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ABSTRACT

The thesis presents the power ankle walking control system based on Flexi-Force
sensors for amputee patient. The system can be used for the level-ground and upslope
walking for artificial power ankle. Phase measurement is a main limitation in power ankle
control system because the traditional control methods was complex mechanical systems
and highly complicate computation systems. This paper aims to develop a straightforward
phase control system using two Flexi-Force sensors, SR1 and SR2, SR1 installed under the
fore foot and sensor SR2 installed under the heel. Two signals are used for walking phase
classification. Sensor SR1 and SR2 will compare with threshold and classify the walking
phase. We design an artificial power ankle model for testing the system. The experiment
with an artificial power ankle model are provide walking speed with 2 km/h. The signal
from accelerometer ware used to walking pattern verification, accelerometer Al and A2
are respectively installed to healthy foot and artificial power ankle model, using digital to
analog conversion NI usb-6521 DAQ and LabVIEW 8.2 to record the walking data,
compared the ankle model data with healthy foot walking data. The result shows that this
method can measure the ankle phase during the walking in real-time. This method can be
used to control artificial power ankle walking in level and upslope. It also can be used for
design more movement type such as downhill slope or up and down stairs.

Keywords: gait analysis, control system, power ankle, Flexi-Force.
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Chapter 1

Introduction

1.1. Problems statement

From the first official global report on disability, the proportion of disabled people
is rising to 15% of the world's population [1]. How to let the disabled recover the ability
to walk is more important in future.

Nowadays the commercial available prosthesis is not power passive prostheses, it
only can get the ability to stance and simple walking in fixed terrain, but the human
ankle provides extra power during the walking. The first work in powered prostheses
was proposed in1972s [2], there had many less research about powered prostheses.
Samuel K [3-4] use the impedance control of the prosthesis control system, he uses a
high power output DC motor, a transmission, a series spring Composition Series-Elastic
Actuator (SEA). This SEA can get the torque feedback to the system for control, this
prosthesis can mimic the normal human ankle walking. But this prosthesis has to
control by PC [5], it cannot work by itself. Frank Sup [6-7] designed a new prosthesis
with embedded system [8], it can walk independently in outdoor for 9km. Huseyin
Atakan Varol [9] proposed Real-Time Intent Recognition for that prostheses [6, 7 and
10]. This prostheses control system signal is from inertial sensor. Mr.Ugrit Chammar
designs a simple mechanical system for the artificial foot [11].

It can continuously work about 6000 steps, normal human is 5500 step/day.
Therefore it can work all day with full battery. The disadvantages of that artificial
prostheses are impedance control based on high performance computing system and
high complicated mechanical structure. Inertial sensor is difficult to make sure the
walking phase in real time, it just estimate movement trend at the beginning of the
walking phase, cannot measure every walking phase during the walking.

In this thesis ware developed the control system method based Flexi-Force sensor
is developed. It can accurately estimate the ankle phase during the walking in real-time,
and the signal can used to control artificial power ankle walking in level and upslope.

1.2. Literature review

In 2009, Samuel K. Au [3-4] designed a spring Powered Ankle—Foot Prosthesis. He
combine a high power output DC motor, ball screw transmission, spring, and leaf-
spring prosthetic foot from a series-elastic actuator (SEA). This SEA provides extra



power during the swing phase (Fig.1.1).
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Fig.1.1 Series-elastic actuator (SEA) [4]

The control system (Fig.1.2) consists of two parts; low level servo controllers and
a finite-state machine. The low level servo controllers have three types: 1) a high
performance torque controller, 2) an impedance controller and 3) a position controller.
The torque controller was designed to provide the offset torque, an impedance
controller was designed to modulate the output impedance of the SEA. The position
controller was proposed to control the balanced position of the foot during swing.

The finite-state machine has two parts: a state identification and a state control.
State identification was used to identify the current state of the prosthesis and state
control was used to execute the predefined control procedure for a given state.
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Fig.1.2 Overall control architecture of the prosthesis [4]



Fig.1.3 shows the schematics of the computer system [5]. It contains an onboard
computer PC104 with a data acquisition card, power supply and motor amplifier. The
system was powered by a 48 V, 4000 mAh with Li-Polymer battery pack.
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Fig.1.3 Computing System [5]

In summary, this prosthesis can give the ability to walking with 1.45m/s. But the
system processing is complex that cannot use for normal walking and it also cannot
walk in a slope.

In 2009 Franksup [6-7] designed a new powered knee and ankle prosthesis
(Fig.1.4).
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Fig.1.4 Self-contained powered knee and ankle transfemoral prosthesis [8]

This prosthesis includes the batteries, embedded system, foot sensor and moment
sensor. This prosthesis can work individually in outdoor. The powered prosthesis
provides a range of 12.2 km of level walking, 9.2 km of 5° upslope walking, and 7.7



km of 10° upslope walking between battery charges

Fig.1.5 [8] is the embedded system powered by a battery with 29.6V and 4000mAh
capacity. The embedded system consists of signal processing, power supply, power
electronics, communications, and computation modules.

The control system of the prosthesis consists of three levels (Fig.1.6) [8]; high-
level supervisory controller, middle-level controller and low-level controllers. High-
level controller is the intent recognizer, that infers the user’s intent and change to the
middle-level controller. The middle-level controller is developed for each activity
mode. For example: standing, walking and sitting uses the finite-state machine to
modulate the impedance of joints and generate torque on the different phase of the gait.
The low-level controllers are the closed-loop joint torque controllers, it used to
compensate the knee and ankle joint torque because the torque is consumed by friction.
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Fig.1.5 Embedded system framework [§]
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Fig.1.6 Complete control architecture [§]

This prosthesis walking in level-ground and upslope, Fig.1.7 is a threshold
switching for upslope walking [10]. Based on the three-axis accelerometer (Analog
Devices, ADXL330) data.

5 deg to Level < Slope 10degtoSdeg Slope
Threshold P Threshold

Level Ground 5 Degree 10 Drgree
Controller Controller Controller

5 deg to Level
Threshold

10 deg to 5 deg 5 skope

> Slope Threshold

Fig.1.7 Threshold switching between joint impedance parameter sets for upslope walking [10]

In summary, this prosthesis walking speeds are about 5.3, 4.7, and 4.2 km/h (for
level, 5° and 10° slopes). The powered prosthesis provides for a range of 12.2 km of
level walking, 9.2km for upslope walking (5°) and 7.7 km for upslope walking (10°)
with a fully charge battery. But during the walking, the walking speed was fixed.



