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บทคัดย่อ 

วิทยำนิพนธ์เรื่องนี้เป็นกำรศึกษำกำรหำฟังก์ชันแหล่งก ำเนิดที่ขึ้นกับเวลำของสมกำรควำมร้อนซึ่งเป็น

ปัญหำผกผัน ผลเฉลยของปัญหำผกผันนี้มีอยู่จริงและมีเพียงหนึ่งเดียวแต่เป็นผลเฉลยที่ไม่เสถียร 

ส ำหรับกำรศึกษำปัญหำของกำรค ำนวณหำพลังงำนควำมร้อน ส ำหรับปัญหำที่ต้องกำรค ำนวณหำ 

อุณภูมิของระบบโดยทรำบค่ำของฟังก์ชันของแหล่งก ำเนิดควำมร้อน (ปัญหำมีตัวไม่ทรำบค่ำ 1 ตัว) 

เรำจะเรียกปัญหำนี้ว่ำ ปัญหำตรง หรือ ปัญหำไปข้ำงหน้ำ แต่หำกเรำไม่ทรำบฟังก์ชันของแหล่งก ำเนิด

ควำมร้อนและยังต้องกำรค ำนวณหำอุณภูมิและฟังก์ชันแหล่งควำมร้อนนี้ (ปัญหำมีตัวไม่ทรำบค่ำ 2 

ตัว) เรำจะเรียกปัญหำนี้ว่ำ ปัญหำผกผัน ส ำหรับกำรศึกษำปัญหำผกผันนี้จะมีเทคนิคคือกำรแปลง

ระบบของปัญหำผกผันให้เป็นระบบของปัญหำตรงซึ่งหมำยควำมว่ำแปลงระบบจำกปัญหำที่มีตัวไม่

ทรำบค่ำ 2 ตัว ให้เป็นระบบที่มีตัวไม่ทรำบค่ำเพียงแค่ตัวเดียว ขั้นตอนวิธีที่ได้น ำเสนอในกำรศึกษำนี้ 

ไม่เพียงแต่จะง่ำยต่อกำรน ำไปใช้ แต่ยังสำมำรถค ำนวณหำผลเฉลยได้อย่ำงแม่นย ำและมีเสถียรอีกด้วย 

ในกำรศึกษำนี้ เรำคำดหวังว่ำระเบียบวิธีไฟไนต์อินทิเกรชันจะสำมำรถน ำมำประยุกต์ใช้ในกำรหำ 

ผลเฉลยของปัญหำผกผันที่เรำสนใจนี้ได้ และยิ่งไปกว่ำนี้เรำได้ศึกษำกำรแก้ปัญหำผกผันนี้ด้วย 

ระเบียบวิธีพ้ืนฐำนอย่ำงระเบียบวิธีผลต่ำงอันตะเพ่ือเป็นกำรทดสอบเปรียบเทียบผลเฉลยที่ได้กับ

ระเบียบวิธีที่เรำคำดหวังไว้ และเนื่องจำกปัญหำนี้เป็นปัญหำผกผัน ซึ่งเป็นปัญหำที่ตั้งขึ้นอย่ำงเลว ท ำ

ให้ผลเฉลยที่ได้จำกปัญหำนี้ไม่เสถียร เรำจึงท ำให้ระบบมีเสถียรภำพด้วยกำรใช้เทคนิครีกูำลำไรเซชัน

ของทิคคอนอฟ และเพ่ือตรวจสอบควำมแม่นย ำของระเบียบวิธีที่ศึกษำนี้เรำจึงได้น ำเสนอตัวอย่ำง 

เชิงตัวเลขประกอบอีกด้วย 
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ABSTRACT

This study investigates an inverse problem of reconstructing a time wise- de-

pendent source function for the heat equation. The solution of the problem is uniquely

solvable, yet unstable. The problem of finding the temperature when the heat source

function is given, is called forward problem (or direct problem), whereas when the heat

source function is unknown then the problem of two unknowns becomes to be called

the inverse problem. In this study the inverse source problem is reformulated to be a

new direct problem, meaning that the problem for two unknowns is transformed to be

the problem for only one unknown. The proposed algorithm is not only easy to be used

but also can give an accurate and stable solution. We propose that two kinds of the fi-

nite integration method combined with the backward finite difference method can be

used to solve the reformulated heat equation. Furthermore, we also carried out the finite

difference method for solving the inverse problem, this is in order to test the efficiency

of the proposed method. Since the solution is unstable, the instability is overcome by

employing the Tikhonov regularization method which is the method for stabilizing the

problem. Numerical examples are presented and discussed to verify the accuracy of the

proposed computational method.
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1

Chapter 1

General Introduction

1.1 Introduction and literature review

In the real life, not all problems can be solved directly, the situation is really of-

ten reversed, we may not know all information that we need to examine. Because of

lack of full information, incomplete system provided, this brings us to consider the in-

verse problems. The inverse problem occurs mathematically in many branches of re-

search fields such as science, engineering, medical or even economy. At its simplest

level, the direct problem or forward problem is to determine the data from the model,

whereas, the inverse problem or indirect problem is about to determine the model, pa-

rameter/source/initial data/boundary data of model, by considering observed data. De-

spite the observed data is incomplete and containing error which is unavoidable in prac-

tice or reality. This can be concluded that, the inverse problem is always a counterpart

of direct problem as expressed as schematic diagram Figure 1.1:

Figure 1.1: Schematic of direct and inverse problems

Generally, in sense of applied mathematical problems, not all problems have solution,

and even the problem has the solution it is not guarantee to have only one solution.

If the problem has more than one solution, how can we know which one is the correct

one? This kind of questions exists whenwe start considering anymathematical problem.

To clarify the problem before seeking the solution, this kind of questions have to be
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declared. The classification of problem has been defined by J. Hadamard in 1902 that

the mathematical problem is well-posed if the following conditions hold,

• Existence: For all (suitable) data, there exists a solution of the problem (in an

appropiate sense).

• Uniqueness: For all (suitable) data, the solution is unique.

• Stability: The solution depends continuously on its data (i.e. small perturbations

in the input data do not result in large perturbations in the solution).

Based on the above definition, any mathematical problem is ill-posed if one of these

conditions is missing. The ill-posed problem normally occurs in inverse problems i.e.

this violates the stability of the solution.

Most inverse problems arise from a physical situation modeled by partial differen-

tial equation. There are many kinds of inverse problems such as inverse initial value

problem, inverse boundary value problem, inverse coefficient identification problem

and inverse source problem. The heat equation is a prototypical example of inverse

source problems that has significant application in the field of applied sciences such as

in mathematical modeling to identify the unknown source function in polution source

intensity, melting and freezing process.

In order to understand the idea of inverse source problem, let us consider the direct

classical (one-dimension) heat equation with the source term as given by:

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + F (x, t),

where

u(x, t) represents temperature as a function of space (x) and time (t),
∂u

∂t
(x, t) represents the rate of temperature change at a point (x) over time (t),

∂2u

∂x2
(x, t) is the second order derivative with respect to space (x),

F (x, t) represents a heat source.

For forward heat problem, a typical routine work is to calculate the temperature u(x, t)

with a given heat source function F (x, t), satisfying to the boundary and initial condi-

tions. Whereas for the inverse heat source problem. The typical work is not only to
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estimate the temperature u(x, t) but also to determine the heat source function F (x, t).

This inverse study may not be easy to estimate both unknowns F (x, t) and u(x, t) di-

rectly as there are more than one unknown in the problem and the conditions are not

sufficient to guarantee the unique solution. Hence the additional condition(s) consid-

ered as the observed data, or may be called as over determination condition, need to be

involved. In practical there are several types of additional conditions such as fixed point

temperature, time-average heat flux or integral temperature.

Since 1970s many researchers have been paid attention on inverse source problem

for the heat equation see (Cannon, 1967; Prilepko and Solovev, 1988; Malyshev, 1989).

Recently, Yan et al. (2008) have solved the inverse heat source problem by using the

method of fundamental solution (MFS) to discretize the domain step together with the

Tikhonov regularization to stabilize the solution. However, The MFS method needs

source points given from outside the domain which make the process to be complicated.

In order to avoid the complicated procedure as the use of MFS, a few years later, Xi-

angtuan et al. (2011) have also considered the inverse heat source problem by using

the finite difference method (FDM) which does not require the source points from the

outside the domain.

In the use of the FDM, the discretization step needs to be taken over the domain.

Recently, Hazanee et al. (2013) have used the boundary element method (BEM) to

solve the inverse heat source problem. The main advantage of the BEM is to take the

discretization only on the boundary, i.e. this method then uses less number of points than

the FDM, saying that only the boundary points to be used. According to those studies,

efficiency and difficulty procedures depend on method that we apply, so the method for

discretization part is so important and need to be chosen carefully.

In this study, we propose two kinds of the finite integration method (FIM) to solve

the inverse source problem. A basic idea of the FIM is to construct a matrix form for dis-

cretization the equation of interest. Once FIM with the ordinary linear approximation

(OLA) is based on the trapezoidal rule which is numerical integration of using linear

function to approximate the integral. The FIM (OLA) was first reconstructed and intro-

duced by Li et al. (2013). Therefore, this method has been extensively used for dealing
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with the direct problem with both ordinary and partial differential equations especially

for solving the problem of nonlocal elastic bar under static.

In the same year, the FIM (OLA) and FIM with radial basis function (RBF) was

introduced simultaneously by Wen et al. (2013). Improvement of FIM is based on

taking integration of radial basis interpolation function analytically. Therefore, both

FIM (OLA) and FIM (RBF) were proposed to deal with the forward problem especially

fractional-order of PDE. They have found that the numerical results obtained by using

FIM is better than by using FDM.

The FIM has also been improved to be able to solve various kinds of the differential

equations. Recently, Li et al. (2016) have improved the FIM by applied the Simpson's

rule (SSR) for integration. In this present study, they compared the accuracy of the FIM

(OLA) and the present FIM(SSR). Therefore, They have found out that the improved

FIM (SSR) is better than FIM (OLA) in term of accuracy.

Along the above mentioned, the inverse heat source problem is very attractive prob-

lem and the FIM is also interesting method. Moreover, the FIM is a renew numerical

method with a potential applicability to solve the inverse problem. Being an applicable

method for solving forward problem brings our curiosity to whether the FIM is capable

enough to be applied in inverse problems. Therefore, this study is aimed to propose the

FIM to solve the inverse source problem for the heat equation. Furthermore, in order to

know the efficiency of the FIM in solving the inverse problems, we also use a classical

method which is FDM to deal with the inverse heat source problem and then compare

the accuracy of the solution of these two methods.

1.2 The finite difference method (FDM)

Construction of FDM is based on the Taylor series expansion that involves the n−

order derivative of a function. We then need to first present the definition of smooth

function which is a function that can be taken its any order derivatives everywhere in its

domain.

Given a smooth function f(x) on [a, b] and consider mesh size ∆x = b−a
N

and grid

points xi = a + i∆x for i = 1, 2, . . . , N . Finite difference approximations are used to
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approximate the derivatives of f using Taylor series with the reference point atx. Denote

f (n)(x) as nth-order derivative of f(x), the Taylor series expansion of f(x +∆x) at x

can be expressed as

f(x+∆x) = f(x) +
∆x

1!
f ′(x) +

(∆x)2

2!
f ′′(x) +

(∆x)3

3!
f ′′′(x) + · · ·+ (∆x)n

n!
f (n)(x) + · · ·

(1.1)

f(x−∆x) = f(x)− ∆x

1!
f ′(x) +

(∆x)2

2!
f ′′(x)− (∆x)3

3!
f ′′′(x) + · · · − (∆x)n

n!
f (n)(x) + · · ·

(1.2)

From these expansions, three approximation of first-order derivative can be constructed

which are forward, backward and central difference. The forward and backward dif-

ference are normally used to approximate the first-order derivative f ′(x) at the starting

point a and the ending point b, respectively, whereas in order to get better accuracy,

we use the central difference to approximate first-order derivative f ′(x) at interior point

x ∈ (a, b). Furthermore, the FDM can also be used to discretize the heat equation of

interest. Here is the following procedures of the FDM.

1.2.1 Forward difference

Consider the Taylor series expansion in (1.1), by rearranging the expansion, we have

f ′(x) =
f(x+∆x)− f(x)

∆x
− ∆x

2
f ′′(x)− (∆x)2

6
f ′′′(x)− · · · − (∆x)n−1

n!
f (n−1)(x)− . . .

We can approximate the first-order derivative by truncating the second- and higher-order

derivative as

f ′(x) =
f(x+∆x)− f(x)

∆x
+O(∆x),

where O(∆x) represents truncation error.

1.2.2 Backward difference

Consider the Taylor series expansion in (1.2), rearranging the expansion yields

f ′(x) =
f(x)− f(x−∆x)

∆x
+

∆x

2
f ′′(x)− (∆x)2

6
f ′′′(x) + · · · − (∆x)n−1

n!
f (n−1)(x) + . . .
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We can approximate the first-order derivative by truncating the second- and higher-order

derivative as

f ′(x) =
f(x)− f(x−∆x)

∆x
+O(∆x).

1.2.3 Central difference

In order to obtain better approximation of first-order derivative of f , we can consider

the central difference. we then need to subtract (1.1) by (1.2). The approximation of

f ′(x) becomes

f(x+∆x)− f(x−∆x) = 2∆xf ′(x) +O(∆x)2,

then rearranging the result of subtraction above gives

f ′(x) =
f(x+∆x)− f(x−∆x)

2∆x
+O(∆x)2.

Also, in order to find the second-order derivative of f(x), i.e. f ′′(x), we need to take

the summation of the forward and backward difference, by adding two equations above

(1.1) and (1.2), we can get

f(x+∆x) + f(x−∆x) = 2f(x) + (∆x)2f ′′(x) +O(∆x)4,

then rearranging the result of addition above yields

(∆x)2f ′′(x) = f(x+∆x)− 2f(x) + f(x−∆x) +O(∆x)4,

f ′′(x) =
f(x+∆x)− 2f(x) + f(x−∆x)

(∆x)2
+O(∆x)2.

1.3 The finite integration method (FIM)

In this section, let us introduce a renew method for solving PDEs which is proposed

to deal with the inverse problems. This is constructed in recently years by employing

two kinds of approximation function of FIM which are the linear approximation and the

radial basis function.
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1.3.1 FIM with ordinary linear approximation (OLA)

Let f(x) be a smooth function on [a, b]. Once, we are considering the finite integra-

tion method together with the linear approximation to estimate the multi-layer integra-

tion of the function. We start with approximating a definite integral of f(x) from a to

b;
∫ b

a
f(x)dx, by using trapezoidal rule as the following formula∫ b

a

f(x) dx ≈ ∆x

2
[f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xN)],

where N is a number of segments in [a, b] with subinterval ∆x =
b− a

N
and xi =

a + i∆x for i = 0, 1, 2, . . . , N . By this integral approximation, we can calculate the

definite integral starting from point a to any discreted point xk for k = 0, 1, 2, . . . , N as

F (1)(xk) =

∫ xk

a

f(x) dx ≈ ∆x

[
f(x0)

2
+

k−1∑
i=1

f(xi) +
f(xk)

2

]
.

