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ABSTRACT

The study of cloud type classification has played
significant role in weather forecast, air traffic control, and global
warming analysis. Therefore, being able to classify clouds
accurately is important. This thesis proposes new features and
algorithms for automatic cloud type classification system using
ground-based images. The input to the system is the images of
seven sky conditions, namely, cirriform clouds, high
cumuliform clouds, stratocumulus clouds, cumulus clouds,
cumulonimbus clouds, stratiform clouds, and clear sky. The
output is a class name for an image which belongs to one of the
seven sky conditions. There are four steps involved in
developing the system. First, the suitable classifier is chosen
from commonly used classifiers; and the well-performed
classifier will be used in our system design and implementation.
Second, different feature extraction techniques are compared
with the k-FFTPX which is our newly proposed technigue based
on Fourier transform; and the most effective feature extraction
technique will be used in the classification system. Third, more
features and hierarchical classification technique are introduced
to improve the system performance to achieve accuracy higher
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than 95%. Fourth, a complete cloud classification system is
implemented in practice for local cloud monitoring at Prince of
Songkla University, Phuket Campus. The best accuracy for
classifying seven cloud types using hierarchical classification
tree technique integrating with the meteorological data is as high
as 99.82%. In addition, a mobile application is developed for
online classification using the approach presented in the thesis.
Live cloud image and live meteorological data from our station
can be viewed through mobile application from anywhere in the
world.

Keywords: pattern recognition, cloud classification, ground-
based images
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CHAPTER 1
INTRODUCTION

1.1 Introduction and Motivation

Weather conditions have received increasing attention
in recent years because severe weather has caused damages in
many countries around the world. In 2012, the destruction of
hurricane Sandy in the United States caused serious damages; at
least 159 people have died, more than 650,000 homes and
hundreds of thousands of businesses were severely damaged [1].
Therefore, the study of weather conditions is vital in help
preparing for incoming natural disasters and extreme weather
changes such as storm, lightning, heavy rain, landslides and
flash flood. This is because it helps to reduce the losses that
may occur. Analyzing weather conditions involves essential
elements of celestial phenomena and clouds. The appearance of
each cloud type changes upon the weather conditions at the time
and in the near future. Therefore, we can recognize weather
conditions using cloud classification. Nowadays, with the help
of image processing, weather conditions can be monitored
without any use of sophisticated instruments, even in the remote
or rural areas. Hence, cloud classification is worth exploring.

Automatic cloud classification has been highly
appreciated over the last decades [2]-[16] because the
traditional cloud type classification requires specialists to do it
manually. Nevertheless, the number of specialists in this area is
limited. Moreover, this approach lead to high cost, speed of
manual classification is also slowly and human errors are



occurring. Unique shape and disorder of clouds can lead to
different results for different observers. Moreover, the
observation of cloud requires experts and there is limited
number of experts in the area. Therefore, automatic cloud
classification has been developed since 1977 [17] to serve the
purpose of auto-recognition.

Satellite images have been used as input in the analysis
of cloud classification. It can provide information and overview
but is unable to provide local details on a specific area.
Furthermore, satellite images are sometimes expensive, and they
are limited for public use [10], [13]. Thus, ground-based images
which obtained by imager devices have been utilized more
extensively. Two types of imagers are developed [18], namely,
the total sky imager (TSI) and the whole sky camera (WSC).
Both of the imagers take an image with wide angle of more than
160° field of view (FOV) that can cover large area of sky.
However, these devices are used for commercial and they are
expensive which may not be suitable for small research groups.
Therefore, a normal digital camera is introduced. Although, this
type of camera provides a fraction of sky image, it has more
specific information needed, low cost, and easier acquisition.

In this thesis, we will develop an automatic ground-
based cloud type classification using digital camera. Image
processing and pattern recognition technique are used. Seven
different sky conditions are considered in the classification,
namely, cirriform clouds, high cumuliform clouds,
stratocumulus clouds, cumulus clouds, cumulonimbus clouds,
stratiform clouds, and clear sky. The characteristics and the
sample images of these cloud types will be explained in details
in Chapter 2.



1.2 Literature Review
1.2.1 Satellite Images

Several researchers use satellite images as an input for
automatic cloud type classification. Lee et al. [2] presented a
classification of sub-regions into one of three cloud types using
a neural network with texture features. The overall accuracy of
classification is 93%. Heinzmann [3] used fuzzy logic approach
to classify four cloud classes in form of cloud cover percentage.
Bankert [4] suggested a probabilistic neural network (PNN) with
spectral, textural, and physical measures for classifying each
region into one of ten cloud classes which achieve an accuracy
of 79.80%. Aha and Bankert [5] provided feature selection
algorithms for classifying ten cloud classes using IB1. The best
accuracy here is 88%. Fan et al. [7] used a bispectral cloud
classification method based on man-computer interactive way to
classify six types of clouds, land, and water through looking up
table. This method provides an accuracy of 87.10%. Ambroise
et al. [8] used distribution of pixels with hierarchical clustering
to classify nine cloud types. The method achieves an accuracy of
63%. Lee et al. [9] applied multi-category support vector
machine (MSVM) to classify radiance profiles as one of three
cloud classes. The result of classification is 90.11%. Shangguan
et al. [12] studied texture feature analysis combined with
Variational theory to extract texture features. Kaur and Ganju
[14] used singular value decomposition (SVD) to extract the
salient spectral and textural features to classify clouds based on
their heights. This method has an accuracy of 70-90%. All the
papers mentioned above used satellite images.



1.2.2  All Sky Images

Recently, ground-based images have been used
increasingly in cloud classification. Buch et al. [6] used images
from two whole-sky imagers (WSIs) to create three-dimensional
volume. Binary decision trees with three groups of features
(texture measures, position information, and pixel brightness)
are used to classify each pixel into one of five sky conditions.
The accuracy of classification is 61%. Calb6 and Sabburg [13]
used images from two ground-based imagers, namely, TSI and
WSC. They applied parallelepiped technique with three types of
features (texture, Fourier transform, and cloudy pixels). When
classifying eight sky conditions, it yields accuracy of 62% and is
increased to 76% when classifying five sky conditions. Heinle et
al. [15] used whole sky images as an input for cloud type
classification. Their k-nearest neighbor (k-NN) classifier applied
12 features from spectral features and textural features to
classify seven sky conditions. The accuracy classification is as
high as 97% but in general case with unseen data, the accuracy
Is between 75% and 88%. Martinez-Chico et al. [16] used
radiation data and images from TSI to classify clouds according
to their heights. The result was shown as the frequency of
occurrence for each class. Afterwards, there were two papers
based on the previous work of Heinle et al. [15]. First,
Kazantzidis et al. [19] proposed method to detect raindrops for
feature extraction. The average of classification is 87.9%.
Second, Liu et al. [20] proposed the new feature method called
the salient local binary pattern (SLBP). Their accuracy classified
by the nearest neighborhood using chi-square metric is 93.65%.
Taravat et al. [21] used pixel values of the whole-sky images to
classify pixels into either cloud coverage or others (cloud-free



and sun). They used Multilayer perceptron (MLP) neural
networks in the classification and the overall accuracy is
95.07%. Cheng and Yu [22] used block-based classification on
all-sky images to classify six sky conditions. In each block,
statistical texture features and local binary pattern are extracted.
Then, these features are classified using Bayesian classifier
which gives the accuracy of 90%. Li et al. [23] proposed new
method named bag of micro-structures (BoMs) for classifying
five sky conditions using s support vector machine (SVM)
classifier. Their result yields an accuracy of 90.9%.

