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ABSTRACT 

Dengue fever is an infectious disease caused by the dengue virus, which has 

female mosquitoes as carriers. In this thesis, we study the dynamics of dengue fever 

transmission in Thailand, considering Chiang Mai, Chanthaburi, and Roi Et 

provinces, by using a mathematical model for human and mosquito populations 

consisting of seven nonlinear differential equations. We also analyze the stability of 

equilibrium points and the basic reproduction number R
O

. The model is solved 

numerically by using a nonstandard finite difference scheme and the numerical 

solutions are shown by graphs. Moreover, by using the data obtained from the Thai 

Bureau of Epidemiology, we show the thematic map of distribution of the average 

number of dengue fever cases for 2003-2015 for each province in Thailand in relation 

to the country’s average number of cases in the same period of time. 
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Chapter 1 

INTRODUCTION 

1.1 Overview 

1.1.1 Mathematical Models 

Infectious disease still remains a problem in the world today. Diseases such as 

Ebola, Yellow fever, HIV/AIDS, Malaria, Dengue fever and others still cause deaths 

in developing countries. Despite many successes made in the control and prevention 

of such diseases, they still remain an enormous threat to humanity. Over a couple of 

years now, mathematical models have been widely used in the study of the dynamics 

and patterns of the spread of infectious diseases from microbiology to epidemiology. 

Mathematical models for the study of infectious disease dynamics have been applied 

in the filled of immunology and public health. A good mathematical model can be 

used to study the patterns and understand the spread of diseases within a population 

with the estimation of parameters and comparing of hypotheses (Hethcote, 2000). The 

practical challenges in formulating a good mathematical model arise from establishing 

the necessary data in managing increasingly large volume of information. Theoretical 

challenges require the study and formulation of nonlinear systems in which these 

infectious diseases evolve and spread.      

The dynamics of the diseases are modelled and formulated into systems of 

nonlinear differential equations based on some assumptions. Different parameters in 

the model describe the rate at which the disease spread, the survival rate of the 

disease, the recovery rate, lifespan of the population, rate of loss of immunity over 

time and other factors that are specific with a particular disease. Changing these 
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parameters give epidemiologists the necessary information as to how the spread of 

such diseases can be controlled either through vaccination or isolation of infected 

individuals. These parameters also allow mathematical epidemiologists to predict 

whether the disease would die out over time or can attain an epidemic level.   

1.1.2 Dengue Fever and Dengue Hemorrhagic Fever 

Infectious diseases that can be modelled using differential equations include 

Ebola, HIV/AIDS, Malaria, Tuberculosis, Dengue fever, and many others. One of 

such diseases worth studying is dengue fever, which according to the World Health 

Organisation, 50-100 million cases occur each year worldwide.  

Dengue fever is a disease transmitted by the female Aedes Agypti mosquitoes. 

The disease is sometimes called “break bone fever” because of its associated joint 

pains and sometimes rashes. The World Health Organization describes four 

immunologically distant virus serotypes. The serotypes are Dengue Virus 1 (DEN-1), 

Dengue Virus 2 (DEN-2), Dengue Virus 3 (DEN-3), and Dengue Virus 4 (DEN-4) 

(WHO, 2015). Dengue can affect all age groups, that is from infants to adults, and 

symptoms appear 3-14 days after a person is bitten by an infected mosquito.  

An infected person experiences a life-long immunity when he/she recovers 

from the infection of one of the four dengue virus serotypes (DEN-1, DEN-2, DEN-3, 

DEN-4) and this is known as homologous immunity. It means that the individual 

would not be able to get the disease again from the same serotype. As a result the 

infected person may not be immune to the other three serotypes and this is known as 

heterologous immunity. The person therefore becomes susceptible in getting the 

severe form of dengue fever (dengue hemorrhagic fever) in about 12 weeks. The 

dengue hemorrhagic fever (DHF) is accompanied by vomiting, nausea, and fainting 
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because of fluid leakage, which causes low blood pressure. The infected person 

suffers from the fluid leakage for some few days and can lead to death. About 5% of 

all the cases that are reported at various hospitals are normally classified as dengue 

hemorrhagic fever.  

1.1.3 History of Dengue Fever 

The origin of the word Dengue may be difficult to trace but an old theory 

surrounding the name is that it was derived from the Swahili phrase “Ka – dinga 

pepo”, which means “cramp – like seizure caused by an evil spirit”. Also, the Swahili 

word “dinga” may have originated from the Spanish word “dengue” which means 

fastidious or careful, describing the gait of a person suffering the bone pain of dengue 

fever. The slaves in West Indies who suffered from the disease were said to have the 

posture and gait of a dandy, and so the disease was named “dandy fever”. 

Dengue fever was first confirmed in 1789 by Benjamin Rush (Dengue Virus 

Net, 2016), who called it “break bone fever” because of symptoms of myalgia and 

arthralgia. The epidemiology and spread by the mosquito were known in the 20th 

century.  

Currently, about 40% of the world’s population approximately 2.5 billion 

people live in areas of high risk of dengue fever transmission. The disease has spread 

to more than 100 countries in Asia, the Pacific, Africa, the Caribbean and the 

Americas (Dengue Virus Net).   

1.1.4   Biological Notes on Aedes Agypti  

There are many species of mosquitoes; Anopheles quadrimaculatus, culex 

pipiens, and Aedes Aegypti (Asian tiger mosquito) are among the most common. The 



4 
 

 
 

Anopheles is a malaria carrier.  Figure 1 shows the image of an Aedes Agypti, the 

principal vector of dengue virus. The mosquito originated from the African forest but 

is now living in among humans  (Gubler and Clark, 1996). In its original habitat, the 

Aedes Aegypti breeds in fruit husks, holes in trees and rocks, and natural water – 

holding containers. In a domestic environment, humans beings are the perfect 

providers of breeding sites. The nature of the human environment provides a breeding 

atmosphere for the mosquitoes. The mosquitoes normally breed and lay eggs using 

rain-collecting containers such as old buckets and tires in the streets, flower-pot 

saucers, discarded barrels, etc. Places like cupboards and drawers provide a safe-

haven for them to hide and multiply. 

 

Figure 1. An Aedes Agypti 

Source: VectorBase (2015) 

According to Oxitech, only the female Aedes Agypti bites. The blood proteins 

in humans are needed by the female mosquito in order to lay eggs. The male mosquito 

does not need the blood proteins but rather require carbohydrates, which comes from 
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nectar from flowers and plants (a natural sugar source). The spread of the dengue 

virus in a population begins when a female bites and sucks blood from a human 

suffering from dengue. The mosquito then becomes infected with the dengue virus 

and in about 8-10 days later, the dengue virus circulates through the mosquito’s 

salivary system. The virus remains in the mosquito’s saliva and gets transmitted to a 

healthy human when the mosquito bites. The female Aedes Aegypti remains infected 

for its entire lifetime and after every bite, the virus is being transmitted to a new 

person (Chamberlain and Sudia, 1961). The life cycle of the mosquito is shown in 

Figure 2. 

 

Figure 2. The life cycle of the mosquito 

Source: Environmental Protection Agency, USA (2015) 
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1.1.5 Transmission of Dengue Fever 

According to the World Health Organization, dengue fever is transmitted by 

the female Aedes Aegpti mosquito. Humans get the virus when they are bitten by the 

female mosquito. A mosquito with the dengue virus is able to transmit it after 8 – 10 

days’ incubation period. It remains infected in its entire life span.  

The main carriers and multipliers of dengue fever virus are the infected 

symptomatic or asymptomatic humans. Infected people can transmit the infection (4 – 

5 days; maximum 12 days) through the Aedes Aegypti when they begin to show 

symptoms. Figure 3 shows the transmission of dengue fever by the female Aedes 

Aegypti.  

 

Figure 3. Transmission of dengue fever 

Source: Infobase Publishing 
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1.1.6 Signs and Symptoms of Dengue Fever 

Dengue fever is a disease that affects all age groups but seldom causes death 

according to the World Health Organization. The symptoms of dengue fever is 

characterized by high fever  0 040 /104C F  and any of the following: pain behind the 

eyes, joint pains, severe headache, vomiting, rash and nausea. The signs and 

symptoms associated with dengue fever is usually between 2 – 7 days which right 

after a 4 to 10 – days incubation period.  

On the other hand, sever dengue is deadly due to patients suffering from fluid 

accumulation, sever bleeding etc. In about 3 – 7 days after the first symptoms appear, 

the patient’s temperature may drop below 0 038 /100C F  and abdominal pains, 

continuous vomiting, bleeding gums, restlessness, and fatigue follow this. At this 

point, the patient is at risk of death if proper medical care is not provided.  

1.1.7 Treatment and Vaccines of Dengue Fever 

According to the World Health Organization, dengue fever does have a 

specific. However, medical interventions by heath professionals who are familiar with 

the progression and effects of dengue fever can save lives. In addition, maintaining 

and monitoring the volume of the patient’s body fluid is essential in caring for a 

person suffering the dengue disease.   

The first dengue vaccine, Dengvaxia (CYD – TDV) by Sanofi Pasteur (Sanofi 

Pasteur, 2015) has been used in the vaccination of people aged 9 – 45 years in late 

2015. In addition, various tetravalent live – attenuated vaccines are in development.   
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1.1.8 Areas of High Risk  

The global burden and transmission of dengue is formidable and almost half of 

the total people in the world live in areas where dengue is prevalent. Severe dengue 

(dengue hemorrhagic fever) was first reported in the Philippines and Thailand during 

the 1950’s epidemics. Various statistics confirm how severe the spread of dengue 

fever is throughout the world. Figure 4 shows the distribution of global dengue risk 

from 2000 to 2008. The two curves separate countries of risk of dengue transmission 

from countries of no risk. In 1998, about 616,000 dengue fever cases were recorded in 

America, of with 11,000 of the cases were classified as hemorrhagic which was twice 

the number of cases of dengue hemorrhagic fever recorded in the same region in 

1995. In 2001, 400,000 dengue hemorrhagic fever cases were recorded in Southeast 

Asia, while in 2002, 500,000 people were infected in Rio de Janeiro. The epidemic 

spread to Florida, Southern Texas, and some other states at the time. 

 

Figure 4. Areas of high risk of dengue fever 

Source: World Health Organization, 2008 
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Figure 5. Areas of high risk of dengue fever 

Source: World Health Organization, 2013 

 

1.2 Statement of the Problem 

Dengue is still health priority in Thailand and the four serotypes circulate in 

urban and rural areas. According to the World Health Organization, Thailand was the 

sixth among 30 most highly endemic countries in the world (see Figure 6) between 

2004 and 2010 with an average of 74,292 cases and 83 deaths. 



10 
 

 
 

 

Figure 6. Average number of dengue cases in 30 most endemic countries 

Source: World Health Organization (2004)  

 In 2013, Thailand recorded its worst dengue epidemic in more than 20 years 

with 87,502 (234.1 cases per 100,000 inhabitants) cases and 6 deaths.  

 The Bureau of Epidemiology, Ministry of Public Health, Thailand in their 

National Disease Surveillance report (number 506) reported that 17805 cases of 

dengue fever have been reported among 76 provinces from 1st January 2016 to 8th 

August 2016. The Bureau of Epidemiology puts the morbidity rate at 27.34/100,000 

population with 3 deaths.  

The top five morbidities rated by province at the time were from Maehongsorn 

(110.36 / 100,000 population), Chiang Mai (67.46/100,000 population.), Bungkan 

(67.44/100,000 population.), Chanthaburi (65.00/100,000 population.), and Surin 
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(57.27/100,000 population.). Overall, the northern part of Thailand recorded the 

highest morbidity rate of 34.66/100,000 population, the northeast had 26.48/100,000 

population, the central part had 25.64/100,000 population and the southern part with a 

24.00/100,000 population. 

1.3 Objectives of the Study 

1.1 To study mathematical models for infectious disease dynamics. 

1.2 To apply the susceptible, exposed and infected (SEI) model for the human 

population and the aquatic, susceptible, exposed and infected (ASEI) model 

for the mosquito population to the problems of dengue fever transmission in 

Thailand. 

