials. The best fit is chosen corresponding to the highest of R2. However,
the results shown in this section are only from some periods of time that appropriate
for rubber tapping. According to the information from Agricultural Research Develop-
ment Agency (Public organization), the months that are suitable for rubber tapping are
January, February and March.

This section contains the iterated graphing, showing stability behavior of the equi-
librium price (fixed point) in some particular short period of times. The equilibrium
prices are graphically located by the intersection of the equilibrium line y = z and the
price line S;,1 = f(S;) where f is the model (linear, quadratic or cubic). It is interest-

ing and so important to realize the behavior of the fixed points whether they are stable
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or not. If the fixed point is stable, the current price which is located near that fixed point
will eventually increasing or decreasing or oscillating to the fixed point. While for the
unstable fixed point, the current price will increasing or decreasing or oscillating away
from the fixed point.

The results in this study are given as follows. Firstly, the price (S;, Siy1) is fitted
by a linear model y = ax + b giving a stable fixed point (Figure 3.3) and an unstable
fixed point (Figure 3.4). Secondly, the price (S;, Siy1) is fitted by a quadratic model
y = ax?® + bz + c giving two fixed points with one is stable and the other is not (Figure
3.5). Finally, the price (S;, Si;1) is fitted by a cubic model y = ax® + bx? + cx + d
giving the results of only either one or three fixed points. In the case of one fixed point,
the stable and unstable cases are shown in Figures 3.6 and 3.7, respectively. For the
case of three fixed points, the results are found either one fixed point is stable while
the other two are not (Figure 3.8) or two fixed points are stable while the other is not

(Figure 3.9). All the results are shown graphically and also verified by theories.

The linear model

It is easy to figure out that the fixed point is stable or unstable by considering the
slope of the model. In fact, if the absolute value of the slope of the model is less than 1
then the fixed point is stable otherwise it is unstable.

The result given by fitting the whole 17 points of January, 2011 gives a stable fixed
point. In fact, the linear model f(z) = 0.8661x+22.0512 with R? = 0.9217, illustrated
in Figure 3.3 (a) is obtained. The fixed point in this case is 164.6988 and it is stable since

the absolute value of the slope |a| = |0.8661| < 1. The results from linear model fit
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and stability analysis are shown in Table 3.3. The stability analyse by cobweb graphing
in Figure 3.3 (b) showing that in the case of stable equilibrium the solution whose
initial values no matter smaller or larger than the equilibrium eventually approaches the

equilibrium point.

Table 3.3 Results from linear model fit and stability analysis of the price in January,

2011.

Model f(z) = 0.86612 + 22.0512

R-squared R? =0.9217

The fixed points | * = 164.6988

Stability testing | |a| = 0.8661 < 1

Result ™ is stable
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Figure 3.3 The rubber price of January, 2011 fitted by linear model (a) and the cobweb

behavior with initial values o = 160 and o = 170 (b).
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The result given by fitting the whole 11 points of February, 2013 gives an unstable
fixed point. In fact, the linear model f(z) = 1.0304x — 3.3627 with R* = 0.8117,
illustrated in Figure 3.4 (a) is obtained. The fixed point in this case is 110.5443 and it is
unstable since the absolute value of the slope |a| = [1.0304| > 1. The results from linear
model fit and stability analysis are shown in Table 3.4. The stability analyse by cobweb
graphing in Figure 3.4 (b) showing that the solution whose initial values either smaller

or larger than the equilibrium eventually moves away from the equilibrium point.

Table 3.4 Results from linear model fit and stability analysis of the price in February,

2013.