This is called a single layer definite integral. From above, the general form of the single

layer definite integral can be rewriten as∫ xk

a

f(x) dx ≈
k∑

i=0

a
(1)
ki f(xi), (1.3)

where a(1)0i = 0, a(1)ki =


∆x

2
, i = 0, k

∆x, i = 1, 2, . . . , k − 1

, and also the matrix form of inte-

gration is expressed as follow:

F (1) = A(1)f,

where
F (1) =

[∫ x0

a
f(x) dx,

∫ x1

a
f(x) dx, . . . ,

∫ xN

a
f(x) dx

]ᵀ,
f = [f(x0), f(x1), . . . , f(xN)]

ᵀ ,

A(1) =
[
a
(1)
ki

]
= (∆x)



0 0 0 0 . . . 0 0

1/2 1/2 0 0 . . . 0 0

1/2 1 1/2 0 . . . 0 0

1/2 1 1 1/2 . . . 0 0
... ... ... . . . . . . ... ...

1/2 1 1 1 . . . 1 1/2


(N+1)×(N+1)

.
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We can also write the double-layer definite integral as

F (2)(xk) =

∫ xk

a

∫ y1

a

f(y)dydy1 =
k∑

i=0

i∑
j=0

a
(1)
ki a

(1)
ij f(xj) =

k∑
i=0

a
(2)
ki f(xi),

where {y, y1} is a set of dummy variables, a(2)0i = 0 and

a
(2)
ki =



[1 + (2k − 1)] (∆x)2

4
, i = 0,

(k − i)(∆x)2, i = 1, 2, 3, . . . , k − 1,

(∆x)2

4
, i = k.

The double-layer integral can be also written in a matrix form as

F (2) = A(2)f,

where the double-layer integration matrix,

A(2)=[a(2)ki ] = (∆x)2



0 0 0 0 0 . . . 0 0

1/4 1/4 0 0 0 . . . 0 0

3/4 1 1/4 0 0 . . . 0 0

5/4 2 1 1/4 0 . . . 0 0

7/4 3 2 1 1/4 . . . 0 0
... . . . . . . . . . . . . . . . ... ...

1+2(N−1)
4

N − 1 N − 2 N − 3 . . . 2 1 1/4


(N+1)×(N+1)

.

In the same way, for higher-layer definite integral, we have

F (m)(xk) =

∫ xk

a

∫ ym−1

a

. . .

∫ y1

a

f(y)dy . . . dym−2dym−1 =
k∑

i=0

a
(m)
ki f(xi). (1.4)

Bymathematical induction, the higher-layer integration can be defined asA(k) = AA · · ·A =

Ak. Thus, them-layer integral can be written in a matrix form as

F (m) = A(m)f = Amf.

Note that, it is worth to point out that the integral matrix with any order A(m) is lower-

triangular matrix.
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1.3.2 FIM with the radial basis function (RBF)

The purpose of this section is to develop the accuracy of the approximation technique

to construct finite integration matrix. The multi-quadric RBF was introduced by Hardy

(1971), for the interpolation of topographical surface. The field variable u(x) in the

interval [a, b] can be interpolated over a number of randomly distributed nodes xi for

i = 0, 1, 2, ..., N , with x0 = a and xN = b, as

u(x) =
N∑
i=0

Ri(x, xi)αi +

Q∑
q=0

Pq(x)βq, (1.5)

where Ri(x, xi) is a radial basis function centered at x, Pq(x) is a polynomial basis

function, αi and βq are any real number as unknown coefficients ofRi(x, xi) and Pq(x),

respectively, for i = 0, 1, 2, ..., N and q = 0, 1, 2, ..., Q. The discretization of the inter-

polation approximation above can be rewritten in matrix form as

u = Rα + Pβ, (1.6)

where

u = [u(x0), u(x1), . . . , u(xN)]
ᵀ , α = [α0, α1, . . . , αN ]

ᵀ , β = [β0, β1, . . . , βQ]
ᵀ ,

R =


R0(x0, x0) R1(x0, x1) . . . RN(x0, xN)

R0(x1, x0) R1(x1, x1) . . . RN(x1, xN)

. . . . . . . . . . . .

R0(xN , x0) R1(xN , x1) . . . RN(xN , xN)

 ,

P =


P0(x0) P1(x0) . . . PQ(x0)

P0(x1) P1(x1) . . . PQ(x1)

. . . . . . . . . . . .

P0(xN) P1(xN) . . . PQ(xN)

 .

(1.7)

The polynomial term has to satisfy an extra requirement that guarantees unique approx-

imation of a function as follows (Wen et al., 2013)

Pq(x0)α0 + Pq(x1)α1 + Pq(x2)α2 + · · ·+ Pq(xN)αN = 0 for q = 0, 1, 2, . . . , Q,
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this can be written in matrix form as

P ᵀα = 0, (1.8)

multiplyingR−1 through (1.6) gives

R−1u = ����R−1Rα +R−1Pβ,

multiplying P ᵀ through the resulted equation above yields

P ᵀR−1u = ���P ᵀα + P ᵀR−1Pβ.

Consider the equation (1.8), we have

P ᵀR−1u = P ᵀR−1Pβ,

multiplying (P ᵀR−1P )
−1 through the resulted equation above gives(

P ᵀR−1P
)−1

P ᵀR−1u =
((((((((((((((
P ᵀR−1P

)−1
P ᵀR−1P β.

Thus, we have

β =
(
P ᵀR−1P

)−1
P ᵀR−1u.

From above we haveR−1u = α +R−1Pβ, then rearranging the equation gives

α = R−1u−R−1Pβ,

substituting β into the equation above yields

α = R−1u−R−1P
(
P ᵀR−1P

)−1
P ᵀR−1u,

we can be grouping with u as a common term, we have

α =
[
R−1 −R−1P

(
P ᵀR−1P

)−1
P ᵀR−1

]
u,

grouping withR−1 as a common term gives

α = R−1
[
I − P

(
P ᵀR−1P

)−1
P ᵀR−1

]
u.

Now on, we have

β = (P ᵀR−1P )−1P ᵀR−1û and α = R−1[I − P (P ᵀR−1P )−1P ᵀR−1]û,
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where I denotes the identity matrix which satisfying the equation and û denotes the

discrete solution û = [ûi] = [u(xi)]. By substituting coefficients vectors α and β into

(1.6), we then obtain

u(x) =
[
R(x)R−1(I − P (P ᵀR−1P )−1P ᵀR−1) + P (x)(P ᵀR−1P )−1P ᵀR−1

]
û.

we can also write the system of linear equation based on the above interpolation function

in a matrix form

u = Xû, (1.9)

whereX =
[
R(x)R−1(I − P (P ᵀR−1P )−1P ᵀR−1) + P (x)(P ᵀR−1P )−1P ᵀR−1

]
.

For convenience, we can describe the system of linear equation (1.9) as expressed as

u(x0)

u(x1)

u(x2)
...

u(xN)


≈



b0(x0) b1(x0) b2(x0) . . . bN(x0)

b0(x1) b1(x1) b2(x1) . . . bN(x1)

b0(x2) b1(x2) b2(x2) . . . bN(x2)
... ... ... ... ...

b0(xN) b1(xN) b2(xN) . . . bN(xN)





û0

û1

û2

...

ûN


Now on, u(xk) can be expressed as

u(xk) =
N∑
i=0

bi(xk)ûi,

where bi(xk) is element of matrixX at kth-column and ith-row.

We literally are provided by several kinds of RBF (Hu et al, 2005). In this study, the

multi-quadric RBF is chosen and written as

Ri(x, xi) =
√
c2 + (x− xi)2 and Pq(x) = xq, (1.10)

where c ̸= 0 is a free parameter. Note that, Ri(x, xi), and Pq(x) are constructed as basis

functions, the columns ofR andP consequently are linearly independent, this indicates

that the matricesR and P are invertible.

The definite integral from a to x can be considered as∫ x

a

u(x)dx =
N∑
i=0

R̄i(x, xi)αi +

Q∑
q=0

P̄q(x)βq =
N∑
i=0

b
(1)
i (x)ûi, (1.11)
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where the matrices R̄ and P̄ are defined as

R̄i(x, xi) =
x− xi

2

√
c2 + (x− xi)2 +

xi

2

√
c2 + x2

i +
c2

2
ln

x− xi +
√

c2 + (x− xi)2√
c2 + x2

i − xi

P̄q(x) =
xq+1

q + 1
and b(1)i is the element of single layer integration matrixA.

Hence, the finite integration matrix of the first order is A =
[
b
(1)
i (xk)

]
=
[
b
(1)
ki

]
.

For multi-layer integration matrix, we have the same property as the ordinary linear

approximation as A(m) = Am (Wen et al., 2013). We now obtain the approximated

integration in matrix form, similar to the previous section,

F (m) = A(m)f = Amf ,

where

F (m)(xk) =

∫ xk

a

∫ ym−1

a

. . .

∫ y1

a

f(y)dy . . . dym−2dym−1 =
k∑

i=0

b
(m)
ki f(xi). (1.12)

Note that A in RBF and A in OLA are different as A in OLA is a Triangular matrix

whereasA in RBF is full matrix.

1.4 Regularization

Inverse problem are mostly ill-posed and its ill-posedness is caused by instability

of solution. By means, the small error input to the system causes the large error in the

solution. In order to overcome this issues, regularization is normally used. Regulariza-

tion is aimed to find the stable approximation solution of inverse problem. Consider the

system ofM linear equations with N unknowns

Xgδ = bδ, (1.13)

where bδ and gδ are perturbation of right-hand side vector b and the solution of the

system (1.13) after the perturbation, respectively. Here we briefly explain a well known

regularization method, i.e. the Tikhonov regularization method.

This method is constructed by minimizing the regularized linear least-squares ob-

jective function.

gδλ = min
gδ∈R

{
∥Xgδ − bδ∥2 + λ

∥∥∥∥d2gδdt2

∥∥∥∥2
}
, (1.14)
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where λ > 0 is a regularization parameter and the norm ∥.∥ is defined as the euclidian

norm of vector. Evantualy, Tikhonov regularization (see Appendix) gives the solution

of minimization (1.14) as

gδλ = (XᵀX + λDᵀD)−1Xᵀbδ,

where gδλ is a stable solution of ill-podsed problem (1.13) under regularization parameter

λ, andD is a differential regularization matrix order two as defined by

D =


1 −2 1 0 0 . . . 0

0 1 −2 1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 1 −2 1


(N−1)×(N+1)

.

A regularization formula holds regularization parameter λ. Basically, a regularization

parameter λ controls the neighborhood properties of the auxiliary problem. Larger val-

ues of λ indicates higher stability of the approximate solution but this makes the auxil-

iary problem being far from the original one. Although values of λ near zero express the

auxiliary problem close to the original one, this does not guarantee the stable solution

. Hence, suitable regularization has to be chosen carefully with consideration between

the conflicting purpose of stability and approximating (Schuster et al., 2012). Actually,

we are provided many methods to choose the regularization parameter λ such as the

discrepancy principle criterion, the generalized cross-validation (GCV) or the L-curve

method. Nevertheless in this study, the regularization parameter λ was chosen accord-

ing to the trial and error, this is because within the range of our research, we would like

to provide information that FIM as a renew method can be used to solve an inverse heat

source problem. The fruitful idea of this research may be preliminary research for fur-

ther study that employs the FIM to deal with any inverse problems. This means that we

first just consider the simple technique to choose the regularization parameter by using

the trial and error.
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1.5 Inverse Crime

We may suppose to have time-dependent heat source problem namely
∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + f(t) with the over-specified data g(t). Then we would like to solve the

problem numerically with a given anaytical solution of f(t). Since finding f(t) needs

the knowledge of g(t). By cheating way, we may utilize the analytical solution f(t)

to obtain g(t) and then we try to estimate back f(t) by considering its g(t). Shortly,

this cheating way is mainly called inverse crime if we make all procedures stuff in the

forward problem i.e. method and the number of discretization step similarly as the one

used in the inverse problem. The words “inverse crime” is that sampling data in forward

problem (from f(t) to g(t)) and eventually, the inverse problem (from g(t) to f(t)) are

done in the same manner. This seems like we have done nothing by just playing around

closed circumstances. Moreover, the solution obtained by involving the inverse crime

is probably invalid and this may not describe the efficiency of the method.

Hence, we need to avoid the inverse crime because avoiding inverse crime makes

valid or realistic results. Literally, avoiding the inverse crime means changing the man-

ner between forward and inverse problems. We have two ways to avoid the inverse

crime such as

• We consider numerical procedures differently between forward and inverse prob-

lem.

• We make the discretization step in the numerical forward simulation differently

as the one used in the inversion.

1.6 Problem statement

In this study, we consider the identification of a time-dependent heat source for the

heat equation under the Neuman and additional conditions. Let T > 0 be a fixed number

and denote

DT = {(x, t) : 0 < x < 1, 0 < t ≤ T}. (1.15)
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Consider the problem of finding the time-dependent heat source f(t) and the tempera-

ture u(x, t) which satisfy the heat equation, namely

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + f(t), (x, t) ∈ DT , (1.16)

with initial data and boundary conditions,

u(x, 0) = u0(x), 0 ≤ x ≤ 1, (1.17)
∂u

∂x
(0, t) = s(t),

∂u

∂x
(1, t) = r(t), 0 ≤ t ≤ T, (1.18)

and the additional condition

u(xf , t) = g(t), 0 ≤ xf ≤ 1. (1.19)

Assume that all given functions satisfy the compatibility conditions

∂u0

∂x
(0) = s(0),

∂u0

∂x
(1) = r(0), g(0) = u0(xf ). (1.20)

where s(t), r(t), g(x) are given real valued functions, and can be defined as s : [0, T ] →

R, r : [0, T ] → R and g : [0, 1] → R. The boundary condition (1.18) is called the Neu-

man boundary condition, this indicates that the heat flux at the starting and end points

depand on given functions s(t) and r(t), respectively. Whilst the additional condition

(1.19) indicates that the temperature at the specific point xf and any time t is given by

g(t). One thing to note that, for this study, we assume that the inverse problem (1.17)-

(1.19) under the above condition (1.20) is uniquely solvable, yet it is still ill-posed as

the small error in the input data leading to gain the large error in the solution.
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Chapter 2

The Forward Problem for the Heat Equation

We will start this chapter with recalling the forward problem of interest;

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + f(t), (x, t) ∈ DT ,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

∂u

∂x
(0, t) = s(t),

∂u

∂x
(1, t) = l(t), 0 ≤ t ≤ T.

Themain goal of this chapter is to observe the distribution of heat in a given region space

[0, 1] over time [0, T ]. The solution of this problem is uniquely solvable with given heat

source f(t) and fixed initial and boundary conditions. However, solving the forward

problem gives the temperature at any point space x and any point time t which can be

archived and used as additional data for dealing with the inverse problems.

2.1 The FDM for solving heat equation

Firstly we divide the domain [0, 1] × [0, T ] into several sub-domains N and M of

x and t, respectively. Let xi and tj be the discretization point of space x and time t,

respectively, where i ∈ {0, 1, 2, . . . , N}, j ∈ {0, 1, 2, . . . ,M}, and define xi = i∆x,

∆x = 1
N
and tj = j∆t, ∆t = T

M
and we denote that

u(x, t) = u(xi, tj) =: uj
i .

