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ABSTRACT

We transformed the rainfall data by Haar and Daubechies wavelet func-

tion. Decompose Haar and Daubechies to scale and translate for constructing an orthog-

onal basis and also estimated a function to consist with the real value. Then, continue

with ARIMA model to approximate and compare with the minimum value of mean ab-

solute error (MAE)and root mean error (RMSE) to make a forecast in the future. We can

see that the fitted ARIMA model of Haar and Daubechies discrete wavelet transformed

data gives the smaller value of mean absolute error (MAE) and root mean error (RMSE)

more than ARIMA of rainfall data. However, the model of Daubechies wavelet trans-

formed data and gives better result more than Haar wavelet transformed data.
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CHAPTER 1

Introduction

The wavelet analysis is synthesis of ideas that have intimate connections

to several other parts of mathematics, notably phase-space analysis of signal process-

ing. Generally speaking, the wavelet transform is a tool that divides up data, function, or

operators into different frequency components and then studies each component with a

resolution matched to its scale. It is a tool of analysing a function by correlating it with

a two-parameter family of functions, obtained from translating and scaling of a single

analysing function, called mother wavelet function. There are several types of wavelets

families with different properties, with or without filters, orthogonal or biorthogonal

such as Haar wavelet, Daubechies wavelet and Morlet wavelet ect. The focus of this

thesis is to employ the orthogonal discrete wavelet transform, namely Haar wavelet

transform and Daubechies wavelet transform.

Autoregressive integrated moving average (ARIMA)model is a fore-

casting a time series model that have been used in the forecasting literature. In order

to provide estimates for the future, these models analyze the historical data, generally

speaking, ARIMA model is a forecasting model that utilize historycal information to

make predictions. ARIMA works best when data exhibits a outliers, it is usually su-

perior to exponential smoothing techniques when the data is reasonably long and the

correlation between past observation such as Fourier transform and wavelet transform

to obtain a stationary time series.
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We transformed the data by discrete wavelet transform with the based

on linear algebra and processing with ARIMA model. We start to use a mother wavelet

function, scaled and translated for construct an orthogonal basis and estimated func-

tion to consist with the real value. Then continue to approximate to make the forecast-

ing and compare with the minimum value of MAE and RMSE in ARIMA model. In

2002 [6], Rumaih M.and Muhammad A used Saudi stock to represent that wavelet

transform is good than other forecasting technique in forecasting non-stationary time

series. In 2008 [5], Aggarwal et al, introduce that forecasting efficacy of the wavelet

transforms based mixed model has been compare with the other three models. They

will find the good evaluation for different wavelets were conducted, and notice that for

make forecasting precision using haar wavelet transform to gave the best evaluations. In

2011 [4], S.Alwadi and Mohd Tahir Ismail use an amman stock market data from 1993

until 2009 to transform with the based on wavelet transform combined with ARIMA

model, and then forecasting results will compare with the minimum value of MAE and

RMSE considered to select the best ARIMA model of the daily return data. After we

transform via Haar and Daubechies, we get the best result more than original return

data.

This thesis will focus to transform the data by discrete wavelet transform

with the based on linear algebra. We will start to construct an orthogonal basis by a

mother wavelet which called Haar wavelet for estimated a function to consist with the

real value. We used Haar wavelet and Daubechies wavelet to scale and translate in the

discrete wavelet transform. The discrete Haar wavelet was transformed to construct an

orthogonal basis by the theory of linear algebra, that was if f ∈ L2(R), f can be written
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in the form

f =
∑
j,k∈Z

< f, pj,k > pj,k +
∑
j,k∈Z

< f, hj,k > hj,k

where pj,k(x) = 2j/2p(2j/2x− k) and hj,k(x) = 2j/2h(2j/2x− k).

For this study, we used the data of rainfall in Songkhla area from 2007

until 2014 which the Haar and Daubechies wavelet function to construct an orthogonal

basis. We scaled, translated and used ARIMA model to approximate to make the fore-

casting and compare with the minimum value of the mean absolute error (MAE), the

root mean square Error (RMSE).

In our work, we will be organize 5 chapters. An introduction about ap-

plication of wavelet transform to analyze the rainfall data is presented in chapter 1. In

chapter 2, we summarize an introduction of wavelet transform. Summarise an introduc-

tion of ARIMA model in chapter 3. Chapter 4, we represented the experiment results in

the forecasting method. The last chapter we summarize our mention preconcession.

First, we indicate state fundamental definition, example, theorem and

some properties that will be used in the proceeding chapter.

In this thesis, we transform with the based on linear algebra which some

properties of inner product space and now ready to state the definition and some prop-

erties as following :

1.1 Inner Product Space

Definition 1.1. Let V be a vector space on R. We call function < ·, · > :

V × V −→ R an inner product if for all x, y and z in V and c in R, we have

1. < x, y > = < x, y > + < z, y >
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2. < cx+ z, y > = c < x, y >

3. < x, y > = < y, x >.

4. < x, x > ≥ 0, and < u , u > = 0 iff u = 0.

Definition 1.2. Let V be an inner product space and u, v ∈ V.

The norm of u is written by ‖u‖ =< u, u >
1
2 . The distance of u and v denoted by

d(u, v) = ‖u− v‖.

Theorem 1.1. If V be an inner product space and x, y ∈ V then

| < x, y > | ≤ ‖x‖‖y‖.

Proof. Details of the proof can be found in [2].

Theorem 1.2. Let V be an inner product space. If x, y ∈ V and c ∈ R,

1. ‖x‖ ≥ 0

2. ‖x‖ ≥ 0 if and only if x = 0

3. ‖cx‖ = |c|‖x‖

4. ‖x+ y‖ ≤ ‖x‖ + ‖y‖.

Proof. Details of the proof can be found in [2].

Definition 1.3. Let V be an inner product space. Two vector x, y ∈ V are orthogonal

if < x, y > = 0.

Definition 1.4. Let U and V be subspace S of a vector space W such that U ∩ V =

{0}. The direct sum of U and V is denoted by

U ⊕ V = {x + y| x ∈ U and y ∈ V }.
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Definition 1.5. Let S be a subspace of the inner product space V. The orthogonal

complement of S is the set S⊥ = {x ∈ V |< x, s > = 0 for all s ∈ S}.

Theorem 1.3. 1. If U and V are subspace of W with U ∩ V = {0}, then U ⊕ V is

also a subspace of W.

2. If S is a subspace of the inner product space V, then S⊥ is also a subspace of V.

Proof. Details of the proof can be found in [2].

Theorem 1.4. If U and V are subspace of W with U ∩ V = {0}, and z ∈

U ⊕ V , then w = u+ v for unique x ∈ U and y ∈ V.

Proof. Details of the proof can be found in[2].

Definition 1.6. Let V be an inner product space.

1. A subset S ⊆ V is called orthogonal if ∀x , y ∈ S,< x , y > = 0.

2. x ∈ V is a unit vector if ‖x‖ = 1.

3. A subset S ⊆ V is orthonormal if S is a orthogonal set and ∀x ∈ S, ‖x‖ = 1.

Definition 1.7. Let V be a vector space and S = {v1, v2, ..., vn} be a subset of V . We

say that S span V if every vector v in V can be written as a linear combination of vectors

in S, that is v = c1v1+ c2v2+ ...+ cnvn. for v1, v2, ..., vn ∈ S and c1, c2, ..., cn ∈ R/C.

Definition 1.8. A basis of a vector space V is defined as a subset v1, v2, ..., vn of vectors

in that are linearly independent and span vector space V .