Fig.1.8 Artificial foot [11]

Mr.Ugrit Chammar [11] designed a new artificial foot (Fig.1.8). This foot used
proportional control system and used the accelerometer for the feedback system. This
foot battery size is 2200 mAh and it can work continuously about 6000 step (for people
5000-5500 step/day), so it can work for one day by human. The walking speed is 1m/s
(normal walking about 1.5km/h) and that artificial foot only can work in ground level.

Tablel: Summary

Method

Advantage

disadvantage

the laser range finder[13]

Recognition of an upslope with

Faster and high accurate slope

aprediction the slopes

Calculation too Complex
and too expensive

Impedance control[3-10]

Impedance control fast and
accurate feedback in every
walking phase

1: Complex mechanical
system.

2:Complex computing
systems need more
power

3:Walking cadence and
walking slope are fixed

Three-axis accelerometer[14]

Fast slope estimation

Complex calculation
High complexity
calculation procedure

Force sensor control[12]

Simple calculation

Slope response time only
use in the slow motion




1.3 Objective

1 To develop the artificial foot level walking speed up to 2km/h.

2 To develop the artificial foot working period more than 12 hour with people in
level-ground.

3 To develop the artificial foot in level-ground and in upslope.

1.4 Thesis scope

1. Investigation of the ankle power prosthesis in level-ground control system.

2. Design and development of the upslope control system with software simulation
(Labviews).

3. The signals from accelerometers of the walking using the artificial foot are

compared with the signals of the walking using the normal foot

4. Verification with the reference control system for the 5°, 10° and 15°.



Chapter 2
Theory

2.1 Healthy walking

For normal walking (Fig.2.1), we can found that the human ankle walking cycle
is defined as beginning with the heel strike of one foot and ending at the next heel strike
of the same foot. In all cycle the stance phase is about 60% gait cycle and the swing
phase is about 40% gait cycle.

Stance Swing
L
= 60% e 40% >
Max.
Heel-strike Foot-flat Dorsiflexion Toe-off Heel-strike
- | B | >l >
Controlled Powered )
Plantar Controlled Plantar Swing
Flexion Dorsiflexion Flexion Phase
= |- 3o |-t 13
e : Function: .
Function: Function: Torque Source Function:
Linear Monlinear & Position
Spring Spring Spring Control

Fig.2.1 Normal human ankle biomechanics for level-ground walking [3]

The stance phase is about 60% gait cycle (Fig.2.1). It includes three phases, the
first it is controlled plantar flexion , the second it is controlled dorsiflexion and the third
is powered plantar flexion .The controlled plantar flexion begins at heel-strike and ends
at foot-flat. The ankle angle is from 0° to -7° (Fig.2.2). The controlled dorsiflexion
begins at foot-flat and until the ankle reaches a max dorsiflexion (from the -7° to 10°).
The powered plantar flexion powers plantar flexion begins after controlled dorsiflexion
and ends at the toe-off, and the ankle angle is from 0° to 10°.

The swing phase is about 40% gait cycle (Fig.2.1) starts at toe-off and ends at heel-
strike. It represents when the foot is off the ground during the gait cycle. During this
phase the ankle angle can be approximate stationary (Fig.2.2).
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In summary, the ankle angle range is between -7° to 10° and the ankle need to
provide extra power for push-off during powered plantar flexion w=0.13j/kg. For
100kg weight people work done is about 13J/step. For normal walking 5000-5500
step/day [11], work done W=71500J/day. In this thesis we choose 12V 8000mAh
battery power, this battery energy as follow:

Q=UIT (2-1)

From Equation (2-1) Q is the joule, U is the battery voltage, I is the battery working
current and T is the time for working. we can know battery energy is about 345600J,
very suitable in this thesis.

-1.6

)
-1.4f

W~ 0.13J/kg

Ankle Torque (Nm/Kg)

Sw 020 5
3 Ankle Angle (deg)
C)) @
ﬂL’h
(1) Heel-strike (1)-(2): Controlled Plantar Flexion (CP)
(2) Foot-flat (2)-(3): Controlled Dorsiflexion (CD)
(3) Max. Dorsiflexion (3)-(4): Powered Plantar Flexion / Push-off Phase (PP)
(4) Toe-off (4)~(1): Swing Phase (SW)

W = Work done at the ankle joint

Fig.2.2 Ankle torque-angle during stance and the swing phase [3]
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2.2. Control method
Ankle Flexion
30 . ' —F
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20t 41=== B4Jp
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§ 10 e, 10Up
= Gl Gﬁﬁ‘f TO
§' 0 sz Cont HS
v TO
10
.20 i 1
20 40 100

Fig.2.3 the correlation between walking level and upslope degree [15]

From A.S. MclIntosh [15] (Fig.2.3), he research about the ankle joint during the
level, 5°, 8°, and 10° walking. Form this result, we can find the level walking and up
slopes are similar. The different is the degree of balance and intention recognition.
Definition of clockwise rotation will be denoted by a positive and reverse travel as
negative, 0° is the base when the leg and foot is vertical and threshold is parameter
depending on body weight. In this thesis, data from gait dynamics [15] will use for

parameter in control system feedback, parameter as follow:

1. Level-ground: heel-strike start at 0° ends at 10°, max-dorsiflexion was -10°.

2. 5% upslope: heel-strike start at 0° ends at 15, max-dorsiflexion was -10°.

3. 10°upslope: heel-strike start at 10° ends at 20°, max-dorsiflexion was -10°.

Accelerometers can estimate the slope in stance phase and gyro can estimate the
slop in swing phase. The connection of two sensor, the slop can be estimate in any time,

but the calculation will be too complex [14].
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Fig.2.4 Sensors positions [12]
This method is from K. Suwanratchatamanee (Fig.2.4), force sensor is used to

measure the slope, already inform the three sensing elements are fixed to make
triangular position on each foot (the average allocation the force).
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Standing area Front

Standing area :
(Full touched) (Pl damhed)

L foot
turning
Jorward

Projection
CM

(Tactile information) (Robot model)

(b)
Fig.2.5 working condition (a):SR1>SR2, (b):SR1=SR2 [12]

First step is the intention recognition when the foot touch the ground, the sensor
output changed in this case the SR1>SR2 (Fig.2.5 (a)), the system will know the ground
degree already changed, and the turns the ankle degree until SR1=SR2 (Fig.2.5 (b)),
because when SR1=SR2, we can found the body already balance, so the system can
keep the ankle degree and recording the degree data. This method advantage is a simple
calculation, unnecessary to estimation of ground slope, but defect is it use for dynamic
case when the motion is slow in the real time. The SR3 was used to keep the robot
balance during the robot switch the two leg.
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2.3. Level and upslope walking with Flexi-force sensor

2.3.1 Flexi-force sensor

""""5,':1"“\

g3

. ‘r‘ ;.f" J"’:&’

2N

Fig.2.6 Flexi-force sensor Model A201 [16]

Flexi-force (Fig.2.6) is an ultra-thin force sensor has the following advantages:
thickness only 0.208mm, low response time less than 5 microseconds, sensing area is
9.53mm diameter, suitable in this thesis.

