

การสังเคราะห์และการหาลักษณะเฉพาะของตัวเร่งปฏิกิริยาทางแสงของวัสดุผสม สารประกอบเงิน-บิสมัทโมลิบเดตและสมบัติตัวเร่งปฏิกิริยาทางแสง Synthesis and Characterization of Silver Compound-Bismuth Molybdate Composites Photocatalyst and Their Photocatalytic Properties

> สิทธิกร จรจะนะ Sittikorn Jonjana

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญา วิทยาศาสตรมหาบัณฑิต สาขาวิชาวัสดุศาสตร์ มหาวิทยาลัยสงขลานครินทร์ A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Materials Science Prince of Songkla University 2559 ลิขสิทธิ์ของมหาวิทยาลัยสงขลานครินทร์

การสังเคราะห์และการหาลักษณะเฉพาะของตัวเร่งปฏิกิริยาทางแสงของวัสดุผสม สารประกอบเงิน-บิสมัทโมลิบเดตและสมบัติตัวเร่งปฏิกิริยาทางแสง Synthesis and Characterization of Silver Compound-Bismuth Molybdate Composites Photocatalyst and Their Photocatalytic Properties

> สิทธิกร จรจะนะ Sittikorn Jonjana

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญา วิทยาศาสตรมหาบัณฑิต สาขาวิชาวัสดุศาสตร์ มหาวิทยาลัยสงขลานครินทร์ A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Materials Science Prince of Songkla University 2559 ลิขสิทธิ์ของมหาวิทยาลัยสงขลานครินทร์

ชื่อวิทยานิพนธ์	การสังเคราะห์และการหาลักษณะเฉพาะของตัวเร่งปฏิกิริยาทางแสงของ
	วัสดุผสมสารประกอบเงิน-บิสมัทโมลิบเดตและสมบัติตัวเร่งปฏิกิริยาทาง
	แสง
ผู้เขียน	นายสิทธิกร จรจะนะ
สาขาวิชา	วัสดุศาสตร์

อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	คณะกรรมการสอบ			
(ผู้ช่วยศาสตราจารย์ ดร.อนุกร ภู่เรืองรัตน์)	ประธานกรรมการ (ดร.หนึ่งฤทัย เอกธรรมทัศน์)			
	กรรมการ (ผู้ช่วยศาสตราจารย์ ดร.อนุกร ภู่เรืองรัตน์)			

.....กรรมการ

(ดร.โกวิท เลิศวิทยานนท์)

บัณฑิตวิทยาลัย มหาวิทยาลัยสงขลานครินทร์ อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็น

ส่วนหนึ่งของการศึกษา ตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาวัสดุศาสตร์

(รองศาสตราจารย์ ดร.ธีระพล ศรีชนะ) คณบดีบัณฑิตวิทยาลัย ขอรับรองว่า ผลงานวิจัยนี้มาจากการศึกษาวิจัยของนักศึกษาเอง และได้แสดงความขอบคุณบุคคลที่มี ส่วนช่วยเหลือแล้ว

> ลงชื่อ..... (ผู้ช่วยศาสตราจารย์ ดร.อนุกร ภู่เรืองรัตน์) อาจารย์ที่ปรึกษาวิทยานิพนธ์

ลงชื่อ..... (นายสิทธิกร จรจะนะ) นักศึกษา ข้าพเจ้าขอรับรองว่า ผลงานวิจัยนี้ไม่เคยเป็นส่วนหนึ่งในการอนุมัติปริญญาระดับใดมาก่อน และไม่ได้ ถูกใช้ในการยื่นขออนุมัติปริญญาในขณะนี้

ลงชื่อ.....

(นายสิทธิกร จรจะนะ)

นักศึกษา

ชื่อวิทยานิพนธ์	การสังเคราะห์และการหาลักษณะเฉพาะของตัวเร่งปฏิกิริยาทางแสงของ
	วัสดุผสมสารประกอบเงิน-บิสมัทโมลิบเดตและสมบัติตัวเร่งปฏิกิริยาทาง
	แสง
ผู้เขียน	นายสิทธิกร จรจะนะ
สาขาวิชา	วัสดุศาสตร์
ปีการศึกษา	2558

บทคัดย่อ

วัสดุผสมต่างชนิดระหว่าง AgX (X= Br, Cl และ I) และ Ag₃Y (Y = PO₄³⁻ และ VO₄³⁻) กับ บิสมัทโมลิบเดตสังเคราะห์ขึ้นด้วยวิธีการตกตะกอนอนุภาคของสารประกอบ AgX (X= Br, Cl และ I) และ Ag₃Y (Y = PO₄³⁻ และ VO₄³⁻) ปกคลุมบนผิวของบิสมัทโมลิบเดต สารตัวอย่างถูก ตรวจสอบลักษณะเฉพาะด้วยรูปแบบการเลี้ยวเบนของรังสีเอกซ์ กล้องจุลทรรศน์อิเล็กตรอนส่องกราด เทคนิคสเปกโตรสโคปีกระจายพลังงานของรังสีเอกซ์ กล้องจุลทรรศน์อิเล็กตรอนส่องผ่าน และเทคนิค เอกซ์เรย์โฟโตอิเล็กตรอนสเปกโตรสโคปีพบว่าสารตัวอย่างมีความเป็นผลึกและเห็นได้ว่าอนุภาค สารประกอบซิลเวอร์ปกคลุมบนผิวของบิสมัทโมลิบเดต กิจกรรมการเร่งปฏิกิริยาด้วยแสงทดสอบการ สลายสีย้อม Rhodamine B (RhB) ภายใต้แสงที่มองเห็นได้พบว่าสารตัวอย่างมีประสิทธิภาพในการ สลายสีย้อมดีกว่าบิสมัทโมลิบเดตและมีความเสถียรสูง

Thesis Title	Synthesis	and	Ch	aracterization	of	Silver	Comp	ound-
	Bismuth	Molybo	late	Composites	Phot	ocatalyst	and	Their
	Photocat	alytic Pro	oper	ties				
Author	Mr. Sittiko	orn Jon	jana					
Major Program	Material Science							
Academic Year	2015							

Abstract

The heterogeneous composite AgX (X= Br, Cl, I) and Ag₃Y (Y = PO_4^{3-} , VO_4^{3-}) with Bi₂MoO₆ were synthesized *via* a direct deposited silver compound nanoparticles on Bi₂MoO₆ nanoplates. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive x-ray spectroscopy (EDS), transmission electron microscope (TEM) and *X-ray photoelectron spectroscopy* (XPS). It found that silver compound nanoparticles were attached on Bi₂MoO₆ nanoplates. The photocatalytic activity was evaluated by the photocatalytic degradation of Rhodamine B (RhB) solution. The heterogeneous composite showed a higher and stability photocatalytic removal efficiency of RhB.

กิตติกรรมประกาศ

งานวิจัยนี้สำเร็จลุล่วงได้ก็ด้วยความอนุเคราะห์และน้ำใจจากบุคลากรหลายท่าน ผู้จัดทำงานวิจัยขอกราบขอบพระคุณในความกรุณาของทุกท่านมา ณ โอกาสนี้

ขอบพระคุณ ผศ.ดร. อนุกร ภู่เรืองรัตน์ อาจารย์ที่ปรึกษางานวิจัยซึ่งให้ความ ช่วยเหลือในทุก ๆ อย่างด้วยความเอาใจใส่ และเมตตาผู้จัดทำงานวิจัย จนกระทั่งงานวิจัยนี้บรรลุผล สำเร็จเป็นอย่างดี และได้ให้ความกรุณาเป็นกรรมการตรวจสอบงานวิจัยนี้

ขอบคุณคณาจารย์และบุคลากรทุกท่านในหลักสูตรวัสดุศาสตร์และภาควิชา วิทยาศาสตร์และเทคโนโลยีวัสดุ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ที่ได้อำนวยความ สะดวกในการทำงานวิจัย ที่ให้ความช่วยเหลือด้านเครื่องมือ ทำให้การทำงานวิจัยสำเร็จลุล่วงไปได้ ด้วยดี

ท้ายสุดของกราบขอบพระคุณบุพการีผู้ให้ทุกสิ่งทุกอย่างกับผู้ทำงานวิจัย และ คณาจารย์ที่ประสิทธิ์ประสาทวิชา ทำให้งานวิจัยนี้สำเร็จได้ ขอคุณความดีและกุศลที่พึงบังเกิดมีจาก งานวิจัยเล่มนี้บังเกิดแก่ท่านทั้งหลายนี้

สิทธิกร จรจะนะ

งานวิจัยเรื่อง การสังเคราะห์และการหาลักษณะเฉพาะของตัวเร่งปฏิกิริยาทางแสง ของวัสดุผสมสารประกอบเงิน-บิสมัทโมลิบเดตและสมบัติตัวเร่งปฏิกิริยาทางแสง จัดทำขึ้นเพื่อศึกษา การเตรียมวัสดุผสมต่างชนิดกันและศึกษาลักษณะทางสัณฐานของตัวเร่งปฏิกิริยาทางแสง รวมทั้ง ศึกษาสมบัติการเร่งปฏิกิริยาทางแสง นอกจากนี้ยังมีเนื้อหาของทฤษฎีในส่วนที่เกี่ยวข้องที่จะทำให้เกิด ความเข้าใจในการทดลองมากยิ่งขึ้น

งานวิจัยนี้มีวัตถุประสงค์เพื่อให้ผู้วิจัยและผู้สนใจใจงานวิจัยเล่มนี้ สามารถใช้ความรู้ และการทดลองที่เรียนมาประยุกต์ใช้ในงานวิจัย ผู้วิจัยหวังเป็นอย่างยิ่งว่างานวิจัยเล่มนี้จะเป็น ประโยชน์กับผู้สนใจศึกษาเรื่องนี้เป็นอย่างดี

สิทธิกร จรจะนะ

สารบัญ

	หน้า
บทคัดย่อภาษาไทย	(5)
บทคัดย่อภาษาอังกฤษ	(6)
กิตติกรรมประกาศ	(7)
คำนำ	(8)
สารบัญ	(9)
สารบัญภาพ	(10)
สารบัญตาราง	(13)
บทน้ำ	1
ความสำคัญและที่มาของงานวิจัย	1
ทฤษฎีและหลักการ	4
กระบวนการโฟโตคะตะไลซิส	4
ตัวเร่งปฏิกิริยา	4
กลไกปฏิกิริยาโฟโตคะตะไลซิส	5
วัสดุผสมต่างชนิด	7
การเกิดปฏิกิริยาเสมือนอันดับที่ 1	8
ถังปฏิกิริยา	9
ทบทวนวรรณกรรม	10
วัตถุประสงค์	12
ผลการทดลองและวิเคราะห์ผล	
ผลการทดลองที่ 1	13
ผลการทดลองที่ 2	25
ผลการทดลองที่ 3	35
ผลการทดลองที่ 4	45
ผลการทดลองที่ 5	55
สรุปผลการทดลอง	65
บรรณานุกรม	66
ภาคผนวก	71
ประวัติผู้เขียน	89

(9)

(10)

สารบัญภาพ

	หน้า
รูปที่ 1 ตำแหน่งของศักย์รีดักชันของคอนดักชันแบนด์และวาเลนซ์แบนด์ของ TiO ₂	1
รูปที่ 2 กลไกการเกิดปฏิกิริยาโฟโตคะตะไลซิสบนผิววัสดุกึ่งตัวนำ	5
รูปที่ 3 กลไกเบื้องต้นของตัวเร่งปฏิกิริยาของวัสดุผสมต่างชนิด	7
รูปที่ 4 ลักษณะพื้นฐานของถังปฏิกิริยาทางทฤษฏีแต่ละรูปแบบ	9
รูปที่ 5 XRD pattern ของตัวเร่งปฏิกิริยา 0-10% AgCl/Bi ₂ MoO ₆	14
รูปที่ 6 ภาพจาก SEM ของตัวเร่งปฏิกิริยา (a) Bi ₂ MoO ₆ (b) 1% AgCl/Bi ₂ MoO ₆	
(c) 2.5% AgCl/Bi $_2$ MoO $_6$ (d) 5% AgCl/Bi $_2$ MoO $_6$ และ (e) 10% AgCl/Bi $_2$ MoO $_6$	
ที่กำลังขยาย 30,000 เท่า	15
รูปที่ 7 ภาพจาก SEM ของตัวเร่งปฏิกิริยา (a) 10% AgCl/Bi ₂ MoO ₆ และภาพจาก	
EDS mapping ของตัวเร่งปฏิกิริยา 10% AgCl/Bi₂MoO ₆ (b) Ag (c) Cl (d) Bi (e)	
Mo และ (f) O	15
รูปที่ 8 แสดงภาพ TEM SAED pattern และภาพ HRTEM (a-b) Bi ₂ MoO ₆ (c) 5%	
AgCl/Bi $_2$ MoO $_6$ และ (d-f) 10% AgCl/Bi $_2$ MoO $_6$	16
รูปที่ 9 แสดงสเปกตรัมจาก XPS ของตัวเร่งปฏิกิริยา 10% AgCl/Bi ₂ MoO ₆ (a) Ag 3d	
(b) Cl 2p (c) Bi 4f (d) Mo 3d และ (e) O 2s	17
รูปที่ 10 (a) แสดงค่าการดูดกลืนแสงของสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา	
10% AgCl/Bi ₂ MoO ₆ ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 100 นาที	
(b) แสดงประสิทธิภาพในการสลายสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา	
0-10% AgCl/Bi2MoO6 (c) แสดงการเกิดปฏิกิริยาเสมือนอันดับที่ 1 โดยใช้ตัวเร่งปฏิกิริยา	
0-10% AgCl/Bi ₂ MoO ₆ (d) แสดงเสถียรภาพการนำกลับมาใช้ซ้ำ	
ของตัวเร่งปฏิกิริยา 10% AgCl/Bi ₂ MoO ₆	18
รูปที่ 11 โครงสร้างของ (a) Rhodamine B (RhB) (b) <i>N,N,N</i> -triethyl rhodamine	
(c) N,N'-diethyl rhodamine (d) Rhodamine	19
รูปที่ 12 ปฏิกิริยาการสลายของโมเลกุลสีย้อม RhB ระหว่างการฉายแสง	19
รูปที่ 13 กลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Bi ₂ MoO ₆	22
รูปที่ 14 กลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ AgCl/Bi ₂ MoO ₆	23
รูปที่ 15 XRD pattern ของตัวเร่งปฏิกิริยา 0-10% AgBr/Bi ₂ MoO ₆	26

(11)

สารบัญภาพ(ต่อ)

	หน้า
รูปที่ 16 ภาพจาก SEM ของตัวเร่งปฏิกิริยา (a) Bi₂MoO ₆ (b) 1% AgBr/Bi₂MoO ₆	
(c) 2.5% AgBr/Bi ₂ MoO ₆ (d) 5% AgBr/Bi ₂ MoO ₆ และ (e) 10% AgBr/Bi ₂ MoO ₆	
ที่กำลังขยาย 30,000 เท่า	27
รูปที่ 17 ภาพจาก SEM ของตัวเร่งปฏิกิริยา (a) 10% AgBr/Bi ₂ MoO ₆	
และภาพจาก EDS mapping ของตัวเร่งปฏิกิริยา 10% AgBr/Bi ₂ MoO ₆ (b) Ag	
(c) Br (d) Bi (e) Mo ແລະ (f) O	27
รูปที่ 18 แสดงภาพ TEM SAED pattern และภาพ HRTEM (a-b) Bi ₂ MoO ₆	
(c) 5% AgBr/Bi ₂ MoO ₆ และ (d-f) 10% AgBr/Bi ₂ MoO ₆	28
รูปที่ 19 แสดงสเปกตรัมจาก XPS ของตัวเร่งปฏิกิริยา 10% AgBr/Bi₂MoO6 (a) Ag 3d	
(b) Br 3d (c) Bi 4f (d) Mo 3d ແລະ (e) O 2s	29
รูปที่ 20 (a) แสดงค่าการดูดกลืนแสงของสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา	
10% AgBr/Bi ₂ MoO ₆ ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 40 นาที	
(b) แสดงประสิทธิภาพในการสลายสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา	
0-10% AgBr/Bi ₂ MoO ₆ (c) แสดงการเกิดปฏิกิริยาเสมือนอันดับที่ 1 โดยใช้ตัวเร่งปฏิกิริยา	
0-10% AgBr/Bi ₂ MoO ₆ (d) แสดงเสถียรภาพการนำกลับมาใช้ซ้ำ	
ของตัวเร่งปฏิกิริยา 10% AgBr/Bi ₂ MoO ₆	30
รูปที่ 21 กลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ AgBr/Bi2MoO6	33
รูปที่ 22 XRD pattern ของตัวเร่งปฏิกิริยา 0-10% Agl/Bi₂MoO ₆	36
รูปที่ 23 ภาพจาก SEM ของตัวเร่งปฏิกิริยา (a) Bi ₂ MoO ₆ (b) 1% Agl/Bi ₂ MoO ₆	
(c) 2.5% Agl/Bi ₂ MoO ₆ (d) 5% Agl/Bi ₂ MoO ₆ และ (e) 10% Agl/Bi ₂ MoO ₆	
ที่กำลังขยาย 30,000 เท่า	37
รูปที่ 24 ภาพจาก SEM ของตัวเร่งปฏิกิริยา (a) 10% Agl/Bi ₂ MoO ₆ และภาพจาก	
EDS mapping ของตัวเร่งปฏิกิริยา 10% Agl/Bi₂MoO6 (b) Ag (c) I (d) Bi (e) Mo	
และ (f) O	37
รูปที่ 25 แสดงภาพ TEM SAED pattern และภาพ HRTEM (a-b) Bi ₂ MoO ₆	
(c) 5% Agl/Bi₂MoO6 และ (d-f) 10% Agl/Bi₂MoO6	38
รูปที่ 26 แสดงสเปกตรัมจาก XPS ของตัวเร่งปฏิกิริยา 10% Agl/Bi ₂ MoO ₆ (a) Ag 3d	
(b) I 3d (c) Bi 4f (d) Mo 3d และ (e) O 2s	39

สารบัญ

สารบัญภาพ(ต่อ)	
	หน้า
รูปที่ 27 (a) แสดงค่าการดูดกลืนแสงของสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา	
10% Agl/Bi ₂ MoO ₆ ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 40 นาที	
(b) แสดงประสิทธิภาพในการสลายสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา	
0-10% Agl/Bi ₂ MoO ₆ (c) แสดงการเกิดปฏิกิริยาเสมือนอันดับที่ 1	
โดยใช้ตัวเร่งปฏิกิริยา 0-10% AgI/Bi ₂ MoO ₆ (d) แสดงเสถียรภาพการนำกลับมาใช้ซ้ำ	
ของตัวเร่งปฏิกิริยา 10% Agl/Bi ₂ MoO ₆	39
รูปที่ 28 กลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Agl/Bi₂MoO ₆	43
รูปที่ 29 XRD pattern ของตัวเร่งปฏิกิริยา 0-10% Ag $_3$ PO $_4$ /Bi $_2$ MoO $_6$	46
รูปที่ 30 ภาพจาก SEM ของตัวเร่งปฏิกิริยา (a) Bi ₂ MoO ₆ (b) 1% Ag ₃ PO ₄ /Bi ₂ MoO ₆	

(c) 2.5% Ag₃PO₄/Bi₂MoO₆ (d) 5% Ag₃PO₄/Bi₂MoO₆ และ (e) 10% Ag₃PO₄/Bi₂MoO₆ ที่กำลังขยาย 30,000 เท่า รูปที่ 31 ภาพจาก SEM ของตัวเร่งปฏิกิริยา (a) 10% Ag₃PO₄/Bi₂MoO₆ และ

ภาพจาก EDS mapping ของตัวเร่งปฏิกิริยา 10% Ag₃PO₄/Bi₂MoO₆ (b) Ag (c) P (d) Bi (e) Mo และ (f) O 47 รูปที่ 32 แสดงภาพ TEM SAED pattern และภาพ HRTEM (a-b) Bi₂MoO₆

(c) 5% Ag₃PO₄/Bi₂MoO₆ และ (d-f) 10% Ag₃PO₄/Bi₂MoO₆

รูปที่ 33 แสดงสเปกตรัมจาก XPS ของตัวเร่งปฏิกิริยา 10% Ag₃PO₄/Bi₂MoO₆ (a) Ag 3d (b) P 2p (c) Bi 4f (d) Mo 3d และ (e) O 2s 49 รูปที่ 34 (a) แสดงค่าการดูดกลืนแสงของสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 10% Ag₃PO₄/Bi₂MoO₄ ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 100 นาที (b) แสดงประสิทธิภาพในการสลายสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา

0-10% Ag₃PO₄/Bi₂MoO₅ (c) แสดงการเกิดปฏิกิริยาเสมือนอันดับที่ 1 ้ โดยใช้ตัวเร่งปฏิกิริยา 0-10% Ag₃PO₄/Bi₂MoO₆ (d) แสดงเสถียรภาพการนำกลับมาใช้ซ้ำ ของตัวเร่งปฏิกิริยา 10% Ag₃PO₄/Bi₂MoO₆ รูปที่ 35 กลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Ag₃PO₄/Bi₂MoO₆

รูปที่ 36 XRD pattern ของตัวเร่งปฏิกิริยา 0-10% Ag_3VO_4/Bi_2MoO_6 56

47

48

50

53

สารบัญภาพ(ต่อ)

	หน้า
รูปที่ 37 ภาพจาก SEM ของตัวเร่งปฏิกิริยา (a) Bi ₂ MoO ₆ (b) 1% Ag ₃ VO ₄ /Bi ₂ MoO ₆	
(c) 2.5% Ag ₃ VO ₄ /Bi ₂ MoO ₆ (d) 5% Ag ₃ VO ₄ /Bi ₂ MoO ₆ และ (e) 10% Ag ₃ VO ₄ /Bi ₂ MoO ₆	
ที่กำลังขยาย 30,000 เท่า	57
รูปที่ 38 ภาพจาก SEM ของตัวเร่งปฏิกิริยา (a) 10% Ag₃VO₄/Bi₂MoO₅ และ	
ภาพจาก EDS mapping ของตัวเร่งปฏิกิริยา 10% Ag $_3$ VO $_4$ /Bi $_2$ MoO $_6$ (b) Ag (c) V	
(d) Bi (e) Mo และ (f) O	57
รูปที่ 39 แสดงภาพ TEM SAED pattern และภาพ HRTEM (a-b) Bi ₂ MoO ₆	
(c) 5% Ag ₃ VO ₄ /Bi ₂ MoO ₆ และ (d-f) 10% Ag ₃ VO ₄ /Bi ₂ MoO ₆	58
รูปที่ 40 แสดงสเปกตรัมจาก XPS ของตัวเร่งปฏิกิริยา 10% Ag ₃ VO ₄ /Bi ₂ MoO ₆ (a) Ag 3d	
(b) V 2p (c) Bi 4f (d) Mo 3d และ (e) O 2s	59
รูปที่ 41 (a) แสดงค่าการดูดกลืนแสงของสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา	
10% Ag₃VO₄/Bi₂MoO₅ ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 100 นาที	
(b) แสดงประสิทธิภาพในการสลายสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา	
0-10% Ag₃VO₄/Bi₂MoO₅ (c) แสดงการเกิดปฏิกิริยาเสมือนอันดับที่ 1 โดยใช้ตัวเร่งปฏิกิริยา	
0-10% Ag₃VO₄/Bi₂MoO ₆ (d) แสดงเสถียรภาพการนำกลับมาใช้ซ้ำ	
ของตัวเร่งปฏิกิริยา 10% Ag₃VO₄/Bi₂MoO₅	60
รูปที่ 42 กลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Ag₃VO₄/Bi₂MoO₀	63

(13)

(14)

สารบัญตาราง

	หน้า
ตารางที่ 1 ผลงานวิจัยที่เกี่ยวข้องของตัวเร่งปฏิกิริยาทางแสง Bi ₂ MoO ₆	2
ตารางที่ 2 ค่าศักย์ไฟฟ้าของเรดิคอลต่าง ๆ	7
ตารางที่ 3 ประสิทธิภาพในการสลายสีย้อม อัตราการเกิดปฏิกิริยาเสมือนอันดับที่ 1	
R ² และค่าครึ่งชีวิตของปฏิกิริยา ของตัวเร่งปฏิกิริยา 0-10% AgCl/Bi ₂ MoO ₆	21
ตารางที่ 4 ประสิทธิภาพในการสลายสีย้อม อัตราการเกิดปฏิกิริยาเสมือนอันดับที่ 1	
R ² และค่าครึ่งชีวิตของปฏิกิริยา ของตัวเร่งปฏิกิริยา 0-10% AgBr/Bi ₂ MoO ₆	32
ตารางที่ 5 ประสิทธิภาพในการสลายสีย้อม อัตราการเกิดปฏิกิริยาเสมือนอันดับที่ 1	
R ² และค่าครึ่งชีวิตของปฏิกิริยา ของตัวเร่งปฏิกิริยา 0-10% Agl/Bi ₂ MoO ₆	42
ตารางที่ 6 ประสิทธิภาพในการสลายสีย้อม อัตราการเกิดปฏิกิริยาเสมือนอันดับที่ 1	
R ² และค่าครึ่งชีวิตของปฏิกิริยาของตัวเร่งปฏิกิริยา 0-10% Ag ₃ PO ₄ /Bi ₂ MoO ₆	52
ตารางที่ 7 ประสิทธิภาพในการสลายสีย้อม อัตราการเกิดปฏิกิริยาเสมือนอันดับที่ 1	
R ² และค่าครึ่งชีวิตของปฏิกิริยา ของตัวเร่งปฏิกิริยา 0-10% Ag ₃ VO ₄ /Bi ₂ MoO ₆	62
ตารางที่ 8 แสดงประสิทธิภาพในการสลายสีย้อม RhB และอัตราการเกิดปฏิกิริยา	65

บทนำ

ความสำคัญและที่มาของงานวิจัย

ปัจจุบันการบำบัดน้ำทิ้งจากโรงงานอุตสาหกรรมสิ่งทอด้วยกระบวนการทางกายภาพ กระบวนการทางชีวภาพ กระบวนการทางฟิสิกส์และกระบวนการทางเคมีมีประสิทธิภาพไม่สูงมาก เนื่องจากไม่สามารถทำลายโมเลกุลของสีย้อมได้ อีกทั้งต้องทำการบำบัดสารเคมีที่เติมก่อนปล่อยน้ำ ทิ้งดังนั้นจึงได้มีการพัฒนาและศึกษาการบำบัดน้ำทิ้งจากโรงงานอุตสาหกรรมสิ่งทอโดยใช้ตัวเร่ง ปฏิกิริยาด้วยแสงซึ่งเป็นมิตรกับสิ่งแวดล้อมทำให้สามารถย่อยสลายสารอินทรีย์จนกลายเป็นน้ำและ คาร์บอนไดออกไซด์ (carbon dioxide, CO₂)

ในช่วงเวลาที่ผ่านมางานวิจัยส่วนหนึ่งมุ่งเน้นการพัฒนาหรือการสังเคราะห์อนุภาคนา โนของโลหะออกไซด์ เช่น ไทเทเนียมไดออกไซด์ (titanium dioxide, TiO₂)^[1], แคดเมียมซัลไฟด์ (cadmium sulfide, CdS)^[2] และซิงค์ออกไซด์ (zinc oxide, ZnO)^[3] เป็นต้น เพื่อนำมาเป็นตัวเร่ง ปฏิกิริยาด้วยแสงสำหรับกำจัดสารมลพิษต่าง ๆ หรือน้ำทิ้งจากโรงงานอุตสาหกรรม จากรูปที่ 1 TiO₂ มีค่าช่องว่างพลังงานประมาณ 3.2 eV^[4] ซึ่งเป็นที่นิยมพัฒนาในการนำมาเป็นตัวเร่งปฏิกิริยาด้วยแสง ภายใต้การฉายแสงอัลตราไวโอเลตเพราะเมื่อได้รับพลังงานแสง อิเล็กตรอน (electron) จากวาเลนซ์ แบนด์ (valence band) ถูกกระตุ้นไปยังคอนดักซันแบนด์ (conduction band) โดยจะเหลือช่องว่าง ที่อิเล็กตรอนเคลื่อนที่ออกไปแล้ว เรียกว่า โฮล (hole) ในวาเลนซ์แบนด์ โดยอิเล็กตรอนและโฮลจะ เคลื่อนที่ไปสู่พื้นผิวของตัวเร่งปฏิกิริยาและทำปฏิกิริยากับออกซิเจนและน้ำเกิดเป็นอนุมูลอิสระขึ้น แต่ อย่างไรก็ตาม TiO₂ ยังมีข้อจำกัดในการนำไปใช้งานคือ ไม่สามารถใช้งานได้อย่างมีประสิทธิภาพมาก เท่าที่ควรเนื่องจากการรวมตัวกันของอิเล็กตรอนและโฮล (e⁻h⁺ recombination) อย่างรวดเร็วซึ่ง ส่งผลทำให้ประสิทธิภาพลดลงและมีค่าช่องว่างพลังงานกว้างสามารถใช้งานได้ในช่วงแสง อัลตราไวโอเลตซึ่งมีอยู่ 4% จากแสงอาทิตย์ แต่แสงที่มองเห็นได้มีถึง 46% จากแสงอาทิตย์จึงมีการ พัฒนาตัวเร่งปฏิกิริยาในช่วงแสงที่มองเห็นได้แทน

รูปที่ 1 ตำแหน่งของศักย์รีดักชันของคอนดักชันแบนด์และวาเลนซ์แบนด์ของ TiO₂ (ทำซ้ำ^[4])

คณะวิจัย	สารอินทรีย์ที่ถูกย่อยสลาย	ผลการทดลอง
A. M. Cruz และคณะ ^[5]	Indigo carmine (IC) >	มีประสิทธิภาพสูงภายใต้แสงที่
	Rhodamine B (RhB) >	มองเห็นได้
	Methyl orange (MO)	
L. Zhang และคณะ ^[6]	methylene blue (MB)	มากกว่า 90% ภายใต้การฉาย
		แสงที่มองเห็นได้
L. Xie และคณะ ^[7]	RhB	มีประสิทธิภาพสูงภายใต้การ
		ฉายแสงอัลตราไวโอเลต
J. Bi และคณะ ^[8]	RhB	มีประสิทธิภาพสูงภายใต้การ
		ฉายแสงที่มองเห็นได้

a	6 V A A	ีย อ	1 1999		
maga 1	RIC RORIO CRIMI CRI	IONIO NNIO NMO	1000000000	1001000	
			1 13 11 12 17 13 21 11		
VIIO INVI I				1 1 1 0001 1	01/10006
			6 4		- 0

นักวิจัยส่วนหนึ่งจึงพัฒนาและปรับปรุงตัวเร่งปฏิกิริยาทางแสง Bi₂MoO₆ ที่กล่าวมา ข้างต้นให้มีประสิทธิภาพในการกำจัดมลพิษต่าง ๆ เพิ่มขึ้นโดยการสังเคราะห์ด้วยวิธีต่าง ๆ เช่น ไฮโดร เทอร์มอล (hydrothermal)^[9] การตกตะกอน (precipitation)^[5] และโซล-เจล (sol-gel)^[10]เป็นต้น หรือการเจือโลหะ (metal doping) เพื่อการลดค่าช่องว่างพลังงานของตัวเร่งปฏิกิริยาและชะลอการ รวมตัวกันของอิเล็กตรอนและโฮล ดังนั้น ในงานวิจัยนี้จึงสนใจสังเคราะห์ตัวเร่งปฏิกิริยาทางแสงเป็น วัสดุผสมต่างชนิด (heterogeneous composite) ของ Bi₂MoO₆ โดยอาศัย Bi₂MoO₆ เป็นตัวรองรับ อนุภาคนาโนของสารประกอบเงินทำให้เกิดชะลอการรวมตัวกันของอิเล็กตรอนและโฮลของ Bi₂MoO₆ และการถ่ายโอนอิเล็กตรอนและโฮลระหว่าง Bi₂MoO₆ และสารประกอบเงินเพื่อเพิ่มประสิทธิภาพ ตัวเร่งปฏิกิริยาทางแสง

สารในกลุ่ม AgX (X = Br, Cl และ I) และ Ag₃Y (Y = PO₄³⁻ และ VO₄³⁻) ซึ่งมีค่า ช่องว่างพลังงานที่สามารถดูดกลืนแสงที่มองเห็นได้ อีกทั้งยังสามารถเป็นตัวเร่งปฏิกิริยาทางแสงที่ดีได้ เนื่องจากสามารถดูดกลืนแสงที่มองเห็นได้ได้ดี เกิดอิเล็กตรอนและโฮลได้จำนวนมากเมื่อฉายแสงที่ มองเห็นได้และสามารถเป็นตัวรับอิเล็กตรอนและให้โฮลจากตัวเร่งปฏิกิริยาทางแสงตัวอื่นได้ ดังนั้นจึงมี การสังเคราะห์วัสดุผสมต่างชนิดระหว่าง AgX (X = Br, Cl และ I) กับโลหะออกไซด์ ^[11-13] เช่น J. Yi และคณะ^[13] ได้สังเคราะห์ AgI/TiO₂ พบว่ามีประสิทธิภาพในการสลายสีย้อม acid orange II (AO II) สูงถึง 86% ภายใต้การฉายแสงที่มองเห็นได้เวลา 100 นาทีและ Ag₃Y (Y = PO₄³⁻ และ VO₄³⁻) กับ โลหะออกไซด์ ^[14-15] เช่น F. Kiantazh และคณะ^[15] ได้สังเคราะห์ Ag₃VO₄/ZnO พบว่ามี ประสิทธิภาพในการสลายสีย้อม RhB สูงมากกว่า 97% ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 450 นาที ซึ่งเป็นการปรับปรุงตัวเร่งปฏิกิริยาด้วยแสงให้มีประสิทธิภาพในการกำจัดสารมลพิษเพิ่มขึ้น เนื่องจากสามารถชะลอการรวมตัวกันของอิเล็กตรอนและโฮลของโลหะออกไซด์โดยอิเล็กตรอนและ โฮลไหลจากสารในกลุ่ม AgX (X = Br, Cl และ I) และ Ag₃Y (Y = PO₄³⁻ และ VO₄³⁻) ไปยังโลหะ ออกไซด์ได้