Definition 1.9. An orthonormal basis of V is an orthonormal list of vectors in V that

is also a basis of V.
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Theorem 1.5. Let V be an inner product space and S = {v1, v2, ..., vk} be an orthog-

onal subset of V such that ∀i, vi= 1,2,...,k �= 0. If y ∈ Span(S), then

y =
k∑

i=1

< y, vi >

‖ vi ‖
2

vi.

Proof. Details of the proof can be found in [3].

Theorem 1.6. Let V be non-zero finite dimensional inner product space. Then V has

an orthonormal basis B. Furthermore, if B = {v1, v2, ..., vn} and x ∈ V, then

x =
k∑

i = 1

< x, vi > vi.

Proof. Details of the proof can be found in [3].

1.2 Criteria of Statistics

Always some amount of error in every analysis, We examine and com-

pare error to know reliability. In this thesis, we used Mean Error and Root Mean Square

Error to examine error for compare to choose the best result.

1. Mean absolute error(MAE)

Mean absolute error is a quantity used to measure how close forecasts or predictions

are to the eventual outcomes. The mean absolute error is given by

MAE =

N∑
i=1

|actual value - predicted value|

N
.
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2. Root mean squared error (RMSE)

Root mean squared error is the square root of the mean/average of the square of all of

the error. RMSE is very commonly used and makes for an excellent general purpose

error metric for numerical predictions

RMSE =

√√√√√√
N∑
i=1

(actual value - predicted value)2

N
.
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CHAPTER 2

Wavelet Transform

The wavelet transform is similar to the Fourier transform (or much more

to the windowed Fourier transform) with a completely different good function. The

main difference is this fourier transform decomposes the signal into sine and cosines. Wavelet

transform is very suitable with non-stationary data and were used to adopt a mother

function, scaled and translated. We can used wavelet transform is transforming with

the based function which a mother wavelet to scale and translate and used orthogonal

wavelets for discrete wavelet transform improvement and non-orthogonal wavelets for

continuous wavelet transform improvement. The wavelet transform is divided into two

sort, that is continuous wavelet transform and discrete wavelet transform.

2.1 Continuous Wavelet Transform

Now we start to state the definition of continuous wavelet transform. Gen-

erally, continuous wavelet transform can be expressed by the following.

Definition 2.1. Fix ϕ ∈ L2(R), ϕ �= 0, call it the mother wavelet function. Given

a > 0, b ∈ R,

ϕa,b(x) =
1√
a
ϕ(
x− b

a
).

The wavelet transform of f ∈ L2(R) is

Wf(a, b) = < f, ϕ(a,b) > =
1√
a

∫ ∞

−∞
f(x)ψ(

x− b

a
)dx.
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Theorem 2.1. Let f ∈ L2(R), an inverse wavelet transform is

f(x) =

∫ ∞

−∞

∫ ∞

−∞
Wf(a, b)ψ(

x− b

a
)dadb.

Proof. Details of the proof can be found in [7].

For convenience to transform the data, we will used the discrete wavelet

transform which the same main idea of the continuous wavelet transform, begin to used

the mother wavelet function, scaling and translating this functon to construct an orthog-

onal basis.

2.2 Discrete Wavelet Transform

The discrete wavelet transform is an implementation of the continuous

wavelet transform using a discrete set of the wavelet scales and translations obeying

some defined rules. In other words, this transform decomposes the function (data) into

mutually orthogonal set of wavelet. The wavelet can be construct from a scaling func-

tion φ(x), for each j ∈ Z, define the approximation space

Vj = span{φj,k(x)}k ∈Z.

and one can show that ∀j ∈ Z, {φj,k}∞k=−∞ is an orthogonal basis of Vj. We also define

a mother function ψ(x), for each j ∈ Z define the approximation space

Wj = span{ψj,k(x)}k ∈Z

and one can show that ∀j ∈ Z, {ψj,k}∞k=−∞ is an orthogonal basis forWj.Moreover, we

can show that ∀f ∈ Vj+1,

f =
∞∑

j,k=−∞
< f, φj,k > φj,k +

∞∑
j,k=−∞

< f, ψj,k > ψj,k.
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Finally, L2(R) can be decomposed as infinite orthogonal direct sum

L2(R) = V0 ⊕W0 ⊕W1 ⊕ .... In particular, ∀f ∈ L2(R),

f = f0 +
∞∑
j=0

wj

where f0 ∈ V0 and wj ∈ Wj.

2.2.1 Haar Discrete Wavelet Transform

Now, we summarize the Haar wavelet transform and some properties of

Haar wavelet transform. Firstly, we introduce the Haar scaling function and mother

wavelet function as follow.

Definition 2.2. Let

p(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, x ∈ [0, 1)

0, otherwise.

Figure 2.1: Haar scaling function p(x).

For each j, k ∈ Z, define

pj,k(x) = 2j/2p(2jx− k).
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The collection {pj,k(x) = 2j/2p(2jx− k)} is referred to as the Haar scaling function.

For each j ∈ Z, the collection {pj,k(x) = 2j/2p(2jx− k) ; k ∈ Z} is referred to as the

system of scale j Haar scaling functions. Next, we state definition of Haar function as

follow.

Definition 2.3.

h(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, x ∈ [0, 1
2
)

−1, x ∈ (1
2
, 1]

0, otherwise.

Figure 2.2: Haar wavelet function h(x).

For each j, k ∈ Z, define

hj,k(x) = 2j/2h(2jx− k).

The collection {hj,k(x) = 2j/2h(2jx− k) ; j, k ∈ Z} is referred to as the Haar system

on R. For each j ∈ Z, the collection {hj,k(x) = 2j/2h(2jx− k) ; k ∈ Z} is referred to

as the system of scale j Haar functions.

Now, we will introduce some definition and some properties for the un-

derstanding of proof and the construction of general wavelet bases.
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Definition 2.4. For each pair of integer j, k ∈ Z, define the interval Ij,k by

Ij,k = [2−jk, 2−j(k + 1)).

The collection of all such intervals is called the collection of dyadic subinterval of R.

Lemma 2.2. Let j, j′, k, k′ ∈ Z be such that (j, k) �= (j′, k′), then either

(i) Ij′,k′ ∩ Ij,k = ∅, or

(ii) Ij′,k′ ⊂ Ij,k, or

(iii) Ij,k ⊂ Ij′,k′ .

Proof. Details of the proof can be found in [7].

Definition 2.5. Given a dyadic interval at scale j, we write Ij, k = I lj,k ∪ Irj,k, where

I lj,k and Irj,k, are scale j+1, to denote the left half and right half of the interval Ij, k. In

fact, I lj,k = Ij+1,2k and Irj,k = Ij+1,2k+1.

As we have a mother wavelet function, we scale and translate mother

wavelet function for construct an orthogonal basis, so now we continue to summarize

that some properties and theorem of the based on orthogonality of the Haar system.

Theorem 2.3. The Haar system on R is an orthonormal system on R.

Proof. For k �= k′, hj,k(x)hj,k′ (x) = 0 for all x ∈ R.

Next, if k = k
′

, we have

< hj,k′ , hj,k > =

∫
R

|hj,k|2dx = 1.

Assume that j �= j
′
.Without loss of generality it is sufficient to consider the case j > j

′
.

Then, it follows that there 3 distinct possibility:
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Case(i) Ij,k ∩ Ij′ ,k′ = ∅ is elementary, as in this case hj,k(x)hj′ ,k′ (x) = 0 and so

< hj,k, hj′ ,k′ > = 0.

Case(ii) Ij,k ⊂ I l
j′ ,k′ implies that whenever hj,k is non-zero, hj′ ,k′ is constantly equal

to 1. Thus

< hj,k, hj′ ,k′ > =

∫
Ij,k

hj,k(x)hj′ ,k′ (x)dx = 0.

