
i 

 

 

Mathematical Simulation and Visualization of Sediment Distribution  

at Bandon Bay in Surat Thani 

 

 

 

 

 

 

Nitinun Pongsiri 

 

 

 

 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of 

Master of Science in Applied Mathematics 

Prince of Songkla University 

2017 

Copyright of Prince of Songkla University  

 



ii 

 

Thesis Title   Mathematical Simulation and Visualization of Sediment  

Distribution at Bandon Bay in Surat Thani 

Author  Miss Nitinun Pongsiri 

Major Program  Applied Mathematics 

 

Major Advisor Examining Committee: 

 

……………………………  ……………………….Chairperson 

(Dr. Somporn Chuai-Aree)   (Dr. Pakwan Riyapan) 

 

 …………………………… 

 (Dr. Somporn Chuai-Aree) 

 

 ………………………… 

 (Dr. Nifatamah Makaje) 

 

 ……………………… 

 (Dr. Anurak Busaman) 

 

 ……………………….………

 (Asst. Prof. Dr. Sanae Rujivan) 

 

 The Graduate School, Prince of Songkla University, has approved this thesis 

as partial fulfillment of the requirements for the Master of Science Degree in Applied 

Mathematics. 

 ……………………………………… 

      (Assoc. Prof. Dr. Teerapol Srichana) 

                 Dean of Graduate School  



iii 

 

This is to certify that the work here submitted is the result of the candidate’s own 

investigations. Due acknowledgement has been made of any assistance received. 

 

 

 

………………………….…Signature 

    (Dr. Somporn Chuai-Aree) 

                                                              Major Advisor 

 

 

………………………….…Signature 

      (Miss Nitinun Pongsiri) 

                                                                Candidate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

I hereby certify that this work has not been accepted in substance for any other 

degree, and is not being currently submitted in candidature for any degree. 

 

 

 

………………..………….…Signature 

          (Miss Nitinun Pongsiri) 

       Candidate 

 

 

  



v 

 

ชื่อวิทยานิพนธ์  แบบจ ำลองทำงคณิตศำสตร์และกำรสร้ำงภำพนำมธรรมของกำรกระจำย 

ตัวของตะกอนในอ่ำวบ้ำนดอน จังหวัดสุรำษฎร์ธำนี 

ผู้เขียน    นำงสำวนิธินันท์ พงษ์ศิริ 

สาขาวิชา  คณิตศำสตร์ประยุกต์ 

ปีการศึกษา   2559 

บทคัดย่อ 

กำรเคลื่อนที่ของตะกอนเป็นปัญหำส ำคัญที่ก่อให้เกิดกำรเปลี่ยนแปลงทำงด้ำนสิ่ งแวดล้อม 

ในกำรศึกษำครั้งนี้ท ำกำรประยุกต์ตัวแบบทำงคณิตศำสตร์เพ่ือท ำกำรจ ำลองและแสดงภำพนำมธรรม

กำรเคลื่อนที่ของตะกอน ในอ่ำวบ้ำนดอน จังหวัดสุรำษฎร์ธำนี ตัวแบบทำงคณิตศำสตร์ที่ใช้ใน

กำรศึกษำกำรฟุ้งกระจำยของตะกอน ใช้สมกำรน้ ำตื้นรวมกับสมกำรกำรเคลื่อนที่ของตะกอนโดยใช้

แนวควำมคิดเดียวกับกำรเคลื่อนที่ของน้ ำภำยใต้กฎกำรอนุรักษ์มวล และได้ท ำกำรเปรียบเทียบควำม

ถูกต้องของสมกำรกำรเคลื่อนที่ของตะกอนกับแบบจ ำลองของ Grass โดยกำรประมำณค่ำเชิงตัวเลข

ใช้วิธีระเบียบวิธีปริมำตรสืบเนื่อง ภำยใต้ปริพันธ์ และใช้วิธีกูดูนูฟ เป็นพ้ืนฐำนในกำรแก้ปัญหำกำร

ประมำณค่ำรีมันน์โดยฟังก์ชันกูดูนูฟ ประมำณค่ำโดยใช้วิธีกำร Harten Lax VanLee (HLL) เพ่ือ

ประมำณหำค่ำฟลักซ์ แบบจ ำลองนี้ได้พัฒนำขึ้นเป็นซอฟต์แวร์ชื่อ VirtualSed3D พบว่ำกำรเคลื่อนที่

ของตะกอนจะช้ำหรือเร็วขึ้นอยู่กับค่ำควำมพรุนของตะกอน ควำมต่อเนื่องของคลื่น และควำมลึกของ

พ้ืนที่ที่ศึกษำ ผลงำนจำกงำนวิจัยนี้สำมำรถน ำไปประยุกต์ใช้กับพ้ืนที่อ่ืน ๆ ในลักษณะรูปแบบเดียวกัน

ได ้



vi 

 

Thesis Title   Mathematical Simulation and Visualization of Sediment  

Distribution at Bandon Bay in Surat Thani 

Author  Miss Nitinun Pongsiri 

Major Program  Applied mathematics 

Academic Year 2016 

ABSTRACT 

Sediment transport is an issue that calls for changes in the environment. In this 

study, mathematical models are applied to simulate and visualize the movement of 

sediments at Bandon Bay in Surat Thani province as a case study. A mathematical 

model is used to study the sediment distribution. This is done by using the Shallow 

Water Equations (SWEs) combined with a sediment transport Equation which is 

based on the conservation of mass equation. The model equations for the sediment 

distribution are validated by comparing it with the Grass Model. The model is solved 

numerically by using the finite volume methods which are based on the integral form 

of the conservation laws. Godunov method is used to approximate the functions for 

solving the model which is a Riemann problem. The functions of Godunov method is 

computed by using the Harten Lax VanLee approach (HLL) to approximate the 

numerical flux. Simulation is carried out and visualization by VirtualSed3D program. 

The result shows that the sediment distribution depends on the porosity of sediment, 

the continuous movement of wave and also the depth of a particular area under 

consideration. This research can be applied for other regions based on the same 

procedure. 
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Chapter 1 

Introduction 

This research presents a mathematical model to study the distribution of 

sediment in shallow water. In this chapter, the overview of sediment distribution, 

problems and motivation of the research as well as the aims and objectives are 

discussed.  

1.1 Background 

Sediment distribution can cause problems to people who live near coastal 

areas. While sediment is needed to build aquatic habitats and reintroduce nutrients for 

grasses that grow to the surface of shallow water, too much or little sediment can 

easily cause ecosystem and safety issues. Whether the concerns are caused by scour, 

erosion, build up, or simply excessive turbidity, sediment transport rate still remains 

an important environmental factor. 

Sediment refers to the mixture of organic or inorganic materials that can be 

carried away by water, wind, wave current, tides and other anthropogenic impacts 

(Langland and Cronin, 2003).  

The movement of organic and inorganic particles by water is called Sediment 

Transport (Fundamental of Environmental Measurement, 2015). Water flow can be 

strong enough to suspend particles in the water column as they move downstream, or 

simply push them along the bottom of a waterway. Sediment that is transported 

usually includes mineral matter, chemicals, pollutants, and organic materials 

(Fundamental of Environmental Measurement, 2015). 
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Stream particles move in three forms that are bed load, suspended load, and 

wash load. These are shown in Figure 1 and they are described by the numbered 

notations (1 to 5).    

             

Figure 1 Modes of stream transport 

Source/Modify: McGraw-Hill Education (2015) 

The bed load contains particles that can slide, roll and jump. The heaviest 

particles, particle 5 and particle 4, move along the sea bed by sliding and rolling with 

high energy, respectively. Sand-size particles jump along the sea bed in a way 

perfectly described as frog leaps (particle 3). Suspended load are small particles like 

clay and silt. They flow within the water (particles 1 and 2). The wash load is part of 

the suspended load that is not found in bed such as salts, calcium and magnesium. 

This study is to apply mathematical model to analyze, simulate and visualize 

and to understand the behavior of sediment distribution on the sea bed. Sediment 

transport can be better explained generally with the normal wave equation. However, 

this cannot provide full understanding if sediment transport in the shallow water area 

is considered. 

The depths of water (D) have three levels. They are deep water, intermediate 

and shallow water. This is as shown in Figure 2. 

Wash load and 

Suspended load 

Sand Bed load 

Gravel 

Silt and 

Clay 
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Figure 2 Depth of Water 

Source/Modify: Hawai'i Tsunami Education Curriculum : Kai E'e (2016) 

It can be distinguished by depth greater than a half of the wavelength 
2

L
, 

depth less than 
2

L
 but greater than 

20

L
 and depth less than 

20

L
. They are called 

deep water, intermediate and shallow water, respectively. 

 

Figure 3 Motion of wave 

Source: Satellite Sports Network (2015) 
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From Figure 3, waves flow from the left to the right hand side. The movement 

of waves has the motion of individual water column but the deep water waves have no 

effect on the sea bed. However, in the shallow water area, the motion of waves affects 

the sea bed and that causes sediment transport in coastal areas. In this research, we 

focus on the Shallow Water Equations (SWEs).  

Mathematical models used in this research are based on the SWEs together 

with sediment transport equations. The SWEs are based on some basic principles of 

the laws of conservation of mass and momentum. Also, the idea from the 

conservation of mass in the SWEs was applied to the sediment transport equation that 

will be used in this study. 

The study area of this research is Bandon Bay in Surat Thani province, 

Thailand, which is shown in Figure 4. 

 

Figure 4 Bandon Bay in Surat Thani, Thailand 

Source: Google (2001) 

Surat Thani is the largest of the southern provinces of Thailand. The beach just 

out into the sea which is about 1-2 kilometers from the coast and has a long coastline 

of about 120 kilometers, covering 6 districts of the province, which are Chaiya, Tha 



5 

 

Chang, Phunphin, Muang Surat Thani, Kanchanadit and Don Sak. Furthermore water 

from different rivers flow into the bay. This makes the Bandon Bay a deposit point of 

sediment. The Tapi river is the longest river that flows into the bay and it is has in 

abundance of marine ecosystems like mangrove, sea grass, and coral reefs. These are 

important sources of food for fishes and other aquatic species. Surat Thani province 

also has diverse geographical features such as mountains, plains, rivers, coastlines, 

and hundreds of islands. 

1.2 Motivation for the Study 

  The transport of organic matter and particles by water in a continuous manner 

leaves the coastal areas in a vulnerable state water flow can be strong enough to 

suspend particles as they move downstream. 

 

Figure 5 Satellite view of Bandon Bay in Surat Thani, Thailand, 2007 (left panel) and 

2015 (right panel) 

Source: Google (2001) 
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Figure 5 shows the satellite view of Bandon Bay in Surat Thani. The left panel 

shows the sediment distribution in 2007 and the image on the right panel shows the 

sediment distribution in 2015. Both images show the sediment distribution as worse in 

2007 than in 2015. A lot of factors contribute to the transport of sediment and this 

study, therefore, seeks to use mathematical models to understand the distribution of 

sediment in Bandon Bay, Surat Thani. 

1.3 Objectives 

The objectives of this research are 

1. To study and apply mathematical model to analyze sediment distribution 

at Bandon Bay in Surat Thani, Thailand.  

2. To use the Shallow Water Equations (SWEs) model to analyze wave 

movement in the transport of sediment. 

3. To develop a program for simulation and visualization of sediment 

distribution in areas with similar features. 

1.4 Expected Advantages of this Study 

1. The distribution of sediments in Bandon Bay, Surat Thani in the presence 

of parameters like manning roughness coefficient and porosity of the 

sediment, can help to predict future sediment transport at any given time. 

2. The sediment transport can be simulated in the shallow water area using 

the Shallow Water Equations. 

3. A computer simulation provides the possibility to predict the sediment 

transport in other areas with similar features. 
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This thesis is divided into five chapters according to the following structure. 

chapter 2 presents the literature review that is relevantly related to this study. The 

discussion of the mathematical model and how to find the results from the model in 

chapter 3. The results from simulation of sediment distribution and the conclusion of 

this thesis are discussed in chapters 4 and 5, respectively. 

Research work related to this study would be discussed in the next chapter.  
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Chapter 2 

Literature Review 

Mathematical modeling has over the years become an essential tool in 

understanding how the real world with numerous natural phenomena occurs. Studies 

into the distribution of sediment have been done extensively in recent times. This 

chapter therefore presents the mathematical models together with their numerical 

method for studying sediment transport distribution. 

2.1 Mathematical Model 

The literatures related to the mathematical models that have been used to study 

the sediment transport distribution are outlined as follows. 

Luchaichana (1987) presented a study on the relationship between the 

suspended load and the total load of the transport of sediment in river basin. The study 

was carried out in a recirculating rectangular flume by comparing between the rate of 

bed material transport measured directly from the tests obtained from computation by 

using Meyer-Peter and Muller’s method (1948) with the following equation  

 

3
3 2

1 3 2
62

"90
"

0.0661 0.0076s s
s w s m

w ss

Q dg
g DS d

Q n
, (2.1) 

 and Einstein’s method (1950) as follows 

 
,

10 1 2

30.2
11.6 2.3031logs a

D
q v c a I I , (2.2) 
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where sg  is total of sediment flow, s  and w  are the specific densities of sediment 

and water, respectively, "
s s w , sQ  is the total bed material sediment load 

transport, Q  is the water discharge released through the reach of the river, 90d  is the 

bed material size, n  is the manning’s roughness coefficient, D  is the sediment size in 

armor layer, S  is the channel slope, 1I  and 2I  are integral of Einstein’s form of the 

suspended sediment equation, a  is the thickness of the bed layer, /sk x , sk  is the 

hydraulic radius due to skin friction, x  is a function of /k  and is the boundary 

layer thickness. The bed material in this research was sand with a median diameter of 

0.70 mm. and a measure of the gradation of sand was 2.134. An analysis of the 

research showed that the computation from Mayer-Peter and Muller's Equation gave 

the close results with the experimental data, whiles the Einstein’s method showed 

larger deviations, especially for sand with a bigger mean diameter. 

Rattanapitikorn (2008) proposed a mathematical model for computing cross 

shore sediment transport and beach deformation under the action of irregular waves. 

The methodology focused on the wave model by comparing between the 

representative wave approach and the conversion approach for computing 

representative wave heights which are the essential factors required for the study of 

beach deformation. The results showed that the representative wave approach was 

very accurate in computing the energy dissipation whiles the conversion approach 

was very good in estimating the highest that is one third wave height ( 1/3H ) but fair 

estimation on the maximum wave height ( maxH ). 
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Castro Diaz, Fernadez-Nieto, Ferreiro and Pares (2009) presented a study on 

the numerical approximation of sediment transport models in the shallow water. The 

model is based on the hydro-dynamical component by the shallow water system and 

the morph dynamical component by a solid transport discharge formula. The bed load 

transport formula was as follows:   

 
,1 ,2

1 2

0b bb
q qz

t x x
, (2.3) 

where 01 / (1 )  , 0  is the porosity of the sediment layer and ( , , )bq x y t  is the 

solid transport discharge. 

The solid transport discharge for this has been proposed by Grass model 

(1981)  

 

2 2
,1 1 1 2( )b gq A u u u , 

2 2
,2 2 1 2( )b gq A u u u , 

(2.4) 

where gA  is experiment data (This coefficient takes values between 0 to 1) 

and Meyer-Peter and Muller Model 

 

3 3/21
,1 ,2 2

1 2

8 ( 1) max( ,0)b i c

u
q G gd

u u
, 

3 3/22
,2 ,2 2

1 2

8 ( 1) max( ,0)b i c

u
q G gd

u u
, 

(2.5) 

where 
1
3

3
2 2 2 2
1 2( )

( )s i

n u u

d h

,  denotes the specific weight of the fluid, g ,  is 

the water density, s  is the specific weight of the sediment, s sg , s  is the 
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sediment density, id  is the sediment grain size, G  is the relative density, sG , 
,c

 

is the non-dimensional critical shear stress (for MP&M is equals to 0.047). The 

numerical method used Roe's scheme based on flux limiter technique to reduce the 

numerical diffusion whereby the numerical test showed that the Roe schemes are too 

diffusive as expected. 

Meesuk, Boonya-aroonnet, Srimongkol, Chankarn and Chitradon (2009)  

studied sediment transport in Mahachai Canal and Lung canal, in Samutsakhon 

Province through simulation of the flow at the different periods of time. This research 

considered 4 scenarios to operate the water gate in the canal. They were open full-

time, keep the lower water level in the inner area, increase flow to Mahachai Canal 

and increase flow to Lung Canal. The mathematical models used hydraulic-flow with 

2-dimensional “CCHE2D” model. The 2-dimensional CCHE2D for water flow was 

based on Continuity and Momentum Equations which are,  

 

( ) ( )
0

z hu hv

t x y
, 

( )( )1 xyxx bx
Cor

hhu u u Z
u v g f v

t x y x h x y h
, 

( ) ( )1 yx yy by
Cor

h hu v v Z
u v g f u

t x y x h x y h
, 

(2.6) 

where ( , , )z x y t  is the water surface elevation, ( , , )h x y t  is local water depth, t  is 

time, ( , , )u x y t  and ( , , )v x y t  are the depth-integrated velocity components in the x  

and y  directions, respectively, g  is the gravitational acceleration,  is water density, 

Corf  is the Coriolis parameter, , ,xx xy yx  and yy  are the depth integrated Reynolds 
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stresses, bx  and 
by

 are shear stresses on the bed surface. And for sediment transport 

equation,  

( ) ( ) ( ) ( )k k k k sk k k k k
s s s

c uc vc wc w c c c c

t x y z y x x y y z z
,  (2.7) 

where kc  is the concentration of k-th size class of sediment, ( , , , )u x y z t , ( , , , )v x y z t  

and ( , , , )w x y z t  are the velocity components in the x , y  and z  directions, respectively, 

the z  direction being assigned as the vertical direction along the gravity, skw  is the 

setting velocity of the k-th size class of sediment, s  is the eddy diffusivity of 

sediment and tv  is the eddy viscosity of flow. The result of this research revealed that 

the first scenario produced the maximum sediment deposition 0.2 m on the bed load 

in the center of Mahachai Canal. The third and fourth scenario could remove the 

partial sediment -0.6 meters and -0.3 meters in the Mahachai canal and Lung Cana 

respectively. 