1.3 To analyze the simulated results when the model is applied to the real data. 

1.4 Expected Advantages of the Study 

1.1 Appropriate mathematical models can help understand the interactions 

between the various compartments coupled with their equilibrium analysis. 

1.2 The transmission and spread of dengue fever can be understand to help 

inform public health interventions for a likely outcome of an epidemic. 

1.3 Numerical analysis can help the understanding of the system for better 

conclusions to be drawn. 

1.5 Methodology 

Kermack and McKendrick (1927) formulated the SIR model meaning the 

susceptible, the infected and the recovered for people living with infectious disease in 

a closed population (i.e., no immigration or emigration) over time. The model 

assumed that the population size is fixed (i.e., no births, deaths due to disease, or 
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deaths by natural causes), and the incubation of the infectious agent is instantaneous. 

They assumed a completely homogeneous population with no age, spatial, or social 

structure. The model divides the population into compartments with individuals that 

are identical in terms of their status with respect to the infection. 

However, an SEI ASEI  model would be used to study the dynamics of 

dengue fever transmission in Thailand. The model presents two populations: the host 

(human) and vector (mosquito) populations. The human population is made up of 

three epidemiological compartments, which are the susceptible, exposed and infected. 

The mosquito population is made of four epidemiological compartments namely, the 

aquatic phase, susceptible, exposed and infected.  

The interactions between these compartments are studied by using a system of 

differential equations. The mathematical model would be solved and analysed by the 

deterministic approach. Numerical simulations would be carried out using Octave 

computational software.  

1.6 Theoretical Approaches 

In this section, the theoretical approaches to the various computations and 

analysis would be discussed briefly. It would comprise of the general background 

behind the equilibrium analysis of the model, the stability analysis, the basic 

reproduction number and numerical method that would be used to solved the model 

equations.  

1.6.1 The Equilibrium Analysis  

The general nth order system of continuous differential equations is of the 

form: 
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1 1 1 2

2 1 1 2

( ) ( ( ), ( ),..., ( )),

( ) ( ( ), ( ),..., ( )),

( ) ( ( ), ( ),..., ( )).

n

n

n n n n n

x t f x t x t x t

x t f x t x t x t

x t f x t x t x t







  

The above system can be written in the matrix form as  

( ) ( ( ), ),X t f x t t   

where 
1 2[ , ,..., ]T

nX x x x  and 
1 2[ , ,..., ]T

nf f f f . T means transpose of the vector f     

(E.M Lungu et al, 2007). 

Definition (E. M lungu et al, 2007): A vector X  is said to be an equilibrium point of 

a dynamical system if the state vector is equal to X  and continuous to be equal to X   

for all the time (future). 

Consider the dynamical system 

( ) ( ( ), ).X t f x t t  

An equilibrium point of the above system would be a state X  that satisfies  

( , ) 0f X t  , for all time t . 

Equilibrium points for a dynamical system maybe none, one or any number in 

virtually a spatial pattern in state space. The equilibrium points of a linear system are 

generally the solutions to the linear equations. However, this is not the case of a 

nonlinear system. Finding solutions to the nonlinear system involves solving 

polynomials of higher degree which is not the case in the linear system. Also, in the 

nonlinear case, the distribution of the equilibrium points is more complex than the 

linear system (E.M Lungu et al, 2007).   

In epidemiology, the system of nonlinear equations gives two equilibrium 

points: the disease free and the endemic equilibrium points. These equilibrium points 
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are obtained by equating the system of equations to zero and solving for the variables 

of interest. It is biologically meaningful to always consider only nonnegative solution 

of the nonlinear system of differential equations. 

1.6.2 The Stability Analysis 

Consider the Jacobian matrix J of the system f . 

1 1 1

1 2

2 2 2

1 2

1 2

.

n

n

n n n

n

f f f

x x x

f f f

x x xJ

f f f

x x x

   
   
 
   
 
    

 
 
   

    

 

The stability analysis can be done on the linearized system based on the 

following. 

1. In the nonlinear system, x , the equilibrium point is asymptotically stable, if 

all eigenvalues of J are specifically in the left half plane, that is if they have all 

strictly negative real parts .  

2. The equilibrium point x is unstable in the nonlinear system if at least one 

eigenvalue of J  has a positive real part. 

3. The equilibrium point x may be either stable, asymptotically stable or 

unstable for the nonlinear system if the eigenvalues of J are all in the left half –plane 

(strictly negative real part) but at least there is one eigenvalue with a zero real part.  
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1.6.3 The Basic Reproduction Number, o
R   

Diekmann and Heesterbeek (1990) and Van den Driessche and Watmough 

(2002) have shown that the basic reproduction number 0R  is equal to the spectral 

ratio of the matrix 1

F VJ J  , where ( )F z is the rate of appearance of new infections, 

( )V z is the rate of transfer of individuals in and out of the infected compartment and 

z describes the linearization of the reduced system around the disease free 

equilibrium. Note that the spectral ratio of any matrix is equal to the largest 

eigenvalue. 

Therefore, the basic reproduction number, 0R , according to Driessche et al. 

(2002) can be calculated as 

 1

0 F VR J J   

where FJ  and VJ  are the Jacobian matrices associated with ( )F z  and ( )V z while     

  denotes the spectral radius of the matrix  1

F VJ J 
. The matrix F  and V  would be 

calculated in Chapter 3 of this study.  

1.6.4 The Numerical Method 

Usually nonlinear differential equations are used to model several physical 

phenomena. Previous studies by several researchers have shown various attempts that 

have been made in solving such problems by replacing the nonlinear equations with 

its related linear equations. These linear equations approximate the actual equations in 

manner that has close properties with the dynamics of the actual phenomena. As a 

result, other researchers have suggested various forms of approximations as such 
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linearization are not always feasible. Studies by Mickens (1981), Fatunla (1988), 

Mickens (1994) and Lubuma (2003) have used discrete models for nonlinear 

differential equations.  

A nonstandard numerical scheme developed by Mickens (1994) would be used 

in section 3.7 in Chapter 3 to solve the nonlinear differential equations representing 

the evolution of the different compartments of the SEI ASEI  model.  

Solutions to compartmental models are usually found by using standard 

numerical methods like Euler or the Runge Kutta methods. ODE45 function in a 

computational software like MATLAB is also usually used to solve epidemic models 

involving ordinary differential equations. However, these standard numerical methods 

can lead to numerical instabilities for some parameter values (Dumont, 2008).  

Mickens (1994) developed the non-standard finite difference scheme based on 

some rules. The general form of the non-standard scheme is written as 

1 ( , ).n ny F h y   

Mickens’ stated five rules and they are as follows: 

Frist rule 

The first rule states that the order of the discrete derivative should be exactly 

the same as the order of the corresponding derivatives of the differential equation.  

Consider the example below (Sunday, 2010) 

.
dy

y
dx

   

Applying the central difference scheme to equation (a) gives 

(a) 
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 1 1 .
2

n n
n

y y
y

h

 
   (b) 

It can therefore be seen that equation (b) if of the second order while equation 

(a) is of the first order. This can lead to numerical instability as it violates the 

principle of uniqueness. 

Second rule 

The second rule introduces a complex analytic function of h  in the 

denominator which expresses the step size with a complicated function than what the 

standard methods use. 

As an example, consider the logistic equation below. 

(1 ).
dy

y y
dx

   

Having 1 .
( , )

n ny ydy

dx h 
 

   (c) 

Where ( , )h  the denominator function has the property that  2( , ) ( )h h O h      

The variable  in equation (c) is fixed as the variable h  approaches zero ( 0)h  . 

If the denominator function for equation, (c) is given by 
1 1.hD e    (d) 

Then substituting equation (d) into (c) gives  

 1
1(1 ).

1

n n
n nh

y y
y y

e





 


 (e) 

As Mickens stated in 1999, the selection of the denominator is an ‘art’ and that 

the differential equation must be examined for which the exact schemes are known. 
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Third rule 

The third rule states that the nonlinear terms must be generally approximated 

in a non – local way whiles implicitly dealing with the  linear terms.  

For example, in equation (e), there is an assumption that 2

1.n ny y y     

The nonlinear terms 2 3,y y can therefore be modeled as  

2

1

2 1

3 2

1

3 2 1

,

,
2

,

.
2

n n

n n
n

n n

n n
n

y y y

y y
y y

y y y

y y
y y











 
  

 



 
  

 

 

Fourth rule 

Differential equations having special solutions must be accompanied by finite 

difference models with special discrete solutions.  

Fifth rule 

The solution to the finite – difference equation should correspond to the 

solution of the differential equations.  

The nonstandard numerical scheme is required to be qualitatively stable in relation 

with monotone dependence on the initial value according to Anguelov et al. (2001). 

That is  

( , )
0

F h y

y





, , 0.y h   

 As an application in an epidemiological model, consider the standard SIR 

model developed by Kermack and Mckendn’ck (1927) as follows:  
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,

,

.

dS
bSI

dt

dI
bSI R

dt

dR
R

dt





 

 



 

Where S is the susceptible compartment, I is the infected compartment, R is the 

recovered compartment, b is the transmission rate and   is the recovery rate.  

Let ,nS nI and nR  be the approximations of ( ),nS t ( )nI t and ( )nR t , respectively 

for 0,1, 2...n   and 0t  , the step size of the scheme.  

Applying the Mickens’ third rule gives,  

1
1

1
1 1

1
1

,

,

.

n n
n n

n n
n n n

n n
n

S S
bS I

t

I I
bS I R

t

R R
R

t









 





 




 








 

Re-arranging the terms for the susceptible compartment gives,  

 

1
1

1 1

1 1

1

1

,

,

,

1 ,

.
1

n n
n n

n n n n

n n n n

n n n

n
n

n

S S
bS I

t

S S bS I t

S bS I t S

S bI t S

S
S

bI t




 

 






 



   

  

  


 
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Re-arranging the terms for the infected compartment gives,  

 

1
1 1

1 1 1

1 1 1

1 1

1

1

,

,

,

1 ,

.
1

n n
n n n

n n n n n

n n n n n

n n n n

n n
n

n

I I
bS I R

t

I I bS I t R

I bS I t I R t

I bS t I R t

I R t
I

bS t












 

  

  

 






 



   

    

    

 


 

 

Re-arranging the terms for the recovered compartment gives,  

 

1
1

1 1

1 1

1

1

,

,

,

1 ,

.
1

n n
n

n n n

n n n

n n

n
n

R R
R

t

R R R t

R R t R

R t R

R
R

t














 

 










  

  

  


 

 

Finally, three compartments are put together as follows: 

 1 ,
1

n
n

n

S
S

bI t

 
 

 (f) 

 
1

1
,

1

n n
n

n

I R t
I

bS t





 


 
 (g) 

 
1 .

1

n
n R

R
t

 
 

 (h) 

The right hand side of the above equation (g) is positive if 
n nR t I    in the 

numerator term and 1 1nbS t   in the denominator term. Similarly, in equation (h), 

the right hand side is positive if 1t  in the numerator term. This means that 
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positive initial values will give positive approximations, which will always lie in a 

feasible region.  

Organization of the Study 

The thesis is made up of 5 main chapters. Chapter 1 presents the general 

overview of the mathematical models for infectious disease dynamics as well as an in-

depth background of dengue fever transmission. The objectives, expected advantages, 

methodology, theoretical approaches and organization of the study are described in 

the chapter. Related studies by other researches would be reviewed in Chapter 2. 

Chapter 3 would present the mathematical model formulation and equilibrium and 

stability analysis of the model. The numerical simulations and results are presented in 

Chapter 4. Conclusions and recommendations for further studies are presented in 

Chapter 5.    
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Chapter 2 

LITERATURE REVIEW 

Over the past few decades, the incidence of infectious diseases has increased 

resulting in researches in mathematical models for studying the patterns of the 

transmission dynamics. This chapter presents studies and researches that have been 

carried out in the field of mathematical epidemiology. The chapter focuses primarily 

on the mathematical models for infectious disease dynamics and specifically dengue 

fever transmission models.  