Similarly, the case(iii) Ij,k ⊂ Ir
j′ ,k′ implies that whenever hj,k(x) is non-zero, hj′ ,k′ (x)

is constantly equal to −1. Thus

< hj,k(x), hj′ ,k′ (x) > =

∫
Ij,k

hj,k(x)hj′ ,k′ (x)dx = 0.

Next, we estimate the function by discrete wavelet transform and then

ready to study basic knowledge of some definition and conditions of an approximation

operator.

Definition 2.6. For each j ∈ Z, define the approximation space Vj , by

Vj = span{pj,k}k∈Z.

Theorem 2.4. Fix any j ∈ Z. Then the set of functions {pj,k , k ∈ Z} is an orthogonal

basis for Vj.

Proof. Details of the proof can be found in [7].

Definition 2.7. For each j ∈ Z, we define the approximation space Wj , by

Wj = span{hj,k}k∈Z.
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Theorem 2.5. Fix any j ∈ Z. Then the set of functions {hj,k , k ∈ Z} is an orthogonal

basis for Wj.

Proof. Since {pj/2,k}k∈Z is an orthogonal basis of Vj+1 andWj ⊂ Vj+1, every function

in Wj has an expansion of the type

f(x) =
∑
k∈Z

ckpj/2,k(x).

In dyadic interval of length 2−j the average of f is zero (since f ∈ Wj), so by combining

two of the function pj/2,k we get,

f(x) =
∑
k∈Z

dkhj,k(x).

Conversely, every sum of this type is orthogonal to every function in Vj since

pj,k⊥hj,k, ∀j, k ∈ Z.

Theorem 2.6. (Splitting Theorem) For each j, k ∈ Z

(i) Vj+1 = Vj ⊕ Wj

(ii) every f ∈ Vj+1 has expansion

f =
∑
k∈Z

aj,kpj,k +
∑
k∈Z

bj,khj,k.

(iii) The set of function

{pj,k, k ∈ Z}
⋃
{hj,k, k ∈ Z}

is an orthogonal basis in Vj+1.
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Proof. (i) Let r ∈ Vj , q ∈ Wj , we get r + q ∈ Vj+1.

Given f = r + q, and Vj ⊥Wj. Hence f ∈ Vj+1.

(ii) Since f ∈ Vj+1 then f has expansion

f =
∑
k∈Z

aj,kpj,k +
∑
k∈Z

bj,khj,k.

(iii) Follow from (ii) and note that hj,k ⊥ pj,l ∀k, l ∈ Z, since pj,l ∈ Vj and

hj,k ∈ Wj, and Vj ⊥Wj. Hence the set of function

{pj,k, k ∈ Z}
⋃
{hj,k, k ∈ Z}

is an orthogonal basis in Vj+1.

Lemma 2.7. Wj ⊥Wl for j �= l.

Proof. If l < j, then Wl ⊥ Vj, and Wl ⊂ Vl+1 ⊂ Vj. By repeating this splitting

over and over again we get,

Vj = Wj−1 ⊕ Vj−1 = Wj−1 ⊕Wj−2 ⊕ Vj−2 = ....

Theorem 2.8. The L2(R) can be decomposed as an infinite orthogonal direct sum

L2(R) = V0 ⊕W0 ⊕W1 ⊕ ...

In particular, each f ∈ L2(R) can be written uniquely as

f = f0 +
∞∑
j=0

wj

where f0 belongs to V0 and wj belongs to Wj.
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Proof. If f is an orthogonal to all of these function, since Vj = Wj−1 ⊕Wj−2 ⊕ ...⊕

W0 ⊕ V0 which f0 ∈ V0, wj ∈ Wj, then we get fj is an orthogonal in Vj. So for each

fj ∈ Vj can be decomposed uniquely as a sum

fj = wj−1 + wj−2 + ...+ w0 + f0.

See figure 2.3.

Figure 2.3: Haar decomposition.

2.2.2 Filter and Diagrams

After we study every conditions, we use all to writhed the diagrams by

theorem as following for convenience to understanding.

Lemma 2.9. The following relations hold ∀x ∈ R:

pj,k(2
jx) =

hj,k(2
j−1x) + pj,k(2

j−1x)
2

pj,k(2
jx− 1) =

pj,k(2
j−1x)− hj,k(2

j−1x)
2

Proof. Details of the proof can be found in [6].
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Theorem 2.10. Suppose

fj(x) =
∑
k∈Z

ajkpj,k(x) ∈ Vj.

Then fi can be decomposed as

fi = wj−1 + fj−1

where

wj−1 =
∑
k∈Z

bj−1k hj,k(2
j−1x− k) ∈ Wj−1

fj−1 =
∑
k∈Z

aj−1k pj,k(2
j−1x− k) ∈ Vj−1

with

bj−1k =
aj2k − aj2k+1

2
, aj−1k =

aj2k + aj2k+1

2
.

Proof. Divide the sum fj(x) =
∑
k∈Z

akpj,k(2
jx− k) into even and odd terms :

fj(x) =
∑
k∈Z

a2kpj,k(2
jx− 2k) +

∑
k∈Z

a2kpj,2k(2
jx− 2k − 1).

By Lemma 2.9, we get

fj(x) =
∑
k∈Z

a2k(hj,k(2
j−1x− k) + pj,k(2

j−1x− k))/2 +

∑
k∈Z

a2k(pj,k(2
j−1x− k)− hj,k(2

j−1x− k))/2.

=
∑
k∈Z

(a2k − a2k+1)hj,k(2
j−1x− k)

2
+
∑
k∈Z

(a2k + a2k+1)pj,k(2
j−1x− k)

2

= wj−1 + fj−1.

Theorem 2.11. Suppose for 0 ≤ j′ < j. Then

f(x) =
∑
k∈Z

aj−1k pj,k(2
j−1x− k) ∈ Vj
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where the aj
′
l are determined recursively for j′ = 1, then j′ = 2, and so on until

j = j′, by algorithm

aj
′
l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
aj

′−1
k + bj

′−1
l ; l = 2k is even

aj
′−1
k − bj

′−1
l ; l = 2k + 1 is odd.

Proof. f(x) = f0(x) + w0(x) + ...+ wj−1(x) , wl ∈ Wl where

f0(x) =
∑
k∈Z

a0kpj,k(x − k) ∈ V0 and wl(x) =
∑
k∈Z

blkpj,k(2
lx − k) ∈ Wl for

0 ≤ l ≤ j − 1. Using lemma 2.9 with x replaced by x− k, we have

f0(x) =
∑
l∈Z

(a0kpj,k(2x− 2k) + a0kpj,k(2x− 2k − 1)) and so

f0(x) =
∑
l∈Z

â1l pj,k(2x− l) where

â1l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a0k; l = 2k is even

a0k; l = 2k + 1 is odd.

Similarly, w0 =
∑
l∈Z

b0l hj,k(x− k) can be written as

w0(x) =
∑
l∈Z

b̂1l hj,k(2x− l) where

b̂1l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
b0k; l = 2k is even

−b0k; l = 2k + 1 is odd.

f0(x) + w0(x) =
∑
l∈Z

a1l pj,k(2x− l) where

a1l = â1l + b̂1l

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a0k + b0k; l = 2k is even

a0k − b0k; l = 2k + 1 is odd.