ดังนั้น งานวิจัยนี้จึงมุ่งเน้นศึกษาการเตรียมวัสดุผสมต่างชนิดระหว่าง AgX (X = Br, Cl และ I) และ Ag₃Y (Y = PO₄³⁻ และ VO₄³⁻) กับ Bi₂MoO₆ ด้วยวิธีการตกตะกอนอนุภาคของ AgX (X = Br, Cl และ I) และ Ag₃Y (Y = PO₄³⁻ และ VO₄³⁻) ปกคลุมบนผิวของ Bi₂MoO₆ ซึ่งการศึกษา สิ่งต่าง ๆ นี้ล้วนเป็นการศึกษาเพื่อให้เกิดองค์ความรู้ใหม่ของด้านวัสดุผสมและเพื่อสามารถนำไปต่อ ยอดพัฒนาให้เกิดความรู้ใหม่ต่อไป รวมถึงสามารถนำไปใช้ในการกำจัดสีย้อมในโรงงานอุตสาหกรรมให้ มีประสิทธิภาพต่อได้ในอนาคต

ทฤษฎีและหลักการ

กระบวนการโฟโตคะตะไลซิส (photocatalysis process) $^{[4]}$

กระบวนการโฟโตคะตะไลซิสจัดว่าเป็นกระบวนการที่มีประโยชน์ในด้านการบำบัด ทั้งน้ำและอากาศให้บริสุทธิ์ หลักการเบื้องต้นของกระบวนการโฟโตคะตะไลซิสเป็นกระบวนการที่มี การกระตุ้นปฏิกิริยาโดยฉายแสงไปที่ตัวเร่งปฏิกิริยา ทำให้ปฏิกิริยาเกิดขึ้นได้อย่างรวดเร็ว โดย ปฏิกิริยาโฟโตคะตะไลซิสสามารถจำแนกได้ 2 ประเภท โดยอาศัยสถานะของตัวเร่งปฏิกิริยาด้วยแสง เป็นเกณฑ์ ดังนี้

ปฏิกิริยาโฟโตคะตะไลซิสสถานะเดียว (homogeneous photocatalysis)
ปฏิกิริยาโฟโตะคตะไลซิสแบบสถานะเดียวเป็นปฏิกิริยาที่สารทั้งหมดที่เกี่ยวข้องในการทำปฏิกิริยา
รวมทั้งตัวเร่งปฏิกิริยาอยู่ในสถานะเดียวกัน

 2. ปฏิกิริยาโฟโตคะตะไลซิสสถานะต่าง (heterogeneous photocatalysis)
ปฏิกิริยาโฟโตคะตะไลซิสแบบสถานะต่างเป็นปฏิกิริยาที่สารที่ต้องการให้เกิดปฏิกิริยานั้นอยู่ต่าง สถานะกับตัวเร่งปฏิกิริยา เช่น ของเหลวกับของแข็ง ซึ่งโดยทั่วไปตัวเร่งปฏิกิริยาเป็นของแข็ง

ตัวเร่งปฏิกิริยา

สารที่ใช้เป็นตัวเร่งปฏิกิริยาโฟโตคะตะไลซิส ได้แก่ โลหะทรานสิชัน (transition metal) เช่น ทองแดง โครเมียม นิกเกิล เป็นต้น และสารกึ่งตัวนำ (semiconductor) เช่น TiO₂^[1], CdS^[2] และ ZnO^[3] เป็นต้น โลหะตัวนำและสารกึ่งตัวนำประกอบด้วยวาเลนซ์แบนด์และคอนดักชัน แบนด์ โดยโลหะตัวนำวาเลนซ์แบนด์และคอนดักชันแบนด์อยู่ซิดกัน แต่สารกึ่งตัวนำวาเลนซ์แบนด์และ คอนดักชันแบนด์ถูกกั้นด้วยช่องว่างพลังงาน (bang gap) เมื่ออิเล็กตรอนซึ่งอยู่ในแถบวาเลนซ์ได้รับ พลังงานจากแสง จากนั้นอิเล็กตรอนเคลื่อนที่ไปยังคอนดักชันแบนด์ ในขณะเดียวกันที่วาเลนซ์แบนด์ เกิดช่องว่างขึ้น ซึ่งช่องว่างจะเป็นประจุบวกและสามารถเคลื่อนที่ได้อย่างอิสระในวาเลนซ์แบนด์ ส่วน ในคอนดักชันแบนด์อิเล็กตรอนจะเคลื่อนที่ได้อย่างอิสระเช่นกัน ปรากฏการณ์ดังกล่าวทำให้เกิดคู่ อิเล็กตรอน-โฮล (electron-hole pairs) ที่สามารถเคลื่อนที่ไปมาระหว่างวาเลนซ์แบนด์และคอนดัก ชันแบนด์ได้อย่างรวดเร็ว ทำให้คู่อิเล็กตรอน-โฮลรวมตัวกันใหม่ได้ง่ายในโลหะตัวนำ แต่ในกรณีของ สารกึ่งตัวนำ การรวมตัวกันใหม่คู่อิเล็กตรอน-โฮลเก็ดไอยางอิน-โฮลเก็ดได้ยากกว่า เนื่องจากมีช่องว่างพลังงานกั้นอยู่

ปฏิกิริยาโฟโตคะตะไลซิสในน้ำประกอบด้วยแสงที่ส่องผ่านน้ำไปยังตัวเร่งปฏิกิริยาซึ่ง แสงดังกล่าวมีพลังงานโฟตอน (photon energy) ที่มากกว่าช่องว่างพลังงานของตัวเร่ง ทำให้ อิเล็กตรอนถูกกระตุ้นจากวาเลนซ์แบนด์ไปยังคอนดักชันแบนด์และทำให้เกิดคู่อิเล็กตรอน-โฮลซึ่งอยู่ บนผิวของตัวเร่ง ปฏิกิริยาที่คอนดักชันแบนด์และในสารละลายจะเกิดดังนี้ อิเล็กตรอนเคลื่อนที่จาก คอนดักซันแบนด์ไปยังตัวรับอิเล็กตรอน (electron acceptor) ในสารละลายและเกิดปฏิกิริยารีดักซัน ส่วนที่วาเลนซ์แบนด์ซึ่งมีโฮลจะเกิดปฏิกิริยาออกซิเดชัน โดยตัวทำละลายทำหน้าที่เป็นตัวให้ อิเล็กตรอน (electron donor) ในสภาวะปกติความสามารถในการแลกเปลี่ยนประจุของอิเล็กตรอนที่ คอนดักซันแบนด์ไม่มีศักยภาพพอที่จะบำบัดสารอินทรีย์ได้ แต่เนื่องจากในระบบบำบัดมีออกซิเจน ละลายอยู่ ซึ่งออกซิเจนนี้จะทำหน้าที่เป็นตัวรับอิเล็กตรอนและเกิดปฏิกิริยารีดักซัน เกิดเป็น ซุปเปอร์ ออกซิเจนแอนไอออนเรดิคอล (superoxide radical, O₂⁻) ซึ่งเป็นตัวออกซิแดนท์ที่แรงมาก จึง สามารถย่อยสลายสารอินทรีย์ต่าง ๆ ได้ ในขณะที่โฮลที่วาเลนซ์แบนด์ก็เป็นตัวออกซิแดนท์ที่แรง เช่นกัน

กลไกปฏิกิริยาโฟโตคะตะไลซิส (photocatalytic mechanism) ปฏิกิริยาโฟโตคะตะไลซิสในการบำบัดสารอินทรีย์ต่าง ๆ มีกลไกดังแสดงในรูปที่ 2

รูปที่ 2 กลไกการเกิดปฏิกิริยาโฟโตคะตะไลซิสบนผิววัสดุกึ่งตัวนำ

เมื่อได้รับพลังงานกระตุ้นจากการฉายแสงอิเล็กตรอนจากชั้นวาเลนซ์แบนด์ถูก กระตุ้นไปยังชั้นคอนดักชันแบนด์ โดยจะเหลือช่องว่างที่อิเล็กตรอนเคลื่อนที่ออกไปแล้ว เรียก โฮล ใน ชั้นวาเลนซ์แบนด์ โดยอิเล็กตรอนและโฮลจะเคลื่อนที่ไปสู่พื้นผิวของตัวเร่งปฏิกิริยาอิเล็กตรอนทำ ปฏิกิริยากับออกซิเจนกลายเป็น O₂

ตัวเร่งปฏิกิริยา + แสง
$$\rightarrow$$
 e⁻ + h⁺ (1)

บริเวณผิวสารกึ่งตัวนำที่มีโฮล เกิดปฏิกิริยาออกซิเดชันกับไฮดรอกไซด์ไอออน (hydroxide ion, OH) และน้ำ เกิดไฮดรอกซิลเรดิคอล (hydroxyl radical, OH) และอื่นๆ ส่วน บริเวณผิวสารกึ่งตัวนำซึ่งมีอิเล็กตรอนจะเกิดปฏิกิริยารีดักชันกับออกซิเจนอยู่บนผิวสารกึ่งตัวนำเกิด เป็นเปอร์ไฮดรอกซิลเรดิคอล (perhydroxyl radical, OH₂) และ ไฮโดรเจนเปอร์ออกไซด์ (hydrogen peroxide, H₂O₂)

การเกิดเรดิคอลต่าง ๆ ระหว่างการเกิดปฏิกิริยาโฟโตคะตะไลซิส

$h^+ + OH^-$	\rightarrow	OH	(2)
h^+ + H_2O	\rightarrow	OH' + H'	(3)
e + O ₂	\rightarrow	O ₂ -	(4)
2H ⁺ + O	\rightarrow	•OH ₂	(5)
$2H_2O + O_2^{-1}$	\rightarrow	2H ₂ O ₂	(6)
H_2O_2	\rightarrow	$OH_2 + H^+ + e^-$	(7)
H ⁺ + e ⁻	\rightarrow	н	(8)
โดย h ⁺	คือ โฮล		
-	4 9 5		

e	คือ	อิเล็กตรอน
OH	คือ	ไฮดรอกซิลเรดิคอล
•O ₂ -	คือ	ซุปเปอร์ออกไซด์ไอออนเรดิคอล
·OH ₂	คือ	เปอร์ไฮดรอกซิลเรดิคอล
н	คือ	ไฮโดรเจนเรดิคอล (hydrogen radical)

ในขณะที่สภาวะการทดลองมีออกซิเจนไม่เพียงพอ โปรตอนที่เกิดจากการแตกตัว ของน้ำจะเข้ามามีบทบาทโดยการเข้ารับอิเล็กตรอนแทน เกิดเป็นไฮโดรเจนเรดิคอลเป็นสารออกซิ แดนท์ (oxidant) หลักในปฏิกิริยาโฟโตคะตะไลซิสเพราะไฮดรอกซิลเรดิคอลเป็นสารที่ไวต่อการ เกิดปฏิกิริยาและสามารถทำปฏิกิริยากับสารประกอบอินทรีย์ได้ทุกชนิด

เนื่องจากไฮดรอกซิลเรดิคอลและโฮลที่ผิวของตัวเร่งมีประจุเป็นบวก การออกซิไดซ์ (oxidize) ของโฮลกับไฮดรอกไซด์ไอออนได้ไฮดรอกซิลเรดิคอล ขณะเดียวกันโฮลเกิดจากการ ออกซิไดซ์กับสารอินทรีย์ด้วย ดังนั้น การเกิดปฏิกิริยาออกซิเดชันจึงเกิดขึ้นได้ 2 ทาง คือ

 การเกิดปฏิกิริยาออกซิเดชันของโฮลกับไฮดรอกไซด์ไอออนหรือน้ำเป็น OH และ ปฏิกิริยาของอิเล็กตรอนกับออกซิเจนหรือไฮโดรเจนไอออนเป็น OH หรือ H

การเกิดปฏิกิริยาออกซิเดชันโดยตรงของสารอินทรีย์ที่อยู่บนผิวตัวเร่งกับโฮล ซึ่ง
ความสามารถของการเกิดปฏิกิริยาออกซิเดชันของสารอินทรีย์มีมากกว่าความสามารถของการ
เกิดปฏิกิริยาออกซิเดชันบนผิวตัวเร่ง

วัสดุผสมต่างชนิด^[16]

จากรูปที่ 3 เมื่อตัวเร่งปฏิกิริยาได้รับพลังงานกระตุ้นจากแสงที่มองเห็นได้ อิเล็กตรอนจากวาเลนซ์แบนด์ถูกกระตุ้นขึ้นไปยังคอนดักซันแบนด์ ทำให้เกิดโฮลขึ้นที่วาเลนซ์แบนด์ ของทั้งสองตัว จากนั้นอิเล็กตรอนจากคอนดักซันแบนด์ของ A เคลื่อนที่ไปยังคอนดักซันแบนด์ของ B เนื่องจากมีค่าศักย์ไฟฟ้าคอนดักซันแบนด์ของ A น้อยกว่า B และจากนั้นอิเล็กตรอนเคลื่อนที่ไปที่ผิว ของตัวเร่งปฏิกิริยา ในขณะเดียวกันโฮลจากวาเลนซ์แบนด์ของ B เคลื่อนที่ไปยังวาเลนซ์แบนด์ของ A เนื่องจากมีค่าศักย์ไฟฟ้าวาเลนซ์แบนด์ของ A น้อยกว่า B จากกลไกที่กล่าวมาข้างต้นแสดงให้เห็นว่า การเกิดการรวมตัวกันของอิเล็กตรอนกับโฮลต่ำลงเนื่องจากอิเล็กตรอนและโฮลสามารถเคลื่อนที่ไปยัง คอนดักซันแบนด์และวาเลนซ์แบนด์ของสารประกอบอีกตัวได้ ซึ่งการเกิดปฏิกิริยาระหว่างโมเลกุลใน สารละลายสีย้อมกับอิเล็กตรอนและโฮลก็เช่นกันต้องมีค่าศักย์ไฟฟ้าของปฏิกิริยาที่เหมาะกับการ เกิดปฏิกิริยา โดยค่าศักย์ไฟฟ้าของปฏิกิริยาการเกิดเรดิคอลต่าง ๆ แสดงในตารางที่ 2

ตารางที่ 2 ค่าศักย์ไฟฟ้าของเรดิคอลต่าง ๆ

เรดิคอล	ค่าศักย์ไฟฟ้า (eV)
$O_2 + e \rightarrow O_2$	$E^0 = -0.33^{[17]}$
$O_2 + 2H^+ + 2e^- \longrightarrow H_2O_2$	$E^{0} = +0.682^{[18]}$
OH → OH + e	$E^0 = +0.199^{[17]}$

การเกิดปฏิกิริยาเสมือนอันดับที่ 1 (pseudo first order reaction)^[19]

การเกิดปฏิกิริยาเสมือนอันดับที่ 1 (pseudo first order) จากกฎของแลงเมียร์-ฮิงเชลวูด (Langmuir-Hinshelwood) ซึ่งใช้สำหรับการอธิบายการเกิดปฏิกิริยาที่ผิวหน้าของตัวเร่ง ปฏิกิริยา โดยอัตราการเกิดปฏิกิริยาคำนวณได้จากสมการที่ 9

$$-\frac{dC_t}{dt} = K \frac{k_{TC}C_t}{1+k_{TC}C_o}$$
(9)

ถ้าความเข้มข้นเริ่มต้นของสารละลายที่ใช้มีค่าน้อยมาก (<10⁻³ mol L⁻¹) จากสมการ ที่ 9 จะสามารถลดรูปเหลืออยู่ในเทอมดังสมการที่ 10

$$\ln\left(\frac{C_t}{C_0}\right) = k_{app}t \tag{10}$$

โดย k_{app} = ค่าคงที่ปรากฏของอัตราการเกิดปฏิกิริยา (apparent rate constant) (min⁻¹)

จากอัตราการเกิดปฏิกิริยาการสลายสีย้อม ที่คำนวณได้จากสมการข้างต้น สามารถ นำค่าคงที่อัตราการเกิดปฏิกิริยา มาคำนวณหาค่าครึ่งชีวิตของปฏิกิริยาการสลายสีย้อมได้ จาก สมมติฐานที่ว่าเกิดปฏิกิริยาอันดับที่ 1 จึงสามารถคำนวณหาค่าครึ่งชีวิตของปฏิกิริยาการสลายสีย้อมได้ จากสมการที่ 11

$$t_{1/2} = \frac{\ln 2}{k}$$
(11)

$$t_{1/2} = \frac{0.639}{k} \tag{12}$$

ถังปฏิกิริยา (reactor)^[4]

โดยทั่วไปลักษณะของถังปฏิกิริยาทางทฤษฎีแบ่งได้เป็น 3 รูปแบบแสดงดังรูปที่ 4 โดยรูปแบบพื้นฐานของถังปฏิกิริยาทางทฤษฎีแต่ละลักษณะและถังปฏิกิริยาแต่ละรูปแบบมี รายละเอียด ดังนี้

 ถังปฏิกิริยาแบบกะ (batch reactor) เป็นถังปฏิกิริยาที่มีการนำสารตั้งต้น (reactants หรือ feed) และเติมเข้าไปในถังปฏิกิริยาเคมีในปริมาณที่คำนวณไว้แล้วให้มีการกวนผสม ให้เข้ากันเพื่อให้เกิดปฏิกิริยาเคมี

ถังปฏิกิริยาแบบกวนผสมอย่างต่อเนื่อง (mixed flow reactor หรือ continuously stirred tank reactors หรือ CSTRs) เป็นถังปฏิกิริยาที่กำหนดให้ความเข้มข้นของ สารตั้งต้นในถังมีค่าสม่ำเสมอและเท่ากับค่าความเข้มข้นในของเหลวที่ไหลออกจากแต่ละถัง

3. ถังปฏิกิริยาที่มีการไหลเหมือนไหลในท่อ (tuburlar reactor หรือ plug flow reactor) เป็นถังปฏิกรณ์ที่มีการไหลของของเหลวที่ความเข้มข้นของสารตั้งต้นไหลไปตามลำดับใน ลักษณะเข้าก่อนออกก่อนและเข้าทีหลังออกทีหลังทำให้ค่าความเข้มข้นของสารเคมีจะไม่เท่ากันตลอด ทั้งถังปฏิกรณ์ ลักษณะการไหลอาจมีการกวนในแนวขวางเพื่อให้เกิดการผสมกันของสารเคมี แต่ไม่มี การผสมกันในแนวยาวของท่อ

ลักษณะของถังปฏิกิริยาข้างต้นเป็นลักษณะพื้นฐานที่ได้นำมาใช้ในการออกแบบถัง ปฏิกิริยาโฟโตคะตะไลซิสสำหรับใช้กับตัวเร่งปฏิกิริยาทั้งในรูปแบบผง และแบบฟิล์มบาง นอกจาก ลักษณะพื้นฐานของถังปฏิกิริยาแล้ว วัสดุที่ใช้ในการสร้างถังปฏิกิริยาเป็นอีกประเด็นหนึ่งที่มี ความสำคัญมาก เนื่องจากในการเกิดปฏิกิริยาโฟโตคะตะไลซิสนี้ต้องมีการให้พลังงานแสงจาก แหล่งกำเนิดแสง ถังปฏิกิริยาที่ดีจึงต้องส่งผ่านแสงได้ดี โดยวัสดุที่แตกต่างกันจะมีการส่งผ่านแสงและ เกิดการสะท้อนกลับของแสงที่แตกต่างกัน วัสดุที่ใช้ในการทำถังปฏิกิริยา ได้แก่ สแตนเลสสตีล ไททา เนียม แก้ว และพลาสติก

ทบทวนวรรณกรรม

A. M. Cruz และคณะ^[20] เตรียม Bi₂MoO₆ โดยใช้ amorphous complex precursor คือ H₅DTPA, Bi₂O₃ และ (NH₄)₆Mo₇O₂₄ และนำสารตัวอย่างไปเผาแคลไซน์ที่อุณหภูมิ ต่างกัน เป็นเวลา 1 ชั่วโมง พบว่าสารตัวอย่างมีอนุภาคขนาดเล็กและมีพื้นที่ผิวสูง และสารตัวอย่างที่ เผาที่อุณหภูมิ 450 องศาเซลเซียส แสดงประสิทธิภาพในการสลายสีย้อม RhB สูงที่สุด

A. M. Cruz และคณะ^[5] เตรียม γ-Bi₂MoO₆ ด้วยวิธีตกตะกอนร่วม (co-precipitation) โดยใช้ Bi(NO₃)₃ และ (NH₄)₆Mo₇O₂₄ เป็นสารตั้งต้นและเผาแคลไซน์ที่อุณหภูมิ 450 องศาสเซลเซียส เป็นเวลา 20 ชั่วโมง พบว่าสารตัวอย่างมีความเป็นผลึกและอนุภาคมีรูปร่างที่ไม่เป็น เนื้อเดียวกันมีขนาด 200 นาโนเมตร ซึ่งแสดงประสิทธิภาพที่ดีในการสลายสีย้อม IC > RhB > MO ภายใต้การฉายแสงที่มองเห็นได้

A. Phuruangrat และคณะ^[21] เตรียม Bi₂MoO₆ ด้วยวิธีไฮโดรเทอร์มอล โดยใช้ Bi(NO₃)₃ และ Na₂MoO₄ เป็นสารตั้งต้น โดยใช้อุณหภูมิในการไฮโดรเทอร์มอล 180 องศาเซลเซียส เป็นเวลา 20 ชั่วโมง พบว่าสารตัวอย่างที่สังเคราะห์ได้แสดงเฟส orthorhombic และมีความเป็นผลึก สูง โดยการเร่งปฏิกิริยาด้วยแสงของสารตัวอย่างที่ pH=6 ในการสลายสีย้อม RhB มีประสิทธิภาพสูง ถึง 98.66% ภายใต้การฉายแสงจากหลอด Xe

A. Phuruangrat และคณะ^[22] เตรียม Bi₂MoO₆ ด้วยวิธีไฮโดรเทอร์มอล โดยใช้
Bi(NO₃)₃ และ Na₂MoO₄ เป็นสารตั้งต้น โดยใช้อุณหภูมิในการไฮโดรเทอร์มอล 120-180 องศา
เซลเซียส เป็นเวลา 5-20 ชั่วโมง พบว่าสารตัวอย่างที่สังเคราะห์ได้ที่อุณหภูมิในการไฮโดรเทอร์มอล
180 องศาเซลเซียสเป็นเวลา 5 ชั่วโมงแสดงประสิทธิภาพในการสลายสีย้อม RhB สูงสุดถึง 96%
ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 100 นาที

T. Zhang และคณะ^[23] เตรียม Bi₂MoO₆ ด้วยวิธีไมโครเวฟไฮโดรเทอร์มอล (microwave-hydrothermal) โดยใช้ Bi(NO₃)₃ และ Na₂MoO₆ เป็นสารตั้งต้นและเติม hexamethylene tetramine (HMT) เป็น template โดยควบคุมของระบบที่ 160 องศาเซลเซียส เป็นเวลา 40 นาที พบว่าสารตัวอย่างมีรูปร่างคล้ายดอกไม้และมีการดูดกลืนแสงในช่วงแสงยูวีถึงช่วง แสงที่มองเห็นได้ ค่าช่องว่างพลังงานของสารตัวอย่างเลื่อนไปความยาวคลื่นสูงเมื่อเทียบกับ Bi₂MoO₆

ที่มีโครงสร้างคล้ายแผ่น

L. Xie และคณะ^[7] เตรียม γ-Bi₂MoO₆ ด้วยวิธี simple low-temperature molten salt method โดยใช้ Bi(NO₃)₃ และ Na₂MoO₄ เป็นสารตั้งต้นโดยใช้อุณหภูมิ 350 องศา เซลเซียส เป็นเวลา 1 4 และ 8 ชั่วโมงตามลำดับ พบว่าสารตัวอย่างมีขอบการดูดกลืนแสงประมาณ 477 นาโนเมตร ซึ่งมีค่าช่องว่างพลังงานประมาณ 2.6 eV และแสดงประสิทธิภาพในการสลายสีย้อม RhB สูงที่อุณหภูมิห้อง

J. Bi และคณะ^[8] เตรียม Bi₂MoO₆ ด้วยวิธีโซลโวเทอร์มอล (solvothermal) และวิธี ไมโครเวฟโซลโวเทอร์มอล โดยใช้ Bi(NO₃)₃ และ (NH₄)₆Mo₇O₂₄ เป็นสารตั้งต้นโดยปรับค่า pH=9 และใช้อุณหภูมิ 160 องศาเซลเซียส ที่เวลาต่างกันในการสังเคราะห์ พบว่าสารตัวอย่างมีพื้นที่ผิวอยู่ ในช่วง 10-32 m²g⁻¹ มีขนาดผลึกอยู่ในช่วง 16-35 nm มีขอบการดูดกลืนแสงประมาณ 491 nm ซึ่งมี ค่าซ่องว่างพลังงานประมาณ 2.53 eV สำหรับประสิทธิภาพในการสลายสีย้อม RhB มีค่าแตกต่างกัน โดยขึ้นอยู่กับความเป็นผลึก พื้นที่ผิวและรูปร่างของสารตัวอย่าง

X. Zhao และคณะ^[24] เตรียม γ-Bi₂MoO₆ ด้วยวิธีไฮโดรเทอร์มอล โดยใช้ Bi(NO₃)₃ และ Na₂MoO₄ อัตราส่วน 2:1 โมลเป็นสารตั้งต้นโดยใช้อุณหภูมิในการไฮโดรเทอร์มอล 180 องศา เซลเซียสเป็นเวลา 12 ชั่วโมง พบว่าสารตัวอย่างที่มีรูปร่างเป็นแผ่นแสดงประสิทธิภาพในการสลายสี ย้อม RhB และ MB สูงและมีความเสถียรสูงเนื่องจากสามารถชะลอการรวมตัวกันของอิเล็กตรอนและ โฮลและมีพื้นที่ผิวสูงมาก ภายใต้การฉายแสงที่มองเห็นได้พบว่ามีการฟอร์มตัวของ ·OH และ O²⁻ ซึ่ง เป็นอนุมูลอิสระหลักที่ส่งผลต่อประสิทธิภาพการสลายสีย้อม

L. Zhang และคณะ⁽⁶⁾ เตรียม Bi₂MoO₆ ด้วยวิธีไฮโดรเทอร์มอล โดยใช้ Bi(NO₃)₃ และ Na₂MoO₄ เป็นสารตั้งต้นและปรับค่า pH ที่แตกต่างกัน โดยใช้อุณหภูมิในการไฮโดรเทอร์มอล 180 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง พบว่าสารตัวอย่างมิโครงสร้างนาโนชีทและเป็นแท่ง และสาร ตัวอย่างที่สังเคราะห์ในสภาวะเป็นกรดแสดงประสิทธิภาพในการสลายสีย้อม MB สูงกว่าสารตัวอย่างที่ สังเคราะห์ในสภาวะเป็นเบส เนื่องจากค่า pH ส่งผลต่อรูปร่าง ขนาด และโครงสร้างของสารตัวอย่าง

วัตถุประสงค์

- 1. เพื่อเตรียมตัวเร่งปฏิกิริยาด้วยแสง AgX/Bi₂MoO₆ (X = Br, Cl และ l) และ Ag₃Y/Bi₂MoO₆ (Y = PO₄³⁻ และ VO₄³⁻)
- 2. เพื่อศึกษาลักษณะทางสัณฐานของ AgX/Bi₂MoO₆ (X = Br, Cl และ I) และ Ag₃Y/Bi₂MoO₆ (Y = PO₄³⁻ และ VO₄³⁻)
- 3. เพื่อศึกษาประสิทธิภาพการสลายสีย้อม RhB (Rhodamine B) ของ AgX/Bi₂MoO₆ (X = Br, Cl และ I) และ Ag₃Y/Bi₂MoO₆ (Y = PO₄³⁻ และ VO₄³⁻)

ผลการทดลองที่ 1

รูปที่ 5 รูปแบบการเลี้ยวเบนของรังสีเอกซ์ (X-ray diffraction pattern, XRD pattern) ของตัวเร่ง ปฏิกิริยา 0-10% AgCl/Bi2MoO6

การศึกษาโครงสร้างผลึกของตัวเร่งปฏิกิริยา 0-10% AgCl/Bi₂MoO₆ โดยใช้ XRD ดังแสดงในรูปที่ 5 เห็นได้ว่าพีคการเลี้ยวเบนของ Bi₂MoO₆ มีเป็นโครงสร้างออร์โธรอมบิก (orthorhombic) ของ Bi₂MoO₆ ถูกอ้างอิงด้วย JCPDS no. 21-0102^[25] ซึ่งไม่ปรากฏพีคการ เลี้ยวเบนอื่น และเมื่อเติม AgCl ลงไปใน Bi₂MoO₆ เห็นได้ว่าจะปรากฏพีคใหม่เกิดขึ้นและมีความเข้ม ของพีคใหม่เพิ่มขึ้นตามปริมาณ AgCl ที่เพิ่มขึ้นซึ่งที่ 10% AgCl/Bi₂MoO₆ จะเห็นพีคของ AgCl ได้ ชัดเจนมากขึ้นโดยกำหนดให้ **■** คือ AgCl ซึ่งมีโครงสร้างลูกบาศก์ (cubic) ถูกอ้างอิงด้วย JCPDS No. 31-1238^[25] เห็นได้ว่า AgCl/Bi₂MoO₆ มี AgCl และ Bi₂MoO₆

การศึกษาทางสัณฐานวิทยาของตัวเร่งปฏิกิริยาโดยใช้กล้องจุลทรรศน์อิเล็กตรอนส่อง กราด (scanning electron microscope, SEM) เพื่อศึกษาสัณฐานและลักษณะพื้นผิวของตัวเร่ง ปฏิกิริยา รูปที่ 6 (a) เห็นได้ว่าอนุภาคของ Bi₂MoO₆ มีลักษณะเป็นแผ่น ไม่มีอนุภาคอื่นๆเกาะบน พื้นผิว และเมื่อเติม AgCl ลงไปใน Bi₂MoO₆ ตามอัตราส่วน 1% 2.5% 5% และ 10% รูปที่ 6 (b-e) จะเห็นได้ว่าอนุภาคไม่มีลักษณะเปลี่ยนแปลงไป ซึ่งการเติม AgCl ลงไปไม่มีผลต่อรูปร่างของอนุภาค Bi₂MoO₆ แต่อนุภาคของ AgCl จะเกาะอยู่บนพื้นผิวของ Bi₂MoO₆ ซึ่งเป็นตัวรองรับ โดยสังเกตได้จาก รูปที่ 6 (d-e) ที่ 5% และ 10% AgCl/Bi₂MoO₆ จะเห็นได้ชัดเจนว่ามีอนุภาคเล็กๆของ AgCl มาเกาะ บนผิวหน้าของอนุภาค Bi₂MoO₆ จำนวนมากและกระจายตัวอย่างสม่ำเสมอ ซึ่งอนุภาคของ AgCl ที่มา เกาะบนผิวหน้าของอนุภาค Bi₂MoO₆ จะส่งผลให้การรวมกันของอิเล็กตรอนกับโฮลต่ำลงและช่วยเพิ่ม ประสิทธิภาพในสลายสีย้อม RhB

รูปที่ 6 ภาพจาก SEM ของตัวเร่งปฏิกิริยา (a) Bi₂MoO₆ (b) 1% AgCl/Bi₂MoO₆ (c) 2.5% AgCl/Bi₂MoO₆ (d) 5% AgCl/Bi₂MoO₆ และ (e) 10% AgCl/Bi₂MoO₆ ที่กำลังขยาย 30,000 เท่า

การกระจายตัวของอนุภาคของอะตอมแต่ละชนิดของตัวเร่งปฏิกิริยาถูกศึกษาด้วย เทคนิคสเปกโตรสโคปีกระจายพลังงานของรังสีเอกซ์ (energy dispersive x-ray spectroscopy, EDS) ดังแสดงในรูปที่ 7

รูปที่ 7 ภาพจาก SEM ของตัวเร่งปฏิกิริยา (a) 10% AgCl/Bi₂MoO₆ และภาพจาก EDS mapping ของตัวเร่งปฏิกิริยา 10% AgCl/Bi₂MoO₆ (b) Ag (c) Cl (d) Bi (e) Mo และ (f) O

รูปที่ 7 (a) จะเห็นได้ว่าอนุภาคของ AgCl มีการกระจายตัวอย่างสม่ำเสมอบนผิวหน้า ของอนุภาค Bi₂MoO₆ ซึ่งในรูปที่ 7 (b-c) เห็นได้ว่าธาตุ Ag และ Cl มีกระจายตัวอย่างสม่ำเสมอ และ ในรูปที่ 7 (d-f) อะตอมของ Bi₂MoO₆ ซึ่งเป็นตัวรองรับมีอนุภาคของ AgCl จึงจะเห็นธาตุ Bi Mo และ O จากผลข้างต้นเป็นยืนยันได้ว่าอนุภาค AgCl กระจายตัวบนผิวหน้าของอนุภาค Bi₂MoO₆

รูปที่ 8 แสดงภาพจากกล้องจุลทรรศน์อิเล็กตรอนส่องผ่าน (transmission electron microscope, TEM) รูปแบบการเลี้ยวเบนของอิเล็กตรอนจากบริเวณที่เลือก (selected area diffraction, SAED pattern) และภาพจากกล้องจุลทรรศน์อิเล็กตรอนส่องผ่านกำลังขยายสูง (high resolution transmission electron microscope, HRTEM) (a-b) Bi₂MoO₆ (c) 5% AgCl/Bi₂MoO₆ และ (d-f) 10% AgCl/Bi₂MoO₆

รูปที่ 8 (a) เห็นได้ว่าอนุภาคของ Bi₂MoO₆ มีรูปร่างเป็นแผ่นเรียบโดยมีความยาวของ แต่ละด้านประมาณ 200-500 nm รูปที่ 8 (b) SAED pattern เห็นได้ว่าแผ่นของอนุภาคของ Bi₂MoO₆ เป็นผลึกเดี่ยวโดยแผ่นผลึกมีระนาบด้านบนคือระนาบ (060) (062) และ (002) เมื่อเติม AgCl ลงไปใน Bi₂MoO₆ ดังแสดงในรูปที่ 8 (c) ที่ 5% AgCl/Bi₂MoO₆ จะเห็นได้ว่ามีอนุภาคขนาดเล็ก มาเกาะบนผิวหน้าของอนุภาค Bi₂MoO₆ และในรูปที่ 8 (d-e) ที่ 10% AgCl/Bi₂MoO₆ เห็นได้ว่ามี อนุภาคขนาดเล็กมาเกาะบนผิวหน้าของอนุภาค Bi₂MoO₆ และในรูปที่ 8 (d-e) ที่ 10% AgCl/Bi₂MoO₆ เห็นได้ว่ามี อนุภาคขนาดเล็กมาเกาะบนผิวหน้าของอนุภาค Bi₂MoO₆ และในรูปที่ 8 (d-e) กี่ 10% AgCl/Bi₂MoO₆ เห็นได้ว่ามี อนุภาคขนาดเล็กมาเกาะบนผิวหน้าของอนุภาค Bi₂MoO₆ เพิ่มมากขึ้นและมีความสม่ำเสมอ และจาก ภาพที่กำลังขยายสูงรูปที่ 8 (f) จะเห็นว่ามีอนุภาค AgCl เกาะบนผิวของอนุภาค Bi₂MoO₆ โดย สามารถเห็นระนาบ (200) มีความกว้างของระนาบเท่ากับ 0.28 nm ของ AgCl