Model f(z) = 1.0304z — 3.3627

R-squared R? =0.8117

The fixed points | z* = 110.5443

Stability testing | |a| = 1.0304 > 1

Result ™ 1s unstable
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R-squared = 08117171
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Figure 3.4 The rubber price of February, 2013 fitted by linear model (a) and the cobweb

behavior with initial values o = 105 and zq = 115 (b).
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The quadratic model

The result given by fitting the whole 20 points of March, 2010 and obtained the
quadratic model f(z) = —0.061922 + 13.8966x — 670.8672 with R? = 0.7792, pre-
sented in Figure 3.5 (a). The fixed points in this case are 7 = 100.6975 and x5 =
107.6069. The fixed point 25 = 107.6069 is stable as shown in Table 3.5, since the
absolute value of the first derivative of f(x) at x3 is less than 1. While the fixed point
7 = 100.6975 is unstable as also shown in Table 3.5, since the absolute value of the
first derivative of f(x) at x7 is greater than 1. The stability analyse by cobweb graphing
in Figure 3.5 (b) showing that the solution whose initial values o < x] moves away
from 2] while the solution with initial values are between x] and z7 approaches the
fixed point z5. However, when the initial values z, > 27 it might be two events. One is
approaching to the fixed point 23 when the initial values are close to x} and the other is

moving way from both fixed points.

Table 3.5 Results from quadratic model fit and stability analysis of the price in March,

2010.

Model f(x) = —0.06192% + 13.8966x — 670.8672

R-squared R? =0.7792

The fixed points | x7 = 100.6975 and x5 = 107.6069

Stability testing | |2ax} + b| = 1.4278 > 1 and [2ax} + b| = 0.5722 < 1

Result x7 1s unstable and z7 is stable
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Figure 3.5 The rubber price of March, 2010 fitted by quadratic model (a) and the cob-

web behavior with initial values ¢y = 98, o = 104 and zq = 112 (b).
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The cubic model

The result given by fitting the whole 20 points of January, 2007 gives one fixed point
which is stable. In fact, the cubic model f(z) = —0.003623 + 0.72282% — 47.4102x +
1077.5757 with R* = 0.9374, illustrated in Figure 3.6 (a) is obtained. The fixed point
in this case is * = 75.5751 and it is stable as shown in Table 3.6, since the absolute
value of the first derivative of f(z) at z* is less than 1. The stability analyse by cob-
web graphing in Figure 3.6 (b) showing that the solution whose initial value xy = 65

approaches the fixed point z* = 75.5751.

Table 3.6 Results from cubic model fit and stability analysis of the price in January,

2007.

Model f(z) = —0.00362> 4 0.7228x% — 47.4102x + 1077.5757

R-squared R? =0.9374

The fixed points | z* = 75.5751

Stability testing | |3a(x*)? + 2bx* 4 ¢| = 0.4179 < 1

Result x* is stable
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R-squared = 0.9374039

Model price y = -0.0038:x"3 + 0.7228:x"2 - 47 4102x + 1077 5757
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Figure 3.6 The rubber price of January, 2007 fitted by cubic model (a) and the cobweb

behavior with initial value xy = 65 (b).
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The result given by fitting the whole 17 points of January, 2012 gives one fixed
point which is unstable. In fact, the cubic model f(z) = —0.0048z% + 1.39112% —
133.8046x + 4334.9718 with R? = 0.9667, presented in Figure 3.7 (a) is obtained.
The fixed point is #* = 111.7032 and it is unstable as shown in Table 3.7, since the
absolute value of the first derivative of f(x) at x* is greater than 1. The stability analyse
by cobweb graphing in Figure 3.7 (b) showing that the solution whose initial value

xo = 100 oscillates around the fixed point * = 111.7032.

Table 3.7 Results from cubic model fit and stability analysis of the price in January,

2012.
Model f(z) = —0.004823 + 1.39112* — 133.8046x + 4334.9718
R-squared R?* = 0.9667

The fixed points | z* = 111.7032

Stability testing | |3a(z*)* + 2bz* 4 ¢| = 1.2011 > 1

Result x* 1s unstable
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Figure 3.7 The rubber price of January, 2012 fitted by cubic model (a) and the cobweb