Cordier, Le and Morales de Luna (2011) studied the sediment transport 

models in a shallow water.  Their models for describing the overland flow were 

 

( ) 0t xh hu , 

2 2( ) ( / 2)t x x b xhu hu gh gh z gh H , 

0t b x bz q , 

 (2.8) 

where ( , )h x t  is the water depth (m), ( , )u x t  is the flow velocity (m/s), ( , )bz x t  is the 

thickness of sediment layer, the sediment is fixed the layer at depth H , 1(1 ) , 

 is the porosity of sediment and ( , )bq x t  is the volumetric bed load sediment transport 
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rate per unit time. The model is solved numerically based on a splitting method. The 

result showed that the splitting technique may produce unphysical instabilities and in 

some cases the resulting instabilities may be avoided by reducing the Courant–

Friedrichs–Lewy (CFL) condition and using the upper bound. 

2.2 Numerical Method 

In modeling, obtaining an exact solution to the mathematical model is 

sometimes difficult. Numerical Methods are used to find an approximate solution to 

the various models and this section seeks to describe the numerical method for 

solving sediment transport model. 

Suwannasri (2004) presented SWEs to simulate and visualize the shallow 

water flow problems for the rectangular and circular dam break by using the finite 

volume methods to approximate the solution as follows 

 1 1 1 1
2 2 2 2

1

, , , , , ,

n n
n n n n

i j i j i j i j i j i j

t t
Q Q F F G G

x y
, (2.9) 

where , ( , , )
n

i jQ x y t  represents a cell average over the ( , )i j  grid cell at time nt , 

1
2
,
( , , )n

i j
F x y t  and 1

2
,
( , , )

n

i j
G x y t  are some approximations to the average in the x  and 

y  directions, respectively. The Numerical flux is computed by using a high-resolution 

Godunov’s method based on a second order approximate Riemann solver. The 

Riemann problem is solved by using Harten, Lax, and Van Leer (HLL) approach and 

by Roy method to solve the 2D SWEs to compare the performance of computing by 

using parallel computing technique. 
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Kanbua and Chuai-Aree (2007) presented the tsunami propagation simulator 

model which calculated trends to check if the model could predict the tsunami arrival 

times. The mathematical model was based on the wave equation in Grid which was 

computed as follows 

 
2 2 2

2

2 2 2

U U U
a

t x y
, (2.10) 

where ( , , )U x y t  is wave height (m), x  and y  are spatial grid in x  and y  directions 

(m), respectively, a  is wave propagation speed (m/s), d  is water depth (m). The 

model was solved numerically by using the central difference for finite difference 

method (FDM) as 

2
1 2 2 2 2 2 1

, 1, 1, 1, 1, , 1 , 1 , 1 , 1 , , , ,4 2n n n n n n n n
i j i j i j i j i j i j i j i j i j i j i j i j i j

t
U a U a U a U a U a U U U

h
,  (2.11) 

Where , ( , , )i jU x y t  is the wave height at points i  and j , i  and j  are grid index in the 

x  and y  directions, respectively, t  is time step and h  is grid resolution. The results 

of numerical simulation was compared with the observed time in the case of the 26th 

December 2004, it showed that the model can predict quite well with the timing.   

Boosamun (2010) presented a mathematical model of water flow on area 

surface by using hydrology and numerical computation to explain the diffusion of 

water. The model was solved numerically by using finite volume method for SWEs to 

approximate the solution as follows: 

 1 1 1 1
2 2 2 2

1
, , , ,, , , ,

n n n n n n n n
i j i j i j i ji j i j i j i j

t t
W W F F G G tZ tS

x y
, (2.12) 
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where , ( , , )
n
i jW x y t  represents a cell average over the ( , )i j  grid cell at time, 

1
2
,
( , , )n

i j
F x y t  and 

1
2
,
( , , )

n

i j
G x y t  are some approximations to the average  flux in the x  

and y  directions, respectively, , ( , , )
n
i jZ x y t  is the gravity force vector and , ( , , )

n
i jS x y t  is 

the source vector. The Numerical flux is computed by using Harten, Lax, and van 

Leer (HLL) approach in solving Riemann problem. The result is shown by developing 

a software to visualize water flow in 2D and 3D and also for predicting the risk area 

of flooding. 

He, Hu, Zhao, Wu and Pahtz (2015) studied a depth-average 2-dimentional 

wave based on couple flow and sediment transport model to investigate the flow. The 

governing equations of couple flow and sediment transport used in this study were 

 

( ) ( ) ( )
0b

b

zh uh vh

t x y t
, 

1
3

22
2( ) ( ) ( ) 1

0
2

s bz n m uUuh u h uvh
gh gh g

t x y x x
h

, 

1
3

2 2
2( ) ( ) ( ) 1

0
2

szvh uvh v h n vU
gh gh g

t x y y y
h

, 

*

( ) ( ) ( ) 1
( )t t t

t b t
t

hC huC hvC
UhC m q

t x y L
, 

(2.13) 

where  t  is the time, ( , , )h x y t  is the flow depth, ( , , )u x y t  and ( , , )v x y t  are the flow 

velocities in the x  and y  directions, respectively, 2 2U u v , ( , , )bz x y t  is the bed 

surface elevation above datum, ( , , )sz x y t   is the water level, s bz z h , tC  is the 

actual volumetric total-load sediment concentration, ( , , )x y t  is the density of the 
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water and sediment mixture in the water column determined by (1 )w t s tC C ,  

s  is density of the water and sediment mixture in the bed surface layer determined by 

' '(1 )b w m s m , '
m  is the porosity of the surface-layer bed material, w  and 

s  
are the water and sediment density, respectively 2 21 ( / ) ( / )b b bm z x z y , 

*tq  is the total load sediment transport capacity and tL  is the saturation length of 

sediment transport. The models are solved numerically by using the explicit finite 

volume method with the Godunov-type central upwind scheme and the nonnegative 

reconstruction of the water depth method. The results of the bed change showed that 

the erosion occurs at the beach and at the initial stage by the lateral erosion for 

simulating by without wave and erosion occurring faster by computing the wave. 

 The various literatures are put together and the appropriate mathematical 

model for studying sediment transport distribution in Bandon Bay is presented in the 

next chapter.   
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Chapter 3 

Mathematical Model 

This chapter presents the mathematical model and the computational methods 

that would be used in this study. Some assumptions were made to provide a better 

explanation of the model used in this study. The Shallow water equations (SWEs) 

used in the study of Suwannasri (2004) and Boosamun (2010) which was discussed in 

the previous section was put to use in this research. The idea from conservation of 

mass of SWEs was applied to the sediment transport equation in this study. Validation 

of the model will be carried out by comparing with standard Grass model (1981) 

which was proposed by Castro Diaz, Fernadez-Nieto, Ferreiro and Pares (2009). 

SWEs, sediment transport, initial & boundary conditions, inflow condition, and 

numerical method are presented. 

Figure 6 shows the work flow of this study whereby the sediment transports is 

of much interest. The proposed mathematical model is based on SWEs and sediment 

transport. The SWEs is derived from the conservation of mass and momentum 

whereby the conservation of momentum consists of 3 forces which are pressure, 

gravitational and bed friction force. The model is solved numerically by using the 

finite volume method which is based on the integral form of the conservation laws to 

get the discretization form. The flux unknowns are solved by using Godunov method. 

The Godunov method is used to approximate the flux using the HLL approach. The 

boundary and stability condition are needed to compute the discretization form. The 

discretization form then is computed by integration in time using Total Variation 
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Diminishing (TVD) Runge - Kutta and friction force using the semi-implicit method. 

By these procedures, the solution will be obtained. 

 

Figure 6  Work flow diagram of sediment transport model 

 The derivations of the SWEs as well as other mathematical formulations 

would be discussed in the next section.  

Sediment transport 

on the sea bed 

Sediment transport 

equation 
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HLL flux 
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(The CFL condition) 

Integration in time 

(The TVD Runge-Kutta method) 

Friction force computation 

(The semi-implicit method) 

Approximate 

Solution 

Finite volume 

method 

SWEs 
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3.1 Shallow Water Equations 

The Navier – Stoke Equation is useful in simplifying the mathematical 

formulation of the SWEs. The SWEs are derived based on some basic principles of 

the laws of conservation of mass and momentum. These are done together with a set 

of constitutive laws related to fluid properties and motion.  

3.1.1 Conservation of Mass 

 

 (a) 

 

 

(b) 

Figure 7 (a) Water direction in grid form and (b) depth of water in the x  and y  directions
 

Wave propagation is considered in the x  and y  directions. In Figure 7(a), the 

wave moves in the x  direction which then moves out in the opposite direction (from 

left to right). There is another wave moving in the positive y  direction which moves 

out in the negative (opposite) y  direction (from top to down). The volume of water at 

one point can be found by adding the wave coming in the x  and y  directions and 

subtracting the wave going out in the opposite directions. In Figure 7(b), the height h  

(depth of water) is considered and also the distances x  and y  are measured in their 

respective directions. 
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 From Figure 6 and Figure 7, the rate of change of volume of water at points x  

and y  directions can be written as  

 xin xout yin yout

V
Q Q Q Q

t
, (3.1) 

The distance between the grid points in the x  and y  directions that x  and  

y  are fixed but the volume of water in the box can change if and only if the depth 

changes. The corresponding rate of change of water flow (
/in outQ ) can be obtained 

from multiplying cross-section of the water flow with the velocity of the water and 

water depth. The volume of the water (V ) at points x  and y  can be obtained from 

multiplying the water depth with the base area. 

This gives 

 
( )

( ) ( ) ( ) ( )xin xout yin yout

x yh
hu y hu y hv x hv x

t
, (3.2) 

where u  and v  are the velocities of water flow in the x  and y  directions, 

respectively, h  is the depth of water at points x  and y , x  and y  are the length 

and width of volume control, respectively.   

 We now divide both sides of the equations by x  and y , since they are 

constants. This can then be written as 

 
( ) ( )( ) ( ) yin youtxin xout
vh vhuh uhh

t x y
,  

 
/2, /2, , /2 , /2( ) ( ) ( ) ( )x x y x x y x y y x y yuh uh vh vhh

t x y
,
 

(3.3) 

  Using the Taylor series expansion and omitting higher order terms in dx  and 

dy , we have 
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2
/2, ,

( )
( ) ( ) ( )

2x x y x y

uh x
uh uh O x

x
, 

2
/2, ,

( )
( ) ( ) ( )

2x x y x y

uh x
uh uh O x

x
, 

2
, /2 ,

( )
( ) ( ) ( )

2x y y x y

vh y
vh vh O y

y
, 

2
, /2 ,

( )
( ) ( ) ( )

2x y y x y

vh y
vh vh O y

y
, 

(3.4) 

 Substituting equation (3.4) in to equation (3.3), we obtain 

 

2 2
, ,

( ) ( )
( ) ( ) ( ) ( )

2 2x y x y

uh x uh x
uh O x uh O x

x xh

t x
 

                

          

2 2
, ,

( ) ( )
( ) ( ) ( ) ( )

2 2x y x y

vh y vh y
vh O y vh O y

y y

y
 

      

( ) ( )( ) ( )
2 22 2

vh y vh yuh x uh x
y yx x

x y
 

      

( )( ) 22
22

vh yuh x
yx

x y
 

( ) ( )h uh vh

t x y
. 

 

The conservation of mass equation can then be expressed quantitatively as 

 
( ) ( )

0
h uh vh

t x y
. (3.5) 
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3.1.2 Conservation of Momentum 

The Conservation of Momentum is similar to the conservation of mass 

equation. The depth of water in equation (3.5) h  is changed to be the momentum in 

the control volume (M ) and this is equal to the net influx of momentum plus the net 

force acting on the control volume 

 
( ) ( )M uM vM

F
t x y

. (3.6) 

where F  is the force acting on the control volume. 

Since momentum in the control volume is xQ x  and having  as the 

pressure of water, and xQ  as the rate of flow of water in the x  direction. 

Then the rate of momentum in the control volume will now be 

 
( ) ( ) ( )x x xQ x u Q x v Q x

F
t x y

. (3.7) 

The forces and momentum fluxes on the control volume are in the 3 forms: pF  

is the pressure force, gF  
is the gravitational force (due to sloping bed) and fxF  

is the 

bed friction force. 

So then the equation (3.7) can be written as 

 
( ) ( ) ( )x x x

p g fx

Q x u Q x v Q x
F F F

t x y
. (3.8) 
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3.1.2.1 The Pressure Force (
pF ) 

 

 

 

 

 

 

Consider pressure forces at points x  and y  in Figure 8. Then 

                     
pF P /2, /2,x x y x x yP P .  

From P gh , we get 

 /2, /2,( ) ( )p x x y x x yF gh gh . (3.9) 

Using the Taylor series expansion and omitting higher order terms in x

yields 

 

2
/2, ,

( )
( ) ( ) ( )

2x x y x y

gh x
gh gh O x

x
, 

2
/2, ,

( )
( ) ( ) ( )

2x x y x y

gh x
gh gh O x

x
. 

 (3.10) 

 Substituting equation (3.10) in to equation (3.9), we obtain 

 2 2
, ,

( ) ( )
( ) ( ) ( ) ( )

2 2p x y x y

gh x gh x
F gh O x gh O x

x x
 

     
( ) ( )

2 2

gh x gh x

x x
 

 

      
( )gh

x
x

. (3.11) 

 

 

 

 

 

 

Figure 8 Pressure in fluid in the opposite direction 
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Since, the pressure exerted on the cross sectional area of the water is 

 
( )

p

gh
F x yh

x
. (3.12) 

3.1.2.2 The Gravitational Force (
gF ) 

 

Figure 9 Height of terrain 

In Figure 9, we consider a triangle with x  as the length of the slope bed and 

z  as the height of the slope bed with  as the angle between the height and length of 

the slope bed. 

The pressure force due to the slope bed is 

 singF mg .  

Since from the Newton law, m v  then 

 sin singF Vg x yhg .  

From Figure 9, the value of sin  is  

 2 2
sin

( ) ( )

z

x z
,  

where z  is height of slope bed which can be written as 
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 2 2( ) ( )
g

z
F g x yh

x z
. (3.13) 

Since 
/2, /2,x x y x x yz z z  and using the Taylor series expansion and 

omitting higher terms in dx  of 
/2,x x yz  and 

/2,x x yz   the equation now becomes 

 

2
/2, ( )

2x x y

z x
z z O x

x
, 

2
/2, ( )

2x x y

z x
z z O x

x
. 

(3.14) 

Substituting equation (3.14) in to equation (3.13), we obtain 

 

2 2

2

2 2 2

( ) ( )
2 2

,

( ) ( )
2 2

g

z x z x
z O x z O x

x x
F g x yh

z x z x
x z O x z O x

x x

  

algebraic cancellation results in, 

 

2
2( )

g

z
x

xF g x yh

z
x x

x

  

             
2

2 2( ) ( )

z x
g x yh

x
z

x x
x

 

           
2

2( ) 1

z x
g x yh

x
z

x
x
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2

2( ) 1

g

z x
F g x yh

x
z

x
x

 

    
2

1

z x
g x yh

x
z

x
x

 

                  
2

1

1

z
g x yh

x
z

x

. 

Using the polynomial division in 
2

1

1
z

x

, we have 

 

2 4

2

1
1

1

z z

x x
z

x

. 
 

Since the gravitational force due to the slope bed is 

2 4

1g

z z z
F g x yh

x x x

 
     

2 4
z z

g x yh
x x

 

     

2 4
z z

g x yh O
x x

  

 
 
g

z
F g x yh

x
. (3.15) 



27 

 

3.1.2.3 The Bed Friction Force (
fxF  and 

fyF ) 

The bed function can be estimated by using the Manning resistance law as  

2 2 2

4
3

fx

n u v u
S

h

 and 

2 2 2

4
3

fy

n u v v
S

h

. 

So, the resisting force at the bottom becomes 

 

                fx fxF gVS  

                      fxg x yhS  

 

                 
2 2 2

4
3

fx

n u v u
F g x yh

h

. (3.16) 

Equating terms, the conservation of momentum is obtained by substituting 

equations (3.12), (3.15) and (3.16) in equation (3.8) to get 

 

( ) ( ) ( ) ( )x x xQ x u Q x v Q x gh z
x yh g x yh

t x y x x
 

                                                          
2 2 2

4
3

n u v u
g x yh

h

. 
(3.17) 

2 2 2

4
3

( ) ( ) ( ) ( )x x xQ x u Q x v Q x h z n u v uh
x y g h gh g

t x y x x
h

. 