Adding w1(x) =
∑
k∈Z

b1khj,k(2x− k) in to the both side we have
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f0(x) + w0(x) + w1(x) =
∑
l∈Z

a2l pj,k(2
2x− l) where

a2l = â1l + b̂1l

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a1k + b1k; l = 2k is even

a1k − b1k; l = 2k + 1 is odd.

a0l , b
0
l− coefficients determine the a1l− coefficients.

a1l , b
1
l− coefficients determine the a2l− coefficients, and so on in a recursive manner.

And now, we begin to define discrete filter H and L via there impulse

responses, which are the sequence h and l :

h = (...0...
−1
2

1

2
...0), l = (...0...

1

2

1

2
...0).

If {xk} ∈ l2, then H = h ∗ x and L = l ∗ x.

Thus we have

H(x)k = (h ∗ x)k = 1

2
xk − 1

2
xk+1, L(x)k = (l ∗ x)k = 1

2
xk +

1

2
xk+1.

The operation of discarding the odd of coefficient of a sequence is called downsampling,

denoted by D.

Go from level j scaling coefficients ajk to get the level j − 1 scaling and wavelet coeffi-

cients.

Decomposition f into V0 andWj′ component for 0 ≤ j′ ≤ j, bj−1k = DH(aj)k and aj−1k = DL(aj)k.

Next, we define discrete filter H̃ and L̃ via there impulse responses, which are the

sequence h̃ and l̃ :

h̃ = (...0...− 1 1...0...), l̃ = (...0...1 1...0...).
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Figure 2.4: Haar decomposition diagram.

For a sequence {xk}, we have

H̃ = (h̃ ∗ x)k = xk − xk+1, L̃ = (l̃ ∗ x)k = xk + xk+1.

If x and y are sequence in which the odd entries are all 0, then

(h̃ ∗ x)l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x2k; l = 2k is even

−x2k; l = 2k + 1 is odd.

(l̃ ∗ y)l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
y2k; l = 2k is even

−y2k; l = 2k + 1 is odd.

Assume that the x2k+1 and y2k+1 are 0. Next, we set x2k = bj−1k and y2k = aj−1k ,

that is

x = (...0 bj−1−1 0 bj−10 0...)
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and

y = (...0 aj−1−1 0 aj−10 0...).

Adding the two sequence h̃ ∗ x and l̃ ∗ x, we have

(h̃ ∗ x)l + (l̃ ∗ y)l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x2k + y2k; l = 2k is even

x2k − y2k; l = 2k + 1 is odd.

We use U to denote the upsamping operator, so

x = Ubj−1 and y = Uaj−1.

aj = L̃Uaj−1 + H̃Uaj−1

Figure 2.5: Haar reconstruction diagram.
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2.2.3 Summary

After we study all of the above, can be summarized in the following steps as figure

2.6.

Figure 2.6: Step of Haar Wavelet transform.

Given function y = f(t). Let p and h be the scaling Haar function and Haar(mother)wavelet

function.

STEP 1. (Sample)

Choosing a positive integer. Set aJk = f( k
2J
).

Let us compute

fJ(x) =
∑
k∈Z

aJkpj,k(2
Jx− k).

STEP 2. (Decomposition)

fi can be decomposed as

fj = wj−1 + fj−1

where

wj−1 =
∑
k∈Z

bj−1k hj,k(2
j−1x− k) ∈ Wj−1,
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fj−1 =
∑
k∈Z

aj−1k pj,k(2
j−1x− k) ∈ Vj−1

The coefficients blj−1, a
l
j−1 are determined from the recursively by the algorithm

bj−1k = DH(aj)k and a
j−1
k = DL(aj)k,

where H and L are the high and low pass filters.

STEP 3. (Processing)

After we decompose, the function in the form

fJ(x) =
J−1∑
j=0

wj + f0

it can now be filtered by modifying the wavelet coefficients bkj .

STEP 4. Reconstruction

Take the modified function, fJ by

f = f0 + w0 + ...+ wj−1,

with

f0 =
∑
k∈Z

a0kφ(x− k) ∈ V0 and , wj′ =
∑
k∈Z

bj
′
k φ(2

j′x− k) ∈ Wj′ .

This is accomplished by the reconstruction algorithm

aj = L̃Uaj−1 + H̃Ubj−1.

2.2.4 Daubechies Discrete Wavelet Transform

Daubechies wavelet transforms is a discrete wavelet transform, it is de-

fined in the same way as the Haar wavelet transform by computing the running averages
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and difference via scalar function and mother function the only difference between them

consists in how these scaling signal and wavelets are defined. Daubechies wavelet are

family of orthogonal wavelet set characterizing by a maximal of vanishing moments

for same given support. In general the Daubechies wavelets are chosen to have the

highest number N of vanishing moments, for given support width 2N − 1. The name

D−N is the length or number of tape. By the same idea with Haar wave transform, The

Daubechies wavelet of class D − 2N is a function ψ ∈ L2(R) defined by

ψ(x) : =
√
2
2N−1∑
k=0

(−1)kh2N−1−kψ(2x− k),

where h0, ..., h2N−1 ∈ R are the constant the filter coefficient satisfies the condition

N−1∑
k=0

h2k =
1√
2

=
N−1∑
k=0

h2k+1,

as well as, for l = 0, 1, ..., N − 1,

2N−1+2l∑
k=2l

hkhk−2l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if l = 0

0, if l �= 0,

and the Daubechies scaling function ϕ, given by

ϕ(x) =
√
2
2N−1∑
k=0

hkϕ(2x− k)

and

ϕ(x) = 0 for x ∈ R− {0, 2N − 1}

as well as ∫
R

ϕ(2x− k)ϕ(2x− l)dx = 0 for k �= l.
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In notation ψj,k(x) = 2
j
2ψ(2jx−k) and ψ̃j,k(x) = 2

j
2 ψ̃(2jx− k) for j, k ∈ Z, (ψj,k)

and ψ̃j,k are Riesz bases dual to each other. In particular, a function f ∈ L2(R) can be

represented both as

f(x) =
∑
j,k∈Z

< f, ψ̃j,k > ψj,k(x) and
∑
j,k∈Z

< f, ψj,k > ψ̃j,k(x).

Similar with Haar wavelet transform we can compute the Daubechies wavelet transform

by the simple algorithm as Haar wavelet transform.
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CHAPTER 3

ARIMA Model

In this section we will introduce the basic knowledge of autoregressive

integrated moving average (ARIMA) model, which is a best model to approximate to

make the forecasting in a short times and get the minimum value of error less than

another method. Generally, the initial selection of an ARIMA model is based on an

examination of a plot of times series, so as before construct a model, we try to under-

standing of time series as follows.

3.1 Time Series

A time series is a sequence of numerical data points in successive or-

der. A time series tracks the movement of the chosen data points, such as a securitys

price, over a specified period of time with data points recorded at regular intervals.

There is no minimum or maximum amount of time that must be included, allowing

the data to be gathered in a way that provides the information being sought by the in-

vestor or analyst examining the activity. We can observe the time series a finite number

of times, for example a sequence of random variables (X1, X2, ..., Xn) is just an n−

dimensional random variable which called a stochastic process [8].

Definition 3.1. A time series model for the observed data {xt} is a specification of the

possible only the means and covariances of a sequence of random variables {Xt} of

which {xt} is hypothesized to be a realization.



27

A time series is a set of observation xt, each one being record at a spe-

cific time t. For example, the time series of global mean temperature anomaly from

1850 until 2010. and Dow Jones Industrial Average (DJI) inflation adjusted price from

1999 until 2013, see figure 3.1 and 3.2 as following.

Figure 3.1: The data of global mean temperature anomaly 1850− 2010.

Site: http://www.fromthebottomoftheheap.net/2011/06/11/global-warming-since-1995-

now-significant

Figure 3.2: Dow Jones Industrial Average (DJI) inflation adjusted price.