The first-order derivative of temperature u with respect to t can be approximated by

using the forward difference method as

∂u

∂t
(xi, tj) =

uj+1
i − uj

i

∆t
,

and the second-order derivative of u with respect to x, by using the central difference

method, is defined as
∂2u

∂x2
(xi, tj) =

uj
i+1 − 2uj

i + uj
i−1

(∆x)2
.
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When f j denotes the discretization of f(tj) then the equation (1.16) can be discretized

as
uj+1
i − uj

i

∆t
=

uj
i+1 − 2uj

i + uj
i−1

(∆x)2
+ f j, (2.1)

for i ∈ {1, 2, . . . , N − 1} and j ∈ {1, 2, . . . ,M − 1}. Multiplying ∆t through the

equation (2.1) yields

uj+1
i − uj

i =
∆t

(∆x)2
(
uj
i+1 − 2uj

i + uj
i−1

)
+∆tf j, (2.2)

Let h =
∆t

(∆x)2
and rearranging (2.2) gives

uj+1
i = huj

i+1 + (1− 2h)uj
i + huj

i−1 +∆tf j. (2.3)

Therefore, the discretization of the initial and boundary conditions in (1.17) and (1.18)

become

u(xi, 0) = u0(xi) =: u0,i,
∂u

∂x
(0, tj) = s(tj) =: sj, and

∂u

∂x
(1, tj) = r(tj) =: rj.

(2.4)

By considering the derivative for the boundary condition (1.18), we have

∂u

∂x
(0, tj) ≈

uj
1 − uj

0

∆x
= sj, then

∂u

∂x
(1, tj) ≈

uj
N − uj

N−1

∆x
= rj,

uj
0 = uj

1 −∆x sj, then uj
N = uj

N−1 +∆x rj.

Consider when i = 1,

uj+1
1 = huj

2 + (1− 2h)uj
1 + huj

0 +∆tf j,

= (1− h)uj
1 + huj

2 − h∆x sj +∆tf j.

Consider when i = N − 1,

uj+1
N−1 = huj

N + (1− 2h)uj
N−1 + huj

N−2 +∆tf j,

= huj
N−2 + (1− h)uj

N−1 + h∆xrj +∆tf j.

And for others i ∈ {2, 3, 4, . . . , N − 2}, the temperature can be calculated by (2.3).

Therefore we can construct the system which can be shown as matrix form as follows:

uj+1 = Auj + B, (2.5)
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where
uj+1 =

[
uj+1
1 , uj+1

2 , uj+1
3 . . . , uj+1

N−1

]T
, uj =

[
uj
1, u

j
2, u

j
3, . . . , u

j
N−1

]T
,

A =



(1− h) h 0 . . . 0 0

h (1− 2h) h . . . 0 0

0 h (1− 2h) . . . 0 0
... ... ... . . . ... ...

0 0 0 . . . (1− 2h) h

0 0 0 . . . h (1− h)


(N−1)×(N−1)

,

B = [∆tf j − h∆x sj,∆tf j,∆tf j, . . . ,∆tf j, h∆xrj +∆tf j]
T
.

Thus each uj+1
i is calculated by using the known preceding time level uj

i and the first

time step u0
i can be obtained by the initial condition u(xi, 0) = u0(xi), which can be cal-

culated by setting j = 0 in the equation (2.5). Hence the final time step um = [u(xi, T )]

can be found afterward.

2.2 The FIM for solving the heat equation

In this section, we consider an alternative numerical method for dealing with the

forward problem (1.16) - (1.18). We are using the FIM for discretizing space x and the

FDM for discretizing time t. The use of FIM has been constructed by employing two

kinds of approximating function which are the ordinary linear approximation (OLA) and

the radial basis function (RBF) to solve the forward problem see, Li et al. (2013); Yun

et al. (2015); Li et al. (2016). The FIM(OLA) was constructed by applying trapezoidal

rule as an integrations tool, whereas the FIM(RBF) was developed by considering the

interpolation function that taken its integration analytically as introduced in Section 1.3.

Generally, the way that we apply either FIM(OLA) or FIM(RBF) to the forward

problem is quite similar. As we introduced in Chapter 1 for the use of FIM(OLA) and

FIM(RBF) for approximating the numerical integrations

F (1)(xk) =

∫ xk

a

f(x) dx and F (m) =

∫ xk

a

∫ ym−1

a

. . .

∫ y1

a

f(y) dy dym−2 dym−1

as defined for FIM(OLA) in 1.3 and 1.4, respectively, and for FIM(RBF) in 1.11 and

1.12, respectively, it is obviously to see that the similarity of these two techniques is
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the definitions of integration function, i.e. a
(1)
ki and b

(1)
ki . Then, for convenience, we

denote the interpolating function for FIM as ϕ(1)
ki for both techniques FIM(OLA) and

FIM(RBF).

In order to apply the FIM to the forward problem (1.16)-(1.18), we first discretize

the first order derivative. We discretize the first-order derivative with respect to time t

by using the backward difference method, the equation (1.16) can be discretized as

u(x, tj)− u(x, tj−1)

∆t
=

∂2u

∂x2
(x, tj) + f(tj),

rearranging above equation gives

u(x, tj)−∆t
∂2u

∂x2
(x, tj) = u(x, tj−1) + ∆t f(tj). (2.6)

Here, we are applying the FIM by taking integration twice with respect to x over the

time-discretized heat equation (2.6)∫ ∫
u(x, tj) dxdx−∆tu(x, tj) =

∫ ∫
u(x, tj−1) dxdx+

∫ ∫
∆t f(tj) dxdx.

By using the discretization via FIM mentioned in Section 1.4, we have

A2uj −∆t uj = A2uj−1 +
∆t f j

2
x2 + c0x+ c1i. (2.7)

where c0 and c1 are integral constants, x = [x0, x1, . . . , xN ]
ᵀ, x2 = [x2

0, x
2
1, . . . , x

2
N ]

ᵀ

and i = [1, 1, . . . , 1]ᵀ.

Now consider the boundary condition by taking integration with respect to x once

over the time-discritized heat equation (2.6) then we obtain∫
u(x, tj) dx−∆t

∂u

∂x
(x, tj) =

∫
u(x, tj−1) dx+

∫
∆t f(tj) dx.

Again by using the discretization via FIM mentioned in Section 1.4, we have

Auj −∆t
∂uj

∂x
= Auj−1 +∆t fx+ c0i. (2.8)

Considering the above equation at the boundary node x = 0 i.e. x = x0 = 0, the

equation (2.8) becomes

0∑
i=0

ϕ
(1)
0i u

j
i −∆t

∂uj
0

∂x
=

0∑
i=0

ϕ
(1)
0i u

j−1
i +�����∆t f j(0) + c0.
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By the definitions of the integration function ϕ
(1)
0i for FIM(OLA) and FIM(RBF); i.e.

a
(1)
0i and b(1)0i , mentioned in Chapter 1 that ϕ

(1)
0i = a

(1)
0i = b

(1)
0i = 0, therefore

c0 = −∆t
∂uj

0

∂x
.

Plugging the boundary condition (1.18), i.e. ∂u
∂x
(0, t) = s(t), at nodes tj gives

c0 = −∆t sj. (2.9)

Similary, we consider on the boundary node x = 1 i.e. x = xN = 1, the equation (2.8)

becomes
N∑
i=0

ϕ
(1)
Niu

j
i −∆t

∂uj
N

∂x
=

N∑
i=0

ϕ
(1)
Niu

j−1
i +∆t f j(1) + c0.

And now we apply the boundary condition (1.18); ∂u
∂x
(1, tj) = r(tj) = rj at nodes tj ,

we obtain
N∑
i=0

ϕ
(1)
Niu

j
i = ∆t rj +∆t f j +

N∑
i=0

ϕ
(1)
Niu

j−1
i + c0. (2.10)

By combining the equation (2.7) and conditions obtained in (2.9) and (2.10), we can

construct a block matrix form of the system as follows:

A2 −∆tI

−x0 −1

−x1 −1

−x2 −1
... ...

−xN −1

Last row ofA −1 0

0 0 0 . . . 0 0 1 0





uj
0

uj
1

uj
2

...

uj
N

c0

c1


=



y0

y1

y2
...

yN

K1

K2


, (2.11)

where:
y = A2uj−1 + ∆t fj

2
x2, y = [y0, y1, . . . , yN ]

T ,

K1 = ∆t rj +∆t f j +
∑N

i=0 ϕ
(1)
Niu

j−1
i ,

K2 = −∆t sj.

Thus each uj
i is calculated from the known preceding time level uj−1

i and the first time

step u0
i can be obtained by the initial condition u(xi, 0) = u0(xi)which can be calculated

by setting j = 1 in the system (2.11). Hence the final time step uM = [xi, T ] can be

found afterward.
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2.3 Numerical Example

In this section, we present two benchmark test examples to illustrate the accuracy

and efficiency of the proposed method in solving the forward problem and we consider

the root mean square error (RMSE) at the middle space domain x = 0.5 defined as

RMSE (u (0.5, t)) =

√√√√ 1

M + 1

M∑
i=0

(uexact (0.5, ti)− unumerical (0.5, ti))
2.

2.3.1 Example 1

We consider the forward problem (1.16)-(1.18), with T = 1, the input data are given

u(x, 0) = u0(x) = x2, f(t) = 2π cos(2πt),
∂u

∂x
(0, t) = s(t) = 0,

∂u

∂x
(1, t) = r(t) = 2,

for (x, t) ∈ Dt (Xiangtuan et al., 2011). In order to test the accuracy, the analytical

solution of this forward problem is

u(x, t) = x2 + 2t+ sin 2πt, for (x, t) ∈ DT .

The outline of using those methods presented in Sections 2.1−2.2 are quite system-

atic and applicable to any differential equations. However, this is extremely tedious to

find solutions with paper and pencil for larger t. This will be lengthy and require consid-

erable effort and patience. However, the technology can be taken for more convenience

and time consumption. MATLAB is one such approach of the use of technology to com-

pute the numerical result of this such problem. This enables us to determine the solution

by applying methods which require systematic algorithm. This also can simulate graph

that displays the agreement between the numerical and analytical solutions.

FDM for solving the forward problem

In previous section, we have constructed the system of linear equations in term of gen-

eral form as shown in (2.5), thus we can simply substitute all given functions to the

system and obtain that

uj+1 = Auj + B,
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where
uj+1 =

[
uj+1
1 , uj+1

2 , uj+1
3 . . . , uj+1

N−1

]T
, uj =

[
uj
1, u

j
2, u

j
3, . . . , u

j
N−1

]T
,

A =



(1− h) h 0 . . . 0 0

h (1− 2h) h . . . 0 0

0 h (1− 2h) . . . 0 0
... ... ... . . . ... ...

0 0 0 . . . (1− 2h) h

0 0 0 . . . h (1− h)


(N−1)×(N−1)

,

B = [∆t2π cos(2πtj),∆t2π cos(2πtj) . . . , 2h∆x+∆t2π cos(2πtj)]T .

For the number of discretization, firstly, we perform the number of space and time as

N = 6 andM = 30, respectively. Figure 2.1(a) shows that the performance of FDM for

computing the temperature u(0.5, t) is severe inaccurate as can be seen from the figure

and RMSE.

(a) N = 6,M = 30 (b) N = 6,M = 80

Figure 2.1: The temperature u (0.5, t) obtained by FDM with 2.1(a) N = 6 and M =

30, 2.1(b) N = 6 andM = 80.

Therefore, the condition for stability has to be required. As it was suggested in Xiang-

tuan (2010) that the number of discretization under the consideration of stability is stated

as

h =
∆t

(∆x)2
≤ 1

2
.

Then, in our study, we are using this condition as the condition for stability. This is what

we can observe by considering the ratio between ∆t and ∆x2. If ∆x2 is much smaller



23

than ∆t then h may be too big and leads the instability. Then from now, we consider

the number of space and time as N = 6 and M = 80; h = 9
20

≤ 1
2
, respectively.

Figure 2.1(b) mentions that the numerical result is displayed in dash line (--) and the

analytical solution is shown in solid line (-). By comparison between Figure 2.1(a) and

Figure 2.1(b), This obviously can be seen that the numerical solution obtained by letting

M = 80 is more accurate than M = 30 and also that RMSE for Figure 2.1(b), RMSE

= 2.5758E-1 is much more better than Figure 2.1(a), RMSE = 1.87E+12.

FIM(OLA) for solving the forward problem

Similarly, we have constructed the general form of the system of linear equations for

using FIM as shown in (2.11). The replacement equations for this problem are easily

obtained by considering all given functions, they are

c0 = 0 and
N∑
i=0

a
(1)
Niu

j
i = 2∆t+∆t f j +

N∑
i=0

a
(1)
Niu

j−1
i .

Therefore the equation (2.7) can be rewritten as

A2uj −∆t uj = A2uj−1 +
∆t f j

2
x2 + c1i.

By discretizing above we can construct the block matrix as follow
A2 −∆tI

−1

−1

−1
...

−1

Last row ofA 0





uj
0

uj
1

uj
2

...

uj
N

c1


=



y0

y1

y2
...

yN

K


, (2.12)

where:
y = A2uj−1 + ∆t fj

2
x2, y = [y0, y1, . . . , yN ]

T ,

K = ∆t rj +∆t f j +
∑N

i=0 a
(1)
Niu

j−1
i , andA =

[
a
(1)
ki

]
.

One thing to note that the integral matrixA obtained by FIM(OLA) is lower-triangular

matrix which makes the right-hand side matrix of 2.11 is a kind of sparse matrix; lower-

triangular with one column at the last column. This can take advantage for reducing to
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storage data. For considering the number of discretization, similar to the case of FDM,

we firstly perform the number of space and time as N = 6 and M = 30, respectively.

Figure 2.2 shows the analytical and numerical solutions for temperature u(0.5, t) with

the RMSE = 1.262E-1. This can be seen that the numerical solution obtained by solv-

ing equation 2.12 is accurate. This clearly can be seen the good agreement among the

analytical and numerical solutions in the both boundaries yet there is a bit gap in the

interior points.

Figure 2.2: The temperature u (0.5, t) obtained by FIM(OLA)withN = 6 andM = 30.

FIM(RBF) for solving the forward problem

In order to apply the FIM(RBF) to the forward problem, we recall the FIM matrix equa-

tion (2.11) and take the input function to the problem. Equations (2.9) and (2.10) hold

for s(t) = 0 and r(t) = 2, respectively, These become

c0 = 0 and
N∑
i=0

b
(1)
Niu

j
i = 2∆t+∆t f j +

N∑
i=0

b
(1)
Niu

j−1
i .

Therefore the equation (2.7) can be rewritten as

A2uj −∆t uj = A2uj−1 +
∆t f j

2
x2 + c1i.
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By considering expressions above, we can construct the block matrix as follow
A2 −∆tI

−1

−1

−1
...

−1

Last row ofA 0





uj
0

uj
1

uj
2

...

uj
N

c1


=



y0

y1

y2
...

yN

K


.

where:
y = A2uj−1 + ∆t fj

2
x2, y = [y0, y1, . . . , yN ]

T ,

K = ∆t rj +∆t f j +
∑N

i=0 b
(1)
Niu

j−1
i , andA =

[
b
(1)
ki

]
.