Since x y  is constant, we divide by x y  on both sides of equation (3.17)           

( ) ( ) ( )1 1 1 ( )x x xQ x u Q x v Q x h z
g h gh

x yh t x yh x x yh y x x
 

       

2 2 2

4
3

n u v uh
g

h
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2 2 2

4
3

1 1 1x x xQ uQ vQ h z n u v uh
g h gh g

y t y x y y x x
h

 

       
2 2 2 2

4
3

1 ( ) 1 ( ) 1 ( )hu y u hu y v hu y h z n u v uh
g gh g

y t y x y y x x
h

 

                
2 2 2 2 2

4
32

uh u h g h vuh z n u v uh
gh g

t x x y x
h

        

                 

 

      
2 2 2 2 2

4
32

uh u h g h vuh z n u v uh
gh g

t x x y x
h

 (3.18) 

where 
2

2
2 2

g h g h h
h g h

x x x
 . 

Similarly, the momentum gives 

 
2 2 2 2 2

4
32

vh vuh v h g h z n u v vh
gh g

t x y y y
h

. (3.19) 

Equations (3.5), (3.18) and (3.19) are called the two-dimensional SWEs which 

are stated as follows 

 

( ) ( )
0

h uh vh

t x y
, 

2 2 2 2 2

4
32

uh u h g h vuh z n u v uh
gh g

t x x y x
h

, 

2 2 2 2 2

4
32

vh vuh v h g h z n u v vh
gh g

t x y y y
h

, 

 (3.20) 

where  g  is the acceleration due to gravity, ( , , )h x y t  is the water depth, ( , , )u x y t  and 

( , , )v x y t  are the flow velocities in the x  and y  directions, respectively, ( , , )z x y t  is 

the height of slope bed and n  is the Manning roughness coefficient. 
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In our attempt to simulate the wave moment in shallow water these three 

coupled partial differential equations have been derived to enable the visualization of 

sediment distribution in the studied area. 

3.2 Sediment Transport Equations 

In this section, we present the sediment transport model and the Grass Model. 

The sediment transport is obtained by using the idea from water flow in conservation 

of mass equation. Since the flow of water and sediment are different, the parameter 

porosity of sediment denoted with  is used to multiply with the flow of sediment as 

shown in equation (3.21). The porosity of sediment is the empty space in a material as 

shown in Figure 10 

(a) (b) 

Figure 10 porosity of sediment 

Source: Blaskó Lajos (2008) 

The porosity of sediment takes a value between 0 to 1. If the value close to 0, 

then the sediment is said to be fine however, if value close to 1 rough sediment is 

obtained as described in Figure 10(a) and Figure 10(b), respectively. The Grass model 

(Grass, 1981) is shown in equation (3.22). The validation of one dimension sediment 

transport model proposed in this study can be confirmed by comparing with the Grass 

model. In this study, The Grass model was chosen to compare with the sediment 
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transport model because the Grass model is efficient in sandy areas and it’s similar 

with our study area.     

The sediment transport and the Grass model equation are as follow  

 0x

z uz

t x
, (3.21) 

 
0bxqz

t x
, (3.22) 

where 
1

1 x

 and x  is the porosity of the sediment layer, u  represents the 

velocity in the x  direction and ( , )z x t  is the height of slope bed. 

Following the Grass model (Grass, 1981), the formula for the solid transport 

discharge is given by 

 
1
;1 4

mg

bx g gq A u u m ,  

where gA  is the constant determined from the experimental data. This constant value 

is between 0 and 1 according to Grass model, the bed-load sediment transport begins 

as soon as the fluid starts to move. 

This study focuses on a two dimensional sediment transport model by using 

conservation of mass equation from the SWEs in equation (3.23). 

 0x y

z uz vz

t x y
, (3.23) 

Where  x  and  y   represent the porosity of the sediment in the x  and y  directions, 

( , , )u x y t  and ( , , )v x y t  represent the velocities in the x  and y  directions and ( , , )z x y t  

is the height of slope bed. 
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Finally, the SWEs and the sediment transport equations used in this study are 

put together as follows 

 

( ) ( )
0

h uh vh

t x y
,

2 2 2 2 2

4
32

uh u h g h vuh z n u v uh
gh g

t x x y x
h

,

2 2 2 2 2

4
32

vh vuh v h g h z n u v vh
gh g

t x y y y
h

, 

0x y

z uz vz

t x y
, 

 (3.24) 

with the initial condition given as follows: 

 0( , , 0)h x y h ,      0( , , 0)u x y u ,     0( , , 0)v x y v ,      0( , , 0)z x y z ,  

For the boundary condition, it is considered to be open and closed boundary 

which are defined from the Figure 11(a) and Figure 11(b), respectively. 

 

 

 

 

 

                 

(a)               (b) 

Figure 11 (a) Open and (b) closed boundary condition 
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From Figure 11(a), open boundary can be defined as 

0
h

n
,  0

u

n
,  0

v

n
,  0

z

n
, ( , )x y  

and closed boundary from Figure 11(b) for (i), (ii), (iii) and (iv) as; 

( ,0, ) 0h x t ,            ( ,0, ) 0u x t ,           ( ,0, ) 0v x t ,        
arg( ,0, ) l ez x t z , 

( 1, , ) 0xh m y t ,     ( 1, , ) 0xu m y t ,     ( 1, , ) 0xv m y t ,     
arg( 1, , )x l ez m y t z , 

( , 1, ) 0yh x m t ,     ( , 1, ) 0yu x m t ,     ( , 1, ) 0yv x m t ,     arg( , 1, )y l ez x m t z , 

(0, , ) 0h j t ,           (0, , ) 0u j t ,           (0, , ) 0v j t ,        arg(0, , ) l ez j t z , 

where 0h , 0u , 0v  and 0z  are the height of wave, velocities of water flow in the x  

direction, velocities of water flow in the y  direction and height of sediment, 

respectively at time t=0. They are input from the user, n  is the normal vector on the 

boundary  and argl ez  is the large value for height of topography data. 

In this study, the SWEs and the sediment transport equations would be 

considered with some assumptions: 

1. In the real world, the ocean is spherical however for this study it is 

assumed that the ocean is plain. 

2. The erosion is not considered.  

3. The sediment along the sea bed is considered homogenous. 

4. The emission of wave is continuous.   

From equation (3.24) the value of z  in the 
z

t
 term would be calculated at 

each time step when the time changes. That is, in simulating the wave from the SWEs, 

the height of the sediment changes and this can be known or calculated at each time 
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step. The value of the sediment transport in the shallow water can be approximated by 

using the finite volume methods. 

Equation (3.24) can be written in the matrix form as 

 ( ) ( )w f w g w
z s

t x y
, (3.25) 

where  

h

uh
w

vh

z

, 

2
2

( ) 2

x

uh

h
u h gf w
uvh

uz

, 2
2

( )

2
y

vh

vuh
g w h

v h g

vz

, 

0

0

z
gh
xz
z

gh
y

 and 

2 2 2

4/3

2 2 2

4/3

0

0

gn u v uh

hs
gn u v vh

h

. 

 These equations can be written in the quasi linear form as 

 
( ) ( )w f w w g w w

z s
t w x w y

. (3.26) 

It is essential to note that the term ( , , ) ( , , ) ( , , )u x y t h x y t uh x y t  and 

( , , ) ( , , ) ( , , )v x y t h x y t vh x y t . However, to find the Jacobian matrix only, we have to 

consider ( , , )uh x y t  and ( , , )vh x y t  to be one variable as they cannot be separated. 
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The Jacobian matrix of 
( )f w

w
 and 

( )g w

w
 are  

2 2 2 2
2 2 2 21 1 1 1

2 2 2 2

( ) ( ) ( ) ( )

( )

x x

uh uh uh uh

h uh vh z
uh uh uh uh

gh gh gh gh
h h h h

f w h uh vh z
uhvh uhvh uhvh uhvhw
h h h h
h uh vh z
uhz uhz

h h
h

x xuhz uhz

h h
uh vh z

 

          

2

0 1 0 0

2 0 0

0

0x x x

u gh u

uv v u

uz z uh

h h h

  

and 

2 2 2 2
2 2 2 21 1 1 1

2 2 2 2

( )
( ) ( ) ( ) ( )

x x

vh vh vh vh

h uh vh z
vhuh vhuh vhuh vhuh

h h h h
h uh vh z

g w
vh vh vh vh

gh gh gh ghw
h h h h

h uh vh z
vhz vhz

h h
h

x xvhz vhz

h h
uh vh z  

           2

0 0 1 0

0

0 2 0

0x x
x

uv v u

v gh v

vz z
v

h h

. 
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The characteristic polynomial equation of the given matrix 
( )f w

w
 can be 

defined by 

 
( )

det 0
f w

I
w

, 

2

1 0 0

2 0 0
( )

det 00

0x x
x

u gh u
f w

I uv v uw
uz z

u
h h

. 

Finally, we have the characteristic polynomial equation 

4 3 2 2 2 3 3( 3 ) (3 3 ) ( 3 )x x x xu u u u gh u ghu u ghu         

         2 2( ) 0xu u gh . 

It can be rewritten as  

2(2 )( )( ) ( )( )( ) 0x xu u u u gh u u . 

So, the eigenvalues of 
( )f w

w
 are the roots of the characteristic polynomial, 

1x
u gh , 

2x
u , 

3x
u gh , 

4x xu . 

Similarly, the eigenvalues of  
( )g w

w
 are 

1x
v gh , 

2x
v , 

3x
v gh , 

4x yv . 

The eigenvalues of 
( )f w

w
 and 

( )g w

w
 will be used to compute the speed of 

the wave for simulating and visualizing the sediment transport in shallow water.  
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3.3 Numerical Methods 

The numerical solution to the proposed mathematical model is obtained by 

using the finite volume methods. This is done on the basis of the integral form of the 

conservation laws by approximating laws of conservation directly once formulated 

and it is therefore considered a flux conserving method by construction. The 

calculations are based on the approximation to the integral of certain quantities over 

each of the volumes. Furthermore it is more effective than the finite element method 

in which the incorporation of topological laws and time dependent problem is more 

complex. The finite volume method is also considered to be better than the finite 

difference method as the finite difference method is limited to structured grids and 

cell complexity. In deriving the two-dimensional conservation laws, the numerical 

domain is subdivided into rectangular grid cells ( ,i jC ).  

Integrating equation (3.25) over each grid cell, gives 

, , , ,

( ) ( )
( )

i j i j i j i jC C C C

f w g w
wdxdy dxdy dxdy z s dxdy

t x y
, 

1 1 1 1
2 2 2 2
1 1 1 1
2 2 2 2

, ,

( ) ( ) ( )

i j i j

j i i j

j i i j
C C

wdxdy f w dy g w dx z s dxdy
t

.          

Integrating from nt  to 1nt  yields the following equations 

1 1 1 1
2 2 2 2
1 1 1 1
2 2 2 2

,

1 11
( ) ( )

i j

j i i jn nn

n n nj i i j
C

w dxdy f w dydt g w dxdt  

,

1
( )

i j

n

n
C

z s dxdydt , 
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1 1
2 2

1 11 1
2 22 2

, ,

1 11 ( ) ( )

i j i j

j jn nn n

i in nj j
C C

w dxdy w dxdy f w dydt f w dydt  

1 1
2 2

1 11 1
2 22 2

, ,

1 1 1 1
( ) ( ) ,

i j i j

i in n n n

j jn n n ni i
C C

g w dxdt g w dxdt zdxdydt sdxdydt

 
1 1
2 2

1 11 1
2 22 2

, ,

1 11 ( ) ( )

i j i j

j jn nn n

i in nj j
C C

w dxdy w dxdy f w dydt f w dydt  

              

1 1
2 2

1 11 1
2 22 2

1 1
( ) ( )

i in n

j jn ni i
g w dxdt g w dxdt

 

              , ,

1 1
,

i j i j

n n

n n
C C

zdxdydt sdxdydt  

1 1
2 2

1 11 1
2 22 2

, ,

1 11 ( ) ( )

i j i j

j jn nn n

i in nj j
C C

w dxdy w dxdy f w dydt f w dydt

     
1 1
2 2

1 11 1
2 22 2

1 1
( ) ( )

i in n

j jn ni i
g w dxdt g w dxdt

 

  , ,

1 1

i j i j

n n

n n
C C

zdxdydt sdxdydt . 

Dividing by x y , we obtain 

, ,

11 1

i j i j

n n

C C

w dxdy w dxdy
x y x y

 

1 1
2 2

1 11 1
2 22 2

1 11
( ) ( )

j jn n

i in nj j
f w dydt f w dydt

x y
 

1 1
2 2

1 11 1
2 22 2

1 11
( ) ( )

i in n

j jn ni i
g w dxdt g w dxdt

x y
 

           , ,

1 11 1

i j i j

n n

n n
C C

zdxdydt sdxdydt
x y x y

. 
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Introducing t  into the equation above, we obtain the following equation 

, ,

11 1

i j i j

n n

C C

w dxdy w dxdy
x y x y

 

      

1 1
2 2

1 11 1
2 22 2

1 11 1
( ) ( )

j jn n

i in nj j

t
f w dydt f w dydt

x y t y t
 

      

1 1
2 2

1 11 1
2 22 2

1 11 1
( ) ( )

i in n

j jn ni i

t
g w dxdt g w dxdt

y x t x t
 

      , ,

1 11 1

i j i j

n n

n n
C C

t zdxdydt sdxdydt
t x y t x y

. 

The above equation can be rewritten in the vector form as follows 

 1 1 1 1
2 2 2 2

1
, , , ,, , , ,

n n n n n n n n
i j i j i j i ji j i j i j i j

t t
W W F F G G tZ tS

x y
, (3.27) 

where ,
n
i jW  represents a cell average over the ( , )i j  grid cell at time nt , 

,

, ( , , )

i j

n
i j

C

W W x y t dxdy , 

1
2
,

n

i j
F  is the approximation of the average flux along 1

2
,i j

x x , 

1
2

1 11
2 22

1

,

1
( ( , , ))

n jn

i j in j
F f w x y t dydt

t y
, 

1
2

,

n

i j
G  is the approximation of the average flux along 1

2
,i j

y y , 

1
2

1 11
2 22

1

,

1
( ( , , ))

n in

i j in i
G g w x y t dxdt

t x
, 
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,
n
i jZ  is the gravitational force vector,  

,

1

,

1

i j

nn
i j n

C

Z zdxdydt
t x y

, 

,
n
i jS  is the source term vector, 

,

1

,

1

i j

nn
i j n

C

S sdxdydt
t x y

. 

 Equation (3.27) will be used to compute the numerical solutions, but they are 

four unknown value at points ( 1/ 2, )i j , ( 1/ 2, )i j , ( , 1/ 2)i j  and ( , 1/ 2)i j . 

So, we have to approximate the flux at each point. 

3.3.1 Flux Calculation 

 The equation (3.27) cannot be solved numerically by substituting the values 

directly. The flux functions 1/2,i jF , 1/2,i jF , , 1/2i jG  and , 1/2i jG  can be 

approximated at each cell point. The Figure 11 describes the flux functions and shows 

how the Godunov Scheme can be applied to approximate the functions 

   

   

   

 

Figure 12 Flux calculation in the x  and y  directions 

,i jW    
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The Figure 12 at points 
1/2,i jF , 

1/2,i jF , 
, 1/2i jG  and 

, 1/2i jG  can be defined 

by the Godunov scheme. As suggested by (Godunov, 1959), the Godunov scheme is a 

conservation numerical scheme for solving partial differential equation. In other 

words, it is a conservative finite volume method which solves the exact or Riemann 

problems at each cell boundary. 

 In the basic and simplest form, Godunov scheme is first order accuracy in time 

and space. It can also be used as a basic form for developing the high-order schemes. 

The full Godunov scheme is given by the basic form as follow, 

 
1/2, 1/2( , )

i j

n n n
i iF F Q Q . (3.28) 

 Therefore from The Godunov scheme in equation (3.28) is to approximate to 

solve the Riemann problem in basic form it gives 

 

1/2, 1, ,( , )
i j

n n n
i jE i jWF F Q Q , 

1/2, , 1,( , )
i j

n n n
i jE i jWF F Q Q , 

, 1/2 , 1 ,( , )
i j

n n n
i j S i jNG G Q Q , 

, 1/2 , , 1( , )
i j

n n n
i jS i j NG G Q Q , 

(3.29) 

where 

h

uh
F

vh

z

, 

h

uh
G

vh

z

, and 

h

u
Q

v

z

 . 

 The functions ( , )n n
W EF Q Q  and ( , )n n

N SG Q Q  in equation (3.29) can be computed 

by using the Harten-Lax-Van Leer approach (HLL), which was developed by (Harten 

et al., 1983)  to approximate the numerical flux as 
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( ) ( ) ( ( ) ( ))
( , )n n E W W E E W E W
W E

E W

S f Q S f Q S S W Q W Q
F Q Q

S S
, 

( ) ( ) ( ( ) ( ))
( , )n n S N N S S N S N
N S

S N

S f Q S f Q S S W Q W Q
G Q Q

S S
, 

 (3.30) 

where 

2
2

( ) 2

x

uh

h
u h gf Q
uvh

uz

, 2
2

( )

2
y

vh

vuh
g Q h

v h g

vz

, ( )

h

uh
w Q

vh

z

, 

WS  and ES  are the smallest and largest wave speed, respectively in the x  direction,  

NS  and SS  are the smallest and largest wave speed, respectively in the y  direction.  