1.2.3 Digital Images without Fisheye Lens

The input images captured from digital cameras have
received high attention from several researchers since around
2005. Singh and Glennen [10] classified five sky conditions
using k-NN and neural network classifiers with five different
feature extraction methods. The best result has an accuracy of
64%. Souza-Echer et al. [11] presented the new algorithm based
on a criteria decision process on Illuminant-Hue-Saturate (IHS)
space to classify each pixel as clear sky, cloudy or undefined
using parallelepiped method. This method estimates the
percentage of sky cloud coverage, the output yields better than
94% for classifying clear sky and better than 99% for classifying
cloudy sky. Most recently, Zhuo et al. [24] introduced color
census transform (CCT) and automatic block assignment
method. Then, texture and structure information are extracted in
every block and are concatenated as a feature vector. SVM
classifier is used to classify six sky conditions and the result is
81.17%. Xia et al. [25] presented texture features, color features,
and shape features which performed with a hybrid method based



on k-NN and extreme learning machine (ELM). The overall
accuracy of classifying four sky conditions is 84.82%. Wu et al.
[26] used ELM classifier to classify four sky conditions. By
combining three features, namely, texture features, color
features, and SIFT features, it provides accuracy is 86.64%.

Table 1.1. Summary of literature survey on existing methods
using satellite images.

Year | Proposed | Classifier | No. | Accuracy | Author
method class (%)
1990 | Texture Neural 3 93 Lee et al.
features network [2]
1994 | Spectral, PNN 10 79.80 Bankert
textural, and [4]
physical
measures
1994 Feature IB1 10 88 Aha and
selection Bankert
algorithms [5]
1997 | Bispectral | Look up 8 87.10 Fan et al.
cloud table [7]
classificatio
n method




Year | Proposed | Classifier | No. | Accuracy | Author
method class (%)

2000 | Distribution | Hierarchi 9 63 Ambroise
of pixels cal et al. [8]

clustering

2004 | Radiance MSVM 3 90.11 Lee et al.
profiles [9]

2008 SVvD Unclear 3 70-90 Kaur and

Ganju [14]

Table 1.2. Summary of literature survey on existing methods

using all sky images.

Year | Proposed | Classifier | No. | Accuracy | Author
method class (%)

1995 | Texture, Binary 5 61 Buch et al.
position decision [6]
info, and trees
pixel

brightness




Year | Proposed | Classifier | No. | Accuracy | Author
method class (%)
2008 Fourier Parallelep | 5 76 Calbo and
transform, iped Sabburg
texture, and | technique [13]
cloudy
pixels
2010 | Spectral and |  k-NN 7 75-88 Heinle et
textural al. [15]
features
2012 | Existence of | k-NN 7 87.90 | Kazantzidi
raindrops setal.
[19]
2013 SLBP Nearest 7 93.65 Liu et al.
feature neighbor [20]
2015 | Pixel values MLP 2 95.07 Taravat et
neural al. [21]
network
2015 | Block-based | Bayesian 6 90 Cheng and
classificatio Yu [22]

n




Year | Proposed | Classifier | No. | Accuracy | Author
method class (%)
2016 BoMs SVM 5 90.90 Li et al.
[23]

Table 1.3. Summary of literature survey on existing methods

using digital images.

Year | Proposed | Classifier | No. | Accuracy | Author
method class (%)
2005 | Five feature | Neural 5 64 Singh and
extraction | network Glennen
methods | and k-NN [10]
2006 Criteria | Parallelep | 2 94-99 Souza-
decision iped Echer et
process on | method al. [11]
IHS
2014 | CCT and SVM 6 81.17 | Zhuo et al.
automatic [24]
block

assignment
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Year | Proposed | Classifier | No. | Accuracy | Author
method class (%)

2015 | Texture, ELM and 4 84.82 Xia et al.
color, and K-NN [25]
shape
features

2015 | Texture, ELM 4 86.64 Wu et al.
color, and [26]
SIFT
features

From the literature surveys in Table 1.1 — 1.3, the
texture features are commonly used for feature extraction.
However, the classification accuracy using only texture features
IS not very high; therefore, they must be combined with other
features to achieve higher accuracy. Although some result using
a digital camera shows the high accuracy of 94%, the number of
cloud classes being considered is only two.

In this research, we will use a digital camera and the
number of cloud classes being considered is increased to seven.
Our cloud classification system for the seven cloud classes is
aimed to have accuracy higher than 95%. We will begin our
experiment by finding a set of suitable texture features. Then,
using these features we will compare the performance of two
classifiers, namely, k-nearest neighbor and artificial neural
network. We will show that artificial neural network performs
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better than k-nearest neighbor. In the second experiment, we will
find a suitable feature extraction technique that is effective for
cloud type classification. We will also develop a novel feature
based on Fourier transform to enhance the accuracy of
classification. In the third experiment, we will introduce three
new features based on Fourier transform and new classification
tree algorithm to enhance the accuracy even further. Finally, a
complete cloud classification system will be constructed.

1.3 Objective

1.3.1 To select a suitable classifier from the two
commonly used classifiers, namely, k-nearest neighbor and
artificial neural network.

1.3.2 To select a suitable feature extraction technique
that is effective for cloud type classification.

1.3.3 To propose novel features and algorithms that
are different from the previous works.

1.34 To propose a complete cloud classification
system for classifying seven cloud types using ground-based
images which has accuracy higher than 95%.

1.3.5 To implement hardware system for capturing
cloud images and to build a low-cost local cloud monitoring
station.

1.4 Scope

To study and to design automatic cloud-type
classification system using digital camera for classifying seven
sky conditions. The color images have a resolution at least 640 x
480 pixels in Red-Green-Blue (RGB) and JPEG format and they
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are taken in daylight. There are four steps of system
development. In the first three steps we will use simple digital
images without fisheye lens.

The first step is to test a less-sophisticated system using
texture features in order to find a suitable classifier to be used in
the final complete system. An experiment will be conducted to
compare two classifiers between k-nearest neighbor and
artificial neural network.

The second step is to conduct more experiments in
order to test different feature extraction techniques with our
proposed feature based on Fourier transform. The most
effective feature extraction technique will be selected for later
cloud type classification.

The third step is to use the suitable classifier and
suitable features to construct a hierarchy classification tree for
high—accuracy classification.