2.1 Mathematical Models for Infectious Diseases  

Feng et al. (2000) used differential equations to describe the transmission 

dynamics of Tuberculosis (TB). The interest of the research was to study 

mathematical models to understand the long term behavior of the transmission 

dynamics of the disease, thus if the disease would develop into an epidemic or it 

would die out. In the study, the effects of the variable periods of latency on the 

dynamics of Tuberculosis were considered with an SEIS  model. In the model, the 

possibility of re – infection was considered meaning individuals moved back to the 

susceptible  S  compartment from both the exposed  E  and the infectious 

compartment after treatment. It was concluded that the introduction of an arbitrarily 

distributed incubation period (latent) to the basic tuberculosis model did not have a 

significant impact on the dynamics of TB. However, the spread of disease degenerate 

into an epidemic or dies out regardless of the shape of the incubation period 

distribution.  
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Dumont et al. (2008) presented a mathematical model of Chikungunya disease. The 

study proposed a model which comprised human and mosquito populations for the 

epidemics of Chikungunya. The basic reproduction number  0 ,R was calculated and 

it showed a disease – free equilibrium existed which was locally asymptotically 

stable. This is evident if the basic reproduction number is less than 1. The study 

showed the global asymptotic stability of the disease – free equilibrium. Several 

simulations of the basic reproduction number based on a proposed numerical scheme 

that is qualitatively stable was presented.  It was concluded that the basic reproduction 

number  0R varies from place to place and that destroying breeding sites may help in 

the control of the disease.  

2.2 Dengue Fever Transmission Dynamic Models 

Derouich et al. (2003) presented a research on dengue fever and dengue 

Hemorrhagic fever using a compartmental model which involved nonlinear equations 

for both the human and mosquito populations. It is shown that between 40% and 50% 

was the infection rate among susceptible individuals. This however can increase to 

80% - 90% in times when the condition for the transmission is favorable. The study 

proposed a model where two different virus serotypes acting at different time periods. 

The latent period during the susceptible – infective interaction was assumed to be not 

crucial. This was done by excluding the exposed compartment and using the standard 

SIR model. Considering a succession of two epidemics by two different virus 

serotypes, a random fraction, p of the susceptible humans could be immunized 

against all four serotypes in the first epidemic. Again, a proportion of the population 

of susceptible could be globally immunized against the four virus serotypes during the 
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second epidemic. This was an assumption that was considered. The MATLAB 

programming software was used to carry out simulations with different parameter 

values in each model in order to illustrate the dynamics of each epidemic. The 

complexity of the dengue epidemics as shown in the research indicates that vector 

control remains insufficient since it only delays the outbreak of the epidemic. 

Although the proposed model suggests the reduction of susceptible through 

vaccination, it was stated that such strategy is unlikely to be applicable in the short 

term. An intermediate solution proposed to combine environmental prevention and 

partial vaccination to avoid the hemorrhagic form of the disease caused by different 

viruses.  

Pinho et al. (2010) analysed dengue transmission using a mathematical model 

by comparing two dengue epidemics in Salvador and Brazil from 1995 to 1996 and 

then in 2002. The aim of the study was to understand the dynamics of the two 

epidemics in a way of investigating the effect the vector control and the susceptible 

population have on the decrease in the occurrence rate as well as the duration of the 

outbreak. A compartmental model comprising of the human and the mosquito 

population was presented with vector control parameters.  

The basic reproduction number and the force of infection were obtained using 

real data for two epidemics. It was found that the value of the basic reproduction 

number was greater than one for the epidemics in 1993 to 1996 for different values of 

the vector control parameters. It indicated that other strategies like the control of the 

aquatic stage of the mosquito would be effective.    
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Syafruddin and Noorani (2012) presented systems of differential equations 

that studies the transmission of dengue fever. The SEIR vector transmission of dengue 

fever was used to determine the dynamic behavior of the system. In the research, they 

stated that the difference between the standard SIR model and the SEIR model is the 

inclusion of the latent period as a variable in the SEIR model. Assumptions made in 

the study were that a number of people in the population have already been infected 

while others have not. In addition, the spread of the virus is continuous throughout the 

population but the number of mosquitoes is constant. Another assumption is that there 

is no re-infection as everyone treated of the disease enjoys a lifetime immunity. 

Numerical simulations using the ODESOLVE in MATLAB were used for the 

stability analysis of the system. They concluded that the infection to human is based 

on data as the dengue virus infection occurs when there is continuous correlation 

between human and mosquito. 

Khalid et al. (2015) presented a mathematical model based on the standard 

SIR model for dengue fever transmission. The spread of serotype 1 of the dengue 

virus between the subject and the vector was generated using the SIR mathematical 

model. In this research, the SIR model was used to describe the two kinds of 

populations involving human  hN  and vector  .vN  The human population was 

distinguished into three groups: people already living without the virus (Susceptible, 

hS ), people who are already infected with the virus (Infected, hI ), and those who 

have recovered (Removed, hR ). The vector population of mosquitoes vN  was also put 

into two groups: mosquitoes that may be infected with the virus (Susceptible, vS ) and 

those infected with the virus (Infected, vI ). In the model, it is assumed that some 
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people already have the disease while others do not have. The transmission of the 

virus is continuous and grows in the population while the vector population remains 

constant. The model was solved by using the perturbation iteration Algorithm (PIA) 

and the 4th – order Runge – Kutta method. The research showed that the PIA method 

achieved more accuracy in the solution than the RK4 in the basic spread of dengue 

fever. 

2.3 Basic Reproduction Number 

Favier et al. (2006) presented a study on the early determination of the 

reproductive number for vector – bone disease that is a case of dengue in Brazil. The 

study focused on a new method for deriving the reproductive number for vector – 

borne diseases from the early epidemic curves with incubations in the vectors and in 

the hosts. The model was applied to several dengue epidemics in different climatic 

regions in Brazil. It was shown that the new method led to higher estimates of the 

reproductive number than previous models and that the Aedes Aegypti densities, the 

meeting of more compatible strains of viruses and mosquitoes may lead to re – 

emergence of urban yellow fever epidemics.  

Jafaruddin et al. (2015) presented an estimation of the basic reproductive ratio

 0R  for dengue fever at the take – off period of dengue infection. In the study, two 

different constructions for estimating the basic reproductive number which was 

derived from a dynamical system of host – vector dengue transmission model was 

proposed. In the construction of the estimates, it was assumed that the rates of 

infection for mosquito and human compartment might be different. Also, a more 

realistic condition in which the dynamics of an infected human compartment are 



27 
 

 
 

intervened by the dynamics of an infected mosquito compartment and vice versa was 

included in the estimation of  0 .R  The construction was applied to a real dengue 

epidemic data from SB hospital, Bandung, Indonesia during the November 2008 to 

December 2012 outbreak. Two scenarios to determine the take – off rate of infection 

at the beginning of the dengue epidemics for estimating  0R  was proposed. It was 

concluded that the second approach in the construction of  0R  was more realistic as 

it took into account the presence of infective mosquitoes in the early growth rate of 

infected humans and vice versa.  

Noor et al. (2015) used a mathematical model to study dengue fever epidemics 

in different hospitals of Lahore (Pakistan) during 2010/2011 outbreak period. The 

model was used to compartmentalize the human population into three compartments 

and the vector population into two compartments. The model showed that there is a 

basic reproduction number  0R  that determines the transmission rate of dengue 

disease. An explicit formula was derived in the calculation of the basic reproduction 

number. The value of the basic reproduction number was obtained by using data from 

different hospitals in Lahore. Numerical simulations were carried out in MATLAB in 

the calculation of the basic reproduction number against the real data in Lahore. It 

was found that dengue was epidemic in Lahore and much attention in the control of 

the disease was needed.     

2.4 Control Strategies for Dengue Fever and Aedes Agypti 

Burattini et al. (2007) applied a mathematical model for dengue infection by 

taking into account the seasonal variation in incidence and characteristics of dengue 
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fever for the 2004 and 2005 epidemics in Singapore. The study aimed at comparing 

the impact of several possible alternative controls strategies based on the reproduction 

number and also to understand the causes of dengue resurgence to Singapore in the 

last decade. Through simulation, it was shown that a set of possible control strategies 

which confirmed the intuitive belief killing adult mosquitoes is the most effective 

strategy to control an ongoing epidemic. Also, it was shown that the control of 

immature forms was very efficient in the prevention of dengue epidemics. Lastly, it 

was concluded that the best strategy is to combine both adulticide and larvicide 

control measure during an outbreak.  
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Chapter 3 

METHODOLOGY 

3.1 Introduction 

Dengue fever transmission can be studied using deterministic or stochastic 

models. The models work by defining compartments for individuals of a population 

based on how susceptible they are to the disease under consideration. Deterministic 

models use a set of differential equations to study the interactions between these 

compartments based on some assumptions. 

This chapter presents the susceptible, exposed and infected compartments for 

the human population as well as the aquatic, susceptible, exposed and infected 

compartments for the mosquito population. The SEI ASEI  model with vector 

control represents the dynamics of dengue fever transmission as the disease is 

between the interaction of host (human) and vector (mosquito). This model presents a 

set of seven nonlinear differential equations. The equilibrium points together with 

their stability analysis would be discussed. In addition, an expression that would be 

used to find the basic reproduction number would be formulated.  

3.2 Preliminaries 

Mathematical epidemiology studies how a disease is spread in a population and 

also the factors that determine or influence this distribution. This is done by 

developing mathematical models using differential equations.  

Human disease does not happen in a vacuum. It is as a result of the interaction 

of the host (infected person), the agent (e.g. viruses) and the environment (e.g. 
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contaminated water supply). As explained in Chapter 1 under section 1.1.5, dengue 

fever transmission is from an infected human to a vector (mosquito) then to a healthy 

human. When dengue fever is in a population, those who are susceptible become 

exposed for a time period after a mosquito bite. These exposed individuals after an 

incubation period then show signs of infection and transmission continuous through 

as more individuals get bitten by an infected mosquito. Thus, for Dengue fever to 

spread in a population, there should be an interaction between the human and 

mosquito populations. 

This chapter therefore presents a detailed information on the transmission of the 

disease by using a set of differential equations.   

3.3 Model Formulation 

3.3.1 Assumptions of the model 

The system of differential equations that would be used to study the 

transmission dynamics of dengue fever would be formulated by keeping in mind the 

following assumptions.  

1. A number of people in the population is already with the infection. 

2. The probability of getting the infection is not dependent on age, sex, social 

status or race. 

3. The human and mosquito populations have equal rate of transmitting the 

disease to the other. 

4. There are no re – infections of the disease. 

5. The vector (mosquito) population remains constant.   
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3.3.2 Description of the SEI + ASEI  Model 

The SEI ASEI  model describes two populations: the host (human) and 

vector (mosquito) populations.  

The human population is made of three epidemiological compartments. They 

are susceptible (those who are capable of getting the infection), exposed (those who 

are latently infected but are not infectious) and infected (those who are infectious and 

are showing signs of infection).  

The mosquito population however is made up of four compartments. They are 

aquatic phase (the eggs that hatch into the adult mosquitoes), susceptible (mosquitoes 

that are capable of getting the infection), exposed (mosquitoes that are latently 

infected) and infected (mosquitoes that are infectious and can transmit the infection).  

The dynamics of the transmission between the human and the mosquito 

population is described in Figure 7.  All the parameters shown in Figure 7 have been 

explained in Table 1.  
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Figure 7. A compartmental model for dengue fever disease 

3.3.3 Model Equations 

This section explains the formulation of the SEI+ASEI model with each of the 

terms from the various compartments. As it has been assumed that there are some 

people in the population with the disease, the transmission of the disease starts with 

an infected human being bitten by a susceptible mosquito with an average bite per day 

of b and an infective contact rate of mB  . This rate can be represented as m m h

h

bB S I

N
 . 

The susceptible mosquitoes ( )mS  get reduced by a mosquito mortality rate of m  and 

a control effort rate of .mc  The susceptible compartment then joins the exposed 

compartment with the rate m m h

h

bB S I

N
 and are moved to the infected compartment with 
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an extrinsic incubation period of .m The adult mosquito at the exposed ( )mE  and 

infected compartment ( )mI  die at the rate of m . 