For SWEs the speed of wave WS , ES , SS  and NS  can be estimated by  

 

min( , , , , 0)W W W E E x W x ES u gh u gh u u , 

max( , , , , 0)E W W E E x W x ES u gh u gh v v , 

min( , , , , 0)N N N S S y N y SS v gh v gh v v , 

max( , , , , 0)S N N S S y N y SS v gh v gh v v , 

(3.31) 

where W Wu gh , E Eu gh , N Nv gh , S Sv gh , x Wu , x Eu , y Nu  and 

y Su  are the eigenvalues of Jacobian matrix 
( )f w

w
 and 

( )g w

w
. 

 From the formula to compute the flux each one of them needs data at the 

edges of the 4 sides of the cell but the data is only at the center of each cell. The data 
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at each side of the cell needs to be reconstructed so that it can be used to calculate the 

results.    

3.5.2 Flux-limited Reconstruction 

The basic limiter formulated for discontinuous scheme depends on the 

Monotonic Upstream-centered schemes for Conservation Law (MUSCL) slope 

limiting technique developed by (Van Leer, 1977). MUSCL uses the piecewise linear 

reconstruction for subgrid-cell distributions which gives a second order accurate 

scheme. The minmod limiter is applied to the reconstruction process to avoid 

inaccurate oscillations. 

The piecewise linear reconstruction for one grid cell is considered below by 

using the minmod limiter. 

 

 

Figure 13 Picewise linear and constant approximation at each cell 

 

Figure 13 shows the piecewise linear reconstruction. The edge of each cell can 

be calculated by using the following formula. 
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, , ,

1

2i jW i j i jQ Q x , 

, , ,

1

2i jE i j i jQ Q x , 

, , ,

1

2i jN i j i jQ Q y , 

, , ,

1

2i jS i j i jQ Q y , 

(3.32) 

where  
,i j

 and 
,i j

 are the slope limiter in x  and y  direction, respectively 

and 
,i jQ  are the values needed to create new data such as 

,i jh , 
,i ju , 

,i jv  or 
,i jz . 

The slope limiter function are defined by 

 

1, , , 1,
, minmod ,i j i j i j i j
i j

Q Q Q Q

x x
, 

, 1 , , , 1
, minmod ,i j i j i j i j
i j

Q Q Q Q

y y
, 

(3.33) 

where the minmod function is defined by 

 

, 0

minmod( , ) , 0

0, 0

a if a b and ab

a b b if b a and ab

if ab

         

                     
1
sgn( ) sgn( ) min ,

2
a b a b . (3.34) 

It must be noted that, t   plays an important role in the numerical results and 

for that matter it calculation needs to be in detail as the divergence of the solution 

depends on it. The CFL condition is used to compute t  and this would be discussed 

in the next section. 
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3.3.2 Courant–Friedrichs–Lewy (CFL) Condition  

A numerical solution converges if and only if its numerical domain contains 

the exact domain of the partial differential equation. The CFL condition used by Delis 

(Delis et al. 2005) is necessary to guarantee the stability. The CFL condition is used to 

calculate the t  in order to calculate the convert solution. The size of t  plays a big 

role to the numerical solution, if the t  too small the calculation need more time to 

compute whole system, but if the t  too large the solution may diverged. 

Therefore t  can be calculated using the CFL condition as follows, 

 
max( , ) 1

min( , ) 2
x yc c t

x y
,  

 
1 min( , )

2 max( , )x y

x y
t

c c
, (3.35) 

where xc  and yc  are based on rough estimates of the eigenvalue of Jacobian matrix 

( )f w

w
 and 

( )g w

w
, respectively to satisfy the sub-characteristic condition by 

 

1/2, 1/2, 1/2, 1/2,max( , , , )x i jW i jE i jW i jEc s s s s , 

, 1/2 , 1/2 , 1/2 , 1/2max( , , , )y i j N i j S i j N i j Sc s s s s . 

(3.36) 

Also in equation (3.35), if max( , )x yc c  becomes zero, the value of t  will be 

infinity and to avoid it, the following formula would be used 

 
1 min( , )

2

x y
t

g
, (3.37) 

where g  is the gravitational constant ( 9.814g ). 

 So, the t  becomes 
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1 min( , )
, max( , ) 0

2 max( , )

1 min( , )
,

2

x y
x y

x y
if c c

c c
t

x y
Otherwise

g

 (3.38) 

 The flux and t  for the numerical results have been computed and this would 

be used in the simulation of sediment transport distribution. The next section 

describes the steps involved in the calculation of the model. 

3.3.3 Calculation of the Model 

The previous section proposed the equation that would be used in computing 

numerically flux and t  associated with equation (3.27). The results in equation 

(3.27) would be calculated at each time step with the next time ( 1nt ) calculated using 

the current time ( nt ) and this would be done iteratively. 

Equation (3.27) was shown as 

 1 1 1 1
2 2 2 2

1
, , , ,, , , ,

n n n n n n n n
i j i j i j i ji j i j i j i j

t t
W W F F G G tZ tS

x y
,  

where 1
,
n
i jW  is the new vector values of  ,h ,uh vh and z  at the next time 1nt  , 1

,
n
i jW  

is still the unknown vector we need to calculate it by using ,
n
i jW , ,

n
i jW  is known at time 

nt  with defined by 

,

,
,

,

,

( )

( )

n
i j
n

n
i j

i j n
i j
n
i j

h

uh
W

vh

z

, 

, ,

,
,

, ,

,

0

0

n n
i jW i jEn

n i j
i j n n

i jN i jSn
i j

z z
gh

xZ
z z

gh
y

 and 
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2 2 2
, , ,

4/3
,

,
2 2 2

, , ,

4/3
,

0

( ) ( ) ( )

( )

( ) ( ) ( )

( )

0

n n n
i j i j i j

n
n

i j
i j

n n n
i j i j i j

n
i j

gn u v uh

h
S

gn u v vh

h

. 

 To complete equation (3.27) we still need to calculate the flux 1
2
,

n

i j
F , 1

2
,

n

i j
F , 

1
2
,

n

i j
G  and 

1
2
,

n

i j
G   are the flux can be calculated from equation  (3.29) ,  The gravitational 

force ,
n
i jZ  calculated from the height of the terrain reconstruction in equation (3.34) 

and the time step t  can be computed by using CFL condition in equation (3.38). 

 However, the solution of equation (3.27) can be oscillated from each time 

step. To solve this problem, we need to average the next solution between the current 

time nt  and the next time 1nt  as shown in Figure 14. The average of 1
,
n
i jh  and ,

n
i jh  is 

calculated by using Second-Order Total Variation Diminishing (TVD) Runge-Kutta 

scheme to guarantee the total variation of the solution. Figure 14 is illustrated the 

solution of  ,h  ,u  v  and z  at time nt  and 1nt   for easy understanding 

 

Figure 14 Depicting the result average between current times 

Source: Boosamun (2010) 
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 The Second-Order TVD Runge-Kutta scheme can be calculated the vector W  

as the following steps: 

1. Calculate the equation (3.27) for the time nt  by ignoring the source term
,i jtS  

 1 1 1 1
2 2 2 2

(1) 1 1
, , 1 ,, , , ,

,n n n n n n
i j i j i ji j i j i j i j

t t
W W F F G G t Z

x y
 (3.39) 

2. Repeat the calculation of equation (42)  

 1 1 1 1
2 2 2 2

(2) (1) 2 2
, , 2 ,, , , ,

,n n n n n
i j i j i ji j i j i j i j

t t
W W F F G G t Z

x y
 (3.40) 

3. Find average value between 2 results from equation (3.39) and equation (3.40) 

 
(1) (2)
, ,1

, 2
i j i jn

i j

W W
W , (3.41) 

4. The result of the model from equation (3.41) now is still not included the 

source function ,i jtS , so we have to add the source function (friction force) 

for the  flow rate per one unit of time by using semi-implicit method proposed 

by (Bristeau et al., 2001). The source function can be calculated as follows  

and 

4
3

(3)
,1

,
2 2

2
, ,

1
,

( )
( )

1

i jn
i j

n n
i j i j

n
i j

uh
uh

gn u v
t

h

  

       

4
3

(3)
,1

,
2 2

2
, ,

1
,

( )
( )

1

i jn
i j

n n
i j i j

n
i j

vh
vh

gn u v
t

h

, 

(3.42) 

where 1 2

2

t t
t  , (3)

,( )i juh and (3)
,( )i jvh  are the results from equation (3.42). 
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3.3.4 Boundary Condition  

 

 

 

Figure 15 Boundary of grid data 

 

As we mentioned in the previous section, this study considers an open and 

closed boundary when calculating the entire area. From Figure 15, there are four 

edges and all values on the boundary cannot be computed by using the equation as 

internal grid cell to solve this problem, we need to determine the open and closed 

boundary condition to allow the water flow out from the boundary for open boundary 

and the water cannot flow out once the boundary is closed. The value at the open 

boundary is equal to the adjacent edges of the area. The open boundary for four edges 

is given as follows, 

0, 1,
t t
j jh h ,           0, 1,

t t
j ju u ,            0, 1,

t t
j jv v ,            0, 1,

t t
j jz z ;         for 0

, 0i jh , 

,0 ,1
t t
i ih h ,            ,0 ,1

t t
i iu u ,            ,0 ,1

t t
i iv v ,             ,0 ,1

t t
i iz z ;          for 0

, 0i jh , 

, 1 , 2y y

t t
i m i mh h , 1, 2,x x

t t
m j m ju u , 1, 2,x x

t t
m j m jv v , 1, 2,x x

t t
m j m jz z ;for 0

, 0i jh , 

1, 2,x x

t t
m j m jh h , , 1 , 2y y

t t
i m i mu u ,  , 1 , 2y y

t t
i m i mv v ,  , 1 , 2y y

t t
i m i mz z ; for 0

, 0i jh ,                  

 

 

 

 

 

…
…

…
…

…
…

…
…

…
…

. 

………………………………………… 

Open 

boun

Closed 

(3.43) 
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For the closed boundary, the depth of water (h ) is set to zero indicate the land 

area (gray color in Figure 15). This is a condition imposed on the system to break the 

water flow to the land. The closed boundary is 

 , 0t
i jh , , 0t

i ju ,
 , 0t
i jv , , arg

t t
i j l ez z ; for 0

, 0i jh  , (3.44) 

where i  and j  are the indicated grid size by 0,1,2,..., 1xi m  and 

0,1,2,..., 1yj m , respectively, arg
t
l ez  is the large value for height of topography 

data, h  is the depth of water by if , 0i jh  is the sea and , 0i jh  is the land areas as 

shown in Figure at 15 blue and gray colors, respectively. 

3.3.5 Inflow Condition  

In this study, the inflow conditions considered are wave and sediment for the 

simulation process.  

The wave condition is obtained by using the following formula; 

 
0

, , * sin( * )t
i j i jh h amp t ; if 0

, 0i jh ,  for all  0t ,  (3.45) 

likewise, the sediment condition is obtained as well by using the formula below; 

 
0

, ,
t
i j i jz z ; if 0

, 0i jh ,  for all  0t , (3.46) 

where 
0
,i jh  is the sea water level and at time 0t ,  this is referred to as the initial 

condition at the mean sea water level while amp  is the amplitude. However 
0
,i jz  is the 

sediment level at time 0t , and  is the value of sediment to be added. Furthermore 

position ( , )i j  for ,i jh  and ,i jz  can be obtained from the user. 
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3.3.6 Topography Interpolation 

The land data used in this study is based on the topography of a 1 kilometer 

grid size. It was derived by using the USGS SRTM30 gridded digital elevation model 

(DEM) data product. The DEM data was created by NASA shuttle radar topography 

mission (Becker et al., 2009). The SRTM30 data used for this study was the last 

updated data which took place on November 29th, 2014. Since the DEM data are 

coarse grid, it is possible to increase the resolution to be smaller size of grid cell. The 

bilinear interpolation technique was used to obtain the high resolution topography 

(Busaman et al., 2011). The high resolution topography at point ( , )i j  is calculated by 

the following  

 

  

  

 

 

From Figure 16, the process of the bilinear interpolation is derived based on 

linear interpolation of second order in the x  direction can be defined by 

 2 1
1 2

1 2 2 1

( ) ( ) ( )
x x x x

F x F x F x
x x x x

. (3.47) 

 

   

 

  

 

Figure 16 Bilinear interpolation 
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To obtain the ( , )Z i y , we use the points ( , )Z x y  and ( 1, )Z x y as shown  

 

( 1)
( , ) ( , ) ( 1, )

( 1) ( 1)

i x i x
Z i y Z x y Z x y

x x x x
 

( , )( 1) ( 1, )( )Z x y i x Z x y i x . (3.48) 

Similarly for the points ( , 1)Z x y  and ( 1, 1)Z x y , the point ( , 1)Z i y  can be 

obtained 

 

( 1)
( , 1) ( , 1) ( 1, 1)

( 1) ( 1)

i x i x
Z i y Z i y Z x y

x x x x
 

     ( , 1)( 1) ( 1, 1)( )Z i y i x Z x y i x . (3.49) 

From Figure15, the point ( , )Z i j  in the y  direction, we take points ( , )Z i y  and 

( , 1)Z i y  to compute using the second order linear interpolation formula in y  

direction as shown  

 

     2 1
1 2

1 2 2 1

( , ) ( ) ( )
y y y y

Z i j F y F y
y y y y

 

            
( 1)

( , ) ( , 1)
( 1) ( 1)

j y j y
Z i y Z i y

y y y y
 

    ( , ) 1 ( , 1)Z i y j y Z i y j y . (3.50) 

Substituting equations (47) and (48) in to equation (49), we obtain 

 

( , ) ( , )( 1) ( 1, )( ) ( 1)Z i j Z x y i x Z x y i x j y  

                ( , 1)( 1) ( 1, 1)( ) ( )Z i y i x Z x y i x j y .  

Thus the bilinear interpolation becomes 

 

    ( , ) ( , )( 1)( 1) ( 1, )( )( 1)Z i j Z x y x i y j Z x y i x y j  

          ( , 1)( 1)( ) ( 1, 1)( )( )Z i y x i j y Z x y i x j y , (3.51) 
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where ( , )x y  is the spatial index of the topography data grid cell, ( , )i j  is the cell 

approximation. 

The bilinear solution obtained in equation (3.51) makes it possible to obtain a 

more accurate result from the investigated software namely VirtualSed3D Software. 

The Flowchart diagram of the VirtualSed3D software is explained in the next section. 

3.3.7 Flowchart Diagram of VirtualSed3D Software 

The VirtualSed3D software is designed to support the simulation and 

visualization of the sediment transport. It provides to read the topography data and 

allows the user to simulate the wave movement and sediment transport by given wave 

direction. The software can visualize the wave propagation and the sediment 

movement. It allows the user to rotate, zoom in and out from different perspective.  
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Figure 17 Flow of computation 
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 Simulation for the numerical solution of the sediment transport would be 

carried out in the next chapter. Discussion on the various figures would be shown as 

well. 
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Chapter 4 

Results and Discussion 

 In this chapter the various simulations for the distribution of sediment would 

be discussed. First of all, the 1-dimensional SWEs would be used to describe the 

movement of the sediment. Different values for the porosity of the sediment are used 

to simulate the sediment distribution. The corresponding graphs and figures from the 

1-dimensional simulation would be shown as well as any further analysis. The 2-

dimensional SWEs representing the physical problem of this study would be used to 

explain the distribution of sediment in Bandon Bay using the VirtualSed3D software. 

 The user interface of the program would be presented together with the 

various buttons, sliders and check boxes. The map of the area under study would be 

loaded into the program for the simulation and the visualization of sediment 

distribution.  

4.1 The 1-Dimensional Graphic for Sediment Distribution 

In order to fully understand the distribution of sediment, the 1-dimensional is 

presented with the following assumptions as follows 

1. The sediment along the sea bed is homogenous case only. 

2. The initial wave is considered to commence from the left, right and both. 

3. The initial wave is continuous. 

 Figure 18 below presents the user interface of the program. 
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Figure 18 Initial condition for sediment transport in 1-dimensional at time t = 0 s. 

From Figure 18, the initial wave can be started from the left, right or both. The 

porosity of the sediment can be inputted and the amplitude of the wave can be 

adjusted to any desirable value. The time step for the computation can be known 

when the program starts. The level of water in Figure 18 is at 0.3 meters as shown 

with blue color while the sediment is at 0.1 meter and rises to 0.2 meters (green) by 

using the formula
2

( 5)
0.1 0.1

i x
e . 

4.1.1 Validation of Models 

The simulation carried out in this study was as a result of the conservation of 

the mass equation. However, this was validated by comparing sediment transport 

model in this study with standard Grass model. 
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(a) 

 

(b) 

Figure 19 (a) Graph of sediment transport from the conservation of mass equation at time t = 10 s. 

and (b) Graph of sediment transport by using the Grass model at time t = 10 s  

Figure 19(a) and Figure 19(b) show the sediment distribution with the 

conservation of mass equation and the Grass model at time t=10 s. The porosity of 

sediment used in the simulation is set to 0.43 and gA  constant is set to 0.3 (constant 

used in the Grass model). 

 

Figure 20 Graph of sediment transport from the conservation of mass equation and 

the Grass model at time t = 20 s. 
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Figure 21 Graph of sediment transport from the conservation of mass equation and 

the Grass model at time t = 30 s. 

 Figure 20 and Figure 21 show the sediment distribution by comparing the 

sediment transport from the conservation of mass equation and the Grass model. 