The final step is to integrate and implement hardware
system (see Figure 1.1) to capture cloud images with 170° FOV
fisheye lens every 5 minutes. The fisheye lens is used in the
final step to enhance the system accuracy as it can cover larger
area in the sky. A low-cost local cloud monitoring station is
built and installed at Prince of Songkla University, Phuket
Campus. Moreover, a mobile application will be developed for
online classification and for mobile users to view live images
from our station.
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Figure 1.1. Hardware architecture.

In Figure 1.1, the hardware architecture for capturing
whole sky images has 5 main components. The first component
Is a glass dome for protecting camera from the rain and other
particles. The second component consists of digital camera and



14

fisheye lens for capturing color image 170° FOV with a
resolution of 2048 x 1536 pixels in JPEG format. The third
component is a Raspberry Pi 2 Model B for controlling system
such as capture images and control cooling device. The fourth
component is a humidity and temperature sensor named DHT22.
Finally, we place cooling device for controlling heat inside the
hardware, it will run when a temperature inside is more than
30°C.

1.5 Benefit

1.5.1. The research proposes several novel features
for cloud type classification with our own hardware
implementation that is low-cost and operational as a complete
system.

1.5.2. The research proposes several algorithms for
cloud type classification and can be applied to various
applications by changing the user-expected accuracy or
changing the number of cloud classes being considered.

1.5.3. Being able to classify cloud types more
accurately can lead to the more accurate weather prediction and
other applications that are related to metrological events.

1.5.4. The research can be further extended to predict
cloud type which is related to earthquakes. A recognition of
earthquake clouds is interesting and it is currently under study
by Nanyang Normal University [27], [28], Institute of
Geography and Natural Resource [28], and others [29]-[34].
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1.6 Overall System

In Figure 1.2, the input image to our system will be in
RGB color. Then, the image will pass to cloud classification
algorithm and return the output class which belongs to one of
the seven sky conditions. Each stage is explained in more
details as follows.

In the preprocessing step, the image resolution is scaled
for a suitable size. Channel splitting is used to convert an RGB
Image to a grayscale image. Moreover, the transformation of
RGB to Hue-Saturation-Value (HSV) color model (RGB2HSV)
is used before channel splitting of HSV.

Then, we use a binary mask image for segmentation. A
segmentation of each pixel is made by multiplying a pixel value
of image with a mask pixel in the same position; the result is set
to zero if the pixel value is multiplied by zero, otherwise the
result is equal to the pixel value itself if it is multiplied by one.
By removing the unwanted parts such as buildings and trees, the
output of segmentation will give only clouds and sky.

There are several feature extraction methods. We
extract the features from image using relation of pixels in image.
Some feature is not suitable for identifying cloud types.
Therefore, after the feature extraction we also need feature
selection algorithm for selecting suitable features.

The classification is performed based on the extracted
features. There are two parts involved in this step which are the
training and the testing. The training process is used to construct
a classifier model by machine learning algorithm using feature
vectors together with their pre-defined classes (label vectors).
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Figure 1.2. System overview of proposed cloud classification.
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Then, the classifier model is tested by utilizing feature
vectors in the testing process. We use artificial neural network
and k-nearest neighbor as our classifiers; we then compare the
results from Dboth classifiers and choose the best one. Our
classification system is expected to perform better than the
existing one in the literatures.

Finally, the system will be tested and integrated. The
automatic cloud classification system will be implemented and
installed at Prince of Songkla University, Phuket campus.

1.7 Organization of the Thesis
The organization is as follows:

— This chapter described introduction and motivation,
objective, scope and literature review.

— Chapter 2 introduces the theoretical background and
related algorithms.

— Chapter 3 describes an experiment for finding a
suitable classifier.

— Chapter 4 discusses a series of experiments to select
a suitable feature extraction technique.

— Chapter 5 presents three novel fast Fourier transform
(FFT) features and a complete cloud classification
tree algorithm.

— Chapter 6 explains the system integration test and the
hardware installation.

— Finally, Chapter 7 concludes our works and
contributions of the thesis and also suggests possible
future work.
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CHAPTER 2
THEORETICAL AND PRINCIPLE

This chapter presents theoretical background that is
important for readers to understand each element in the cloud
classification system. The cloud names, their characteristics, the
features used in the later experiments, and the classifiers used in
our system will be described.

2.1 Cloud Names and Classifications

In the study of Meteorological Office (Met Office),
clouds are difficult to recognize since they are always changing
and are in many shapes and forms. A meteorologist, Luke
Howard has written a book on cloud classification in 1803
which he described structure of various clouds and names [35].

Afterward, Luke Howard's classifications were
extended by the World Meteorological Organization (WMO) as
10 cloud types or genera, namely [36], cirrus, cirrocumulus,
cirrostratus, altocumulus, altostratus, nimbostratus, stratus,
cumulonimbus, cumulus, and stratocumulus. Figure 2.1 show
eleven different cloud types (clear sky is included).

1) Cirrus Clouds

Cirrus clouds occur above about 18,000 - 40,000 feet.
They are short, detached, and look like hair. They are whiter
than any other clouds in daytime. Furthermore, they are colors
of the sunset while the sun is rising [35].
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Figure 2.1. Eleven different sky conditions.
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2) Cirrocumulus Clouds

Cirrocumulus clouds occur above about 20,000 -
40,000 feet. Often cirrocumulus clouds are small white ripples
and compose mostly ice crystals. They are often rare than
altocumulus clouds and no shading [35].

3) Cirrostratus Clouds

Cirrostratus clouds occur above about 18,000 - 40,000
feet. They are transparent and covering big areas of the sky, and
may be smooth or fibrous, and usually have cirrus clouds around
them. When the sun shines through cirrostratus clouds, they
have shadows which are difference from nimbostratus clouds
[35].

4) Altocumulus Clouds

Altocumulus clouds occur above about 2,000 - 18,000
feet. They are white or grey color and the sides are shaded when
they are away from the sun. Usually, altocumulus clouds are
rounded clump shape and composed of droplets and may contain
ice crystals which are found in settled weather. The appearance
like shading can help distinguish between altocumulus clouds
and cirrocumulus clouds. Cirrocumulus clouds are only white
but altocumulus clouds can be white or grey and the sides may
be shaded [35].

5) Altostratus Clouds

Altostratus clouds occur above about 7,000 - 18,000
feet. They consist of the mixture of water droplets and ice
crystals. In addition, they are in grey or bluish layers and appear
thin where we can see the sun shining weakly through the cloud.
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The difference between altostratus and nimbostratus clouds is
that there is no shadow when the sun shining through altostratus
[35].

6) Nimbostratus Clouds

Nimbostratus clouds occur above about 2,000 - 10,000
feet. They are dark grey or bluish grey covering large area of
sky with no layers. Moreover, they can block out the sun and
usually comes with continuous heavy rain or snow [35].

7) Stratus Clouds

Stratus clouds occur above about 0 - 6,500 feet. They
are in grey layers or white or even tract of clouds with blurry
edges. Sometimes, they appear like fog at ground level. The sun
or the moon may shine through stratus clouds, if there is no
other cloud above. Stratus clouds often come with drizzle or
snow [35].