The susceptible human ( )hS   gets the infection through the bite of an infected 

mosquito and then join the exposed compartment ( )hE at the rate .m h m

h

bB S I

N
 The 

exposed human becomes infectious after an incubation period of h hE . There is a 

human mortality rate of ( )h which reduces the various compartments at a point in 

time. Some individuals recover at the infected compartment ( )hI at the recovery rate 

of h .  

The interaction between the human and mosquito populations showing the 

dynamics of the transmission can be summed up in the following system of 

differential equations.  

   ,m mh h
h h h

h

dS bB S I
N S

dt N
    (1) 

   ,m mh h
h h h

h

dE bB S I
E

dt N
     (2) 

   ,h
h h h h h

dI
E I

dt
      (3) 

  ( ) 1 ( ) ( ) ( ) ,m m
m a a m

dA A
k t M t t c t A

dt C
  

  
  

  
      (4) 

  ( ) ( ) ( ) ,m mm h
m m m m m

h

bB S IdS
t A t c t S

dt N
      (5) 
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  ( ) ( ) ( ) ,m mm h
m m m m

h

bB S IdE
t t c t E

dt N
      (6) 

   .( ) ( ) ( )m
m m m m m

dI
t E t c t I

dt
     (7) 

From equations (1) to (7), h h h hN S E I    is constant and m m mM S E I  

is also constant. Table 3 shows the parameters used in equations (1) to (7) and their 

interpretations.  

Table 1. Parameters interpretation of the model 

Parameter Biological Meaning 

𝛿 Average oviposit rate 

𝜇𝑚 Average mosquito mortality rate 

𝜇𝑎 Average aquatic mortality rate 

𝛾𝑚 Average aquatic transition rate 

𝜃𝑚 Extrinsic incubation 

𝜇ℎ Human mortality rate 

𝜃ℎ Intrinsic incubation rate 

𝛼ℎ Recovery rate 

𝑘 Fraction of female mosquitoes hatched from all eggs 

𝐶 Mosquito carrying capacity 

𝑏 Average bite per mosquito per day 

𝐵𝑚 Effective contact rate 

𝑐𝑎, 𝑐𝑚 Control effort rates 

         

3.4 Equilibrium and Stability Analysis of the SEI + ASEI  model 

In this section, the equilibrium points of equations (1) to (7) is computed and 

the stability analysis is discussed based on section 1.6.1 in Chapter 1.   

A point * * * * * * *( , , , , , , )h h h m m m mE S E I A S E I  is said to be an equilibrium point for 

the system of nonlinear equations in equations (1) to (7) if it satisfies the following. 
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  0,m mh
h h h

h

bB S I
N S

N
    

  0,m mh
h h h

h

bB S I
E

N
     

  0,h h h h hE I      

  0( ) 1 ( ) ( ) ( ) ,m
m a a m

A
k t M t t c t A

C
  

  
  

  
     

  0( ) ( ) ( ) ,m m h
m m m m m

h

bB S I
t A t c t S

N
      

  0( ) ( ) ( ) ,m m h
m m m m

h

bB S I
t t c t E

N
      

  0.( ) ( ) ( )m m m m mt E t c t I     

(8) 

From equation (8), the disease free and the endemic equilibrium points can be 

considered. A disease free equilibrium point is obtained when 0h mI I    whereas an 

endemic equilibrium point is obtained 0hI    or 0mI   (that is 0hI   or 0mI  ) 

 

 *

1 ,0,0,0,0,0,0 ,hE S  

 * * *

2 ,0,0, , ,0,0 ,h m mE S A S  

 * * * * * * *

3 , , , , , , .h h h m m m mE S E I A S E I  

 

Equilibrium points 1E  and 2E  are referred to as the disease-free equilibrium 

point and the equilibrium point 3E is called the endemic equilibrium point. It should 

be noted that, 1E  is not biological realistic as there are no mosquitoes in the 
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population. However, equilibrium points 2E  and 3E  are biological realistic with both 

mosquitoes and human coexisting in the population. 

3.5 Stability Analysis of the Equilibrium Points 

The stability analysis of the disease-free and endemic equilibrium points 

would be computed by finding the Jacobian matrix associated with equations (1) to 

(7). The equilibrium points of the disease-free and endemic equilibrium would then be 

substituted into the Jacobian matrix. The matrix equation would then be solved to 

obtain the various eigenvalues. The equations (1) to (7) are shown below. 

 

 1( ) ,m mh h
h h h

h

f E
dS bB S I

N S
dt N

     

 2( ) ,m mh h
h h h

h

dE bB S I
f E E

dt N
      

 3( ) ,h
h h h h hf E

dI
E I

dt
       

 4( ) ( ) 1 ( ) ( ) ( ) ,m m
m a a mf E

dA A
k t M t t c t A

dt C
  

  
   

  
      

 5( ) ( ) ( ) ( ) ,m mm h
m m m m m

h

bB S IdS
f E t A t c t S

dt N
       

 6( ) ( ) ( ) ( ) ,m mm h
m m m m

h

bB S IdE
f E t t c t E

dt N
       

 7 .( ) ( ) ( ) ( )m
m m m m m

dI
f E t E t c t I

dt
      

 (9) 

 

 

(9) 



37 
 

 
 

The Jacobian matrix associated with system of equation (9) is,  

1 1 1 1 1 1 1

2 2 2 2 2 2 2

6 6 6 6 6 6 6

7 7 7 7 7 7 7

h h h m m m m

h h h m m m m

h h h m m m m

h h h m m m m

f f f f f f f

S E I A S E I

f f f f f f f

S E I A S E I

J

f f f f f f f

S E I A S E I

f f f f f f f

S E I A S E I

       
       
 
       

       
 
 
 
      

      

      

       

.







  

The Jacobian matrix J can therefore be obtained as follows,  

1 2 2 3

1 4 5 3

6 7

8 9 9 9

10 10 11 12 13

10 10 11 14 15

16 17

0 0 0

0 0 0

0 0 0 0 0

( ) 0 0 0 ,

0 0

0 0

0 0 0 0 0

J J J J

J J J J

J J

J E J J J J

J J J J J

J J J J J

J J

 
 
  

 
 

  
 
 
   
 
 
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where  

 

 
1 2

,
m m h h

h h h

bB I E I
J

S E I

 


 
 

 
10 2

,m m h

h h h

bB S I
J

S E I


 
 

 
2 2

,m m h
h

h h h

bB I S
J

S E I
 

 
 

 

 
11 2

,
m m h h

h h h

bB S S E
J

S E I

 


 
 

3 ,m h

h h h

bB S
J

S E I




 
 

12 mJ   

 
4 2

,m m h
h h

h h h

bB I S
J

S E I
 


  

 
  

13 ,m h
m m

h h h

bB I
J c

S E I



  

 

 

 
5 2

,m h m

h h h

bB S I
J

S E I




 
 

14 ,m h

h h h

bS I
J

S E I


 
 

6 ,hJ   15 ,m m mJ c      

7 ,h hJ      16 ,mJ   

 
 

8 ,
m m m

m a a

k E kI kS
J c

C

  
 

 
    

 

17 .m mJ c    

 9 ,m

k
J C A

C


     

The equilibrium points would be computed in the next section.  

3.5.1 The Disease-Free Equilibrium Point(DFE) 

From equation (8), the disease free can be found by solving for the variables 

of interest. As stated earlier, a disease free equilibrium point is obtained when there is 

no disease in the population or 0h mI I  . In that case, two equilibrium points 1E

and 2E  are obtained as follows.  
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 *

1 ,0,0,0,0,0,0 ,hE S
 

 * * *

2 ,0,0, , ,0,0 .h m mE S A S  

 

Therefore, substituting 0h mI I   into equation (8), gives the following 

 

  0,h h hN S    

   1 0,m
m m m m a a m

A
k S E I c A

C
  
  
        
  

 

  0.m m m m mA c S     

 

Solving for * *,h mS A  and *

mS  , gives the following solutions.  

 

*( ) ,h hS t N  

 
* ( ) ,

m m
m a m

m

m

c
C k c

A t
k


  





  
    

    

 
* ( ) .

m m
m a a

m

m

m m

m

c
k c

S t
c

k
C


  








 
    

 
 
 
 

 

 

           When 0, 0m mS A  . However at the disease-free equilibrium , 0m mS A  . 

This would then be substituted into the Jacobian matrix ( )J E  in order to find the 

corresponding eigenvalues.  

3.5.2 Stability Analysis of the Diseases –Free Equilibrium Point 

At the disease-free equilibrium, 0h mI I  . Substituting 0h mI I   into the 

Jacobian matrix associated with equations (1) to (7) gives, With the equilibrium point 

 * * *

2 ,0,0, , ,0,0 .h m mE S A S  , the Jacobian matrix associated with it is  
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1 1 2

3 2

4 5

6 7 7 7

8 9 10

8 11

12 10

0 0 0 0

0 0 0 0 0

0 0 0 0 0

( ) 0 0 0 .

0 0 0 0

0 0 0 0 0

0 0 0 0 0

J J J

J J

J J

J E J J J J

J J J

J J

J J

 
 
 
 
 

  
 
 

 
 
 

 

where  

1 ,hJ    
7 ,

mk C A
J

C

  
  

2 ,mJ bB  
8 ,m m

h

bB S
J

S


  

 3 ,h hJ      9 ,mJ   

4 ,hJ   10 ,m mJ c    

 5 ,h hJ      11 ,m m mJ c      

6 ,m m a akS C Cc C
J

C

     
  

 
 12 .mJ   

It is difficult to find the eigenvalues of the above matrix as the system is made 

up of seven nonlinear differential equation. This would result in polynomial of order 7 

and cannot be computed easily by hand. Therefore, the Maple computational software 

would be used to find the eigenvalues of the Jacobian matrix of the DFE in Chapter 4.  

3.5.3 The Endemic Equilibrium Point (EE) 

The endemic equilibrium point describes a state in the population whereby the 

disease persists and is spreading. Therefore an endemic equilibrium point is obtained 
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0hI    or 0mI   (that is 0hI   or 0mI  ). The endemic equilibrium point is 

obtained as follows:  

 * * * * * * *

3 , , , , , , .h h h m m m mE S E I A S E I  

The solutions to the variables of interest from equilibrium point 3( )E  are 

found by solving equation (10). That is equating system of equation (9) to zero.  

 

 

 
* *

* 0,h m
h

m
h h

h

IbB S
N S

N
    

 
* *

* 0,h m
h

m
h h

h

IbB S
E

N
     

 * * 0,h hh h hE I      

  * 01 ,m
m

m a a

A
k M c A

C
  
  

  
  

     

 
* *

* * 0,m h
m m

m
m m m

h

bB S I
A c S

N
      

 
* *

* 0,m h
m

m
m m m

h

bB S I
c E

N
      

 * * 0.m mm m mE c I     

 (10) 

An analytical solution to equation (10) is difficult to obtain and the 

eigenvalues would be calculated and shown in the next chapter when the model 

parameters are found.  
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3.5.4 Stability Analysis of the Endemic Equilibrium Point 

At the endemic equilibrium, 0hI    or 0mI   (that is 0hI   or 0mI  ). 

Substituting equilibrium point 3( )E  into the Jacobian matrix associated with 

equations (1) to (7) gives, 

1 2 2 3

1 4 5 3

6 7

8 9 9 9

10 10 11 12 13

10 10 11 14 15

16 17

0 0 0

0 0 0

0 0 0 0 0

0 0 0 .