รูปที่ 9 แสดงสเปกตรัมจาก XPS ของตัวเร่งปฏิกิริยา 10% AgCl/Bi₂MoO₆ (a) Ag 3d (b) Cl 2p (c) Bi 4f (d) Mo 3d และ (e) O 2s

รูปที่ 9 (a-e) แสดงสเปกตรัมจากเอกซ์เรย์โฟโตอิเล็กตรอนสเปกโตรสโคปี (X-ray photoelectron spectroscopy, XPS) ของตัวเร่งปฏิกิริยา 10% AgCl/Bi₂MoO₆ โดยสามารถพบ พีคของ Ag Cl Bi Mo และ O รูปที่ 9 (a) Ag 3d_{5/2} และ Ag 3d_{3/2} แสดงในพีคที่ 367.9 และ 373.7 eV ซึ่งเป็น Ag⁺ ของ AgCl^[26] รูปที่ 9 (b) Cl 2p_{3/2} และ Cl 2p_{1/2} แสดงในพีคที่ 197.8 และ 199.4 eV^[27] รูปที่ 9 (c) Bi 4f_{5/2} และ Bi 4f_{7/2} แสดงในพีคที่ 163.6 และ 158.2 eV ซึ่งทุกตัวของ Bi อยู่ใน ฟอร์มของ Bi^{3+ [9]} รูปที่ 9 (d) Mo 3d_{3/2} และ Mo 3d_{5/2} ของ Mo 4d แสดงในพีคที่ 35.6 และ 37.4 eV ซึ่งเป็น Mo^{6+ [9]} สำหรับพีคของ O สามารถเห็นได้หลายพีคคือ 530.00 530.70 531.82 และ 532.84 eV ซึ่งเป็น Bi-O Mo-O O-H ซึ่งดูดซับ H₂O ที่ผิวหน้าและพันธะ C-O เกิดจากก๊าซ คาร์บอนไดออกไซด์ที่ผิวของตัวเร่งปฏิกิริยา^[28-29] จากผลข้างต้นแสดงให้เห็นมี AgCl และ Bi₂MoO₆ เป็นองค์ประกอบของ 10% AgCl/Bi₂MoO₆ ซึ่งสอดคล้องกับผลของ XRD SEM EDS และ TEM

กิจกรรมการเร่งปฏิกิริยาด้วยแสงของสารตัวอย่างศึกษาโดยการสลายสีย้อม RhB ภายใต้แสงที่มองเห็นได้ เพื่อศึกษาประสิทธิภาพในการสลายสารอินทรีย์ของสารตัวอย่าง ดังแสดงใน รูปที่ 10 จากรูปที่ 10 (a) แสดงค่าการดูดกลืนแสงของสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 10% AgCl/Bi₂MoO₆ โดยฉายแสงที่มองเห็นได้ ณ เวลาที่แตกต่างกัน แสดงให้เห็นว่าค่าการดูดกลืนแสง สูงสุดของสารละลายสีย้อม RhB มีค่า λ_{max} อยู่ที่ 554 nm โดยเมื่อทำการฉายแสงที่มองเห็นได้ผ่านไป 100 นาที ค่าการกลืนแสงของสีย้อม RhB มีค่าลดลงอย่างต่อเนื่องและเห็นได้อีกว่าค่า λ_{max} ของสีย้อม มีค่าลดลงด้วยจาก 554 nm ไปยัง 498 nm เนื่องจากเกิดการสลายตัวของสีย้อม RhB และมีการ เปลี่ยนแปลงโครงสร้างจึงทำให้ค่า λ_{max} เกิดการเปลี่ยนแปลงซึ่งเกิดจากปฏิกิริยา N-deethylation ของโมเลกุลสีย้อม RhB ระหว่างการฉายแสง โดยการสลายสีย้อม Rhodamine B ให้กลายเป็น Rhodamine โดยเห็นว่าเริ่มต้นค่าการดูดกลืนแสง λ_{max} มีค่า 554 nm เมื่อเวลาผ่านไป ค่า λ_{max} ลดลงมาที่ประมาณ 539 nm ซึ่งเป็นสลายสีย้อม Rhodamine B (RhB) เป็น *N,N,N*-triethyl rhodamine หลังจากนั้นสลายตัวเป็น *N,N*-diethyl rhodamine ที่ค่า $\lambda_{max} = 522$ nm และ สลายตัวเป็น *N*-ethyl rhodamine ที่ค่า $\lambda_{max} = 510$ nm และสุดท้ายสลายตัวเป็น Rhodamine ที่ ค่า $\lambda_{max} = 498$ nm ซึ่งเกิดจากการสลายตัวของ conjugated ของ Rhodamine B โดยการ เปลี่ยนแปลงค่า λ_{max} จาก 554 nm ไปยัง 498 nm^[31-33] ดังแสดงโครงสร้างของสารอนุพันธ์ที่เกิดขึ้น ดังแสดงในรูปที่ 11

รูปที่ 10 (a) แสดงค่าการดูดกลืนแสงของสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 10% AgCl/Bi₂MoO₆ ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 100 นาที (b) แสดงประสิทธิภาพในการสลายสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 0-10% AgCl/Bi₂MoO₆ (c) แสดงการเกิดปฏิกิริยาอันดับที่ 1 โดยใช้ตัวเร่ง ปฏิกิริยา 0-10% AgCl/Bi₂MoO₆ (d) แสดงเสถียรภาพการนำกลับมาใช้ซ้ำของตัวเร่งปฏิกิริยา 10% AgCl/Bi₂MoO₆

รูปที่ 11 โครงสร้างของ (a) Rhodamine B (RhB) (b) N,N,N'-triethyl rhodamine (c) N,N'diethyl rhodamine (d) Rhodamine

งานวิจัยของ K. Jothivenkatachalam และคณะ^[30] และ S. Yang และคณะ^[34] ได้ รายงานว่าการสลายสีย้อม RhB นั้นมีด้วยกัน 4 ขั้นตอนโดยศึกษาด้วยวิธี HPLC ดังนี้ ขั้นตอนที่ 1 N-deethylation เป็นขั้นตอนแรกซึ่งเป็นกำจัดหมู่ N-ethyl ออกจากโมเลกุลของสีย้อม RhB ขั้นตอน ต่อมาคือ chromophore cleavage ซึ่งเป็นกำจัด benzene intermediates ออก ขั้นตอนต่อมาคือ opening-ring ซึ่งเป็นการทำให้แตกวงสารประกอบอนุพันธ์ของสารมัธยันตร์ (intermediates) กลายเป็นสารประกอบอินทรีย์สานโซ่ตรงที่มีน้ำหนักโมเลกุลน้อย ยกตัวอย่างเช่น succinic acid 2hydroxypentanedioic acid และ adipic acid และขั้นตอนสุดท้ายคือ มิเนรัลไลเซชั่น (mineralization) ซึ่งเป็นการทำให้สารอินทรีย์เกิดการสลายตัวกลายเป็นน้ำและก๊าซ คาร์บอนไดออกไซด์ในที่สุดดังแสดงในรูปที่ 12

ประสิทธิภาพการสลายสีย้อม RhB (decolorization efficacy) สามารถหาค่าได้โดย การวัดค่าการดูดกลืนแสงที่ความยาวคลื่น 554 nm ซึ่งเป็นค่าความยาวคลื่นการดูดกลืนแสงของสีย้อม RhB จากนั้นสามารถคำนวณประสิทธิภาพในการสลายสีย้อมได้จากสมการที่ 13

โดย A₀ คือ ค่าการดูดกลืนแสงของสีย้อมที่มีตัวเร่งปฏิกิริยาและเก็บไว้ในที่มืด
A_t คือ ค่าการดูดกลืนแสงของสีย้อมที่ที่มีตัวเร่งปฏิกิริยาและฉายแสงเป็น
เวลาใดๆ

จากรูปที่ 10 (b) แสดงประสิทธิภาพในการสลายสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 0-10% AgCl/Bi₂MoO₆ ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 100 นาที เห็นได้ว่าสีย้อม RhB ไม่ เกิดการสลายตัว แสดงว่าสีย้อม RhB มีความเสถียรภาพต่อปฏิกิริยาโฟโตไลซิส (photolysis) ดังนั้น จะเห็นได้ว่าสารละลายสีย้อม RhB มีโครงสร้างที่เสถียรภาพสูงเนื่องจากเป็นสารประกอบจำพวก ไฮโดรคาร์บอน ทำให้ไม่สามารถสลายตัวได้ในธรรมชาติ จึงถูกเลือกมาเป็นตัวแทนของสารอินทรีย์ อีก ทั้งสารละลาย RhB มีสีชมพู ทำให้สามารถสังเกตในการเปลี่ยนแปลงปฏิกิริยาเคมีได้ง่ายในระหว่างการ ทดลอง และเมื่อใช้ตัวเร่งปฏิกิริยา Bi₂MoO₆ แล้วทำการฉายแสงที่มองเห็นได้ เมื่อเวลาผ่านไป 100 นาที พบว่าเกิดการสลายสีย้อม RhB 40.73% แต่อย่างไรเมื่อใช้ตัวเร่งปฏิกิริยา AgCl/Bi₂MoO₆ ประสิทธิภาพการสลายตัวของสีย้อม RhB สูงขึ้นตามเปอร์เซ็นต์การเติม AgCl โดยที่ 10% AgCl/Bi₂MoO₆ มีประสิทธิภาพในการสลายสีย้อมสูงสุดกว่าสารตัวอย่างอื่น ๆ โดยมีประสิทธิภาพใน การสลายสีย้อม RhB 93% เมื่อเวลาผ่านไป 100 นาที โดยสามารถสรุปประสิทธิภาพการสลายของสี ย้อม RhB ดังตารางที่ 3 ประสิทธิภาพการสลายตัวสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 0-10% AgCl/Bi₂MoO₆ สามารถคำนวณหาอัตราการเกิดปฏิกิริยาการสลายตัวของสีย้อม RhB ภายใต้สมมติฐานการ เกิดปฏิกิริยาเสมือนอันดับที่ 1 จากกฎของแลงเมียร์-ฮิงเชลวูด (Langmuir-Hinshelwood) ซึ่งใช้ สำหรับการอธิบายการเกิดปฏิกิริยาที่ผิวหน้าของตัวเร่งปฏิกิริยา โดยอัตราการเกิดปฏิกิริยาคำนวณได้ จากสมการที่ 10 สามารถบ่งบอกถึงความแตกต่างของระบบการปฏิกิริยาด้วยแสง จากรูปที่ 10 (c) แสดงกราฟความสัมพันธ์ระหว่าง ln (C_t/C₀) กับเวลาในการทำปฏิกิริยา (t) โดยที่สามารถคำนวณ อัตราการเกิดปฏิกิริยาจากความขันของกราฟ จากตารางที่ 3 เห็นได้ว่าอัตราการเกิดปฏิกิริยาของ Bi₂MoO₆ เท่ากับ 5.32×10⁻³ min⁻¹ ซึ่งมีค่ามากว่า AgCl/Bi₂MoO₆ ทุกตัวจึงทำให้ประสิทธิภาพในการ สลายสีย้อม RhB น้อยกว่า AgCl/Bi₂MoO₆ โดยที่ 1.0% AgCl/Bi₂MoO₆ และ 2.5% AgCl/Bi₂MoO₆ มีค่าใกล้เคียงกันคือ1.77×10⁻² และ 1.72×10⁻² min⁻¹ และเมื่อปริมาณของ AgCl เพิ่มขึ้นก็ทำให้อัตรา การเกิดปฏิกิริยาเพิ่มขึ้นด้วยที่ 5.0% AgCl/Bi₂MoO₆ เท่ากับ 1.95×10⁻² min⁻¹ และที่ 10.0% AgCl/Bi₂MoO₆ มีอัตราการเกิดปฏิกิริยาสูงสุดเท่ากับ 2.83×10⁻² min⁻¹ ทำให้มีประสิทธิภาพในการ สถายสีย้อม RhB สูงสุดเช่นกัน

จากอัตราการเกิดปฏิกิริยาการสลายสีย้อม RhB ที่คำนวณได้จากการสมการข้างต้น สามารถนำค่าคงที่อัตราการเกิดปฏิกิริยา มาคำนวณหาค่าครึ่งชีวิตของปฏิกิริยาการสลายสีย้อม RhB ได้ จากสมมติฐานที่ว่าเกิดปฏิกิริยาอันดับที่ 1 จึงสามารถคำนวณหาค่าครึ่งชีวิตของปฏิกิริยาการสลาย สีย้อม RhB ได้จากสมการที่ 12

จากตารางที่ 3 เห็นได้ว่าค่าครึ่งชีวิตของปฏิกิริยาที่คำนวณได้มีค่าสอดคล้องกับอัตรา การเกิดปฏิกิริยาโดยที่เมื่ออัตราการเกิดปฏิกิริยามีค่าน้อยค่าครึ่งชีวิตของปฏิกิริยาจะมีค่ามาก ในทาง ตรงกันข้ามเมื่ออัตราการเกิดปฏิกิริยามีค่ามากค่าครึ่งชีวิตของปฏิกิริยาจะมีค่าน้อย

	ประสิทธิภาพในการ	ทธิภาพในการ อัตราการเกิดปฏิกิริยา		ค่าครึ่งชีวิตของ
ตัวเร่งปฏิกิริยา	สลายสีย้อม	k_{app}	P ²	ปฏิกิริยา
	(%)	(min ⁻¹)	n	(min)
Bi ₂ MoO ₆	40.73%	5.32×10 ⁻³	0.9928	130
1.0% AgCl/Bi ₂ MoO ₆	82.89%	1.77×10 ⁻²	0.9997	39.15
2.5% AgCl/Bi ₂ MoO ₆	80.65%	1.72×10 ⁻²	0.9976	40.29
5.0% AgCl/Bi ₂ MoO ₆	85.51%	1.95×10 ⁻²	0.9987	35.54
10.0% AgCl/Bi ₂ MoO ₆	92.45%	2.83×10 ⁻²	0.9924	24.49

ตารางที่ 3 ประสิทธิภาพในการสลายสีย้อม อัตราการเกิดปฏิกิริยาอันดับที่ 1 R² และค่าครึ่งชีวิตของ ปฏิกิริยา ของตัวเร่งปฏิกิริยา 0-10% AgCl/Bi₂MoO₆
แต่อย่างไรก็ตาม การใช้งานของตัวเร่งปฏิกิริยาคำนึงถึงความเสถียรภาพในการใช้ งาน ดังนั้นจึงได้ทดสอบการนำกลับมาใช้ใหม่ของตัวเร่งปฏิกิริยา โดยทดสอบการใช้ซ้ำจำนวน 5 ครั้ง ของตัวเร่งปฏิกิริยา 10% AgCl/Bi₂MoO₆ โดยการนำตัวเร่งปฏิกิริยาเติมในสารสลายสีย้อม RhB และ ฉายแสงที่มองเห็นได้จากนั้นเมื่อทำปฏิกิริยาเสร็จ นำสารละลายมากรองแยกตัวเร่งปฏิกิริยาออกมา ล้างด้วยน้ำ RO และเอทานอลหลายๆครั้งและอบให้แห้ง จากนั้นนำตัวเร่งปฏิกิริยามาใช้ซ้ำจนครบ 5 ครั้งจึงได้ผลการทดลองดังแสดงในรูปที่ 10 (d) แสดงให้เห็นว่า 10% AgCl/Bi₂MoO₆ มีความ เสถียรภาพสูงเนื่องจากประสิทธิภาพการสลายสีย้อม RhB ในการนำกลับมาใช้ซ้ำครั้งที่ 5 ยังมีค่าสูงถึง 92.43% ซึ่งมีค่าใกล้เคียงกับครั้งที่ 1 ดังนั้นตัวเร่งปฏิกิริยา 10% AgCl/Bi₂MoO₆ มีความเหมาะสมที่ จะนำมาใช้งานเนื่องจากมีประสิทธิภาพและความเสถียรภาพสูง

กลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Bi₂MoO₆ และ AgCl/Bi₂MoO₆ ซึ่งมี ความสำคัญต่อการสลายสีย้อม RhB ที่กล่าวมาข้างต้นได้ถูกเสนอในรูปที่ 13 และ 14

รูปที่ 13 กลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Bi₂MoO₆

จากรูปที่ 13 แสดงกลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Bi₂MoO₆ เมื่อตัวเร่ง ปฏิกิริยาได้รับพลังงานกระตุ้นจากแสงที่มองเห็นได้ อิเล็กตรอนจากวาเลนซ์แบนด์ (E_{VB} = -0.32 eV) ถูกกระตุ้นขึ้นไปยังคอนดักชันแบนด์ (E_{CB} = +2.71 eV)^[35] ทำให้เกิดโฮลขึ้นที่วาเลนซ์แบนด์ จากนั้น อิเล็กตรอนจากคอนดักชันแบนด์เคลื่อนที่ไปยังผิวของตัวเร่งปฏิกิริยา โดยที่ออกซิเจนจากสารละลาย ซึ่งเป็นตัวรับอิเล็กตรอนมาทำปฏิกิริยาที่ผิวของตัวเร่งปฏิกิริยาแต่ไม่สามารถกลายเป็นไอออนซุปเปอร์ ออกไซด์เรดิคอล (superoxide radicals, 'O₂') ได้เนื่องจากศักย์ไฟฟ้าของ O₂/'O₂⁻ มีค่าน้อยกว่าค่า ศักย์ไฟฟ้าของวาเลนซ์แบนด์ (O₂ + e⁻ \rightarrow 'O₂⁻, E⁰ = -0.33 eV)^[17] ออกซิเจนจึงรับอิเล็กตรอน กลายเป็นไฮโดรเจนเปอร์ออกไซด์ (O₂ + 2H⁺ + 2e⁻ \rightarrow H₂O₂, E⁰ = +0.682 eV)^[18] แทนจากนั้น H_2O_2 รับอิเล็กตรอนและกลายเป็นไฮดรอกซิลเรดิคอล ($H_2O_2 + e^- \rightarrow OH^- + OH^-$) ซึ่งเป็นอนุมูล อิสระหรือตัวออกซิแดนท์ (oxidant) ที่แรงในกระบวนการเร่งปฏิกิริยาด้วยแสง ในขณะเดียวกันที่โฮล ในวาเลนซ์แบนด์เกิดปฏิกิริยาออกซิเดชันกับไฮดรอกซิลไอออนกลายเป็นไฮดรอกซิลเรดิคอล (OH $\rightarrow OH + e^-$, $E^0 = +0.199 eV$)^[17] จากนั้นอนุมูลอิสระที่เกิดขึ้นทำปฏิกิริยากับสารอินทรีย์และ เกิดการย่อยสลายสารอินทรีย์ในสารละลายจนได้ผลิตภัณฑ์สุดท้าย คือ คาร์บอนไดออกไซด์และน้ำ แต่ ตัวเร่งปฏิกิริยา Bi₂MoO₆ มีอัตราการรวมตัวกันของอิเล็กตรอนกับโฮลสูง ทำให้มีอิเล็กตรอนที่แถบการ นำไฟฟ้าเคลื่อนที่ไปยังผิวของตัวเร่งปฏิกิริยาน้อยทำให้ประสิทธิภาพในการสลายสีย้อม RhB ลดลง

รูปที่ 14 กลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ AgCl/Bi₂MoO₆

เมื่อเปรียบเทียบกับกลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Bi_2MoO_6 เมื่อเติม AgCl ลงในตัวเร่งปฏิกิริยา Bi_2MoO_6 โดยการตกตะกอนและกลายเป็นวัสดุผสมทำให้กลไกการ เกิดปฏิกิริยาโฟโตคะตะไลติกของ AgCl/Bi_2MoO_6 แตกต่างไปจาก Bi_2MoO_6 ดังแสดงในรูปที่ 14 เมื่อ ตัวเร่งปฏิกิริยาได้รับพลังงานกระตุ้นจากแสงที่มองเห็นได้ อิเล็กตรอนจากวาเลนซ์แบนด์ถูกกระตุ้นขึ้น ไปยังคอนดักซันแบนด์ ทำให้เกิดโฮล ขึ้นที่วาเลนซ์แบนด์ของทั้งสองตัว จากนั้นอิเล็กตรอนจากคอนดัก ขันแบนด์ของ Bi_2MoO_6 ($E_{VB} = -0.32 \text{ eV}$) เคลื่อนที่ไปยังคอนดักซันแบนด์ของ AgCl ($E_{VB} = +0.11 \text{ eV}$)^[27] เนื่องจากมีค่าศักย์ไฟฟ้าคอนดักซันแบนด์ของ Bi_2MoO_6 น้อยกว่า AgCl และจากนั้นอิเล็กตรอน เคลื่อนที่ไปที่ผิวของตัวเร่งปฏิกิริยาและเกิดปฏิกิริยารีดักซันกับ O_2 จากสารละลายซึ่งเป็นตัวรับ อิเล็กตรอนมาทำปฏิกิริยาที่ผิวของตัวเร่งปฏิกิริยาแต่ไม่สามารถกลายเป็นไอออนซุปเปอร์ออกไซด์ เรดิคอล (superoxide radicals, O_2) ได้เนื่องจากศักย์ไฟฟ้าของ O_2/O_2 มีค่าน้อยกว่าคำศักย์ไฟฟ้า ของคอนดักซันแบนด์ ($O_2 + e^- \rightarrow O_2^-$, $E^0 = -0.33 \text{ eV}$)^[17] ออกซิเจนจึงรับอิเล็กตรอนกลายเป็น

ไฮโดรเจนเปอร์ออกไซด์ ($O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$, $E^0 = +0.682 \text{ eV}^{[18]}$ จากนั้น H_2O_2 รับ อิเล็กตรอนและกลายเป็นไฮดรอกซิลเรดิคอล ($H_2O_2 + e^- \rightarrow OH^- + OH$) ซึ่งเป็นอนุมูลอิสระหรือ ดัวออกซิแดนท์ (oxidant) ในกระบวนการเร่งปฏิกิริยาด้วยแสง ในขณะเดียวกันโฮลจากวาเลนซ์แบนด์ ของ AgCl ($E_{CB} = +3.04 \text{ eV}$)^[27] เคลื่อนที่ไปยังวาเลนซ์แบนด์ของ Bi₂MoO₆ ($E_{CB} = +2.71 \text{ eV}$) เนื่องจากมีค่าศักย์ไฟฟ้าวาเลนซ์แบนด์ของ Bi₂MoO₆ น้อยกว่า AgCl จากนั้นโฮลจะเกิดปฏิกิริยา ออกซิเดชันกับไฮดรอกซิลไอออนสูญเสียอิเล็กตรอนให้แก่โฮลในวาเลนซ์แบนด์กลายเป็นไฮดรอกซิล เรดิคอล ($OH \rightarrow OH + e^-$, $E^0 = +0.199 \text{ eV}$)^[17] จากนั้นอนุมูลอิสระที่เกิดขึ้นทำปฏิกิริยากับ สารอินทรีย์และเกิดการย่อยสลายสารอินทรีย์ในสารละลายจนได้ผลิตภัณฑ์สุดท้าย คือ คาร์บอนไดออกไซด์และน้ำ ซึ่งจากกลไกที่กล่าวมาข้างต้นแสดงให้เห็นว่าการเกิดการรวมตัวกันของ อิเล็กตรอนกับโฮลต่ำลงเนื่องจากอิเล็กตรอนและโฮลสามารถเคลื่อนที่ไปยังคอนดักซันแบนด์และ วาเลนซ์แบนด์ของสารประกอบอีกตัวได้ จึงทำให้ประสิทธิภาพในการสลายสีย้อม RhB สูงขึ้นซึ่ง ประสิทธิภาพในการสลายสีย้อมของ AgCl/Bi₂MoO₆ ทุกตัวมีค่ามากกว่า Bi₂MoO₆ เป็น 2 เท่า

ผลการทดลองที่ 2

รูปที่ 15 XRD pattern ของตัวเร่งปฏิกิริยา 0-10% AgBr/Bi₂MoO₆

การศึกษาโครงสร้างผลึกของตัวเร่งปฏิกิริยา 0-10% AgBr/Bi₂MoO₆ โดยใช้ XRD ดัง แสดงในรูปที่ 15 เห็นได้ว่าพีคการเลี้ยวเบนของ Bi₂MoO₆ มีโครงสร้าง orthorhombic ของ Bi₂MoO₆ ถูกอ้างอิงด้วย JCPDS no. 21-0102^[36] ซึ่งไม่ปรากฏพีคการเลี้ยวเบนอื่น และเมื่อเติม AgBr ลงไปใน Bi₂MoO₆ เห็นได้ว่าจะปรากฏพีคใหม่ที่มุม 2**0** = 31.00 และ 44.28[°] และมีความเข้มของพีคใหม่ เพิ่มขึ้นตามปริมาณ AgBr ที่เพิ่มขึ้นโดยที่ 5-10% AgBr/Bi₂MoO₆ จะเห็นพีคของ AgBr ได้ชัดเจนมาก ขึ้นโดยกำหนดให้ ■ คือ AgBr ซึ่งเป็นระนาบ (200) และ (220) ของโครงสร้าง cubic ถูกอ้างอิงด้วย JCPDS No. 06-0438^[36] เห็นได้ว่า AgBr/Bi₂MoO₆ มี AgBr และ Bi₂MoO₆

การศึกษาทางสัณฐานวิทยาของตัวเร่งปฏิกิริยาโดยใช้กล้องจุลทรรศน์ส่องกราด เพื่อ ศึกษาสัณฐานและลักษณะพื้นผิวของตัวเร่งปฏิกิริยา รูปที่ 16 (a) เห็นได้ว่าอนุภาคของ Bi₂MoO₆ มี ลักษณะเป็นแผ่น ไม่มีอนุภาคอื่นๆเกาะบนพื้นผิว และเมื่อเติม AgBr ลงไปใน Bi₂MoO₆ ตามอัตราส่วน 1% 2.5% 5% และ 10% รูปที่ 16 (b-e) จะเห็นได้ว่าอนุภาคของ Bi₂MoO₆ ไม่มีการเปลี่ยนแปลง ซึ่ง การเติม AgBr ลงไปไม่มีผลต่อรูปร่างของอนุภาค Bi₂MoO₆ แต่อนุภาคของ AgBr จะเกาะอยู่บนพื้นผิว ของ Bi₂MoO₆ ซึ่งเป็นตัวรองรับ โดยสังเกตได้จากรูปที่ 16 (d-e) ที่ 5% และ 10% AgBr/Bi₂MoO₆ จะเห็นได้ชัดเจนว่ามีอนุภาคเล็กๆของ AgBr มาเกาะบนผิวหน้าของอนุภาค Bi₂MoO₆ จำนวนมากและ กระจายตัวอย่างสม่ำเสมอ ซึ่งอนุภาคของ AgBr ที่มาเกาะบนผิวหน้าของอนุภาค Bi₂MoO₆ จะส่งผลให้ การรวมกันของอิเล็กตรอนกับโฮลต่ำลงและช่วยเพิ่มประสิทธิภาพในสลายสีย้อม RhB

รูปที่ 16 ภาพจากกล้อง SEM ของตัวเร่งปฏิกิริยา (a) Bi₂MoO₆ (b) 1% AgBr/Bi₂MoO₆ (c) 2.5% AgBr/Bi₂MoO₆ (d) 5% AgBr/Bi₂MoO₆ และ (e) 10% AgBr/Bi₂MoO₆ ที่กำลังขยาย 30,000 เท่า

การกระจายตัวของอนุภาคของอะตอมแต่ละชนิดของตัวเร่งปฏิกิริยา ถูกศึกษาด้วย เทคนิค EDS ดังแสดงในรูปที่ 17

รูปที่ 17 ภาพจาก SEM ของตัวเร่งปฏิกิริยา (a) 10% AgBr/Bi₂MoO₆ และแสดงภาพจาก EDS mapping ของตัวเร่งปฏิกิริยา 10% AgBr/Bi₂MoO₆ (b) Ag (c) Br (d) Bi (e) Mo และ (f) O

รูปที่ 17 (a) จะเห็นได้ว่าอนุภาคของ AgBr มีการกระจายตัวอย่างสม่ำเสมอบน ผิวหน้าของอนุภาค Bi₂MoO₆ ซึ่งในรูปที่ 17 (b-c) เห็นได้ว่าธาตุ Ag และ Br มีกระจายตัวอย่าง สม่ำเสมอ และในรูปที่ 17 (d-f) อะตอมของ Bi₂MoO₆ ซึ่งเป็นตัวรองรับมีอนุภาคของ AgBr จึงจะเห็น ธาตุ Bi Mo และธาตุ O จากผลข้างต้นเป็นยืนยันได้ว่าสารตัวอย่างมีอนุภาค AgBr และอนุภาค Bi₂MoO₆

รูปที่ 18 แสดงภาพ TEM SAED pattern และภาพ HRTEM (a-b) Bi₂MoO₆ (c) 5% AgBr/Bi₂MoO₆ และ (d-f) 10% AgBr/Bi₂MoO₆

รูปที่ 18 (a) เห็นได้ว่าอนุภาคของ Bi₂MoO₆ มีรูปร่างเป็นแผ่นเรียบโดยมีความยาว ของแต่ละด้านประมาณ 200-500 nm รูปที่ 18 (b) SAED pattern เห็นได้ว่าแผ่นของอนุภาคของ Bi₂MoO₆ เป็นผลึกเดี่ยวโดยแผ่นผลึกมีระนาบ (060) (062) และ (002) และเมื่อเติม AgBr ลงไปใน Bi₂MoO₆ ดังแสดงในรูปที่ 18 (c) ที่ 5% AgBr/Bi₂MoO₆ จะเห็นได้ว่ามีอนุภาคขนาดเล็กมาเกาะบน ผิวหน้าของอนุภาค Bi₂MoO₆ และในรูปที่ 18 (d-e) ที่ 10% AgBr/Bi₂MoO₆ เห็นได้ว่ามีอนุภาคขนาด เล็กโดยมีเส้นผ่านศูนย์กลางน้อยกว่า 20 nm มาเกาะบนผิวหน้าของอนุภาค Bi₂MoO₆ เพิ่มมากขึ้น และมีความสม่ำเสมอ และจากภาพที่กำลังขยายสูงรูปที่ 18 (f) จะเห็นว่ามีอนุภาค AgBr เกาะบนผิว ของอนุภาค Bi₂MoO₆ โดยสามารถเห็นระนาบ (200) มีความกว้างของระนาบเท่ากับ 0.284 nm และ ระนาบ (131) มีความกว้างของระนาบเท่ากับ 0.364 nm ของ AgBr

รูปที่ 19 (a-e) แสดงสเปกตรัม XPS ของตัวเร่งปฏิกิริยา 10% AgCl/Bi₂MoO₆ โดย สามารถพบพีคของ Ag Br Bi Mo และ O รูปที่ 19 (a) Ag 3d_{5/2} และ Ag 3d_{3/2} แสดงในพีคที่ 367.9 และ 373.7 eV ซึ่งเป็น Ag^{+[26]} รูปที่ 19 (b) Br 3d_{3/2} และ Br 3d_{5/2} แสดงในพีคที่ 69.3 และ 68.3 $eV^{[37]}$ รูปที่ 19 (c) Bi 4f_{5/2} และ Bi 4f_{7/2} แสดงในพีคที่ 163.6 และ 158.2 eV ซึ่งทุกตัวของ Bi อยู่ใน ฟอร์มของ Bi^{3+[9]} รูปที่ 19 (d) Mo 3d_{3/2} และ Mo 3d_{5/2} ของ Mo 4d แสดงในพีคที่ 35.6 และ 37.4 eV ซึ่งเป็น Mo^{6+[9]} สำหรับพีคของ O สามารถเห็นได้หลายพีคคือ 530.00 530.70 531.82 และ 532.84 eV ซึ่งเป็น Bi-O Mo-O O-H ซึ่งดูดซับ H₂O ที่ผิวหน้าและพันธะ C-O เกิดจากก๊าซ คาร์บอนไดออกไซด์ที่ผิวของตัวเร่งปฏิกิริยาเอง^[28-29] จากผลข้างต้นแสดงให้เห็นมี AgBr และ Bi₂MoO₆ เป็นองค์ประกอบของ 10% AgBr/Bi₂MoO₆ ซึ่งสอดคล้องกับผลของ XRD SEM EDS และ TEM

รูปที่ 19 แสดงสเปกตรัม XPS ของตัวเร่งปฏิกิริยา 10% AgBr/Bi₂MoO₆ (a) Ag 3d (b) Br 3d (c) Bi 4f (d) Mo 3d และ (e) O 2s