behavior with initial value xo = 100 (b).
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The result given by fitting the whole 17 points of March, 2008 gives three fixed
points with one is stable and the other two are not. In fact, the cubic model f(z) =
0.03802% — 9.312922 + 760.68962 — 20639.826 with R* = 0.5754, illustrated in Figure
3.8 (a) is obtained. The fixed points in this case are x] = 77.9763, x5 = 81.8932 and
x3 = 84.9505. The fixed point 25 = 81.8932 is stable as shown in Table 3.8, since
the absolute value of the first derivative of f(x) at x3 is less than 1. While the fixed
points z7 = 77.9763 and x3; = 84.9505 are unstable as also shown in Table 3.8, since
the absolute values of the first derivative of f(z) at 27 and 7 are greater than 1. The
stability analyse by cobweb graphing in Figure 3.8 (b) showing that the solution whose
initial values ] < xy < 2 approaches the fixed point z3. Also in Figure 3.8 (b)
showing that the solutions whose initial values no matter smaller or larger than z] and

x5 move away from the fixed points 27 and 3.

Table 3.8 Results from cubic model fit and stability analysis of the price in March,

2008.
Model f(z) = 0.0380x> — 9.31292% + 760.6896x — 20639.8260
R-squared R? =0.5754

The fixed points | ] = 77.9763, x5 = 81.8932 and z5 = 84.9505

|3a(z})? + 2bx} + | = 2.0394 > 1,
Stability testing | |3a(x3)? + 2bal + ¢| = 0.5442 < 1 and

13a(2%)? + 2bat + | = 1.8110 > 1

Result x5 1s stable while 27 and 27 are unstable
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Figure 3.8 The rubber price of March, 2008 fitted by cubic model (a) and the cobweb

behavior with initial values o = 77, zo = 80, zo = 84 and xy = 86 (b).
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The result given by fitting the whole 18 points of March 2007 gives three fixed points
with two are stable and the other is not. In fact, the cubic model f(z) = —0.12442° +
27.08642% — 1964.3837x + 47523.5430 with R?> = 0.8133, presented in Figure 3.9
(a) is obtained. The fixed points in this case are z7 = 71.0500, x5 = 71.7656 and
x3 = 74.9224. The fixed point 25 = 71.7656 is unstable as shown in Table 3.9, since
the absolute value of the first derivative of f(z) at x} is greater than 1. While the fixed
points z7 = 71.0500 and x5 = 74.9224 are stable as also shown in Table 3.9, since the
absolute values of the first derivative of f(z) at 27 and x} are less than 1. The stability
analyse by cobweb graphing in Figure 3.9 (b) showing that the solution whose initial
values either smaller or larger than x5 diverges from the fixed point z3. Also in Figure
3.9 (b) showing that the solutions whose initial values xy = 70 and xy, = 73 approach

x] and x3, respectively.

Table 3.9 Results from cubic model fit and stability analysis of the price in March,

2007.
Model f(z) = —0.124423 + 27.08642* — 1964.3837x + 47523.5430
R-squared R? =0.8133

The fixed points | x7 = 71.0500, x5 = 71.7656 and x5 = 74.9224

13a(x})? + 2bx; + c| = 0.6553 < 1,
Stability testing | |3a(x3)* + 2bx} + ¢| = 1.2810 > 1 and

13a(23)? + 2bz% + ¢| = 0.5207 < 1

Result x7 and x} are stable while 27 is unstable
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Figure 3.9 The rubber price of March, 2007 fitted by cubic model (a) and the cobweb

behavior with initial values o = 70 and x¢ = 73 (b).
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3.2.3 Note on stability of fixed points

The implementation of this results is simple and useful. No matter the equilibrium
price stable or not, a farmer can get benefit from it. For the case that the equilibrium
price is stable, it can either be monotonic-step (Figure 2.1) or oscillating (Figure 2.3)
convergence.

In the case of the equilibrium price is stable and monotone step convergence, the
farmer can react corresponding to the current price as follows. If the current price is
less than the equilibrium, the farmer should keep their products and wait until the price
moves stepwise up to the equilibrium, so that they can earn more. If the current price
is greater than the equilibrium, the farmer must immediately sell their products before
the price moves stepwise down to the equilibrium. If the equilibrium price is stable and
oscillating convergence, it means that the price is swaying above and below and moving
toward the equilibrium. In this case, the farmer can sell their products once the price is
swaying above the equilibrium.