1001k Sensor
= 0.020
- 0.018
g e - 0.016
£ \ |
s 800 0.014
< \ / Conductanes: 1r | 0012
g = 0.010
: \ L 0,008
7 4
Ig ” - 0.006
“ - 0.004
zm | Resisiancs 3 ﬂluﬂz
0 ; ' ! T p— 0.000
o o e oo 2 o o o o 5 o o O
- &N ®m ¥ @w @ ~ @W @ g9 = o
Force (lbs)

Fig.2.7 The relationship between force and resistance of the sensor [16]

When the force sensor is unloaded, the resistance is more than SMQ. When a force
is applied to the sensor, this resistance decreases (Fig.2.7). This sensor can use non-
mechanical structure to detect the walking phase during the walking in real-time.

This sensor used Force-to-voltage circuit, is a amplifier circuit. The circuit output is
Vo= Vi#R#/Ry). In this circuit Flexi-force sensor similar to a variable resistor. Applying
a lower drive voltage and reduce the resistance of the feedback resistor can increases
the range but the sensitivity will decreases (Fig.2.8).
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Fig.2.8 Driver Circuit [16]

The force and output voltage were linear relationship. (Fig.2.9) data was from this
sensor company the force scope is 0-100(Ibs). We also tests the sensor force scope from
0 to 10kg. For the variable resistance Ry, this thesis we choose 750kQ. The result is
nearly linear (Fig.2.10).

From pressure formula p=F/S, this Flexi-force sensor sensing area is 9.53mm
diameter so the pressure in 10kg is about 1.367x106 PA and for normal person the sole
area is about 200-250 cm? Calculation from pressure formula the Sole pressure no more
than 3.92x104 PA, 10kg was suitable in this thesis.

50

40 /
Vout (V) e //

20 7

10 //
0 20 40 60 20 100

Force (Ibs)
Fig.2.9 The correlation between force and output voltage [16]
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The relationship between force and voltage

2.5 /
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output voltage
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4/
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Fig.2.10 The comparison result between force and output voltage

2.3.2 Level walking controller method with Flexi-force sensor

The walking phase can be simple and accurate expression by two Flexi-force sensor
SR1 and SR2. The key question for the power ankle control system is an ankle angle
control. A. S. McIntosh measured the ankle angle during the walking on level, 5° and
10°[15].

In this thesis, we only use the level-walking data. Definition of clockwise rotation
will be denoted by a positive and reverse travel as negative, 0° is the base when the leg
and foot is vertical and threshold is parameter depending on body weight (Fig.2.11).
The controller method is described as follows:

a. Standing to swing phase: system started in the standing and wait for sensor
signal. When the foot is off the ground, sensor SR1 and SR2 signal equal to zero,
in this time reset the ankle angle to zero.

b. Swing phase to max dorsiflexion phase : In this step when the heel touches the
ground, SR2 > threshold and SR1 = 0, control the ankle angle from 0° to 10°
and reverse travel to -7°, delay before the reverse travel for protecting the DC
motor drive circuit

c. Powered plantar flexion: In this step the heel is off the ground and the toe still
on the ground, SR1 > threshold and SR2 < threshold. Reset the ankle angle to
0° and wait for a next gait cycle.

d. In this thesis the threshold we choose 0.5V. Because the threshold was smaller
and the system response time was shorter.
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SR2>Threshold
SR2=0 :
SR1=0 Swing phase Controlled plantar flexion
Standing > >
esstionideg SR1=0 0 to 10deg
SR2=0 delay
SR1=0
Fegered planian ey Max Dorsiflexion
flexion SR2=threshold
-7 to Odeg 10 to -7deg

Fig.2.11 walking controller with flexi-force signal
2.3.3 Upslope walking

The control method (Fig.2.11) not only can be used to level walking but also can
be used to upslope walking. From result (Fig.2.3) we can know the level walking and
up slopes are similar. The differences are the degree of balance and intention
recognition. For upslope walking, the control system just changing the parameter data
from level walking to 5° or 10° upslope walking data and testing the walking result. The
upslope data is from reference [15].

2.3.4 System feedback with encoder signal

From (Fig.2.11), this system feedback is degree of the motor. In this thesis we
choose encoder sensor to record the degree position. Micro controller DSPIC has
Quadrature encoders interface mode, that mode used in position and speed detection of
rotating motion systems (Fig.2.12). QEA and QEB are encoder output signal,
quadrature decoder captures the phase signals and index pulse and converts the
information into a numeric count of the position pulses (POSCNT register). Generally,
the count will increment when the shaft is rotating one direction and decrement when
the shaft is rotating in the other direction.
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Fig.2.12 Quadrature Decoder Signals in 2X Mode



Chapter 3

Hardware design

3.1. System design

Flexi-force

QE| l| Encoder |I

Fig.3.1 Control system for power ankle model

For the control system design, this system consists of five parts: signal collection,
Micro controller, motor drive motor and encoder feedback (Fig.3.1). The function with
each part as follows:

1. Micro controller: This system micro controller support three function Analog-

to-Digital, motor controller and encoder signal processing, in this thesis use
DSPIC as micro controller.

2. Signal collection: The Flexi-force sensor signal from drive circuit was analog
signal, use Analog-to-Digital Converter (ADC) transform to digital signal and
connect with DSPIC.

3. Motor drive: the motor drive circuit from (Fig.3.5) control by PWM signal,
PWM motor controller function in DSPIC can control it.

4. Encoder feedback: This system is closed-loop system. The system feedback is
encoder signal, DSPIC function Quadrature Encoder Interface Module (QEI)
can easy to processing encoder signal.

3.2 Current design

In the current source design, the basic is H-bridge electronic circuit, that enables a

18
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voltage to be applied across a load in either direction. These circuits are often used in
robotics and other applications to allow DC motors to run forwards and backwards
(Fig.3.2). In this current switch S1 and S2 or S3 and S4 cannot be open in the same
time, otherwise will short circuit. Switch S1 and S4 open the motor run forwards, switch
S3 and S4 open the motor backwards.

! s1 / S3 /

QF o

Fig.3.2 H bridge electronic circuit

The H-bridge electronic circuit have a problem is the S1 to S4 had control by human
is non-automatic. Drive IC IR2110 (Appendix C) can drive the MOFSET using PWM
signal, it can use micro controller to control it. In this thesis we used two IR2110 drive
IC and four IRFD220 MOSFET to make the H bridge circuit. The IR2110 is a high
speed power MOSFET drivers, and it also has isolated (small size) and electromagnetic
isolation (high speed) advantages. IRFD220 (Fig.3.3) is N-Channel enhancement mode
silicon gate power field. It can control the ID (drain current) from the VGS (gate source
voltage). IRFD220 will replace the switch S1 to S4 in H bridge circuit and the G point
will connect with the IR2110.