Site:http://www.aboutinflation.com/inflation-adjusted-charts/us-index-sectors-inflation-

adjusted-charts/dow-jones-industrial-average-inflation-adjusted-chart
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Moreover, the primary objective of time series analysis is to develop

mathematical models that provide possible descriptions for sample data such as white

noise, random walk with drift, autoregressive and others. Now we will shown some ex-

ample of time series model in example 1 and 2 as following.

Example 1. (White noise process)

A sample kind of generated series might be a collection of uncorrelated random vari-

ables, wt, with mean 0 and finite variance σ2
w. The time series generated from uncor-

related variables is used a model for noise engineering applications where it is called

white noise, we shall some denoted the process as wt ∼ wn(0, σ
2
w).(See figure 3.3)

Figure 3.3: White niose.

Site:https://www.otexts.org/fpp/2/2
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We often require stronger conditions and need the noise to be inde-

pendent and identically distributed(iid) [9] random variables with mean 0 and vari-

ance σ2
w. We will discriminate this by saying white independent noise, or by writing

wt ∼ iid(0, σ2
w).(See figure 3.4.)

Figure 3.4: IID white niose.

Site:http://zoonek2.free.fr/UNIX/48

Example 2. (Random walk with drift process)

A model for analysing trend such as in the global temperature data in figure 3.5, is the

random walk with drift model given by

xt = δ + xt−1 + wt (3.1)

for

t is equal 1, 2, 3, ..., with initial condition x0 = 0,

wt is a white noise,

δ is the drift constant.
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Figure 3.5: The model of a random walk with drift of USD-Euro exchange rate.

Site:https://people.duke.edu/ rnau/411rand.htm

In real life data are not stationary, we were varied the data for deter-

mined the exact model. So the assumptions of stationarity below apply after any trend

or seasonal effect have been removed.

3.2 Stationary Time Series

We start to describe the general behavior of a process as the evolves over

time, generally rely only on properties define by the means and covariance, we are led

to the following definitions.

Definition 3.2. Let {Xt, t ∈ T} where T is called the index or parameter set be a

stochastic process with Var(Xt <∞).

The mean function of Xt is

μx(t) = E(Xt), for t ∈ T.
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The covariance function of Xt is

γx(r, s) = Cov(Xr, Xs), r, s ∈ T.

Definition 3.3. The time series {Xt, t ∈ Z} is said to be weakly stationary if

(i) Var(Xt) < ∞,

(ii) μx(t) = E(Xt), ∀t ∈ Z,

(iii) γx(r, s) = γx(r + t, s+ t) ∀r, s, t ∈ Z.

(iiii) implies that γx(r, s) is a function of r − s, and it is convenient to define

γx(h) = γx(h, 0).

The value ”h” is referred to as the ”lag”.

Definition 3.4. Let {Xt, t ∈ Z} be a stationary time series. The autocovariance func-

tion (ACVF) of {Xt} is

γx(h) = Cov(Xt+h, Xt).

The autocorrelation function (ACF) is

ρx(h) =
γx(h)

γx(0)
.

3.3 Linear Process

We will now turn to an examination of a large class of useful time series

model. These are almost all defined in term of the operator L. As the simplest exam-

ple, consider the autoregressive model defined by

Yt = φYt−1 + εt (3.2)
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where φ is a constant with |φ| < 1 and εt is a sequence of uncorrelated random vari-

ables, each with mean 0 and variance σ2.

Definition 3.5. The time series Yt define by

Yt =
∞∑

u=−∞
ψuεt−p,

where ε is a white noise series and

∞∑
u=−∞

|ψu|2 < ∞,

is call general linear process.

The general linear process depends on both past and future value of εt is

said to be casual. Casual processes are perfected for forecasting because they reflect the

way in which we believe the real world works.

Many time series can be represented as linear processes. This provides

a unifying underpinning for time series theory, but may be of limited practical interest

because of the potentially infinite number of parameters required.

3.4 Autoregressive Series

In an autoregressive model, we forecast the variable of interest using a

linear combination of past value of variable. The term autoregressive indicated that it is

a regression of the variable against itself.

Definition 3.6. A real value stochastic process {Yt} is said to be autoregressive of

order p, denote by AR(p) if there exist φ0, φ1, ..., φp ∈ R with φp �= 0 and a white noise

et such that

Yt = φ0 + φ1Yt−1 + φ2Yt−2, ...,+φpYt−p + et, t ∈ Z. (3.3)
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Example 3. (The AR(1) Series)

The AR(1) series is defined by

Yt = φYt−1 + εt. (3.4)

Because Yt−1 and εt are uncorrelated, the variance of this series is

Var(Yt) = φ2 Var(Yt−1) + σ2
ε .

If {Yt} is stationary then Var(Yt) = Var(Yt−1) = σ2
Y and so

σ2
Y = φ2σ2

Y + σ2
ε .

This implies that

σ2
Y > φ2σ2

Y

and hence

1 > φ2.

3.5 Moving Averages

Definition 3.7. Let θ0, θ1, ..., θp ∈ R with θq �= 0 and white noise {εt}.

The process

Yt = μ− θ1εt−1 − θ2εt−2, ...,−θpεt−q + εt, (3.5)

is said to be moving averages of order q, denoted by MA(q).

No additional condition are require to ensure stationary.

The autocovariance function for MA(q) process is
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γ(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + θ21 + ...+ θ2q ; u = 0

θu + θ1θu+1...+ θq−uθ2q ; u = 1

0 otherwise

which say there is only a finite span of dependence on the series.

It is easy to distinguish MA and AR series by the behavior of their auto-

correlation function. The acf for MA series cuts off sharply while that for an AR series

dacays exponentially (with a possible sinusoidal ripple superimposed).

Example 4. (The MA(1) Series)

The MA(1) is defined by

Yt = εt + θεt−1. (3.6)

It has the autocovariance function

γ(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + θ2)σ2; u = 0

θσ2; u = 1

0 otherwise

and the autocorrelation

γ(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ
1+θ2

; u = 1

0 otherwise.
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3.6 Autoregressive Moving Averages

A model with autoregressive terms combined with a model having mov-

ing average term to get a mixed autoregressive-moving average model.

Definition 3.8. If a series satisfies

φ0 + φ1Yt−1 + φ2Yt−2, ...,+φpYt−p − θ1εt−1 − θ2εt−2, ...,−θqεt−q + εt (3.7)

it convenient to use the notation ARMA(p, q), where p is the order of the autoregressive

part and q is the order of moving average part, to represent these models and εt is a

white noise.

Example 5. (The ARMA(1, 1) Series)

The ARMA(1, 1) series is defined by

Yt = φYt−1 + εt + θεt−1. (3.8)

The derive the autocovariance function for Yt, note that

E(εtYt) = E[εt(φYt−1 + εt + θεt−1)] = σ2
ε

and

E(εtYt−1) = E[εt(φYt−1 + εt + θεt−1)] = (φ+ θ)σ2
ε .

Multiplying equation 3.8 by Yt−u and taking expectation yield

γ(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φγ(1) + (1 + θ(φ+ θ))σ2
ε ; u = 0

φγ(0)θσ2
ε ; u = 1

φγ(u− 1) ; u ≥ 2.
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Solving the two equations produces

γ(0) =
(1 + 2θφ+ θ2)

1− φ2
γ2ε

and using the last recursive shows

γ(u) =
(1 + θφ)(φ+ θ)

1− φ2
φu−1γ2ε for u ≥ 1.

The autocorrelation function can then be composed as

ρ(u) =
(1 + θφ)(φ+ θ)

1− φ2
φu−1 for u ≥ 1.