The block matrix above involves the matrix A constructed by RBF, one thing to note

that matrixA is a full matrix with the density 98.76% i.e. all zeros at the first row.

The unknowns uj
0, . . . , u

j
N and c1 will be determined by this system of linear equa-

tions, while c0 can be obtained from boundary condition; i.e. c0 = 0. Similarly, We

firstly perform the number of space and time as N = 6 andM = 30, respectively. Fig-

ure 2.2 display the behavior temperature u(0.5, t) obtained by FIM(RBF). This can be

seen that the insignificant improvement of accuracy from FIM(OLA) can be observed

clearly as there is a gap at the interior points and RMSE = 8.2051E-2.

Figure 2.3: The temperature u (0.5, t) obtained by FIM(RBF) withN = 6 andM = 30.
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Hereafter is a summary of performance all methods with consideration of the number

of space N = 6 andM ∈ {30, 80} by using the MATLAB software. Table 2.1 presents

the RMSE obtained by using FDM, FIM(OLA) and FIM(RBF). Figure 2.4 display the

temperature u(0.5, t) with the number of discretization point N = 6 andM = 80.

By considering Table 2.1 and Figure 2.4, we observe that the very good agreement

between the analytical and numerical solutions obtained by FIM can be recorded and this

can be seen that numerical solution obtained by FIM with both OLA and RBF are more

accurate than FDM. Note that this comparison can be state in both cases ofM = 30 and

M = 80. One thing to note that the numerical result obtained by FDM with M = 30

is severely inaccurate, whereas the numerical results obtained by FIM is insignificant

accurate.

Table 2.1: RMSE of u (0.5, t)

N M FDM FIM(OLA) FIM(RBF)

N = 6 M = 30 1.8697E+12 1.262E-1 8.2051E-2

N = 6 M = 80 2.5758E-1 4.78E-2 1.76E-2

Figure 2.4: The temperature u (0.5, t) obtained by all methods withN = 6 andM = 80
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2.3.2 Example 2

In this example, we consider the forward problem (1.16)-(1.18), with T = 1 and the

input data are given as follows

u(x, 0) = u0(x) = x2,

∂u
∂x
(0, t) = s(t) = ∂u

∂x
(1, t) = r(t) = 0,

f(t) =


0, 0 ≤ t < 1

4
,

1
2
, 1

4
≤ t < 1

2
,

1, 1
2
≤ t ≤ 1.

for (x, t) ∈ DT . Regrettably, we can not observe the accuracy of the solution obtained

by all methods as we do not have an analytical solution u(x, t). Unavailableness of

the analytical solution of u(x, t) forces to illustrate this numerical example. This is

because we need to obtain the over-determination data as additional data of inverse

problem in the Chapter 4. Since usually we obtain the additional data by straight way

i.e. considering the analytical solution of temperature u(x, t). The clear reason will be

explained in Chapter 4. In present numerical example, we directly perform the number

point of discretization space and time asN = 6 andM = 80, respectively, that satisfies

with stability condition i.e. ∆t
(∆x)2

≤ 1
2
.

FDM for solving the forward problem

In previous section, we have constructed the system of linear equations in term of general

form as shown in (2.5), thus we can simply substitute all given functions to the system

and obtain

uj+1 = Auj + B,
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where
uj+1 =

[
uj+1
1 , uj+1

2 , uj+1
3 . . . , uj+1

N−1

]ᵀ
, uj =

[
uj
1, u

j
2, u

j
3, . . . , u

j
N−1

]ᵀ
,

A =



(1− h) h 0 . . . 0 0

h (1− 2h) h . . . 0 0

0 h (1− 2h) . . . 0 0
... ... ... . . . ... ...

0 0 0 . . . (1− 2h) h

0 0 0 . . . h (1− h)


(N−1)×(N−1)

,

B = [∆tf j,∆tf j,∆tf j, . . . ,∆tf j,∆tf j]
ᵀ
.

FIM(OLA) for solving the forward problem

Similarly, we have constructed the general form of the system of linear equations for

using FIM as shown in (2.11). The replacement equations for this problem are easily

obtained by considering all given functions, they are

c0 = 0 and
N∑
i=0

a
(1)
Niu

j
i = ∆t f j +

N∑
i=0

a
(1)
Niu

j−1
i .

Therefore the equation (2.7) can be rewritten as

A2uj −∆t uj = A2uj−1 +
∆t f j

2
x2 + c1i.

By discretizing above we can construct the block matrix as follow
A2 −∆tI

−1

−1

−1
...

−1

Last row ofA 0





uj
0

uj
1

uj
2

...

uj
N

c1


=



y0

y1

y2
...

yN

K


, (2.13)

where:
y = A2uj−1 + ∆t fj

2
x2, y = [y0, y1, . . . , yN ]

T ,

K = ∆t f j +
∑N

i=0 a
(1)
Niu

j−1
i , andA =

[
a
(1)
ki

]
.

Note that the integral matrixA obtained by FIM(OLA) is lower-triangular matrix which

makes the right-hand side matrix of 2.14 is a kind of sparse matrix; lower-triangular with
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one column at the last column. This can take advantage for reducing to storage data.

FIM(RBF) for solving the forward problem

In order to apply the FIM(RBF) to the forward problem, we recall the FIM matrix equa-

tion (2.11) and take the input function to the problem. Equations (2.9) and (2.10) hold

for s(t) = 0 and r(t) = 2, respectively. These become

c0 = 0 and
N∑
i=0

b
(1)
Niu

j
i = ∆t f j +

N∑
i=0

b
(1)
Niu

j−1
i .

Therefore the equation (2.7) can be rewritten as

A2uj −∆t uj = A2uj−1 +
∆t f j

2
x2 + c1i.

By combining above we can construct the block matrix as follow
A2 −∆tI

−1

−1

−1
...

−1

Last row ofA 0





uj
0

uj
1

uj
2

...

uj
N

c1


=



y0

y1

y2
...

yN

K


, (2.14)

where:
y = A2uj−1 + ∆t fj

2
x2, y = [y0, y1, . . . , yN ]

T ,

K = ∆t f j +
∑N

i=0 b
(1)
Niu

j−1
i , andA =

[
b
(1)
ki

]
.

The block matrix above involves the matrix A constructed by RBF, one thing to note

that matrixA is a full matrix with the density M
M+1

% i.e. all zeros at the first row. Then

the unknowns uj
0, . . . , u

j
N and c1 will be determined by this system, while c0 can be

obtained from boundary condition; i.e. c0 = 0.

Hereafter one can be discussed from the solutions obtained by all methods. From Figure

2.5, This can be seen that the solution obtained by FDM, FIM(OLA) and FIM (RBF)

presented in dot line (-.-), circle line (-o-) and star line (-*-), respectively, give different

solution u (0.5, t). Although there is a gap between them, nevertheless the solutions



30

have a same behavior and even produce a very good agreement at the starting point as

we have expected from compatibility condition,

g(0) = u0(0.5) = 2.5.

Now on, the three different over-determination data has been provided. In order to con-

sider the fair comparison in inverse problem simulation, we have to choose one of avail-

able additional data and indeed we also have to consider the inverse crime introduced

in Chapter 1. However, this will be chosen and discussed in Chapter 4.

Figure 2.5: The temperature u (0.5, t) obtained by all methods withN = 6 andM = 80
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Chapter 3

The Direct Numerical Method

We start this chapter by recalling the inverse problem of interest 1.16-1.19;

ut(x, t) =
∂2u

∂x2
(x, t) + f(t), (x, t) ∈ DT ,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

∂u

∂x
(0, t) = s(t),

∂u

∂x
(1, t) = l(t), 0 ≤ t ≤ T,

u(xf , t) = g(t), 0 ≤ t ≤ T.

We assume that s(t), r(t) ∈ C (0, T ), g(t) ∈ C1 (0, 1) and u0(x) ∈ C1 (0, 1). In this

chapter, we are presenting the procedure for solving the inverse problem namely the

direct numerical method. This method was first introduced in Xiangtuan, (2010) with

the use of transformation, differentiation and integration. The first step of this algorithm

is about to transform the inverse problem; two unknowns, to be the forward (direct)

problem; one unknown. Whereas for the observed data which is the given data with

some error is stabilized. Then the numerical solution can be achieved by using the

result from the transformed forward problem and the stabilized data.

The first step of the direct numerical method for solving the inverse problem 1.16-

1.19 can be started by differentiating the heat equation in 1.16 with respect to x, this

yields

∂2u

∂x∂t
(x, t) =

∂3u

∂x3
(x, t). (3.1)

As we have mentioned. Let w(x, t) ∈ C1 ([0, 1]× [0, T ]) and

w(x, t) =
∂u

∂x
(x, t). (3.2)

By definition of the transformation function (3.2), then (3.1) becomes

∂w

∂t
=

∂2w

∂x2
, (3.3)
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subject to the initial and boundary conditions;

w(x, 0) =
∂u0

∂x
(x), w(0, t) = s(t), w(1, t) = r(t). (3.4)

Turning to consider the differential equation 3.1 and taking the finite integration with

respect to x on the interval [xf , x] over (3.1), we then obtain∫ x

xf

∂2u

∂x∂t
dx =

∫ x

xf

∂3u

∂x3
dx,

Applying the second fundamental theorem of calculus (see Appendix) yields

∂u

∂t
(x, t)

∣∣x
xf

=
∂2u

∂x2
(x, t)

∣∣x
xf

Substitute the lower and upper limits of integration, we obtain

∂u

∂t
(x, t)− ∂u

∂t
(xf , t) =

∂2u

∂x2
(x, t)− ∂2u

∂x2
(xf , t),

rearranging the above equation gives

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) +

∂u

∂t
(xf , t)−

∂2u

∂x2
(xf , t),

by considering the additional condition; u(xf , t) = g(t), we have

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) +

∂g

∂t
(t)− ∂2u

∂x2
(xf , t). (3.5)

Plugging (3.5) into (1.16) gives

�����∂2u

∂x2
(x, t) +

∂g

∂t
(t)− ∂2u

∂x2
(xf , t) = �����∂2u

∂x2
(x, t) + f(t).

Therefore, we can get

f(t) =
∂g

∂t
(t)− ∂2u

∂x2
(xf , t).

By
∂w

∂x
(xf , t) =

∂2u

∂x2
(xf , t) in 3.2, the time-dependent heat source function becomes

f(t) =
∂g

∂t
(t)− ∂w

∂x
(xf , t). (3.6)

As we have reformulated the inverse heat source problem, hereafter is five steps to

determine f(t) based on (3.6).
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Step 1. Approximate w(x, t) numerically. By using the transformation function 3.2, the

inverse problem 1.16-1.19 become the following forward problem

∂w

∂t
(x, t) =

∂2w

∂x2
(x, t), (x, t) ∈ DT ,

w(x, 0) = (u0)x(x), 0 ≤ x ≤ 1,

w(0, t) = s(t), w(1, t) = r(t), 0 ≤ t ≤ T.

(3.7)

We then can approximate first-order derivative of heat flux
∂w

∂x
(x, t) at any point space

x and any time t numerically. Eventually, step 1 above gives w(x, t) at any space x and

any time t as archived as the following matrix below,



x0 ... xf xf+1 ... xN

t0 w(x0, t0) . . . w(xf , t0) w(xf+1, t0) . . . w(xN , t0)

t1 w(x0, t1) . . . w(xf , t1) w(xf+1, t1) . . . w(xN , t1)
...

... . . .
...

... . . .
...

tM−1 w(x0, tM−1) . . . w(xf , tM−1) w(xf+1, tM−1) . . . w(xN , tM−1)

tM w(x0, tM ) . . . w(xf , tM ) w(xf+1, tM ) . . . w(xN , tM )


.

Step 2. Find the derivative of the heat flux at the specific point xf ;
∂w

∂x
(xf , t). As we

have shown that the reformulated heat source function holds
∂w

∂x
(xf , t). We approxi-

mate the derivative
∂w

∂x
(xf , t) by the explicit forward Euler method as expressed as

∂w

∂x
(xf , tj) =

wj
f+1 − wj

f

∆x
,

where wj
f = w(xf , tj) for j = 0, 1, . . . ,M .

Step 3. Stabilize the noisy function g(t). As mentioned in the previous section, Since

g(t) is a measured data which probably contains the measurement errors always exist,

we denote the noisy data by gδ(t). In order to demonstrate this phenomena in reality,

we assume the measurement data with the analytical function with noise as follows:

gδ = g + random('Normal', 0, σ, 1,M + 1), (3.8)

where the random('Normal', 0, σ, 1,M+1) is a command in MATLAB generating ran-

domly the variable from normal distribution withmean 0 and standard deviation σwhich
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is taken to be σ = p × max
0≤t≤T

|g(t)|, and p is the percentage of the noise to be input.

Before approximating the first-order derivative of noisy function
dgδ

dt
(t), as we have

mentioned before that the inverse problem 1.16-1.19 is ill-posed. Then by adding noise

to the system can make the significant errors, we therefore need to stabilized the noisy

input function gδ(t). We consider the Tikhonov Regularization Method (TRM) as a

method for stabilizing of the noisy function. We wish to employ TRM to stabilize the

noise function gδ by minimizing the following functional

min
gδλ∈R

{∥∥∥gδ
λ
− gδ

∥∥∥2 + λ

∥∥∥∥d2gδdt2
(t)

∥∥∥∥2
}
, (3.9)

Then, the Tikhonov regularization method gives

gδ
λ
= [I + λDᵀD]−1 gδ. (3.10)

whereD represents the second-order Tikhonov regularization matrix,DᵀD is defined

in Section 1.4 and I is an identity matrix.

Step 4. Find the first-order derivative gδλ(t). Since the reformulated formula f(t) in 3.6

holds the first-order derivative
dgδ

dt
(t), we then employ the finite difference method to

approximate the derivative. Up to this point, we have a stable gδλ(t) with corresponding

regularization parameter λ. We then can approximate the first-order derivative
dgδλ
dt

(t)

by using central finite difference as follows

for j = 0,
dgδλ
dt

(tj) =
gδλ(tj+1)− gδλ(tj)

∆t
,

for j = 1, . . . ,M − 1,
dgδλ
dt

(tj) =
gδλ(tj+1)− gδλ(tj−1)

2∆t
,

for j = M ,
dgδλ
dt

(tj) =
gδλ(tj)− gδλ(tj−1)

∆t
.

Step 5. Compute the heat source f(t). According to (3.6) the reformulated tempera-

ture w(x, t) and the stabilized noisy function g(t) can be obtained by previous steps,

respectively. We then simply add those terms to obtain the stabilized heat source f(t)

by f(t) =
dgδλ
dt

− ∂w

∂x
(xf , t).

The next chapter we are presenting the procedure for solving the inverse problem 1.16-

1.19 by using the either the FIM(OLA), FIM(RBF) and FDM, described in Chapter 2,
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with the direct numerical method, presented in this chapter. For more convenience, the

algorithm for the direct numerical method is summarized as
Step 1: Solve the reformulated forward problem

∂w

∂t
(x, t) =

∂2w

∂x2
(x, t), (x, t) ∈ DT ,

w(x, 0) = (u0)x(x), 0 ≤ x ≤ 1,

w(0, t) = s(t), w(1, t) = r(t), 0 ≤ t ≤ T.