กิจกรรมการเร่งปฏิกิริยาด้วยแสงของสารตัวอย่างศึกษาโดยการสลายสีย้อม RhB ภายใต้แสงที่มองเห็นได้ เพื่อศึกษาประสิทธิภาพในการสลายสารอินทรีย์ของสารตัวอย่าง ดังแสดงใน รูปที่ 20 จากรูปที่ 20 (a) แสดงค่าการดูดกลืนแสงของสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 10% AgBr/Bi₂MoO₆ โดยฉายแสงที่มองเห็นได้ ณ เวลาที่แตกต่างกัน แสดงให้เห็นว่าค่าการดูดกลืนแสง สูงสุดของสารละลายสีย้อม RhB มีค่า λ_{max} อยู่ที่ 554 nm โดยเมื่อทำการฉายแสงที่มองเห็นได้ผ่านไป 40 นาที ค่าการกลืนแสงของสีย้อม RhB มีค่าลดลงอย่างต่อเนื่องและเห็นได้อีกว่าค่า λ_{max} ของสีย้อมมี ค่าลดลงด้วยจาก 554 nm ไปยัง 498 nm เนื่องจากเกิดการสลายตัวของสีย้อม RhB และมีการ เปลี่ยนแปลงโครงสร้างจึงทำให้ค่า λ_{max} เกิดการเปลี่ยนแปลงซึ่งเกิดจากปฏิกิริยา N-deethylation ของโมเลกุลสีย้อม RhB ระหว่างการฉายแสง โดยการสลายสีย้อม Rhodamine B ให้กลายเป็น Rhodamine โดยเห็นว่าเริ่มต้นค่าการดูดกลืนแสง λ_{max} มีค่า 554 nm เมื่อเวลาผ่านไป ค่า λ_{max} ลดลงมาที่ประมาณ 539 nm ซึ่งเป็นสลายสีย้อม Rhodamine B (RhB) เป็น *N,N,N*-triethyl rhodamine หลังจากนั้นสลายตัวเป็น *N,N*'-diethyl rhodamine ที่ค่า $\lambda_{max} = 522$ nm และ สลายตัวเป็น *N*-ethyl rhodamine ที่ค่า $\lambda_{max} = 510$ nm และสุดท้ายสลายตัวเป็น Rhodamine ที่ ค่า $\lambda_{max} = 498$ nm ซึ่งเกิดจากการสลายตัวของ conjugated ของ Rhodamine B โดยการ เปลี่ยนแปลงค่า λ_{max} จาก 554 nm ไปยัง 498 nm^[31-33] ดังแสดงโครงสร้างของสารอนุพันธ์ที่เกิดขึ้น ดังแสดงในรูปที่ 11

รูปที่ 20 (a) แสดงค่าการดูดกลืนแสงของสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 10% AgBr/Bi₂MoO₆ ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 40 นาที (b) แสดงประสิทธิภาพในการสลายสีย้อม RhB โดย ใช้ตัวเร่งปฏิกิริยา 0-10% AgBr/Bi₂MoO₆ (c) แสดงการเกิดปฏิกิริยาอันดับที่ 1 โดยใช้ตัวเร่งปฏิกิริยา 0-10% AgBr/Bi₂MoO₆ (d) แสดงเสถียรภาพการนำกลับมาใช้ซ้ำของตัวเร่งปฏิกิริยา 10% AgBr/Bi₂MoO₆

งานวิจัยของ K. Jothivenkatachalam และคณะ^[30] และ S. Yang และคณะ^[34] ได้ รายงานว่าการสลายสีย้อม RhB นั้นมีด้วยกัน 4 ขั้นตอนโดยศึกษาด้วยวิธี HPLC ดังนี้ ขั้นตอนที่ 1 Ndeethylation เป็นขั้นตอนแรกซึ่งเป็นกำจัดหมู่ N-ethyl ออกจากโมเลกุลของสีย้อม RhB ขั้นตอน ต่อมาคือ chromophore cleavage ซึ่งเป็นกำจัด benzene intermediates ออก ขั้นตอนต่อมาคือ opening-ring ซึ่งเป็นการทำให้แตกวงสารประกอบอนุพันธ์ของสารมัธยันตร์กลายเป็นสารประกอบ อินทรีย์สานโซ่ตรงที่มีน้ำหนักโมเลกุลน้อย ยกตัวอย่างเช่น succinic acid 2-hydroxypentanedioic acid และ adipic acid และขั้นตอนสุดท้ายคือ มิเนรัลไลเซชั่นซึ่งเป็นการทำให้สารอินทรีย์เกิดการ สลายตัวกลายเป็นน้ำและก๊าซคาร์บอนไดออกไซด์ในที่สุดดังแสดงในรูปที่ 12 ประสิทธิภาพการสลายสีย้อม RhB (decolorization efficacy) สามารถหาค่าได้โดย การวัดค่าการดูดกลืนแสงที่ความยาวคลื่น 554 nm ซึ่งเป็นค่าความยาวคลื่นการดูดกลืนแสงของสีย้อม RhB จากนั้นสามารถคำนวณประสิทธิภาพในการสลายสีย้อมได้จากสมการที่ 13

จากรูปที่ 20 (b) แสดงประสิทธิภาพในการสลายสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 0-10% AgBr/Bi₂MoO₆ ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 40 นาที เห็นได้ว่าสีย้อม RhB ไม่ เกิดการสลายตัว แสดงว่าสีย้อม RhB มีความเสถียรภาพต่อปฏิกิริยาโฟโตไลซิส (photolysis) ดังนั้น จะเห็นได้ว่าสารละลายสีย้อม RhB มีโครงสร้างที่เสถียรภาพสูงเนื่องจากเป็นสารประกอบจำพวก ไฮโดรคาร์บอน ทำให้ไม่สามารถสลายตัวได้ในธรรมชาติ จึงถูกเลือกมาเป็นตัวแทนของสารอินทรีย์ อีก ทั้งสารละลาย RhB มีสีชมพู ทำให้สามารถสังเกตในการเปลี่ยนแปลงปฏิกิริยาเคมีได้ง่ายในระหว่างการ ทดลอง และเมื่อใช้ตัวเร่งปฏิกิริยา Bi₂MoO₆ แล้วทำการฉายแสงที่มองเห็นได้ เมื่อเวลาผ่านไป 40 นาที พบว่าเกิดการสลายสีย้อม RhB 17.21% แต่อย่างไรเมื่อใช้ตัวเร่งปฏิกิริยา AgBr/Bi₂MoO₆ ประสิทธิภาพการสลายตัวของสีย้อม RhB สูงขึ้นตามเปอร์เซ็นต์การเติม AgBr โดยที่ 10% AgBr/Bi₂MoO₆ มีประสิทธิภาพในการสลายสีย้อมสูงสุดกว่าสารตัวอย่างอื่น ๆ โดยมีประสิทธิภาพใน การสลายสีย้อม RhB 97.28% เมื่อเวลาผ่านไป 40 นาที โดยสามารถสรุปประสิทธิภาพการสลายของ สีย้อม RhB ดังตารางที่ 4

ประสิทธิภาพการสลายตัวสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 0-10% AgBr/Bi₂MoO₆ สามารถคำนวณหาอัตราการเกิดปฏิกิริยาการสลายตัวของสีย้อม RhB ภายใต้สมมติฐานการ เกิดปฏิกิริยาเสมือนอันดับที่ 1 จากกฎของแลงเมียร์-ฮิงเชลวูด (Langmuir-Hinshelwood) ซึ่งใช้ สำหรับการอธิบายการเกิดปฏิกิริยาที่ผิวหน้าของตัวเร่งปฏิกิริยา โดยอัตราการเกิดปฏิกิริยาคำนวณได้ จากสมการที่ 10

จากสมการที่ 10 สามารถบ่งบอกถึงความแตกต่างของระบบการปฏิกิริยาด้วยแสง จากรูปที่ 20 (c) แสดงกราฟความสัมพันธ์ระหว่าง ln (C_t/C_0) กับเวลาในการทำปฏิกิริยา (t) โดยที่ สามารถคำนวณอัตราการเกิดปฏิกิริยาจากความชันของกราฟ จากตารางที่ 4 เห็นได้ว่าอัตราการ เกิดปฏิกิริยาของ Bi₂MoO₆ เท่ากับ 5.32×10⁻³ min⁻¹ ซึ่งมีค่ามากว่า AgBr/Bi₂MoO₆ ทุกตัวจึงทำให้ ประสิทธิภาพในการสลายสีย้อม RhB น้อยกว่า AgBr/Bi₂MoO₆ โดยที่ 1.0% AgBr/Bi₂MoO₆ มีค่า 3.70×10⁻² และ 2.5% AgBr/Bi₂MoO₆ มีค่า 6.95×10⁻² min⁻¹ และเมื่อปริมาณของ AgBr เพิ่มขึ้นก็ทำ ให้อัตราการเกิดปฏิกิริยาเพิ่มขึ้นด้วยที่ 5.0% AgBr/Bi₂MoO₆ เท่ากับ 8.33×10⁻² min⁻¹ และที่ 10.0% AgBr/Bi₂MoO₆ มีอัตราการเกิดปฏิกิริยาสูงสุดเท่ากับ 9.52×10⁻² min⁻¹ ทำให้มีประสิทธิภาพ ในการสลายสีย้อม RhB สูงสุดเช่นกัน จากอัตราการเกิดปฏิกิริยาการสลายสีย้อม RhB ที่คำนวณได้จากการสมการข้างต้น สามารถนำค่าคงที่อัตราการเกิดปฏิกิริยา มาคำนวณหาค่าครึ่งชีวิตของปฏิกิริยาการสลายสีย้อม RhB ได้ จากสมมติฐานที่ว่าเกิดปฏิกิริยาอันดับที่ 1 จึงสามารถคำนวณหาค่าครึ่งชีวิตของปฏิกิริยาการสลาย สีย้อม RhB ได้จากสมการที่ 12

จากตารางที่ 4 เห็นได้ว่าค่าครึ่งชีวิตของปฏิกิริยาที่คำนวณได้มีค่าสอดคล้องกับอัตรา การเกิดปฏิกิริยาโดยที่เมื่ออัตราการเกิดปฏิกิริยามีค่าน้อยค่าครึ่งชีวิตของปฏิกิริยาจะมีค่ามากในทาง ตรงกันข้ามเมื่ออัตราการเกิดปฏิกิริยามีค่ามากค่าครึ่งชีวิตของปฏิกิริยาจะมีค่าน้อย

54 - 54				
	ประสิทธิภาพในการ	อัตราการเกิดปฏิกิริยา		ค่าครึ่งชีวิตของ
ตัวเร่งปฏิกิริยา	สลายสีย้อม	k _{app}	D ²	ปฏิกิริยา
	(%)	(min ⁻¹)	к	(min)
Bi ₂ MoO ₆	17.21%	5.32×10 ⁻³	0.9928	130
1.0% AgBr/Bi ₂ MoO ₆	79.42%	3.70×10 ⁻²	0.9855	17.27
2.5% AgBr/Bi ₂ MoO ₆	93.05%	6.95×10 ⁻²	0.9922	9.19
5.0% AgBr/Bi ₂ MoO ₆	96.40%	8.33×10 ⁻²	0.9972	7.67
10.0% AgBr/Bi ₂ MoO ₆	97.28%	9.52×10 ⁻²	0.9866	6.71

ตารางที่ 4 ประสิทธิภาพในการสลายสีย้อม อัตราการเกิดปฏิกิริยาอันดับที่ 1 R² และค่าครึ่งชีวิตของ ปฏิกิริยา ของตัวเร่งปฏิกิริยา 0-10% AgBr/Bi₂MoO₆

แต่อย่างไรก็ตาม การใช้งานของตัวเร่งปฏิกิริยาคำนึงถึงความเสถียรภาพในการใช้

งาน ดังนั้นจึงได้ทดสอบการนำกลับมาใช้ใหม่ของตัวเร่งปฏิกิริยา โดยทดสอบการใช้ซ้ำจำนวน 5 ครั้ง ของตัวเร่งปฏิกิริยา 10% AgBr/Bi₂MoO₆ โดยการนำตัวเร่งปฏิกิริยาเติมในสารสลายสีย้อม RhB และ ฉายแสงที่มองเห็นได้จากนั้นเมื่อทำปฏิกิริยาเสร็จ นำสารละลายมากรองแยกตัวเร่งปฏิกิริยาออกมา ล้างด้วยน้ำ RO และเอทานอลหลายๆครั้งและอบให้แห้ง จากนั้นนำตัวเร่งปฏิกิริยามาใช้ซ้ำจนครบ 5 ครั้งจึงได้ผลการทดลองดังแสดงในรูปที่ 20 (d) แสดงให้เห็นว่า 10% AgBr/Bi₂MoO₆ มีความ เสถียรภาพสูงเนื่องจากประสิทธิภาพการสลายสีย้อม RhB ในการนำกลับมาใช้ซ้ำครั้งที่ 5 ยังมีค่าสูงถึง 80.01% ซึ่งมีค่าใกล้เคียงกับครั้งที่ 1 ดังนั้นตัวเร่งปฏิกิริยา 10% AgBr/Bi₂MoO₆ มีความเหมาะสมที่ จะนำมาใช้งานเนื่องจากมีประสิทธิภาพและความเสถียรภาพสูง

กลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Bi₂MoO₆ และ AgBr/Bi₂MoO₆ ซึ่งมี ความสำคัญต่อการสลายสีย้อม RhB ที่กล่าวมาข้างต้นได้ถูกเสนอในรูปที่ 13 ผลการทดลองที่ 1 และ รูปที่ 21

รูปที่ 21 กลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ AgBr/Bi2MoO6

้เมื่อเปรียบเทียบกับกลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Bi₂MoO₆ เมื่อเติม ลงในตัวเร่งปฏิกิริยา Bi₂MoO₆ โดยการตกตะกอนและกลายเป็นวัสดุผสมทำให้กลไกการ AgBr ้เกิดปฏิกิริยาโฟโตคะตะไลติกของ AgBr/Bi2MoO6 แตกต่างไปจาก Bi2MoO6 ดังแสดงในรูปที่ 21 เมื่อ ้ตัวเร่งปฏิกิริยาได้รับพลังงานกระตุ้นจากแสงที่มองเห็นได้ อิเล็กตรอนจากวาเลนซ์แบนด์ถูกกระตุ้นขึ้น ้ไปยังคอนดักชันแบนด์ ทำให้เกิดโฮล ขึ้นที่วาเลนซ์แบนด์ของทั้งสองตัว จากนั้นอิเล็กตรอนจากคอนดัก ขั้นแบนด์ของ Bi_2MoO_6 (E_{VB} = -0.32 eV) เคลื่อนที่ไปยังคอนดักชั้นแบนด์ของ AgBr (E_{VB} = +0.01 eV)^[38] เนื่องจากมีค่าศักย์ไฟฟ้าคอนดักชันแบนด์ของ Bi₂MoO₆ น้อยกว่า AgBr และจากนั้นอิเล็กตรอน ้เคลื่อนที่ไปที่ผิวของตัวเร่งปฏิกิริยาและเกิดปฏิกิริยารีดักชันกับ O2 จากสารละลายซึ่งเป็นตัวรับ ้อิเล็กตรอนมาทำปฏิกิริยาที่ผิวของตัวเร่งปฏิกิริยาแต่ไม่สามารถกลายเป็นไอออนซุปเปอร์ออกไซด์ เรดิคอล (superoxide radicals, O2) ได้เนื่องจากศักย์ไฟฟ้าของ O2/O2 มีค่าน้อยกว่าค่าศักย์ไฟฟ้า ของคอนดักซันแบนด์ (O₂ + e \rightarrow O₂, E⁰ = -0.33 eV)^[17] ออกซิเจนจึงรับอิเล็กตรอนกลายเป็น ไฮโดรเจนเปอร์ออกไซด์ (O₂ + 2H⁺ + 2e⁻ \rightarrow H₂O₂, E⁰= +0.682 eV)^[18] จากนั้น H₂O₂ รับ อิเล็กตรอนและกลายเป็นไฮดรอกซิลเรดิคอล (H₂O₂ + e → OH + OH) ซึ่งเป็นอนุมูลอิสระหรือ ้ตัวออกซิแดนท์ (oxidant) ในกระบวนการเร่งปฏิกิริยาด้วยแสง ในขณะเดียวกันโฮลจากวาเลนซ์แบนด์ ของ Bi₂MoO₆ (E_{CB} = +2.71 eV) เคลื่อนที่ไปยังวาเลนซ์แบนด์ของ AgBr (E_{CB} = +2.61 eV)^[38] เนื่องจากมีค่าศักย์ไฟฟ้าวาเลนซ์แบนด์ของ AgBr น้อยกว่า Bi₂MoO₆ จากนั้นโฮลจะเกิดปฏิกิริยา ออกซิเดชันกับไฮดรอกซิลไอออนสูญเสียอิเล็กตรอนให้แก่โฮลในวาเลนซ์แบนด์กลายเป็นไฮดรอกซิล เรดิคอล (OH → OH + e, E = +0.199 eV)^[17] จากนั้นอนุมูลอิสระที่เกิดขึ้นทำปฏิกิริยากับ สารอินทรีย์และเกิดการย่อยสลายสารอินทรีย์ในสารละลายจนได้ผลิตภัณฑ์สุดท้าย คือ คาร์บอนไดออกไซด์และน้ำ ซึ่งจากกลไกที่กล่าวมาข้างต้นแสดงให้เห็นว่าการเกิดการรวมตัวกันของ อิเล็กตรอนกับโฮลต่ำลงเนื่องจากอิเล็กตรอนและโฮลสามารถเคลื่อนที่ไปยังคอนดักชันแบนด์และ วาเลนซ์แบนด์ของสารประกอบอีกตัวได้ จึงทำให้ประสิทธิภาพในการสลายสีย้อม RhB สูงขึ้นซึ่ง ประสิทธิภาพในการสลายสีย้อมของ AgBr/Bi₂MoO₆ ทุกตัวมีค่ามากกว่า Bi₂MoO₆ เป็น 4-5 เท่า ผลการทดลองที่ 3

รูปที่ 22 XRD pattern ของตัวเร่งปฏิกิริยา 0-10% Agl/Bi₂MoO₆

การศึกษาโครงสร้างผลึกของตัวเร่งปฏิกิริยา 0-10% Agl/Bi₂MoO₆ โดยใช้ XRD ดัง แสดงในรูปที่ 22 เห็นได้ว่าพีคการเลี้ยวเบนของ Bi₂MoO₆ มีโครงสร้าง orthorhombic ของ Bi₂MoO₆ ถูกอ้างอิงด้วย JCPDS no. 21-0102^[25] ซึ่งไม่ปรากฏพีคการเลี้ยวเบนอื่น และเมื่อเติม Agl ลงไปใน Bi₂MoO₆ เห็นได้ว่าจะปรากฏพีคใหม่เกิดขึ้นและมีความเข้มของพีคใหม่เพิ่มขึ้นตามปริมาณของ Agl ที่ เพิ่มขึ้นซึ่งที่ 10% Agl/Bi₂MoO₆ จะเห็นพีคของ Agl ได้ชัดเจนมากขึ้นโดยกำหนดให้ ■ คือ Agl ซึ่งมี โครงสร้างเฮกซะโกนอล (hexagonal) ถูกอ้างอิงด้วย JCPDS No. 09-0374^[25] เห็นได้ว่า Agl/Bi₂MoO₆ มี Agl และ Bi₂MoO₆

การศึกษาทางสัณฐานวิทยาของตัวเร่งปฏิกิริยาโดยใช้กล้องจุลทรรศน์ส่องกราด เพื่อ ศึกษาสัณฐานและลักษณะพื้นผิวของตัวเร่งปฏิกิริยา รูปที่ 23 (a) เห็นได้ว่าอนุภาคของ Bi₂MoO₆ มี ลักษณะเป็นแผ่น ไม่มีอนุภาคอื่นๆเกาะบนพื้นผิว และเมื่อเติม AgI ลงไปใน Bi₂MoO₆ ตามอัตราส่วน 1% 2.5% 5% และ 10% รูปที่ 23 (b-e) จะเห็นได้ว่ารูปร่างอนุภาคไม่เปลี่ยนแปลง เนื่องจากการเติม AgI ลงไปไม่มีผลต่อรูปร่างของอนุภาค Bi₂MoO₆ แต่อนุภาคของ AgI จะเกาะอยู่บนพื้นผิวของ Bi₂MoO₆ ซึ่งเป็นตัวรองรับ โดยสังเกตได้จากรูปที่ 23 (d-e) ที่ 5% และ 10% AgI/Bi₂MoO₆ จะเห็น ได้ชัดเจนว่ามีอนุภาคเล็กๆของ AgI มาเกาะบนผิวหน้าของอนุภาค Bi₂MoO₆ จำนวนมากและกระจาย ตัวอย่างสม่ำเสมอ ซึ่งอนุภาคของ AgI ที่มาเกาะบนผิวหน้าของอนุภาค Bi₂MoO₆ จะส่งผลให้การ รวมกันของอิเล็กตรอนกับโฮลต่ำลงและช่วยเพิ่มประสิทธิภาพในสลายสีย้อม RhB

รูปที่ 23 ภาพจากกล้อง SEM ของตัวเร่งปฏิกิริยา (a) Bi₂MoO₆ (b) 1% Agl/Bi₂MoO₆ (c) 2.5% Agl/Bi₂MoO₆ (d) 5% Agl/Bi₂MoO₆ และ (e) 10% Agl/Bi₂MoO₆ ที่กำลังขยาย 30,000 เท่า

การกระจายตัวของอนุภาคของอะตอมแต่ละชนิดของตัวเร่งปฏิกิริยา ถูกศึกษาด้วย เทคนิค EDS ดังแสดงในรูปที่ 24

รูปที่ 24 ภาพจาก SEM ของตัวเร่งปฏิกิริยา (a) 10% Agl/Bi₂MoO₆ และแสดงภาพจาก EDS mapping ของตัวเร่งปฏิกิริยา 10% Agl/Bi₂MoO₆ (b) Ag (c) I (d) Bi (e) Mo และ (f) O

รูปที่ 24 (a) จะเห็นได้ว่าอนุภาคของ Agl มีการกระจายตัวอย่างสม่ำเสมอบนผิวหน้า ของอนุภาค Bi₂MoO₆ ซึ่งในรูปที่ 24 (b-c) เห็นได้ว่าธาตุ Ag และ I มีกระจายตัวอย่างสม่ำเสมอ และ ในรูปที่ 24 (d-f) อะตอมของ Bi₂MoO₆ ซึ่งเป็นตัวรองรับมีอนุภาคของ Agl จึงจะเห็นธาตุ Bi Mo และ ธาตุ O จากผลข้างต้นเป็นยืนยันได้ว่าอนุภาค Agl กระจายตัวบนผิวหน้าของอนุภาค Bi₂MoO₆

รูปที่ 25 แสดงภาพ TEM SAED pattern และภาพ HRTEM (a-b) Bi₂MoO₆ (c) 5% Agl/Bi₂MoO₆ และ (d-f) 10% Agl/Bi₂MoO₆

รูปที่ 25 (a) เห็นได้ว่าอนุภาคของ Bi₂MoO₆ มีรูปร่างเป็นแผ่นเรียบไม่มีอนุภาคใดๆ มาเกาะโดยมีความยาวของแต่ละด้านประมาณ 200-500 nm รูปที่ 25 (b) SAED pattern เห็นได้ว่า แผ่นของอนุภาคของ Bi₂MoO₆ เป็นผลึกเดี่ยวโดยแผ่นผลึกมีระนาบ (060) (062) และ (002) โดยลำ electron ลงมาในทิศ [100] และเมื่อเติม Agl ลงไปใน Bi₂MoO₆ ดังแสดงในรูปที่ 25 (c) ที่ 5% Agl/Bi₂MoO₆ จะเห็นได้ว่ามีอนุภาคขนาดเล็กมาเกาะบนผิวหน้าของอนุภาค Bi₂MoO₆ และในรูปที่ 25 (d-e) ที่ 10% Agl/Bi₂MoO₆ เห็นได้ว่ามีอนุภาคขนาดเล็กซึ่งมีเส้นผ่านศูนย์กลางประมาณ 10 nm มา เกาะบนผิวหน้าของอนุภาค Bi₂MoO₆ และจากภาพที่กำลังขยายสูงรูปที่ 25 (f) จะเห็นว่ามีอนุภาค Agl

รูปที่ 26 (a-e) แสดงสเปกตรัม XPS ของตัวเร่งปฏิกิริยา 10% Agl/Bi₂MoO₆ โดย สามารถพบพีคของ Ag I Bi Mo และ O รูปที่ 26 (a) Ag $3d_{5/2}$ และ Ag $3d_{3/2}$ แสดงในพีค 367.9 และ 373.7 eV ซึ่งเป็น Ag⁺ ของ Agl^[26] รูปที่ 26 (b) I $3d_{5/2}$ และ I $3d_{3/2}$ แสดงในพีคที่ 619.7 และ 613.2 $eV^{[39]}$ รูปที่ 26 (c) Bi $4f_{5/2}$ และ Bi $4f_{7/2}$ แสดงในพีคที่ 163.6 และ 158.2 eV ซึ่งทุกตัวของ Bi อยู่ใน ฟอร์มของ Bi^{3+[9]} รูปที่ 26 (d) Mo $3d_{3/2}$ และ Mo $3d_{5/2}$ ของ Mo 4d แสดงในพีคที่ 35.6 และ 37.4 eV ซึ่งเป็น Mo^{6+[9]} สำหรับพีคของ O สามารถเห็นได้หลายพีคคือ 530.00 530.70 531.82 และ 532.84 eV ซึ่งเป็น Bi-O Mo-O O-H ซึ่งดูดซับ H₂O ที่ผิวหน้าและพันธะ C-O เกิดจากก๊าซ คาร์บอนไดออกไซด์ที่ผิวของตัวเร่งปฏิกิริยาเอง^[28-29] จากผลข้างต้นแสดงให้เห็นมี Agl และ Bi₂MoO₆ เป็นองค์ประกอบของ 10% Agl/Bi₂MoO₆ ซึ่งสอดคล้องกับผลของ XRD SEM EDS และ TEM

รูปที่ 26 แสดงสเปกตรัม XPS ของตัวเร่งปฏิกิริยา 10% AgI/Bi₂MoO₆ (a) Ag 3d (b) I 3d (c) Bi 4f (d) Mo 3d และ (e) O 2s

รูปที่ 27 (a) แสดงค่าการดูดกลืนแสงของสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 10% Agl/Bi₂MoO₆ ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 40 นาที (b) แสดงประสิทธิภาพในการสลายสีย้อม RhB โดย ใช้ตัวเร่งปฏิกิริยา 0-10% Agl/Bi₂MoO₆ (c) แสดงการเกิดปฏิกิริยาอันดับที่ 1 โดยใช้ตัวเร่งปฏิกิริยา 0-10% Agl/Bi₂MoO₆ (d) แสดงเสถียรภาพการนำกลับมาใช้ซ้ำของตัวเร่งปฏิกิริยา 10% Agl/Bi₂MoO₆

กิจกรรมการเร่งปฏิกิริยาด้วยแสงของสารตัวอย่างศึกษาโดยการสลายสีย้อม RhB ภายใต้แสงที่มองเห็นได้ เพื่อศึกษาประสิทธิภาพในการสลายสารอินทรีย์ของสารตัวอย่าง ดังแสดงใน รูปที่ 27 จากรูปที่ 27 (a) แสดงค่าการดูดกลืนแสงของสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 10% Agl/Bi₂MoO₆ โดยฉายแสงที่มองเห็นได้ ณ เวลาที่แตกต่างกัน แสดงให้เห็นว่าค่าการดูดกลืนแสงสูงสุด ของสารละลายสีย้อม RhB มีค่า $\lambda_{
m max}$ อยู่ที่ 554 nm โดยเมื่อทำการฉายแสงที่มองเห็นได้ผ่านไป 40 ้นาที ค่าการกลืนแสงของสีย้อม RhB มีค่าลดลงอย่างต่อเนื่องและเห็นได้อีกว่าค่า $\lambda_{\scriptscriptstyle max}$ ของสีย้อมมีค่า ลดลงด้วยจาก 554 nm ไปยัง 498 nm เนื่องจากเกิดการสลายตัวของสีย้อม RhB และมีการ เปลี่ยนแปลงโครงสร้างจึงทำให้ค่า λ_{\max} เกิดการเปลี่ยนแปลงซึ่งเกิดจากปฏิกิริยา N-deethylation ของโมเลกุลสี่ย้อม RhB ระหว่างการฉายแสง โดยการสลายสี่ย้อม Rhodamine B ให้กลายเป็น Rhodamine โดยเห็นว่าเริ่มต้นค่าการดูดกลืนแสง λ_{\max} มีค่า 554 nm เมื่อเวลาผ่านไป ค่า λ_{\max} ็ลดลงมาที่ประมาณ 539 nm ซึ่งเป็นสลายสีย้อม Rhodamine B (RhB) เป็น N,N,N'-triethyl rhodamine หลังจากนั้นสลายตัวเป็น N,N'-diethyl rhodamine ที่ค่า λ_{max} = 522 nm และ ้สลายตัวเป็น N-ethyl rhodamine ที่ค่า λ_{\max} = 510 nm และสุดท้ายสลายตัวเป็น Rhodamine ที่ ค่า λ_{\max} = 498 nm ซึ่งเกิดจากการสลายตัวของ conjugated ของ Rhodamine B โดยการ เปลี่ยนแปลงค่า $\lambda_{
m max}$ จาก 554 nm ไปยัง 498 nm $^{[31-33]}$ ดังแสดงโครงสร้างของสารอนุพันธ์ที่เกิดขึ้น ดังแสดงในรูปที่ 11 จากงานวิจัยของ K. Jothivenkatachalam และคณะ^[30] และ S. Yang และ คณะ^[34] ได้รายงานว่าการสลายสีย้อม RhB นั้นมีด้วยกัน 4 ขั้นตอนโดยศึกษาด้วยวิธี HPLC ดังนี้ ขั้นตอนที่ 1 N-deethylation เป็นขั้นตอนแรกซึ่งเป็นกำจัดหมู่ N-ethyl ออกจากโมเลกุลของสีย้อม RhB ขั้นตอนต่อมาคือ chromophore cleavage ซึ่งเป็นกำจัด benzene intermediates ออก ้ขั้นตอนต่อมาคือ opening-ring ซึ่งเป็นการทำให้แตกวงสารประกอบอนุพันธ์ของสารมัธยันตร์ กลายเป็นสารประกอบอินทรีย์สานโซ่ตรงที่มีน้ำหนักโมเลกุลน้อย ยกตัวอย่างเช่น succinic acid 2hydroxypentanedioic acid และ adipic acid และขั้นตอนสุดท้ายคือมิเนรัลไลเซชั่นซึ่งเป็นการทำ ให้สารอินทรีย์เกิดการสลายตัวกลายเป็นน้ำและก๊าซคาร์บอนไดออกไซด์ในที่สุดดังแสดงในรูปที่ 12 ประสิทธิภาพการสลายสีย้อม RhB (decolorization efficacy) สามารถหาค่าได้โดย การวัดค่าการดูดกลืนแสงที่ความยาวคลื่น 554 nm ซึ่งเป็นค่าความยาวคลื่นการดูดกลืนแสงของสีย้อม

RhB จากนั้นสามารถคำนวณประสิทธิภาพในการสลายสีย้อมได้จากสมการที่ 13

จากรูปที่ 27 (b) แสดงประสิทธิภาพในการสลายสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 0-10% Agl/Bi₂MoO₆ ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 40 นาที เห็นได้ว่าสีย้อม RhB ไม่เกิด การสลายตัว แสดงว่าสีย้อม RhB มีความเสถียรภาพต่อปฏิกิริยาโฟโตไลซิส (photolysis) ดังนั้นจะ เห็นได้ว่าสารละลายสีย้อม RhB มีโครงสร้างที่เสถียรภาพสูงเนื่องจากเป็นสารประกอบจำพวก ไฮโดรคาร์บอน ทำให้ไม่สามารถสลายตัวได้ในธรรมชาติ จึงถูกเลือกมาเป็นตัวแทนของสารอินทรีย์ อีก ทั้งสารละลาย RhB มีสีชมพู ทำให้สามารถสังเกตในการเปลี่ยนแปลงปฏิกิริยาเคมีได้ง่ายในระหว่างการ ทดลอง และเมื่อใช้ตัวเร่งปฏิกิริยา Bi₂MoO₆ แล้วทำการฉายแสงที่มองเห็นได้ เมื่อเวลาผ่านไป 40 นาที พบว่าเกิดการสลายสีย้อม RhB 17.21% แต่อย่างไรเมื่อใช้ตัวเร่งปฏิกิริยา Agl/Bi₂MoO₆ ประสิทธิภาพการสลายตัวของสีย้อม RhB สูงขึ้นตามเปอร์เซ็นต์การเติม AgI โดยที่ 10% Agl/Bi₂MoO₆ มีประสิทธิภาพในการสลายสีย้อมสูงสุดกว่าสารตัวอย่างอื่น ๆ โดยมีประสิทธิภาพในการ สลายสีย้อม RhB 92.89% เมื่อเวลาผ่านไป 40 นาที โดยสามารถสรุปประสิทธิภาพการสลายของสี ย้อม RhB ดังตารางที่ 5

ประสิทธิภาพการสลายตัวสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 0-10% Agl/Bi₂MoO₆ สามารถคำนวณหาอัตราการเกิดปฏิกิริยาการสลายตัวของสีย้อม RhB ภายใต้สมมติฐานการ เกิดปฏิกิริยาเสมือนอันดับที่ 1 จากกฎของแลงเมียร์-ฮิงเซลวูด (Langmuir-Hinshelwood) ซึ่งใช้ สำหรับการอธิบายการเกิดปฏิกิริยาที่ผิวหน้าของตัวเร่งปฏิกิริยา โดยอัตราการเกิดปฏิกิริยาคำนวณได้ จากสมการที่ 10

จากสมการที่ 10 สามารถบ่งบอกถึงความแตกต่างของระบบการปฏิกิริยาด้วยแสง จากรูปที่ 27 (c) แสดงกราฟความสัมพันธ์ระหว่าง ln (C_t/C_0) กับเวลาในการทำปฏิกิริยา (t) โดยที่ สามารถคำนวณอัตราการเกิดปฏิกิริยาจากความชันของกราฟ จากตารางที่ 5 เห็นได้ว่าอัตราการ เกิดปฏิกิริยาของ Bi₂MoO₆ เท่ากับ 5.39×10⁻³ min⁻¹ ซึ่งมีค่ามากว่า Agl/Bi₂MoO₆ ทุกตัวจึงทำให้ ประสิทธิภาพในการสลายสีย้อม RhB น้อยกว่า Agl/Bi₂MoO₆ โดยที่ 1.0% Agl/Bi₂MoO₆ มีค่า 4.67×10⁻² และที่ 2.5% Agl/Bi₂MoO₆ มีค่า 6.02×10⁻² min⁻¹ และเมื่อปริมาณของ Agl เพิ่มขึ้นก็ทำ ให้อัตราการเกิดปฏิกิริยาเพิ่มขึ้นด้วยที่ 5.0% Agl/Bi₂MoO₆ เท่ากับ 6.33×10⁻² min⁻¹ และที่ 10.0% Agl/Bi₂MoO₆ มีอัตราการเกิดปฏิกิริยาสูงสุดเท่ากับ 6.60×10⁻² min⁻¹ ทำให้มีประสิทธิภาพในการ สลายสีย้อม RhB สูงสุดเช่นกัน