HEXDIP
D
M.ﬁ— DRAIN
GATE —
b
SOURCE s

Fig.3.3 IRFD220 MOSFET

The modified H bridge circuit (Fig.3.4) include two drive IC and four MOSFET,
in this circuit it control by two Channel complementary PWM signal (p1),in this case
the PWM signal choose 30kHZ testing in 12V gear motor(Fig.3.7).12V is power for
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IR2110 and V motor is power for motor.
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Fig.3.4 H bridge circuit design

The motor speed and direction control by PWM duty cycle, 50% duty cycle is
critical point. Duty cycle less than 50% motor direction is positive and duty cycle more
than 50% motor direction is negative. Motor driver test result in (Fig.3.5), X-axis was
duty cycle Y-axis was motor speed frequency, signal from Encoder (100PPR).

From this result we can know the motor speed and duty cycle change was linear.
This H bridge drive circuit was working.

motor speed
5000
4000
3000
2000
1000

RPM

-1000
-2000
-3000
-4000
-5000

Duty cycle
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Fig.3.5 motor driver testing result

About the motor in this thesis we choose 12V DC gear motor (Fig.3.6).this motor
full power working speed is 5500RPM, the reduction ratio is 1:100.

Fig.3.6 12V gear motor

For the system feedback in this thesis we choose Incremental Rotary Encoder. The
body sizes between 30mm and 40mm diameter, power by 12-30V DC, Output signals
include 10-30V DC, encoder is about 100RPM/rad. This encoder have three channel
signal output: A, B and Z. channel A and B offset from each other by 90 electrical
degrees. In one direction the leading edge of channel A will be before the leading edge
of channel B. And in the opposite direction channel B will lead channel A (Fig.3.7).

But in this thesis the output signal voltage was too high for Micro controller, so in
this thesis we used voltage divider circuit reduced the outpour signal voltage from 10V
to SV.

Forward Travel ' :1 C?Nﬂ.
e S IR L
S 4 T oEB T 1 | |
4T Mo : i

Fig.3.7 12V Incremental Rotary Encoder

Dspic302010 was the Micro controller for this system, is a High-Performance,
16-bit Digital Signal Controllers, performance includes: 512 bytes on-chip data RAM,
DC to 40 MHz external clock input, 10-bit Analog-to-Digital Converter (ADC),
Quadrature Encoder Interface Module(QEI) and Motor Control PWM Module ,this
controller power by 3-5V(Fig.3.8). For the Micro controller pin connection, pin 25 and
26 connect with driver circuit signal P1, pin 6 and 7 connect with encoder A and B
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phase, pin 4 and 5 connect Flexi-force sensor drive circuit signal output point.

MCLR []1 28] Avoo
EMUD3/ANO/VREF+/CN2/RBO [ 2 27| AVss
EMUC3/AN1/VRer-/CN3/RB1 3 26 7 PWM1L/RED
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dsPIC30F2010 28 12KM4K 512 1024 3 4 2 Gch &ch Yes| 1] 1] 1

Fig.3.8 Micro controller
3.3 Gait measurement using Flexi-force

In this thesis, we uses two Flexi-force A201Sensor: SR1 and SR2 are installed
under the sole (Fig.3.9). Sensor SR1 is installed under the fore foot and sensor SR2 is
installed under the heel. Signals from the SR1 start with a heel-strike when the heel
touches the ground and ending at the dorsiflexion when the heel rises from the ground.
Sensor SR2 start with a foot-flat and ending at the toe off (Fig.3.10).

Fore foot

SR1

human foot—

Heel foot

SR2

Fig.3.9  Flexi-force A201 Sensor position
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The sensor shoes was tested on a 27-year-old male (1.86 m, 90 kg) healthy man .The
walking data collection from DAQ IN-6009 using LabVIEW Software, sampling rate
is 2000/s. Pressure on Sensor is proportional to the voltage. X axis is voltage, Y axis is
time. Each step is described as follows (Fig.3.10).

a. Controlled plantar flexion begin at heel-strike and ends at the foot-flat. In this phase
when heel touch ground sensor SR2 generates the signal.

b. Controlled dorsiflexion begin at the foot-flat and continues until the ankle
maximum angle. In this phase, sensor SR1 generates the signal at foot-flat and SR2
stop signal at an ankle maximum angle.

c. Powered plantar flexion begin at max dorsiflexion and ends at the toe-off phase. In
this phase, when the toe off the ground, the signal SR1 is reduce to zero.

d. Swing phase begin at after powered plantar flexion until the next heel-strike. In this
phase the foot was off the ground, both of the sensor signal SR1 and SR2 was equal

to zero.
sensor data with level walking
5
4
3
w
Qo
S
S 2
=
1
-1
(1)Heel strike (1)-(2):stance phase
(2)Mix dorsiflexion (2)-(3):swing phase
(3)Toe off line:SR2 Dash line :SR1

Fig.3.10 Flexi-force Sensor data with level walking
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3.4 Software design

The system programming in MikroC PRO for dsPIC software use C (programming
language), the flow chart show in(Fig.3.11).

For the main program was state detection(Fig.3.11(a)), analog signal from Flexiforce
sensor SR1 and SR2(Fig.2.9) using micro controller ADC translate to digital signal and
recorded on micro controller register, the main program will distinguish three states:

1. SRI1< threshold and SR2< threshold: sensor SR1 and SR2 don’t have signal,
this is in the swing phase.

2. SR2> threshold and SR1< threshold: sensor SR2 just touch the ground, in the

heel-strike.

3. SR2< threshold and SR1> threshold: sensor SRI>SR2, between Max
Dorsiflexion and Toe-off phase.

After State detection the main program will switch to different subroutines (Fig.
3.11(b)). Each subroutine function as follows:

1. Program (1): In this function the program always working in swing phase, and
keep the ankle degree to 0°.

2. Program (2): This function is start in heel-strike and end in max-dorsiflexion,
the ankle degree from 0° to 10° and return to -7°.