Step 2: Find
∂w

∂x
(xf , t) by

∂w

∂x
(xf , tj) =

wj
f+1 − wj

f

∆x
.

Step 3: Calculate the noisy function by gδ = g + random('Normal', 0, σ, 1,M + 1)

and stabilize the noisy function by

gδλ = [I + λDᵀD]−1 gδ.

Step 4: Find
dgδλ
dt

(t) by following FDM

dgδλ
dt

(tj) =



gδλ(tj+1)− gδλ(tj)

∆t
, for j = 0,

gδλ(tj+1)− gδλ(tj−1)

2∆t
, for j = 1, . . . ,M − 1,

gδλ(tj)− gδλ(tj−1)

∆t
, for j = M.

Step 5: Find the source function f(t) =
dgδλ
dt

(t)− ∂w

∂x
(xf , t).
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Chapter 4

Inverse Problem for The Heat Equation

Time-dependent heat source problem has been transformed into the heat flux equa-

tion by using the direct numerical method. From the previous chapter, we have a sys-

tematic algorithm to approximate the heat source function. In the step 1, since we have

a problem to be dealt, this is in order to make an access to the final formula that has been

formulated into the first-order differentiation problem, we wish to employ the FDM, the

FIM(OLA) and the FIM(RBF) consecutively for solving a problem in step 1. However,

the objective of step 1 is not to determine f(t) directly, but rather to make an access to

wx(x, t) which is held in (3.6).

4.1 The FDM for solving inverse heat source problem

Let us firstly begin with recalling the problem (3.7). Firstly we divide the domain

DT into several sub-domains N and M of x and t, respectively. Let xi and tj be the

discretization points of space x and time t, respectively, where i ∈ {0, 1, 2, . . . , N},

j ∈ {0, 1, 2, . . . ,M}, and define xi = i∆x, ∆x =
1

N
and tj = j∆t, ∆t =

T

M
and we

denote that

w(x, t) = w(xi, tj) =: wj
i .

The first-order derivative of heat flux w with respect to t can be approximated by using

the forward difference as

wt(xi, tj) =
wj+1

i − wj
i

∆t
,

and the second-order derivative of heat flux w with respect to x, by using the central

difference, is defined as
∂2w

∂x2
(xi, tj) =

wj
i+1 − 2wj

i + wj
i−1

(∆x)2
.

Then the equation (3.7) can be decretized as

wj+1
i − wj

i

∆t
=

wj
i+1 − 2wj

i + wj
i−1

(∆x)2
, (4.1)
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for i ∈ {1, 2, . . . , N − 1} and j ∈ {1, 2, . . . ,M − 1}. Multiplying ∆t through the

equation (4.1) yields

wj+1
i − wj

i =
∆t

(∆x)2
(
wj

i+1 − 2wj
i + wj

i−1

)
. (4.2)

Let h =
∆t

(∆x)2
and rearranging (4.2) gives

wj+1
i = hwj

i+1 + (1− 2h)wj
i + hwj

i−1.

Therefore, the descretization of the initial and boundary conditions in (3.7) become

w(0, tj) = wj
0 = sj = s(tj), w(1, tj) = wj

N = rj = r(tj), w(xi, 0) = (u0)x(xi).

(4.3)

Consider when i = 1,

wj+1
1 = hwj

2 + (1− 2h)wj
1 + hwj

0

= hwj
2 + (1− 2h)wj

1 + hsj.

Consider when i = N − 1,

wj+1
i = hwj

N + (1− 2h)wj
N−1 + hwj

N−2

= hrj + (1− 2h)wj
N−1 + hwj

N−2.

We then may construct the system which can be shown as matrix form as following:

wj+1 = Awj + b, (4.4)

where
wj+1 =

[
wj+1

1 , wj+1
2 , wj+1

3 . . . , wj+1
N−1

]T
, wj =

[
wj

1, w
j
2, w

j
3, . . . , w

j
N−1

]T
,

A =



(1− 2h) h 0 . . . 0 0

h (1− 2h) h . . . 0 0

0 h (1− 2h) . . . 0 0
... ... . . . . . . ... ...

0 0 . . . h (1− 2h) h

0 0 . . . 0 h (1− 2h)


(N−1)×(N−1)

,

b = [hsj, 0, . . . , 0, hrj]
T
.
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Thus each wj+1
i is calculated by using the known preceding time level wj

i and the

first time step w0
i can be obtained by the initial condition w(xi, 0) = u0,x(xi), which

can be calculated by setting j = 0 in the equation (4.4). Hence the final time step

wm = [w(xi, T )] can be found afterward.

4.2 The FIM for solving inverse heat source problem

In order to apply the FIM to problem (3.7), we first descretize the first-order deriva-

tive of the heat flux w with respect to time t by using the backward difference method,

the equation (1.16) can be discretized as

w(x, tj)− w(x, tj−1)

∆t
=

∂2w

∂x2
(x, tj),

rearranging the equation above gives

w(x, tj)−∆t
∂2w

∂x2
(x, tj) = w(x, tj−1). (4.5)

Here, we apply the FIM by taking integration twice with respect to x through (4.5)∫ ∫
w(x, tj) dxdx−∆tw(x, tj) =

∫ ∫
w(x, tj−1) dxdx.

The matrix form for double layer integration A2 has been constructed in section 1.3,

then we apply to the integration equation above, we have

A2w(x, tj)−∆tw(x, tj) = A2w(x, tj−1) + c0x+ c1i, (4.6)

where c0 and c1 are integral constants, x = [x0, x1, x2, . . . , xN ]
ᵀ and i = [1, 1, . . . , 1]ᵀ.

Considered the above equation at the boundary node x = 0, the equation (4.6) becomes

0∑
i=0

ϕ
(2)
0i w

j
i −∆t wj

0 =
0∑

i=0

ϕ
(2)
0i w

j−1
i +���c0(0) + c1.

By the definitions of the integration function ϕ
(1)
0i for FIM(OLA) and FIM(RBF); i.e.

a
(1)
0i and b(1)0i , mentioned in Chapter 1 that ϕ

(1)
0i = a

(1)
0i = b

(1)
0i = 0,

c1 = −∆t wj
0.
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Pluging the boundary condition (3.7), i.e, w(0, t) = s(t) at nodes tj , we have

c1 = −∆t sj. (4.7)

Similary, we consider the boundary node x = 1. The equation (4.6) becomes
N∑
i=0

ϕ
(2)
Niw

j
i −∆t wj

N =
N∑
i=0

ϕ
(2)
Niw

j−1
i + c0(1) + c1.

And now we apply the boundary condition (3.7), i.e, w(1, t) =: wj
N = r(tj) = rj at

nodes tj . We obtain
N∑
i=0

ϕ
(2)
Niw

j
i = ∆t rj +

N∑
i=0

ϕ
(2)
Niw

j−1
i + c0 + c1. (4.8)

By considering the expression above we can construct the block matrix form of the

system as follows:

A2 −∆tI

−x0 −1

−x1 −1

−x2 −1
... ...

−xN −1

Last row ofA2 −1 −1

0 0 0 . . . 0 0 0 1





wj
0

wj
1

wj
2

...

wj
N

c0

c1


=



y0

y1

y2
...

yN

K1

K2


, (4.9)

where
y = A2wj−1, y = [y0, y1, . . . , yN ]

T ,

K1 = ∆trj +
∑N

i=0 ϕ
(2)
Niw

j−1
i ,

K2 = −∆t sj.

Thus each wj+1
i is calculated by using the known preceding time level wj

i and the first

time step w0
i can be obtained by the initial condition w(xi, 0) = u0,x(xi), which can

be calculated by setting j = 0 in the equation (4.4). Hence the final time step wm =

[w(xi, T )] can be found afterward.

Eventualy, in step 1 the use of all methods has been explained to solve the problem

and they have given their own heat flux w(x, t). This needs to be noticed that the differ-

ence of the accuracy obtained by using all methods can be observed and noticed from
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step 1 only, whereas the rest steps do not effect to the comparison of the methods. Here-

after according to previous chapter, we summarize the brief algorithm for obtaining the

heat source function as follows:

• Find
∂w

∂x
(xf , t) by using the finite difference method.

• Use the Tikhonov regularization method to stabilize noisy function g(t).

• Approximate the first-order derivative g′(t) by the central finite differencemethod.

• Compute f(t) by f(t) =
∂g

∂t
(t)− ∂w

∂x
(xf , t).

4.3 Numerical Example

An inverse problem has been formulated systematically and the use of each methods

has been explained clearly in the previous section. In this section, we present two bench-

mark test examples to illustrate the accuracy and efficiency of the proposed method

combined with the Tikhonov regularization method. In order to illustrate the accuracy

of the numerical solutions we consider the root mean square error (RMSE) expressed as

RMSE (f(t)) =

√√√√ 1

M + 1

M∑
i=0

(fexact(ti)− fnumerical(ti))
2.

4.3.1 Example 1

We consider the inverse problem (1.16)-(1.19), with T = 1 and the input data are

given as

u(x, 0) = u0(x) = x2,

∂u

∂x
(0, t) = s(t) = 0,

∂u

∂x
(1, t) = r(t) = 2,

and additional condition is u(0.5, t) = g(t) =
1

4
+ 2t + sin 2πt for (x, t) ∈ DT . The

analytical solution of this inverse problem is given by

f(t) = 2π cos(2πt), and u(x, t) = x2 + 2t+ sin 2πt, (x, t) ∈ DT .
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In what follows, we simply strict to the algorithm explained in the end of Chapter 3.

For the number of discretization, we firstly present the number discritization points of

space and time with N = 10 and M = 30, respectively. In the step 1, we deal with

the formulated heat equation, the proposed FIM and FDM play its role in this part.

Particularly in the use of FIM (RBF), we have two free parameter and these are chosen

c =
1

N
andQ = 7 as suggested by Li et al. (2013). Furthermore, solving the formulated

equation gives w(x, t) that can properly be archived in the matrix below



x0 ... 0.5 0.5+∆x ... x10

t0 w(x0, t0) . . . w(0.5, t0) w(0.5 + ∆x, t0) . . . w(x10, t0)

t1 w(x0, t1) . . . w(0.5, t1) w(0.5 + ∆x, t1) . . . w(x10, t1)
... ... . . .

... ... . . .
...

t29 w(x0, t29) . . . w(0.5, t29) w(0.5 + ∆x, t29) . . . w(x10, t29)

t30 w(x0, t30) . . . w(0.5, t30) w(0.5 + ∆x, t30) . . . w(x10, t30)


.

In the step 2, next task concerns taking the first-order derivative of heat flux w with

respect to x and corresponding the observed data. The point space to be considered is

xf = 0.5, as we read from the observation data, i.e. g(t) = u(0.5, t). Then we need

to take the first-order derivative of the heat flux at particular point space xf = 0.5 with

respect to x,
∂w

∂x
(0.5, t) by using the forward difference method as expressed as

∂w

∂x
(0.5, t) =

w(0.5 + ∆x, t)− w(0.5, t)

∆x
.

(a) FDM (b) FIM
Figure 4.1: Numerical results of the first-order derivative of the heat flux ∂w

∂x
(0.5, t)

obtained by using FDM, FIM (OLA) and FIM (RBF) with N = 10 andM = 30.
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Table 4.1: RMSE of
∂w

∂x
(0.5, t) obtained by all methods.

N M FDM FIM(OLA) FIM(RBF)

N = 10 M = 30 1.3642E+15 1.7301E-15 2.8813E-15

N = 6 M = 80 8.8818E-16 7.3244E-15 5.7036E-15

Based on the investigation, FDM does not work well with N = 10 and M = 30,

from Figure 4.1, this clearly can be seen that the high instability occurs at the last two

points and produces the severely unstable of
∂w

∂x
(0.5, t) as RMSE = 1.3642E+15 as

shown in Table 4.1. However, the proposed method approximates
∂w

∂x
(0.5, t) perfectly

as the RMSE obtained by FIM(OLA) and FIM(RBF) are 1.7301E-15 and 2.8813E-15,

respectively. Moreover, the fruitfulness of the method can be seen in Figure 4.1(b),

where the numerical solution
∂w

∂x
(0.5, t) obtained by FIM can capture the analytical

solution properly.

In step 3, we present several cases. We firstly start with the case of the exact data,

i.e. no noise to be added, this indicates the regularization part in the step 3 is not needed

in this case. Then in step 4, we take first-order derivative of the additional conditional

and finaly the solution is obtained by doing step 5. The numerical solution obtained by

proposed method are compared with its analytical values in Figure 4.2(b). From Fig-

ure 4.2(b) this can be seen that the heat source quantities is very accurate with the same

RMSE 3.241E−2 as shown in Table 4.2, while the numerical heat source f(t) result ob-

tained by FDM is severally unstable and out of expectation as its RMSE= 1.1892E+15

corresponding to
∂w

∂x
(0.5, t). Figure 4.2(a) also confirms the highest inaccuracies ob-

tained from last two points. For fair comparison, we have tried to exclude the last two

value of numerical solution obtained by FDM from RMSE calculation, yet its RMSE is

still high. This confirms that the FDM does not produce the good solution in this current

step length.
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Table 4.2: RMSE of f(t) obtained by all methods with N = 10,M = 30 and p = 0%.

Methods RMSE of f(t)

FDM 1.1892E+15

FIM(OLA) 3.241E-2

FIM(RBF) 3.241E-2

Conveniently, since the numerical results obtained by both FIM(OLA) and FIM(RBF)

are completely similar, we then can represent the numerical result obtained by using FIM

either OLA or RBF in one graph hearafter as displayed in Figure 4.2(b).

(a) FDM (b) OLA
Figure 4.2: The function f(t) obtained by (a) FDM and (b) FIM, respectively, with

N = 10,M = 30 and p = 0%.

Hereafter, we do not extend to discuss the numerical result obtained by FDM as that

is several unstable in spite of no noise input. We furthermore explore the stability of

solution obtained by FIM with this current step length. In the case of noisy data, as we

have mentioned earlier, most of inverse problem is ill-posed that viloates the stability

of the solution. In such cases, we can observe how the solution behaves when we add

noise to the over-determination condition (1.19), contaminated the data by (3.8). Then

now the specific temperature is perturbed as gδ and the regularization is needed in this

case. After stabilizing the noisy function, the first-order derivative of stable data can be

taken in the step 4, heat source data finally can be calculated by doing step 5.

Figure 4.3(b) displays the numerical result of f(t) obtained by using the algorithm
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introduced in the previous chapter with p = 3% noisy input and with no regularization,

i.e. λ = 0. From Figure 4.3(b) this can be seen that the numerical solution is unstable

since 3% small perturbation in g(t) shown in Figure 4.3(a) causes significant error in

the solution.

(a) gδ(t) (b) f δ(t)

Figure 4.3: The perturbation function (a) gδ(t) and (b) f δ(t) with N = 10, M = 30

and p = 3%.

In what follows, Figure 4.4 observes the error by using the trial and error technique.