จากอัตราการเกิดปฏิกิริยาการสลายสีย้อม RhB ที่คำนวณได้จากการสมการข้างต้น สามารถนำค่าคงที่อัตราการเกิดปฏิกิริยา มาคำนวณหาค่าครึ่งชีวิตของปฏิกิริยาการสลายสีย้อม RhB ได้ จากสมมติฐานที่ว่าเกิดปฏิกิริยาอันดับที่ 1 จึงสามารถคำนวณหาค่าครึ่งชีวิตของปฏิกิริยาการสลาย สีย้อม RhB ได้จากสมการที่ 12

จากตารางที่ 5 เห็นได้ว่าค่าครึ่งชีวิตของปฏิกิริยาที่คำนวณได้มีค่าสอดคล้องกับอัตรา การเกิดปฏิกิริยาโดยที่เมื่ออัตราการเกิดปฏิกิริยามีค่าน้อยค่าครึ่งชีวิตของปฏิกิริยาจะมีค่ามาในทาง ตรงกันข้ามเมื่ออัตราการเกิดปฏิกิริยามีค่ามากค่าครึ่งชีวิตของปฏิกิริยาจะมีค่าน้อย

	ประสิทธิภาพในการ	อัตราการเกิดปฏิกิริยา		ค่าครึ่งชีวิตของ
ตัวเร่งปฏิกิริยา	สลายสีย้อม	k _{app}	D ²	ปฏิกิริยา
	(%)	(min ⁻¹)	К	(min)
Bi ₂ MoO ₆	17.21%	5.39×10 ⁻³	0.9461	118
1.0% AgI/Bi ₂ MoO ₆	85.24%	4.67×10 ⁻²	0.9978	13.6
2.5% AgI/Bi ₂ MoO ₆	91.36%	6.02×10 ⁻²	0.9987	10.6
5.0% AgI/Bi ₂ MoO ₆	92.27%	6.33×10 ⁻²	0.9932	10.09
10.0% AgI/Bi ₂ MoO ₆	92.89%	6.60×10 ⁻²	0.9229	9.68

ตารางที่ 5 ประสิทธิภาพในการสลายสีย้อม อัตราการเกิดปฏิกิริยาอันดับที่ 1 R² และค่าครึ่งชีวิตของ ปฏิกิริยา ของตัวเร่งปฏิกิริยา 0-10% Agl/Bi₂MoO₆

แต่อย่างไรก็ตาม การใช้งานของตัวเร่งปฏิกิริยาคำนึงถึงความเสถียรภาพในการใช้ งาน ดังนั้นจึงได้ทดสอบการนำกลับมาใช้ใหม่ของตัวเร่งปฏิกิริยา โดยทดสอบการใช้ซ้ำจำนวน 5 ครั้ง ของตัวเร่งปฏิกิริยา10% Agl/Bi₂MoO₆ โดยการนำตัวเร่งปฏิกิริยาเติมในสารสลายสีย้อม RhB และ ฉายแสงที่มองเห็นได้จากนั้นเมื่อทำปฏิกิริยาเสร็จ นำสารละลายมากรองแยกตัวเร่งปฏิกิริยาออกมา ล้างด้วยน้ำ RO และเอทานอลหลายๆครั้งและอบให้แห้ง จากนั้นนำตัวเร่งปฏิกิริยามาใช้ซ้ำจนครบ 5 ครั้งจึงได้ผลการทดลองดังแสดงในรูปที่ 27 (d) แสดงให้เห็นว่า 10% Agl/Bi₂MoO₆ มีความเสถียรภาพ สูงเนื่องจากประสิทธิภาพการสลายสีย้อม RhB ในการนำกลับมาใช้ซ้ำครั้งที่ 5 ยังมีค่าสูงถึง 78.74% ดังนั้นตัวเร่งปฏิกิริยา10% AgCl/Bi₂MoO₆ มีความเหมาะสมที่จะนำมาใช้งานเนื่องจากมีประสิทธิภาพ และความเสถียรภาพสูง

กลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Bi₂MoO₆ และ Agl/Bi₂MoO₆ ซึ่งมี ความสำคัญต่อการสลายสีย้อม RhB ที่กล่าวมาข้างต้นได้ถูกเสนอในรูปที่ 13 ผลการทดลองที่ 1 และ รูปที่ 28

รูปที่ 28 กลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Agl/Bi2MoO6

เมื่อเปรียบเทียบกับกลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Bi2MoO6 เมื่อเติม ลงในตัวเร่งปฏิกิริยา Bi₂MoO₆ โดยการตกตะกอนและกลายเป็นวัสดุผสมทำให้กลไกการ Agl เกิดปฏิกิริยาโฟโตคะตะไลติกของ Agl/Bi2MoO6 แตกต่างไปจาก Bi2MoO6 ดังแสดงในรูปที่ 28 เมื่อ ้ตัวเร่งปฏิกิริยาได้รับพลังงานกระตุ้นจากแสงที่มองเห็นได้ อิเล็กตรอนจากวาเลนซ์แบนด์ถูกกระตุ้นขึ้น ้ไปยังคอนดักชันแบนด์ ทำให้เกิดโฮลที่วาเลนซ์แบนด์ของทั้งสองตัว จากนั้นอิเล็กตรอนจากคอนดักชัน แบนด์ของ Agl (E_{VB} = -0.43 eV)^[40] เคลื่อนที่ไปยังคอนดักชันแบนด์ของ Bi₂MoO₆ (E_{VB} = -0.32 eV) ้เนื่องจากมีค่าศักย์ไฟฟ้าคอนดักซันแบนด์ของ Agl น้อยกว่า Bi₂MoO₆ และจากนั้นอิเล็กตรอนเคลื่อนที่ ้ไปที่ผิวของตัวเร่งปฏิกิริยาและเกิดปฏิกิริยารีดักชั้นกับ O2 จากสารละลายซึ่งเป็นตัวรับอิเล็กตรอนมา ทำปฏิกิริยาที่ผิวของตัวเร่งปฏิกิริยากลายเป็นไอออนซุปเปอร์ออกไซด์เรดิคอล (superoxide radicals, ·O_) ได้เนื่องจากศักย์ไฟฟ้าของ O₂/O₂ มีค่าน้อยกว่าค่าศักย์ไฟฟ้าของคอนดักชันแบนด์ของ Ag $(O_2 + e^- \rightarrow O_2^-, E^0 = -0.33 eV)^{[17]}$ และออกซิเจนจึงรับอิเล็กตรอนกลายเป็นไฮโดรเจนเปอร์ ออกไซด์ (O₂ + 2H⁺ + 2e⁻ \rightarrow H₂O₂, E⁰ = +0.682 eV)^[18] จากนั้น H₂O₂ รับอิเล็กตรอนและ กลายเป็นไฮดรอกซิลเรดิคอล (H₂O₂ + e → OH + OH) ซึ่งเป็นอนุมูลอิสระหรือตัวออกซิแดนท์ (oxidant) ในกระบวนการเร่งปฏิกิริยาด้วยแสง ในขณะเดียวกันโฮลจากวาเลนซ์แบนด์ของ Bi₂MoO₆ $(E_{CB} = +2.71 \text{ eV})$ เคลื่อนที่ไปยังวาเลนซ์แบนด์ของ Agl $(E_{CB} = +2.61 \text{ eV})^{[40]}$ เนื่องจากมีค่า ้ศักย์ไฟฟ้าวาเลนซ์แบนด์ของ Agl น้อยกว่า Bi₂MoO₆ จากนั้นโฮลจะเกิดปฏิกิริยาออกซิเดชันกับ ไฮด •OH + e, E⁰= +0.199 eV)^[17] จากนั้นอนุมูลอิสระที่เกิดขึ้นทำปฏิกิริยากับสารอินทรีย์และเกิดการ ย่อยสลายสารอินทรีย์ในสารละลายจนได้ผลิตภัณฑ์สุดท้าย คือ คาร์บอนไดออกไซด์และน้ำ ซึ่งจาก

กลไกที่กล่าวมาข้างต้นแสดงให้เห็นว่าการเกิดการรวมตัวกันของอิเล็กตรอนกับโฮลต่ำลงเนื่องจาก อิเล็กตรอนและโฮลสามารถเคลื่อนที่ไปยังคอนดักชันแบนด์และวาเลนซ์แบนด์ของสารอีกตัวได้ จึงทำ ให้ประสิทธิภาพในการสลายสีย้อม RhB สูงขึ้นซึ่งประสิทธิภาพในการสลายสีย้อมของ Agl/Bi₂MoO₆ ทุกตัวมีค่ามากกว่า Bi₂MoO₆ เป็น 4 เท่า ผลการทดลองที่ 4

รูปที่ 29 XRD pattern ของตัวเร่งปฏิกิริยา 0-10% Ag₃PO₄/Bi₂MoO₆

การศึกษาโครงสร้างผลึกของตัวเร่งปฏิกิริยา 0-10% Ag₃PO₄/Bi₂MoO₆ โดยใช้ XRD ดังแสดงในรูปที่ 29 เห็นได้ว่าพีคการเลี้ยวเบนของ Bi₂MoO₆ บอกได้ว่าเป็นเฟส orthorhombic ของ Bi₂MoO₆ ถูกอ้างอิงด้วย JCPDS no. 21-0102^[25] ซึ่งไม่ปรากฏพีคการเลี้ยวเบนอื่น และเมื่อเติม Ag₃PO₄ ลงไปใน Bi₂MoO₆ เห็นได้ว่าจะปรากฏพีคใหม่เกิดขึ้นคือพีคที่ 2 θ = 33.29° ระนาบ (210) ซึ่งซ้อนทับกับพีคที่ 2 θ = 33.29° ระนาบ (002) ของ Bi₂MoO₆ กำหนดให้ **–** คือ Ag₃PO₄ ซึ่งมี โครงสร้าง cubic ถูกอ้างอิงด้วย JCPDS No. 06-0505^[25] เห็นได้ว่า Ag₃PO₄/Bi₂MoO₆ มี Ag₃PO₄ และ Bi₂MoO₆

การศึกษาทางสัณฐานวิทยาของตัวเร่งปฏิกิริยาโดยใช้กล้องจุลทรรศน์ส่องกราด เพื่อ ศึกษาสัณฐานและลักษณะพื้นผิวของตัวเร่งปฏิกิริยา รูปที่ 30 (a) เห็นได้ว่าอนุภาคของ Bi₂MoO₆ มี ลักษณะเป็นแผ่น ไม่มีอนุภาคอื่นๆเกาะบนพื้นผิว และเมื่อเติม Ag₃PO₄ ลงไปใน Bi₂MoO₆ ตาม อัตราส่วน 1% 2.5% 5% และ 10% รูปที่ 30 (b-e) จะเห็นได้ว่าอนุภาคไม่มีลักษณะเปลี่ยนแปลงไป ซึ่งการเติม Ag₃PO₄ ลงไปไม่มีผลต่อรูปร่างของอนุภาค Bi₂MoO₆ แต่อนุภาคของ Ag₃PO₄ จะเกาะอยู่ บนพื้นผิวของ Bi₂MoO₆ ซึ่งเป็นตัวรองรับ โดยสังเกตได้จากรูปที่ 30 (d-e) ที่ 5% และ 10% Ag₃PO₄/Bi₂MoO₆ จะเห็นได้ชัดเจนว่ามีอนุภาคเล็กๆของ Ag₃PO₄ มาเกาะบนผิวหน้าของอนุภาค Bi₂MoO₆ จำนวนมากและกระจายตัวอย่างสม่ำเสมอ ซึ่งอนุภาคของ Ag₃PO₄ ที่มาเกาะบนผิวหน้าของ อนุภาค Bi₂MoO₆ จะส่งผลให้การรวมกันของอิเล็กตรอนกับโฮลต่ำลงและช่วยเพิ่มประสิทธิภาพใน สถายสีย้อม RhB

รูปที่ 30 ภาพจากกล้อง SEM ของตัวเร่งปฏิกิริยา (a) Bi₂MoO₆ (b) 1% Ag₃PO₄/Bi₂MoO₆ (c) 2.5% Ag₃PO₄/Bi₂MoO₆ (d) 5% Ag₃PO₄/Bi₂MoO₆ และ (e) 10% Ag₃PO₄/Bi₂MoO₆ ที่กำลังขยาย 30,000 เท่า

การกระจายตัวของอนุภาคของอะตอมแต่ละชนิดของตัวเร่งปฏิกิริยา ถูกศึกษาด้วย เทคนิค EDS ดังแสดงในรูปที่ 31

รูปที่ 31 ภาพจาก SEM ของตัวเร่งปฏิกิริยา (a) 10% Ag₃PO₄/Bi₂MoO₆ และแสดงภาพจาก EDS mapping ของตัวเร่งปฏิกิริยา 10% Ag₃PO₄/Bi₂MoO₆ (b) Ag (c) P (d) Bi (e) Mo และ (f) O

รูปที่ 31 (a) จะเห็นได้ว่าอนุภาคของ Ag₃PO₄ มีการกระจายตัวอย่างสม่ำเสมอบน ผิวหน้าของอนุภาค Bi₂MoO₆ ซึ่งในรูปที่ 31 (b-c) เห็นได้ว่าธาตุ Ag และ P มีกระจายตัวอย่าง สม่ำเสมอ และในรูปที่ 31 (d-f) อะตอมของ Bi₂MoO₆ ซึ่งเป็นตัวรองรับมีอนุภาคของ Ag₃PO₄ จึงจะ เห็นธาตุ Bi Mo และ O จากผลข้างต้นเป็นยืนยันได้ว่าอนุภาค Ag₃PO₄ กระจายตัวบนผิวหน้าของ อนุภาค Bi₂MoO₆

รูปที่ 32 แสดงภาพ TEM SAED pattern และภาพ HRTEM (a-b) Bi₂MoO₆ (c) 5% Ag₃PO₄/Bi₂MoO₆ และ (d-f) 10% Ag₃PO₄/Bi₂MoO₆

รูปที่ 32 (a) เห็นได้ว่าอนุภาคของ Bi₂MoO₆ มีรูปร่างเป็นแผ่นเรียบโดยมีความยาว ของแต่ละด้านประมาณ 200-500 nm รูปที่ 32 (b) SAED pattern เห็นได้ว่าแผ่นของอนุภาคของ Bi₂MoO₆ เป็นผลึกเดี่ยวโดยแผ่นผลึกมีระนาบ (060) (062) และ (002) โดยลำ electron ลงมาในทิศ [100] และเมื่อเติม Ag₃PO₄ ลงไปใน Bi₂MoO₆ ดังแสดงในรูปที่ 32 (c) ที่ 5% Ag₃PO₄/Bi₂MoO₆ จะ เห็นได้ว่ามีอนุภาคขนาดเล็กมาเกาะบนผิวหน้าของอนุภาค Bi₂MoO₆ และในรูปที่ 32 (d-e) ที่ 10% Ag₃PO₄/Bi₂MoO₆ เห็นได้ว่ามีอนุภาคขนาดเล็กซึ่งมีเส้นผ่านศูนย์กลางประมาณ 20 nm มาเกาะบน ผิวหน้าของอนุภาค Bi₂MoO₆ เพิ่มมากขึ้นและมีความสม่ำเสมอ และจากภาพที่กำลังขยายสูงรูปที่ 32 (f) จะเห็นว่ามีอนุภาค Ag₃PO₄ เกาะบนผิวของอนุภาค Bi₂MoO₆ โดยสามารถเห็นระนาบมีความกว้าง ของระนาบ (211) เท่ากับ 0.237 nm ของ Ag₃PO₄ รูปที่ 33 (a-e) แสดงสเปกตรัม XPS ของตัวเร่งปฏิกิริยา 10% AgCl/Bi₂MoO₆ โดย สามารถพบพีคของ Ag P Bi Mo และ O รูปที่ 33 (a) Ag 3d_{5/2} และ Ag 3d_{3/2} แสดงในพีคที่ 368.0 และ 373.7 eV ซึ่งเป็น Ag^{+[26]} รูปที่ 33 (b) P⁵⁺ 2p แสดงในพีคที่ 132.7 eV^[41] รูปที่ 33(c) Bi 4f_{5/2} และ Bi 4f_{7/2} แสดงในพีคที่ 163.6 และ 158.2 eV ซึ่งทุกตัวของ Bi อยู่ในฟอร์มของ Bi^{3+[9]} รูปที่ 33 (d) Mo 3d_{3/2} และ Mo 3d_{5/2} ของ Mo 4d แสดงในพีคที่ 35.6 และ 37.4 eV ซึ่งเป็น Mo^{6+[9]} สำหรับ พีคของ O สามารถเห็นได้หลายพีคคือ 530.00 530.70 531.82 และ 532.84 eV ซึ่งเป็น Bi-O Mo-O O-H ซึ่งดูดซับ H₂O ที่ผิวหน้าและพันธะ C-O เกิดจากก๊าซคาร์บอนไดออกไซด์ที่ผิวของตัวเร่งปฏิกิริยา เอง^[28-29] จากผลข้างต้นแสดงให้เห็นมี Ag₃PO₄ และ Bi₂MoO₆ เป็นองค์ประกอบของ 10% Ag₃PO₄/Bi₂MoO₆ ซึ่งสอดคล้องกับผลของ XRD SEM EDS และ TEM

รูปที่ 33 แสดงสเปกตรัม XPS ของตัวเร่งปฏิกิริยา 10% Ag₃PO₄/Bi₂MoO₆ (a) Ag 3d (b) P 2p (c) Bi 4f (d) Mo 3d และ (e) O 2s

กิจกรรมการเร่งปฏิกิริยาด้วยแสงของสารตัวอย่างศึกษาโดยการสลายสีย้อม RhB ภายใต้แสงที่มองเห็นได้ เพื่อศึกษาประสิทธิภาพในการสลายสารอินทรีย์ของสารตัวอย่าง ดังแสดงใน รูปที่ 34 จากรูปที่ 34 (a) แสดงค่าการดูดกลืนแสงของสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 10% AgCl/Bi₂MoO₆ โดยฉายแสงที่มองเห็นได้ ณ เวลาที่แตกต่างกัน แสดงให้เห็นว่าค่าการดูดกลืนแสง สูงสุดของสารละลายสีย้อม RhB มีค่า λ_{max} อยู่ที่ 554 nm โดยเมื่อทำการฉายแสงที่มองเห็นได้ผ่านไป 100 นาที ค่าการกลืนแสงของสีย้อม RhB มีค่าลดลงอย่างต่อเนื่องและเห็นได้อีกว่าค่า λ_{max} ของสีย้อม มีค่าลดลงด้วยจาก 554 nm ไปยัง 498 nm เนื่องจากเกิดการสลายตัวของสีย้อม RhB และมีการ เปลี่ยนแปลงโครงสร้างจึงทำให้ค่า λ_{max} เกิดการเปลี่ยนแปลงซึ่งเกิดจากปฏิกิริยา N-deethylation ของโมเลกุลสีย้อม RhB ระหว่างการฉายแสง โดยการสลายสีย้อม Rhodamine B ให้กลายเป็น Rhodamine โดยเห็นว่าเริ่มต้นค่าการดูดกลืนแสง λ_{max} มีค่า 554 nm เมื่อเวลาผ่านไป ค่า λ_{max} ลดลงมาที่ประมาณ 539 nm ซึ่งเป็นสลายสีย้อม Rhodamine B (RhB) เป็น *N,N,N*-triethyl rhodamine หลังจากนั้นสลายตัวเป็น *N,N*-diethyl rhodamine ที่ค่า $\lambda_{max} = 522$ nm และ สลายตัวเป็น *N*-ethyl rhodamine ที่ค่า $\lambda_{max} = 510$ nm และสุดท้ายสลายตัวเป็น Rhodamine ที่ ค่า $\lambda_{max} = 498$ nm ซึ่งเกิดจากการสลายตัวของ conjugated ของ Rhodamine B โดยการ เปลี่ยนแปลงค่า λ_{max} จาก 554 nm ไปยัง 498 nm^[31-33] ดังแสดงโครงสร้างของสารอนุพันธ์ที่เกิดขึ้น ดังแสดงในรูปที่ 11

รูปที่ 34 (a) แสดงค่าการดูดกลืนแสงของสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 10% Ag₃PO₄/Bi₂MoO₆ ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 100 นาที (b) แสดงประสิทธิภาพในการสลายสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 0-10% Ag₃PO₄/Bi₂MoO₆ (c) แสดงการเกิดปฏิกิริยาอันดับที่ 1 โดยใช้ตัวเร่ง ปฏิกิริยา 0-10% Ag₃PO₄/Bi₂MoO₆ (c) แสดงการเกิดปฏิกิริยาอันดับที่ 1 โดยใช้ตัวเร่ง ปฏิกิริยา 0-10% Ag₃PO₄/Bi₂MoO₆ (d) แสดงเสถียรภาพการนำกลับมาใช้ซ้ำของตัวเร่งปฏิกิริยา 10% Ag₃PO₄/Bi₂MoO₆ (d) แสดงเสถียรภาพการนำกลับมาใช้ซ้ำของตัวเร่งปฏิกิริยา

งานวิจัยของ K. Jothivenkatachalam และคณะ^[30] และ S. Yang และคณะ^[34] ได้ รายงานว่าการสลายสีย้อม RhB นั้นมีด้วยกัน 4 ขั้นตอนโดยศึกษาด้วยวิธี HPLC ดังนี้ ขั้นตอนที่ 1 N-deethylation เป็นขั้นตอนแรกซึ่งเป็นกำจัดหมู่ N-ethyl ออกจากโมเลกุลของสีย้อม RhB ขั้นตอน ต่อมาคือ chromophore cleavage ซึ่งเป็นกำจัด benzene intermediates ออก ขั้นตอนต่อมาคือ opening-ring ซึ่งเป็นการทำให้แตกวงสารประกอบอนุพันธ์ของสารมัธยันตร์กลายเป็นสารประกอบ อินทรีย์สานโซ่ตรงที่มีน้ำหนักโมเลกุลน้อย ยกตัวอย่างเช่น succinic acid 2-hydroxypentanedioic acid และ adipic acid และขั้นตอนสุดท้ายคือมิเนรัลไลเซชั่นซึ่งเป็นการทำให้สารอินทรีย์เกิดการ สลายตัวกลายเป็นน้ำและก๊าซคาร์บอนไดออกไซด์ในที่สุดดังแสดงในรูปที่ 12

ประสิทธิภาพการสลายสีย้อม RhB (decolorization efficacy) สามารถหาค่าได้โดย การวัดค่าการดูดกลืนแสงที่ความยาวคลื่น 554 nm ซึ่งเป็นค่าความยาวคลื่นการดูดกลืนแสงของสีย้อม RhB จากนั้นสามารถคำนวณประสิทธิภาพในการสลายสีย้อมได้จากสมการที่ 13

จากรูปที่ 34 (b) แสดงประสิทธิภาพในการสลายสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 0-10% Ag₃PO₄/Bi₂MoO₆ ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 100 นาที เห็นได้ว่าสีย้อม RhB ไม่เกิดการสลายตัว แสดงว่าสีย้อม RhB มีความเสถียรภาพต่อปฏิกิริยาโฟโตไลซิส (photolysis) ดังนั้น จะเห็นได้ว่าสารละลายสีย้อม RhB มีโครงสร้างที่เสถียรภาพสูงเนื่องจากเป็นสารประกอบจำพวก ไฮโดรคาร์บอน ทำให้ไม่สามารถสลายตัวได้ในธรรมชาติ จึงถูกเลือกมาเป็นตัวแทนของสารอินทรีย์ อีก ทั้งสารละลาย RhB มีสีชมพู ทำให้สามารถสังเกตในการเปลี่ยนแปลงปฏิกิริยาเคมีได้ง่ายในระหว่างการ ทดลอง และเมื่อใช้ตัวเร่งปฏิกิริยา Bi₂MoO₆ แล้วทำการฉายแสงที่มองเห็นได้ เมื่อเวลาผ่านไป 100 นาที พบว่าเกิดการสลายสีย้อม RhB 40.73% แต่อย่างไรเมื่อใช้ตัวเร่งปฏิกิริยา Ag₃PO₄/Bi₂MoO₆ ประสิทธิภาพการสลายตัวของสีย้อม RhB สูงขึ้นการเติม Ag₃PO₄ โดยที่ 1% และ 10% Ag₃PO₄/Bi₂MoO₆ มีประสิทธิภาพในการสลายสีย้อมสูงกว่าสารตัวอย่างอื่น ๆ โดยมีประสิทธิภาพใน การสลายสีย้อม RhB 94.25% และ 98.07% เมื่อเวลาผ่านไป 100 นาที โดยสามารถสรุป ประสิทธิภาพการสลายของสีย้อม RhB ดังตารางที่ 6

ประสิทธิภาพการสลายตัวสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 0-10% AgCl/Bi₂MoO₆ สามารถคำนวณหาอัตราการเกิดปฏิกิริยาการสลายตัวของสีย้อม RhB ภายใต้สมมติฐานการ เกิดปฏิกิริยาเสมือนอันดับที่ 1 (pseudo-first-order) จากกฎของแลงเมียร์-ฮิงเชลวูด (Langmuir-Hinshelwood) ซึ่งใช้สำหรับการอธิบายการเกิดปฏิกิริยาที่ผิวหน้าของตัวเร่งปฏิกิริยา โดยอัตราการ เกิดปฏิกิริยาคำนวณได้จากสมการที่ 10

จากสมการที่ 10 สามารถบ่งบอกถึงความแตกต่างของระบบการปฏิกิริยาด้วยแสง จากรูปที่ 34 (c) แสดงกราฟความสัมพันธ์ระหว่าง ln (C_t/C_0) กับเวลาในการทำปฏิกิริยา (t) โดยที่ สามารถคำนวณอัตราการเกิดปฏิกิริยาจากความชันของกราฟ จากตารางที่ 6 เห็นได้ว่าอัตราการ เกิดปฏิกิริยาของ Bi₂MoO₆ เท่ากับ 5.32×10⁻³ min⁻¹ ซึ่งมีค่ามากว่า Ag₃PO₄/Bi₂MoO₆ ทุกตัวจึงทำ ให้ประสิทธิภาพในการสลายสีย้อม RhB น้อยกว่า Ag₃PO₄/Bi₂MoO₆ โดยที่ 1.0% Ag₃PO₄/Bi₂MoO₆ มีค่าคือ 2.86×10⁻² min⁻¹ ที่ 2.5% Ag₃PO₄/Bi₂MoO₆ มีค่าคือ 1.25×10⁻² min⁻¹ และที่ 5.0% Ag₃PO₄/Bi₂MoO₆ มีค่าคือ 0.99×10⁻² min⁻¹ และเมื่อปริมาณของ Ag₃PO₄ เพิ่มขึ้นก็ทำให้อัตราการ เกิดปฏิกิริยาเพิ่มขึ้นด้วยที่ 10.0% Ag₃PO₄/Bi₂MoO₆ มีอัตราการเกิดปฏิกิริยาสูงสุดเท่ากับ 3.95×10⁻² min⁻¹ ทำให้มีประสิทธิภาพในการสลายสีย้อม RhB สูงสุดเช่นกัน จากอัตราการเกิดปฏิกิริยาการสลายสีย้อม RhB ที่คำนวณได้จากการสมการข้างต้น สามารถนำค่าคงที่อัตราการเกิดปฏิกิริยา มาคำนวณหาค่าครึ่งชีวิตของปฏิกิริยาการสลายสีย้อม RhB ได้ จากสมมติฐานที่ว่าเกิดปฏิกิริยาอันดับที่ 1 จึงสามารถคำนวณหาค่าครึ่งชีวิตของปฏิกิริยาการสลาย สีย้อม RhB ได้จากสมการที่ 12

จากตารางที่ 6 เห็นได้ว่าค่าครึ่งชีวิตของปฏิกิริยาที่คำนวณได้มีค่าสอดคล้องกับอัตรา การเกิดปฏิกิริยาโดยที่เมื่ออัตราการเกิดปฏิกิริยามีค่าน้อยค่าครึ่งชีวิตของปฏิกิริยาจะมีค่ามาก ในทาง ตรงกันข้ามเมื่ออัตราการเกิดปฏิกิริยามีค่ามากค่าครึ่งชีวิตของปฏิกิริยาจะมีค่าน้อย

~ ~ ~	-			
	ประสิทธิภาพใน	อัตราการเกิดปฏิกิริยา		ค่าครึ่งชีวิตของ
ตัวเร่งปฏิกิริยา	การสลายสีย้อม	k _{app}	D ²	ปฏิกิริยา
	(%)	(min ⁻¹)	К	(min)
Bi ₂ MoO ₆	40.73%	5.32×10 ⁻³	0.9928	130
1.0% Ag ₃ PO ₄ /Bi ₂ MoO ₆	94.25%	2.86×10 ⁻²	0.9841	22.34
2.5% Ag ₃ PO ₄ /Bi ₂ MoO ₆	71.61%	1.25×10 ⁻²	0.9392	51.12
5.0% Ag ₃ PO ₄ /Bi ₂ MoO ₆	62.93%	0.99×10 ⁻²	0.9566	64.54
10.0% Ag ₃ PO ₄ /Bi ₂ MoO ₆	98.07%	3.95×10 ⁻²	0.9352	16.18

ตารางที่ 6 ประสิทธิภาพในการสลายสีย้อม อัตราการเกิดปฏิกิริยาอันดับที่ 1 R² และค่าครึ่งชีวิตของ ปฏิกิริยาของตัวเร่งปฏิกิริยา 0-10% Ag₃PO₄/Bi₂MoO₅

แต่อย่างไรก็ตาม การใช้งานของตัวเร่งปฏิกิริยาคำนึงถึงความเสถียรภาพในการใช้

งาน ดังนั้นจึงได้ทดสอบการนำกลับมาใช้ใหม่ของตัวเร่งปฏิกิริยา โดยทดสอบการใช้ซ้ำจำนวน 5 ครั้ง ของตัวเร่งปฏิกิริยา 10% Ag₃PO₄/Bi₂MoO₆ โดยการนำตัวเร่งปฏิกิริยาเติมในสารสลายสีย้อม RhB และฉายแสงที่มองเห็นได้จากนั้นเมื่อทำปฏิกิริยาเสร็จ นำสารละลายมากรองแยกตัวเร่งปฏิกิริยา ออกมา ล้างด้วยน้ำ RO และเอทานอลหลายๆครั้งและอบให้แห้ง จากนั้นนำตัวเร่งปฏิกิริยามาใช้ซ้ำจน ครบ 5 ครั้งจึงได้ผลการทดลองดังแสดงในรูปที่ 34 (d) แสดงให้เห็นว่า 10% Ag₃PO₄/Bi₂MoO₆ มี ความเสถียรภาพสูงเนื่องจากประสิทธิภาพการสลายสีย้อม RhB ในการนำกลับมาใช้ซ้ำครั้งที่ 5 ยังมีค่า สูงถึง 85.13% ดังนั้นตัวเร่งปฏิกิริยา 10% Ag₃PO₄/Bi₂MoO₆ มีความเหมาะสมที่จะนำมาใช้งาน เนื่องจากมีประสิทธิภาพและความเสถียรภาพสูง

กลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Bi₂MoO₆ และ Ag₃PO₄/Bi₂MoO₆ ซึ่งมี ความสำคัญต่อการสลายสีย้อม RhB ที่กล่าวมาข้างต้นได้ถูกเสนอในรูปที่ 13 ผลการทดลองที่ 1 และ รูปที่ 35

รูปที่ 35 กลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Ag₃PO₄/Bi₂MoO₆

เมื่อเปรียบเทียบกับกลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Bi2MoO6 เมื่อเติม Ag₃PO₄ ลงในตัวเร่งปฏิกิริยา Bi₂MoO₀ โดยการตกตะกอนและกลายเป็นวัสดุผสมทำให้กลไกการ เกิดปฏิกิริยาโฟโตคะตะไลติกของ Ag₃PO₄/Bi₂MoO₆ แตกต่างไปจาก Bi₂MoO₆ ดังแสดงในรูปที่ 35 เมื่อตัวเร่งปฏิกิริยาได้รับพลังงานกระตุ้นจากแสงที่มองเห็นได้ อิเล็กตรอนจากวาเลนซ์แบนด์ถูกกระตุ้น ้ขึ้นไปยังคอนดักชันแบนด์ ทำให้เกิดโฮลขึ้นที่วาเลนซ์แบนด์ของทั้งสองตัว จากนั้นอิเล็กตรอนจากคอน ดักชันแบนด์ของ Bi₂MoO₆ (E_{vB} = -0.32 eV) เคลื่อนที่ไปยังคอนดักชันแบนด์ของ Ag₃PO₄ (E_{vB} = +0.27 eV)^[42] เนื่องจากมีค่าศักย์ไฟฟ้าคอนดักชันแบนด์ของ Bi₂MoO₆ น้อยกว่า Ag₃PO₄ และจากนั้น อิเล็กตรอนเคลื่อนที่ไปที่ผิวของตัวเร่งปฏิกิริยาและเกิดปฏิกิริยารีดักชันกับ O2 จากสารละลายซึ่งเป็น ตัวรับอิเล็กตรอนมาทำปฏิกิริยาที่ผิวของตัวเร่งปฏิกิริยาแต่ไม่สามารถกลายเป็นไอออนซุปเปอร์ ออกไซด์เรดิคอล (superoxide radicals, O2) ได้เนื่องจากศักย์ไฟฟ้าของ O2/O2 มีค่าน้อยกว่าค่า ศักย์ไฟฟ้าของวาเลนซ์แบนด์ (O₂ + e → O₂, E⁰ = -0.33 eV)^[17] ออกซิเจนจึงรับอิเล็กตรอน กลายเป็นไฮโดรเจนเปอร์ออกไซด์ (O₂ + 2H⁺ + 2e⁻ \rightarrow H₂O₂, E⁰ = +0.682 eV)^[18] จากนั้น H₂O₂ รับอิเล็กตรอนและกลายเป็นไฮดรอกซิลเรดิคอล (H₂O₂ + e → OH + OH) ซึ่งเป็นอนุมูลอิสระ หรือตัวออกซิแดนท์ (oxidant) ในกระบวนการเร่งปฏิกิริยาด้วยแสง ในขณะเดียวกันโฮลจากวาเลนซ์ แบนด์ของ Bi₂MoO₆ (E_{CB} = +2.71 eV) เคลื่อนที่ไปยังวาเลนซ์แบนด์ของ Ag₃PO₄ (E_{CB} = +2.63 เนื่องจากมีค่าศักย์ไฟฟ้าวาเลนซ์แบนด์ของ Ag3PO4 น้อยกว่า Bi2MoO6 จากนั้นโฮลจะ eV)^[42] ้เกิดปฏิกิริยาออกซิเดชันกับไฮดรอกซิลไอออนสูญเสียอิเล็กตรอนให้แก่โฮลในวาเลนซ์แบนด์ กลายเป็นไฮดรอกซิลเรดิคอล (OH → OH + e, E = +0.199 eV)^[17] จากนั้นอนุมูลอิสระที่เกิดขึ้น