8) Cumulonimbus Clouds

Cumulonimbus clouds occur above about 1,100 - 6,500
feet. They are heavy and dense, often flat and very dark. This
type of clouds extends high into the sky like towers or
mushroom shape. Moreover, they are related with extreme
weather conditions such as heavy torrential downpours, hail
storms, lightning and tornados [35].

9) Cumulus Clouds

Cumulus clouds occur above about 1,200 - 6,500 feet.
The top of clouds is white but their base is rather dark. Usually,
they appear in fair weather which is similar to the cauliflower
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shape. Sometimes, they produce showers when they get larger

[35].

Table 2.1. Seven sky conditions and their descriptions.

Class | Cloud types Description Subtypes
No.

1 Cirriform Hair-like, milky, thin, | Cirrus and
whitening of the blue, | cirrostratus
white.

2 High Rounded, patched Cirrocumulus

cumuliform clouds of small and
cloudlets, white or altocumulus
gray.

3 Stratocumulus | Patches of clouds, Stratocumulus
white or gray.

4 Cumulus Puffy with flat bases, | Cumulus
white or light-gray.

5 Cumulonimbus | Mushroom-like, dark | Cumulonimbus
base, gray.

6 Stratiform Layer of cloud, Altostratus,
uniform, usually nimbostratus,
overcast, gray or dark. |and stratus

7 Clear sky No cloud or a very few | Clear sky

of clouds, blue.
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10) Stratocumulus Clouds

Stratocumulus clouds occur above about 1,200 - 6,500
feet. Their colors are changing from bright white to dark grey
which are patches of cloud. They tend to stick together or
separate and often appear in every weather condition [35].

11) Clear Sky

Clear sky is when there is no cloud or a very few of
clouds in the sky. Usually, it appears as blue.

The above cloud types will be grouped into seven
classes for the experiments in Chapter 3 to 5. The seven classes
are concluded in Table 2.1. In this table, some cloud types are
combined together because they have similar characteristics. For
example, cirrus and cirrostratus are grouped into one class
because cirrostratus rarely occurs in nature and it usually
appears together with cirrus. Similarly, cirrocumulus is hardly
found in nature. Hence, it is grouped with altocumulus and
being classified under the name of high cumuliform clouds. Our
grouping of cloud types here follows Heinle et al. [15].
However, nimbostratus is grouped together with stratiform in
accordance with Calbo and Sabburg [13] and Li et al. [23].

2.2 Features

2.2.1 Texture Features

Texture description is used to describe the texture of
region. There are two main approaches for texture description
which are grouped by data sources used in calculation. The first
type is when texture features are extracted straight from images.
These features are mean (ME), standard deviation (SD),
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difference of mean (D;;) between each channel, and uniformity
(U) defined by the equations below [13], [15].

e Mean
ME = %55 xip (%)) (2.1)
e Standard deviation

SD = (SNt x — MEYp(x))? (2.2)

e Difference of mean R-G, R-B, and G-B
D;j = ME; — ME; for i,j €{R,G,B}wherei #j (2.3)
e Uniformity

U=%iZpz) (2.4)

The notation N in the equation is the number of pixels in image,
X; is a value of pixel i-th, and p(x;) is a probability of x;. This
type of texture features is used to distinguish between dark
clouds and white clouds as well as to separate thin clouds like
cirrus from others. However, some clouds have the same color
tone such as cumulus and stratocumulus; hence we cannot
separate them by these features alone [15]. Therefore, other
texture features will be combined to solve this problem.

The second type is when texture features are calculated
from Grey Level Co-occurrence Matrices (GLCM) which is a
square matrix where the number of columns equals the number
of grey levels. Each element in the matrix refers to the
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frequency that two pixels occurred (P“(a,b)) [15]. We will use
the following Haralick texture features [15], [37] later on in the
experiments.

e Homogeneity

HOM = 34z} p§3 et (2.5)

e Contrast
CON = Y4134 1(a —b)? P2(a,b) (2.6)

e Energy
EN = %326 X555 PA(a, b) (2.7)

e Variance
EN = 3528 5523(a — w)° P2(a,b) (2.8)

e Inverse Difference Moment

~1yvG-1_PA(ab)
IDM = g=gj g=é 1+|a—b|2 (29)

e Sum Average

SA=32ap_ by @ (2.10)

e Sum Variance
sv =32 a—SE)?P_, (a) (2.11)
e Sum Entropy

SE = — 2@ P, @I0gPysy (@) (2.12)
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Entropy
ENT = — Y520 Y520 PA(a, b)logP*(a,b)  (2.13)

Difference Variance

D = variance of Py, (2.14)

Difference Entropy

DEN = —Y¢1 P oy (@logPyiy(a) (2.15)

Information Measures of Correlation

C = ENT—-HXY (216)

max{HX,HY}

The GLCM matrix size is denoted by G where HX and HY are
entropies of summing row and column of GLCM matrix,
respectively, and HXY is the entropy of multiplying row and
column together.

HXY = = Y520 %525 PA(a, b)log{P,(a)P,(b)} (2.17)

Px+y(@) is a sum of GLCM element where row plus column
equals a. In contrast, Py (a) is a sum of GLCM element where
row minus column equals a.

2.2.2 Moments of Two-Dimensional Functions

Moments of two-dimensional functions are used
because of their resistance to any transformation. That is, the
value of moments after transformation is not varied too much.
The Zernike moments is shown in equation below [38].
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AnlnTHZx Zy ny [an(x» Y)]* (2-18)

Note that n is an order with repetition | for a digital image, P,y is
the current pixel, V,(x,y) is the Zernike polynomial and * is the
complex conjugate.

2.2.3 Features based on Fourier Transform

We use a grayscale image to transform pixels into
frequency domain by two dimensional fast Fourier transform
(2D-FFT) and use FFT shift to move the low frequency pixels
into the center of the image (see Figure 2.2). There are three
types of features based-on Fourier transform that we will use in
the experiments of Chapter 4, namely, abs-FFT, log-FFT, and k-
FFTPX.

1) Abs-FFT

Abs-FFT is an absolute-magnitude of Fourier
transform image. Figure 2.2(a) is a grayscale image, we use 2D-
FFT and FFT shift to derive abs-FFT (see Figure 2.2(b)) by
calculating an absolute value of each pixel. The transformed
image in Figure 2.2(b) is later on passed to the texture feature
extraction process.

2) Log-FFT

We use a grayscale image in Figure 2.2(a)
followed by 2D-FFT and FFT shift. Then, we calculate the
logarithmic of each pixel in frequency domain which is a
logarithmic magnitude of Fourier transform image (log-FFT) as
shown in Figure 2.2(c). The log-FFT image is then used in a
calculation of texture feature extraction.
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(a) A grayscale image (b) Abs-FFT

(c) Log-FFT

Figure 2.2. Fast Fourier transform of a grayscale image.