We first start with a huge coverage of λ i.e. λ ∈ {10−6, 10−5, 10−4, . . . , 10, 102}. From

Figure 4.4(a), we can observe that the smallest error can be achieved when the regular-

ization parameter λ is in interval 0 < λ < 20. We consequently minimize the coverage

of λ to be λ ∈ {0, 1, 2, . . . , 19, 20}. The graph visibly has local minimum as this starts

increasing around λ ∈ (5, 10). Then the best solution finally can be obtained when

running λ ∈ (5, 10).
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(a) λ ∈ {10−6, 10−5, 10−4, . . . , 10, 102} (b) λ ∈ {0, 1, 2, . . . , 19, 20}

(c) λ ∈ {0, 1, 2, . . . , 9, 10}
Figure 4.4: RMSE of f δ

λ with N = 10,M = 30 and p = 3%.

In addition, the best result for this example was obtained when setting λ = 8 and

that is shown in Figure 4.5 and Figure 4.4. Here can be seen that the interior point

of numerical solution i.e. t ∈ [0.1, 0.9] approximately, is more accurate and stable,

whereas the starting and the ending point on t ∈ {0, 1} are getting far away from the

exact one. Accordingly, the selection of λ effects to the stability at both boundaries as

if λ is getting higher, then the results is getting flat. The inaccuracies at both starting

and end points is frequently found elsewhere when using stabilizing technique such the

Tikhonov regularization method.
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(a) f δ(t) with λ = 1 (b) f δ(t) with λ = 8

Figure 4.5: The solution f(t) obtained by FIM with noise p = 3%, λ ∈ {1, 8},N = 10

andM = 30.

Finally we extend to explore the stability of the solution by increasing the amount

of noise to be plugged in with p ∈ {5, 10}%, the values of the regularization parameter

were chosen according to the trial and error as tabulated in Table 4.3. FromTable 4.3 this

can be seen that suitable regularization parameter λ can achieve the stable and accurate,

although the numerical solution with p ∈ {5, 10}% is not presented.

Table 4.3: RMSE for FIM with noise input p ∈ {3, 5, 10}%, N = 10 andM = 30.

p 0% 3% 5% 10%

λ - 0 1 8 0 14 0 23

RMSE 3.24E-2 2.0392 0.76442 0.50934 3.4003 0.68676 5.5401 0.61956

In summary, FDM does not work well with N = 10 and M = 30. We apparently

have found out that we face the same issue as forward problem that is unstableness.

Due to the convenience and fairness of comparison, we again consider the requirement

of stability condition i.e. the ratio between ∆t and (∆x)2 is not more than 0.5. This

means that with N = 10, we need to set M as not less than 200. Consider the time

consumption, since in the computational studies, a running time depends on the step

length taken then we can control the consuming time by considering the number of

discretization points. Furthermore, in order to avoid a expensiveness of computational

cost and without breaking the requirement of stability conditions, we have decided to
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choose N andM as 6 and 80, respectively.

Similary, we can follow the algorithm to obtain the heat source approximately. In

the step 2, all method can solve the reformulated heat equation, then the first-order

derivative
∂w

∂x
(x, t) can be approximated by using the forward difference method in the

step 2. A set of solution
∂w

∂x
(x, t) obtained by all method is displayed in Figure 4.6.

Also, from Tabel 4.1, this clearly can be seen that all methods give very good solution

of
∂w

∂x
(0.5, t) with current step length as the RMSE is less then 1E-13.

Figure 4.6: The first-order derivative of heat flux obtained by all methods, ∂w
∂x

(0.5, t)

with N = 6 andM = 80.

In the step 3, we present several cases. We start with the case of the exact data, i.e.

no noise to be input, this indicates the regularization part in the step 3 is not needed in

present case. Then in step 4, we take first-order derivative of the additional conditional

and finaly the solution is obtained by doing step 5.

Since the formula heat source f(t) holds
∂w

∂x
(x, t) in the step 5 and we have found

out that
∂w

∂x
(x, t) obtained by all methods are in a very good agreement, then these seem

to remain indistinguishable of f(t) obtained by all methods. This can clearly be seen

from Table 4.4 that the numerical solution f(t) obtained by all method are in the same

accuracy.
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Table 4.4: RMSE of f(t) obtained by all methods with N = 6,M = 80 and p = 0%.

Methods RMSE of f(t)

FDM 4.5943E-3

FIM 4.5943E-3

This also is supported by Figure 4.7, without noise to be added, the approximation

of f(t) obtained by both FDM and FIM do not have difference. Consequently, the heat

source term function f(t) obtained by all methods will be represented by one graph

hereafter.

(a) FDM (b) FIM
Figure 4.7: The solution f(t) with N = 6,M = 80 and p = 0%.

Again, we prefer doing straight way rather than collecting the real data for addi-

tional condition. Thus we assume that our purtubed exact solution is our “real” ob-

served data. In the next case, we observed the stability of f(t) with respect to noise

in over-determination (1.19). Although from Figure 4.8(a) the perturbation makes just

a bit change in additional data u(0.5, t) but Figure 4.8(b) displays that the numerical

solution of f(t), with no regularization, is unstable i.e. badly oscillatory. This incident

corresponds to the guess that most of inverse problem is ill-posed that viloates the sta-

bility of the solution. In such cases, we can observe how the solution behaves when we

perturbed g(t) = u(0.5, t) by (3.8) with p = 3% noisy input as shown 4.8(a), then now

the specific temperature is perturbed as gδ as generated with standard deviation given

by σ =
9

4
p.
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(a) gδ(t) (b) f δ(t)

Figure 4.8: The perturbation functions (a) gδ and (b) f δ with N = 6, M = 80 and

p = 3%.

In order to recover instability of f(t)when the noise is added, we utilize the Tikhonov

regularization of order two. Since the Tikhonov regularization holds the regularization

parameter λ to be chosen carefully, the trial and error furthermore is observed to choose

the λ. From Figure 4.9(a), This indicates that the regularization parameter λ retrieves

the solution from Figure 4.8(b) and carefulness in choosing λ helps us to retrieve the

instability of the solution. Finally from Figure 4.9(b), the best solution can be obtained

when λ = 332 based on observation by using the trial and error technique method. Fig-

ure 4.9(b) also indicates that the taken discretization step length effect with the accuracy,

at the starting and ending points particularly.

(a) f δ
λ1
(t) (b) f δ

λ2
(t)

Figure 4.9: The heat source f(t) obtained by all methods with λ ∈ {1, 332}, N = 6

andM = 80.
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Finally we extend to explore the accuracy and stability of solution by increasing the

amount of noise to be plugged in, with p ∈ {5, 10}%, the values of the regularization

parameter again are chosen according to the trial and error which can be seen in Table

4.5. In case of noisy function with p ∈ {5, 10}%, we need to inform that a bit instability

occurs at the starting and end points only, yet the solution are not displayed in such

figure. Then Table 4.5 tabulates the RMSE and regularization parameter that has been

chosen appropriately.

Table 4.5: RMSE for all methods with noise input p ∈ {3, 5, 10}%,N = 6 andM = 80.

p 0% 3% 5% 10%

λ - 0 1 332 0 266 0 445

RMSE 4.5943E-3 3.4384 1.5084 0.20966 7.1007 0.48954 12.4189 0.71947

4.3.2 Example 2

We consider the inverse problem (1.16)-(1.19), with T = 1 and the input data are

given as follows:

u(x, 0) = u0(x) = x2,

∂u

∂x
(0, t) = s(t) =

∂u

∂x
(1, t) = r(t) = 0,

In order to observe the accuracy, the analytical solution of this inverse problem has been

given as

f(t) =


0, 0 ≤ t <

1

4
,

1

2
,

1

4
≤ t <

1

2
,

1,
1

2
≤ t ≤ 1.

(4.10)

In this case, the inverse problem does not have an analytical solution for temperature

u(x, t). Hence, the additional condition (1.19) needs to be obtained by solving the for-

ward problem firstly with considering known f in (4.10). Straight way, the additional

data has been obtained in Chapter 2. Since we solve the forward problem by using all
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methods, then we have three options to choose the data as over-specified condition. In

order to illustrate a fair comparison, we then decide to choose a solution computed by

FDM as additional condition.

One needs to be noticed that, we obtain the additional condition by solving the for-

ward problem with considering the analytical heat source (4.10). In the inversion way,

we then approximate back the heat source function by plugging its additional condition.

This scheme seems involving the inverse crime that we need to avoid from. We have

two ways to avoid the inverse crime introduced in the Chapter 1, furthermore, in this

case, we are avoiding the inverse crime by making the discretization in the numerical

forward simulation differently as the one used in the inversion i.e. N = 6 and N = 5

in the forward and inverse problems, respectively, while the number discretization time

step is taken stick onM = 80.

Figure 4.10: The heat source f(t) obtained by all methods with p = 0%, N = 5 and

M = 80.
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In what follows, in step 1, each method provides their heat flux w(x, t) as archived

in matrix below



0 0.2 0.4 0.6 0.8 1

t0 w(0, t0) w(0.2, t0) w(0.4, t0) w(0.6, t0) w(0.8, t0) w(1, t0)

t1 w(0, t1) w(0.2, t1) w(0.4, t1) w(0.6, t1) w(0.8, t1) w(1, t1)
...

...
...

...
...

...
...

t79 w(0, t79) w(0.2, t79) w(0.4, t79) w(0.6, t79) w(0.8, t79) w(1, t79)

t80 w(0, t80) w(0.2, t80) w(0.4, t80) w(0.6, t80) w(0.8, t80) w(1, t80)



In the step 2, temperature u(0.5, t) has been chosen and considered as additional con-

dition. Hence, we need to take the first-order derivative
∂w

∂x
(0.5, t). Since we take the

discretization step differently between the forward problem and its inversion, then the

way to consider w(0.5, t) is little different. Accordingly, archived w(x, t) above does

not contain the heat flux at the specific point space xf = 0.5. Hence, we consequently

need to approximate the w(0.5, t) by taking the average value of w(0.4, t) and w(0.6, t)

as defined as following formula

w(0.5, t) ≈ w(0.4, t) + w(0.6, t)

2
.

We furthermore have a complete information to simulate the inverse problem without

inverse crime.

In the step 3, we again present several cases of noisy level, we first consider the

zero noisy data (we assume that the additional data obtained in chapter 2 is exact data).

Then in step 4, the first order derivative of additional data need to be taken in order to

compute the heat source formula in the step 5.

Figure 4.10 shows the computed solution f(t) obtained by all methods. This is

clearly seen that although the noise has not plugged yet, a high oscillatory occurs in the

beginning period because the given function is unsatisfied with compatibility condition.

Whereas the rest of interior points to ending point have very good agreement with the

analytical solution. We actually expect accurate and stable solution from FIM(RBF)

even no regularization applied. Unfortunately, the RMSE of FIM(RBF) is the highest

among the competitor as shown in Table 4.6.
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Table 4.6: The RMSE of f (t) with p = 0%, N = 5 andM = 80.

Methods RMSE

FDM 1.709E-1

FIM(OLA) 1.6991E-1

FIM(RBF) 2.7516E-1

(a) λ = 0 (b) λ = 38

(c) λ = 200

Figure 4.11: The solution f(t) obtained by FDM with N = 5 andM = 80.

We then observe how the solution behaves when we add noise to the additional con-

dition (1.19), contaminated the data by (3.8) with p = 1% noisy input. From Figure

4.11(a), 4.12(a) and 4.13(a), the numerical solutions obtained by all methods are poor

unstable, because a small error 1% input causes significant error in the solutions. This is

what we have expected as the formula heat source f(t) in the step 5 involves the differ-
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entiation of noisy function g(t), this means we should deal with an unstable procedure.

Now after adding same noise into these systems, the RMSE of FIM(RBF) without reg-

ularization i.e. λ = 0 is still the highest one.

(a) λ = 0 (b) λ = 26

(c) λ = 200

Figure 4.12: The solution f(t) obtained by FIM(OLA) with N = 5 andM = 80.

In order to recover instability of f(t)when the noise is added, we utilize the Tikhonov

regularization of order two. Since the Tikhonov regularization holds the regularization

parameter λ to be chosen carefully, the trial and error technique furthermore is used to

observe the λ. From Figures 4.11, 4.12 and 4.13, this can be seen that the TRM retrieves

the unstable solution. The least error can be obtained when λ = 38, λ = 26 and λ = 148

for FDM, FIM(OLA) and FIM(RBF), respectively, are applied. Figures 4.11(b), 4.12(b)

and 4.13(b) can be investigated that having the least error does not mean being such a

good solution as we can see there are fluctuation behavior at the some point. One thing

we need to note that, the numerical solution obtained by using FIM(RBF) can produce
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the least error and smooth solution simultaneously.

(a) λ = 0 (b) λ = 148

(c) λ = 200

Figure 4.13: The solution f(t) obtained by FIM(RBF) with N = 5 andM = 80.

Whereas in 4.11(b) and 4.12(b), although least error can be produced but there are

some instability along the points. Furthermore, Table 4.7 shows that more accurate

result is obtained by FIM (RBF), whereas the numerical solution obtained by FDM and

FIM(OLA) are not much different as we can see in Table 4.7.

Table 4.7: RMSE of smoother f(t) obtained by all methods with p = 1%, N = 5 and

M = 80.

Methods λ = 0 λsmooth

FDM 5.0206E-1 λ = 200, 1.4107E-1

FIM(OLA) 5.0436E-1 λ = 200, 1.5499E-1

FIM(RBF) 5.2894E-1 λ = 200, 1.2273E-1
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Finally we explore the stability by increasing the amount of noise to be plugged in

with p ∈ {3, 5}%, the values of the regularization parameter were chosen according to

the trial and error which can be seen in Table 4.8.

Table 4.8: RMSE for the FDM, FIM(OLA), FIM(RBF) for p ∈ {1, 3, 5}% noise with

N = 5 andM = 80.

Methods p(%)
Parameter

RMSE
λbest

FDM

1%
λ = 0 5.0206E-1

λ = 38 1.20815E-1

3%
λ = 0 1.8713

λ = 363 1.7499E-1

5%
λ = 0 2.5861

λ = 343 2.683E-1

FIM(OLA)

1%
λ = 0 5.0436E-1

λ = 26 1.2486E-1

3%
λ = 0 1.87

λ = 216 1.7495E-1

5%
λ = 0 2.5903

λ = 286 2.2741E-1

FIM(RBF)

1%
λ = 0 5.2894E-1

λ = 148 1.2219E-1

3%
λ = 0 1.8625

λ = 5261 1.5371E-1

5%
λ = 0 2.6016

λ = 6337 1.5721E-1

In summary, this indicates that a getting higher noise level to be input then a getting

higher regularization parameter to be applied, although the behaviour of solution when

noise p ∈ {3, 5}% added is not plotted in a figure. Although, FIM(RBF) produced the

highest error when no regularization is imposed whereas this can get the best solution
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when regularization is imposed. In addition, the high instability in the begining period

can not be fixed even though the regularization parameter is applied. This phenomena

has been reported by Xiangtuan et al. (2013), the instability in the beginning period

is caused by unsatisfied compatibility condition, i.e.
∂u0

∂x
(1) = 2 ̸= 0 = r(0). We

can see that the numerical result is not as good as in the previous examples, but it is in

reasonable agreement with analitycal solution (4.10).
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

The main objective of this study was to propose the FIM to solve the time-dependent

inverse heat source problem with the use of the direct numerical method which is the

transformation technique for solving inverse problem. In this study, there are two kinds

for approximating integral which are the OLA (Trapezoidal rule) and RBF, presented in

Chapter 1. However there is no research/study trying to use the FIM to solve the inverse

problem yet. The FIM with OLA and RBF has been first recently in Wen et al,. (2013)

introduced for solving partial differential equation (the forward problem).