0 0

0 0

0 0 0 0 0

J J J J

J J J J

J J

J J J J J

J J J J J

J J J J J

J J

 
 
  

 
 

  
 
 
   
 
 

 

where  

 

 

* * *

1 2
* * *

,
m m h h

h h h

bB I E I
J

S E I

 


 
 

 

* *

10 2
* * *

,m m h

h h h

bB S I
J

S E I


 
 

 

* *

2 2
* * *

,m m h
h

h h h

bB I S
J

S E I
 

 
 

 

 

* * *

11 2
* * *

,
m m h h

h h h

bB S S E
J

S E I

 


 
 

*

3 * * *
,m h

h h h

bB S
J

S E I




 
 

12 mJ   

 

* *

4 2
* * *

,m m h
h h

h h h

bB I S
J

S E I
 


  

 
 

 

*

13 * * *
,m h

m m

h h h

bB I
J c

S E I



  

 

 

 

* *

5 2
* * *

,m h m

h h h

bB S I
J

S E I




 
 

* *

14 * * *
,m h

h h h

bS I
J

S E I


 
 

6 ,hJ   15 ,m m mJ c      

7 ,h hJ      16 ,mJ   
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 
* * *

8 ,
m m m

m a a

k E k I k S
J c

C

  
 

       

 

17 .m mJ c    

 *

9 ,m

k
J C A

C


    

 

The eigenvalues associated with the Jacobian matrix of the disease-free 

equilibrium would be the only one to be calculated as the study is mainly on when 

there is no disease in the population.     

3.6 The Basic Reproduction Number 

The basic reproduction number 𝑅𝑜 is an estimation that gives the average 

number of people an infected person can transmit the disease to in a completely 

susceptible population. 

In finding the basic reproduction number, the terms in which the infection is 

progressing would be considered as described in section 1.6.3 in Chapter 1. That is

, ,h h mE I E  and mI . Where ( ) ( ( ) ( )), 1,...,4.i i i ix f x V x V x i       

( )iF x  represents the rate of appearance of new infections in compartment i . 

( )iV x  is the rate of transfer of individuals into compartment i  by any means. 

( )iV x is the rate of transfer of individuals out compartment i  by any means. 
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Therefore, from equations (2), (3), (6) and (7) we obtain,  

 

 

 

 

,

,

( ) ( ) ( ) ,

( ) ( ) ( ) .

h m h m
h h h

h

h
h h h h h

m m m h
m m m m

h

m
m m m m m

dE bB S I
E

dt N

dI
E I

dt

dE bB S I
t t c t E

dt N

dI
t E t c t I

dt

 

  

 

 

  

  

   

  

 

   ( ) ( )
dx

F x V x
dt

   where  , , , .T

h h m mx E I E I   

and ( ) ( ) ( )i iV x V x V x    is the rate of transfer of individuals in and out of the 

infected compartment. 

0
( ) ,

0

m h m

h

m m h

h

bB S I

N

F x
bB S I

N

 
 
 
 

  
 
 
 
 

           

 

 

 

 

( ) .

h h h

h h h h h

m m m m

m m m m m

E

E I
V x

c E

E c I

 

  

 

 

 
 
   

  
     

  

Calculating the Jacobian matrix associated with F and V . 
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Then computing 1

vJ  , we get 
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Calculating    1
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where   F DFEJ X  is the Jacobian matrix associated with F  and  1

V DFEJ X
 is the 

inverse of the Jacobian matrix associated with matrix V . 

The characteristic polynomial 
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Therefore, the basic reproduction number  oR  according to Driessche et al. (2002), 

can be written as follows:   

  1

o F vR J J   (11) 

   2 2 ,
( )( ) ( )( )

m h m m m h

h m m m m m h h h h h
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    

       

 
2 2
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2
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F V
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b B S S
J J

S c c N

 


      

 
    

 

Where FJ  and VJ  are the Jacobian matrices associated with F  and V . The 

linearization of the reduced system around the disease free equilibrium is described by 

F  and V .  Note that at the disease-free equilibrium h hN S  because all the 

compartments are zero except hS . We therefore obtain  

 
    

2 2

.m m m h
o

h m m m m m h h h h

b B S
R

S c c

 

      
 

    
 (12) 

Furthermore, according to Driessche et al., (2002), if 1oR  , then the DFE is 

locally stable, and if 1oR  ,  then it is locally unstable which results in an outbreak if 

a virus is introduced into the population.  

Theorem 1 (P. van den Dreiessche et al. 2002). Consider the disease transmission 

model given by equations (1) to (7). If 0x  is a DFE of the model, then 0x  is locally 

asymptotically stable if 
0
1,R  but unstable if 

0
1,R  where 

0
R is defined by (12). 
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3.6.1 Biological Interpretation of o
R   

The basic reproduction number, which is the number of cases generated by 

one case during the infection period from equation (12), has a biological meaning. 

The biological meaning can be explained terms wise from equations (1) to (6) as it 

depends on parameters from the human and the mosquito compartment. It also 

depends on the fraction between the susceptible mosquito and the total population of 

the human compartment. Again it depends on the square of the biting rate and the 

square of the effective contact rate, 2 2

mb B , meaning that only two bites from the same 

mosquito would result in a new case of dengue.  

The next section would concentrate on the numerical solution of the 

mathematical model described in equations (1) to (7).    

3.7 Numerical Solution to the Model 

In this section, the numerical method described in section 1.6.4 in Chapter 1 is 

used to solve the mathematical model in equations (1) to (7).  

This is a robust scheme that maintains the positivity as the dynamics properties of the 

solutions as well as .h h h hS E I N     

Using the Mickens’ second rule, equations (1) to (7) can be written as the 

following.  

   
1 1

1 ,
n n n n

nh h m h m
h h h h

h

S S bB S I
N S

t N
 

 


  


  
1 1

1,
n n n n

nh h m h m
h h h

h

E E bB S I
E

t N
 

 


  
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t  is the time-step, , , , , ,n n n n n n

h h h m m mS E I A S E  and n

mI  are approximations of  

( ), ( ), ( ), ( ), ( ), ( )h n h n h n m n m n m nS t E t I t A t S t E t  and ( ).m nI t                             
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The exposed human 
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The infected human 

 
1

1 1,
n n

n nh h
h h h h m

I I
E I

t
  


 

  


 

 1 1 1 ,n n n n

h h h h h h mI I E t I t           

 1 1 1 ,n n n n

h h h h h h hI I t E t I           

  1 11 ,n n n

h h h h h hI t E t I          

 

1
1 .

1

n n
n h h h
h

h h

E t I
I

t



 


  


  
 

The aquatic phase 
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The susceptible mosquito 
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The exposed mosquito 
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(13) 
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Mosquito Population 
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(14) 

Since from the equation, we have a positive right – hand side, then positive 

approximations for any positive initial data which would be located in the feasible 

region can be obtained. These numerical results would be used in the simulations that 

would be carried out in section 4.5 in Chapter 4.    
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Chapter 4 

RESULT AND DISCUSSION 

In this chapter, the epidemiology of dengue fever in Thailand would be 

analyzed and discussed. Various simulations would be run to gain some 

understanding of the transmission patterns in Thailand. This chapter will analyze and 

discuss the transmission of the disease in a population when human and mosquitos are 

interacting together. 

4.1 Data for the Simulation 

Data obtained from the Bureau of Epidemiology detailing the number of 

dengue fever cases that have been reported in all 76 provinces from 2003 to 2015, 

have been grouped into zones and all also into regions. The data is a monthly data 

with each year starting from January and ending in December. The data shows the 

number of cases as well as deaths recorded in each month for all the 76 provinces. 
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Figure 8. Total number of reported cases from all 76 provinces from 2003 to 2015 

Figure 8 shows the plots of the number of reported cases from 2003 to 2015. 

From the figure, it can be seen that dengue fever incidence was highest in 2013 and 

also 2015.  
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Figure 9 shows the total number of monthly reported  from 2003 to 2015. It 

can clearly be seen that dengue fever incidence starts peaking from May through to 

August each year with July as the month that records the highest number of cases. 

4.2 Graphical Analysis of the Data 

The obtained data is transformed for further analysis in order to understand the 

transmission pattern of dengue fever in Thailand. The year was divided into periods 

with the first period beginning from January to April. The second period continues 

from May to August, and the third period starts from September to December.  

 

Figure 10. 95% confidence intervals of the annual reported cases in Thailand by 

quarter and year 

Figure 10 shows the plot of the dengue fever cases for the three periods in the 

year on the left panel and yearly plots on the right panel. It can clearly be seen that 

dengue fever is highest in the second period, which is May, June, July, and August 

every year. The horizontal line represents the overall mean annual incidence rate (0.04 

per 1,000) 
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Quarterly plots of dengue Incidence in Thailand 
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Figure 11. Dengue fever casess by province in Thailand 

The analysis continues with the investigation of the dengue incidence in all the 

76 provinces from 2003 and 2015. Figure 11 shows the graphs of the total number of 

cases that have been reported in all 76 provinces from 2003 to 2015. Every province 

is given an ID starting from 1 to 76 and this can be seen in Table 4. The horizontal 

line is the mean indicating the number of average cases reported. Provinces like 

Ratchaburi (ID=29), Samut Sakhon(ID=33), Prachin Buri (ID=37), Chanthaburi 

(ID=40), and Rayong (ID=42) had a much higher dengue fever incidence as compared 

to the other provinces by using the mean line. Chumphon (ID=63), Ranong (ID=64), 

Nakhon Si Thammarat (ID=66), Phatthalung (ID=67), and Roi Et  (ID=54) provinces 

had lower than average (mean line) incidence rates. 

Table 2 shows the list of the provinces in Thailand with an ID which would be 

used later in the analysis of the incidence rate of Dengue fever in Thailand.  
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Table 2  List of the 76 provinces and their IDs 

ID Province ID Province ID Province 

1 Chiang Mai 27 Kanchanaburi 53 Maha Sarakham 

2 Chiang Rai 28 Nakhon Pathom 54 Roi Et 

3 Lampang 29 Ratchaburi 55 Buri Ram 

4 Lamphun 30 Suphan Buri 56 Chaiyaphum 

5 Mae Hong Son 31 Phetchaburi 57 Nakhon Ratchasima 

6 Nan 32 Prachuap Khiri Khan 58 Surin 

7 Phayao 33 Samut Sakhon 59 Amnat Charoen 

8 Phrae 34 Samut Songkhram 60 Si Sa Ket 

9 Phetchabun 35 Chachoengsao 61 Ubon Ratchathani 

10 Phitsanulok 36 Nakhon Nayok 62 Yasothon 

11 Sukhothai 37 Prachin Buri 63 Chumphon 

12 Tak 38 Sa Kaeo 64 Ranong 

13 Uttaradit 39 Samut Prakan 65 Surat Thani 

14 Kamphaeng Phet 40 Chanthaburi 66 Nakhon Si 

Thammarat 

15 Nakhon Sawan 41 Chon Buri 67 Phatthalung 

16 Phichit 42 Rayong 68 Trang 

17 Uthai Thani 43 Trat 69 Krabi 

18 Bangkok 44 Loei 70 Phangnga 

19 Ang Thong 45 Nong Bua Lam Phu 71 Phuket 

20 Nonthaburi 46 Nong Khai 72 Narathiwat 

21 P. Nakhon S. Ayutthaya 47 Udon Thani 73 Pattani 

22 Pathum Thani 48 Kalasin 74 Yala 

23 Chai Nat 49 Mukdahan 75 Satun 

24 Lop Buri 50 Nakhon Phanom 76 Songkhla 

25 Saraburi 51 Sakon Nakhon   

26 Sing Buri 52 Khon Kaen   
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Figure 12. Thematic Map showing dengue fever distribution in Thailand 

From the plots obtained from the Figure11, it can be seen that some of the 

provinces’ incidence rates are below and above the average line. Figure 12 therefore 

shows the thematic map of Thailand showing of the number cases reported in all the 

76 provinces with the province ID’s shown in Table 2, the provinces that are above 

(red shade), on the average line (orange shade) and below the average line (yellow 

shade) are indicated on the map. 



60 
 

 
 

4.3 Parameter Models 

Entomological parameters on the various stages of the adult mosquito as well 

as some parameter value pertaining to the human population in Table 3 was not 

available. The parameters are average oviposit rate, average mosquito mortality rate, 

average aquatic mortality rate, average aquatic transition rate, extrinsic, and intrinsic 

incubation rate. Also, the recovery rate, fraction of female mosquitos hatched from all 

eggs, mosquito carrying capacity, average bite per mosquito per day, effective contact 

rate, and control efforts rates were also not available. Therefore, parameter values 

chosen from the ranges of possible values, indicated in Pinho et al., (shown in Range 

column in Table 3), will be used but they will be adjusted to mimic the transmission 

pattern of the data obtained from the Bureau of Epidemiology. The adjusted values 

are in the Values column (4th column) in Table 3. The total human population in the 

model equation is obtained from the total population of each province in the data. 