3. Program (3): In this function start in max-dorsiflexion and end in Toe-off
phase, the ankle degree from -7° to 0°.
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While poscnt

While poscnt
==10deg
PWM 2
PWM stop|
PWM 1 PWM 2
hile posen Y
o return
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While poscnt ,sc e
85

PWM stop

PWM stop

A 4
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(

Fig.3.11 Program flow chart (a): main program (b): subroutine



Chapter 4

Experiment and result

4.1. Artificial power ankle model design

In this article, we use plastic to make a simple power ankle model (Fig.4.1). The
left one is a sensor in the shoe to collect the signal, right one is the power ankle model.
The model consists of processing unit, power supply, encoder, DC-motor, and DC-
motor drives. This system is powered by 12V and 700mA. The main computational
element of the system is 16-bit digital signal controller dspic30f2010. Three-phase
encoder can feedback the ankle angle signal to measure the ankle position.
Dspic30f2010 consists of 10-bit high-speed analog to digital converter (ADC) modular
and quadrature encoder interface (QEI) modular. The analog signal of the sensor can
be converted to a digital signal by ADC modular, QEI modular can analyze encoder
signal (Fig.3.1).

accelerometer

Fig.4.1 Sensor shoe and power ankle model
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4.2. Experimental methods

Three axis accelerometer ADXL335 can measure three directions acceleration
XYZ. Z-axis vertical to level-ground. Ankle phase can be reflected in Z-axis.
Accelerometer A1 and A2 respectively are installed on Sensor shoe and power ankle
model to verify work status of the control system (Fig.4.1).

The artificial power ankle is fixed on the thigh, artificial model near with the foot
and vertical the leg (Fig.4.2). Sensor shoes will be worn on the same side of the foot.
During the walking, accelerometer Al and A2 will have two different signals, the two
output signals were compared the similarity to control system validation.

Fig.4.2 artificial model installation location

Accelerometer Al and A2 by means of DAQ NI-USB-6251 collection, USB-6251
have 16 analog inputs (16-bit), 1.25 MS/s single-channel (1 MS/s aggregate), 2 analog
outputs (16-bit, 2.8 MS/s); 24 digital I/O (8 clocked); 32-bit counters. With plug-and-
play USB connectivity, these devices are simple enough for quick measurements but
versatile enough for more complex measurement applications (Fig.4.3). DAQ by means
of USB to PC computer and use software Labview to analysis and processing. In order
to better prove that the system is working properly. We also record the ankle angle
signal from the encoder.
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» NATIONAL
INSTRUMENTS

Fig.4.3 DAQ card USB-6251

4.3. Experimental result

4.3.1 Level walking result

This experiment is tested on a treadmill and walking speed at 2km/h. Data collection
was from DAQ IN-6521. The voltage on the X-axis and Y-axis is sampling data,
sampling rate is 2000/s. The data collection (Fig.4.4) of 4 steps walking data, the
(Fig.4.4 (a)) is a healthy walk signal from A1, (Fig.4.4 (b)) is an artificial signal from
A2, the walking start in swing phase when heel-strike the heel just touches the ground
until the top touches the ground, and there had a great change in Z axis acceleration.
During the stance phase Z axis acceleration almost unchanged. During the swing phase
when the top is off the ground, the top in the Z axis has a larger swing and it is be
reflected in the acceleration. From this result healthy and artificial ankle has similar
phase change, but it also have noise in the second time swing phase, this noise is from
elastic shock in swing phase.
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Fig.4.5 level-walking result at a speed of 3km/h sampling rate is 2000/s, a: health ankle b:
artificial ankle

For the walking speed at 3km/h (Fig.4.5 4.7), the encoder in accordance with the
reference data (Fig.4.7). But the signal from accelerometer, greater speed will lead to
more shock, shock causes increased noise in stance phase. This is the limitation for this
artificial model.

The ankle angle signal from the encoder and compare with reference data, chart
(Fig.4.6 (a)) is reference data from [15], and second chart is artificial ankle data (Fig.4.6
(b)). Walking phase is described as follows:

1. Heel-strike to foot-flat: 0 to 20 percent, the heel initially make contact with the
ground and the top was follow. In this phase ankle angle from 0° to 10°.

2. Foot-flat to max dorsiflexion: 20 to 60 percent, begins at the foot-flat and
continues until the ankle maximum angle ankle angle from 10° to -7°.

3. Swing phase: 60 to 90 percent, the foot off the ground and ankle angle reset to
0°.
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Comparison with reference data [15]. The changing of walking phase is similar, the
difference is slope during heel-strike to foot-flat, the problem is from the DC-motor
speed was faster than human, this problem can be solve in a mechanical system such as
gear transmission system. This system can effectively control the ankle angle in each
phase during the level-walking.
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Fig.4.6 Ankle angle data from level walking at a speed of 2km/h. (a): health walking (b):
artificial ankle degree
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Fig.4.7 Ankle angle data from level walking at a speed of 3km/h. (a): health walking (b):
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Fig.4.7 was the encoder signal form level walking at a speed of 3km/h, from this
result between 70-80 percent, the ankle degree have error about 5°, this error is from
the motor inertia and the system will correct the errors in 90 percent gait cycle.

4.3.2 10° upslope walking result

From biomechanics of normal gait research [15], the relationship between upslope
walking and level-walking is the change of walking phase was be similar, but the ankle
degree in each gait phase was different (Fig.2.1). Compare with level-walking, the 10°
upslope walking, the start of ankle degree was change to 10° and heel-strike max ankle
degree was change to 20°.Reset the reset the artificial ankle model parameter to 10°
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upslope walking, working result as follows (Fig.4.8 4.9(b)):

1. Heel-strike to foot-flat: 0 to 20 percent, the heel initially make contact with the
ground and the top was follow .in this phase ankle angle from 10° to 20°.

2. Foot-flat to max dorsiflexion: 20 to 60 percent, begins at the foot-flat and
continues until the ankle maximum angle ankle angle from 20° to -10°.

3. Swing phase: 60 to 90 percent, the foot off the ground and ankle angle reset to

10°.
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Fig.4.8 Ankle angle data from 10° upslope walking at a speed of 2km/h. (a): health walking
(b): artificial ankle degree
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Fig.4.9 Ankle angle data from 10° upslope walking at a speed of 3km/h. (a): health walking (b):
artificial ankle degree

In order to check the working state of system, record the accelerometer signal and
compare. This experiment is tested on a treadmill and walking speed is 2km/h. The data
from DAQ IN-6521 sampling rate is 1000/s. The data collection (Fig.4.10) of 3 steps
walking data, healthy walk signal from Al in (Fig.4.10 (a)). The (Fig.4.10 (b)) is
artificial signal from A2. For the comparison, at the beginning and end of each phase,
change of Z-axis acceleration from healthy and artificial was similar. Between the
stance phase sole of foot touch the ground, Z-axis acceleration in this phase was zero,
but in (Fig.4.10(b)) the signal between the stance phase still have change , artificial
model has swing in this phase, that swing from Plastic elastic vibration. But for walking
speed at 3km/h, it has same problem with 3km/h level walking speed, this artificial
model have limitation in 3km/h walking speed. In summary this system can working
stably in 10° upslope walking at 2km/h walking speed.
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Fig.4.11 10° upslope walking result at a speed of 3km/h sampling rate is 1000/s, a: health ankle b:
artificial ankle

4.3.3 5° upslope walking result

In 5° upslope walking the ankle degree start in 0° but in heel-strike phase the max
ankle degree change from10° to 15° (Fig.4.12 (a)). Therefore reset the artificial ankle
model parameter to 5° upslope walking data: the red line in (Fig.4.12 (a)). And record
the working status as follows (Fig.4.12 (b)):

1. Heel-strike to foot-flat: 0 to 20 percent, the heel initially make contact with the
ground and the top was follow .in this phase ankle angle from 0° to 15°.