3) k-FFTPX

This is a new FFT feature that we introduce in
Chapter 4. The proposed feature extraction method called Fast
Fourier Transform Projection on the x-axis (k-FFTPX) is named
after the process of projecting the log-FFT values of an image
onto the x-axis (see Figure 2.3(a)) before selecting k sampling
values of the data as k dimensions of a feature vector as depicted
in Figure 2.3(b). The k-FFTPX is based on FFT technique which
has more sub methods inside. First, DWT is used to extract the
key characteristics by frequency separation of an image. Second,
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the image is transformed to the frequency domain by FFT which
Is useful in distinguishing shapes of clouds and reduces the
effects of unequal brightness of the image. Third, the
characteristics and key features are extracted from the
logarithmic magnitude of FFT image and the values are
projected on the x-axis. Then, these projection values are split
into k blocks in order to reduce the dimension of the feature
vector. Each block is then represented by an average value.
After that, values in the feature vectors are sorted in descending
order to increase the performance because we found that the
sorting technique works well in practice. The algorithm is
explained in full in Chapter 4.

2.3 Classifier

A classifier is a function that assigns the input images
to a desired output class. Two commonly used classifiers, k-
nearest neighbor and artificial neural network are described
below.

2.3.1 k-Nearest Neighbor

The k-nearest neighbor (k-NN) technique is used in
many research papers [10], [15], [19] for cloud type
classification because it is simple to implement and understand.
In addition k-NN has low computation and also can be used to
solve a complex problem [10], [15].
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Figure 2.3. k-FFTPX projection and sampling values.
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The k-NN algorithm is a non-parametric method. It
uses a training data which consists of a set of vectors with class
label of each vector. In classification, we define a k constant
which is the number of neighbors, and we use a test data (a
vector with unknown class) which will be classified by
considering k neighbors.

Figure 2.4. The k-nearest neighbor algorithm [39].

If k neighbors of the test data come from many classes,
we will classify the test data as it belongs to a class with the
majority of neighbors [40] as shown in Figure 2.4. In the Figure
above, we use k=3, the green circle is then classified as in the
same class as the red triangle because among three neighbors
there are two red triangles and one blue rectangle. If k=5, the
green circle is classified as in the blue square class because
among five neighbors there are two red triangles and three blue
rectangles.

2.3.2 Artificial Neural Networks

Acrtificial neural network (ANN) technique is used for
cloud type classification [2], [10] because it is a nonlinearity
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classifier which is suitable for solving complex issues. Back
propagation algorithm which applies gradient descent often used
to train the network for the best-fit value. There are three layers
of neural network which are composed of input layer, hidden
layer, and output layer [40] as depicted in Figure 2.5.

w Ji ng
X ——
ﬂc A=
x?’l
Input Hidden Output
Layer Layer Layer

Figure 2.5. Multilayer Neural Networks [41].

Each node uses a net activation equation which is a sum of
weights and inputs as shown in the equation below.

net; = YLy Wy + Wjp = Lo X Wy (2.19)
In the equation above, the subscript i is the indexes of input
layer, where j is the indexes of hidden layer; w;; is the weights

from layer i to j. The output of each node uses a nonlinear
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function known as the activation function. There are many
activation functions with difference properties. For example, the
equation below shows a hyperbolic tangent function [40].

1-— —net

f(net) = sgn(net) = 1+:_net (2.20)

There are several parameters of ANN that can be set in
order to achieve high performance. In the next chapter, we will
conduct the experiment to find a proper setting for these
parameters. The number of hidden layers is usually set between
one and three. However, only one hidden layer is enough to
estimate a result of any problems, if the number of hidden nodes
is sufficient [42]. The number of hidden nodes is normally set
between the number of input nodes and the number of output
nodes. Learning rate should be set to a reasonable small value to
construct an accurate model. Momentum is used for avoiding
local minimum in the training model and stopping criteria is a
criterion to stop learning process. The setting of these
parameters will be mentioned more in the next chapter. Note
that, all experiments in this thesis are executed on a desktop
computer using an Intel Core i15-3550 Quad-Core processor with
clock speed 3.30 GHz and 4 GB of RAM.
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CHAPTER 3

EXPERIMENT A—-FINDING ASUITABLE
CLASSIFIER

In this chapter, we begin the experiment by using 18
texture features to distinguish seven sky conditions. The
important parameters of two classifiers are fine-tuned in the
experiment, namely, k-nearest neighbor (k-NN) and artificial
neural network (ANN). The performances of the two
classifications are compared. Advantages and limitations of both
classifiers are discussed. Our result reveals that the k-NN model
performs at 72.99% accuracy while the ANN model has higher
performance at 86.93% accuracy. We show that our result is
better than previous studies. Finally, seven most effective
texture features are recommended to be used for more compact
cloud type classification system.

3.1 Introduction

As mentioned before, texture features are commonly
used in cloud classification to describe characteristics of cloud.
There are several feature extraction methods to extract texture
feature and the accuracy depends on how to choose features to
use as a feature vector. In this chapter, we will experiment with
automatic cloud classification system using ground-based sky
images from a digital camera. Several texture features will be
combined and we will select the 18 suitable features for
classifying images into one of seven sky conditions which again
are cirrus, high cumuliform, stratocumulus, cumulus,
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cumulonimbus, stratus, and clear sky. Two classifiers will be
tested in the system, namely, k-nearest neighbor and artificial
neural network. Then, we will compare the performance of both
classifiers in terms of percentage of accuracy.

3.2 Technical Background

We perform the feature extraction, before we apply a
classifier to compute a class type based on the given features.
Features are extracted from grayscale image by splitting
channels of the image into Red (R), Green (G), or Blue (B)
channel. Although, there are several feature extraction methods,
we will begin our experiment using texture features because
they are commonly used in cloud classification [10], [13], [15]
Thus, it is worth testing these features.

3.2.1 Texture Features

Texture features describe texture of image region. This
chapter uses two types of texture features in the feature
extraction process. The first type of texture features, ME of R
channel, SD of B channel, and D;; between each channel are
used. All equations are as defined in Chapter 2 (Eq. (2.1) to
(2.3)). The second type of texture features is described by 13
features. We use Eq. (2.6) to (2.16) to compute 11 texture
features on the R channel and also compute 2 texture features of
HOM (Eqg. (2.5)) and CON (Eg. (2.6)) on the B channel. Note
that, there are three features from Eq. (2.3). In total there are 5
texture features of the first type and 13 texture features of the
second type. Therefore, there are 18 texture features for feature
extraction. Most of these features are calculated from the R
channel. We explain why this is the case.
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Cloud texture generally appears white or gray because
it is equally composed of red and blue pixel values. In contrast,
clear sky appears blue because it is composed of blue pixel
values more than red [15]. Therefore, the distinction between
clear sky and cloud is better described by R channel which gives
higher contrast of image than other channels. Features from R
channel can be used to distinguish cloud types better than the B
channel which will be shown later by experiment in Section
4.3.1.