Table 3. Parameter values for numerical simulations as used by Pinho, et al. 

Biological Meaning Parameter Range Values 

Average oviposit rate 𝛿 0-11.2 day-1 4 

Average mosquito mortality rate 𝜇𝑚 0.02-0.09 day-1 0.02 

Average aquatic mortality rate 𝜇𝑎 0.01-0.47 day-1 0.01 

Average aquatic transition rate 𝛾𝑚 0-0.19 day-1 0.12 

Extrinsic incubation 𝜃𝑚 0.02-0.2 day-1 0.02 

Human mortality rate 𝜇ℎ 0.0143-0.0167 year-1 0.0143 

Intrinsic incubation rate 𝜃ℎ 0.083-0.17 day-1 0.083 

Recovery rate 𝛼ℎ 0.083-0.17 day-1 0.083 

Fraction of female mosquitoes 

hatched from all eggs 
𝑘 0-1 0.5 

Mosquito carrying capacity 𝐶  –  0.918455 

Average bite per mosquito per day 𝑏 0-1 0.5 

Effective contact rate 𝐵𝑚  0.4 

Control efforts rate for aquatic 

phase 
ac   0-1 0 

Control efforts rate for adult 

mosquito 
mc   0-1 0 
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4.4 Model Simulation 

The simulations for the model were carried out in Octave programming 

software version 4.2.0. All scripts and graphs were produced in Octave. The 

parameters for the simulations were from Table 3 under section 4.4. Equations (13) 

and (14) from section 3.7 in Chapter 3 were used in the numerical computations. The 

numerical simulations were carried out for 365 days and an array with zero entries of 

size 365 1  was created in order to hold the values for the various compartments for 

both the human and mosquito populations (see appendix).  

Thailand recorded its highest ever dengue case with 87,502 cases in 2013 and 

among the zones created by the bureau of epidemiology in partitioning the various 

provinces, zone 15 out a total of 18 zones was the one with the highest number of 

cases. Zone 15 had four provinces which are Chiang Mai, Lampang, Lamphun, and 

Mae Hong Son. Chiang Mai recorded 8,713 cases as against 2,547 for Lampang, 917 

for Lamphun, and 1,473 for Mae Hong Son from a total of 13,650 cases. It could be 

seen from Figure 11 that some provinces such as Ratchaburi, Samut Sakhon, and 

Prachin Buri recorded much higher cases than others when compared with the average 

number of cases across all provinces. Some provinces such as Sing Buri, Chon Buri, 

and Udon Thani recorded much lower than the average number of cases reported 

when compared with the average line. The study selects one province to represent 

each group of provinces, which are the provinces on the average line, below the 

average line, and above the average line. The study considered Chiang Mai as the 

province that is on the average line, Chanthaburi as the province that is above the 

average line, and Roi Et as the province that is below the average line.  
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The simulations were done from 2003 to 2015 with the total population of 

Chiang Mai in each year as hN  in equation (1) to (7).  

The various parameters are predefined in the script in order to make them 

available for the simulation. The simulations for both the human and mosquito 

populations are done for 365 days representing 1 year using equations (13) and (14) 

respectively. The simulated compartments are plotted to show a graphical 

representation of the transmission dynamics of the infection. For the human 

population, the susceptible compartment is plotted separately as the scale is bigger 

than the exposed and infected compartment. The mosquito compartment has two 

separated figures representing the aquatic stage and the susceptible compartment with 

the exposed and infected compartment plotted together. All programming codes and 

scripts are shown in the appendix. 

After obtaining the parameters for the simulation, the eigenvalues associated 

with the disease-free equilibrium can be calculated as follows  

0.0000

0.0000

0.0000

1000000 .0.0000

0.0000

9.7699

0.0000

DFE

 
 
 
 
 

   
 
 
 
 
 

 

The graphs below therefore show the simulations that were carried out for all 

the compartments representing the human and mosquito populations. 
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(a) 

 

(b) 

Figure 13. Simulation of the Human Compartment for Chiang Mai Province for 2013 
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Figure 13 shows the numerical simulations of the Human Compartment for 

Chiang Mai Province for the year 2013. The simulations were carried out on a daily 

basis for one year. The total number of people (both susceptible and infected) in 

Chiang Mai at the beginning of the year 2013 is 1,650,894. The initial number of 

infected people for the simulation was the total number of cases reported in December 

2012, which is 107. Figure 13(a) shows the graph of the susceptible human population 

and 13(b) show the graphs of the exposed and infected human compartment. The y-

axis indicates the total population and the x-axis represents the time for the simulation 

in day. The parameters used in the simulation are from Table 3.  

From Figure 13(a), the number of susceptible people reduces as the disease 

spreads in the population from an initial number of 1,646,144 from the start of the 

simulation to about 1,585,000 people at the 247th day and starts increasing after the 

250th day to approximately 1,613,000 people. However, in Figure 13(a), a 

corresponding increase in the exposed compartment can be seen from 0 at the 

beginning to about 3,050 people at the 155th day of the simulation which then 

decreases to about 500 people at the end of the simulation. The reason can be that 

those who get bitten by the mosquitoes get exposed for an incubation period before 

they show signs of infection. These people then become infected and thereby join the 

infected compartment as shown in Figure 13(b). The number of infected people 

increase from the initial 107 number at the first day to about 2,550 people at the 195th 

day of the simulation which represents the month of June and July. This result is 

consistent with the statistical result obtained in Figure 10. From the Infected 

compartment in Figure 13(b), Dengue fever is the highest in the second period of 

every year with an increase in the number of cases from May through June and with a 
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peak in July and then a decline in August which is around the 250th day of the 

simulation.     

 
(a) 

 
(b) 

Figure 14. Simulation of the Mosquito Compartment for Chiang Mai Province for 

2013 
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Figure 14 shows the simulations of the mosquito compartment corresponding 

to the human compartment in Figure 13 for Chiang Mai Province. The simulations 

were done for the Aquatic Phase, Susceptible Mosquito, Exposed, and Infected 

Mosquito of the model as shown in Figures 14(a) and 14(b), respectively. From 

Figure 14(a), the total number of the Aquatic Phase of the mosquito and the 

Susceptible ones starts decreasing from the start of the simulation as the Aquatic 

phase becomes the adult mosquitoes and therefore joins the Susceptible compartment. 

The mosquitoes in the Susceptible compartment get exposed to the disease whenever 

they bite and thus there is an increase in the number of exposed mosquitoes. This is 

evident in Figure 14(b). The number, however, decreases after the 120th day. The 

exposed mosquitos that become infected after the incubation period joins the Infected 

human compartment and an increase in that number can be seen in Figure 14(b). It 

should be noted that there is a correlation between the period where there is an 

increase in the Infected compartment for the human population and the infected 

mosquito as more mosquitos that bite would result in more humans getting the 

infection. Figure 13(b) and Figure 14(b) shows this correlation.     

4.5 Comparison of Real Data and Simulated Data 

The simulations that were carried out are compared with the real data. This is 

done by using the graph from the infected compartment and comparing it with the 

monthly number of cases for Chiang Mai, Chanthaburi and Roi Et provinces.The data 

obtained from the Bureau of Epidemiology is a monthly data. The data was then 

interpolated to be a daily data so that it can easily be compared to the daily simulated 

data obtained from the infected compartment. 
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Figure 15. Comparison between the Infected Compartment and Number of Reported 

Cases for Chiang Mai in 2013, Chanthaburi in 2016, and Roi Et Provinces in 2009  

Figure 15 shows the graph of the infected compartment from the model and 

the number of reported cases for Chiang Mai, Chanthaburi, and Roi Et provinces 

respectively. The average bite of the mosquito in the model is adjusted to get a graph 

that mimics the graph of the infected compartment. The highest number of infected 

people is achieved in the graph corresponding to the model in Figure 15. However, 

the deviation from the real data can be attributed to the parameters used in the 

simulation as it can sometimes over estimate the simulated values. This is because it 

has been assumed that the there is a homogenous mixing of the infected people as 

well as the mosquito population.    

         (a) Chiang Mai, 2013        (b) Chanthaburi, 2010 

(c) Roi Et, 2009  
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4.6 Numerical Estimation of the Basic Reproduction Number 

The basic reproduction number 0( )R , an important expression in 

Mathematical Epidemiology,  describes the number of Infected cases generated on the 

average during the course of an infection. The basic reproduction number for Chiang 

Mai province was calculated using equation (12). As stated earlier, the infection 

would result into an endemic situation when 0 1R   and would die out quickly when 

0 1R  . Generally, the bigger than 0R , the harder it becomes to control the infection. 

In getting an estimate for the basic reproduction number, the graphs were plotted to 

get a graph that mimics the number of reported cases and after that the parameters that 

were then substituted in equation (12) to calculate oR . This was achieved by keeping 

all the parameters in Table 3 constant and changing only b , the average bite per 

mosquito per day.  

Figures 16, 17, and 18 are the plots of the infected compartments together with 

the total number of cases that was reported from 2003 to 2015 for Chiang Mai 

province. It should be noted that some of the parameters like the biting rate and 

mortality rate of the mosquito have an effect on the transmission of the disease and as 

the result can cause deviation of the simulated data from the real data.  
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Figure 16. Graph of Infected compartment versus reported number of cases for 2003, 

2004, 2005, and 2006 for Chiang Mai Province 

In getting an estimate of the basic reproduction number, the graph of the 

infected compartment together with the number of reported cases are plotted with the 

model parameters. The various parameters are kept constant, except the parameter b, 

(average bite per mosquito per day). Figures 16(a), 16(b), 16(c), and 16(d) show the 

simulation for 2003, 2004, 2005, and 2006, respectively. The graph arising from the 

model data is shown as the solid line whereas the graph arising from the real data is 

shown as the dashed line.  

(a) 2003 (b) 2004 

(c) 2005 (d) 2006 



70 
 

 
 

 

 

Figure 17. Graph of Infected compartment versus reported number of cases for 2007, 

2008, 2009, and 2010 for Chiang Mai Province 

Figures 17(a), 17(b), 17(c), and 17(d) show the graph of the infected 

compartment and the number of reported cases for Chiang Mai in 2007, 2008, 2009, 

and 2010 respectively. Figure 17(b) follows the same pattern described under Figure 

16.  

 

(a) 2007 (b) 2008 

(c) 2009 (d) 2010 
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Figure 18. Graph of Infected compartment versus reported number of cases for 2011, 

2012, 2013, 2014, and 2015 for Chiang Mai Province 

The simulations for the rest of the years are shown in Figure 18. Figures, 

18(a), 18(b), 18(c), 18(d), and 18(e) show the graphs of the infected compartment and 

the real data for Chiang Mai in 2011, 2012, 2013, 2014, and 2015, respectively. An 

(e) 2015 

(c) 2013 (d) 2014 

(a) 2011 (b) 2012 
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estimate of the basic reproduction number and the parameter b , corresponding to each 

year is shown in Table 4.  

 

 

Figure 19. Graph of Infected compartment versus reported number of cases for 2003, 

2004, 2005 and 2006 for Chanthaburi Province 

The simulations were repeated for Chanthaburi province, which is part of the 

provinces that was above the mean line in Figure 11.  An estimate of the basic 

reproduction number has been obtained from 2003 to 2015. All the parameters were 

kept constant except the parameter b, (average bite per mosquito per day). Figure 19 

shows the graph of the real data versus the simulated form 2003 to 2006. From the 

figure, it can be seen that the number of infected people always starts increasing from 

the first four months and then peaks in the sixth to seventh month. However, there are 

(a) 2003 (b) 2004 

(c) 2005 (d) 2006 
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sometimes that the number of infected people from the simulated data are larger than 

the number of infected people from the real data and this is because of the parameters 

involved in the simulation.  