2. Foot-flat to max dorsiflexion: 20 to 60 percent, begins at the foot-flat and continues
until the maximum ankle angle from 15° to -10°.

3. Swing phase: 60 to 90 percent, the foot off the ground and ankle angle reset to
0°.
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Fig.4.12 Ankle angle data from 5° upslope walking. (a):health walking (b): artificial ankle degree

This experiment is tested on a treadmill and walking speed is 1.5km/h. The data
from DAQ IN-6521 sampling rate is 1000/s. The data collection (Fig.4.13) of 2 steps
walking data, the (Fig.4.13 (a)) is a healthy walk signal from A1, (Fig.4.13 (b)) is an
artificial signal from A2. In this result the walking phase change can also be reflected
in accelerometer Z axis, the acceleration have a great change between swing phase and
next step stance phase, but during the stance phase the signal from artificial ankle have
a lot of noise, this noise is from plastic elastic vibration, The results are worse than
expected.
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Accelerometer signal with health ankle
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Fig.4.13 5° upslope walking result at a speed of 1.5km/h, sampling rate is 1000/s, a: health ankle

b: artificial ankle

In 5° 2km/h upslope walking, the signal have big noise from accelerometer in
swing and stance phase. Because the accelerometer cannot measure the fast walking
when the plastic model has large shock. But the encoder signal can show the model
working was correct (Fig.4.12). This artificial model limitation at 5° upslope is 2km/h
walking speed.
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Accelerometer signal with healthy ankle
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Fig.4.14 5° upslope walking result at a speed of 2km/h sampling rate is 1000/s, a: health ankle b:
artificial ankle

4.3.4 Flexi-force sensor signal with level and 10° upslope walking

The Flexi-force sensor not suitable for used in the system switch from level-ground
to upslope walking. The sensor output signal will follow V o = Body weight + F |eg, F
leg 1 the force from the muscles. The body weight is fix but the F 1, will change in every
step. The V out was different with every step. The walking signal from level-ground and
10° upslope walking as follow (Fig.4.15):

1. Level-ground: SR2 maximum output in each step was from 3V-4.5V, SR1
maximum output in each step was from 4V-4.5V.

2. 10° upslope: SR2 maximum output in each step was from 2.2V-3V, SR1

maximum output in each step was from 4V-4.5V.

To sum up they have same output in different walking states. The system using
Flexi-force sensor was difficult to distinguish level-ground from upslope walking.
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4.3.5 System working with load and no-load

It is worth mentioning that all experiments were tested in no-load walking, the
system peak current with no-load working was 700mA. We also install the 1kg weight
under the power ankle model (Fig.4.16).

Fig.4.16 Power ankle model weight position.

Before the experiment system working data was set for level walking and 3km/h
walking speed, we recording and compare the encoder signal in no-load and load
working. The walking signal from no-load and load walking as follow (Fig.4.17):

No-load: one gait need 1.2 second (Fig.4.17 (a)), peak current was 700mA.
Load: one gait need 1.2 second (Fig.4.17 (b)), peak current was 800mA.
From the result we can know the system response time with no-load and load ware

similar. And in the load working peak current higher than no-load, the peak current
depend on walking load.
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Chapter S

Discussion and Conclusion

5.1 Discussion

The traditional control methods for power ankle [3]-[10] are consists of two
groups: high complex calculation from inertial measurement unit or complex
mechanical system. The inertial measurement unit need high performs computation
system it would use more energy, the latter complex mechanical system difficult to
maintain. The control system based on Flexi-force sensor as an on-off variable, system
has the following advantage of simple calculation, fast system response time and low
energy consumption.

The limited experimental conditions, the control system only tested on the
artificial model and the Flexi-force sensor installed under the sole with healthy foot,
and compare the acceleration between the healthy foot and artificial model, the
experimental process is similar gait copy. This artificial mode limitation as follow:

1. Level-ground walking: The system can working in 2km/h, limitation is

3km/h.

2. 10° upslope walking: The system can working in 2km/h, limitation is

3km/h.

3. 5° upslope walking: The system working in 1.5km/h were worse than

expected, limitation is 2km/h.

This problem is from the artificial mode, plastic has large shock during
walking, the more faster walking speed more large shock. This test result did not give
any suggestion that it can work well with the artificial power ankle. Therefore we must
installed the Flexi-force sensor to real artificial power ankle, and test this system
whether it can work independently without healthy foot.

During the walking, the Flexi-force sensor was used as an on-off variable, control
the ankle at the beginning of the phase, the ankle stop depend on ankle position
feedback from encoder. Therefore the ankle speed must be setting before walking, the
speed was fix during the walking. In the Chapter3.3 walking gait phase measurement
we also find the slope of walking signal have relationship with walking speed, but it
just a hypothesis, it had more experiment to find that relation equation, use to change
the walking speed in real-time.
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This system can be used in level, 5° and 10° upslope walking, but it was
discontinuity, the walking parameter had to be settled before walking environment
change, this problem is from slope estimate, the system continuity work must estimate
the slope before upslope, but the Flexi-force sensor only can detect walking in real-time,
cannot estimate. For this problem we have two way to solve it. First is to use other
sensor to detect the upslope before walking, such as laser. The other way is install one
more Flexi-force sensor under the healthy foot for reference data, when upslope healthy
foot is first step, the Flexi-force sensor signal was different between the different
upslope. Therefore it also have more experiment to perfect this method.

5.2. Conclusion

This thesis consists of two part: walking phase measurement and artificial power
ankle control system design.

Flexi-force sensor is a good solution at the walking phase walking phase
measurement. It is so easy to analysis data using two Flexi-force sensor. The sensor
SR1 installed under the fore foot and sensor SR2 installed under the heel. It can
accurately measure each walking phase during the walking in real-time (Fig.2.1). The
conventional walking phase measurement using inertial measurement unit must use
complex algorithm. Flexi-force sensor SR1 and SR2 walking phase measurement only
compare the two sensor result as flows:

1. Swing phase: SR1< threshold and SR2< threshold.
2. Heel-strike to max dorsiflexion phase: SR2> threshold and SR1 < threshold.