ทำปฏิกิริยากับสารอินทรีย์และเกิดการย่อยสลายสารอินทรีย์ในสารละลายจนได้ผลิตภัณฑ์สุดท้าย คือ คาร์บอนไดออกไซด์และน้ำ ซึ่งจากกลไกที่กล่าวมาข้างต้นแสดงให้เห็นว่าการเกิดการรวมตัวกันของ อิเล็กตรอนกับโฮลต่ำลงเนื่องจากอิเล็กตรอนและโฮลสามารถเคลื่อนที่ไปยังคอนดักซันแบนด์และ วาเลนซ์แบนด์ของสารอีกตัวได้ จึงทำให้ประสิทธิภาพในการสลายสีย้อม RhB สูงขึ้นซึ่งประสิทธิภาพใน การสลายสีย้อมของ Ag₃PO₄/Bi₂MoO₆ ทุกตัวมีค่ามากกว่า Bi₂MoO₆ เป็น 2 เท่า ผลการทดลองที่ 5

รูปที่ 36 XRD pattern ของตัวเร่งปฏิกิริยา 0-10% Ag₃VO₄/Bi₂MoO₅

การศึกษาโครงสร้างผลึกของตัวเร่งปฏิกิริยา 0-10% Ag₃VO₄/Bi₂MoO₆ โดยใช้ XRD ดังแสดงในรูปที่ 36 เห็นได้ว่าพีคการเลี้ยวเบนของ Bi₂MoO₆ มีโครงสร้าง orthorhombic ของ Bi₂MoO₆ ถูกอ้างอิงด้วย JCPDS no. 21-0102^[25] ซึ่งไม่ปรากฏพีคการเลี้ยวเบนอื่น และเมื่อเติม Ag₃VO₄ ลงไปใน Bi₂MoO₆ เห็นได้ว่าจะปรากฏพีคใหม่เกิดขึ้นและมีความเข้มของพีคใหม่เพิ่มขึ้นตาม ปริมาณของ Ag₃VO₄ ที่เพิ่มขึ้นซึ่งที่ 10% Ag₃VO₄/Bi₂MoO₆ จะเห็นพีคของ Ag₃VO₄ ได้ชัดเจนมากขึ้น โดยกำหนดให้ **■** คือ Ag₃VO₄ ซึ่งมีโครงสร้างมอนอคลินิค (monoclinic) ถูกอ้างอิงด้วย JCPDS No. 43-0542^[25] เห็นได้ว่า Ag₃VO₄/Bi₂MoO₆ มี Ag₃VO₄ และ Bi₂MoO₆

การศึกษาทางสัณฐานวิทยาของตัวเร่งปฏิกิริยาโดยใช้กล้องจุลทรรศน์ส่องกราด เพื่อ ศึกษาสัณฐานและลักษณะพื้นผิวของตัวเร่งปฏิกิริยา รูปที่ 37 (a) เห็นได้ว่าอนุภาคของ Bi₂MoO₆ มี ลักษณะเป็นแผ่น ไม่มีอนุภาคอื่นๆเกาะบนพื้นผิว และเมื่อเติม Ag₃VO₄ ลงไปใน Bi₂MoO₆ ตาม อัตราส่วน 1% 2.5% 5% และ 10% รูปที่ 37 (b-e) จะเห็นได้ว่าอนุภาคไม่มีลักษณะเปลี่ยนแปลงไป ซึ่งการเติม Ag₃VO₄ ลงไปไม่มีผลต่อรูปร่างของอนุภาค Bi₂MoO₆ แต่อนุภาคของ Ag₃VO₄ จะเกาะอยู่ บนพื้นผิวของ Bi₂MoO₆ ซึ่งเป็นตัวรองรับ โดยสังเกตได้จากรูปที่ 37 (d-e) ที่ 5% และ 10% Ag₃VO₄/Bi₂MoO₆ จะเห็นได้ชัดเจนว่ามีอนุภาคเล็กๆของ Ag₃VO₄ มาเกาะบนผิวหน้าของอนุภาค Bi₂MoO₆ จำนวนมากและกระจายตัวอย่างสม่ำเสมอ ซึ่งอนุภาคของ Ag₃VO₄ ที่มาเกาะบนผิวหน้าของ อนุภาค Bi₂MoO₆ จะส่งผลให้การรวมกันของอิเล็กตรอนกับโฮลต่ำลงและช่วยเพิ่มประสิทธิภาพในการ สถายสีย้อม RhB

รูปที่ 37 ภาพจากกล้อง SEM ของตัวเร่งปฏิกิริยา (a) Bi₂MoO₆ (b) 1% Ag₃VO₄/Bi₂MoO₆ (c) 2.5% Ag₃VO₄/Bi₂MoO₆ (d) 5% Ag₃VO₄/Bi₂MoO₆ และ (e) 10% Ag₃VO₄/Bi₂MoO₆ ที่กำลังขยาย 30,000 เท่า

การกระจายตัวของอนุภาคของอะตอมแต่ละชนิดของตัวเร่งปฏิกิริยา ถูกศึกษาด้วย เทคนิค EDS ดังแสดงในรูปที่ 38

รูปที่ 38 ภาพจาก SEM ของตัวเร่งปฏิกิริยา (a) 10 Ag₃VO₄/Bi₂MoO₆ และแสดงภาพจาก EDS mapping ของตัวเร่งปฏิกิริยา 10% Ag₃VO₄/Bi₂MoO₆ (b) Ag (c) V (d) Bi (e) Mo และ (f) O
รูปที่ 38 (a) จะเห็นได้ว่าอนุภาคของ Ag₃VO₄ มีการกระจายตัวอย่างสม่ำเสมอบน ผิวหน้าของอนุภาค Bi₂MoO₆ ซึ่งในรูปที่ 38 (b-c) เห็นได้ว่าธาตุ Ag และ V มีกระจายตัวอย่าง สม่ำเสมอ และในรูปที่ 38 (d-f) อะตอมของ Bi₂MoO₆ ซึ่งเป็นตัวรองรับมีอนุภาคของ Ag₃VO₄ จึงจะ เห็นธาตุ Bi Mo และ O จากผลข้างต้นเป็นยืนยันได้ว่าอนุภาค Ag₃VO₄ กระจายตัวบนผิวหน้าของ อนุภาค Bi₂MoO₆

รูปที่ 39 แสดงภาพ TEM SAED pattern และภาพ HRTEM (a-b) Bi₂MoO₆ (c) 5% Ag₃VO₄/Bi₂MoO₆ และ (d-f) 10% Ag₃VO₄/Bi₂MoO₆

รูปที่ 39 (a) เห็นได้ว่าอนุภาคของ Bi₂MoO₆ มีรูปร่างเป็นแผ่นเรียบโดยมีความยาว ของแต่ละด้านประมาณ 200-500 nm รูปที่ 39 (b) SAED pattern เห็นได้ว่าแผ่นของอนุภาคของ Bi₂MoO₆ เป็นผลึกเดี่ยวโดยแผ่นผลึกมีระนาบ (060) (062) และ (002) โดยลำ electron ลงมาในทิศ [100] และเมื่อเติม Ag₃VO₄ ลงไปใน Bi₂MoO₆ ดังแสดงในรูปที่ 39 (c) ที่ 5% Ag₃VO₄/Bi₂MoO₆ จะ เห็นได้ว่ามีอนุภาคขนาดเล็กมาเกาะบนผิวหน้าของอนุภาค Bi₂MoO₆ และในรูปที่ 39 (d-e) ที่ 10% Ag₃VO₄/Bi₂MoO₆ เห็นได้ว่ามีอนุภาคขนาดเล็กมีขนาดเส้นผ่านศูนย์กลางประมาณ 7-10 nm มาเกาะ บนผิวหน้าของอนุภาค Bi₂MoO₆ เพิ่มมากขึ้นและมีความสม่ำเสมอ และจากภาพที่กำลังขยายสูงรูปที่ 39 (f) จะเห็นว่ามีอนุภาค Ag₃VO₄ เกาะบนผิวของอนุภาค Bi₂MoO₆ โดยสามารถเห็นระนาบมีความ กว้างของระนาบ (-121) เท่ากับ 0.28 nm ของ Ag₃VO₄

รูปที่ 40 แสดงสเปกตรัม XPS ของตัวเร่งปฏิกิริยา 10% Ag₃VO₄/Bi₂MoO₆ (a) Ag 3d (b) V 2p (c) Bi 4f (d) Mo 3d และ (e) O 2s

รูปที่ 40 (a-e) แสดงสเปกตรัม XPS ของตัวเร่งปฏิกิริยา 10% Ag_3VO_4/Bi_2MOO_6 โดยสามารถพบพีคของ Ag V Bi Mo และ O รูปที่ 40 (a) Ag $3d_{5/2}$ และ Ag $3d_{3/2}$ แสดงในพีคที่ 368.0 และ 373.7 eV ซึ่งเป็น $Ag^{+[26]}$ รูปที่ 4.xx (b) V $2p_{3/2}$ และ V $2p_{5/2}$ แสดงในพีคที่ 516.7 และ 524.0 eV^[43] รูปที่ 40 (c) Bi $4f_{5/2}$ และ Bi $4f_{7/2}$ แสดงในพีคที่ 163.6 และ 158.2 eV ซึ่งทุกตัวของ Bi อยู่ในฟอร์มของ Bi^{3+[9]} รูปที่ 40 (d) Mo $3d_{3/2}$ และ Mo $3d_{5/2}$ ของ Mo 4d แสดงในพีคที่ 35.6 และ 37.4 eV ซึ่งเป็น $Mo^{6+[9]}$ สำหรับพีคของ O สามารถเห็นได้หลายพีคคือ 530.00 530.70 531.82 และ 532.84 eV ซึ่งเป็น Bi-O Mo-O O-H ซึ่งดูดซับ H₂O ที่ผิวหน้าและพันธะ C-O เกิดจากก๊าซ คาร์บอนไดออกไซด์ที่ผิวของตัวเร่งปฏิกิริยาเอง^[28-29] จากผลข้างต้นแสดงให้เห็นมี Ag_3VO_4 และ Bi_2MoO_6 เป็นองค์ประกอบของ 10% Ag_3VO_4/Bi_2MoO_6 ซึ่งสอดคล้องกับผลของ XRD SEM EDS และ TEM

กิจกรรมการเร่งปฏิกิริยาด้วยแสงของสารตัวอย่างศึกษาโดยการสลายสีย้อม RhB ภายใต้แสงที่มองเห็นได้ เพื่อศึกษาประสิทธิภาพในการสลายสารอินทรีย์ของสารตัวอย่าง ดังแสดงใน รูปที่ 41 จากรูปที่ 41 (a) แสดงค่าการดูดกลืนแสงของสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 10% Ag₃VO₄/Bi₂MoO₆ โดยฉายแสงที่มองเห็นได้ ณ เวลาที่แตกต่างกัน แสดงให้เห็นว่าค่าการดูดกลืนแสง สูงสุดของสารละลายสีย้อม RhB มีค่า λ_{max} อยู่ที่ 554 nm โดยเมื่อทำการฉายแสงที่มองเห็นได้ผ่านไป 100 นาที ค่าการกลืนแสงของสีย้อม RhB มีค่าลดลงอย่างต่อเนื่องและเห็นได้อีกว่าค่า λ_{max} ของสีย้อม มีค่าลดลงด้วยจาก 554 nm ไปยัง 498 nm เนื่องจากเกิดการสลายตัวของสีย้อม RhB และมีการ เปลี่ยนแปลงโครงสร้างจึงทำให้ค่า λ_{max} เกิดการเปลี่ยนแปลงซึ่งเกิดจากปฏิกิริยา N-deethylation ของโมเลกุลสีย้อม RhB ระหว่างการฉายแสง โดยการสลายสีย้อม Rhodamine B ให้กลายเป็น Rhodamine โดยเห็นว่าเริ่มต้นค่าการดูดกลืนแสง λ_{max} มีค่า 554 nm เมื่อเวลาผ่านไป ค่า λ_{max} ลดลงมาที่ประมาณ 539 nm ซึ่งเป็นสลายสีย้อม Rhodamine B (RhB) เป็น *N,N,N*-triethyl rhodamine หลังจากนั้นสลายตัวเป็น *N,N*-diethyl rhodamine ที่ค่า $\lambda_{max} = 522$ nm และ สลายตัวเป็น *N*-ethyl rhodamine ที่ค่า $\lambda_{max} = 510$ nm และสุดท้ายสลายตัวเป็น Rhodamine ที่ ค่า $\lambda_{max} = 498$ nm ซึ่งเกิดจากการสลายตัวของ conjugated ของ Rhodamine B โดยการ เปลี่ยนแปลงค่า λ_{max} จาก 554 nm ไปยัง 498 nm^[31-33] ดังแสดงโครงสร้างของสารอนุพันธ์ที่เกิดขึ้น ดังแสดงในรูปที่ 11

รูปที่ 41 (a) แสดงค่าการดูดกลืนแสงของสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 10% Ag₃VO₄/Bi₂MoO₆ ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 100 นาที (b) แสดงประสิทธิภาพในการสลายสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 0-10% Ag₃VO₄/Bi₂MoO₆ (c) แสดงการเกิดปฏิกิริยาอันดับที่ 1 โดยใช้ตัวเร่ง ปฏิกิริยา 0-10% Ag₃VO₄/Bi₂MoO₆ (d) แสดงเสถียรภาพการนำกลับมาใช้ซ้ำของตัวเร่งปฏิกิริยา 10% Ag₃VO₄/Bi₂MoO₆

งานวิจัยของ K. Jothivenkatachalam และคณะ^[30] และ S. Yang และคณะ^[34] ได้ รายงานว่าการสลายสีย้อม RhB นั้นมีด้วยกัน 4 ขั้นตอนโดยศึกษาด้วยวิธี HPLC ดังนี้ ขั้นตอนที่ 1 N-deethylation เป็นขั้นตอนแรกซึ่งเป็นกำจัดหมู่ N-ethyl ออกจากโมเลกุลของสีย้อม RhB ขั้นตอน ต่อมาคือ chromophore cleavage ซึ่งเป็นกำจัด benzene intermediates ออก ขั้นตอนต่อมาคือ opening-ring ซึ่งเป็นการทำให้แตกวงสารประกอบอนุพันธ์ของสารมัธยันตร์กลายเป็นสารประกอบ อินทรีย์สานโซ่ตรงที่มีน้ำหนักโมเลกุลน้อย ยกตัวอย่างเช่น succinic acid 2-hydroxypentanedioic acid และ adipic acid และขั้นตอนสุดท้ายคือมิเนรัลไลเซชั่นซึ่งเป็นการทำให้สารอินทรีย์เกิดการ สลายตัวกลายเป็นน้ำและก๊าซคาร์บอนไดออกไซด์ในที่สุดดังแสดงในรูปที่ 12

ประสิทธิภาพการสลายสีย้อม RhB (decolorization efficacy) สามารถหาค่าได้โดย การวัดค่าการดูดกลืนแสงที่ความยาวคลื่น 554 nm ซึ่งเป็นค่าความยาวคลื่นการดูดกลืนแสงของสีย้อม RhB จากนั้นสามารถคำนวณประสิทธิภาพในการสลายสีย้อมได้จากสมการที่ 13

จากรูปที่ 41 (b) แสดงประสิทธิภาพในการสลายสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 0-10% Ag₃VO₄/Bi₂MoO₆ ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 100 นาที เห็นได้ว่าสีย้อม RhB ไม่เกิดการสลายตัว แสดงว่าสีย้อม RhB มีความเสถียรภาพต่อปฏิกิริยาโฟโตไลซิส (photolysis) ดังนั้น จะเห็นได้ว่าสารละลายสีย้อม RhB มีโครงสร้างที่เสถียรภาพสูงเนื่องจากเป็นสารประกอบจำพวก ไฮโดรคาร์บอน ทำให้ไม่สามารถสลายตัวได้ในธรรมชาติ จึงถูกเลือกมาเป็นตัวแทนของสารอินทรีย์ อีก ทั้งสารละลาย RhB มีสีชมพู ทำให้สามารถสังเกตในการเปลี่ยนแปลงปฏิกิริยาเคมีได้ง่ายในระหว่างการ ทดลอง และเมื่อใช้ตัวเร่งปฏิกิริยา Bi₂MoO₆ แล้วทำการฉายแสงที่มองเห็นได้ เมื่อเวลาผ่านไป 100 นาที พบว่าเกิดการสลายสีย้อม RhB 40.73% แต่อย่างไรเมื่อใช้ตัวเร่งปฏิกิริยา Ag₃VO₄/Bi₂MoO₆ ประสิทธิภาพการสลายตัวของสีย้อม RhB สูงขึ้นตามเปอร์เซ็นต์การเติม Ag₃VO₄ โดยที่ 10% Ag₃VO₄/Bi₂MoO₆ มีประสิทธิภาพในการสลายสีย้อมสูงสุดกว่าสารตัวอย่างอื่น ๆ โดยมีประสิทธิภาพ ในการสลายสีย้อม RhB 88.81% เมื่อเวลาผ่านไป 100 นาที โดยสามารถสรุปประสิทธิภาพการสลาย ของสีย้อม RhB ดังตารางที่ 7

ประสิทธิภาพการสลายตัวสีย้อม RhB โดยใช้ตัวเร่งปฏิกิริยา 0-10% Ag₃VO₄/Bi₂MoO₆ สามารถคำนวณหาอัตราการเกิดปฏิกิริยาการสลายตัวของสีย้อม RhB ภายใต้ สมมติฐานการเกิดปฏิกิริยาเสมือนอันดับที่ 1 จากกฎของแลงเมียร์-ฮิงเชลวูด (Langmuir-Hinshelwood) ซึ่งใช้สำหรับการอธิบายการเกิดปฏิกิริยาที่ผิวหน้าของตัวเร่งปฏิกิริยา โดยอัตราการ เกิดปฏิกิริยาคำนวณได้จากสมการที่ 10

จากสมการที่ 10 สามารถบ่งบอกถึงความแตกต่างของระบบการปฏิกิริยาด้วยแสง จากรูปที่ 41 (c) แสดงกราฟความสัมพันธ์ระหว่าง ln (C_t/C_0) กับเวลาในการทำปฏิกิริยา (t) โดยที่ สามารถคำนวณอัตราการเกิดปฏิกิริยาจากความชันของกราฟ จากตารางที่ 7 เห็นได้ว่าอัตราการ เกิดปฏิกิริยาของ Bi₂MoO₆ เท่ากับ 5.32×10⁻³ min⁻¹ ซึ่งมีค่ามากว่า Ag₃VO₄/Bi₂MoO₆ ทุกตัวจึงทำ ให้ประสิทธิภาพในการสลายสีย้อม RhB น้อยกว่า Ag₃VO₄/Bi₂MoO₆ โดยที่ 1.0% Ag₃VO₄/Bi₂MoO₆ มีค่าคือ9.83×10⁻³ min⁻¹ และที่ 2.5% Ag₃VO₄/Bi₂MoO₆ มีค่าคือ 1.22×10⁻² min⁻¹ และเมื่อปริมาณ ของ Ag₃VO₄ เพิ่มขึ้นก็ทำให้อัตราการเกิดปฏิกิริยาเพิ่มขึ้นด้วยที่ 5.0% Ag₃VO₄/Bi₂MoO₆ เท่ากับ 1.02×10⁻² min⁻¹ และที่ 10.0% Ag₃VO₄/Bi₂MoO₆ มีอัตราการเกิดปฏิกิริยาสูงสุดเท่ากับ 2.01×10⁻² min⁻¹ ทำให้มีประสิทธิภาพในการสลายสีย้อม RhB สูงสุดเช่นกัน จากอัตราการเกิดปฏิกิริยาการสลายสีย้อม RhB ที่คำนวณได้จากการสมการข้างต้น สามารถนำค่าคงที่อัตราการเกิดปฏิกิริยา มาคำนวณหาค่าครึ่งชีวิตของปฏิกิริยาการสลายสีย้อม RhB ได้ จากสมมติฐานที่ว่าเกิดปฏิกิริยาอันดับที่ 1 จึงสามารถคำนวณหาค่าครึ่งชีวิตของปฏิกิริยาการสลาย สีย้อม RhB ได้จากสมการที่ 12

จากตารางที่ 7 เห็นได้ว่าค่าครึ่งชีวิตของปฏิกิริยาที่คำนวณได้มีค่าสอดคล้องกับอัตรา การเกิดปฏิกิริยาโดยที่เมื่ออัตราการเกิดปฏิกิริยามีค่าน้อยค่าครึ่งชีวิตของปฏิกิริยาจะมีค่ามาก ในทาง ตรงกันข้ามเมื่ออัตราการเกิดปฏิกิริยามีค่ามากค่าครึ่งชีวิตของปฏิกิริยาจะมีค่าน้อย

~ ~ ~	-			
	ประสิทธิภาพใน	อัตราการเกิดปฏิกิริยา		ค่าครึ่งชีวิตของ
ตัวเร่งปฏิกิริยา	การสลายสีย้อม	k _{app}	D ²	ปฏิกิริยา
	(%)	(min ⁻¹)	ĸ	(min)
Bi ₂ MoO ₆	40.73%	5.32×10 ⁻³	0.9928	130
1.0% Ag ₃ VO ₄ /Bi ₂ MoO ₆	64.51%	9.83×10 ⁻³	0.9949	65.0
2.5% Ag ₃ VO ₄ /Bi ₂ MoO ₆	72.02%	1.22×10 ⁻²	0.9973	52.38
5.0% Ag ₃ VO ₄ /Bi ₂ MoO ₆	67.78%	1.02×10 ⁻²	0.9946	62.65
10.0% Ag ₃ VO ₄ /Bi ₂ MoO ₆	88.81%	2.01×10 ⁻²	0.9901	31.79

ตารางที่ 7 ประสิทธิภาพในการสลายสีย้อม อัตราการเกิดปฏิกิริยาอันดับที่ 1 R² และค่าครึ่งชีวิตของ ปฏิกิริยา ของตัวเร่งปฏิกิริยา 0-10% Ag₃VO₄/Bi₂MoO₆

แต่อย่างไรก็ตาม การใช้งานของตัวเร่งปฏิกิริยาคำนึงถึงความเสถียรภาพในการใช้

งาน ดังนั้นจึงได้ทดสอบการนำกลับมาใช้ใหม่ของตัวเร่งปฏิกิริยา โดยทดสอบการใช้ซ้ำจำนวน 5 ครั้ง ของตัวเร่งปฏิกิริยา 10% Ag₃VO₄/Bi₂MoO₆ โดยการนำตัวเร่งปฏิกิริยาเติมในสารสลายสีย้อม RhB และฉายแสงที่มองเห็นได้จากนั้นเมื่อทำปฏิกิริยาเสร็จ นำสารละลายมากรองแยกตัวเร่งปฏิกิริยา ออกมา ล้างด้วยน้ำ RO และเอทานอลหลายๆครั้งและอบให้แห้ง จากนั้นนำตัวเร่งปฏิกิริยามาใช้ซ้ำจน ครบ 5 ครั้งจึงได้ผลการทดลองดังแสดงในรูปที่ 41 (d) แสดงให้เห็นว่า 10% Ag₃VO₄/Bi₂MoO₆ มี ความเสถียรภาพต่ำเนื่องจากประสิทธิภาพการสลายสีย้อม RhB ในการนำกลับมาใช้ซ้ำครั้งที่ 5 ยังมีค่า เพียง 30.47% ซึ่งมีค่าน้อยกว่า Bi₂MoO₆ เป็นผลมาจากสารตัวอย่างเกิดการดูดซับอนุภาคของสีย้อม มากจนเกินไปทำให้สารตัวอย่างดูดกลืนแสงที่มองเห็นได้น้อยกว่าการทำใช้ซ้ำครั้งที่ 1 จึงทำให้ ประสิทธิภาพในการสลายสีย้อม RhB ลดลงได้ กลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Bi₂MoO₆ และ Ag₃VO₄/Bi₂MoO₆ ซึ่งมี ความสำคัญต่อการสลายสีย้อม RhB ที่กล่าวมาข้างต้นได้ถูกเสนอในรูปที่ 13 ผลการทดลองที่ 1 และ รูปที่ 42

รูปที่ 42 กลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Ag₃VO₄/Bi₂MoO₆

้เมื่อเปรียบเทียบกับกลไกการเกิดปฏิกิริยาโฟโตคะตะไลติกของ Bi₂MoO₆ เมื่อเติม Ag₃VO₄ ลงในตัวเร่งปฏิกิริยา Bi₂MoO₀ โดยการตกตะกอนและกลายเป็นวัสดุผสมทำให้กลไกการ เกิดปฏิกิริยาโฟโตคะตะไลติกของ Ag₃VO₄/Bi₂MoO₆ แตกต่างไปจาก Bi₂MoO₆ ดังแสดงในรูปที่ 13 เมื่อตัวเร่งปฏิกิริยาได้รับพลังงานกระตุ้นจากแสงที่มองเห็นได้ อิเล็กตรอนจากวาเลนซ์แบนด์ถูกกระตุ้น ้ขึ้นไปยังคอนดักชันแบนด์ ทำให้เกิดโฮลขึ้นที่วาเลนซ์แบนด์ของทั้งสองตัว จากนั้นอิเล็กตรอนจากคอน ดักชันแบนด์ของ Bi₂MoO₆ (E_{vB} = -0.32 eV) เคลื่อนที่ไปยังคอนดักชันแบนด์ของ Ag₃VO₄ (E_{vB} = +0.04 eV)^[44] เนื่องจากมีค่าศักย์ไฟฟ้าคอนดักชันแบนด์ของ Bi₂MoO₆ น้อยกว่า Ag₃VO₄ และจากนั้น อิเล็กตรอนเคลื่อนที่ไปที่ผิวของตัวเร่งปฏิกิริยาและเกิดปฏิกิริยารีดักชันกับ O2 จากสารละลายซึ่งเป็น ้ตัวรับอิเล็กตรอนมาทำปฏิกิริยาที่ผิวของตัวเร่งปฏิกิริยาแต่ไม่สามารถกลายเป็นไอออนซุปเปอร์ ออกไซด์เรดิคอล (superoxide radicals, O_2) ได้เนื่องจากศักย์ไฟฟ้าของ O_2/O_2 มีค่าน้อยกว่าค่า ศักย์ไฟฟ้าของวาเลนซ์แบนด์ (O₂ + e → O₂, E⁰ = -0.33 eV)^[17] ออกซิเจนจึงรับอิเล็กตรอน กลายเป็นไฮโดรเจนเปอร์ออกไซด์ (O₂ + 2H⁺ + 2e⁻ → H₂O₂, E⁰= +0.682 eV)^[18] จากนั้น H₂O₂ รับอิเล็กตรอนและกลายเป็นไฮดรอกซิลเรดิคอล (H₂O₂ + e → OH + OH) ซึ่งเป็นอนุมูลอิสระ หรือตัวออกซิแดนท์ (oxidant) ในกระบวนการเร่งปฏิกิริยาด้วยแสง ในขณะเดียวกันโฮลจากวาเลนซ์ แบนด์ของ Bi₂MoO₆ (E_{CB} = +2.71 eV) เคลื่อนที่ไปยังวาเลนซ์ของ Ag₃VO₄ (E_{CB} = +2.24 eV)^[44] เนื่องจากมีค่าศักย์ไฟฟ้าวาเลนซ์แบนด์ของ Ag3VO4 น้อยกว่า Bi2MoO6 จากนั้นโฮลจะเกิดปฏิกิริยา

ออกซิเดชันกับไฮดรอกซิลไอออนสูญเสียอิเล็กตรอนให้แก่โฮลในวาเลนซ์แบนด์กลายเป็นไฮดรอกซิล เรดิคอล (OH \rightarrow OH + e, E⁰ = +0.199 eV)^[17] จากนั้นอนุมูลอิสระที่เกิดขึ้นทำปฏิกิริยากับ สารอินทรีย์และเกิดการย่อยสลายสารอินทรีย์ในสารละลายจนได้ผลิตภัณฑ์สุดท้าย คือ คาร์บอนไดออกไซด์และน้ำ ซึ่งจากกลไกที่กล่าวมาข้างต้นแสดงให้เห็นว่าการเกิดการรวมตัวกันของ อิเล็กตรอนกับโฮลต่ำลงเนื่องจากอิเล็กตรอนและโฮลสามารถเคลื่อนที่ไปยังคอนดักชันแบนด์และ วาเลนซ์แบนด์ของสารอีกตัวได้ จึงทำให้ประสิทธิภาพในการสลายสีย้อม RhB สูงขึ้นซึ่งประสิทธิภาพใน การสลายสีย้อมของ Ag₃VO₄/Bi₂MoO₆ ทุกตัวมีค่ามากกว่า Bi₂MoO₆ เป็น 2 เท่า

สรุปผลการทดลอง

1. สารตัวอย่างที่สังเคราะห์ทุกตัวเมื่อนำมาทดสอบด้วย XRD, SEM, TEM, EDS และ XPS จะเห็นได้ว่าสารตัวอย่างถูกสังเคราะห์ขึ้นเป็นวัสดุผสม AgX/Bi₂MoO₆ (X = Br⁻, Cl⁻ และ I⁻) และ Ag₃Y/Bi₂MoO₆ (Y = PO₄³⁻ และ VO₄³⁻) ซึ่งจากพีคการเลี้ยวเบนของรังสีเอ็กซ์สารตัวอย่างมี ความเป็นผลึกและไม่มีพีคการเลี้ยวเบนของสารตัวอื่นและจากภาพ SEM เห็นได้ว่ามีอนุภาค AgX (X = Br⁻, Cl⁻ และ I⁻) และ Ag₃Y (Y = PO₄³⁻ และ VO₄³⁻) เกาะอยู่บนผิวของ Bi₂MoO₆

 2. จากผลการทดสอบประสิทธิภาพในการสลายสีย้อม RhB ซึ่งสามารถแยกได้เป็น 2 ส่วนตามตารางที่ 8 ซึ่งเห็นได้ว่า 10.0% AgBr/Bi₂MoO₆ มีประสิทธิภาพในการสลายสีย้อม RhB ภายใต้การฉายแสงที่มองเห็นได้เป็นเวลา 40 นาทีเหมาะสมกับการนำไปใช้งานมากที่สุด

	เวลาในการ	ประสิทธิภาพในการ	อัตราการเกิดปฏิกิริยา
ตัวเร่งปฏิกิริยา	ฉายแสง	สลายสีย้อม	k_{app}
	(นาที)	(%)	(min ⁻¹)
10.0% AgCl/Bi ₂ MoO ₆	100	92.45%	2.83×10 ⁻²
10.0% AgBr/Bi ₂ MoO ₆	40	97.28%	9.52×10 ⁻²
10.0% AgI/Bi ₂ MoO ₆	40	92.89%	6.60×10 ⁻²
10.0% Ag ₃ PO ₄ /Bi ₂ MoO ₆	100	98.07%	3.95×10 ⁻²
10.0% Ag ₃ VO ₄ /Bi ₂ MoO ₆	100	88.81%	2.01×10 ⁻²

ตารางที่ 8 แสดงประสิทธิภาพในการสลายสีย้อม RhB และอัตราการเกิดปฏิกิริยา

ประสิทธิภาพในการสลายสีย้อม RhB ของสารตัวอย่างทุกตัวมีค่ามากกว่า
 Bi₂MoO₆ เนื่องจากการสังเคราะห์เป็นวัสดุผสมต่างชนิด ทำให้สารตัวอย่างมีการรวมตัวกันของ
 อิเล็กตรอนและโฮลช้าลงเป็นผลให้ประสิทธิภาพสีย้อมสูงขึ้น

บรรณานุกรม

[1] J. Li, X. Xu, X. Liu, C. Yu, D. Yan, Z. Sun, L. Pan, Sn doped TiO_2 nanotube with oxygen vacancy for highly efficient visible light photocatalysis, Journal of Alloys and Compounds, 679 (2016), 454-462.

[2] X. Yanga, Y. Wang, Z. Wang, X. Lv, H. Jia, J. Kong, M. Yu, Preparation of CdS/TiO₂ nanotube arrays and the enhanced photocatalytic property, Ceramics International, 42 (2016), 7192–7202.

[3] A. Ashar, M. Iqbal, I. A. Bhatti, M. Z. Ahmad, K. Qureshi, J. Nisar, I. H. Bukhari, Synthesis, characterization and photocatalytic activity of ZnO flower and pseudo-sphere: Nonylphenol ethoxylate degradation under UV and solar irradiation, Journal of Alloys and Compounds, 678 (2016), 126-136.

[4] พวงรัตน์ ขจิตวิชยานุกูล. นาโนเทคโนโลยีเพื่อสิ่งแวดล้อม. สำนักพิมพ์ มหาวิทยาลัยนเรศวร, 2557.

[5] A. M. Cruz, S. O. Alfaro, Synthesis and characterization of γ -Bi₂MoO₆ prepared by co-precipitation: Photoassisted degradation of organic dyes under visirradiation, Journal of Molecular Catalysis A, 320 (2010), 85–91.

[6] L. Zhang, T. Xu, X. Zhao, Y. Zhu, Controllable synthesis of Bi_2MoO_6 and effect of morphology and variation in local structure on photocatalytic activities, Applied Catalysis B, 98 (2010), 138–146.

[7] L. Xie, J. Ma, G. Xu, Preparation of a novel Bi_2MoO_6 flake-like nanophotocatalyst by molten salt method and evaluation for photocatalytic decomposition of rhodamine B, Materials Chemistry and Physics, 110 (2008), 197–200.

[8] J. Bi, L.Wu, J. Li, Z. Li, X. Wang, X. Fu, Simple solvothermal routes to synthesize nanocrystalline Bi_2MoO_6 photocatalysts with different morphologies, Acta Materialia, 55 (2007), 4699–4705.

[9] Y. Feng, X. Yan, C. Liu, Y. Hong, L. Zhu, M. Zhou, W. Shi, Hydrothermal synthesis of CdS/Bi₂MoO₆ heterojunction photocatalysts with excellent visible-light-driven photocatalytic performance, Applied Surface Science, 353 (2015), 87-94. [10] V. Umapathy, A. Uanikandan, S. A. Antony, P. Ramu, P. Reerraja, Structure, morphology and opto-magnetic properties of Bi_2MoO_6 nano-photocatalyst synthesized by sol-gel method, Trans. Nonferrous Met. Soc. China, 25(2015), 3271–3278.