 

 

 

 

 

Figure 20. Graph of Infected compartment versus reported number of cases for 2007, 

2008, 2009, and 2010 for Chanthaburi Province 

Figures 20(a), 20(b), 20(c), and 20(d) show the graph of the infected 

compartment and the number of reported cases for Chanthaburi province in 2007, 

2008, 2009, and 2010, respectively. The simulations were carried out with the same 

(a) 2007 (b) 2008 

(c) 2009 (d) 2010 
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parameter values except the average bit per mosquito per day. The result follows a 

similar pattern with Figure 19.  

 

 

 

 

 

Figure 21. Graph of Infected compartment versus reported number of cases for 2011, 

2012, 2013, 2014, and 2015 for Chanthaburi Province 

(e) 2015 

(a) 2011 (b) 2012 

(c) 2013 (d) 2014 
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Figure 21 shows the simulations for Chanthaburi province for 2011, 2012, 

2013, 2014, and 2015. The graphs represents the simulations for the real and 

simulated data. The province is part of the areas that have reported higher numbers of 

infected people over the years.  

 

 

 

Figure 22. Graph of Infected compartment versus reported number of cases for 2003, 

2004, 2005, and 2006 for Roi Et Province 

Figures 22(a), 22(b), 22(c), and 22(d) show the graph of the infected 

compartment and the number of reported cases for Roi Et province which was below 

the average line in Figure 11 for 2003, 2004, 2005, and 2006, respectively. The 

simulation were carried out with the same parameter values except the average bit per 

mosquito per day. The result follows a similar pattern with Figure 19.  

(c) 2005 (d) 2006 

(a) 2003 (b) 2004 
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Figure 23. Graph of Infected compartment versus reported number of cases for 2007, 

2008, 2009, and 2010 for Roi Et Province 

Figure 23 shows the simulations for Roi Et province for 2007, 2008, 2009, and 

2010. The graphs represents the simulations for the real and simulated data. The 

province is part of the areas that have reported much lower cases over the years 

according to Figure 12. 

 

(a) 2007 (b) 2008 

(c) 2009 (d) 2010 
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Figure 24. Graph of Infected compartment versus reported number of cases for 2011, 

2012, 2013, 2014, and 2015 for Roi Et Province 

Figure 24 shows the graph of the real data versus the simulated from 2011 to 

2015 for Roi Et province. From the figure, that the number of infected people always 

starts increasing from the first four months and then peaks in the sixth to seventh 

(e) 2015 

(a) 2011 (b) 2012 

(c) 2013 (d) 2014 
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month. The simulated results are essential for understanding and interpreting the 

transmission pattern of the disease. 

The resulting numerical values are shown in Table 4.  

Table 4. The estimated basic reproduction number for Chiang Mai, Chanthaburi, and 

Roi Et province from 2003 to 2015 

 Chiang Mai Chanthaburi Roi Et 

Year b  
oR  b  

oR  b  
oR  

2003 0.507 0.7381 0.432 0.73629 0.493 0.7365 

2004 0.444 0.7375 0.448 0.73275 0.407 0.73623 

2005 0.477 0.7365 0.564 0.73869 0.476 0.73418 

2006 0.493 0.7363 0.476 0.73383 0.515 0.73333 

2007 0.49 0.7370 0.496 0.73507 0.468 0.73690 

2008 0.568 0.7384 0.436 0.73867 0.52 0.73676 

2009 0.385 0.7330 0.477 0.73637 0.494 0.73858 

2010 0.557 0.7367 0.491 0.73754 0.601 0.73601 

2011 0.406 0.7335 0.416 0.73815 0.491 0.73893 

2012 0.51 0.7370 0.446 0.73431 0.5 0.73728 

2013 0.5 0.7389 0.413 0.73713 0.444 0.73622 

2014 0.407 0.7361 0.453 0.73720 0.515 0.73354 

2015 0.527 0.7351 0.421 0.73571 0.497 0.73768 

 

Table 4 shows an estimate of the basic reproduction number and the parameter 

b , the average bite per mosquito per day corresponding to all the years from 2003 to 

2015 for Chiang Mai, Chanthaburi, and Roi Et provinces. In 2003, the average bite 

per mosquito per day is estimated to be 0.507 and its corresponding oR is estimated as 

0.7381 for Chiang Mai province. 

Different factors contribute to the dynamic nature of the simulations but this 

study will concentrate on entomological factors as any policy to control the disease in 

a short and long term would be about controlling the mosquito and breeding sites. 
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Therefore, in section 4.7, we will explore how control factors affect the number of 

infected humans. 

4.7 Control Efforts for the Model 

The 𝑆𝐸𝐼 + 𝐴𝑆𝐸𝐼 model has parameters to control the infection during the 

epidemic. The control parameters mc  and ac  are used to control the aquatic stage and 

the adult mosquito respectively. This is done through simulation to know the amount 

of areas in the province to be controlled with larvicide and insecticides. The values of 

mc  and ac lie between 0 and 1. This means that a control value of zero means there is 

no control whereas a control value of one means a perfect control. However in this 

study only the control effort mc  for the adult mosquito would be considered. The 

simulations are carried out for Chiang Mai province for the years 2003, 2006, 2008, 

2010, and 2013. The resulting graphs are shown in Figure 25.   

 

Figure 25. Control Efforts for Chiang Mai province, 2003 
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Figure 25 shows the graphs of the simulations carried out for Chiang Mai, 

with control efforts in 2003. Control efforts targeting the adult mosquito were used 

and the corresponding change in the number of infected individuals are shown in the 

figures. It should be noted that the control efforts are used of reduce the number of 

infected individual during the entire simulation. As a result, there is a corresponding 

decrease in the estimate of the basic reproduction number. The control effort values 

used and the corresponding estimate of the basic reproduction number is shown in 

Table 5. 

Table 5. Control efforts and basic reproduction number for Chiang Mai in 2003 

Control 

efforts o
R   

0 0.7381 

0.0025 0.7172 

0.005 0.7100 

0.0075 0.6892 

0.011 0.6771 

1 0.0129 

Table 5 shows the values of the control efforts used and their corresponding 

estimated value of the basic reproduction number. Each control value reduces the 

estimate of the basic reproduction number.  
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Figure 26. Control Efforts for Chiang Mai province, 2008 

Figure 26 shows the graphs of the simulations carried out for Chiang Mai, 

with control efforts in 2008. The legend on the figure shows each control parameter 

and the effect it has on the number infected people in the population.  The control 

effort values used and the estimate of the basic reproduction number are shown in 

Table 6. 

Table 6. Control efforts and basic reproduction number for Chiang Mai in 2008 

Control 

efforts o
R  

0 0.7384 

0.0025 0.7195 

0.005 0.7082 

0.0075 0.6944 

0.011 0.6788 

1 0.0153 
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Table 6 shows the values of the control efforts used and their corresponding 

estimated value of the basic reproduction number for Chiang Mai province in 2008. 

Each control value reduces the estimate of the basic reproduction number.  

 

Figure 27. Control Efforts for Chiang Mai province, 2013 

Figure 27 shows the graphs of the simulations carried out for Chiang Mai, 

with control efforts in 2013. The legend on the figure shows each control parameter 

and the effect it has on the number of infected individuals in the population. Every 

control effort reduces the total number of infected individuals in the population. The 

control effort values used and the corresponding estimate of the basic reproduction 

number are shown in Table 7. 
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Table 7. Control efforts and basic reproduction number for Chiang Mai in 2013 

Control 

efforts 
o

R  

0 0.7389 

0.0025 0.7245 

0.005 0.7032 

0.0075 0.6932 

0.011 0.6835 

1 0.0126 

Table 7 shows the values of the control efforts used and their corresponding 

estimated value of the basic reproduction number. Each control value reduces the 

estimate of the basic reproduction number which gives the estimates of the number of 

secondary infection in a population when an infected person in introduced. In the real 

situation, this is a fact and it has been shown numerically.  

When these plots are generated for different provinces for different years, the 

results would be similar to the ones presented in Figures 25, 26, and 27. The reason is 

that the control parameters are supposed to reduce the number of infected people over 

time and as a result whenever mc , the control effort for the adult mosquito increases, 

there is a corresponding decrease in the number of infected individuals. 

The next chapter discusses the conclusions and some recommendations from the 

study.  

  



84 
 

 
 

Chapter 5 

CONCLUSIONS 

In this chapter, conclusions, recommendations as well as further research 

would be discussed. This would provide more information for the government, public 

health agencies and other stakeholders to make better policies in determining how to 

allocate resources for dengue fever treatment and control in Thailand.  

5.1 Conclusions 

In order to control and prevent the transmission of dengue fever in Thailand, 

there is the need to understand the transmission patterns and the prevalence of the 

disease. Many infectious diseases have been modeled using differential equations. 

The purpose of this study was to examine and discuss in detail a mathematical model 

for the transmission of the dynamics of dengue fever in Thailand using differential 

equations. A number of assumptions were made in order for the mathematical model 

to be applicable in the study area. The nature of dengue fever satisfies the 𝑆𝐸𝐼 +

𝐴𝑆𝐸𝐼 model as it describes the interaction between humans and mosquitos in 

population. The population comprising of human and mosquito were categorized in 

susceptible, exposed, infected and then another compartment for the aquatic phase of 

the mosquito’s life. All the parameters used in the model are described in section 4.4 

in Chapter 4 of the study. 

Data from the bureau of epidemiology, Ministry of Public Health, Thailand 

was obtained from 2003 to 2015 and it was used to understand the transmission 

pattern of the disease. It was seen that dengue fever is highest in the second period of 

every year. There is always an increase in the number of cases from the month of May 



85 
 

 
 

through June with a peak in July and then declines in August. Also, the distribution of 

the disease in all the 76 provinces for the 13-year period was also shown. This was 

done according to regional demarcations and it was seen that dengue fever has been 

prevalent in the central region of Thailand. A thematic map representing this 

distribution was presented to give a graphical view of dengue fever in Thailand. This 

result is good for the government, Public Health professionals, and other stake holders 

in the control of the disease. 

Simulations were carried out in order to understand how the disease spreads in 

the population. Chiang Mai, Chanthaburi, and Roi Et provinces were used as case 

studies for all the numerical simulations. A non-standard numerical scheme has been 

used to obtain the numerical solution of the system of differential equations. The 

simulations show that an increase in the average bite per mosquito per day results in 

an increase in the number of infected people. Also, an increase in the number of 

infected mosquito has a direct correlation in the increase in the number of infected 

people.       

An important estimate in epidemiology is the basic reproduction number 0( )R   

and in theory, it has been shown that when 0 1R  , the disease free equilibrium is 

locally asymptotic stable. Estimates of the basic reproduction number for the Chiang 

Mai, Chanthaburi, and Roi Et province have been shown. The estimated value for the 

basic reproduction number for Chiang Mai , Chanthaburi, and Roi Et province was 

relatively small as all the values were less than one. The thematic map obtained shows 

the provinces that recorded higher number of reported cases when compared with the 

average number of cases recorded from 2003 to 2015 . 
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This result is therefore important for epidemiologists in the control of dengue 

fever in this province and other provinces as well. 

In order to understand how the disease can be curbed, the mathematical model 

makes use of control parameters targeting the adult mosquito. In controlling the 

epidemics, the control parameters showed good results, as each control parameter 

value was able to reduce the number of infected individuals throughout the 

simulation. 

From the various simulations, it was seen that, the transmission of the disease 

depends largely on the average bite of the mosquitoes as well as the average mosquito 

mortality rate.  

5.2 Recommendations 

After a careful analysis, the study recommends the following in order to 

control the spread of the disease.  

 The various simulations showed that the transmission of the disease is largely 

dependent on the average bite of the mosquito. Therefore, it recommended 

that people put in measures like sleeping in treated mosquito nets. 

 As the study provided an estimate of the basic reproduction numbers, 

epidemiologist can use such information to know on the average how many 

people would be infected when one infected person is introduced into the 

population. 