Two commonly used classifiers [10], [15], pattern
recognition tools for distinguish classes, for cloud classification
in this experiment are k-nearest neighbor and artificial neural
network.

3.2.2 k- Nearest Neighbor

The reason we choose k-nearest neighbor (k-NN) for a
comparison is, because it is quite a popular technique in cloud
classification because of low computation and its ability to solve
complex problem. Most of all, it is simple to implement [10],
[15]. A bDrief detail of k-NN algorithm is that it works by
considering k neighbors of a sample before classifying that
sample as a class by a majority vote of its neighbors; that is the
sample is assigned to the class most frequent among its k nearest
neighbors. In theory, the larger k is more suitable for infinite
number of samples. However, this is impossible in practice [43].
Hence, we are required to choose the optimal k within the
available samples.

3.2.3 Artificial Neural Network

The reason we choose artificial neural network (ANN)
IS, because when a problem is complex, this classifier is often
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used [10]. ANN is composed of three main layers, namely, input
layer, hidden layer, and output layer. It can be used to solve
nonlinear problems without considering the relationship
between input and output. However, the classifier requires the
tuning of multiple parameters in the model [44] for the best
performance. Therefore, to achieve high accuracy we will
examine key parameters of ANN in the experimental section. In
this experiment, multilayer feed forward neural network is used.

3.3 Experimental Results

We used 696 ground-based cloud images taken from a
digital camera for training and testing process. These images
are scaled to 320 x 240 pixels for all experiments. The 18
texture features explained in Section 3.2 using Eqg. (2.1) to (2.3)
and Eqg. (2.5) to (2.16) are implemented and the two classifiers
used are ANN and k-NN. The main objective of the experiment
Is to find the suitable classifier for cloud classification. First, the
parameters of two classifiers are tuned for providing high
accuracy. Then, we compared the performance of the two
classifiers and discussed the result. Some parameters are fixed
for all experiments such as, a learning rate of ANN to 0.01 and a
momentum to 0.9. Leave-one-out cross-validation (LOOCV)
[44] is used to evaluate the percentage of classification.

3.3.1 Selection of k VValue for k-NN

The number of neighbors is assigned for classification.
The results are shown in Table 3.1. The accuracy (%) values are
the average percentages of all correctly classified instances.
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The k values from 1 to 14 were tested with a distance
measure set to the Euclidean distance. In practice, k should not
be too large as it can lead to over-smoothed boundaries [43].

Table 3.1. The k value of k-NN model between 1 to 14.

k-value 1 2 3 4 5 6 7

Accuracy | 60.20 | 50.00 | 49.86 | 50.14 | 51.72 | 50.72 | 52.01
(%0)

k-value 8 9 10 11 12 13 14

Accuracy | 51.29 | 51.72 | 49.86 | 48.42 | 49.71 | 49.86 | 50.00
(%0)

According to Table 3.1, when k = 1 the accuracy is highest
among others. This means that k = 1 can separate noises from a
correct sample better than other k values. Note that, the suitable
k value depends on the distribution of features. For this problem,
other k values (k > 1) may include points from other classes
which can easily lead to the misclassification. Therefore, the
remaining of this chapter will apply k = 1 as the parameter of k-
NN model.

3.3.2 Selection of Distance Measures for k-NN

Distance function is an important parameter of k-NN
classifier for determining nearest neighbor of the test data.

There are many distance measures for k-NN and
choosing a suitable measure is an important problem in
supervised learning techniques [45]. We used seven distance
measures as shown in Table 3.2. From Table 3.2, each distance
measure provides similar results except that Standardized
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Euclidean distance has around 10% higher accuracy than others.
We, therefore, resolve that Standardized Euclidean distance
measure is compatible with a form of our training data
distribution.

Table 3.2. Accuracy when using seven different distance
measures.

Distance measures Accuracy (%)
City Block 61.06
Chebychev 61.49
Correlation 59.34

Cosine 59.91
Euclidean 60.20
Min-kowskKi 60.20
Standardized Euclidean 72.99

3.3.3 Selection of Activation Function for ANN

ANN model has many parameters that we can vary.
The activation function of the hidden layer is examined here.
Note that the activation function of the input layer is fixed as
linear to keep the same input values throughout the model. For
the output layer, we fixed as hyperbolic tangent because this
function can generate binary outputs [46].
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Table 3.3. Different activation functions in hidden layer.

Activation Radial | Tangent | Linear | Log-sigmoid
function basis
Accuracy (%) | 80.45 82.04 77.87 80.32

From Table 3.3, there are 5 hidden nodes in the hidden layer.
The result shows that the hyperbolic tangent function
outperforms the other 3 functions because the hyperbolic
tangent can provide binary outputs which are suitable for
classification problems. However, it provides a good result if
this function is used in both hidden and output layers [46].

3.3.4 Selection of Number of Hidden Nodes for
ANN

The number of hidden nodes in a hidden layer is varied
as 3, 5, 7, and 9. The activation function is set to hyperbolic
tangent.

Table 3.4. The number of hidden nodes is chosen as 3, 5, 7, and
Q.

Number of hidden 3 5 7 9
nodes
Accuracy (%) 77.44 82.04 86.93 82.90

From Table 3.4, the number of hidden nodes equal to 7 gives the
best result. The number of hidden nodes affects the
generalization error. When there are fewer hidden nodes such as
3 hidden nodes, this might cause underfitting and high statistical
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bias. In contrast, if we design our hidden layer with many
hidden nodes such as 9 hidden nodes, it might cause overfitting
and high variance [47].

3.3.5 Comparison of k-NN and ANN

In the past four sub-experiments, it may seem that
ANN classifier is cumbersome to use than k-NN due to the fine-
tuning of various parameters. However, if we can tune the
parameters appropriately, it can lead to a more accurate
classification over k-NN.

Table 3.5. The accuracy comparison of k-NN and ANN.

Classifiers k-NN ANN

Accuracy (%) 72.99 86.93

Table 3.5 shows that the accuracy of ANN is about
14% higher than k-NN. While the result of Singh and Glennen
[10] is 64% accurate for a classification of five sky conditions
using ANN, we obtained 86.93% accuracy for a classification of
seven sky conditions using also ANN. Nevertheless, our k-NN
did not perform badly in the comparison with Singh and
Glennen. For the k-NN, we received 72.99% accuracy while
Singh and Glennen have 59.5% accuracy for a classification of
less sky conditions. Although Souza-Echeret et al. [11] have
94% accuracy, their classification is only for clear sky condition.
If we classify only this class, we would get 96.34%.
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1 2 3 4 5 6 7
1(58.77 7.89 175 1754 1140 0.88 1.75 |
211398 6452 1398 538 215 0.00 0.00
31120 723 7590 6.02 361 6.02 0.00
411712 090 180 69.37 10.81 0.00 0.00
5/ 894 407 650 1382 6504 1.63 0.00
6/ 1.11 000 556 000 0.00 9222 1.11
71244 122 000 0.00 000 122 09512 ]

(a) Confusion matrix of k-NN classifier

1 2 3 4 5 6 7
1/79.82 439 263 1053 175 0.00 0.88 |
2| 430 86.02 538 430 000 0.00 0.00
3| 3.61 1446 7229 482 241 241 0.00
4/ 811 0.00 0.00 8288 8.11 0.00 0.9
5(163 0.00 0.00 325 9512 0.00 0.00
6 222 0.00 111 0.00 1.11 9556 0.00
70000 000 000 122 122 122 96.34

(b) Confusion matrix of ANN classifier

Figure 3.1. Confusion matrix for the ground-based cloud image
using two different classifiers.