[11] C. Liu, W. Sun, Y. Zhuo, C. Liu, Y. Chu, PVP-assisted synthesis and visible light catalytic property of Ag/AgBr/TiO₂ ternary nanostructures, Journal of Alloys and Compounds, 581 (2013), 115–120.

[12] R. Lamba, A. Umar, S. K. Mehta, W. A. Anderson, S. K. Kansal, Visible-light-driven photocatalytic properties of self assembled cauliflower-like AgCl/ZnO hierarchical nanostructures, Journal of Molecular Catalysis A: Chemical, 408 (2015), 189–201.

[13] J. Yi, L. Huang, H. Wang, H. Yu, F. Peng, Agl/TiO_2 nanobelts monolithic catalyst with enhanced visible light photocatalytic activity, Journal of Hazardous Materials, 284 (2015), 207–214.

[14] W. Yaning, W. Kang, W. Xitao, Preparation of $Ag_3PO_4/Ni_3(PO_4)_2$ hetero-composites by cation exchange reaction and its enhancing photocatalytic performance, Journal of Colloid and Interface Science, 466 (2016), 178–185.

[15] F. Kiantazh, A. Habibi-Yangjeh, Ag_3VO_4/ZnO nanocomposites with an n-n heterojunction as novel visible-light-driven photocatalysts with highly enhanced activity, Materials Science in Semiconductor Processing, 39 (2015), 671 – 679.

[16] W. D. Wei, J. S. DuChene, B. C. Sweeny, J. Wang, W. Niu, Chepter 12 Current Development of Photocatalysts for Solar Energy Conversion.

[17] W. Liu, M. Wang , C. Xu , S. Chen , X. Fu, Significantly enhanced visible-light photocatalytic activity of g-C3N4 via ZnO modification and the mechanism study, Journal of Molecular Catalysis A: Chemical, 368–369 (2013), 9-15.

[18] M. Mousavi, A. Habibi-Yangjeh, Ternary $g-C_3N_4/Fe_3O_4/Ag_3VO_4$ nanocomposites: Novel magnetically separable visible-light-driven photocatalysts for efficiently degradation of dye pollutants, Materials Chemistry and Physics, 163 (2015), 421-430. [19] H. Wang, X. Yang, J. Zi, M. Zhou, Z. Ye, J. Li, Q. Guan, P. Lv, P. Huo, Y. Yan, High photocatalytic degradation of tetracycline under visible light with Ag/AgCl/activated carbon composite plasmonic photocatalyst, Journal of Industrial and Engineering Chemistry, 35 (2016), 83–92.

[20] A. M. Cruz, S. O. Alfaro, E. L. Cue^{llar}, U. O. Me^{ndez}, Photocatalytic properties of Bi₂MoO₆ nanoparticles prepared by an amorphous complex precursor, Catalysis Today, 129 (2007), 194–199.

[21] A. Phuruangrat, P. Jitrou, P. Dumrongrojthanath, N. Ekthammathat, B. Kuntalue, S. Thongtem, and T. Thongtem, Hydrothermal Synthesis and Characterization of Bi₂MoO₆ Nanoplates and Their Photocatalytic Activities, *Journal of Nanomaterials*, Volume 2013, Article ID 789705, 8 pages.

[22] A. Phuruangrat, S. Putdum, P. Dumrongrojthanath, S. Thongtem, and T.Thongtem, Hydrothermal Synthesis of Bi₂MoO₆ Visible-Light-Driven Photocatalyst, *Journal of Nanomaterials*, Volume 2015, Article ID 135735, 6 pages.

[23] T. Zhang, J. Huang, S. Zhou, H. Ouyang, L. Cao, A. Li, "Microwave hydrotherma l synthesis and optical properties of flower-like Bi_2MoO_6 crystallites, *Ceramics International*, 39 (2013), 7391 – 7394.

[24] X. Zhao, T. Xu, W. Yao, Y. Zhu, Photodegradation of dye pollutants catalyzed by γ -Bi₂MoO₆ nanoplate under visible light irradiation, *Applied Surface Science*, 255 (2009), 8036–8040.

[25] Powder Diffract. File, JCPDS Internat. Centre Diffract. Data, PA 19073-3273, U.S.A. (2001).

[26] Z. Zhaoa, Y. Wang, J. Xua, C. Shang, Y. Wang, AgCl-loaded mesoporous anatase TiO_2 with large specific surface area for enhancing photocatalysis, Applied Surface Science, 351 (2015), 416–424.

[27] X. Zoua, Z. Wanb, C. Wana, G. Zhang, X. Pana, J. Penga, J. Chang, Novel Ag/AgCl/K₆Nb_{10.8}O₃₀ photocatalyst and its enhanced visible light photocatalytic activities for the degradation of microcystin-LR and acid red G, Journal of Molecular Catalysis A: Chemical, 411 (2016), 364–371. [28] H. Ye, H. Lin, J. Cao, S. Chen, Y. Chen, Enhanced visible light photocatalytic activity and mechanism of $BiPO_4$ nanorods modified with Agl nanoparticles, Journal of Molecular Catalysis A: Chemical, 397 (2015), 85–92.

[29] X. Li, S. Fang, L. Ge, C. Han, P. Qiu, W. Liu, Synthesis of flower-like Ag/AgCl-Bi₂MoO₆ plasmonic photocatalysts with enhanced visible-light photocatalytic performance, Applied Catalysis B: Environmental, 176–177 (2015), 62–69.

[30] K. Jothivenkatachalam, S. Prabhu, A. Nithyaa, K. Jeganathan, Facile synthesis of WO₃ with reduced particle size on zeolite and enhanced photocatalytic activity, RSC Adv., 2014, 4, 21221.

[31] P. Dumrongrojthanath, T. Thongtem, A. Phuruangrat, S. Thongtem, Hydrothermal synthesis of Bi_2WO_6 hierarchical flowers with their photonic and photocatalytic properties, Superlattice. Microst. 54 (2013) 71–77.

[32] M. H. Hsu, C. J. Chang, Ag-doped ZnO nanorods coated metal wire meshes as hierarchicalphotocatalysts with high visible-light driven photoactivity andphotostability, J. Hazard. Mater. 278 (2014) 444–453.

[33] A. Phuruangrat, A. Maneechote, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem, T. Thongtem, Effect of pH on visible-light-driven Bi_2WO_6 nanostructured catalyst synthesized by hydrothermal method, Superlattice. Microst. 78 (2015) 106–115.

[34] Z. He, C. Sun, S. Yang, Y. Ding, H. He, Z. Wang, Photocatalytic degradation of rhodamine B by Bi_2WO_6 with electron accepting agent under microwave irradiation: Mechanism and pathway, Journal of Hazardous Materials 162, (2009), 1477–1486.

[35] Y. Zuo, C. Wang, Y. Sun, J. Cheng, Preparation and photocatalytic properties of $BiOCl/Bi_2MoO_6$ composite photocatalyst, Materials Letters, 139 (2015), 149–152.

[36] Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073-3273, U.S.A., 2001.

[37] B. Krishnakumar, B. Subash, M. Swaminathan, AgBr–ZnO – An efficient nano-photocatalyst for the mineralization of Acid Black 1 with UV light, Separation and Purification Technology, 85 (2012), 35–44.

[38] P. Wang, T. Wu, Y. Ao, C. Wang, J. Hou, J. Qian, Y. Li, One-pot synthesis of $AgBr/Ag_2CO_3$ heterojunctions with enhanced visible-light photocatalytic activity, Materials Letters, 163 (2016), 258–261.

[39] H. Ye, H. Lin, J. Cao, S. Chen, Y. Chen, Enhanced visible light photocatalytic activity and mechanism of $BiPO_4$ nanorods modified with Agl nanoparticles, Journal of Molecular Catalysis A: Chemical, 397 (2015), 85–92.

[40] F. Chen, Q. Yang, C. Niu, X. Li, C. Zhang, J. Zhao, Q. Xu, Y. Zhong, Y. Deng, G. Zeng, Enhanced visible light photocatalytic activity and mechanism of ZnSn(OH)₆ nanocubes modified with AgI nanoparticles, Catalysis Communications, 73 (2016), 1–6.

[41] J. Wan, L. Sun, J. Fan, E. Liu, X. Hu, C. Tang, Y. Yin, Facile synthesis of porous Ag_3PO_4 nanotubes for enhanced photocatalytic activity under visible light, Applied Surface Science, 355 (2015) 615–622.

[42] H. Xu, H. Zhao, Y. Song, W. Yan, Y. Xu, H. Li, L. Huang, S. Yin, Y. Li, Q. Zhang, H. Li, $g-C_3N_4/Ag_3PO_4$ composites with synergistic effect for increased photocatalytic activity under the visible light irradiation, Materials Science in Semiconductor Processing 39 (2015) 726–734.

[43] X. Zou, Y. Dong, X. Zhang, Y. Cui, Synthesize and characterize of Ag_3VO_4 /TiO₂ nanorods photocatalysts and its photocatalytic activity under visible light irradiation, Applied Surface Science, 366 (2016), 173–180.

[44] T. Zhu, Y. Song, H. Ji, Y. Xu, Y. Song, J. Xia, S. Yin, Y. Li, H. Xu, Q. Zhang, H. Li, Synthesis of g-C3N4/Ag3VO4 composites with enhanced photocatalytic activity under visible light irradiation, Chemical Engineering Journal, 271 (2015), 96–105.

ภาคผนวก

วารสารวิชาการ

Materials Letters 180 (2016) 93-96

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Preparation and characterization of Ag₃VO₄/Bi₂MoO₆ nanocomposites with highly visible-light-induced photocatalytic properties

Sittikorn Jonjana^a, Anukorn Phuruangrat^{a,*}, Somchai Thongtem^{b,c}, Orawan Wiranwetchayan^b, Titipun Thongtem^d

^a Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
 ^b Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
 ^c Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
 ^d Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

ARTICLE INFO

ABSTRACT

Article history: Received 4 March 2016 Received in revised form 22 May 2016 Accepted 25 May 2016 Available online 26 May 2016 Keywords: Ag₃VO₄/Bi₂MoO₆ XRD TEM Photocatalysis

 $Heterostructure \ Ag_3VO_4/Bi_2MoO_6 \ nanocomposites \ were \ prepared \ by \ a \ hydrothermal-precipitation$ combination. X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed the formation of monoclinic Ag₃VO₄ nanoparticles with the size of 7-12 nm adsorbed on orthorhombic Bi₂MoO₆ nanoplates. The photocatalytic properties of pure $Bi_2MoO_6,\ 1.0\ wt\%\ Ag_3VO_4/Bi_2MoO_6,\ 2.5\ wt\%\ Ag_3VO_4/Bi_2MoO_6,\ 5.0\ wt\%\ Ag_3VO_4/Bi_2MoO_6$ and $10.0\ wt\%\ Ag_3VO_4/Bi_2MoO_6$ photocatalysts were investigated through photodegradation of rhodamine B (RhB) under visible light for 100 min. In this research, the 10.0 wt% Ag_3VO_4/Bi_2MoO_6 nanocomposites exhibited the highest photocatalytic activity under visible light. A possible photodegradation mechanism of RhB by Ag₃VO₄/Bi₂MoO₆ nanocomposites was also proposed and discussed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Presently, researchers have paid attention to visible-light-driven photocatalysts because visible light contains about 43% solar radiation. Bi2MoO6 is a new candidate for visible-light-driven photocatalyst but its activity is limited by rapid electron-hole recombination rate. Coupling Bi₂MoO₆ with a narrower band gap semiconductor is designed to improve photogenerated electronhole separation and photocatalytic activity [1-4].

In this paper, Ag₃VO₄/Bi₂MoO₆ heterojunctions were designed by a hydrothermal-precipitation combination. The photocatalytic mechanism and photodegradation of RhB under visible light were studied and discussed.

2. Experiment

Typically, each 5 mmol of Bi(NO3)3.5H2O and Na2MoO6 was dissolved in 100 ml RO water to form two solutions. The solutions were mixed, adjusted the pH to 6 by 3 M NaOH, and

* Corresponding authors.

E-mail addresses: phuruangrat@hotmail.com (A. Phuruangrat). ttpthongtem@yahoo.com (T. Thongtem).

http://dx.doi.org/10.1016/i.matlet.2016.05.115

0167-577X/© 2016 Elsevier B.V. All rights reserved.

hydrothermally processed at 180 °C for 20 h. The as-prepared precipitates were separated, washed by water and ethanol, and dried at 60 °C for 24 h.

To prepare Ag₃VO₄/Bi₂MoO₆ nanocomposites, each 0.0-10.0 wt% AgNO₃ and Na₃VO₄, and 1 g of the as-prepared Bi_2MoO_6 were dissolved in 100 ml RO water with 24 h stirring. The asprepared products were separated, washed by water and ethanol, and dried at 80 °C for 24 h.

3. Results and discussion

Fig. 1 shows XRD patterns of Ag₃VO₄/Bi₂MoO₆ samples containing different Ag₃VO₄ contents. All diffraction peaks of pure product were indexed to orthorhombic Bi2MoO6 (JCPDS no. 21-0102) [5]. XRD patterns of Ag₃VO₄/Bi₂MoO₆ composites revealed both orthorhombic Bi2MoO6 major phase and monoclinic Ag3VO4 (JCPDS no. 43-0542 [5]) minor phase. Note that the intensity of Ag₃VO₄ diffraction peaks increases with Ag₃VO₄ content. Thus, Ag₃VO₄ exists as a separated phase by forming heterostructure Ag₃VO₄/Bi₂MoO₆ composites instead of intercalating in the Bi2MoO6 lattices.

Pure Bi_2MoO_6 and Ag_3VO_4/Bi_2MoO_6 nanocomposites were characterized by TEM and SAED (Fig. 2). Pure Bi₂MoO₆ nanoplates

Fig. 1. XRD patterns of 0.0-10.0 wt% Ag₃VO₄/Bi₂MoO₆ samples.

with edge length of 100-200 nm were detected. Its SAED pattern was indexed to the (060), (062) and (002) planes of Bi2MoO6 with zone axis along the [100] direction. The 2D top surface and four edges of Bi2MoO6 nanoplates were determined to be the (-100), (062), (0-62), (06-2) and (0-6-2) planes. The TEM image of 5 wt% Ag₃VO₄/Bi₂MoO₆ nanocomposites revealed non-uniformed spherical nanoparticles of Ag3VO4 adsorbed on Bi2MoO6 nanoplates. For 10 wt% Ag₃VO₄/Bi₂MoO₆ nanocomposites, Ag₃VO₄ nanoparticles with particle size of 7-12 nm were distributed across Bi2MoO6 nanoplates. The HRTEM image of 10 wt% the Ag₃VO₄/Bi₂MoO₆ nanocomposites shows very good Ag₃VO₄/Bi₂MoO₆ interface formation, and a lattice fringe of 0.283 nm space corresponding with the (-121) crystallographic plane of Ag₃VO₄. These results show that the nanocomposites have good crystalline structure with a number of nanoparticles distributed on top of nanoplates.

Fig. 3(a) shows absorbance at 425–650 nm wavelength of RhB solutions degraded by 10 wt% Ag₃VO₄/Bi₂MOO₆ photocatalyst within 100 min. The absorbance was slowly decreased with exposure time increasing. The absorbance was shifted from 554 to 498 nm due to N-deethylation [2,4,6] within 100 min pass. During N-deethylation, the O₂⁻ and OH active species decomposed N-ethyl groups of RhB to rhodamine. The RhB degradation by Bi₂MOO₆ and Ag₃VO₄/Bi₂MOO₆ nanocomposites under visible light (Fig. 3(b)) was previously reported [7]. Before testing, the whole system was kept in the dark 30 min for absorption/desorption equilibrium. RhB was absorbed by Bi₂MOO₆ for 11.2% and by Ag₃VO₄/Bi₂MOO₆ for 16.2–18.2%. Pure Bi₂MOO₆ showed less photocatalytic activity for RhB degradation than Ag₃VO₄/Bi₂MOO₆

nanocomposites. The degradation efficiency gradually increases with Ag₃VO₄ increasing. Photocatalytic degradation by the 10 wt% Ag₃VO₄ nanoparticles on Bi₂MoO₆ nanoplates is the highest. Within 100 min, the RhB solutions were degraded about 40.73%, 64.51%, 67.78%, 72.02% and 88.81% by Bi₂MoO₆, 1.0 wt% Ag₃VO₄/Bi₂MoO₆, and 10.0 wt% Ag₃VO₄/Bi₂MoO₆ and 10.0 wt% Ag₃VO₄/Bi₂MoO₆ photocatalytic activity of 10.0 wt% Ag₃VO₄/Bi₂MoO₆ nanocomposites is 2.18 times that of pure Bi₂MoO₆ photocatalysts under visible light was considered to be the pseudo-first-order kinetics as follows

$$\ln(C_o/C_t) = kt \tag{1}$$

where k is the apparent rate constant, Co is the initial concentration of RhB, and Ct is the solution-phase concentration of RhB within the elapsed time (t). Ct/Co is the normalized organic compound concentration [6,8]. Fig. 3(c) represents a $ln(C_o/C_t)$ vs t of RhB photodegradation by pure Bi2MoO6 and plot Ag₃VO₄/Bi₂MoO₆ heterojunctions. Each plot was fitted to a linear regression line with R²=0.9928, 0.9949, 0.9973, 0.9946 and 0.9901 for Bi₂MoO₆, 1.0 wt% Ag₃VO₄/Bi₂MoO₆, 2.5 wt% Ag₃VO₄/Bi₂MoO₆, 5.0 wt% Ag₃VO₄/Bi₂MoO₆ and 10.0 wt% Ag₃VO₄/Bi₂MoO₆ nanosamples, respectively. The calculated degradation rate constant of RhB [9,10] was increased with the increasing Ag₃VO₄ content. The degradation rate constant of RhB solution by 10.0 wt% Ag_3VO_4/Bi_2MoO_6 nanocomposites is 0.0201 min $^{-1}$ or 3.78 times that by pure Bi_2MoO_6 $(5.32 \times 10^{-3} \text{ min}^{-1}).$

A possible photodegradation mechanism of RhB by Ag₃VO₄/Bi₂MoO₆ nanocomposites is shown in Fig. 4. The conduction band (CB) and valence band (VB) edges of Ag₃VO₄ are +0.04 and +2.24 eV [11,12] and those of Bi₂MoO₆ are -0.32 and +2.71 eV [1,13], respectively. Photoexcited e⁻-h⁺ pairs formed on both of the irradiated Ag₃VO₄ and Bi₂MoO₆ and further transferred to the CB and VB of Ag₃VO₄. Due to the concentration gradient and electrostatic repulsion, the photoexcited electrons in CB of Ag₃VO₄ diffused to outside surface and was trapped by electronic acceptors like adsorbed O2 to produce H2O2 $(O_2+2h^++2e^- \rightarrow H_2O_2, E^\circ = +0.682 \text{ eV})$ [12,13]. Subsequently, H_2O_2 the as-produced transformed into OH $(H_2O_2 + e^- \rightarrow OH^- + OH)$ [12,14] by being combined with the trapped electrons. Meanwhile, the photogenerated holes reacted with adsorbed OH⁻ to form 'OH ('OH /OH⁻, 1.99 eV vs NHE) [15,16]. Then the active OH radicals degraded the RhB organic dye to H₂O and CO₂. These phenomena promoted the separation of photogenerated e⁻-h⁺ pairs. Thus, Ag₃VO₄/Bi₂MoO₆ nanocomposites exhibited the highest photocatalytic activity owing to the lowest e⁻-h⁺ recombination rate.

4. Conclusions

Heterostructure Ag_3VO_4/Bi_2MOO_6 nanocomposites were successfully prepared by a hydrothermal-precipitation combination. The effect of Ag_3VO_4 content containing in Bi_2MOO_6 on the photocatalytic activity was investigated through the degradation of RhB under visible light. In this research, the 10.0 wt% Ag_3VO_4/Bi_2MOO_6 nanocomposites exhibited higher photocatalytic activity than any other samples.

Fig. 2. TEM images, SAED pattern and HRTEM image of (a, b) Bi₂MoO₆, (c) 5 wt% Ag₃VO₄/Bi₂MoO₆ and (d) 10 wt% Ag₃VO₄/Bi₂MoO₆ samples.

Fig. 3. (a) UV-visible absorption of the RhB solution by 10.0 wt% Ag₃VO₄/Bi₂MoO₆ nanocomposites under visible radiation within 100 min (b, c) Decolorization efficiency and first-order plot of RhB solutions photodegraded by Ag₃VO₄/Bi₂MoO₆ photocatalysts with different Ag₃VO₄ contents.

Fig. 4. Charge transition of Ag₃VO₄/Bi₂MoO₆ nanocomposites.

Acknowledgment

96

We are extremely grateful to the Prince of Songkla University,

Hat Yai, Songkhla 90112, Thailand for financial support through the contact SCI590434S.

References

- W. Yin, W. Wang, S. Sun, Catal. Commun. 11 (2010) 647.
 A. Phuruangrat, S. Putdum, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem, T. Thongtem, Mater. Sci. Semicond. Proc. 34 (2015) 175.
 Y. Feng, X. Yan, C. Liu, Y. Hong, L. Zhu, M. Zhou, W. Shi, Appl. Surf. Sci. 353 (2015) 420
- [3] Y. Peng, X. Yan, C. Liu, Y. Hong, L Zhu, M. Zhou, W. Shi, Appr. Surf. Sci. 555 (2015) 87.
 [4] J. Bi, W. Fang, L. Li, X. Li, M. Liu, S. Liang, Z. Zhang, Y. He, H. Lin, L. Wu, S. Liu, P. K. Wong, J. Alloy Compd. 649 (2015) 28.
 [5] Powder Diffract. File, JCPDS Internat. Centre Diffract. Data, PA 19073-3273, U.S. A 2004.
- [5] Powder Diffract. File, JCPDS Internat. Centre Diffract. Data, PA 19073-2213, 6-3 A., 2001.
 [6] A. Martínez-de la Cruz, S. Obregón Alfaro, E. López Cuéllar, U. Ortiz Méndez, Catal. Today 129 (2007) 194.
 [7] S. Jonjana, A. Phuruangrat, T. Thongtem, S. Thongtem, Mater. Lett. 172 (2016)
- [8] H. Li, J. Liu, W. Hou, N. Du, R. Zhang, X. Tao, Appl. Catal. B 160–161 (2014)
- 89.
- 89.
 99. W. Zhang, G. Chen, Z. Yang, C. Zeng, AlChE J. 59 (2013) 2134.
 (10) X. Bian, J. Chen, R. Ji, Materials 6 (2013) 1530.
 (11) T. Zhu, Y. Song, H. Ji, Y. Xu, Y. Song, J. Xia, S. Yin, Y. Li, H. Xu, Q. Zhang, H. Li, Chem. Eng. J. 271 (2015) 96.
 (12) S. Wang, D. Li, C. Sun, S. Yang, Y. Guan, H. He, Appl. Catal. B 144 (2014) 885.
 (13) Y. Zuo, C. Wang, Y. Sun, J. Cheng, Mater. Lett. 139 (2015) 149.
 (14) M. Mousavi, A. Habibi-Yangieh, Mater. Chem. Phys. 163 (2015) 421.
 (15) S. Zhang, J. Li, X. Wang, Y. Huang, M. Zeng, J. Xu, J. Mater. Chem. A 3 (2015) 10119

- 10119.
- [16] W. Liu, M. Wang, C. Xu, S. Chen, X. Fu, J. Mol. Catal. A 368–369 (2013) 9.

Materials Letters 179 (2016) 162-165

Materials Letters

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/matlet

Preparation and enhanced photocatalytic performance of AgCl/Bi₂MoO₆ heterojunction

Sittikorn Jonjana^a, Anukorn Phuruangrat^{a,*}, Somchai Thongtem^{b,c}, Titipun Thongtem^{d,**}

^a Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

^b Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
 ^c Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
 ^d Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

ARTICLE INFO

ABSTRACT

Article history: Received 23 February 2016 Received in revised form 17 April 2016 Accepted 13 May 2016 Available online 13 May 2016 Keywords: Deposition-precipitation AgCl/Bi₂MoO₆ Nanocomposites Photocatalysis

AgCl/Bi2MoO6 heterojunction photocatalysts were prepared by direct deposition of AgCl nanoparticles on Bi₂MoO₆ nanoplates. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). There was the detection of cubic AgCl nanoparticles supported on orthorhombic Bi2MoO6 nanoplates. Their photocatalytic performance was evaluated through degradation of rhodamine B (RhB) solution. The 10.0 wt% AgCl/Bi₂MoO₆ heterojunction showed the highest performance in removing of RhB under visible light and was very stable in performing photocatalysis.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

TiO₂ is an interesting photocatalyst for degradation of organic compounds by forming O2•- and OH• radicals because of its high efficiency, nontoxic property and low cost [1-4]. Its absorbance is limited in only UV region (5% of sunlight) while visible light are 48% of sunlight [5]. For bismuth molybdate (Bi2MoO6) with narrow band gap (2.5-2.8 eV) [6-8], it has very interesting physical and chemical properties: ion conduction, dielectric property, luminescence, gas detection and catalytic behavior [9,10]. It is an excellent visible-light-driven photocatalyst for water splitting and degradation of organic contaminants due to its appropriate band gap, ability to absorb visible light and various ion-conduction [6-8]. Moreover, the photocatalytic efficiency of Bi₂MoO₆ is limited by rapid recombination of photogenerated electron-hole pairs [7,8]. To improve its photocatalytic efficiency, many investigators have combined Bi2MoO6 with other photocatalysts [7,8] to improve photoexcited electron-hole separation. Thus it is a challenge to develop new bismuth based heterojunction with high photocatalytic performance.

AgCl is a famous photosensitive material with excellent photocatalysis for degradation of organic pollutant and inactivation of

E-mail addresses: phuruangrat@hotmail.com (A. Phuruangrat). ttpthongtem@yahoo.com (T. Thongtem).

http://dx.doi.org/10.1016/i.matlet.2016.05.080 0167-577X/© 2016 Elsevier B.V. All rights reserved. bacteria due to its particular photolytic characteristics [11]. There have been some studies on the photocatalytic properties of AgCl heteronanostructure combined with other semiconductors [11-13]. They have high efficiency in degrading of organic dyes, indicating that AgCl may be a good co-photocatalyst with Bi₂MoO₆.

In this research, AgCl/Bi2MoO6 photocatalyst was prepared by deposition-precipitation method. The photoactivity of AgCl/Bi2MoO6 photocatalyst towards rhodamine B (RhB) degradation was evaluated under visible light. It showed higher efficiency than Bi₂MoO₆. This procedure can be applied for the synthesis of other heteronanostructure photocatalysts.

2. Experiment

In a typical procedure, 10 mmol Bi(NO₃)₃·5H₂O (>98%, Sigma-Aldrich) was dissolved in 50 ml deionized water. Then 50 ml 5 mmol Na2MoO4·2H2O (99.5%, Riedel-de Haën) was slowly added to Bi(NO3)3.5H2O solution. A yellow homogeneous solution was obtained and adjusted the pH to 6 by 3 M NaOH solution. The last mixture was hydrothermally processed in a 200 ml Teflon-lined autoclave at 180 °C for 20 h. The product (Bi2MoO6) was collected by filtration, washed with deionized water and ethanol, and dried at 60 °C for 24 h.

To prepare AgCl/Bi₂MoO₆ heterojunctions, 0.0759, 0.1558 and 0.3291 g AgNO3 (99.8%, RCI LABScan) and 0.0261, 0.0536 and 0.1132 g NaCl (99%, RCI LABScan) were dissolved in 2.5 g Bi₂MoO₆

^{*} Corresponding author. ** Corresponding author.

suspension under constant stirring. When the whole contents of AgNO₃ and NaCl were added, the mixtures were vigorously stirred for 24 h. In the end, the as-prepared precipitates were collected, washed with deionized water three times and dried at 60 °C for 24 h for further characterization. In this research, the heterojunctions were encoded as 2.5, 5.0 and 10.0 wt% AgCl/Bi₂MoO₆, respectively. Photocatalytic activities of the as-prepared Bi₂MoO₆ and AgCl/Bi₂MoO₆ heterojunctions were evaluated by measuring the degradation of RhB as a model reaction and compared with TiO₂ (P25, average particle size: 21 ± 5 nm, specific surface: 50 ± 10 m²/g and purity after ignition > 99.5%, PlasmaChem GmbH).

3. Results and discussion

XRD patterns of the as-prepared AgCl/Bi₂MoO₆ samples (Fig. 1a) can be perfectly indexed as pure orthorhombic Bi₂MoO₆ (JCPDS no. 21-0102) [14]. No impurities such as Bi₂O₃, Bi₂Mo₃O₁₂ were detected [15]. Diffraction peaks labeled as \bullet correspond to cubic AgCl (JCPDS no. 31–1238) [14]. They should be noted that the dominant phase did not change by the formation of composites and that the products coexisted as AgCl and Bi₂MoO₆ phases [16,17].

Fig. 1b–f shows overall XPS spectra of 10.0 wt% AgCl/Bi₂MoO₆ composites. All peaks belong to Ag, Cl, Bi, Mo and O. The Ag $3d_{5/2}$ and Ag $3d_{3/2}$ peaks were detected at 367.8 and 373.9 eV belonging to Ag⁺ of AgCl [11–13]. Those of Cl $2p_{3/2}$ and Cl $2p_{1/2}$ show two different peaks at 198.1 and 199.7 eV [18,19]. Binding energies of Bi

4f_{5/2} and Bi 4f_{7/2} are 164.5 and 159.3 eV, respectively, suggesting the presence of Bi³⁺ [6–8]. Two peaks at 235.7 and 232.6 eV belong to Mo 3d_{3/2} and Mo 3d_{5/2} indicating the presence of Mo⁶⁺ in the composites [6–8]. The XPS peak for O 1s can be deconvoluted into four distinct peaks at 530.0, 530.7, 531.9 and 533.0 eV related to Bi–O, Mo–O, O–H of adsorbed surface H₂O and C–O bonds of adsorbed ambient atmosphere [6–8,20,21]. The results reveal the co-existence of AgCl and Bi₂MoO₆ in the 10.0 wt% AgCl/Bi₂MoO₆ sample, in accordance with the XRD analysis. SEM imaging and EDX mapping of 10.0 wt% AgCl/Bi₂MoO₆ (Fig. S1 of Supplementary data) show homogeneous distribution of Ag, Cl, Bi, Mo and O across the composites.

TEM images, SAED pattern and HRTEM images of pure Bi₂MoO₆ and AgCl/Bi₂MoO₆ heterojunctions are shown in Fig. 2. Pure Bi₂MoO₆ exhibits nanoplate-like cluster with nanoplate edge of 100–200 nm long. Its SAED pattern illustrates a single crystalline nanoplate analyzed by electron beam along the [100] direction. HRTEM images of AgCl/Bi₂MoO₆ composites show AgCl nanoparticles attached on the surface of Bi₂MoO₆ nanoplates. The number of AgCl nanoparticles increases with the wt% AgCl. For 10.0 wt% AgCl/Bi₂MoO₆ nanocomposites, 0.28 nm uniform fringe space was detected and indexed to the (200) plane of AgCl nanoparticles. AgCl/Bi₂MoO₆ composites were successfully prepared by ion exchange between AgNO₃ and NaCl through depositionprecipitation of Ag⁺ and Cl⁻ to form AgCl nanoparticles on Bi₂MoO₆ nanoplates.

The UV-visible absorption (Fig. 3a) provided spectral change accompanying the photodegradation of RhB by the as-prepared 10.0 wt% AgCl/Bi₂MoO₆ heterojunction. The RhB showed a major

Fig. 1. (a) XRD patterns of pure Bi₂MoO₆ and AgCl/Bi₂MoO₆ heterojunctions. (b–f) XPS spectra of Ag 3d, Cl 2p, Bi 4f, Mo 3d and O 1s of 10.0 wt% AgCl/Bi₂MoO₆ heterojunction, respectively.

Fig. 2. TEM images, SAED pattern and HRTEM images of (a, b) pure Bi₂MoO₆, (c) 5.0 wt% AgCl/Bi₂MoO₆ and (d) 10.0 wt% AgCl/Bi₂MoO₆.

absorption at 554 nm wavelength, which gradually decreased with the temporal evolution of light irradiation. The absorbance was completely stationary within 100 min The solution color changed from pink to nearly transparent due to deethylation and degradation of RhB chromophoric structure [9,10]. Fig. 3b shows the photocatalytic activity of P25 (TiO2), as-prepared Bi2MoO6 and AgCl/Bi2MoO6 heterojunctions in degradation of RhB under visible radiation. Before testing, the whole system was kept in the dark for absorption/desorption equilibrium. RhB was absorbed by Bi2MoO6 for 11.2% and by AgCl/Bi2MoO6 for 31-35%. Within 100 min photocatalysis, 40.5% RhB was photocatalytically degraded by pure Bi2MoO6, very close to that of P25. Moreover, all AgCl/Bi2MoO6 heterojunctions exhibit higher photocatalytic activities than pure Bi2MoO6. The photocatalytic activities of AgCl/Bi2MoO6 heterojunctions were increased to 80.7%, 85.1% and 92.4% for 2.5, 5.0 and 10.0 wt% AgCl, respectively. AgCl/Bi2MoO6 heterojunctions are the best photocatalyst for removal of RhB under visible light. They should be noted that AgCl/Bi2MoO6 nanocomposites show red shift in band-gap edge comparing to pure Bi2MoO6 and show an increase in absorption in visible range due to interaction between AgCl and Bi2MoO6 [22,23]. Visible absorption of the nanocomposites is more effective with increasing in AgCl content caused by

increasing in the number of e⁻-h⁺ pairs during photocatalysis. Fig. 3c is a linear plot of $ln(C_0/C_t)$ versus reaction time. The degradation curves of RhB fits well with first-order reaction [6,8,19]. The calculated rate constants are 5.5204 × 10⁻³, 0.0173, 0.0173, 0.0196 and 0.0284 min⁻¹ for the as-prepared Bi₂MoO₆, 2.5 wt% AgCl/Bi₂MoO₆, 5.0 wt% AgCl/Bi₂MoO₆, and 10.0 wt% AgCl/Bi₂MoO₆. respectively. The 10.0 wt% AgCl/Bi₂MoO₆ heterojunction exhibits the highest rate constant of approximately 5 times that of pure Bi₂MoO₆. In order to examine the stability of the nanocomposites, recycle test for 10.0 wt% AgCl/Bi₂MoO₆ heterojunction was reused 5 cycles as the results shown in Fig. 3d. Obviously, the photocatalytic activity of 10.0 wt% AgCl/Bi₂MoO₆ heterojunction at the end of recycle-5 is 92.4%, demonstrating the stability of 10.0 wt% AgCl/Bi₂MoO₆ heterojunction.