The pattern here is similar to that for AR(1), except for the first term.

3.7 The Partial Autocorrelation Function

The autocorrelation function of an MA series exhibits different behavior

from that of AR and general ARMA series. The acf of an MA series cuts of sharply

whereas those for AR and ARMA series exhibit exponential decay (with possible si-

nusoidal behavior superimposed). This make it possible to identify an ARMA series as

being a purely MA one just by plotting its autocorrelation function. The partial autocor-

relation function provides a similar way of identifying a series as a purely AR one.

Given a stretch of time series values

..., Yt−u, Yt−u+1, ..., Yt−u, Yt, ...

the partial correlation of Yt and Yt−u is the correlation between these random variables

which is not conveyed through the intervening values. If the Y values are normally
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distributed, the partial autocorrelation between Yt and Yt−u can be defined as

φ(u) = cor(Yt, Yt−u|Yt−1, ..., Yt−u+1).

A more general approach is based on regression theory. Consider predicting Yt based

on Yt−1, ..., Yt−u+1. The prediction is

Ŷ = β1Yt−+1 + β2Yt−2 + ...+ βu−1Yt−u+1

with the β chosen to minimise

E(Yt − Ŷt)
2.

It is also possible to think backwards in time and consider predicting Yt−u with the same

set of the predictor will be

ŷi−u = β1Yt−u+1 + β2Yt−u+2 + ...+ βu−1Yt−1.

(The coefficients are the same because the correlation structure is the same whether the

series is run forwards or backwards in time). The partial correlation function at lag u is

the correlation between the prediction errors.

φ(u) = cor(Yt − Ŷt, Yt−u − Ŷt−u)

By convention we take φ(1) = ρ(1). It is quite straightforward to compute the value

of φ(2). Using the results of of linear prediction [9], the best predictor of Yt based on

Yt−1 is just ρ(1)Yt−1. Thus

Cov(Yt − ρ(1)Y − t− 1, Yt−2 − ρ(1)Yt−1) = σ2
Y (ρ2− ρ(1)2)

and

Var(Yt − ρ(1)Yt−1) = σ2
Y (1− ρ(1))2.
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This mean that

φ2 =
ρ(2)− ρ(1)2

1− ρ(1)2
. (3.9)

Example 6. For the AR(1) series, recall that

ρ(u) = φu (u ≥ 0).

Substituting this into equation 3.9 we found that

φ(2) =
φ2 − φ2

1− φ2
= 0.

3.8 Integrated Models

In (example 3.2), we saw that if xt is a random walk xt = xt−1 + wt,

then by differencing xt, we find that ∇xt = wt is stationary. In my situation, time

series can be though of as being composed of two component, a nonstationary trend

component. For example 3, we considered the model

xt = μ + yt (3.10)

where μt = β0 + β1t and yt is stationary. Differencing such a process will lead to a

stationary process:

∇xt = xt − xt−1 = β1 + y1 − yt−1 = β1 +∇yt.

Another model that leads to first differencing is the cae in which μt in (3.10) is a

stochastic process and slowly varying according to a random walk. That is

μt = μt−1 + υt
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where υt is stationary. In this case,

∇xt = νt +∇yt,

is stationary. If μt in (3.10) is quadratic, μt = β0+β1t+β2t
2, then the differenced series

∇2yt is stationary. Stochastic trend model can also lead to higher order differencing. For

example, suppose

μt = μt−1 + νt and νt = νt−1 + et,

where et is stationary. Then,∇xt = ∇yt is not stationary, but

∇2xt = et +∇2yt

is stationary.

The ARIMA model is broadening of the class of ARMA model to in-

clude differencing. The basic idea is that if differencing the data at some order d pro-

cess an ARMA process, then the original process is said to be ARIMA.

3.9 Autoregressive Integrated Moving Average

An autoregressive integrated moving average (ARIMA) model is a gen-

eralization of an autoregressive moving average (ARMA) model which stationary con-

dition. These models are fitted to time series data either to better understand the data or

to predict future points in the series (forecasting). They are applied in some cases where

data show evidence of non-stationary, where an initial inferencing step (corresponding

to the ”integrated” part of the model) can be applied to reduce the non-stationary.
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Definition 3.9. Suppose that the time series Yt has a polynomial trend of degree d. Then

we can eliminate this trend by considering the process (�dYt), obtain by d times differ-

encing as described in linear filtering of time series [2].If the filter process (�dYt) is an

ARMA(p, q)− process satisfying the stationary condition of unit circle that is

1− a1z − a2z
2 − ...− apz

p �= 0, for |z| ≤ 1.

The original process Yt is said to be Autoregressive Integrated Moving average of or-

der p, q, d, denoted by ARIMA(p, d, q). In this case constant θ0, θ1, ..., θp and φ0, φ1, ..., φp ∈

R

exist such that

�dYt =

p∑
u=1

θu�dYt−u +

p∑
w=0

φwεt−w,

where {εt} is a white noise.

3.10 ARIMA model Analysis

In time series analysis, we can divide four steps to processed with ARIMA

model.

3.10.1 Model identification

We first to checked stationary of time series data with criteria of statistics

such as mean, variance and autocorrelation function are always stationary or we can

checked stationary with looking at the time plot of the data, the ACF plot is also useful

for identifying non-stationary time series. For a stationary time series, the ACF will

drop to zero relatively quickly, while the ACF of non-stationary data decreases slowly.
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Figure 3.6: ACF stationary.

Site:https://www.otexts.org/fpp/8/1

The pattern of ACF and PACF are an exponentially decreases to zero in a

quickly times. We discuss the classical ARIMA style analysis based on Autocorrelation

function and partial autocorrelation function as well as model selection via information

criteria.

ACF and PACF are determined the ordered of ARIMA model, if ACF

that dies out gradually and PACF that cut off sharply after a few lags, we will get

ordered of AR, and if PACF that dies out gradually and ACF that cut off sharply after a

few lags, we will get ordered of MA.

3.10.2 Estimated parameters

After we selected a model, parameters for that must be estimated. The

parameter in ARIMA models are estimated by minimizing the sum of the fitting errors.

In addition, the residual mean square error, an estimate of the variance

of the error εt is computed.
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The residual mean square error is defined as

s2 =

n∑
t=1

ε2t

n− r
=

n∑
t=1

(Yt − Ŷt)
2

n− r

where εt is the residual at time t,

n is the number of residuals,

r is the total number of parameters estimated.

The residual mean square error is useful for assessing fit and comparing

different models. It is also used to calculate forecast error limits.

3.10.3 Model Checking

Before using the model for forecasting, it must be checked. Normally, a

model is enough if the residuals cannot be used to improve the forecasts, that is the

residuals should be random.

1. Many of the same residual plots that are useful in regression analysis

can be developed for the residuals from an ARIMA model. A histogram and a normal

probability plot and time sequence plot are particularly helpful.

2. The individual autocorrelations rk(εt) should be small and generally

within ± 2√
n

of zero.

3. The residual autocorrelations as a group should be consistent with

those produce by random error.

An overall check of model enough is provided by chi-square (χ2) test based on the

Ljung-Box Q statistics. This test tooks at the sizes of the residuals autocorrelations as a
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group. The test statistic Q is

Qm = n(n+ 2)
m∑
k=1

r2k(ε)

n− k

where

rk(ε) is the residual autocorrelation at lag k.

n is the number of residuals.

m is the number of time lags unclouded in the test.

3.11 Forecasting

1. Once an enough model has been found, forecast for one period or

sevaral period into the future can be made.