In general of the inverse problems, the additional (or overdetermined) conditions

have to be presented and considered to approximate the unknown functions uniquely.

Therefore, in this study, the temperature at the specific space xf and any time t has been

considered as the additional information. Generally, the additional data is obtained by

doing experiment, real observation or real measurement. This indicates that the addi-

tional data probably contains noise unavoidably. Therefore, in computational simulation

studies, we assume the perturbed exact data i.e. the given function with noise as the ad-

ditional data. The problem statement of this study has been presented in Section 1.7,

Chapter 1. Before the study of inverse problem case, we first started using the proposed

discretization methods; i.e. FIM(OLA), FIM(RBF) and FDM, for solving the forward

problem as presented in Chapter 2. the numerical solution obtained by using proposed

methods have been produced to be accurate.

To study the inverse problem, we have begun with introducing the direct numerical

method in Chapter 3. The main idea of this technique was to transform the inverse

problem; two unknowns to be forward problem; one unknown. There were five steps

for the direct numerical method. The two first steps were about the reformulating the

problem, whereas steps 3 and 4 were about regularized procedure. Since the formula
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for obtaining the unknown heat source function in step 5 holds the first-order derivative

of the additional data and this contained noise unavoidably, then we need to deal with

an unstable procedure by employing regularization method introduced in Chapter 1.

In this study, a well known regularization method namely the Tikhonov regularization

has been employed with order two. Since the TRM holds the regularization parameter,

then we have used the trial and error technique to choose the suitable regularization

parameter. After stabilizing the noisy functions (additional data), we have taken the

first-order derivative by using the central finite difference (the second order accuracy).

The study of inverse problem under the problem statement in section 1.7 have been

performed in Chapter 4. The accuracy and stability of the solution have been observed

by the root mean square error. Two benchmark numerical examples consisting two cases

of unknown functions such as continuous and discontinuous functions have been stud-

ied. In first case of study, the continuous heat source function, the numerical solution

obtained by the use of either FIM(OLA), FIM(RBF) and FDM together with the di-

rect numerical method has been displayed and compared versus its available analytical

solution. Whereas in the case of discontinuous heat source function, where an analyti-

cal solution of temperature was not available, we have obtained the additional data by

solving the forward problem with the known heat source function; i.e. applying the an-

alytical solution of heat source. We also have set up the step length to be different in

the forward problem and the inverse problem case, this is in order to avoid the inverse

crime.

In summary of the numerical studies, by taking the number of discretization for

space and time to be N = 10 andM = 30, respectively, the numerical solution without

noise, obtained by using FDM has been found to be severely unstable, whereas the

numerical results obtained by FIM with both OLA and RBF have been found to have

very good agreement between numerical and exact solutions. In order to consider a fair

comparison, we have set up the number of discretization for space step to beN = 6 and

increasing time step to be M = 80, this was because of the stability condition under

the use of FDM as state that the ratio between the space-step size and the square of

time-step size has to be less than a half and this follows that considering the number
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of step length is a good way to control the consuming time. All numerical solutions

for the case of with no noise have been discovered to be accurate and same RMSEs.

Since the study of adding noise under the procedure of the direct numerical method was

taking part in steps 3-4, whereas steps 1-2 were about the use either the FIM(OLA),

FIM(RBF) or FDM to solve the formulated forward problem. Then for this present

numerical example, no matter how much noise to be added, all methods produced the

same RMSEs. In the case of noise data, this inverse problemwas found to be ill-posed as

a small error caused a significant error in the solution. Then the TRMwith order two has

been employed to stabilize the solution. Accordingly, the stable solution was obtained

by using this algorithm, the solution has also been found to have a good agreement

between the analytical and numerical in the interior points yet not for both boundary

points when high noise level was added.

For the Example 2, the discontinuous source function with the case of exact data,

we have found that all methods produced high oscillatory numerical solution at the be-

ginning period, this was because a given function was not satisfied with compatibility

condition. Whereas the rest of interior points to ending point have very good agreement

with the analytical solution. When the noise was input, the numerical heat source solu-

tion was severely unstable. Then the TRM with order two has been employed in step 3

of algorithm with the use of trial and error for choosing appropriate regularization pa-

rameter. We have found that the numerical solutions obtained by using FDM and FIM

(OLA) were not much different, whereas FIM (RBF) could produce better and smooth

solution.

Along the explanations above, we finally can conclude that the FIM combined with

TRM considering under the algorithm of the direct numerical method can be used to

solve the time-dependent heat source problem. The numerical solutions were found to

be accurate in the interior points. Furthermore, the use of FIM either with OLA or RBF

produced the numerical solution are much better than the FDM in sense of discretization

step length as the FDM require to satisfy the stability condition, i.e. no requirement step

length needed when using the FIM. However, the accuracy of FIM and FDM has been

found not much different.
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5.2 Future works

Along our investigation, the FIM (OLA) and FIM (RBF) combined with TRM order

two can be used to deal with the inverse problem of finding time-dependent heat source.

Although, the good agreement can be seen at interior point only when high noise was

input, this commonly appears when using TRM. Somehow, there are many ideas to

extend our scope of study, such as

(i) We may consider the FIM to deal with the inverse problem of finding the space-

dependent heat source function, as we prefer discretize the space and time by using

FIM and FDM, respectively.

(ii) Since FIM (OLA) and FIM (RBF) can be used to deal with inverse problem. As

there was introducing in Li et al, (2016) for the FIM with the Simpson's Rule,

then we can extend to study the inverse problem with the use of the FIM with

Simpson’s Rule.

(iii) Since the final formula of heat source holds the first-order derivative of noisy func-

tion, then we may consider the smoothing spline technique which is a technique

to stabilize the derivative noisy function (Hazanee and Lesnic, 2014) instead of

TRM featuring with the central difference method. With hope that, the instability

at the both starting and ending points can be fixed.
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Derivation of Tikhonov Regularization Formula

This method is constructed by minimizing the regularized linear least-squares ob-

jective function.

∥Xgδ − bδ∥2 + λ
∥∥Dgδ

∥∥2 .
Reformulating the functional above yields

∥Xgδ − bδ∥2 +
∥∥∥√λDgδ − 0

∥∥∥2 ,
the reformulated functional above can be written as∥∥∥∥∥∥

 Xgδ − bδ
√
λDgδ − 0

∥∥∥∥∥∥ or
∥∥∥∥∥∥
 Xgδ
√
λDgδ

−

−bδ

0

∥∥∥∥∥∥ .
Grouping the first term with the common term gδ gives∥∥∥∥∥∥

 X
√
λD

 gδ −

bδ
0

∥∥∥∥∥∥ .

LetA =

 X
√
λD

 and y =

bδ
0

 , we have the tikhonov regularization formula

min
gδ∈R

{∥∥Agδ − y
∥∥} .

By the definition of euclidian norm
∥∥Agδ − y

∥∥, we have ∑i (Agi − yi)
2. Minimiz-

ing means taking the derivative and setting its derivative to be equal to zero. Taking

derivative of functional above with respect to g yields

∂

∂g

{∑
i

(Agi − yi)
2

}
=
∑
i

∂

∂g

{
(Agi − yi)

2} = 0,

we obtain ∑
i

�2 (Agi − yi)��A = 0,

Applying the linearity of summation gives∑
i

Agi −
∑
i

yi = 0 or
∑
i

Agi =
∑
i

yi.
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The expression above can be expressed as matrix form as

Ag = y.

By using Gaussian normal equation, we have

AᵀAg = Aᵀy.

Since y =

bδ
0

, A =

 X
√
λD

 then Aᵀ =
(
Xᵀ

√
λDᵀ

)
, the equation above

becomes

(XᵀX + λDᵀD) gλ = Xᵀb.

Finally, TRM gives the minimizer the functional above as

gλ = (XᵀX + λDᵀD)−1Xᵀb.

Mathematical Induction of Integration Matrix Form

Recall the approximated definite single integral, we may consider the definite double-

layer integral,

F (2)(xk) =

∫ xk

a

∫ y1

a

f(y)dydy1

=

∫ xk

a

g(y)dy ; g(y1) =

∫ y1

a

f(y) dy

=
k∑

i=0

a
(1)
ki g(xi)

=
k∑

i=0

(
a
(1)
ki

∫ xi

a

f(y) dy

)
.

Then we obtain,

F (2)(xk) =
k∑

i=0

(
a
(1)
ki

i∑
j=0

a
(1)
ij f(xj)

)
.

Therefore, we have
∫ xk

a

∫ y1
a

f(y)dydy1 =
∑k

i=0

∑i
j=0 a

(1)
ki a

(1)
ij f(xj). Similary as the

single-layer, when k = 0 we have
∫ x0

a

∫ y1
a

f(y)dydy1 = 0.
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When k = 1,

∫ x1

a

∫ y1

a
f(y)dydy1 =

1∑
i=0

a
(1)
1i

i∑
j=0

a
(1)
ij f(xj)

 =

���������

a
(1)
10

0∑
j=0

a
(1)
0j f(xj) + a

(1)
11

1∑
j=0

a
(1)
1j f(xj)

= a
(1)
11

[
a
(1)
10 f(x0) + a

(1)
11 f(x1)

]
=

1

2
(∆x)

[
1

2
(∆x)f(x0) +

1

2
(∆x)f(x1)

]
=

1

4
(∆x)2f(x0) +

1

4
(∆x)2f(x1).

When k = 2,

∫ x2

a

∫ y1

a
f(y)dydy1 =

2∑
i=0

a
(1)
2i

i∑
j=0

a
(1)
ij f(xj)


=

���������

a
(1)
20

0∑
j=0

a
(1)
0j f(xj) + a

(1)
21

1∑
j=0

a
(1)
1j f(xj) + a

(1)
22

2∑
j=0

a
(1)
2j f(xj)

= a
(1)
21

[
a
(1)
10 f(x0) + a

(1)
11 f(x1)

]
+ a

(1)
22

[
a
(1)
20 f(x0) + a

(1)
21 f(x1) + a

(1)
22 f(x2)

]
= (∆x)

[
1

2
(∆x)f(x0) +

1

2
(∆x)f(x1)

]
+

1

2
(∆x)

[
1

2
(∆x)f(x0) + (∆x)f(x1) +

1

2
(∆x)f(x2)

]
=

[
1

2
(∆x)2 +

1

4
(∆x)2

]
f(x0) +

[
1

2
(∆x)2 +

1

2
(∆x)2

]
f(x1) +

1

4
(∆x)2f(x2)

=
3

4
(∆x)2f(x0) + (∆x)2f(x1) +

1

4
(∆x)2f(x2).

When k = 3,

∫ x3

a

∫ y1

a
f(y)dydy1 =

3∑
i=0

a
(1)
3i

i∑
j=0

a
(1)
ij f(xj)


=

���������

a
(1)
30

0∑
j=0

a
(1)
0j f(xj) + a

(1)
31

1∑
j=0

a
(1)
1j f(xj) + a

(1)
32

2∑
j=0

a
(1)
2j f(xj) + a

(1)
33

3∑
j=0

a
(1)
3j f(xj)

= a
(1)
31

[
a
(1)
10 f(x0) + a

(1)
11 f(x1)

]
+ a

(1)
32

[
a
(1)
20 f(x0) + a

(1)
21 f(x1) + a

(1)
22 f(x2)

]
+ a

(1)
33

[
a
(1)
30 f(x0) + a

(1)
31 f(x1) + a

(1)
32 f(x2) + a

(1)
33 f(x3)

]
= (∆x)

[
1

2
(∆x)f(x0) +

1

2
(∆x)f(x1)

]
+ (∆x)

[
1

2
(∆x)f(x0) + (∆x)f(x1) +

1

2
(∆x)f(x2)

]
+

1

2
(∆x)

[
1

2
(∆x)f(x0) + (∆x)f(x1) + (∆x)f(x2) +

1

2
(∆x)f(x3)

]
=

[
1

2
(∆x)2 +

1

2
(∆x)2 +

1

4
(∆x)2

]
f(x0) +

[
1

2
(∆x)2 + (∆x)2 +

1

2
(∆x)2

]
f(x1)

+

[
1

2
(∆x)2 +

1

2
(∆x)2

]
f(x2) +

1

4
(∆x)2f(x3)

=
5

4
(∆x)2f(x0) + 2(∆x)2f(x1) + (∆x)2f(x2) +

1

4
(∆x)2f(x3).
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Thenwhen k = N we consider the double-layer integration over [a, b], i.e
∫ b

a

∫ y1
a

f(y)dydy1 =∫ xn

a

∫ y1
a

f(y)dydy1 as follow:∫ xN

a

∫ y1

a
f(y) dydy1 =

N∑
i=0

a
(1)
Ni

i∑
j=0

a
(1)
ij f(xj)


= a

(1)
N1

[
a
(1)
10 f(x0) + a

(1)
11 f(x1)

]
+ a

(1)
N2

[
a
(1)
20 f(x0) + a

(1)
21 f(x1) + a

(1)
22 f(x2)

]
+ · · ·+ a

(1)
NN

[
a
(1)
N0f(x0) + a

(1)
N1f(x1) + a

(1)
N2f(x2) + · · ·+ a

(1)
NNf(xN )

]
=

[
1

2
(N − 1) +

1

4

]
(∆x)2f(x0) +

[
1

2
+ (N − 2) +

1

2

]
(∆x)2f(x1)

+

[
1

2
+ (N − 3) +

1

2

]
(∆x)2f(x2) + · · ·+

[
1

2
+

1

2

]
(∆x)2f(xN−1) +

1

4
f(xN )

=

(
2(N − 1)

4

)
(∆x)2f(x0) + [N − 1] (∆x)2f(x1) + [(N − 2)] (∆x)2f(x2)

+ · · ·+ (∆x)2f(xN−1) +
1

4
f(xN ).

From above, we can write the general form of the double-layer definite integral as

F (2)(xk) =

∫ xk

a

∫ y1

a

f(y)dydy1 =
k∑

i=0

i∑
j=0

a
(1)
ki a

(1)
ij f(xj) =

k∑
i=0

a
(2)
ki f(xi),

where
[
a
(2)
0i

]
= 0 and

[
a
(2)
ki

]
=


1+2(k−1)

4
(∆x)2, i = 0,

(k − i)(∆x)2, i = 1, 2, 3, . . . , k − 1,

(∆x)2

4
, i = k.

The double-

layer integral can be also written in a matrix form as

F (2) = A(2)f ,

where the second order integration matrix,

A(2)=
[
a
(2)
ki

]
= (∆x)2



0 0 0 0 . . . 0 0

1/4 1/4 0 0 . . . 0 0

3/4 1 1/4 0 . . . 0 0

5/4 2 1 1/4 . . . 0 0
... . . . . . . . . . . . . ... ...

1+2(N−1)
4

N − 1 N − 2 N − 3 . . . 1 1/4


(N+1)×(N+1)

.

For the convenience of the following analysis, the first order integration matrix is

rewritten as A = A(1). And we can observe that A(2) = A ·A = A2, this concludes
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that

F (1) = Af and F (2) = A(2)f .