4. Conclusions

In summary, AgCl/Bi₂MoO₆ heterojunctions were successfully synthesized by a deposition-precipitation method. The as-prepared AgCl/Bi₂MoO₆ heterojunctions consist of cubic AgCl nanoparticles supported on surface of orthorhombic Bi₂MoO₆ nanoplates. The 10.0 wt% AgCl/Bi₂MoO₆ heterojunction can degrade RhB up to 92.4% within 100 min under visible radiation or approximately 5 times that of pure Bi₂MoO₆.

Acknowledgment

We are extremely grateful to the Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand for providing financial support through the contact no. SCI590434S.

S. Jonjana et al. / Materials Letters 179 (2016) 162-165

Fig. 3. (a) UV-visible absorption of RhB in the solution containing 10.0 wt% AgCl/Bi2M006 heterojunction under visible radiation within 100 min. (b) Decolorization efficiency and (c) first-order plot of different photocatalysts and (d) recyclability for photocatalytic degradation of RhB by 10.0 wt% AgCl/Bi₂MoO₆ heterojunction. (For inter-pretation of the references to color in this figure, the reader is referred to the web version of this article.)

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.matlet.2016.05. 080.

- [9] Z. Zhang, W. Wang, D. Jiang, J. Xu, Catal. Commun. 55 (2014) 15–18.
 [10] A. Phuruangrat, S. Putdum, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem, T. Thongtem, Mater. Sci. Semicond. Process. 34 (2015) 175–181.
 [11] Z. Zhao, Y. Wang, J. Xu, C. Shang, Y. Wang, Appl. Surf. Sci. 351 (2015) 416–424.
 [12] M. Gao, D. Zhang, H. Li, X. Pu, X. Shao, W. Li, Mater. Lett. 159 (2015) 406–409.
 [13] R. Lamba, A. Umar, S.K. Mehta, W.A. Anderson, S.K. Kansal, J. Mol. Catal. A 408 (2015) 198–201.
- (2015) 189-201.
- (14) (Powder Diffract. File, JCPDS Internat. Centre Diffract). Data, PA 19073–3273, U. S.A. (2001).
 [15] E. Luévano-Hipólito, A.M. Cruz, Q.L. Yu, H.J.H. Brouwers, Appl. Catal. A 468

- [10] I. Lucrain Denter, J. Lee, A.L. Gopalan, Mater. Lett. 62 (2008) 1815–1818.
 [17] K.R. Reddy, B.C. Sin, K.S. Ryu, J.C. Kim, H. Chung, Y. Lee, Synth. Met. 159 (2009) 595-603.
- 595-603.
 [18] G. Zou, Z. Wan, C. Wan, G. Zhang, X. Pan, J. Peng, J. Chang, J. Mol. Catal. A 411 (2016) 364-371.
 [19] H. Li, Y. Sun, B. Cai, S. Gan, D. Han, L. Niu, T. Wu, Appl. Catal. B 170-171 (2015)

- [10] In Lin Han, Bellin, B. Chin, E. Hun, E. Hui, F. Hui, F. Hui, F. Hui, F. Hui, F. Hui, J. Hui, L. Hui, L. Hui, P. Hui, P. Hui, J. Cao, S. Chen, Y. Chen, J. Mol. Catal. A 397 (2015) 85–92.
 [21] X. Li, S. Fang, L. Ge, C. Han, P. Qui, W. Liu, Appl. Catal. B 176–177 (2015) 62–69.
 [22] R. Lamba, A. Umar, S.K. Mehta, W.A. Anderson, S.K. Kansal, J. Mol. Catal. A 408
- (2015) 189–201.
 [23] M. Pirhashemi, A. Habibi-Yangjeh, J. Alloy. Compd. 601 (2014) 1–8.

References

- [1] T. Leshuk, S. Linley, G. Baxter, F. Gu, A.C.S. Appl. Mater. Interfaces 4 (2012) 6062-6070.
- K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A 489 (2015) 1–16.
 M.P. Seabra, E. Rego, A. Ribeiro, J.A. Labrincha, Chem. Eng. J. 171 (2011)
- 175-180.

- 175-180.
 [4] K.R. Reddy, V.G. Gomes, M. Hassan, Mater. Res. Exp. 1 (2014) 015012.
 [5] A. Phuruangrat, A. Maneechote, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem, T. Thongtem, Superlattics Microstruct. 78 (2015) 106–115.
 [6] J. Lv, K. Dai, J. Zhang, L. Geng, C. Liang, Q. Liu, G. Zhu, C. Chen, Appl. Surf. Sci. 358 (2015) 377–384.
- 538 (2015) 317-384.
 [7] J. Zhao, Q. Lu, M. Wei, C. Wang, J. Alloy. Compd. 646 (2015) 417-424.
 [8] H. Li, J. Liu, W. Hou, N. Du, R. Zhang, X. Tao, Appl. Catal. B 160-161 (2014) 89-97.

Materials Letters 175 (2016) 75-78

Synthesis of AgI/Bi₂MoO₆ heterojunctions and their photoactivity enhancement driven by visible light

Sittikorn Jonjana^a, Anukorn Phuruangrat^{a,*}, Somchai Thongtem^b, Titipun Thongtem^{c,d,**}

^a Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand ^b Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand ^c Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

^d Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

ARTICLE INFO

ABSTRACT

Article history. Received 16 January 2016 Received in revised form 16 March 2016 Accepted 23 March 2016 Available online 25 March 2016 Keywords: Deposition-precipitation AgI/Bi2MoO6 composites Photocatalysis

AgI/Bi2MoO6 heterojunction photocatalysts were successfully synthesized by deposition-precipitation of Agl nanoparticles on Bi2MoO6 nanoplates. The as-synthesized photocatalysts were characterized by XRD, TEM and XPS. Effect of Agl loaded on photoactivity of Agl/Bi₂MoO₆ heterojunctions was investigated through the photodegradation of rhodamine B (RhB) as a model toxic contaminant under visible light. The 10 wt% Agl/Bi2MoO6 heterojunctions have the highest RhB removal efficiency of 92.89% within 40 min.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Visible driven photocatalysts have attracted worldwide researchers because they can apply for splitting of water and the degradation of organic pollutants by approximately 43% visible light of solar radiation [1-3]. Bi2MoO6 visible driven photocatalyst with 2.9 eV is a typical Aurivillius phase containing perovskite layers $(Bi_2O_2)(A_{m-1}B_mO_{3m+1})$ [4-6]. A number of researchers have studied photocatalytic activities of Bi2MoO6 to decompose organic contaminants under visible light [1,3-6]. Moreover, photocatalytic activities of Bi₂MoO₆ are limited by rapid recombination of photoexcited carriers [1,2]. Thus, effective visible-light-driven photocatalyst was developed to have a great benefit for environmental treatment. Heterojunction photocatalysts can improve the efficiency of visible-light-driven photocatalyst because they can reduce the recombination rate of photoinduced electron-hole pairs [2]. As one of the excellent sensitizers. AgI can be used to modify wide-band-gap semiconductors to enhance the visible absorption ability and to utilize solar energy due to its narrow band gap of ~2.8 eV [7].

In this work, AgI/Bi2MoO6 heterojunctions were successfully

ttpthongtem@vahoo.com (T. Thongtem).

://dx.doi.org/10.1016/j.matlet.2016.03.125 0167-577X/© 2016 Elsevier B.V. All rights reserved.

synthesized by deposition-precipitation at room temperature. The AgI/Bi2MoO6 heterojunctions showed high photocatalytic activity to decompose rhodamine B (RhB) under visible light.

2. Experiment

Each of 5 mmol Bi(NO3)3 · 5H2O and Na2MoO6 was dissolved in each 100 ml RO water and mixed together. The obtained solution was stirred and adjusted the pH to 6 by 3 M NaOH solution. The mixture was transferred to a 200 ml Teflon-lined stainless steel autoclave, tightly closed and maintained at 180 °C in an electric oven for 20 h. The obtained precipitates were washed with distilled water and ethanol, dried at 80 °C for 24 h and collected for the synthesis of heterostructure nanocomposites.

To synthesize heterostructure Agl/Bi_2MoO_6 nanocomposites, different concentrations of $0{-}10\%~AgNO_3$ and Nal by weight and 2.5 g Bi₂MoO₆ sample were dissolved in 100 ml RO water under magnetic stirring for 24 h. Subsequently, the products were separated by filtering, washed with ethanol and dried at 80 °C in an electric oven for 24 h for further characterization and photocatalytic testing.

3. Results and discussion

Fig. 1a shows XRD patterns of pure BiaMoO₆ and 1, 5 and

CrossMark

^{*} Corresponding author.

Corresponding author at: Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. E-mail addresses: phuruangrat@hotmail.c otmail.com (A. Phuruangrat),

Fig. 1. (a) XRD patterns of 0–10 wt% Agl/Bi₂MoO₆ heterojunctions and (b–f) XPS spectra of Ag3d, 13d, Bi4f, Mo3d and O1s of 10 wt% Agl/Bi₂MoO₆ heterojunctions, respectively.

10 wt% AgI/Bi2MoO6 heterojunctions. For the pure sample, it can be indexed to orthorhombic Bi2MoO6 phase (JCPDS no. 21-0102 [8]) without impurity detection. For the analysis of AgI/Bi2MoO6 heterojunctions, additional hexagonal AgI phase (JCPDS no. 09-0374 [8]) was detected, implying the coexistence of the two phases. Diffraction peaks of the composites are clearly related to AgI and Bi₂MoO₆ phases and the loaded AgI of the composites did not change Bi2MoO6 crystalline phase. The chemical state of 10 wt% Agl/Bi2MoO6 heterojunctions (Fig. 1b-f) shows XPS peaks at 374.48 and 368.49 eV, ascribed to $Ag3d_{3/2}$ and $Ag3d_{5/2}$ of Ag^+ [7,9], those at 619.70 and 631.20 eV are for I3d_{5/2} and I3d_{3/2} [7], including two strong peaks at 164.80 and 159.51 eV are assigned to Bi4f_{5/2} and Bi4f7/2 [7,9,10], respectively. The analysis confirms the presence of Bi³⁺ cations containing in the Agl/Bi₂MoO₆ composites. Two peaks of Mo3d_{5/2} at 232.81 eV and Mo3d_{3/2} at 235.91 eV were assigned to Md⁶⁺ species [9,10]. The O1s XPS spectrum can be de-convoluted into four peaks relating to Bi-O bond at 530.25 eV, Mo-O bond at 531.10 eV, surface adsorbed O species at 532.13 eV and C-O bond of adsorbed ambient air at 532.89 eV [7,9,11]. The above results revealed the successful synthesis of Agl/Bi2MoO6 heteroiunctions.

TEM and HRTEM images of Bi_2MoO_6 and AgI/Bi_2MoO_6 heterojunctions are shown in Fig. 2. The as-synthesized Bi_2MoO_6 was composed of nanoplates with edge length of 100–200 nm. Their surfaces were very smooth with no other particles on top. The SAED pattern (inserted of Fig. 2a) of a nanoplate, indexed to the (060), (062) and (002) planes with electron beam along the [100] direction, revealed the presence of single crystal with orthorhombic Bi_2MoO_6 structure. TEM images of 5 and 10 wt% AgI/ Bi_2MoO_6 samples showed that Bi_2MoO_6 remained as nanoplates with AgI nanoparticles on top. The amount of AgI nanoparticles was increases with the increase of AgI content. Moreover, AgI nanoparticles with < 10 nm fully covered on Bi_2MoO_6 surface of 10 wt% Agl/Bi₂MoO₆. HRTEM image of 10 wt% Agl/Bi₂MoO₆ heterostructures revealed the interplanar space of 0.373 nm corresponding to the (002) crystallographic plane of Agl, indicating the formation of Agl/Bi₂MoO₆ heterostructure. The as-synthesized heterostructure has better charge separation and more efficient carrier transfer comparing to pure Bi₂MoO₆ nanoplates. Thus their photocatalytic activities were improved [2,9].

Photocatalytic activities of the as-synthesized samples were investigated by photodegradation of RhB dye as a model reaction in water to demonstrate the degradation ability of the photocatalysts. Fig. 3a shows UV-visible absorption of 200 ml aqueous solution containing 1×10^{-5} M RhB and 20 mg photocatalyst under visible light for different lengths of time. It can be seen that the intensity of RhB at λ_{max} of 554 nm gradually decreased as the exposure time was lengthened, indicating the degradation of RhB. Moreover, the absorption peak shifted from 554 nm to 498 nm, corresponding to the color change of the solution from pink to cyan. The gradual hypsochromic shift of the absorption peak to a shorter wavelength is caused by the N-deethylation of RhB during irradiation [3,6,7]. This hypsochromic shift was attributed to degrade in sequence: deethylation of RhB to yield N,N,N'-triethyl rhodamine (TER, 539 nm), N,N'-diethyl rhodamine (DER, 522 nm), N-ethyl rhodamine (MER, 510 nm) and rhodamine at 498 nm [12]. A proposed mechanism of RhB degradation by the Agl/Bi2MoO6 heterostructures can be explained by the following. Band energy levels of AgI and Bi2MoO6 were illustrated in the previous reports [13-15]. Under visible light, both AgI and Bi₂MoO₆ are excited by visible light to produce the electron (e⁻) in conduction band (CB) and hole (h^+) in valence band (VB). In this case, electrons can easily diffuse from the CB of AgI to CB of Bi2MoO6 because CB of AgI (-0.43 V w.r.t. NHE) is more negative than CB of Bi₂MoO₆ (-0.32 V w.r.t. NHE). Concurrently, holes can diffuse from VB of Bi₂MoO₆ to VB of AgI because VB of AgI (2.61 V w.r.t. NHE) is more

S. Jonjana et al. / Materials Letters 175 (2016) 75-78

Fig. 2. TEM and HRTEM images, and SAED pattern of (a) pure Bi₂MoO₆, (b) 5 wt% AgI/Bi₂MoO₆ and (c, d) 10 wt% AgI/Bi₂MoO₆.

negative than VB of Bi₂MoO₆ (2.71 V w.r.t. NHE). The excited electrons and holes of AgI/Bi₂MoO₆ heterocomposites diffuse through the joint of electric field between the two materials. Then, the adsorbed O₂ on the surface of Bi₂MoO₆ was reduced to H₂O₂ (O₂/H₂O₂=0.695 V w.r.t. NHE) [16] and further transformed into OH•. The photoexcited holes on AgI react with OH⁻ to form OH• (OH⁻/OH•=2.72 V w.r.t. NHE) [16]. Subsequently, RhB was degraded and transformed into the friendly products of H₂O and CO₂.

The degradation efficiencies and pseudo-first-order plot of the Bi₂MoO₆ and Agl/Bi₂MoO₆ photocatalysts are shown in Fig. 3b and c. The photodegradation of RhB by Bi₂MoO₆ was very low (17.21%) and the RhB removal by 10 wt% Agl/Bi₂MoO₆ can reach 92.89% within 40 min. Obviously, Agl/Bi₂MoO₆ theterojunctions exhibited much higher activity than pure Bi₂MoO₆. The kinetics degradation of RhB followed the pseudo-first-order reaction [4,7,17] with ln (C₀/C_t)=k_{app}t, where C₀ and C_t are the initial concentration of RhB and the concentration of residual RhB within the length of reaction time (t), and k_{app} is an apparent rate constant [7,17,18]. The RhB degradation apparent rate constant by Bi₂MoO₆ and 10 wt% Agl/Bi₂MoO₆ heterojunctions were determined to be 5.39 × 10⁻³, 4.67 × 10⁻², 6.02 × 10⁻², 6.57 × 10⁻² and 7.30 × 10⁻² min⁻¹,

respectively. The k_{app} value of 10 wt% Agl/Bi₂MoO₆ heterojunction was about 13.54 times higher than that of pure Bi₂MoO₆. Additionally, the stability of highly efficient 10 wt% Agl/Bi₂MoO₆ heterojunctions was evaluated by recycled testing (Fig. 3d). Clearly, photocatalytic efficiency exhibit insignificant reduction after three-recycled test. Thus the 10 wt% Agl/Bi₂MoO₆ photocatalytis is quite stable without suffering photocorrosion during photocatalysis.

4. Conclusions

In summary, AgI/Bi₂MoO₆ heterojunctions were successfully synthesized by deposition-precipitation at room temperature. The results show that AgI/Bi₂MoO₆ heterojunctions contained AgI nanoparticles with <10 nm diameter supported on surface of orthorhombic Bi₂MoO₆ nanoplates. The 10 wt% AgI/Bi₂MoO₆ heterojunctions can degrade RhB up to 92.89% within 40 min under visible light and its k_{app} is over 13.54 times higher than that of pure Bi₂MoO₆ nanoplates.

Fig. 3. (a) UV-visible absorption of RhB in the solution containing 10 wt% AgJ/Bi₂MoO₆ heterojunctions under visible light within 40 min. (b) Decolorization efficiency and (c) first-order plot of different photocatalysts. (d) Recyclability for the degradation of RhB by 10 wt% AgJ/Bi₂MoO₆ heterojunctions under visible light. (For interpretation of the reference to color in this figure, the reader is referred to the web version of this article.)

Acknowledgment

We wish to thank Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand for funding the research.

References

- K. Dai, D. Li, L. Geng, C. Liang, Q. Liu, Mater. Lett. 160 (2015) 124–127.
 Y. Feng, X. Yan, C. Liu, Y. Hong, L. Zhu, M. Zhou, W. Shi, Appl. Surf. Sci. 353 (2015) 87–94.

- (2015) 87–94.
 [3] A. Phuruangrat, S. Putdum, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem, T. Thongtem, Mater. Sci. Semicond. Process. 34 (2015) 175–181.
 [4] E. Luévano-Hipólito, A. Martínez-de la Cruz, E. López Cuéllar, J. Taiwan Inst. Chem. Eng. 45 (2014) 2749–2754.
 [5] T. Zhang, J. Huang, S. Zhou, H. Ouyang, L. Cao, A. Li, Ceram. Int. 39 (2013) 7391–7394.

[6] P. Dumrongrojthanath, T. Thongtem, A. Phuruangrat, S. Thongtem, Mater. Lett.

- [6] P. Dumongrofmanath, I. Inongtem, A. Phuruangrat, S. Ihongtem, Mater. Lett. 154 (2015) 180–183.
 [7] H. Ye, H. Lin, J. Cao, S. Chen, Y. Chen, J. Mol. Catal. A 397 (2015) 85–92.
 [8] Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073–3273, U.S.A. 2001.
 [9] X. Li, S. Fang, L. Ge, C. Han, P. Qiu, W. Liu, Appl. Cata. B 176–177 (2015) 62–69.
 [10] J. Li, X. Liu, Z. Sun, L. Pan, J. Colloid Interface Sci. 463 (2016) 145–153.
 [11] S. Jonjana, A. Phuruangrat, T. Thongtem, S. Thongtem, Mater. Lett. 172 (2016) 11–14. 11-14.

- I1-14,
 I2 L. Zhang, Y. He, Y. Wu, T. Wu, Mater. Sci. Eng. B 176 (2011) 1497–1504.
 Y. Zuo, C. Wang, Y. Sun, J. Cheng, Mater. Lett. 139 (2015) 149–152.
 F. Chen, Q. Yang, C. Niu, X. Li, C. Zhang, J. Zhao, Q. Xu, Y. Zhong, Y. Deng, C. Zeng, Catal. Commun. 73 (2016) 1–6.
 I. Cai, T. Xu, J. Shen, W. Xiang, Mater. Sci. Semicond. Process. 37 (2015) 19–28.
 S. Wang, D. Li, C. Sun, S. Yang, Y. Guan, H. He, Appl. Catal. B 144 (2014) 885–892.
 B.R. Singh, M. Shoeb, W. Khan, A.H. Naqvi, J. Alloy. Compd. 651 (2015) 598–607.
 M. Shoeb, B.R. Singh, M. Mobin, G. Afreen, W. Khan, A.H. Naqvi, PLoS One 10 (2015) e0135055.
- (2015) e0135055.

Materials Letters 172 (2016) 11-14

Synthesis, analysis and photocatalysis of AgBr/Bi₂MoO₆ nanocomposites

Sittikorn Jonjana^a, Anukorn Phuruangrat^{a,*}, Titipun Thongtem^{b,*}, Somchai Thongtem^{c,d}

^a Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkha 90112, Thailand ^b Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand ^c Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

^d Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

ARTICLE INFO

ABSTRACT

Article history. Received 8 January 2016 Received in revised form 9 February 2016 Accepted 23 February 2016 Available online 24 February 2016 Keywords: Deposition-precipitation AgBr/Bi₂MoO₆ nanocomposites Photocatalysis

Heterostructure AgBr/Bi₂MoO₆ nanocomposites for visible-light-driven photocatalyst were synthesized by deposition-precipitation. Upon characterization the nanocomposites, cubic AgBr nanoparticles were detected to adsorb on orthorhombic Bi₂MoO₆ nanoplates. Effect of AgBr contents on photodegradation of rhodamine B (RhB) under visible white light was investigated. The 10 wt% AgBr/Bi₂MoO₆ nanocomposites exhibited the highest photocatalytic activity of 97% within 40 min. A mechanism for photodegradation of RhB by AgBr/Bi2MoO6 nanocomposites was also discussed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recently, Bi-based semiconducting photocatalysts such as Bi₂MoO₆ [1,2], Bi₂WO₆ [3] and BiOCl [4] have attracted a lot of interest for wastewater treatment due to their non-toxicity, simplicity, cost-effective, long-term stability and outstanding catalytic performance [2,3]. Among them, Bi₂MoO₆ has a great potential photocatalyst in splitting of water and removal of organic pollutants [1,2] because of its relatively narrow energy gap (2.5-2.8 eV) [2,5]. To improve photocatalytic activities, heterostructure nanocomposites are promising materials. They can reduce recombination of photoinduced electron-hole pairs during photocatalysis [2-4]. AgBr is sensitive to visible light and has been used to improve activities of photocatalysts because of its visible light absorption, narrow energy gap and effective separation of photoinduced electron-hole pairs [6].

In this research, highly active AgBr/Bi2MoO6 nanocomposites were successfully synthesized by facile deposition-precipitation. Their photocatalytic activities were investigated through the degradation of RhB under visible white light.

* Corresponding author. E-mail addresses: phuruangrat@hotmail.com (A. Phuruangrat),

ttpthongtem@yahoo.com (T. Thongtem).

http://dx.doi.org/10.1016/j.matlet.2016.02.125 0167-577X/© 2016 Elsevier B.V. All rights reserved.

2. Experiment

Each of 5 mmol Bi(NO₃)₃·5H₂O and Na₂MoO₆ was dissolved in 100 ml RO water and mixed together. The obtained solution was stirred and adjusted the pH to 6 by 3 M NaOH. The system was hydrothermally processed at 180 °C for 20 h. The as-synthesized precipitates were washed with distilled water and ethanol, and dried at 80 °C for 24 h.

To synthesize AgBr/Bi2MoO6 nanocomposites, 0-10% AgNO3 and NaBr by weight and 2.5 g Bi2MoO6 were dissolved in 100 ml RO water with magnetic stirring for 24 h. Subsequently, the assynthesized products were washed with absolute ethanol and dried at 80 °C for 24 h.

Phases of the products were investigated by XRD (Philips X'Pert MPD) operating at 30 kV and their morphologies by TEM (JEOL JEM-2010). XPS spectra (calibrated to a C 1s peak at 285.1 eV) were carried out using an Axis Ultra DLD-Kratos Analytical with a monochromated Al K_{α} radiation (1486.6 eV).

Photocatalysis was evaluated via the photodegradation of RhB under visible white light. Each experiment, 20 mg photocatalyst was added to 200 ml 1×10^{-5} M RhB aqueous solution. Before illumination, the suspensions were stirred in the dark for 30 min to obtain adsorption-desorption equilibrium. During photocatalysis, 5 ml solution was sampled for every appropriate time intervals. The RhB concentration was determined by a UV-vis spectrometer (Perkin Elmer, Lambda 25) for determination of decolorization efficiency [1].

S. Jonjana et al. / Materials Letters 172 (2016) 11-14

Fig. 2. TEM and HRTEM images, and SAED pattern of (a) Bi₂MoO₆, (b) 5 wt% AgBr/Bi₂MoO₆ and (c, d) 10 wt% AgBr/Bi₂MoO₆.

S. Jonjana et al. / Materials Letters 172 (2016) 11-14

Fig. 3. (a) UV-vis absorption of RhB in the solution containing 10 wt% AgBr/Bi₂MoO₆ nanocomposites under visible white light within 40 min. (b) Decolorization efficiency and (c) first-order plot for the degradation of RhB in the solutions containing 0, 1, 5 and 10 wt% AgBr/Bi₂MoO₆. (d) Recyclability for the photodegradation of RhB by 10 wt% AgBr/Bi₂MoO₆ nanocomposites.

Fig. 4. Photodegradation of RhB by AgBr/Bi2MoO6 nanocomposites.

3. Results and discussion

Fig. 1a shows XRD patterns of Bi₂MoO₆ and AgBr/Bi₂MoO₆ nanocomposites. The pattern of pure product can be indexed to orthorhombic Bi₂MoO₆ (JCPDS no. 21-0102) [7]. The AgBr/Bi₂MoO₆ composites exhibited similar XRD patterns to that of Bi₂MoO₆ including the detection of new peaks at 2θ =31.00 and 44.28° for the samples containing 5 and 10 wt% AgBr. The additional peaks

were indexed to the (200) and (220) planes of cubic AgBr (JCPDS no. 06-0438) [7]. There was no change in the peak positions of AgBr/Bi₂MoO₆ nanocomposites, comparing with pure Bi₂MoO₆. The oxidation states of elements in AgBr/Bi₂MoO₆ nanocomposites (Fig. 1b–f) were investigated by XPS. XPS spectrum of Ag 3d presents two peaks at 373.93 and 367.89 eV assigned to Ag 3d_{3/2} and Ag 3d_{5/2} of Ag⁺ ions [8], respectively. The Br 3d shows binding energy peaks of Br 3d_{3/2} (69.34 eV) and Br 3d_{5/2} (68.32 eV) [8,9]. The Bi 4f_{5/2} and Bi 4f_{7/2} of Bi^{3+} ions were detected at 164.61 and 159.29 eV [5,9]. The binding energies at 235.75 and 232.61 eV are specified as 3dMo_{3/2} and 3dMo_{5/2} of Mo⁶⁺ ions [5]. By Gaussian fitting, the peak of O 1s shows binding energies at 530.13, 530.94, 532.00 and 533.00 eV due to the presence of Bi–O, Mo–O, ad-sorbed water and O–H groups on surface of AgBr/Bi₂MoO₆.

Morphologies of Bi_2MoO_6 and AgBr/ Bi_2MoO_6 composites were investigated by TEM (Fig. 2). In this research, pure Bi_2MoO_6 nanoplates have edges of ca 100–160 nm. The SAED pattern of individual nanoplate appears as spots of electron diffraction array, implying that the nanoplate is single crystal. The pattern was indexed to the (060), (062) and (002) planes projected along the [100] zone axis. The morphologies of 5 and 10 wt% AgBr/ Bi_2MoO_6 nanocomposites present AgBr spherical nanoparticles with < 20 nm diameter supported on surface of Bi_2MOO_6 nanoplates. HRTEM image of 10 wt% AgBr/ Bi_2MoO_6 nanocomposites exhibits lattice fringe with d=0.284 nm corresponding to the (200) plane of Bi_2MoO_6 and with d=0.364 nm corresponding to the (131) plane of Bi_2MoO_6 . In summary, AgBr nanoparticles adsorbed on top of the Bi_2MoO_6

87

nanoplates. This full connection favors electron transfer between AgBr nanoparticles and Bi₂MoO₆ nanoplates during photocatalysis.

Photocatalytic activities were determined through the photodegradation of RhB by pure Bi2MoO6 and AgBr/Bi2MoO6 nanophotocatalysts under visible white light. Fig. 3a shows a temporal UV-vis absorption of RhB by 10 wt% AgBr/Bi2MoO6 photocatalyst for 0-40 min. During exposure, the absorbance at 553 nm was gradually decreased and shifted to 496 nm due to N-demethylation of RhB molecules [1]. Fig. 3b shows the photocatalytic activities of pure Bi2MoO6, and AgBr/Bi2MoO6 composites under visible white light. In this research, the efficiency of Bi2MoO6 is less than those of ${\rm AgBr}/{\rm Bi}_2{\rm MoO}_6$ nanocomposites. With the increasing of AgBr content to 10 wt%, the decolorization efficiency is the highest at 97% within 40 min. The RhB degradation rates by pure Bi_2MoO_6 and AgBr/Bi2MoO6 composites (Fig. 3c) follow the pseudo firstorder reaction [2,3,8]. The reaction rates were 6.47×10^{-3} , 3.81×10^{-2} , 8.47×10^{-2} and $9.66 \times 10^{-2} \text{ min}^{-1}$ for pure Bi_2MOO_6 , 1 wt% AgBr/Bi_2MOO_6 and 10 wt%AgBr/Bi2MoO6 samples, respectively. Fig. 3d shows the photocatalytic recyclability by 10 wt% AgBr/Bi2MoO6 within five cycles. The efficiency for photocatalytic degradation of RhB by 10 wt% AgBr/Bi₂MoO₆ at the fifth cycle is 80%, 17% reduction w.r.t. the first.

A photomechanism based on energy bands of AgBr and Bi2MoO6 is proposed (Fig. 4). Under visible white light, photoexcited electrons transfer from CB(Bi2MoOG) to CB(AgBr), including generated holes from VB(Bi2MoO6) to VB(AgBr). The transfer process is faster than electron-hole recombination. The electrons of CB_(AgBr) were released to $O_{2(adsorbed)}$ to produce •OH radicals. Holes of $VB_{(AgBr)}$ reacted with OH⁻ to produce •OH radicals. These •OH radicals are very oxidative and subsequently transform RhB molecules into H₂O and CO₂ [10-12].

4. Conclusions

Heterostructure AgBr/Bi2MoO6 nanocomposites were successfully synthesized by deposition-precipitation. The 10 wt% AgBr/Bi2MoO6 nanocomposites exhibited the highest photocatalytic activity and are the promising material for a practical application in removing organic contaminants for wastewater treatment.

Acknowledgments

We wish to thank Thailand's Office of the Higher Education Commission for financial support through the National Research University Project for Chiang Mai University. Asst. Prof. Dr. Anukorn Phuruangrat wish to thank Thailand Research Fund and Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand for funding the research.

References

- [1] P. Dumrongrojthanath, T. Thongtem, A. Phuruangrat, S. Thongtem, Mater. Lett.

- P. Dumrongrojthanath, T. Thongtem, A. Phuruangrat, S. Thongtem, Mater. 16 154 (2015) 180–183.
 F. Chen, C. Niu, Q. Yang, X. Li, G. Zeng, Ceram. Int. 42 (2016) 2515–2525.
 A. Phuruangrat, A. Maneechote, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem, T. Thongtem, Mater. Lett. 159 (2015) 289–292.
 Y. Gao, L. Wang, Z. Li, C. Li, X. Cao, A. Zhou, Q. Hu, Mater. Lett. 136 (2014) 295–297.
 H. Li, Li, W. Haw, N. Du, P. Zhang, X. Tao, Ann. Catl. P. 160, 151 (2014)
- [5] H. Li, J. Liu, W. Hou, N. Du, R. Zhang, X. Tao, Appl. Catal. B 160-161 (2014) 89-97
- (6) H. Wang, D. Peng, T. Chen, Y. Chang, S. Dong, Ceram. Int. 42 (2016) 4406–4412.
 (7) Powder Diffract. File, JCPDS-ICDD, 12, Campus Boulevard, Newtown Square, PA
- 19073-3273, U.S.A., 2001. [8] B. Krishnakumar, B. Subash, M. Swaminathan, Sep. Purif. Technol. 85 (2012) 35–44.
- 353-44.
 [9] J. Xiong, Q. Dong, T. Wang, Z. Jiao, G. Lu, Y. Bi, RSC Adv. 4 (2014) 583-586.
 [10] P. Wang, T. Wu, Y. Ao, C. Wang, J. Hou, J. Qian, Y. Li, Mater. Lett. 163 (2016) 258-261.
- [11] S. Wang, D. Li, C. Sun, S. Yang, Y. Guan, H. He, Appl. Catal. B 144 (2014)
- 885-892. [12] Y. Zuo, C. Wang, Y. Sun, J. Cheng, Mater. Lett. 139 (2015) 149-152.

ประวัติผู้เขียน

ชื่อ สกุล นายสิทธิกร จรจะนะ รหัสประจำตัวนักศึกษา 5710220106 วุฒิการศึกษา

วุฒิสถาบันปีที่สำเร็จการศึกษาวิทยาศาสตรบัณฑิต (วท.บ.)มหาวิทยาลัยสงขลานครินทร์2557(วัสดุศาสตร์)

การตีพิมพ์เผยแพร่ผลงาน

Sittikorn Jonjana, Anukorn Phuruangrat, Titipun Thongtem, Somchai Thongtem, Synthesis analysis and photocatalysis of AgBr/Bi₂MoO₆ nanocomposites, Materials Letters, 172 (2016), 11–14.

Sittikorn Jonjana, Anukorn Phuruangrat, Somchai Thongtem, Titipun Thongtem, Synthesis of Agl/Bi_2MoO_6 heterojunctions and their photoactivity enhancement driven by visible light, Materials Letters, 175 (2016), 75–78.

Sittikorn Jonjana, Anukorn Phuruangrat, Somchai Thongtem, Titipun Thongtem, Preparation and enhanced photocatalytic performance of AgCl/Bi₂MoO₆ heterojunction, Materials Letters, 179 (2016), 162–165.

Sittikorn Jonjana, Anukorn Phuruangrat, Somchai Thongtem, Orawan Wiranwetchayan, Titipun Thongtem, Preparation and characterization of Ag₃VO₄/Bi₂MoO₆ nanocomposites with highly visible-light-induced photocatalytic properties, Materials Letters, 180 (2016), 93–96.