The percentage of the correct classification for each
class is described in Figure 3.1, using confusion matrix.
According to Figure 3.1, each row represents the percentage of
the instances in a true class and each column represents the
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percentage of the instances in a predicted class. Note that Class
1 refers to cirrus and Class 7 refers to clear sky which is in the
same order as explained in the beginning of this chapter. In
Figure 3.1(a), four classes have less than 75% accuracy leading
to a poorer result when using k-NN. On the other hand, in
Figure 3.1(b), the majority of correctly classified instances for
ANN are over 80%, some are even as high as 96.34%. To
further improve this result, we could try to find more effective
features for distinguishing cirrus and stratocumulus from the rest
of the other clouds.

3.3.6 Recommended Texture Features

The 18 texture features used in the experiment did not
produce the same impact. Therefore, we rank the most effective
texture features using a knock-out method. The results of
ranking are as follows: 1) SD of B channel, 2) D; of R and B
channel, 3) HOM of B channel, 4) EN of R channel, 5) V of R
channel, 6) ENT of R channel, and 7) C of R channel. With
merely 7 texture features above, we get the accuracy as high as
77.44% using ANN with 7 hidden nodes.

3.3.7 Standard Cloud Images

In this section, we conduct an additional experiment to
show the generalization of our features and classifier. Since
there is no official standard library for the seven cloud-type
images, we will use 636 pre-classified cloud images from the
two trusted locations [48], [49] as our standard cloud images for
the testing purposes. The ANN classifier with the same
parameter settings as Section 3.3.5 is tested using the standard
Images. The 18 texture features are applied in the same way as
the previous experiments



Table 3.6. Confusion matrix for classifying standard cloud
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images.

True Classified as

class

1 2 3 4 5 6 7

1 85.83 | 3.94 | 157 | 0.79 | 6.30 0 1.57
2 15.07 | 65.75 | 411 | 274 | 6.85 | 411 | 1.38
3 12.12 | 33.33 | 36.36 | 3.03 | 3.03 | 12.12 0
4 545 | 7.27 | 091 | 5455 30 1.82 0
5 1.67 | 0.56 | 0.56 5 92.22 0 0
6 0 290 | 5.80 | 1.45 | 435 | 82.61 | 2.90
7 2.28 0 0 2.28 0 2.27 | 93.18

Table 3.6 shows the classification results using a set of
standard cloud images. Four classes are correctly classified with
high accuracy of more than 82%. Class 4 is highly misclassified
as Class 5 because most of Class 4 images are towering cumulus
which is quite similar to cumulonimbus in Class 5. The texture
features alone cannot distinguish these shapes of clouds. The
shape information is also necessary. This problem will be
addressed in the next chapter. Also, Class 3 is highly
misclassified as Class 2. This is a problem of the zoomed
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images in Class 3. With the images from different angles and
scales, it becomes more difficult to separate Class 2 and Class 3.
Nevertheless, the overall classification accuracy using standard
cloud images is 72.93%. This is rather the same with the result
of k-NN (72.99%). Hence, the generalization and effectiveness
of our method are rather acceptable for general cloud images.

Note that the standard cloud images from different
places of the world are merely for the testing purposes, they will
no longer be used in the future experiments. Instead, a database
of real cloud images captured locally at Prince of Songkla
University, Phuket Campus will be experimented upon as the
final cloud monitoring station will be built at this location.

3.4 Chapter Summary

The seven texture features in recognizing each sky
condition were recommended. If the 18 texture features were
combined, this would give even better results. Although, ANN
was difficult to fine-tune, ANN provided a better accuracy than
kK-NN with 86.93% of instances are correctly classified. This
result is about 23% higher than the previous studies which were
using also a digital camera and ANN method but the number of
classes in those studies was only for five sky conditions, in our
case we have seven sky conditions. In particular, our
classification for clear sky condition returned 96.34% accuracy
which is higher than the previous studies.

According to the results of k-NN and ANN, they show
that when a problem is complex such as a problem of classify
seven sky conditions, ANN can handle the complex problem
better than k-NN. In the next experiment, we, therefore, will use
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ANN as our main classifier. In addition, we will explore not
only texture features but also other kinds of features such as a
two dimensional fast Fourier transform (2D-FFT) and moments
of two-dimensional functions. Moreover, we will conduct the
experiments to find a suitable feature extraction technique to
achieve a higher percentage of accuracy.
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CHAPTER 4

EXPERIMENT B — FINDING A SUITABLE
FEATURE EXTRACTION TECHNIQUE

This chapter studies several feature extraction
techniques for the classification of cloud types using ground-
based images. Seven sky conditions are again considered. We
present an algorithm that computes a matrix of feature vectors
for cloud classification with five alternative ways of extracting
cloud features. The five feature extraction techniques include
textures, moments of two-dimensional functions, abs-FFT, log-
FFT, and the new technique called Fast Fourier Transform
Projection on the x-axis (k-FFTPX). We propose the k-FFTPX
algorithm that extracts features by projecting the values of
logarithmic magnitude of FFT images on the x-axis of the
frequency domain before selecting k sampling values of the data
as k dimensions of a feature vector. To the best of our
knowledge, there is no research on ground-based cloud type
classification using such technique before. Then, a comparison
of the techniques is made through a series of five experiments
and the accuracies are ranged between 80.76% and 90.40%. Our
new method provides the highest accuracy. The advantages are
that we can now classify more cloud types than the existing
methods with further improved in accuracy, and our method
requires no expensive tools, only a digital camera is used to
obtain ground-based images. This suggests a variety of practical
solutions in combination with other meteorological sensors to
report weather conditions inexpensively.



48

4.1 Introduction

In this chapter, we will develop an automatic cloud
type classification system for ground-based digital camera using
image processing and pattern recognition. Seven different cloud
types for our recognition are cirrus, high cumuliform
(cirrocumulus and altocumulus), stratocumulus, cumulus,
cumulonimbus, stratus, and clear sky. We will extract texture
features from cloud images and will use this information in the
training process of the classification. ANN is then used for
classifying instances. Moreover, we will add three types of
features based on Fourier transform. The first two types use
logarithmic and absolute magnitudes for extracting texture
features of FFT images. The last type uses logarithmic
magnitude but we project these values on the x-axis. Our main
contribution is a novel feature that uses a projection of
logarithmic magnitude of the FFT onto the x-axis. We call this
feature k-FFTPX.