Thereafter, we claim to consider a triple-layer integralF (3)(x) =
∫ x

a

∫ y2
a

∫ y1
a

f(y)dydy1dy2,

and extend to them-multi-layer integral
∫ xk

a

∫ y1
a

. . .
∫ ym−1

a
f(x)dx . . . dy2dy1 alongmen-

tioned above, if we can show that F (3) = A(3)f , then F (m) = A(m)f .

Here, we are considering the triple-layer integral
∫ xk

a

∫ y2
a

∫ y1
a

f(y)dydy1dy2,

F (3)(xk) =

∫ xk

a

∫ y2

a

∫ y1

a

f(y)dydy1dy2

F (3)(xk) =

∫ xk

a

∫ y2

a

g(y1)dy1dy2 ; g(y1) =

∫ y1

a

f(y)dy

=
k∑

i=0

a
(2)
ki g(xi)

=
k∑

i=0

(
a
(2)
ki

∫ xi

a

f(y) dy

)
.

Then we obtain,

F (3)(xk) =
k∑

i=0

(
a
(2)
ki

i∑
j=0

a
(1)
ij f(xj)

)
.

Then, we have
∫ xk

a

∫ y2
a

∫ y1
a

f(y)dydy1dy2 =
∑k

i=0

(
a
(2)
ki

∑i
j=0 a

(1)
ij f(xj)

)
. Applying

double layer integration matrix yields
k∑

i=0

(
a
(2)
ki

i∑
j=0

a
(1)
ij f(xj)

)
=

k∑
i=0

(
i∑

r=0

a
(1)
ki a

(1)
ir

(
i∑

j=0

a
(1)
ij f(xj)

))
.

Therefore, ∫ xk

a

∫ y2

a

∫ y1

a

f(y)dydy1dy2 =
k∑

i=0

i∑
r=0

i∑
j=0

a
(1)
ki a

(1)
ir a

(1)
ij f(xj).

Similary as the first and second orders, when k = 0we have
∫ x

a

∫ y2
a

∫ y1
a

f(y)dydy1dy2 =

0

When k = 1,∫ x1

a

∫ y2

a

∫ y1

a
f(y)dydy1dy2 =

1∑
i=0

a
(2)
1i

i∑
j=0

a
(1)
ij f(xj)

 =

���������

a
(2)
10

0∑
j=0

a
(1)
0j f(xj) + a

(2)
11

1∑
j=0

a
(1)
1j f(xj)

= a
(2)
11

[
a
(1)
10 f(x0) + a

(1)
11 f(x1)

]
=

1

4
(∆x)2

[
1

2
(∆x)f(x0) +

1

2
(∆x)f(x1)

]
=

1

8
(∆x)3f(x0) +

1

8
(∆x)3f(x1).
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When k = 2,

∫ x2

a

∫ y2

a

∫ y1

a
f(y)dydy1dy2 =

2∑
i=0

a
(2)
2i

i∑
j=0

a
(1)
ij f(xj)


=

���������

a
(2)
20

0∑
j=0

a
(1)
0j f(xj) + a

(2)
21

1∑
j=0

a
(1)
1j f(xj) + a

(2)
22

2∑
j=0

a
(1)
2j f(xj)

= a
(2)
21

[
a
(1)
10 f(x0) + a

(1)
11 f(x1)

]
+ a

(2)
22

[
a
(1)
20 f(x0) + a

(1)
21 f(x1) + a

(1)
22 f(x2)

]
= (∆x)2

[
∆x

2
f(x0) +

∆x

2
f(x1)

]
+

(∆x)2

4

[
∆x

2
f(x0) + ∆xf(x1) +

∆x

2
f(x2)

]
=

[
1

2
(∆x)3 +

1

8
(∆x)3

]
f(x0) +

[
1

2
(∆x)3 +

1

4
(∆x)3

]
f(x1) +

1

8
(∆x)3f(x2)

=
5

8
(∆x)3f(x0) +

3

4
(∆x)3f(x1) +

1

8
(∆x)3f(x2).

When k = 3,

∫ x3

a

∫ y2

a

∫ y1

a
f(y)dydy1dy2 =

3∑
i=0

a
(2)
3i

i∑
j=0

a
(1)
ij f(xj)


=

���������

a
(2)
30

0∑
j=0

a
(1)
0j f(xj) + a

(2)
31

1∑
j=0

a
(1)
1j f(xj) + a

(2)
32

2∑
j=0

a
(1)
2j f(xj) + a

(2)
33

3∑
j=0

a
(1)
3j f(xj)

= a
(2)
31

[
a
(1)
10 f(x0) + a

(1)
11 f(x1)

]
+ a

(2)
32

[
a
(1)
20 f(x0) + a

(1)
21 f(x1) + a

(1)
22 f(x2)

]
+ a

(2)
33

[
a
(1)
30 f(x0) + a

(1)
31 f(x1) + a

(1)
32 f(x2) + a

(1)
33 f(x3)

]
= 2(∆x)2

[
1

2
(∆x)f(x0) +

1

2
(∆x)f(x1)

]
+ (∆x)2

[
1

2
(∆x)f(x0) + (∆x)f(x1) +

1

2
(∆x)f(x2)

]
+

1

4
(∆x)2

[
1

2
(∆x)f(x0) + (∆x)f(x1) + (∆x)f(x2) +

1

2
(∆x)f(x3)

]
=

[
(∆x)3 +

1

2
(∆x)3 +

1

8
(∆x)3

]
f(x0) +

[
(∆x)3 + (∆x)3 +

1

4
(∆x)3

]
f(x1)

+

[
1

2
(∆x)3 +

1

4
(∆x)3

]
f(x2) +

1

8
(∆x)3f(x3)

=
13

8
(∆x)3f(x0) +

9

4
(∆x)3f(x1) +

3

4
(∆x)3f(x2) +

1

8
(∆x)3f(x3).

Then when k = N , this brings us consider the integration over [a, b], i.e∫ b

a

∫ y2

a

∫ y1

a

f(y)dydy1dy2 =

∫ xn

a

∫ y2

a

∫ y1

a

f(y)dydy1dy2,
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as follow:∫ xN

a

∫ y2

a

∫ y1

a
f(y)dydy1dy2 =

N∑
i=0

a
(2)
N1

i∑
j=0

a
(1)
ij f(xj)


= a

(2)
N1

[
a
(1)
10 f(x0) + a

(1)
11 f(x1)

]
+ a

(2)
N2

[
a
(1)
20 f(x0) + a

(1)
21 f(x1) + a

(1)
22 f(x2)

]
+ · · ·+ a

(2)
NN

[
a
(1)
N0f(x0) + a

(1)
N1f(x1) + a

(1)
N2f(x2) + · · ·+ a

(1)
NNf(xN )

]
=

[
1

8
+

1

2
+ 2

(
1

2

)
+ 3

(
1

2

)
+ · · ·+ (n− 1)

1

2

]
(∆x)3f(x0)

+

[
1

4
+

1

2
+ 3

(
1

2

)
+ 5

(
1

2

)
+ · · ·+ (2n− 3)

1

2

]
(∆x)3f(x1)

+

[
1

4
+

1

2
+ 3

(
1

2

)
+ 5

(
1

2

)
+ · · ·+ (2n− 5)

1

2

]
(∆x)3f(x2)

+ · · ·+ 3

4
(∆x)3f(xN−1) +

1

8
(∆x)3f(xN )

=
1 + 2N(N − 1)

8
(∆x)3f(x0) +

1 + 2(N − 1)2

4
(∆x)3f(x1)

+
1 + 2(N − 2)2

4
(∆x)3f(x2) + · · ·+ 3

4
(∆x)3f(xN−1) +

1

8
(∆x)3f(xN ).

We here obtain the general form of the triple-layer definite integral as

F (3)(xk) =

∫ xk

a

∫ y2

a

∫ y1

a

f(y)dydy1dy2 =
k∑

i=0

i∑
r=0

i∑
j=0

a
(1)
ki a

(1)
ir a

(1)
ij f(xj) =

i∑
j=0

a
(3)
ki f(xj),

where
[
a
(3)
0i

]
= 0 and

[
a
(3)
ki

]
=


1+2k(k−1)

8
(∆x)3, i = 0,

1+2(k−i)2

4
(∆x)3, i = 1, 2, 3, . . . , k − 1,

(∆x)3

8
, i = k.

The triple layer integral can be also written again in a matrix form as

F (3) = A(3)f ,

where the triple order integration matrix,

A3 = a
(3)
ki = (∆x)3



0 0 0 0 . . . 0 0

1/8 1/8 0 0 . . . 0 0

5/8 3/4 1/8 0 . . . 0 0

13/8 9/4 3/4 1/8 . . . 0 0
... . . . . . . . . . . . . ... ...

1+2N(N−1)
8

1+2(N−1)2

4
1+2(N−2)2

4
1+2(N−3)2

4
. . . 3/4 1/8


(N+1)×(N+1)

.
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As we haveA(3) defined above, we can observe thatA(3) = A ·A ·A = A3. Therefore

we can conclude that

F (3) = A(3)f = A3f .

In the same way, for the higher order integration matrix, we have

F (m)(xk) =

∫ xk

a

∫ ym−1

a

. . .

∫ y1

a

f(y)dy . . . dym−2dym−1 =
k∑

i=0

a
(m)
ki f(xi).

Let Pk : A(k) = AA . . . A = Ak, since P1 : A(1) = A and P2 : A(2) = AA = A2 are

true. This brings P3 : A
(3) = AAA = A3 be true as we have shown. By doing the same

way we have Pk : A
(k) = AA . . . A = Ak be also true.

Thus, them-layer integral can be written in a matrix form as

F(m) = A(m)f = Amf.

Note that, it is worth to point out that the integral matrix with any order A(m) is lower-

tringular matrix.

Integration of Radial Basis Function

Indeed, It is not easy to obtain its first integration of RBF analytically as denoted as

R̄i(x, xi)

R̄i(x, xi) =

∫
Ri(x, xi) dx =

∫ √
c2 + (x− xi)2 dx

=

∫ √
c2

√
1 +

(
x− xi

c

)2

dx

R̄i(x, xi) = c

∫ √
1 +

(
x− xi

c

)2

dx

= c2
∫ √

1 + u2 du where u =
x− xi

c
.

Assuming the right triangle below,
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Finally, the integration of Ri(x, xi) is

R̄i(x, xi) =

∫
Ri(x, xi) dx = c2

∫
sec θ sec2 θ dθ

= c2
∫

sec3 θ dθ.

Consider
∫
sec3 θ dθ first and keep the constant c2,∫

sec3 θ dθ =

∫
sec θ sec2 θ dθ

Applying the integration by part yields∫
sec3 θ dθ = sec θ tan θ −

∫
tan θ sec θ tan θ dθ

= sec θ tan θ −
∫

sec θ tan2 θ dθ

= sec θ tan θ −
∫

sec θ(sec2 θ − 1) dθ

= sec θ tan θ −
∫

sec3 θ dθ +
∫

sec θ dθ

Adding
∫
sec3 θ dθ on the both side gives

2

∫
sec3 θ dθ = sec θ tan θ +

∫
sec θ dθ

Manipulate the above equation algebraically, this becomes

2

∫
sec3 θ dθ = sec θ tan θ +

∫
sec θ dθ

tan θ + sec θ
tan θ + sec θ

.

Let v = tan θ + sec θ, we have

2

∫
sec3 θ dθ = sec θ tan θ +

∫
dv

v

= sec θ tan θ + ln |v|

= sec θ tan θ + ln | tan θ + sec θ|.

Since
∫
sec3 θ dθ =

1

2
[sec θ tan θ + ln | tan θ + sec θ|] then now we have

c2
∫

sec3 θ dθ = c2 × 1

2
[sec θ tan θ + ln | tan θ + sec θ|] .
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Therefore,

R̄(x, xi) =

∫ √
c2 + (x− xi)2 dx

R̄(x, xi) =
c2

2

(√
c2 + (x− xi)2

c
× x− xi

c

)
+

c2

2
× ln

∣∣∣∣∣(x− xi) +
√

c2 + (x− xi)2

c

∣∣∣∣∣+ C

=
x− xi

2

√
c2 + (x− xi)2 +

c2

2
× ln

∣∣∣∣∣(x− xi) +
√
c2 + (x− xi)2

c

∣∣∣∣∣+ C.

Since R̄(0, xi) = 0, then

R̄(0, xi) =
−xi

2

√
c2 + x2

i +
c2

2
× ln

∣∣∣∣∣
√
c2 + x2

i − xi

c

∣∣∣∣∣+ C

0 =
−xi

2

√
c2 + x2

i +
c2

2
× ln

∣∣∣∣∣
√
c2 + x2

i − xi

c

∣∣∣∣∣+ C

C =
xi

2

√
c2 + x2

i −
c2

2
× ln

∣∣∣∣∣
√

c2 + x2
i − xi

c

∣∣∣∣∣ .
Subtituting C into R̄(x, xi) gives

R̄(x, xi) =
x− xi

2

√
c2 + (x− xi)2 +

c2

2
× ln

∣∣∣∣∣(x− xi) +
√

c2 + (x− xi)2

c

∣∣∣∣∣
+
xi

2

√
c2 + x2

i −
c2

2
× ln

∣∣∣∣∣
√
c2 + x2

i − xi

c

∣∣∣∣∣
=

x− xi

2

√
c2 + (x− xi)2 +

xi

2

√
c2 + x2

i +
c2

2
× ln

∣∣∣∣∣∣
(x−xi)+

√
c2+(x−xi)2

�c√
c2+x2

i−xi

�c

∣∣∣∣∣∣ .
Hence,

R̄(x, xi) =
x− xi

2

√
c2 + (x− xi)2 +

xi

2

√
c2 + x2

i +
c2

2
ln

x− xi +
√

c2 + (x− xi)2√
c2 + x2

i − xi

.

The Second Fundamental Theorem of Calculus

If the function f(x) is continuous on the interval a ≤ x ≤ b, then∫ b

a

f(x) dx = F (a)− F (b),

where F (x) is anti-derivative of f(x) on a ≤ x ≤ b.



76

Vitae

Nama : Rama Lesmana

Student ID : 5820320705

Educational Attainment:

Degree Name of Institution Year of Graduation

Bachelor of Education

(Mathematics Education)

University of Muhammadiyah

Prof. DR. HAMKA
2013

Scholarship Awards during Enrolment:

1. Science and Technology (SAT)-ASEAN scholarship for international students from

the Faculty of Science and Technology, Prince of Songkla University, Thailand.

2. Research scholarship from Graduate School, Prince of Songkla University, Thai-

land.

Seminar:

Rama Lesmana, A Finite Integration Method for Solving Inverse source Problem.

International Research Method in Practice, Prince of Songkla University,

Thailand. May 2017.

Symposium:

Lesmana, R., Hazanee, A. and Phon-On, A. A Finite Integration Method for

Solving Inverse source Problem. The 7th Sci-Tech Grad Symposium and

PSU-UMT Joint Seminar, Faculty of Science and Technology, Prince of

Songkla University, Thailand. May 2017

Proceeding:

Lesmana, R., Hazanee, A., Phon-On, A. and Saelee, J. 2017. A Finite Integration

Method for A Time-Dependent Heat Source Identification of Inverse

Problem. The 5th Asian Academic Society International Conference

(AASIC). 26-27 July 2017. Khon Kaen, Thailand.