2. As more data become available, the same ARIMA model can be used

the generated revised forecasts from another time origin.

3. If the character of the series appear to be changing overtime, the new

data can be used reestimate the model parameter. For easily to understanding, we will

summarized all step of ARIMA model by diagram as following.
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Figure 3.7: Step of ARIMA model.
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CHAPTER 4

Results and Discussion

In this chapter, we present the results of all the data which transformed

by discrete wavelet transform and ARIMA model. We first to transform the data with

discrete wavelet transform via Haar and Daubechies. Next, we continue to approximate

to make the forecasting and compare with the minimum value of MAE and RMSE. We

determine the behavior of the data which transformed by discrete wavelet transform and

then use R program to determined the behavior of the data which ARIMA model.

The last six years ago, Songkhla is destroyed by flooding. We interested

to study and predict the rainfall in Songkhla, we can keep up with flooding in the fu-

ture. Consider daily rainfall in Songkhla, 2007− 2012 (see figure 4.1-4.6).

Figure 4.1: Daily rainfall in Songkhla, 2007.

For figure 4.1, we have found that the rain has increased and most rain

at the end of year.
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Figure 4.2: Daily rainfall in Songkhla, 2008.

For figure 4.2, we can see that there’s lots of rain all year and most rain

on day 100th to 180th.

Figure 4.3: Daily rainfall in Songkhla, 2009.

For figure 4.3, we can see that no rain at early year and most rain after

day 80th up to end of year.
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Figure 4.4: Daily rainfall in Songkhla, 2010.

For figure 4.4, we can found that almost rain everyday and most rain at

the end of year.

Figure 4.5: Daily rainfall in Songkhla, 2011.

For figure 4.5,we can found that there’s a lot of rain from day 150th until

the end of year.



48

Figure 4.6: Daily rainfall in Songkhla, 2012.

For figure 4.6, we can found that the rain occur sometimes.

On the figure 4.1 − 4.6, we will describe the behavior of the data of

rainfall in Songkhla area from 2007 − 2012. Mostly, The first period of year we found

that a few fall rain and the end of year we found that a lot of rain. Notice that an average

increased so that the series may not stationary.

We consider three step to analyzed the data. Firstly, the daily rainfall data

is transformed by Haar and Daubechies discrete wavelet and continue to approximate to

make the forecasting, compare in ARIMA model and to show that result in the last. we

can see step of analysis on the figure as below to understanding step as the following.

4.1 Step of Discrete Wavelet Transform Analysis

Figure 4.1− 4.6 show the daily rainfall in Songkhla, 2007− 2012, there

are a few rainfall the first period, a lot of rainfall in the final period for each years. There-

fore the average of rainfall is increasing so that the time series may not stationary.

Consequently, we transform daily rainfall data by the Haar wavelet trans-
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Figure 4.7: Step of analyze the data of rainfall.

form and Daubechies wavelet transform as following scatter plot by the algorithm as

shown in 2.1.1 (figure4.8− 4.19)

Figure 4.8: Haar wavelet transformed rainfall data, 2007.

For figure 4.8, we can found that the distribution of rainfall data is

spreading almost difference period and an average do not change over time. There-

fore, the data may be stationary.
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Figure 4.9: Haar wavelet transformed rainfall data, 2008.

For figure 4.9, we can found that the distribution of rainfall data is

spreading and some period the data is equal zero. Hence mean equal zero. Therefore, the

data may be stationary.

Figure 4.10: Haar wavelet transformed rainfall data, 2009.

For figure 4.10, we can found that the rainfall data is equal zero and

mean equal zero. Hence, the data may stationary.



51

Figure 4.11: Haar wavelet transformed rainfall data, 2010.

For figure 4.11,we can found that some period the rainfall data is spread-

ing. For some period the data is equal zero. Mean equal zero. Therefore, the data may

be stationary.

Figure 4.12: Haar wavelet transformed rainfall data, 2011.

For figure 4.12, we can see that the rainfall data is equal zero, mean

equal zero. Hence, the data may stationary.
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Figure 4.13: Haar wavelet transformed rainfall data, 2012.

For figure 4.13, we can see that for some period the rainfall data is

spreading. After day 120th the data is zero. Hence, the data may be stationary.

Figure 4.14: Daubechies wavelet transformed rainfall data, 2007.

For figure 4.14,we can see that for early years the rainfall data in 2007 is

most equal zero. After day 120th the data is almost spreading. Mean is equal zero. Hence, the

data may be stationary.
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Figure 4.15: Daubechies wavelet transformed rainfall data, 2008.

For figure 4.15, we can see that After day 120th the data in 2008 is most

spreading. Mean is equal zero. So that the data may be stationary.

Figure 4.16: Daubechies wavelet transformed rainfall data, 2009.

For figure 4.16, we can see that After day 80th the distribution of data

in 2009 is alternating spread and equal zero until the end of the year. Mean is equal

zero. Therefore, data may be stationary.
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Figure 4.17: Daubechies wavelet transformed rainfall data, 2010.

For figure 4.17, we can see that the distribution of data in 2010 is almost

near zero and most equal zero. Spreading after day 300th until the end of the year.Mean

is equal zero. Therefore, data may be stationary.

Figure 4.18: Daubechies wavelet transformed rainfall data, 2011.
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For figure 4.18, We can see that the distribution of data in 2011 is most

spreading after day 250th until the end of the year. Mean is equal zero. Therefore, data

may be stationary.

Figure 4.19: Daubechies wavelet transformed rainfall data, 2012.

For figure 4.19,We can see that the distribution of data in 2012 is spread-

ing and equal zero at some period. Mean is equal zero. Therefore, data may stationary.

On the figure 4.8-4.19, we can see that, after we transform the natural

of rainfall data has increased, decreased and refuted. The Haar and Daubechies wavelet

transformed much different and their average nearly to equal zero. Therefore, the data

may stationary.

4.2 Step of ARIMA Model Analysis

In this section, we try to find the fitted model to make the forecasting in

the future. In ARIMA model we can divided three steps to find the best model.
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4.2.1 Model Identification

In this section, we try to find the fitted ARIMA models. We known that

if the graph of autocorrelation function of constancy averages time series is die out

rapidly and cut off, then that time series is stationary. Autocorrelation function die out

rapidly and cut off (see figure 4.20 and 4.22). Therefore the data after we transform are

stationary.

Next step of fitted ARIMA model is determining the numbers of AR

and/or MA terms by considered the autocorrelation function(ACF) and partial autocor-

relation function(PACF) plots of different series.

Figure 4.20: ACF of raw rainfall data.

For figure 4.20, the ACF die out. it is not clear what the attributes of

model.
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Figure 4.21: ACF of haar discrete wavelet data.

For figure 4.21, the ACF cut off in 1st lag. We get AR(1) model.

Figure 4.22: ACF of daubechies discrete wavelet data.

For figure 4.22, the ACF cut off in 2st lag. We get AR(2) model.
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4.2.2 Model Estimation

After a time series has been stationeries, the next step in fitting an ARIMA

model is to determine whether AR or MA terms are needed to correct any autocorre-

lation that remains in the differences series. By looking at the autocorrelation function

(ACF) and partial autocorrelation (PACF) plots of the difference series, you can tenta-

tively identify the numbers of AR and/or MA terms that are needed. You are already

familiar with the ACF plot: it is merely a bar chart of the coefficients of correlation be-

tween a time series and lags of itself. The PACF plot is a plot of the partial correlation

coefficients between the series and lags of itself.

After we plot ACF, PACF we get ARIMA(1, 1, 1) for the rainfall data. And

then for once a tentative model, the parameters for that model must be estimated. Now, we

get the parameter of ARIMA(1, 1, 1) as belows.

ar1 = − 0.3878, ma1 = − 1.0000 and a constant of the model = 0.0000.