Figure 20 presents two models that is the Grass and the sediment transport models at 

time t=20 s. Figure 21 illustrates the difference of two models at time t=30 s. If the 

constant 
gA  and porosity are increased, the sediment will move faster than the small 

value of constant. From the results, both models can be used to simulate the 

distribution of sediment. The next will explain about the result of the sediment 

distribution by changing the involved parameters such as porosity of the sediment, 

height of water depth and increment in the sediment level. 

4.1.2 Simulation of Sediment Distribution  

The result of sediment transport in the 1-dimensional case would be used to 

explain the distribution of sediment in different category, when the values for the 

porosity of the sediment are changed, height of water depth is increased and 

increment of sediment level. The simulated results are shown in Figure 22, Figure 23, 

Figure 24, Figure 25 and Figure 26.     
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Figure 22 Sediment transport in 1-dimension with porosity of sediment 0.3  

at time t =20 s. 

 

Figure 23 Sediment transport in 1-dimension with porosity of sediment 0.6  

at time t = 20 s. 

 

Figure 24 Sediment transport in 1-dimension with porosity of sediment 0.9  

at time t = 20 s. 
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Figure 22, Figure 23 and Figure 24 present the simulation of sediment 

distribution in the 1-dimensional case. The porosity of sediment in Figure 22 is set to 

0.3 with wave amplitude of 0.03, the sediment displacement can be seen at time t=20 

s. The porosity is changed from 0.3 (in Figure 22) to 0.6 (in Figure 23), the sediment 

transport moves faster when the porosity increases. The porosity is further increased 

to 0.9 and at this point it has become lighter and as a result it moves faster than in 

Figure 22 and Figure 23, therefore, it can be seen that lighter the sediment becomes, 

the faster it displaces.       

 

Figure 25 Sediment transport in 1-dimension with porosity of sediment 0.3 and depth 

of water 0.5 meters at time t = 20 s. 

 Figure 25 shows the sediment distribution when the water level is increased 

from 0.3 meters in Figure 22 to 0.5 meters with the same amplitude of wave and 

porosity, the sediment is not displaced much as seen in Figure 25. This is because the 

depth of water in Figure 25 is higher than the depth of water in Figure 22. As a result 

the movement of the wave does not affect the sediment distribution when the water is 

much deeper. 
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Figure 26 Sediment transport in 1-dimension with the level of sediment increased by 

0.07 meters 

 When the program runs, the level of sediment can be increased and this can be 

seen in Figure 26. At time t=0 s. until 10 s. the program runs without any addition of 

sediment. From t=10 s. to t=20 s., the level of sediment is increased by 0.07 meters in 

the left boundary. This shows the fact that, as river streams flow into the ocean, they 

can deposit sediment which needs to be accounted for in the simulation. 

4.2 The 2-Dimensional Graphic for Sediment Distribution 

A two-dimensional SWEs model together with the sediment transport model 

by using conservation of mass equations was used to read the topography data in 

VirtualSed3D software as shown in Figure 27. 
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Figure 27 Topography data visualized by the VirtualSed3D 

The topography data in this study considered longitude at 99.20416667E to 

99.49583333E from the west to the east and latitude at 9.387500N to 9.170833N from 

the north to south. The file structure of the data is explained in appendix Ⅱ. Therefore, 

from one latitude-longitude point, the measurement from the SRTM 30 is 

approximated to 1 kilometer which gives 36 kilometers from west to east and 27 

kilometers from north to south. The topography data are then interpolated using 

equation (3.51) to 200 meters for higher resolution. 

Figure 27 shows the user interface of the VirtualSed3D software. The various 

buttons, check boxes and radio buttons are used to enter all values to specify the 

command in the program. The user interface consists of three tabs, the first tab is for 

setting parameters, the second is to show graph and the third is for setting light 

parameters. 

The parameter tab is for setting all the various parameters used in the model. 

All parameters can be adjusted and varied in order to simulate the distribution of 
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sediment. Also, the direction of the initial wave and a button to load the map to the 

study area as well as the button to run the program are presented. 

The graph tab is where the simulation of the sediment distribution is visualized 

graphically. The “light tab” is used to control the light parameters to aid the 

visualization process in various light properties at different angles of the study area.  

Figure 28, Figure 29 and Figure 30 give a detailed description of the user 

interface of the program under the parameter tab. 

 

Figure 28 Panel for initializing the initial wave 

Figure 28 shows the panel for initializing the wave. The wave can be 

initialized from the east, the north and both east and north. The initial wave can be 

drawn by the user in desired direction on the topography map. 

 

Figure 29 Panel for entering and changing the model parameters 
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Figure 29 shows the panel for entering and changing the parameters of the 

model while running the simulation. The porosity value of sediment can be changed 

on this tab, also the manning coefficient in the bed friction force can be changed as 

well. The amplitude of the initial wave, the amplitude of wave on the river can all be 

adjusted using the slider. Sediment can be added at the initial time and during the 

simulation. 

 

Figure 30 Additional settings for simulation 

Figure 30 shows additional setting for more information in the simulation. The 

New and Run buttons can be used to load the map in the study area and also run the 

program, respectively.  

Figure 31 and Figure 32 show the various features under the graph tab. 

 

Figure 31 Latitude and longitude for setting the point for plotting graph 

Figure 31 shows the panel for plotting the graphs of the various points on the 

map as well as the latitude and longitude for drawing the positions of the points. The 
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height of sediment, sea surface and depth of water can be known when the program is 

running. The graph of the various points can be known by switching between the 

points on the right pane. 

 

Figure 32 Plotting graph panel 

 From Figure 32, the sediment level and the wave height can be together 

plotted on the graph. The end user can change to the another position to measure the 

sediment level and wave height by selecting in the drop down list. 

Figure 33 shows the various sliders for controlling the light in the program. 

 

Figure 33 Sliders for controlling the light parameters 

 The ambient lighting, the diffuse lighting and specular lighting of the area 

under study can be controlled by using the various sliders. 
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 The ambient lighting is the constant light that prevents the area from being 

completely dark. The diffuse lighting is responsible for brightening the area when it is 

directed towards it. The specular lighting simulates a bright spot of a light bright parts 

of the area. The light parameters can be controlled to see the visualization of the 

distribution of sediment clearly.   

 

Figure 34 Arbitrary points for simulation 

Figure 34 shows the position of the various points that were used to carry out 

the simulations. The points P1, P2, P3, P4, P5 and P6 are chosen such that the 

distribution of sediment can be measured.  
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Point P3 

 

Point P4 

 

Point P5 

 

Point P6 

Figure 35 Distribution of sediment with porosity of sediment 0.5 and initial wave 

from the east at points P1 to P5 

Figure 35 shows the graph of the distribution of sediment for the various 

points described in Figure 34. The simulations were carried out for more than 24 

hours in order to mimic the real world situation. The depth of water at the beginning 

of the simulation is 2.38, 19.36, 4.27, 1.63, 9.48 and 18.94 meters for points P1, P2, 

P3, P4, P5 and P6, respectively. The porosity of the sediment is 0.5 for the entire 

simulation. The manning coefficient in the bed friction force is responsible for the 

smooth or rough movement of the sediment and this value is fixed at 0.025 according 

to Kontar et al., 2014. 

The amplitude of the initial wave is 0.5 and this can be varied using the slider. 

The initial wave is started from the east and the graph of the distribution of the 
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sediment can be seen in Figure 35. The distribution of the sediment can be seen to be 

constant at point P1 throughout the whole simulation. This is not the case for points 

P2 and P3. As the initial wave is from the east, the movement of the sediment is much 

higher at point P3. The sediment is then deposited at point P2 as it is close to point P3. 

From Figure 35 at point P2, the second graph (the sediment distribution) shows an 

increasing of the amount of sediment from the beginning of the simulation. 

The sediment distribution at point P4 also starts decreasing at the beginning of 

the simulation. At this point the wave speed is not too strong and as a result, it 

becomes constant at a point in time. Points P5 and P6 also show the respective 

distribution of sediment at different positions to fully understanding the sediment 

movement. 
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Point P5 

 

Point P6 

Figure 36 Distribution of sediment with porosity of sediment 0.5 and initial wave 

from the north at points P1 to P6 

The simulation in Figure 34 is repeated with the initial wave from the initial 

wave from the north. The porosity of the sediment is 0.5 just as the previous 

simulation. The distribution of the sediment for the various points can be seen in 

Figure 36. Point P1 still shows the same behavior as in Figure 35. There is not much 

of a decrease or increase in the movement of sediment. Points P2 and P3 are also 

showing similar behavior in Figure 35. In Figure 36, at points P2 and P3, the 

movement of the sediment is deposited at point P2 from point P3. Points P4, P5 and 

P6 although they are far from the initial wave, which is a significant change in the 

distribution of sediment as shown in Figure 36. 

 

Point P1 

 

Point P2 

Distance (d) Distance (d) 

Distance (d) Distance (d) 

He
igh

t o
f w

at
er

 (m
) 

He
igh

t o
f w

at
er

 (m
) 

He
igh

t o
f w

at
er

 (m
) 

He
igh

t o
f w

at
er

 (m
) 



70 

 

 

Point P3 

 

Point P4 

 

Point P5 

 

Point P6 

Figure 37 Distribution of sediment with porosity of sediment 0.5 and initial wave 

from the north/east at points P1 to P6 

Figure 37 shows the distribution of sediment with the initial wave from both 

the north and the east. The movement of sediment is greatly affected with the initial 

wave from both directions. The porosity of sediment is 0.5 and the amplitude of the 

initial wave is 0.5 meters. At point P1 in Figure 37, the sediment increases at the 

initial time and this attains a constant movement in the middle of the simulation. With 

the positions of the various points in Figure 34, the behavior and the distribution of 

sediment can be seen in Figure 37. 

The amount of sediment can be increased or decreased depending on the 

distance from initial wave, but not only this parameter. There are more parameters 

needed to be studied such as wave speed, water depth and porosity of sediment. 
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Point P1 

 

Point P2 

 

Point P3 

 

Point P4 

 

Point P5 

 

Point P6 

Figure 38 Distribution of sediment with porosity of sediment 0.05 and initial wave 

from the north/east at points P1 to P6 

Figure 38 shows the sediment distribution with the initial wave from both the 

north and east. The porosity of the sediment is reduced from 0.5 to 0.05. The 

reduction in the value means that the sediment is rougher in the case of 0.5 and fine in 

the case of the 0.05 value. As the result the movement of the sediment is restrained a 
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bit. This has been shown in Figures 22, 23 and 24 in 1-dimensional case. With the 

same amplitude of initial wave points P1, P2, P3, P4, P5 and P6 under the 2-

dimensional case show the distribution of the sediment at their respective positions in 

Figure 38. 

The sediment at point P1 maintains a constant movement whereas the 

sediment at point P2 increases at the initial time as a result of sediment from point P3. 

Point P4 in Figure 38 starts decreasing at the initial time but maintain some level of 

constancy throughout the simulation. Point P5 in Figure 38 see some increase after the 

initial time in simulation and point P6 in Figure 38 also increases at the initial time in 

the simulation and maintains some level of constancy as well. 

Simulations for different sediment porosity at different positions have been 

carried out to understand the distribution of sediment. This has been done in the 1-

dimensional case and the 2-dimensional case as well. 

However, the distribution of sediment can be described in 3-dimensional and 

this is shown in Figure 39. 

 

Figure 39 3-dimensional view of the sediments before distribution 
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 Figure 39 shows the 3-dimensional view of the program. After the map is 

loaded in the program, the area with high sediment can be seen on the map with the 

description of the color bar (Figure 40) and the contour lines display the same height 

of sediment with the description of the color bar (Figure 41). 

 

Figure 40 Color bar of high and low sediment 

 

Figure 41 Color bar of contour lines 

 Figure 40 and Figure 41 show the description of the upper bar with the area 

with high sediment is represented as maxZ  and the area with low sediment is 

represented as minZ . It should be noted that high and low sediment corresponds to the 

colors and this is used in the result that follow in Figures 43-48. 
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Figure 42 Initial wave for the simulation 

 In the 3-dimensional view, the initial wave for the simulation is done by 

drawing a black line on the ocean. Figure 42 shows an example of a line drawn to 

initialize the wave for the simulation. The line can therefore be done on any desirable 

part of the ocean to understand how sediment distributes based on the direction as 

well as how close they are to the initial wave. 

Simulations carried in 3- dimensions are shown in the figures that follow. This 

is done with three different values of sediment types at different times 
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Time (s.) 
Porosity of sediment ( ) 

0.1 0.3 0.5 

10,000 

   

a b c 

Figure 43 Distribution of sediment with porosity of sediment 0.1, 0.3 and 0.5 at time t=10,000 s. 

50,000 

   

a b c 

Figure 44 Distribution of sediment with porosity of sediment 0.1, 0.3 and 0.5 at time t=50,000 s. 
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Time (s.) 
Porosity of Sediment ( ) 

0.1 0.3 0.5 

100,000 

   

a b c 

Figure 45 Distribution of sediment with porosity of sediment 0.1, 0.3 and 0.5 at time t=100,000 s. 

150,000 

   

a b c 

Figure 46 Distribution of sediment with porosity of sediment 0.1, 0.3 and 0.5 at time t=150,000 s. 
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Time (s.) 
Porosity of Sediment ( ) 

0.1 0.3 0.5 

200000 

   

a b c 

Figure 47 Distribution of sediment with porosity of sediment 0.1, 0.3 and 0.5 at time t=200,000 s. 

250000 

   

a b c 

Figure 48 Distribution of sediment with porosity of sediment 0.1, 0.3 and 0.5 at time t= 250,000 s. 
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Figure 43 shows the sediment distribution for sediment type with values 0.1, 

0.3 and 0.5 at time t=10,000 s. With a porosity of 0.1 and an initial wave drawn as 

shown in the Figure 42, the sediment does not move that much for t=10,000 s. This is 

because the porosity of sediment is heavy. When the porosity is reduced to 0.3 in 

Figure 43(b), with the same initial wave, the sediment moves but not too much. The 

porosity is reduced to 0.5 in Figure 43(c) and the movement is much faster than when 

the values are 0.1 and 0.3 as now the porosity of the sediment has become lighter than 

before.  

 The simulation of the sediment continuous with an increased in the time from 

10,000 to 50,000 s. With the same porosity, the wave is initialized by drawing a line 

on the ocean as described as earlier. Even with an increase in the time, the distribution 

of the sediment when the porosity is 0.1 does not move fast as shown in Figure 44(a). 

Figure 44(b) shows a significant movement in the sediment with a porosity of 0.3. As 

the porosity is increased to 0.5, the sediment moves faster and the colors bar described 

earlier in Figure 40 shows the area with much sediment in figure 44c.  

 The change of porosity in Figure 45, Figure 46, Figure 47 and Figure 48 are 

similar to the Figure 43 and Figure 44 with the same behavior when increasing the 

porosity with different time t=100,000 s. (Figure 45), t=150,000 s. (Figure 46), 

t=200,000 s. (Figure 47), t=250,000 s. (Figure 48).   

Finally, the amount of sediment in this study can be increased or decreased 

depending on the distance from initial wave, wave speed, water depth and porosity of 

sediment. 

The next chapter describes the inferences and conclusion that can be drawn 

from the entire study from the modeling though to the simulation.   
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Chapter 5 

Conclusions and Further Research 

5.1 Conclusions 

 Sediment is needed to build aquatic habitats and also reintroduce nutrients for 

grasses that grow on shallow areas of oceans, sea, and other water bodies and as 

result, its distribution needs to be monitored as it can create problems for people 

living along the coast. 

 In this study, sediment distribution has been studied through mathematical 

modeling and simulation. This was done by using the Shallow Water Equations 

(SWEs) combined with sediment transport equation. A sediment transport model has 

been presented by using the idea following the flow of water from the conservation of 

mass. However, the flow of water and sediment are different so we add a porosity 

parameter of sediment to multiply with the rate of sediment flow per one unit. The 

model was solved numerically by using the finite volume methods which are based on 

the basis of the integral form of the conservation laws. The calculation of the flux 

from the numerical solution has been shown. The Godunov method was used to 

approximate the functions for solving the Riemann problem. The functions of 

Godunov method were computed by using the Harten Lax Van Lee approach (HLL) 

to approximate the numerical flux. Also, the data for the area of study was 

interpolated in order to simulate the entire area for the sediment distribution. Various 

simulations have been carried out to understand the distribution of sediment. The 1-

dimensional SWEs and sediment transport equation were first used under the 

distribution. The validity of the sediment transport model was compared with the 
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grass model. The results showed that the sediment transport model is able to describe 

the distribution of sediment. This has been achieved by using different values of the 

porosity of sediment. The simulations were carried out for some time to know the 

sediment distribution between the two models.  

The 2-dimensional SWEs together with the sediment model were also used to 

understand the distribution. With the initial wave from the East, North, East/North 

and also initialized by drawing the desire direction in the picture pane, the movement 

of sediment has been described in 2-dimensions for the study. A VirtualSed3D 

program developed using the Lazarus programming software is used for the 

simulation. With the latitude and longitude, different positions have been chosen on 

the map to know the distribution in shallow water or at the deepest parts of the ocean. 

All the various simulations and graph have been shown and described. 

A 3D view of the sediment distribution has also been shown with different 

colors depicting how much sediment there is at any given area in the ocean. This has 

been shown with the color bar. As the porosity is reduced, the distribution of the 

sediment can be seen and understood. 

Finally, it can be concluded that the sediment transport model has been able to 

describe the distribution of sediment and the distribution depends on the porosity of 

sediment, the continuous movement of wave and also the depth of a particular area 

under consideration. 