Similarly, in the case that the equilibrium is unstable, it also can either be monotonic-
step (Figure 2.2) or oscillating (Figure 2.3) divergence. In case the equilibrium price
is unstable and monotone divergence, the farmer can react corresponding to the current
price as following. If the current price is less than the equilibrium, the farmer must
immediately sell their products before the price move stepwise down away from the
equilibrium. If the current price is greater than the equilibrium, if possible, the farmer
can keep their products and wait until the price moving stepwise up to the desirable
price. Finally, if the equilibrium price is unstable and oscillating divergence, it means

the price swaying above and below and moving away from the equilibrium. In this
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case a smart and tolerant farmer can make a great profit by selling their product when
the price swaying up high above the equilibrium price. Some possible reactions of
the farmer corresponding to the behavior of equilibrium price and the current price are

shown in Table 3.10.

Table 3.10 Some possible reactions of the farmer corresponding to the equilibrium price

x* and the current price xg.

Stable equilibrium Unstable equilibrium

T < x* Ty > x* Ty < x¥ T > x*

Monotonic-step | Keep and wait | Sell immediately | Sell immediately | Keep and wait

Wait until Wait until Sell immediately

Oscillation xy >t >0 | Sellimmediately | xz; > a*,t >0 or wait

for a higher price
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Chapter 4

Conclusion and Discussion

This chapter contains summaries of all results and discussion on limitations and

possible further works.

4.1 Main results

The two main results of this study are the simulations of the USS price and the
stability analysis of the price in a short interval of time. In the simulation part, it was
expected that there were jumps in the USS price by observing the changes in the log
return. The jump behavior was tested by Bipower variation method (section 3.1.1). The
negative value of uf{Y};}E’H — [Ys]; indicating that there were jumps in the price. This
means that the model with jump could be applied and would hopefully give a better
simulation. In order to verify this, 10000 trajectories of USS price were simulated
by both the continuous model (3.5) and the model with jump (3.6). Our conjecture
is confirmed by the result in Table 3.2 showing that the model with jump gave a better
result in term of a smaller ARPE. In fact, the model with jump gave ARPE 47.54% while
the continuous model 54.78%. These results were obtained with parameters calculated
by formulae (2.8) - (2.9) and (2.10) - (2.13) for the continuous model and the model
with jump, respectively. One can see that the ARPE 47.54% is still large. In order to

get a better estimation in term of a smaller ARPE, the Brute-force method is applied in
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searching for appropriate parameters. The new parameters give a better result for both
the continuous model and the model with jump and still the model with jump gives a
better result as shown in Table 3.2.

For the stability analysis of the USS price, it was shown that the number of fixed
points and their stability behaviors varied by the model fitting and the price as shown
in section 3.2.2. By considering the stability of the fixed point and the current price, a
farmer can make a decision of whether to sell their products immediately or to keep and
wait until it reaches his desirable price. Moreover, no matter whether the fixed point is

stable or not a decision with a financial sense can be made as described in section 3.2.3.

4.2 Limitations and further works

In fitting model to the price, the result can be improved by parameters obtained
by the Brute-force method. In this study, the parameters used in the models are all
constants. However, one can notice that the fluctuation in the log return indicating a
non-constant volatility. In fact, the volatility could possibly be a function of time or
a stochastic process. Therefore, it is also interesting to consider a model fitting with
constant and non-constant parameters.

In the stability analysis, some short intervals of data are considered and fitted with
polynomials of degree at most three. However, a question of fitting with polynomials
of degree greater than three could arise. Therefore, it is also interesting to try with a
higher degree of polynomial. In that case, there would be more equilibrium points to

consider and definitely more parameters to estimate.
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Finally, concerning the stability of the equilibrium price in the case that it is expect-
ing the price to increase and suggesting the farmer to keep their product and wait for a
higher price, it has not been suggested yet that for how long (days) the farmer should
wait for. This problem could possibly be solved by watching closely at the price in the
real market. However, it should also be noted here that, in most cases of farmers in a
developing country like Thailand, they have to make a daily living by selling the prod-
uct everyday. In this case, there would be some small groups of farmers benefit from

the results of this study.
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Thailand Natural Rubber Price Simulation:

Continuous vs. Jumps Behaviors
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Abstract

Natural rubber is one of the most important agricultural products
of Thailand. Since the movement of the natural rubber price is similar
to the stock price, it is interesting to study its behavior. Most of the
work considered prices as continuous processes which are modeled
based on Brownian motion which has continuous sample paths.
However, many small and large changes of the price observed by eyes
brought to the question of jumps. This study aims to simulate the
Unsmoked Sheet Rubber (USS) price in Hat Yai market starting from
January 3, 2007 to February 27, 2015 with two models. One is when
the price is assumed to be continuous, the other is when it is assumed
to have jumps. The results show that the simulation obtained by the
continuous model provided an approximately better fit than the
model with jumps. It indicated that those large changes observed

does not affect the continuous behavior of the studied USS price.
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1 Introduction

Natural rubber is one of the most important agricultural products of Thailand. In fact,
Thailand is the world’s largest natural rubber export taking turns with Indonesia and Vietnam
(Workman, 2015). Rubber plantations are originally most planted in the southern of Thailand.
However, they are wildly planted across the country since 1961 according to the government
promoting through special policies and programs. The rubber smallholders collect the rubber
latex and either sell the latex or rubber sheets to the agents or companies.

The behavior of rubber price is of interest because rubber is one of the important
commodities product of Thailand. Since the movement of the natural rubber price is similar to
the stock price it is interesting to study its behavior. There are many models in economics and
finance that can describe the behavior of the stock price. The continuous model is wildly used
for describing the behavior of asset prices which are assumed to be continuous. In this case the
model is driven by Brownian motion with constants drift and volatility. However, a shortcoming
of this model is that it does not consider the random jumps which can occur any time. The
model with jumps is supposed to improve the continuous model in describing the price with
jumps. In other word, it is assumed that the behavior of asset prices are not purely continuous.
There are many researches which studied the results given by the continuous model (Black and
Scholes, 1973; Klein, 1996; Khaled and Samia, 2010) and the model with jumps (Merton, 1976;
Kou, 2002; Maekawa et al., 2008; Gondal, 2011; Yan, 2011; El-Khatib and Al-Mdallal, 2012).
However, Maekawa and his research team (Maekawa et al., 2008) compared the results between
the continuous model and the model with jumps (Kou, 1996) which both models applied with
Japanese stock market. The result has shown that the model with jumps outperforms the
continuous model. Neupane and Calkins (Neupane and Calkins, 2013) studied the statistical
models to capture price volatility of latex type RSS3 in Thailand for the period 2004-2011 where
the daily price of latex type RSS3 was modeled by GARCH, GARCH-GJR and EGARCH models. The
results showed that the price volatility of RSS3 is strongly persistent and the estimated results
are statistically valid. The pricing model for such a jump diffusion model does not have a closed

form formula since the market is incomplete (El-Khatib and Al-Mdallal, 2012).
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In this study we aim to fit the Thailand rubber price with the continuous pricing model and
the model with jump where the parameters are estimated from the historical data and also to

compare the results which are obtained by both models.

2 Presentation of the data

We consider the historical data of Unsmoked Sheet Rubber (USS) price in Hat Yai market
which is obtained from the webpage of The Thai Rubber Association (The Thai rubber association,
2015) and the data is starting from Jan 3, 2007 to Feb 27, 2015 (see Fig. 1) which is 1584
observations of the USS price. During this period, there is 1584 daily prices which are observed in
the official trade day which is around 7 years. The maximum price and minimum price in this
period are 186 and 30 baht/kg respectively. In general the return is the difference between the

prices of two consecutive days. However, with some nice properties the log return RZ. calculated

by the difference between the log of today price St and the log of yesterday price St e

R =1og(Stl)—log(Stl_l)=log ;—f ,a=123,...,n

t-1
(1)
is considered instead. The daily log return of the USS price is shown in figure 2. In this figure, the
small (dots) and large (stars) changes of the log returns observed by eyes brought to the question

of jumps.
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Figure 1: The historical data of USS price (Baht/Kg) start from Jan 3, 2007 to Feb 27, 2015.
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Figure 2: The daily log returns of the USS price.