Therefore the fitted equation of ARIMA(1, 1, 1) is

Ŷt = − 0.3878Yt−1 − 1.0000εt−1.

After we plot ACF, PACF we get ARIMA(1, 0, 1) for Haar discrete

wavelet transform. For once a tentative model, the parameters for that model must be

estimated. Now, we get the parameter of ARIMA(1, 0, 1) as belows.
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ar1 = − 0.1888, ma1 = 0.1355 and a constant of the model = 0.1109

Therefore the fitted equation of ARIMA(1, 0, 1) is

Ŷt = 0.1128− 0.1888Yt−1 + 0.1355εt−1.

For Daubechies discrete wavelet transform we get we get ARIMA(2, 0, 2) and the pa-

rameter as follows

ar1 = − 0.0250, ar2 = 0.9424, ma1 = − 0.0041, ma2 = − 0.8614 and

a constant of the model = 3.4994. Therefore the fitted equation of ARIMA(2, 0, 2) is

Ŷt = 3.4478− 0.025Yt−1 + 0.9420Yt−2 − 0.0041εt−1 − 0.8614εt−1.

4.2.3 Model Checking

Finally, before using the model we will checked for adequacy that is the

ACF plot of the residuals from the ARIMA(p,d,q) model shows all correlations within

the threshold limits indicating that the residuals are behaving like white noise. A port-

manteau test returns a large p-value, also suggesting the residuals are white noise. We

will used Boxcox test to checked ACF and printed p-value of residuals. we can see fig-

ure as below.
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Figure 4.23: Residual of ARIMA(1, 1, 1).

Figure 4.24: Residual of ARIMA(1, 0, 1)

Figure 4.25: ACF of residual of ARIMA(1, 0, 1)
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Figure 4.26: Residual of ARIMA(2,0,2)

Figure 4.27: ACF of residual of ARIMA(2, 0, 2)
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From figure 4.23, 4.24 and 4.26 are difficult to clearly describe fea-

ture. Now, we use the ACF to describe feature of residual of ARIMA(1,0,1) and

ARIMA(2,0,2) models. Figure 4.25 and 4.27,the distribution of the rainfall data are

random so that the residuals like white noise and the p-value greater than 0.05. More-

over, by the Shapiro wilk test, the residual of that models are normal so that the models

is considered adequate. Hence this model adequacy. Now, we can use the fitted models

of ARIMA(1,0,1) and ARIMA(2,0,2) to make a forecast in the next step.

4.2.4 Analysis result

In this section, we show the value of MAE and RMSE of ARIMA(1,0,1),

ARIMA(2,0,2),which are fitted from the Haar wavelet transformed data,

the Daubechies wavelet transformed data and original ARIMA Songkla rainfall data

respectively.

Figure 4.28: The statistical criteria for the ARIMA model
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We can see that the values of RMSE for ARIMA(1,0,1), ARIMA(2,0,2),

ARIMA(1,1,1) are 14.91782, 13.80871 and 15.28966, respectively. The values of MAE

for the three model are 0.009684946, 0.008638414 and 0.0193793, respectively. This

show that the ARIMA(1,0,1) which is the fitted model for raw Songkhla rainfall data

has biggest values of both errors, while the ARIMA(2,0,2), the fitted model for the

Daubechies wavelet transform data has the smallest value of both errors. Therefore we

conclude that the fitted ARIMA models of both wavelet transformed data provides bet-

ter fit than the fitted ARIMA model obtained from the raw data. Moreover, between

the two fitted ARIMA models of the wavelet transform, the Daubechies wavelet trans-

formed gives the better model.
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CHAPTER 5

Conclusion

We transform the data with discrete wavelet transform via Haar and

Daubichies. Then we continue to approximate with ARIMA model to make the fore-

casting and compare with the minimum value of MAE and RMSE. We determine the

behavior of the data which transformed by discrete wavelet transform and then use

R(3.1.3) program to determined the behavior of the data which ARIMA model.

As the last six years, in Songkhla which was also hard hit by flood-

ing. We choose songkhla area is a sample in this study, to find the rainfall to keep up

with flooding in the future.

We consider three step to analyzed the data. First, transformed by Haar

and Daubechies discrete wavelet and continue to approximate to make the forecast-

ing, compare in ARIMA model and to show that result in the last. we can see step of

analysis on the figure as below to understanding step as following.

Figure 5.1: Step of analyze the data of rainfall.
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5.1 Discrete wavelet transform analysis.

We transformed the data with discrete wavelet transform via Haar and

Daubichies. From step of Haar and Daubechies wavelet transform in chapter 2, we ap-

plied them with the all data of rainfall so we get the new result of Haar and Daubechies

wavelet transform. We found that after transformed rainfall data via Haar and Daubechies

we got the data is not much differences and an average may be constant which can make

an observation, if an average is a constant we can bring about to stationary process. We

notice every range of data we see no matter how much times we get an average is zero

value according to stationary process.

5.2 ARIMA model analysis.

In this section, we try to find the fitted ARIMA model to make the

forecasting in the future. We first to determine whether the series is stationary. From

step1, an averages are constant. And autocorrelation function was die out rapidly and

cut off. Therefore the data after we transform are stationary.

Now, the time series has been stationeries. For the next step we will fit-

ting the model in ARIMA to determine whether AR or MA terms are needed to correct

any autocorrelation that remains in the differences series. By looking at the autocorrela-

tion function (ACF) and partial autocorrelation (PACF) plots of the differenced series,

you can tentatively identify the numbers of AR and MA terms that are needed.

After we plot ACF, PACF and checked all properties of all ARIMA

model we get the ARIMA(1, 1, 1) for the rainfall data, ARIMA(1, 0, 1) for Haar dis-

crete wavelet transform and ARIMA(2, 0, 2) for Daubechies wavelet transform which
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we see all model as following:

ARIMA(1, 1, 1) :

Ŷt = − 0.3878Yt−1 − 1.0000εt−1.

ARIMA(1, 0, 1) :

Ŷt = 0.1128− 0.1888Yt−1 + 0.1355εt−1.

ARIMA(2, 0, 2) :

Ŷt = 3.4478− 0.025Yt−1 + 0.9420Yt−2 − 0.0041εt−1 − 0.8614εt−1.

5.3 Analysis result.

The fit ARIMA model for the original return data is considered as

ARIMA(1, 1, 1) with root mean square error equal to 15.28966, while the fit ARIMA

model for the transform data by using Haar wavelet transform is selected as

ARIMA(1, 0, 1) with root mean square error equal to 14.91782. Although the fit ARIMA

model for the transform data using Daubechies wavelet transform is selected as

ARIMA(2, 0, 2) with root mean square error equal to 13.80871. Therefore we can con-

clusion all of these criteria explain that the wavelet with ARIMA model is better than

the ARIMA model. Moreover, the Daubechies wavelet transform gives more sufficient

result and better than Haar wavelet transform in the forecasting. Results in chapter4 in-

dicate that ARIMA model for the returns data after wavelet transforms produce smaller

forecast error as compared to the ARIMA model for actual returns data. All of these

criteria explain that the Daubechies wavelet transform gives more sufficient result and

better than Haar wavelet transform in the forecasting for the next step.
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Moreover, We can fitted ARIMA(1, 1, 1), ARIMA(1, 0, 1) and

ARIMA(2, 0, 2) to used with rainfall data in another area in thailand which we want to

compare. And then we will applied and developed the model with another data to get

maximum benefit for used in the next step in the future.
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