5.2 Further Research 

This research studied the simulation of sediment transport in order to 

understand the behavior and also provide some insight on how to prevent the damage 
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in the future. This study considered the sediment along the sea bed in homogeneous 

case only, while in fact, the topography of the seabed in the form of stones and rocks 

cannot move. Also, sediments at each position are of different types. Therefore, it will 

be very interesting to consider the topography and sediment along sea bed separately 

in the model. 

Since no experimental data exists for the sediment transport model used in this 

study, the validation of sediment transport equation is deduced by comparing the 

results obtained in this model with the Grass model. Also, the visualization in the 

study is not able to account for high slopes which cause sea surface movements. 

However, these issues could be developed in future researches. 
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How to use the program 

This section describes how to use the investigated software. The following 

steps are involved in using the VirtualSed3D program. 

1. Set and input the initial values as describe in the figure below: 

 

Figure 49 Input and set initial values for the program 

     1.1. Clicking the New bottom to download the topography data. 

      1.2. Choosing the direction of the initial wave. 

      1.3. Inputting the initial value of Manning coefficient, sediment  

porosity, amplitude of initial wave, etc. 

 

 

 

 

 

 

1.1 

1.2 

1.3 
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2. Select the latitude and longitude from the dropdown list as shown in the 

figure below: 

 

Figure 50 Latitude and longitude for the positions 

3. Vary the various sliders to control the light as outlined in the figure below: 

 

Figure 51 Sliders to control the light 
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4. Click the Run button to run the program as shown in the figure below: 

 

Figure 52 Run button to start the program 
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Algorithm of the program 

The section 3.5.6 in Chapter 3 shows an overview of the algorithm for 

calculating the results from the model in this research. In the appendix Ⅰ, the details 

from the flowchart in section 3.5.6 are described as follows. 

Read Maps 

This section describes loading the topography data. 

 

Figure 53 loading topography data 

procedure ReadMapl();  

AssignFile(F,'C:\\ directory file'); 

   ReSet(F); 

   Readln(F,dataMapW); Readln(F,dataMapH); 

   for j := 0 to dataMapH-1 do 

       for i := 0 to dataMapW-1 do 

       begin 

          Read(F,Topo[i,j]); 

       end;   CloseFile(F); 

end;   

Start 

Open file 

Read file 

Close file 

Stop 



92 

 

Interpolate Data and Set Initial Values 

This section describes the steps to interpolate and to set the initial data and this 

can be inputted by the user. The initial data that will be used in the simulation are the 

height of sediment ( z ), depth of water (h ) and the rate of water flow per one unit in 

the x and y directions ( ,uh vh ), respectively. The steps involved in the calculations are 

as follows 

 

Figure 54 Set initial value and interpolate data 

Start 

Input size of MapH and 

MapW for interpolation 

Set initial data for 

computing 

Find minimum and maximum of 

topography data  

Interpolate 

Data management and set 

initial values  

Find minimum and maximum of 

height of water and sediment 

Stop 

Start 

Return 

Compute by using 

equation (3.51) 
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procedure SetInitialValue(); 

begin 

  MapW  := size of data to interpolate; 

   MapH  := size of data to interpolate; 

   t:=0;            dt:=0;         umax := 0;        timestep := 0; 

   dx := MapW;    dy := MapH;     FCoef := 0.025; SCoef := 0.43; 

   an := 0;           bn := 1;           cn := 2; 

 

   for j:=0 to MapH-1 do 

     for i:=0 to MapW-1 do 

    begin 

        Data[i,j] :=  Interpolate (i,j); 

 

          if DataMin > Data[i,j] then 

          begin 

              DataMin := Data[i,j]; 

          end 

          else if DataMax < Data[i,j] then 

          begin 

              DataMax := Data[i,j]; 

          end; 

      end;           

 

for j := 0 to MapH-1 do 

       for i := 0 to MapW-1 do 

      begin 

          U[an,i,j].uh  :=  0; 

          U[an,i,j].vh  :=  0; 

          U[an,i,j].h  :=  0; 

         U[an,i,j].z  :=  abs(DataMin)+Data[i,j]; 

             U[an,i,j].h  :=  max(0,abs(DataMin)-U[an,i,j].z); 
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          U[bn,i,j]:=U[an,i,j]; 

          U[cn,i,j]:=U[an,i,j]; 

 

          if DataMinH > U[an,i,j].h then 

         begin 

              DataMinH := U[an,i,j].h; 

          end 

          else if DataMaxH < U[an,i,j].h then 

          begin 

              DataMaxH :=  U[an,i,j].h; 

          end; 

          if DataMinZ > U[an,i,j].z then 

          begin 

              DataMinZ := U[an,i,j].z; 

          end 

          else if DataMaxZ < U[an,i,j].z then 

          begin 

              DataMaxZ := U[an,i,j].z; 

          end; 

       end; 

end;                    

 

function Interpolate(imap,jmap); 

begin 

   x := (imap)*(dataMapW-1)/(MapW-1); 

   y := (jmap)*(dataMapH-1)/(MapH-1); 

   i := floor(x); j := floor(y); 

   ee := topo[i,j]*(i+1-x)*(j+1-y)+topo[min(i+1,dataMapW-1),j]*(x-i)*(j+1-y) 

                 +topo[i,min(j+1,dataMapH-1)]*(i+1-x)*(y-j)+topo[min(i+1,dataMapW-1),   

         min(j+1,dataMapH-1)]*(x-i)*(y-j); 

   Settopography:=ee; 

end;      
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Set Boundary 

This section defines the 4 edges of the boundary. In this research, an open and 

closed boundary is considered. The steps for configuring are 

 

Figure 55 Set boundary condition 

procedure Setboundary(); 

begin 

 for j:=1 to MapH-2 do       //close boundary 

   for i:=1 to MapW-2 do 

   begin 

      if (U[an,i,j].h = 0) then  

      begin 

         U[an,i,j].h := 0; 

         U[an,i,j].uh:= 0; 

         U[an,i,j].vh:= 0; 

         ur[i,j]:=0;   ul[i,j]:=0;     uu[i,j]:=0;     ud[i,j]:=0; 

         vr[i,j]:=0;   vl[i,j]:=0;     vu[i,j]:=0;     vd[i,j]:=0; 

         hr[i,j]:=0;   hl[i,j]:=0;     hu[i,j]:=0;     hd[i,j]:=0; 

end; 

   end; 

 

Start 

Set closed boundary by 

using equation (3.44) 

Set open boundary by 

using equation (3.43) 

 

Stop 
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     for j:=0 to MapH-1 do  //open boundary 

     begin 

        i := 0 

     U[an,i,j] := U[an,i+1,j]; 

          U[bn,i,j] := U[an,i,j]; 

          U[cn,i,j] := U[an,i,j]; 

       u11 := sqrt(2) * (U[an,i,j].uh * U[an,i,j].h) / sqrt(power(U[an,i,j].h,4) +  

           max(power(U[an,i,j].h,4),small)); 

v11 := sqrt(2) * (U[an,i,j].vh * U[an,i,j].h) / sqrt(power(U[an,i,j].h,4) +  

max(power(U[an,i,j].h,4),small)); 

        ur[i,j] := u11;     ul[i,j] := u11;     uu[i,j] := u11;      ud[i,j] := u11; 

        vr[i,j] := v11;     vl[i,j] := v11;     vu[i,j] := v11;      vd[i,j] := v11; 

       v11 := U[an,i,j].h;    

hr[i,j] := v11;     hl[i,j] := v11;       hu[i,j] := v11;      hd[i,j] := v11; 

       v11:=U[an,i,j].z; 

        zr[i,j] := v11;       zl[i,j] := v11;     zu[i,j] := v11;      zd[i,j] := v11; 

 

       i := MapW-1; 

               U[an,i,j] := U[an,i-1,j]; 

          U[bn,i,j] := U[an,i,j]; 

U[cn,i,j] := U[an,i,j];   

 u11 := qrt(2) * (U[an,i,j].uh * U[an,i,j].h) / sqrt(power(U[an,i,j].h,4) +  

max(power(U[an,i,j].h,4),small));   

v11 := sqrt(2) * (U[an,i,j].vh * U[an,i,j].h) / sqrt(power(U[an,i,j].h,4) +  

max(power(U[an,i,j].h,4),small)); 

          ur[i,j] := u11;     ul[i,j] := u11;     uu[i,j] := u11;    ud[i,j] := u11; 

          vr[i,j] := v11;     vl[i,j] := v11;     vu[i,j] := v11;    vd[i,j] := v11; 

          v11:=U[an,i,j].h; 

         hr[i,j]:=v11;       hl[i,j] := v11;     hu[i,j] := v11;     hd[i,j]:=v11; 

          v11:=U[an,i,j].z; 

          zr[i,j]:=v11;       zl[i,j]:=v11;       zu[i,j]:=v11;       zd[i,j]:=v11; 

       end; 
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       for i:=0 to MapW-1 do 

       begin 

          j:=0; 

             U[an,i,j] := U[an,i,j+1]; 

             U[bn,i,j] := U[an,i,j]; 

             U[cn,i,j] := U[an,i,j];      

u11 := sqrt(2) * (U[an,i,j].uh * U[an,i,j].h) / sqrt(power(U[an,i,j].h,4) +            

           max(power(U[an,i,j].h,4),small)); 

v11 := sqrt(2) * (U[an,i,j].vh * U[an,i,j].h) / sqrt(power(U[an,i,j].h,4) +  

max(power(U[an,i,j].h,4),small)); 

          ur[i,j] := u11;     ul[i,j] := u11;     uu[i,j] := u11;     ud[i,j] := u11; 

          vr[i,j] := v11;     vl[i,j] := v11;     vu[i,j] := v11;     vd[i,j] := v11; 

          v11 := U[an,i,j].h 

          hr[i,j] := v11;     hl[i,j] := v11;     hu[i,j] := v11;     hd[i,j] := v11; 

          v11 := U[an,i,j].z; 

          zr[i,j] := v11;     zl[i,j] := v11;     zu[i,j] := v11;     zd[i,j] := v11; 

 

          j:=MapH-1; 

            U[an,i,j] := U[an,i,j-1]; 

            U[bn,i,j] := U[an,i,j]; 

           U[cn,i,j] := U[an,i,j];     

u11 := sqrt(2) * (U[an,i,j].uh * U[an,i,j].h) / sqrt(power(U[an,i,j].h,4) +  

max(power(U[an,i,j].h,4),small)); 

v11 := sqrt(2) * (U[an,i,j].vh * U[an,i,j].h) / sqrt(power(U[an,i,j].h,4) +  

max(power(U[an,i,j].h,4),small)); 

          ur[i,j]:=u11;     ul[i,j]:=u11;     uu[i,j]:=u11;     ud[i,j]:=u11; 

          vr[i,j]:=v11;     vl[i,j]:=v11;     vu[i,j]:=v11;     vd[i,j]:=v11; 

          v11:=U[an,i,j].h; 

          hr[i,j]:=v11;     hl[i,j]:=v11;     hu[i,j]:=v11;     hd[i,j]:=v11; 

          v11:=U[an,i,j].z; 

          zr[i,j]:=v11;     zl[i,j]:=v11;     zu[i,j]:=v11;     zd[i,j]:=v11; 

       end; end;      
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Set Initial Wave 

This section defines the initial condition for the simulation. 

 

Figure 56 Set initial wave 

procedure InitialWave(); 

begin 

for j := 0 to resizedbitmap.Height-1 do 

          for i := 0 to resizedbitmap.Width-1 do 

          begin 

               if (Image1.Canvas.Pixels[i,j]=clBlack) then 

               begin 

                    if U[an,i,j].h > 0 then 

                    begin 

U[an,i,j].h:= max(0.1,(abs(DataMin)+Amp*sin 

(timestep*pi/45))-U[an,i,j].z); 

                                              U[an,i,j].uh:=0; 

                          U[an,i,j].vh:=0; 

                          U[bn,i,j]:=U[an,i,j]; 

                          U[cn,i,j]:=U[an,i,j]; 

                    end; 

               end; 

         end; 

Start 

Set inflow condition by 

using equation (3.45) 

Stop 



99 

 

 

if ((cbNorth.Checked = true) or (BothEastNorth.Checked = true)) then 

    begin 

      for i:=0 to MapW-1 do 

      begin if U[an,i,1].h > 0 then 

         begin 

               U[an,i,1].h:= max(0.1,(abs(DataMin) + Amp *  

          sin(timestep * pi / 45)) - U[an,i,1].z); 

               U[an,i,1].z:=TmpNB[i,0]+Sed; 

               U[an,i,1].uh:=0; 

               U[an,i,1].vh:=0; 

               U[bn,i,1]:=U[an,i,1]; 

               U[cn,i,1]:=U[an,i,1]; 

         end; 

      end; 

  end; 

if ((cbEast.Checked = true) or (BothEastNorth.Checked = true)) then 

begin 

      for j:=0 to MapH-1 do 

      begin if U[an,MapW-3,j].h > 0 then 

         begin 

            U[an,MapW-3,j].h := max(0.1,(abs(DataMin) + Amp *  

sin(timestep * pi / 45)) - 

U[an,MapW-3,j].z); 

            U[an,MapW-3,j].z := TmpEB[0,j]+Sed; 

            U[an,MapW-3,j].uh:=0; 

            U[an,MapW-3,j].vh:=0; 

            U[bn,MapW-3,j]:=U[an,MapW-3,j]; 

            U[cn,MapW-3,j]:=U[an,MapW-3,j]; 

         end; 

      end; 

  end; 

end;                   
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Reconstruction 

In this section, data at the edges of the 4 sides of each cell is created to 

calculate the flux and the results of the model. The details are as follows 

 

Figure 57 Reconstruction 

procedure TForm1.reconstruction(nU); 

begin 

   for j:=1 to MapH-2 do 

   for i:=1 to MapW-2 do 

   begin 

      u01 := dvz(U[nU,i-1,j].uh,U[nU,i-1,j].h); 

      u11 := dvz(U[nU,i,j].uh,U[nU,i,j].h); 

      u21 := dvz(U[nU,i+1,j].uh,U[nU,i+1,j].h); 

     u10 := dvz(U[nU,i,j-1].uh,U[nU,i,j-1].h); 

      u12 := dvz(U[nU,i,j+1].uh,U[nU,i,j+1].h); 

      v01 := dvz(U[nU,i-1,j].vh,U[nU,i-1,j].h); 

      v11 := dvz(U[nU,i,j].vh,U[nU,i,j].h); 

      v21 := dvz(U[nU,i+1,j].vh,U[nU,i+1,j].h); 

      v10 := dvz(U[nU,i,j-1].vh,U[nU,i,j-1].h); 

      v12 := dvz(U[nU,i,j+1].vh,U[nU,i,j+1].h); 

 

      dux := 0.5*minmod((u11-u01)/dx,(u21-u11)/dx)*dx; 

Compute Piecewise 

linear reconstruction by 

using equation (3.32) 

Compute minmod 

function by using 

equation (3.34) 

Start Start 

Start Return 
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      ul[i,j] := u11-dux; 

      ur[i,j] := u11+dux; 

 

      duy := 0.5*minmod((u11-u10)/dy,(u12-u11)/dy)*dy; 

      uu[i,j] := u11-duy; 

      ud[i,j] := u11+duy; 

 

      dvx := 0.5*minmod((v11-v01)/dx,(v21-v11)/dx)*dx; 

      vl[i,j] := v11-dvx; 

      vr[i,j] := v11+dvx; 

 

      dvy := 0.5*minmod((v11-v10)/dy,(v12-v11)/dy)*dy; 

       vu[i,j] := v11-dvy; 

      vd[i,j] := v11+dvy; 

 

      u01 := U[nU,i-1,j].h; 

      u11 := U[nU,i,j].h; 

      u21 := U[nU,i+1,j].h; 

      u10 := U[nU,i,j-1].h; 

      u12 := U[nU,i,j+1].h; 

      dhx := 0.5*minmod((u11-u01)/dx,(u21-u11)/dx)*dx; 

      hl[i,j] := u11-dhx; 

      hr[i,j] := u11+dhx; 

      dhy := 0.5*minmod((u11-u10)/dy,(u12-u11)/dy)*dy; 

      hu[i,j] := u11-dhy; 

      hd[i,j] := u11+dhy; 

 

     u01 := U[nU,i-1,j].z+U[nU,i-1,j].h; 

      u11 := U[nU,i,j].z+U[nU,i,j].h; 

      u21 := U[nU,i+1,j].z+U[nU,i+1,j].h; 

      u10 := U[nU,i,j-1].z+U[nU,i,j-1].h; 

      u12 := U[nU,i,j+1].z+U[nU,i,j+1].h; 
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      dzx := 0.5*minmod((u11-u01)/dx,(u21-u11)/dx)*dx; 

      zl[i,j] := u11-dzx-hl[i,j]; 

      zr[i,j] := u11+dzx-hr[i,j]; 

      dzy := 0.5*minmod((u11-u10)/dy,(u12-u11)/dy)*dy; 

      zu[i,j] := u11-dzy-hu[i,j]; 

      zd[i,j] := u11+dzy-hd[i,j]; 

   end; 

end;    

 

Function dvz(a,b); 

begin 

   dvz:=sqrt(2)*(a*b)/sqrt(power(b,4)+max(power(b,4),small)); 

end; 

 

Function Minmod(a,b); 

begin 

   MM:=0.5*(sign(a)+sign(b))*min(abs(a),abs(b)); 