3. Max dorsiflexion phase to swing phase: SR2< threshold and SR1 >
threshold.

The control system based on the Flexi-force sensor can be straightforward
measurement the walking phase during the real-time walking. Experiment results
showed that is a great way for power ankle control system. It is more straightforward
than traditional control methods impedance control or inertial sensor.

The system testing in level-ground, 5°, 10° upslope walking. The walking result as
follows:

1. Level-ground: system can Stability work in 2km/h walking speed. The
artificial power ankle phase transformation is similar to healthy ankle.

2. 10° upslope walking : system in 10° upslope also can Stability working in
2km/h walking speed, but the result shows it have noise in stance phase, this
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noise was from plastic elastic vibration.

3. 5° upslope walking: Although the system can working in 1.5km/h walking
speed but the result were worse than expected.

4. 15° upslope walking: In 15° upslope walking the walking phase was different
with normal walking because of the slope was too high, The test found that
ankle degree in 15° upslope always keep to the same degree, no heel-strike
no foot-flat only Max-dorsiflexion. So 15° upslope walking was meaningless.

For system power, this system power by 12V DC, system standby current was
200mA, working peak current no more than 700mA, so the system power no more than
8W, the 12V 8000mah battery group can provide the 8W power for 12 hour ,so it can
working about 12 hour.

5.3. Recommendations for future work

Firstly, as the limited experimental conditions. The future works are suggest. All
of experiment was test on the plastic artificial model. However, the experiment did not
give any suggestion that it can work on real artificial power ankle. Therefore, to make
a real artificial power ankle and testing this system are necessary. To get this system
defect and improve it to perfect the system.

Secondly, although this system can working in level-ground, 5°, 10° upslope
walking but the system parameter had to reset before walking, is non-adaptive.
Therefore, to develop more control method are necessary.

Flexi-force sensor can be develop more movement in artificial power ankle control
such as: downhill slopes, Up and down stairs.
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Design and development of the control
system for power ankle prosthesis

Gong Yan

Department of Electrical Engineering
Faculty of Engineering, Prince of Songkla University
Thailand
26743674@qqg.com

Abstract— (Abstract) Phase measurement is a key problem in
power ankle control system because the traditional control
methods is complex mechanical systems and high complicate
computation systems. In this article aims to develop of a
straightforward phase measurement control system using two
Flexi-Force sensor SR1 and SR2, SR1 installed under the toe and
sensor SR2 installed under the heel. Experiment with artificial
power ankle model in 2 Km/h walking speed. The accelerometer
and the encoder will record the experimental result, compared
with reference data [12]. The result can shows it can accurately
measure the ankle phase during the walking in real-time.

Keywords— gait analysis, control system, power ankle, Flexi-
Force.

I. INTRODUCTION

From the first official global report on disability. The
proportion of disabled people is rising to 15% of the world's
population [1]. How to let the disabled recover the ability to
walk is more and more important in future.

Today’s commercially available prostheses are no power
passive prostheses, it only can get the ability to stance and
simple walking in fixed terrain, but the human ankle provides
extra power during the walking. The earliest work in powered
prostheses was proposed in1972s [2] until today there had so
many research about powered prostheses. Samuel K [3-4] use
the impedance control of the prosthesis control system, he uses
a high power output DC motor, a transmission, a series spring
Composition Series-Elastic Actuator (SEA). This SEA can get
the torque feedback to the system for control, this prosthesis
can mimic the normal human ankle walking. But this prosthesis
has to control by PC [5], it cannot work by itself. Frank Sup [6-
7] designed a new prosthesis with embedded system [8], it can
independently walk in outdoor for 9km.Huseyin Atakan Varol
[9] proposed Real-Time Intent Recognition for that prostheses
[6, 7 and 10]. This prostheses control system signal is from
inertial sensor. Mr.Ugrit Chammar designs a simple
mechanical system for the artificial foot [11].It can
continuously work about 6000 steps, normal human is 5500
step/day. Therefore it can work all day with full battery.
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The disadvantages of that artificial prostheses are
impedance control based on high performance computing
system and complex mechanical structure. Inertial sensor is
difficult to make sure the walking phase in real time, it just
estimated movement trend at the beginning of the walking
phase, cannot measure every walking phase during the walking.
In this paper a straightforward phase estimate control system
method based Flexi-Force sensor is developed. It not only can
accurately measure the ankle phase during the walking in real-
time, but also the signal is easy to calculate.

II. THEORY

The level walking gait cycle is defined two parts: stance
phase (60% gait cycle) and the swing phase (40% gait cycle)
(Fig.1) [3].The stance phase beginning with the heel strike and
ending at the top-off , when the foot is off the ground until next
heel-strike is swing phase . Different phase has different ankle
angle, hell-strike start at 0°, in stance phase angle varies
between -7° to 10°. Therefore phase measurement in real time
is important for power ankle control system.

I Stance
60%

| Swing
40% >

Max.

Heel-strike Foot-flat Dorsiflexion Toe-off Heel-strike
“Controlled | | Powered | X -
Plantar Controlled Plantar Swing
Flexion Dorsiflexion Flexion Phase
N b | Function: | o
Function: Function: Torque Source Function:

Linear Nonlinear - Position
Spring Spring Spring Control

Fig. 1. Gait analysis for level-ground walking.

A. Walking gait phase measurement using Flexi-force

In this paper uses two Flexi-force A201Sensor (SR1 and
SR2) installed under the sole (Fig.2). Sensor SR1 installed
under the fore foot and sensor SR2 installed under the heel.
Signals from the SR1 start with a heel-strike when the heel
touches the ground and ending at the dorsiflexion when the
heel rises from the ground Sensor SR2 start with a foot-flat and
ending at the toe off (Fig.3).



SR1

human foot—|

SR2

Fig. 2 Flexi-force A201 Sensor position

The sensor shoes was tested on a 27-year-old male (1.86 m,
90 kg) healthy man .The walking data collection from DAQ
IN-6009 using LabVIEW Software, sampling rate is 2000/s.
Pressure on Sensor is proportional to the voltage. X axis is
voltage, Y axis is time. Each step is described as follows.

1) Controlled plantar flexion: begins at heel-strike and
ends at the foot-flat. In this phase when heel touch ground
sensor SR2 generates the signal.

2) Controlled dorsiflexion: begins at the foot-flat and
continues until the ankle maximum angle. In this phase sensor
SR1 generates the signal at foot-flat and SR2 stop signal at an
ankle maximum angle.