3 The models

The behavior of the USS price will be considered as two folds. One is that it has a
continuous sample path so that it is assumed to behave as similar as the price of the underlying
asset of Black-Scholes model (Black and Scholes, 1973):

dS, = uSdt +ocS,dB, . (2)

The other is that it has jumps so that it is assumed to behave as similar as the price of the
underlying asset of Merton Jump Diffusion (MJD) model:

dS, = uS,dt + S,dB, +(y, —1)S,dN, . (3)

In model (2) the price is driven by Brownian motion Bt where the constants ¢ and o are drift

and volatility respectively. While the model (3) can be seen as if it is an improvement of model

(2) proposed by Merton (Merton, 1976) by adding an independently and identically jump part

which has Poisson distribution. Suppose that in a small interval At the asset price jumps from

St to ytSt - We call y, an absolute price jump size. Then the relative price jump size is

is, yS -5,
Wy _ Yoo
5 5 Y

t t
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where ¥, is assumed to be a nonnegative random variable drawn from lognormal distribution
which is ln(yt) having independent and identical normal distribution with mean ¢« and

variance 8. Then, Merton introduced the new equation for describing the behavior of asset
price with jump which is driven by the Brownian motion Bt, the Poisson process Nt with
constants drift ¢ and volatility o in Eqg. (3).

To receive the models of asset price from both cases, we need the following proposition

(Cont and Tankov, 2004).

Proposition 3.1. (Itd’s formula for jump diffusion processes)

Let X be a diffusion process with jumps, defined as the sum of a drift term, a Brownian

stochastic integral and a compound Poisson process
t t Nt
X, =X, +[ads+ [bdB + > AX,
0 0 i=1
where a, and btare continuous non anticipating processes with

VN
E| [bdt | <.

Then, for any C"*function, f:[O,T]XR — R, the process Y :f(t,Xt)can be

represented as

Proof. [ See Cont and Tankov, 2004]
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Now we will solve (3) by applying proposition 3.1 with f(t, St) = 1n<St) by (a). When

the parameters i and o are constant and @ is fixed then

a,=us,, b,=cS,, AXL:<% — 1>St
of B of 1 82f_ 1
E(t,St)—O, =S (t,St)—S—t, P

t t

We substitute all into (a)
ln(S )— ln(SO) = j{o + i,uS }ds + 15[0282 {—ijds
t o SS s 2 0 s SSQ
t N,
+I |:O'SS [S%ﬂng + 2[111 (St_ + (yt — 1) St_ ) —In (St_ )J

0 i1
l s\ ¢ o 1! y t B N, | ,S’f +(yt —l)St,
nS—O —'l-,us 5}[0‘ 5+'([0 5+; n S

.

+

s, 1,
| 5 |= =05 =0 (B, - 5) + 3 [in(y,)

N,
i=1

In i = —10'2 t+ oB +%[ln( )}
G e

e e e R 10|

i=1

S =8 exp{[,u —%GQJt+ oB, + i[ln(yf)]}

Hence,

Nf
S, :Soexp{[,u—%GQ]t—k UBt+ZYz} (4)

i=1
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where g is again the diift, o is again the volatility, N, is the counting process which is a

t

N?
Poisson process with intensity 4 . The ZYl represents the jump part of the process.
i=1

Note that A =0 means that there are no any jumps occur in the process and the
solution in Eq. (4) is reduced to be the same as the solution of Eq. (2)

2

S, =5, exp (y—%}t+03t (5)

Eg. (5) is known as the Geometric Brownian Motion (GBM) and wildly used in financial

mathematics.