   Minmod:=MM; 

end;   
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Calculate Flux 

At this point, the data from the previous sections are used to calculate the flux 

function. Also, calculate the speed of wave and find out the maximum and minimum 

of the wave speed to compute t . The details are as follows    

 

Figure 58 Calculate the flux function 

Procedure CalFlux(nU); 

begin 

  umax:=0; 

for j:=1 to MapH-2 do 

  for i:=1 to MapW-2 do 

begin 

      fr[i,j] := NumericalFluxX(ur[i,j],vr[i,j],hr[i,j],zr[i,j],ul[i+1,j],vl[i+1,j], 

hl[i,j+1],zl[i+1,j]); 

      fl[i,j] := NumericalFluxX(ur[i-1,j],vr[i-1,j],hr[i-1,j],zr[i-1,j],ul[i,j], 

vl[i,j],hl[i,j],zl[i,j]); 

      fd[i,j] := NumericalFluxY(ud[i,j],vd[i,j],hd[i,j],zd[i,j],uu[i,j+1], 

vu[i,j+1],hu[i,j+1],zu[i,j+1]); 

Start 

Stop 

Start 

Return 

Compute  

Calculate flux by 

using equation 

(3.29) 

Compute speed of 

wave in y direction 

Compute flux 

function in y 

direction 

Find maximum of 

speed of wave in y 

direction 

Start 

Return 

Compute speed of 

wave in x direction 

Compute flux 

function in x 

direction 

Find maximum of speed 

of wave in x direction 
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      fu[i,j] := NumericalFluxY(ud[i,j-1],vd[i,j-1],hd[i,j-1],zd[i,j-1],uu[i,j],  

vu[i,j],hu[i,j],zu[i,j]); 

      fcx[i,j]:=(g/2)*(hl[i,j]*hl[i,j]- hl[i,j]*hl[i,j])+(g/2)*(hr[i,j]*hr[i,j]-

hr[i,j]*hr[i,j])+(g/2)*(hl[i,j]+hr[i,j])*(zl[i,j]-zr[i,j]); 

      fcy[i,j]:=(g/2)*(hu[i,j]*hu[i,j]-hu[i,j]*hu[i,j])+(g/2)*(hd[i,j]*  

 hd[i,j]-hd[i,j]*hd[i,j])+(g/2)*(hu[i,j]+hd[i,j])*(zu[i,j]-zd[i,j]) 

   end; 

 

   if umax<>0 then 

  begin 

      dt := min(0.5*dx/umax,0.5*dy/umax); 

   end else 

   begin 

      dt := min(dx/(2*g),dy/(2*g)); 

   end; 

end;        

 

Function NumericalFluxX(ul,vl,hl,zl,ur,vr,hr,zr); 

begin 

   a1 := max(ul+sqrt(g*hl),ur+sqrt(g*hr)); 

   a1 := max(a1,0); 

   a0 := min(ul-sqrt(g*hl),ur-sqrt(g*hr)); 

   a0 := min(a0,0); 

   Flux.h := 0; 

   Flux.uh := 0; 

   Flux.vh := 0; 

 

   if a1-a0 <> 0 then 

   begin 

      Flux.h := ((a1*(ul*hl)-a0*(ur*hr))+(a1*a0*(hr-hl)))/(a1-a0); 

      Flux.uh := ((a1*(ul*ul*hl+g*hl*hl*0.5)-a0*(ur*ur*hr+g*hr*hr*0.5))  

 +(a1*a0*(ur*hr-ul*hl)))/(a1-a0); 
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      Flux.vh := ((a1*(vl*ul*hl)-a0*(vr*ur*hr))+(a1*a0*(vr*hr-vl*hl)))/(a1-a0); 

      Flux.z := ((a1*(SCoef*ul*zl)-a0*(SCoef*ur*zr))+(a1*a0*(zr-zl)))/(a1-a0); 

end; 

   umax:=max(umax,a1); 

   umax:=max(umax,-a0); 

   NumericalFluxX:=Flux; 

end; 

 

Function NumericalFluxY(uu,vu,hu,zu,ud,vd,hd,zd); 

begin 

   a1 := max(vu+sqrt(g*hu),vd+sqrt(g*hd)); 

   a1 := max(a1,0); 

   a0 := min(vu-sqrt(g*hu),vd-sqrt(g*hd)); 

   a0 := min(a0,0); 

   Flux.h := 0; 

   Flux.uh := 0; 

   Flux.vh := 0; 

 

   if a1-a0 <> 0 then 

   begin 

      Flux.h :=((a1*(vu*hu)-a0*(vd*hd))+(a1*a0*(hd-hu)))/(a1-a0); 

      Flux.uh:=((a1*(uu*vu*hu)-a0*(ud*vd*hd))+(a1*a0*(ud*hd- 

 uu*hu)))/(a1-a0); 

      Flux.vh:=((a1*(vu*vu*hu+g*hu*hu*0.5)-a0*(vd*vd*hd+g*hd*hd*  

 0.5))+(a1*a0*(vd*hd-vu*hu)))/(a1-a0); 

      Flux.z:=((a1*(SCoef*vu*zu)-a0*(SCoef*vd*zd))+(a1*a0*(zd-zu)))  

 /(a1-a0); 

end; 

umax:=max(umax,a1); 

   umax:=max(umax,-a0); 

   NumericalFluxY:=Flux; 

end; 
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Calculate 
( )k

W  

This algorithm is a procedure for computing the results of the model by 

ignoring the source term ,i jtS  

 

Figure 59 Computation the results of model by ignoring source term 

procedure CalFlow(nU1,nU2); 

begin 

   for j:=1 to MapH-2 do 

   for i:=1 to MapW-2 do 

   begin 

      if (U[nU2,i,j].h > 0) then 

        begin 

      U[nU2,i,j].h := U[nU1,i,j].h-(dt/dx)*(fr[i,j].h-fl[i,j].h)- 

(dt/dy)*(fd[i,j].h-fu[i,j].h); 

       U[nU2,i,j].uh:= U[nU1,i,j].uh-(dt/dx)*(fr[i,j].uh-fl[i,j].uh)- 

 (dt/dy)*(fd[i,j].uh-fu[i,j].uh)+(dt/dx)*fcx[i,j]; 

       U[nU2,i,j].vh:= U[nU1,i,j].vh-(dt/dx)*(fr[i,j].vh-fl[i,j].vh)- 

(dt/dy)*(fd[i,j].vh-fu[i,j].vh)+(dt/dy)*fcy[i,j]; 

       U[nU2,i,j].z := U[nU1,i,j].z-(dt/dx)*(fr[i,j].z-fl[i,j].z)-   

(dt/dy)*(fd[i,j].z-fu[i,j].z); 

     end;  

     end; 

  end; 

Calculate   

by using equation (3.27) 

(ignore source term ) 

Start 

Stop 



107 

 

Calculate Result 
1n

W  

The calculation of the sediment transport including the source term ,i jtS  can 

be found as follows  

 

Figure 60 Computation the results of model including source term 

procedure CalResult(); 

begin 

   for j:=1 to MapH-2 do 

   for i:=1 to MapW-2 do 

   begin 

      U[bn,i,j].h := (U[an,i,j].h+U[cn,i,j].h)*0.5; 

      U[bn,i,j].uh := (U[an,i,j].uh+U[cn,i,j].uh)*0.5; 

      U[bn,i,j].vh := (U[an,i,j].vh+U[cn,i,j].vh)*0.5; 

      U[bn,i,j].z := (U[an,i,j].z+U[cn,i,j].z)*0.5; 

 

        if U[bn,i,j].h > 0 then 

      begin 

         ui := dvz(U[an,i,j].uh,U[an,i,j].h); 

         vi := dvz(U[an,i,j].vh,U[an,i,j].h); 

Start 

Compute  

 by using equation (3.41) 

Compute source term  

 by using equation (3.42) 

Stop 
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         U[bn,i,j].uh := U[bn,i,j].uh/(1+dt*g*(FCoef*FCoef*sqrt(ui*ui   

+vi*vi))/(power(U[bn,i,j].h,4/3))); 

         U[bn,i,j].vh := U[bn,i,j].vh/(1+dt*g*(FCoef*FCoef*sqrt(ui*ui  

+vi*vi))/(power(U[bn,i,j].h,4/3)));  

    end; 

end; 

end;  

Draw Image 

This section shows the step on how to compute the color RGB and draw the 

image from the results computed in the previous section. 

 

Figure 61 Compute color RGB and draw the image 

procedure TForm1.DrawImage; 

begin 

     DataRange := DataMax - DataMin; 

     DataRangeH := DataMaxH - DataMinH; 

     DataRangeZ := DataMaxZ - DataMinZ; 

     

Start 

Stop 

Start 

Return 

Draw topography 

and wave 

Set color for 

topography and 

water Start 

Return 

Set color for 

sediment 
Draw sediment 
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     //------------- Draw Land ------------------ 

     for j := 1 to MapH-3 Do 

          for i := 1 to MapW-3 Do 

    begin 

           glBegin(GL_QUADS); 

               CL := SetRGB(U[an,i,j].h,U[an,i,j].z); 

               glColor4f(CL.r/255,CL.g/255,CL.b/255,1); 

                       glVertex3f(-1+i*(2/MapW), 0.1*((U[an,i,j].h+U[an,i,j].z)/ 

Datarange)+0.1, -1+j*(2/MapH)); 

 

               CL := SetRGB(U[an,i+1,j].h,U[an,i+1,j].z); 

               glColor4f(CL.R/255,CL.G/255,CL.B/255,1); 

                      glVertex3f(-1+(i+1)*(2/MapW), 0.1*((U[an,i+1,j].h+U[an,i+1,j].z)/ 

Datarange)+0.1, -1+j*(2/MapH)); 

 

               CL := SetRGB(U[an,i+1,j+1].h,U[an,i+1,j+1].z); 

               glColor4f(CL.R/255,CL.G/255,CL.B/255,1); 

               glVertex3f(-1+(i+1)*(2/MapW),0.1*((U[an,i+1,j+1].h+U[an,i+1,j+1].z 

)/Datarange)+0.1,-1+(j+1)*(2/MapH)); 

 

               CL := SetRGB(U[an,i,j+1].h,U[an,i,j+1].z); 

               glColor4f(CL.R/255,CL.G/255,CL.B/255,1); 

               glVertex3f(-1+i*(2/MapW),0.1*((U[an,i,j+1].h+U[an,i,j+1].z)/  

Datarange)+0.1, -1+(j+1)*(2/MapH)); 

             glEnd(); 

          end; 

     

     //----------- Draw Sediment ----------------- 

     for j := 1 to MapH-3 Do 

     for i := 1 to MapW-3 Do 

     begin 

           glBegin(GL_QUADS); 
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               CZ := SetRGBZ(U[an,i,j].z); 

               glColor4f(CZ.R/255,CZ.G/255,CZ.B/255,1); 

               glVertex3f(-1+i*(2/MapW), 0.1*((U[an,i,j].z)/Datarange), -

1+j*(2/MapH)); 

 

               CZ := SetRGBZ(U[an,i+1,j].z); 

               glColor4f(CZ.R/255,CZ.G/255,CZ.B/255,1); 

               glVertex3f(-1+(i+1)*(2/MapW), 0.1*((U[an,i+1,j].z)/Datarange), -

1+j*(2/MapH)); 

 

               CZ := SetRGBZ(U[an,i+1,j+1].z); 

               glColor4f(CZ.R/255,CZ.G/255,CZ.B/255,1); 

               glVertex3f(-1+(i+1)*(2/MapW), 0.1*((U[an,i+1,j+1].z)/Datarange), -

1+(j+1)*(2/MapH)); 

 

               CZ := SetRGBZ(U[an,i,j+1].z); 

               glColor4f(CZ.R/255,CZ.G/255,CZ.B/255,1); 

               glVertex3f(-1+i*(2/MapW), 0.1*((U[an,i,j+1].z)/Datarange), -

1+(j+1)*(2/MapH)); 

            glEnd(); 

end; 

   OpenGLControl1.SwapBuffers; 

end;                    

 

Function SetRGB(h,z); 

begin 

   if h>0 then   //blue 

   begin 

            ColorIndex := Round(253* (h-DataMinH) / DataRangeH); 

       CL.r :=ColorWave[ColorIndex].R; 

       CL.g :=ColorWave[ColorIndex].G; 

       CL.b :=ColorWave[ColorIndex].B; 
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   end else 

   begin   // green 

       ColorIndex := Round(763* (z-DataMinZ) / DataRangeZ); 

       CL.r :=ColorMap[ColorIndex].R; 

       CL.g :=ColorMap[ColorIndex].G; 

       CL.b :=ColorMap[ColorIndex].B; 

   end; 

   SetRGB:=CL; 

end; 

 

Function SetRGBZ(zz); 

begin 

   if zz<= abs(DataMin) then 

   begin 

       ColorIndex := Round(253* zz/(abs(DataMin))); 

       CZ.r :=ColorSediment[ColorIndex].R; 

       CZ.g :=ColorSediment[ColorIndex].G; 

       CZ.b :=ColorSediment[ColorIndex].B; 

   end else 

   begin 

      CZ.r :=96; 

      CZ.g :=96; 

      CZ.b :=96; 

   end; 

   SetRGBZ:=CZ; 

end; 

 

 

 

 

 

 



112 

 

Simulation 

This section is a presentation of how the program works in the simulation and 

visualization of the sediment transport, which contains the procedures computed in 

previous sections. 

 

Figure 62 Call all procedure for computing 

procedure Calflood(); 

begin 

 ReadMap(); 

 Interpulate(); 

 SetinitialData(); 

 If (Run = True) then 

 begin 

    Setboundary(); 

    InitialWave(); 

    Reconstruction(an); 

    CalFlux(an); 

    CalFlow(an,bn); 

    dt1:=dt; 

 

    Setboundary(); 

    InitialWave(); 

    Reconstruction(bn); 

Start 

Call all procedures for 

computing 

Stop 
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    CalFlux(bn); 

    CalFlow(bn,cn); 

    dt2:=dt; 

 

    dt:=(dt1+dt2)/2; 

    CalResult(); 

    tmp:=an; 

    an:=bn; 

    bn:=tmp; 

  DrawImage(); 

 end; 

end; 
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Map Data 

Appendix Ⅱ presents the map data used in the study. It was downloaded from 

the Global 30 Arc-Second Elevation Data Set. The data in this study considered 

longitude at 99.20416667 to 99.49583333 from the west to the east and latitude at 

9.387500 to 9.170833 from the north to south. Therefore, from one latitude-longitude 

point, the measurement from the SRTM 30 is approximated to 1 kilometer which 

gives 36 kilometers from west to east and 27 kilometers from north to south. The raw 

data is shown below.  

 

Figure 63 Data from GTOPO30 (Global 30 Arc-Second Elevation Data Set) 

Map data with longitude having 36 points and latitude having 27 points.  

1.1 Longitude data in the vertical section 

1.2 Latitude data in the vertical section 

1.3 Topography data 

1.1 

1.2 1.3 1.4 
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The data is then interpolated to 200 meters (explanation in section 4.2 in 

chapter 4 of this study) and this is shown in Figure 64. 

 

Figure 64 Data after interpolation 

After interpolation to a 200 meters, 180 points for longitude, that is from west 

to east and 135 points for latitude that is from north to south can be obtained. Figure 

64 therefore shows the data after interpolation. 

1.1 180 points and 135 points for longitude and latitude respectively. 

1.2 Latitude and longitude from raw data. 

1.3 Data after interpolation.  

  

1.1 

1.2 1.3 
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Abstract 

Sediment transport plays a big role for changing the beach and 
bay properties. A mathematical model to study the sediment 
distribution at Bandon Bay, Surat Thani, Thailand is presented. The 
shallow water equations that is used in this study are based on some 
basic principles of the laws of conservation of mass and momentum. 
The Navier-Stoke equation was used to simplify the shallow water 
equations. The numerical method to solve the mathematical model 
was obtained by using the finite volume method. This was done on 
the basis of the integral form of the conservation laws based on the 
approximation to the integral of certain quantities over each volume. 
Simulation is carried out and visualized by VirtualSed3D programmed 
by Lazarus Free-Pascal software. It shows the sediment distribution 
depends on the continuous propagation of wave and also the depth 
of a particular area under consideration. The presented sediment 
transport model can be used to apply for other regions. 
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1 Introduction  
Mathematical models have been widely used in the study of environmental phenomena 

for sediment transport. Sediment transport is the movement of organic particles by current and 
water [7]. Water flow can be strong enough to suspend particles in the water column as they 
move downstream or particles push them along the bottom of a water way [10]. Sediment 
transport process may include mineral matter, chemicals, substances, pollutants and organic 
material [11]. 

Sediment distribution can cause some problems to groups of people who live near the 
coast and the marine organisms living along the coast in bays, shallow water and estuaries [9]. 
While sediment is needed to build aquatic habitats and reintroduce nutrients for grasses that 
grow along the coast, too much or little sediment can easily cause ecosystem and safety issues. 
Whether the concerns are caused by erosion or excessive turbidity the sediment transport rate is 
an essential environmental factor to be considered [12]. 

The area of interest for this research is Bandon Bay in Surat Thani, ThaiLand shown in 
figure 1. 

 
Surat Thani is the largest province in the southern part of Thailand with long coastal line 

of about 120 kilometers. There are 11 different rivers that flow into the bay. The bay is relatively 
shallow with water depths ranging from 1 to 5 meters. 