3) Powered plantar flexion: begins at max dorsiflexion and
ends at the toe-off phase. In this phase when the toe off the
ground the signal SR1 was reduced to zero.

4) Swing phase: begins at after powered plantar flexion
until the next heel-strike. In this phase the food was off the
ground ,both of the sensor signal SR1 and SR2 was equal to
Zero.

sensor data with level walking

5
: f\
3
()
Qo
8
5 2
>
1
0 @ (3 J
-1
(1)Heel strike (1)-(2):stance phase

(2)Mix dorsiflexion
(3)Toe off

(2)-(3):swing phase
line:SR2 Dash line :SR1

Fig.3  Flexi-force Sensor data with level walking
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B. Walking Controller method with Flexi-force

The walking phase can be Simple and accurate expression
by two Flexi-force Sensor SR1 and SR2 (Fig.3). The key
question for the power ankle control system is an ankle angle
control. A. S. McIntosh measure the ankle angle during the
walking on level, 5° and 10°[12].In this paper, we only use the
level-walking data (Fig.9 a).Definition of clockwise rotation
will be denoted by a positive and reverse travel as negative, 0°
is the base when the leg and foot is vertical and threshold is
parameter depending on body weight (Fig.4). The controller
method is described as follows.

1) Standing to swing phase: system start in the standing and
wait sensor signal. When the foot is off the ground, sensor SR1
and SR2 signal equal to zero, in this time reset the ankle angle
to zero.

2) Swing phase to max dorsiflexion phase : In this step
when the heel touches the ground, SR2 > threshold and SR1 =
0, control the ankle angle from 0° to 10° and reverse travel to -
79, delay before the reverse travel for protecting the DC motor
drive circuit

3) Powered plantar flexion : In this step the heel is off the
ground and the toe still on the ground, SR1 > threshold and
SR2 < threshold. Reset the ankle angle to 0° and waiting next
gait cycle.

SR2>Threshold
SR2=0

SR1=0 Swing phase Controlled plantar flexion
Standing >
reset to Odeg SR1=0 0 to 10deg
SR2=0 delay
SR1=0
Powered plantar SR1>threshold Max Dorsiflexion
flexion SR2=threshold

-7 to Odeg 10 to -7deg

Fig.4 Walking controller with flexi-force signal

III. EXPERIMENTATION AND RESULT

The performance of the controller method with Flexi-force,
the experiments using a power ankle model have been
performed. Here, we present some illustrative results to show
the control capability of the Flexi-force sensor controller
system

A. Artificial power ankle model design

In this article, we use plastic to make a simple power ankle
model (Fig.5).The left one is a sensor in the shoe to collect the
signal (Fig.2), right one is the power ankle model. The model
consists of signal processing, power supply, encoder, DC-
motor, and DC-motor drives.



accelerometer

Fig.5 Sensor shoe and power ankle model

This system is powered by 12V and 700mA. The main
computational element of the system is 16-bit digital signal
controller dspic30f2010.Three-phase encoder can feedback the
ankle angle signal to measure the ankle position. Dspic30f2010
consists of 10-bit high-speed analog to digital converter (ADC)
modular and quadrature encoder interface (QEI) modular. The
analog signal of the sensor can be converted to a digital signal
by ADC modular, QEI modular can analysis encoder signal

(Fig.6).
M ADC [ pepic | PWM [ Motor _@
rive

Encoder

Fig.6 Control system for power ankle model

B. Experimental process

Three axis accelerometer ADXL335 can measurement three
directions acceleration XYZ. Z axis vertical to level-ground.
Ankle swing will be reflected in Z axis. For validating the
validity of control system, accelerometer Al and A2
respectively installed on sensor shoe and power ankle model
(Fig.5).The artificial power ankle is fixed on the thigh, artificial
model near with the foot and vertical the leg (Fig.7). Sensor
shoes will be worn on the same side of the foot. During the
walking, accelerometer Al and A2 will have two different
signals, the two output signals were compared the similarity to
control system validation. This experiment is tested on a
treadmill and walking speed is 2km/h. Data collection from
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DAQ IN-6009 using LabVIEW. The voltage on the X axis and
Y axis is number of sampling, sampling rate is 2000/s (Fig.8).

Fig.7 Artificial model installation location

The data collection (Fig.8) of 4 steps walking data, the
(Fig.8 a) is a healthy walk signal from Al, (Fig.8 b) is an
artificial signal from A2, the walking start in swing phase when
heel-strike the heel just touches the ground until the top
touches the ground, and there had a great change in Z axis
acceleration. During the stance phase Z axis acceleration
almost unchanged. During the swing phase when the top is off
the ground, the top in the Z axis has a larger swing it will be
reflected in the acceleration. From this result healthy and
artificial ankle has similar phase change, but it also have noise
in the second time swing phase, this noise is from elastic shock
in swing phase.

Accelerometer signal with health ankle
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Fig.8 Level-walking result at a speed of 2km/h, a: health ankle b: artificial
ankle

In order to better prove that the system is working properly.
We also record the ankle angle signal from the encoder and
compare with reference data, chart (Fig.9 a) is reference data
from [12], and second chart is artificial ankle data (Fig.9 b).
Walking phase is described as follows.



1) Heel-strike to foot-flat: 0 to 20 percent, the heel initially
make contact with the ground and the top was follow .In this
phase ankle angle from 0° to 10°.

2) Foot-flat to max dorsiflexion: 20 to 60 percent , begins
at the foot-flat and continues until the ankle maximum angle
ankle angle from 10° to -7°.

3) Swing phase:60 to 90 percent ,the food off the ground
and ankle angle reset to 0°.

Comparison with reference data [12] from the (Fig.9 a) in
(Fig.9).The changing of walking phase is similar, the
difference is slope during heel-strike to foot-flat, the problem
is from the DC-motor speed more faster than human, this
problem can solve it in mechanical system such as gear
transmission system .This system can effectively control the
ankle angle in each phase during the level-walking.
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Fig.9 Ankle angle data from level walking.
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IV. CONCLUSIONS

In this article, sensor SR1 installed under the fore foot and
sensor SR2 installed under the heel, it can accurately measure
each walking phase during the walking in real-time. The
control system based on the Flexi-force sensor can
straightforward measurement the walking phase during the
real-time walking. Experiments result showed that is an
effective method for power ankle control system. It is more
straightforward than traditional control methods impedance
control or inertial sensor. The future works are suggest. All of
experiment was test on the plastic artificial model as it is east
to make. However, the experiment did not give any suggestion
that it can work on real artificial power ankle. Therefore, to
make a real artificial power ankle and testing this system are
necessary. To get this system defect and improve it to perfect
the system
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