4 Simulations

In order to discretize eq. (4) and (5), assume that we have a fixed set of date
0=t <t =t +At<..<t =t  +At =T with step time At. Let us first consider the
continuous model (5) with constants x and o . For the today price at t =t , the discretization

version of (5) is

(i

2
S, =8, exp (,u—%]tivtaBt]

and for the price of the next day ¢ =t + At is

2

o
Stﬁm =S, exp [,u — 7)(@ + At) + O'Btlw

Then, the return can be obtained by
02
g S, exp ,u—; (ti +At)+0'Bt1+At
L+AL

S 2
t S, exp {(,u — C;] t + O'Bt}

2

S, . =S, exp ( e %j At+0AB, (6)

Then we have

t+At
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where ABHM =Bt]+At —Btﬁ. By the properties of Brownian motion (independent and
d d
identically increment) AB“M = Br,mr, — Bti :BtﬁrAt*t[ = B,,=VAtB, where B is standard

normal distribution N(O,l) .

For the model with jumps, we also discretize the model in Eq. (4) and use similar

computation as above. Then, we also have the today price at ¢ = ti
2 Ny
o ;
Sz =S, exp (,u - 7}1 + O'Btl + ZY;
i=1
and the next day price at t =1 + At is
2

O
StL+At =5, exp (/J - 7] (tz' 7~ At) \ O-Btﬁ+At + Y,

Then also the return can be obtained by

2 Noar
o ;
S S, exp (ﬂ_QJ(ti +At)+0‘Bt7:+M + Y
t+AL =1
St 02 Ntl
1 S, exp ,u—? ti+O-Btl+ZY;
i=1

We again apply the mathematical manipulation and the property of exponential function. Then

S 2 Noa N,
t.+At o . -
5 = exp u—; At rexp aBtﬁAt —UBt] exp Y-) Y
£ i=1 i=1
Nf,, +At Nf,, Nt +At
As ZY;— Y = Y, then we get
i=1 =1 =N, +1
0_2 Nrimz
Stlw = Stl expy| u — > At + O'ABtlw + Y (7
1=N, +1

where N, < N, . and N, . has Poisson distribution with parameter AAZ.

At
We will simulate the USS price by using Eqg. (6) and Eqg. (7) and all parameters will be

estimate from the historical data of the USS price. To estimate the parameters of the continuous
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model we consider from the Eqg. (6). The first assumption for this model is log return required to
be Gaussian distribution this means

2

S
t.+AL O
g = exp (,u——Q ]At+o*ABti+At

62
In = (,u—;}At+O'ABtl+M

Let R =1n éAt represent the log return of asset price as in Eq. (1), then we apply
t.

i

the property of expectation and Brownian motion and we have

o’ o’
E|R|=E (,u —?Jm +0AB, | = (/J —?Jm.

If there are m observations of the log return (R

1,...,Rn) by the law of laree number the

expectation of the log return can be estimated as

E[R]z%ZRi.

Therefore, parameter 14 can be estimated by

u~—= = (8)
For estimating &, we consider the variance of the log return R with the property of variance
and Brownian motion and then we obtain
o
Var [R] =Var|| u—— |At+ 0AB,
2 ;AL
= Ato”.

The usual estimation for the variance is
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2

1 n—1 — — 1 n
Var [R:' ~ N Z(RL - R) ; R= —ZRq. is average value of the log return.
n—153 nois
1 n—1 — 2
Then, Var[R] = Ato’ = (R. — R)
n-1354V"
1 n—1 _\2
Z( i R)
62 ~ n — ]. i=1 )
At
1 n—1 — 2
S(n-i
~ n =1 (9)
At
1 n—1 — 2
where —12(}21 - R) is the standard deviation of the log retum.
n—1,9

For estimating all parameters of the model with jumps, we apply the method of moment
which is called nonparametric estimation introduced by Johannes (Johannes, 2004) and Valachy
(Valachy, 2004) applied this method to the currencies exchange rate from the Central European
(CE) region. Recall that the jump sizes are assumed to be normally distributed with mean 0 and

variance &°. Let us assume that all parameters are constants. The formula for diffusion part of

the model is
o’ = O'; — 167 (10)

where o is the diffusion of the continuous part, (772, is the total diffusion (or on moment),

and 8% s the variance of jump sizes. Under the assumption of constant jump intensity, the

proposed estimation procedure is as follows:

Estimate parametrically the drift u

T

S
E[logSHAt - logSt] ~ %Z log EM . (11)
i=1 ¢,

i

Estimate A and &> based on the calculation of moments, the ratio of the 4™ and 6™

moments will give us the estimate of 0. Consequently, the estimate of A4 will be
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4™ Moment

3]

(12) The particular moments are calculated as follows

~
~
~

1 L St.+At 2
4™ Moment ~ = lo : =31(5°
n ; 8 S, ( )
S 6
1 t+At 3
6" Moment ~ = lo 1 =151(5%) .
n ZZZI: 8 S, ( )

The estimation of o can be completely identified by subtracting the 2" moment estimated

nonparametrically from constant volatility, this mean

o? = 2" Moment — A5?

2
n

1
where 2" Moment ~ — lo
n ; 2 v}

t

i

t,+At

In order to compare the results, we calculate the error between the empirical data and
simulated data as Maekawa and his research team use in their research work (Maekawa et al,,

2008). We use the Average Relative Percentage Error (ARPE) which is defined by

T — S
13 3 , (13)

T,

1

1 M

ARPE = —%"

M3

where M is the sample size, T, and S, are empirical data and simulated data respectively.

5 Result

In this section we show the results which are obtained by the simulation of both models.
The data is divided into 6 groups in which each of the first 5 groups has 250 observations that
according to the data size of one year trading in the market and the last group contains the rest.
All parameters of both models are estimated separately. The Table 1 shows the estimated
parameters of both models. We simulate 2000 trajectories of the price in each part with Eqg. (6)
and Eq. (7) then we use formula (13) for calculating the errors which is compared with the real

USS price. The Table 2 shows the errors that we get. Under the same Brownian motion, we can
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see that most of the errors that we obtain by the simulation with the continuous model give the

better estimate than the model with jumps.

Table 1. The estimated parameters

The continuous model

The model with jumps

~

A~

H, 6-0 H, GAd A 5’
Data 1 0.2764 0.2275 0.0011 0.0087 0.2049 0.0273
Data 2 -0.2921 0.5449 -0.0019 0.0041 0.2817 0.0678
Data 3 0.6515 0.2469 0.0027 0.0090 0.2279 0.0293
Data 4 -0.0431 0.3843 -0.0005 0.0115 0.1477 0.0593
Data 5 -0.0400 0.3240 -0.0004 0.0076 0.3317 0.0354
Data 6 -0.2614 0.2946 -0.0013 0.0074 0.5001 0.0257

Table 2. The average errors which are obtained by both models (%)

The continuous model

The model with jumps

Data 1
Data 2
Data 3
Data 4
Data 5
Data 6

14.94
42.10
20.61
28.90
22.02
25.15

16.07
66.63
39.84
26.92
22.83
47.08

In the Table 1 we see that the estimated volatility 6‘d of the model with jumps is very

small. In the real market the volatility should not be small value. The typical value of volatility in

the real market should be around 15 % to 60 % (Hull and Options, 2000). For this reason we

change the estimation of 6‘d to be according to the real market by applying this simple

transformation
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where x is the Gaussian random number and a, b are the typical value of volatility in the real
market which are 15 % and 60 % respectively. Then, we again simulate as the previous one. The
Table 3 shows the new errors that we get after we change the estimation of 6d. We can see
that even we change the value of volatility to be according to the real market the continuous

model still provide the better errors.

Table 3. The average errors which are obtained by both models after the new estimation of

&,(%)
The continuous model The model with jumps
Data 1 13.92 24.25
Data 2 42.04 68.53
Data 3 21.82 40.42
Data 4 27.87 32.17
Data 5 21.63 31.62
Data 6 24.18 51.31

6 Conclusion

In this study we provide the simulation of the Thailand natural rubber price by using the
continuous model and the model with jumps. The parameters are estimated from the historical
price. The results show that the errors which are obtained by the continuous model is smaller
than the model with jumps compare with the real USS price. Since the first spotted large change
in the USS price we expected the model with jumps would provide the better error but it is not.
This maybe because of the jumps in the USS price are not large enough to affect the continuous

behavior of this USS price.
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