This paper would primarily discuss about sediment distribution at Bandon Bay by using the 
shallow water equations (SWEs) and together with the sediment transport by following 
conservation of mass from shallow water equations and Grass models to analyze wave 
movement using the Lazarus programing software. 

2 Methodology 
The SWEs were used in the study of sediment transport at Bandon Bay. The advection 

diffusion model would be used in calculating for the movement of the sediment in the shallow 
water. The SWEs are derived based on some basic principles of the laws of conservation of mass 
and momentum [2]. The Navier-Stroke equation was used to simplify the formulated shallow 
water equations. 

 
 

 

Figure 1 Bandon Bay in Surat Thani, Thailand [5]. 
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Conservation of Mass 

 
 Figure 2a Wave direction in grid form.     Figure 2b Depth of water. 

Wave propagation is considered in the x  and y
 
directions as shown in figure 2a. The 

height of water (depth of water) is shown in figure 2b.  
From figure 2a and 2b, the rate of change of volume of water at point in the x  and y  

directions is 

xin xout yin yout

V
Q Q Q Q

t
.    (1)  

The volume of the water (V) at points x  and y  is obtained by multiplying the water 
depth with the base area. This gives 

( )
( ) ( ) ( ) ( )xin xout yin yout

x yh
hu y hu y hv x hv x

t
,  (2)  

where u  and v  are the velocities of water flow in the x  and y  directions, respectively, h  is 
the depth of water at point x  and y , x  and y  are the length and width of volume control, 
respectively. 

Dividing both side of equation (2) by constants x  and y , we have 

/2, /2, , /2 , /2( ) ( ) ( ) ( )x x y x x y x y y x y yuh uh vh vhh

t x y
.  (3)  

Using the Taylor series expansion and omitting higher order terms in dx and dy , we have 

2
/2, ,

( )
( ) ( ) ( )

2x x y x y

uh x
uh uh O x

x
, 

2
/2, ,

( )
( ) ( ) ( )

2x x y x y

uh x
uh uh O x

x
, 

2
, /2 ,

( )
( ) ( ) ( )

2x y y x y

vh y
vh vh O y

y
, 

2
, /2 ,

( )
( ) ( ) ( )

2x y y x y

vh y
vh vh O y

y
. 

Substituting (4) in to (3), we obtain 
( ) ( )uh vhh

t x y
. 

Therefore, the conservation of mass equation can be written quantitatively as 

        ( ) ( )
0

uh vhh

t x y
.                        (5)  

 

(4)  
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Conservation of Momentum 
The conservation of mass is calculated in a similar manner as the conservation of 

momentum equation. The depth of water in equation (5) h  is changed to be the momentum in 
the control volume (M ) and which is equal to the net influx of momentum plus the net force 
acting on the control volume.  

Therefore, we obtain 

     ( ) ( )uM vMM
F

t x y
,             (6)  

where F  is the force acting on the control volume. 
The momentum in the control volume is xQ x  where  is the pressure of water and 

xQ  is the rate of flow of water in the x  direction, therefore the rate of momentum in the 
control volume will be 

( ) ( ) ( )x x xQ x u Q x v Q x
F

t x y
 .   (7)  

Three forces acting on the control volume are the pressure force (
pF ), gravitational force (

gF ) and bed friction force (
fxF ). These forces are calculated and the final equations are shown 

below, 
pressure Force ( pF ) 

( )
p

gh
F x yh

x
,             (8)  

gravitational Force (
gF ) 

    g

z
F g x yh

x
,                                    (9)  

bed Friction Force ( fxF ) 

2 2 2

4
3

fx

n u v u
F g x yh

h

.                       (10)  

Therefore, the conservation of momentum equation in x direction can be written 
quantitatively as  

2 2 2 2 2

4
32

uh u h g h vuh z n u v uh
gh g

t x x y x
h

. 

Similarly, the momentum in y  direction is 
2 2 2 2 2

4
32

vh vuh v h g h z n u v vh
gh g

t x y y y
h

. 

The equations above were used to simulate and visualize the movement of wave in the 
studied area. 
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Sediment Transport Equation 
In this section, we present the sediment transport model by using conservation of mass 

equation from the shallow water equations and the Grass model as used by [4] in (11) and (12), 
respectively in one dimension to confirm the validity of the sediment transport model proposed 
in this study.  

They are given as 

0x

z uz

t x
,            (11)

0bxqz

t x
,           (12)  

where 1

1 x

 and x  is the porosity of the sediment layer, u  represents the velocity in 

the x  direction and z  is the height of slope bed. 
By following the Grass model as used by [4], the following formula for the solid transport 

discharge is given by 

1
;1 4

mg

bx g gq A u u m , 

where gA  is the constant determined from experimental data. This constant takes values 

between 0 and 1 and according to Grass model, the bed-load sediment transport begins as soon 
as the fluid starts to move. 

This study focuses on a two dimensional sediment transport model by using conservation 
of mass equation from the shallow water equations in equation (13). 

0x y

z uz vz

t x y
.   (13)  

Finally, the shallow water equations and the sediment transport equations are put 
together as follows 

( ) ( )
0

uh vhh

t x y
, 

2 2 2 2 2

4
32

uh u h g h vuh z n u v uh
gh g

t x x y x
h

, 

2 2 2 2 2

4
32

vh vuh v h g h z n u v vh
gh g

t x y y y
h

, 

0x y

z uz vz

t x y
. 

Boundary Conditions 
In this study, an open and closed boundary were considered in the calculation of the 

entire area. In this way, the water can go out from the boundary without any restrictions. The 
value at the boundary is equal to the adjacent edges of the area. That is 0, 1, ,j jz z  ,0 ,1,i iz z

 
(14)  
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1, 2, ,x xm j m jz z  , 1 , 2,y yi m i mz z  0, 1, ,j jw w  ,0 ,1,i iw w  1, 2,x xm j m jw w  and 

, 1 , 2y yi m i mw w . 

For the closed boundary, the depth of water (h ) is set to 0 indicating land. This is a 
condition imposed on the system to stop the computation when h is equal zero. 

Initial condition  
The initial condition for the simulation process is obtained by using the following formula. 

* sin( * )ic s amp t , 
where s  is the sea level and amp  is the amplitude. 

Numerical Method and Simulation 
The numerical solution to the proposed mathematical model is obtained by using the 

finite volume method. This is done on the basis of the integral form of conservation laws based 
on the approximation to the integral of certain quantities over each volume. In the derivation of 
the 2-D conservation law, the numerical domain is subdivided into rectangular grid cells. 

Equation (13) can be written in the vector form as 
( ) ( )f w g ww

z s
t x y

.    (15)  

The vector form is integrated and finally the solution can be written in the form 

1 1 1 1
2 2 2 2

1
, , , ,, , , ,

n n n n n n n n
i j i j i j i ji j i j i j i j

t t
W W F F G G tZ tS

x y
 ,     (16)  

where ,
n
i jW  represents a cell average over the ( , )i j  grid cell at time ,nt  i.e., 

,

, ( , , )

i j

n
i j

c

W W x y t dxdy , 

1
2
,

n

i j
F  is an approximation of the average flux along 1

2
,i j

x x , i.e., 

1
2

1 11
2 22

1

,

1
( ( , , ))

n jn

i j in j
F f w x y t dydt

t y
,  

1
2
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Topography Interpolation 
The land data used in this study is based on a 1 kilometer average topography which was 

derived using the USGS SRTM30 gridded digital elevation model (DEM) data product. The DEM 
was created with data from the NASA shuttle radar topography mission [1].  It is possible for the 
grid cell resolution to be higher than the data obtained, therefore a topography interpolation is 
required. The bilinear interpolation technique was used to obtain the height of the topography 
interpolation [3]. The cell approximation at ( , )i j  is obtained by 

, , 1,( 1 )( 1 ) ( )( 1 )i j x y x yZ Z x m y n Z m x y n  

        , 1 1, 1( 1 )( ) ( )( )x y x yZ x m n y Z m x n y , 

where ( , )x y  is the spatial index of the topography data grid cell with x m  and y n . 

Two indices as 
x x
d cm i n n  and y y

d cn j n n  

are the mapped indices of ( , )i j  onto the data grid cells, where x
dn  and y

dn  are the number of 

columns and rows of the topography data grids, x
cn  and y

cn  are the number of columns and 
rows of the computational grids, respectively. 

3 Results and Discussion  
In this section, simulation and visualization in the study were investigated by using the 

Lazarus programming namely VirtualSed3D software. The sediment transport model by following 
the conservation of mass equation from the shallow water equations used in this study is 
validated by comparing it with the Grass model.  

 

Figure 3 Initial condition for sediment transport in one-dimensional at time t = 0. 

Figure 3 shows a one-dimensional shallow water equations model. At time t = 0, the level 
of water is at 0.3 meters and the level of the sediment is at 0.1 meters and rises at a point 0.2 
meters.  
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Figure 4a Graph of sediment transport from 
the conservation of mass equation at time t = 

10 s. 

Figure 4b Graph of sediment transport by 
using the Grass model at time t = 10 s. 

Figure 4a and 4b show the simulations that were carried out at the same time t = 10 s. for 
both the sediment transport model by following the conservation of mass equation from the 
shallow water equations (see figure 4a) and the Grass model (see figure 4b).  

An 
gA  (Constant used in the Grass Model) of 0.3 is used and a porosity of sediment for 

fine sand of 0.43 in [8] is used for the Grass model and the sediment transport model by 
following the conservation of mass equation from the shallow water equations. 

  

Figure 5a Graph of sediment transport from 
the conservation of mass equation and the 

Grass model at time t = 20 s. 

Figure 5b Graph of sediment transport from 
the conservation of mass equation and the 

Grass model at time t = 30 s. 

The results are compared further in figure 5a and 5b, to know the validity of the sediment 
transport model. From figures 5a and 5b, the sediment distribution is evident in both models. A 
higher gA  in the Grass model results in a faster movement of the sediment and this can be 

varied in the model. The sediment transport model uses the porosity of the sediment from 
experimental data which makes it ideal in simulation. 
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A two-dimensional shallow water equations model together with the sediment transport 
model by using conservation of mass equations is used to read the topography data in 
VirtualSed3D software as shown in figure 6. 

 

Figure 6 Map data as read by the program. 

The map data in this study consider longitude at 99.12916667 to 99.49420379 from the 
west to the east and latitude at 9.404167 to 9.114120 from the north to south. Therefore, from 
one latitude-longitude point, the measurement from the SRTM 30 is approximated to 1 kilometer 
which gives 45 kilometers from west to east and 36 kilometers from north to south. The data is 
then interpolated using equation (16) to 200 meters. 

The VirtualSed3D software is run by using the sediment transport model by following 
conservation of momentum equation together with the shallow water equations. In the program, 
the initial wave can be started from the east, north or both. The Manning constant which 
determines how fast or slow the sediment move is set to 0.025 as studied by [6]. The porosity of 
the sediment is chosen based on values ranging from 0.25 to 0.53 for sand (fine).  

 

Figure 7 Observation points from simulation. 

Arbitrary points (see figure 7) were chosen to know how the wave affect the transport of 
sediment. The wave is initialized from the east, and then propagates to rest of the area.  

The sediment transport model by following conservation of mass from shallow water 
equations for the various points on the map at time t = 150000 s are shown below. 
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Figure 8a Distribution of sand (fine) at point 1. 

 

Figure 8b Distribution of sand (fine) at point 2. 

 

Figure 8c Distribution of sand (fine) at point 3. 

 

Figure 8d Distribution of sand (fine) at point 4. 

Figure 8a, 8b, 8c and 8d show the distribution of sediment using the sediment transport 
model by following conservation of mass together with the shallow water equations for sand 
(fine) at time t = 150000 s. 

Each of the figures above presents two lines. The first line (upper line) shows the height of 
wave and the second line (lower line) shows the height of sediment. Each color displays arbitrary 
points that were chosen before initializing the wave in the system. The chosen points show the 
height of wave and the sediment transported as the wave propagation. The level of water is fixed 
at 44 meters and it could be seen in the first line of each figure. The sediment transport in a 
particular location is, however, dependent on how far it is to the shoreline and how deep it is. 
The movement of the wave is from the east but the program plot the graphs from the left to the 
right. Figure 8a and 8c show the graph of selected points at a location which is not in deep water. 
This can be seen from the fact that the sediment (below line) is close to the water level (upper 
line). Sediment in this location moves faster and they are close to the water as seen in the 
shorter wave lengths. 

Figure 8b and 8d show the graph of chosen points at a deeper location in the bay. This is 
evident from the distance between the sea level and the sediment. As the wave is continuous 
propagation, the sediment moves depending on how strong the wave is as seen in figure 8b. The 
presented graph shows the distribution of sediment and how wave propagation affect to 
sediment distribution.   

The sediment transport in shallow region is moved faster than the deep area with different 
amplitude and wave length. 
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4 Conclusion 
The distribution of sediment at Bandon Bay, Surat Thani has been studied by using the 

sediment transport model from the shallow water equations and the Grass model. The Grass 
model is used in order to see the accuracy of the sediment transport model. From figures 4a, 
4b,5 a and 5b, it could be seen that there is not much of a difference between the graph 
produced by the sediment transport model by using the conservation of mass equation from the 
shallow water equations and Grass model. 

What has been achieved through simulation is the fact that sediment distribution depends 
on the continuous propagation of wave and also how shallow or deep a particular area under 
consideration is in the ocean. Also, the porosity of the sediment determines how fast they are 
transported as it can increase or decrease the velocity which it is moved by the wave. By using 
the latitude and the longitude in the program developed, any point of interest in the ocean can 
be chosen to see how the wave affects the distribution of sediment. Also the sediment transport 
model presented is ideal in the study of the sediment distribution by using the conservation of 
mass equation from the shallow water equations. 

Acknowledgements This research is supported by the Centre of Excellence in Mathematics, 
Commission on Higher Education, Thailand. We would like to thank the department of 
Mathematics and Computer Science for their assistance and guidance as well as Pattani Bay 
Watch (PB Watch) at the Prince of Songkla University, Pattani campus.  

References 
[1] J.J. Becker, D.T. Sandwell, W.H.F. Smith, J. Braud, B. Binder, J. Depner, D. Fabre, J. Factor, S. 

Ingalls, S-H. Kim, R. Ladner, K. Marks, S. Nelson, A. Pharaoh, R. Trimmer, J. Von Rosenberg, G. 
Wallace and P. Weatherall, Global Bathymetry and Elevation Data at 30 Arc Seconds 
Resolution: SRTM30_PLUS Marine Geodesy, 32:4, (2009), 355-371. 

[2] A. Busaman, Mathematical Model for Simulation and Visualization of Flood. Master Degree 
Thesis, Chulalongkon University (2010). 

[3] A. Busaman,  K. Mekchay,  S. Siripant  and S. Chuai-Aree, Dynamically Adaptive Tree Grid 
Modeling for Simulation and Visualization of Rainwater Overland Flow, (2011), 980–989. 

[4] S. Cordier, M.H. Le and T. Morales de Luna, Bedload Transport in Shallow Water Models: Why 
Splitting (may) Fail, How Hyperbolicity (can) Help. (2011), 980–989. 

[5] Google 2001, Bandon Bay in Surat Thani, Thailand. [Online] Available: 
http://www.google.co.th/intl/th/earth/download/ge/agree.html. (Oct 8, 2015). 

[6] Y.A. Kontar, V. Santiago-Fandino and T. Takahashi, Tsunami Events and Lessons Learned : 
Environment and Societal Significance (Springer Dordrecht Heidelberg, New York, London, 
2014), pp. 218. 

[7] M. Langland and T. Cronin, A Summary Report of Sediment Processes in Chesapeake Bay and 
Watershed (Water-Resources Investigations Report 03-4123, U S Geological Survey, 2003).  



130 

 

[8] B. McWhorter and K. Sunada, Ground - Water Hydrology and Hydraulics. [Online] Available : 
http://web.ead.anl.gov/resrad/datacoll/porosity.htm, [Feb 25, 2016]. 

[9] S. Robert, Oceanography in the 21th Century-An Online Textbook. [Online] Available: 
http://oceanworld.tamu.edu/resources/oceanography-book/coastalerosion.htm, (Feb 7, 2015). 

[10] J. Southard, Introduction to Fluid Motions, Sediment Transport and Current-Generated 
Sedimentary Structures (Course Textbook. In MIT Open Courseware: Massachusetts Institute 
of Technology. 2006).  

[11] U.S. Environmental Protection Agency, Sediments In Water: Pollution Prevention & Control,   
(2014). 

[12] G. Zaimes and R. Emanuel, Stream Processes Part I: Basics. Arizona Watershed Stewardship 
Guide, Master Watershed Steward, (2006). 

 



131 

 

Vitae 

Name : Nitinun  Pongsiri 

Student ID : 5620320707 

Educational Attainment : 

         Degree          Name of Institution      Year 

B. Sc. (Information Technology)       Prince of Songkla University   2012  

Scholarship Awards during Enrolment 

1. Research Assistantship (RA) Scholarship Supported by Centre of Excellence 

in Mathematics (CEM), Commission on Higher Education, Thailand. 

2. Teaching Assistant Scholarship Supported by Graduate school, Prince of 

Songkla University. 

Conference and Proceeding: 

Proceeding 

Pongsiri, N. and Chuai-Aree, S.  2016.  Mathematical Simulation and Visualization of 

Sediment Distribution at Bandon Bay in Surat Thani. The 21st Annual Meeting in 

Mathematics & Annual Pure and Applied Mathematics Conference, Chulalongkorn 

University, Bangkok, Thailand, 23-25 May.  

 