 The government should intensify the education on dengue fever incidence to 

sensitize people in the provinces of its existence. 
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 The government and other policy makes should increase the control efforts to 

further reduce the number of infected people in the population. 

 Special attention should be given to the provinces in the Central as well as the 

southern part of the Kingdom as an initial assessment of the data obtained 

showed that the number of reported cases of dengue fever is higher as 

compared to the average number of cases reported across all the provinces 

from 2003 to 2015. 

 Entomological data pertaining to Thailand is not available in most endemic 

provinces and it would be recommended that detailed studies be carried out to 

make this data more readily available to mathematical epidemiologist for 

future studies.  

5.3 Further Study 

Further research work is recommended in order to in-cooperate more 

parameters in the model to represent the more heterogeneous nature of the real world 

situation. This study however, considered three provinces from the North, Central and 

North-East part of Thailand, and thus the incidence of dengue fever could be more 

understood when the simulations are carried out for most of the provinces in all the 

regions. The choice of parameters for future work should done on the basis of detailed 

simulations by varying almost all the parameters involved and then comparing them 

to the real data in order to get the graph that best fits the real data. 

Also, the non-standard finite difference scheme need to be investigated further 

in order to generally apply it to epidemic models to ensure numerical stability in the 

results.   
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Appendix 

Octave Code for Simulation 

% This program is free software: you can redistribute it and/or modify 

%     it under the terms of the GNU General Public License as published by 

%     the Free Software Foundation, either version 3 of the License, or 

%     (at your option) any later version. 

%  

%     This program is distributed in the hope that it will be useful, 

%     but WITHOUT ANY WARRANTY; without even the implied warranty of 

%     MERCHANTABILITY or FITNESS %FOR A PARTICULAR PURPOSE.  See 

the 

%     GNU General Public License for more details. 

%  

%     You should have received a copy of the GNU General Public License 

%     along with this program.  %If not, see <http://www.gnu.org/licenses/>. 

% for plotting the main Simulation for all compartments 

 

clear,clc 

clear,clc 

disp('***********************************************************') 

disp('Topic: Mathematical Models for Infectious Disease Dynamics:')  

disp('A case of Dengue Fever Transmission in Thailand. ') 

disp('***********************************************************') 

disp('  ') 

disp('Student: Collins Bekoe') 

disp('  ') 

disp('Advisors: Dr. Pakwan Riyapan') 

disp('          Dr. Tatdow Pansombut') 

disp('          Asst. Prof. Dr. Aniruth Phon-On') 

disp('  ') 

disp('***********************************************************') 
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disp('      Faculty of Science and Technology') 

disp('Department of Mathematics and Computer Science') 

disp('        Prince of Songkla University') 

disp('          Date: 10th March, 2016.') 

disp('***********************************************************') 

disp('') 

deltaT = 1; 

Sh = zeros(365,1);  %array to hold the number of susceptible during the iteration 

Eh = zeros(365,1);   

Ih = zeros(365,1); 

Am = zeros(365,1); 

Sm = zeros(365,1); 

Em = zeros(365,1); 

Im = zeros(365,1); 

% Nh = 1599538;  % 2003 

% Nh = 1616995;  % 2004 

% Nh = 1640390;  % 2005 

% Nh = 1654154;  % 2006 

% Nh = 1661349;  % 2007 

% Nh = 1667358;  % 2008 

% Nh = 1651433;  % 2009 

% Nh = 1636514;  % 2010 

% Nh = 1643312;  % 2011 

% Nh = 1650894;  % 2012 

 Nh = 1646144;  % 2013 

% Nh = 1672586;  % 2014 

% Nh = 1678284;  % 2015 

 

b = 0.5;  %original value % average bite per mosquito per day 

k = 0.5;  %fraction of female mosquitos hatched from all eggs 

Eh(1) = 0; %initial value of the exposed human 

%Ih(1) = 5;      % 2003 
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% Ih(1) = 11;   % 2004 

% Ih(1) = 5;    % 2005 

% Ih(1) = 7;    % 2006 

% Ih(1) = 5;    % 2007 

% Ih(1) = 6;    % 2008 

% Ih(1) = 74;   % 2009 

% Ih(1) = 17;   % 2010 

% Ih(1) = 16;   % 2011 

% Ih(1) = 9;    % 2012 

 Ih(1) = 107;  % 2013 

% Ih(1) = 37;   % 2014 

% Ih(1) = 22;   % 2015 

Sh(1) = Nh-Eh(1)-Ih(1); %initial value of the susceptible human 

Am(1) = b*Nh;  %initial number of mosquitoes at the aquatic stage 

 

 

Em(1) = 0;  %initial value of the exposed mosquito 

Im(1) = 0;  %initial value of the infected mosquito 

delta = 4; % average oviposition rate 

miuM = 0.02;  % average mosquito mortality rate 

miuA = 0.01;  %average aquatic mortality rate 

gammaM = 0.12; % average aquatic transition rate 

thetaM = 0.02; %extrinsic incubation period 

miuH = 0.0143;  %human mortality rate 

thetaH = 0.083; %intrinsic incubation rate 

alphaH = 0.083; %recovering rate 

C = 0.918455;  %Mosquito carrying capacity 

Bm = 0.4; %0.4;    %effective contact rates 

cA = 0;  %control efforts at the aquatic stage  

 

cM =[0]; % Control efforts for Chiang Mai 

Rm = (k*delta*gammaM)/((miuM+cM)*(gammaM+miuA+cA)); 
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Sm(1) = (b*Nh*gammaM*(C*(1-(1/Rm))))/(miuM+cM); 

%Simulating on a daily basis for all compartment 

for u =1:1 

for n = 1:364; 

       

  % Human Population 

Sh(n+1) = (miuH*Nh*deltaT+Sh(n))/(1+(miuH*deltaT+(b*Bm*Im(n)*deltaT)/Nh)); 

Eh(n+1) = (((deltaT*b*Bm*Sh(n+1)*Im(n))/Nh)+Eh(n))/(1+(thetaH+miuH)*deltaT); 

Ih(n+1) = ((thetaH*Eh(n+1))*deltaT+Ih(n))/(1+(alphaH+miuH)*deltaT); 

% Mosquito Population 

Am(n+1) = 

(k*delta*(Sm(n)+Em(n)+Im(n))*deltaT+Am(n))/(1+((k*delta*(Sm(n)+Em(n)+Im(n))

)/C+(gammaM+miuA+cA))*deltaT); 

Sm(n+1) = 

(gammaM*Am(n+1)*deltaT+Sm(n))/(1+(((b*Bm*Ih(n))/Nh)+miuM+cM(u))*deltaT)

; 

Em(n+1) = 

((((b*Bm*Sm(n+1)*Ih(n))/Nh)*deltaT)+Em(n))/(1+(thetaM+miuM+cM(u))*deltaT); 

Im(n+1) = (thetaM*Em(n+1)*deltaT+Im(n))/(1+(miuM+cM(u))*deltaT);  

 

R_o(n) = 

sqrt((b^2*Bm^2*Sm(n)*thetaH*thetaM)/(Sh(n)*(thetaH+miuH)*(alphaH+miuH)*(th

etaM+miuM+cM(1))*(miuM+cM(1)))); 

end 

end 

 

%find the day in the year in which we have the maximum number of 

%infected human, then output the reproduction number of that day 

[max_Ih,index_max_Ih] = max(Ih);  

reproduction_number = R_o(index_max_Ih) 

 

%plotting the graph for each comapartment 
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figure(1) 

plot(Sh,'b','LineWidth',1); 

xlabel('Time (days)'); 

ylabel('Population'); 

title('Susceptible Human');% Population with no control'); 

 

figure(2) %graph of exposed human population 

plot(Eh,'--','LineWidth',1); hold on 

xlabel('Time (days)'); 

ylabel('Population'); 

%title('Exposed Human');% Population with no control'); 

 

plot(Ih,'-','LineWidth',1); hold off 

xlabel('Time (days)'); 

legend('exposed human','infected human');  

ylabel('Population'); 

title('Exposed and Infected Human'); % Population with no control'); 

 

%monthly_data=[5 4 3 2 5 24 134 138 110 57 29 14 11]; %Chiang Mai  2003 

% monthly_data=[11 0 1 4 6 1 53 83 53 35 19 2 0]; %Chiang Mai  2004 

% monthly_data=[5 3 9 5 8 72 63 69 53 52 37 21 7]; %Chiang Mai  2005 

% monthly_data=[7 5 3 4 8 38 149 116 60 31 20 8 5]; %Chiang Mai  2006 

% monthly_data=[5 0 3 1 5 11 50 82 82 47 29 28 6]; %Chiang Mai  2007 

% monthly_data=[6 12 10 18 38 126 316 554 525 289 212 156 74]; %Chiang Mai  

2008  

% monthly_data=[74 45 30 11 35 69 182 206 169 103 79 64 17]; %Chiang Mai  2009 

% monthly_data=[17 23 16 25 22 84 319 1099 1290 806 157 36 16]; %Chiang Mai  

2010  

% monthly_data=[16 13 2 2 9 40 65 52 51 29 11 19 9]; %Chiang Mai  2011 

% monthly_data=[9 10 14 4 14 48 105 169 224 229 271 154 107]; %Chiang Mai  

2012 
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 monthly_data=[107 106 67 142 455 978 2592 2466 1155 505 147 73 27]; %Chiang 

Mai  2013 

% monthly_data=[27 8 6 2 5 14 62 12 153 125 64 32 22]; %Chiang Mai  2014 

% monthly_data=[22 15 11 7 20 140 340 530 715 925 806 797 316]; %Chiang Mai  

2015 

 

%num_of_days contains the number of days per month from Jan-Dec, except for 

%the first element which is a dummy 

num_of_days=[0 31 28 31 30 31 30 31 31 30 31 30 31]; 

 

%last_day_in_month contains the ith day which represents the end of each 

%months.   For example, last_day_in_month(0) is Dec 31, 2012,  

%                       last_day_in_month(32) is Jan 31, 2013, 

%                       last_day_in_month(60) is Feb 28, 2013, 

%                       last_day_in_month(366) is Dec 31, 2013, 

last_day_in_month=zeros(1,13); 

 

% daily_data_2013 contains the daily number of cases lineraly interpolated 

% from the monthly data by assuming that the monthly data collected at the 

% last day of the month 

daily_data= zeros(1,365); 

daily_data(1) = monthly_data(1);    

i=2; 

 

for m=2:13 

    step=(monthly_data(m)-monthly_data(m-1))/num_of_days(m); 

    for d=1:num_of_days(m) 

        if d == num_of_days(m) 

            daily_data(i) = monthly_data(m); 

            last_day_in_month(m) = i; 

        else 

            daily_data(i) = daily_data(i-1) + step; 
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        end 

        i=i+1; 

    end 

end 

 

%round to get the number of cases as integers 

daily_data = round(daily_data); 

x_axis = 0:365; 

 

% plot(x_axis , daily_data,':k','LineWidth',2);  

% set(gca,'XTick',last_day_in_month) 

% xlabel('Time (days)'); % x-axis label 

% ylabel('Population') % y-axis label 

% legend('model data','real data');  

 

figure(4) %graph of Aquatic phase  

plot(Am,'--','LineWidth',1); hold on  

xlabel('Time (days)'); 

ylabel('Population'); 

%title('Aquatic Phase');  

  

%figure(5) %graph of susceptible mosquito   

plot(Sm,'-','LineWidth',1); hold off  

xlabel('Time (days)'); 

legend('Aquatic stage','Susceptible Mosquito'); 

ylabel('Population'); 

title('Aquatic and Susceptible Mosquito'); % Comapartmet'); 

 

figure(6) %graph of exposed mosquito 

%plot(Em,'g','LineWidth',1); %hold on  

plot(Em,'--','LineWidth',1);hold on 

xlabel('Time (days)'); 
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ylabel('Population'); 

 

 %graph of infected mosquito 

plot(Im,'-','LineWidth',1); hold off 

xlabel('Time (days)'); 

legend('Exposed Mosquito','Infected Mosquito');  

ylabel('Population'); 

title('Exposed and Infected mosquito'); % Compartment');  
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