4.2 Technical Background

Our new approach will incorporate the strength of
texture analysis found in the previous chapter into the new
technique of FFT feature extraction that focuses more on the
shape of cloud. In addition to Table 1.1 — 1.3, Table 4.1 shows
specifically various uses of FFT technigues, some are
incorporated with other methods. Calb6 and Sabburg [13] used
features based on Fourier transform to discriminate cloud
shapes. They extracted the characteristics of the spectral power
image using correlation with clear (CC) and spectral intensity
(SI). Daowieng et al. [50] used FFT and discrete wavelet
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transform (DWT) for word recognition. More recently, Chen
[51] extracted dual-tree complex wavelet (DTCWT) features
from EEG signals and perform the FFT to the DTCWT features
subbands. Soltana et al. [52] applied FFT with Local Binary
Patterns (LBP) histogram to calculate features from lace images.
Stepniowski et al. [53] calculated the radial average of FFT for
arrangement analysis of the aluminum nanopores.

Table 4.1. Related works on fast Fourier transform techniques.

Year Proposed Application Author
method
2008 Extracting CC | Cloud Calbo and
and Sl from classification Sabburg [13]
FFT
2010 DWT with Word Daowieng et al.
FFT recognition [50]

2014 | DTCWT with | EEG analysis | Chen [51]
FFT

2014 LBP and FFT | Analysis of lace | Soltana et al.
with k-NN images [52]

2014 Radial average | Aluminum Stepniowski et
of FFT nanopores al. [53]
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To the best of our knowledge, there is no research on
ground-based cloud type classification that performs feature
extraction by projecting the values of logarithmic magnitude of
FFT images on the x-axis of the frequency domain. Furthermore,
the new idea of introducing the k-sampling and sorting
techniques in the settings of feature vector will be incorporated
into our proposed algorithms. These techniques will be
explained later.

421 Features

We use a grayscale image which is computed by
splitting channels of image as R, G, and B channels for
extracting features. There are three groups of features which are
used in the experiments, namely, the texture feature, the
moments of two-dimensional, and the features based on Fourier
transform.

1) Texture Features

There are two types of texture features used in this
chapter. The first type of texture features are extracted from
images directly. These are ME of R channel, SD of B channel,
and Dj; between each channel defined by the Eq. (2.1) to (2.3) in
Chapter 2. The second type of texture features are computed
from GLCM. We will use the Haralick texture features Eq. (2.6)
to (2.16) are computed on R channel and Eq. (2.5) to (2.6) are
computed on B channel. There are 18 texture features to be used
in the algorithm which is the same as Chapter 3.
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2) Moments of Two-Dimensional Functions

Moments of two-dimensional functions or 2D-
moments are used because of their resistance to any
transformation. The Zernike moments is shown in Eq. (2.18) for
calculating O-th to 7-th moments on R channel.

3) Features Based on Fourier Transform

We use a grayscale image (R channel) to transform
pixels into frequency domain by two dimensional Fast Fourier
Transform (2D-FFT) and use FFT shift to move the low
frequency pixels into the center of the image. There are three
types of features based-on Fourier transform that we exploit in
the experiment, namely, abs-FFT, log-FFT, and k-FFTPX.
These features were, as explained earlier in Chapter 2.

4.2.2 Algorithms

Two algorithms used in our experiments are explained.
We use a set of digital camera images with no more than 36
degree FOV as the input. Algorithm 1 explains our methodology
for cloud classification starting from preprocessing the input,
extracting dominant features, training the classifier, classifying
the instances and returning the confusion matrix as the answer.

In the preprocessing stage of Algorithm 1, we scale
down each image to the resolution of n x m size. By this process
we achieve a much smaller computational time. For each image
we perform the feature extraction method using discrete wavelet
transform (DWT). This transformation gives four images which
are coefficient approximated (CA), coefficient horizontal edge
(CH), coefficient vertical edge (CV), and coefficient diagonal
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edge (CD). The size of four images is reduced by half. We select
only CA image for a calculation of our feature vector.

Algorithm 1. Cloud Classification Algorithm

Feed all color images
for each image i do
Resize to n x m resolution
Transform the image i with DWT
Select coefficient approximated image from DWT
Split the image into R, G, B channels
Calculate a vector of texture features F
Sort F in descending order
Sort a feature vector H in descending order
[+ options for H are 2D-moments, abs-FFT, log-FFT,
k-FFTPX(n,m), or none #/
Append H to F
end for
Build a matrix of feature vectors V for all images
for each image i do
Record answer into a targeted matrix T by visual
Inspection
end for
Train classifier C using Vand T
Build a matrix of feature vectors U for all test data
Pass each feature in U to C for classification
Build a confusion matrix

In feature extraction stage, we split channels into R, G,
and B channels as grayscale images before calculating a vector
of texture features F. The vector F is a based feature in our
algorithm which is calculated by Eq. (2.1) to (2.3) and Eq. (2.5)
to (2.16) explained in Section 3.2. There are a total of 18 texture
features implemented in the algorithm. However, to improve the
accuracy of the classification we propose to add one of the four
following feature extractions, 2D-moments, abs-FFT, log-FFT,
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or k-FFTPX. We call this additional feature vector, H. The
moments of two-dimensional functions extract eight features
using Zernike moments in Eq. (2.18) of order n=0to n =7 and
repetition m = 2. The features based on Fourier transform are
referred to abs-FFT, log-FFT, and our proposed feature (also
operated on frequency domain) called k-FFTPX. We test and
evaluate each feature separately and discuss the performance in
the experimental section. Note that the method of computing k-
FFTPX is presented in Algorithm 2 which we will explain later.

In the training stage of classifier, we build a matrix of
feature vectors V for holding the trained features. We label the
answer for each feature vector and call it a targeted matrix T.
Based on these information, we train classifier C using V and T.

In the classification stage, we build a matrix of feature
vectors U for holding the tested features. We pass each feature
in U to C for the classification process before building confusion
matrix for final results.

Our proposed k-FFTPX is shown in Algorithm 2. We
extract the k-FFTPX feature from 2 levels which are DWT level
1 (DWT1) and DWT level 2 (DWT2) using R channel of the CA
image g. The two levels of DWT are used because they are
useful for multiresolution analysis of cloud shapes and this
technique is less affected by the zooming of image. Higher
levels of DWT (more than 2) will take longer to calculate and
they are not recommended because the image will be too small
and the important details will be lost. After the transformation of
DWTL1 (in Algorithm 1), we first transform the image g into a
frequency domain using 2D-FFT to get A as presented in
Algorithm 2. After that, ® is obtained by shifting 2D-FFT of A.
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Then, we calculate the logarithmic magnitude of ® to find M.
We project the magnitude M on the x-axis of the transformed
image and called it a vector P,. We split P, into k blocks and
take the average of the magnitude in each block to get k
projection values. Note that the suitable k value is determined
experimentally. The k value should be able to represent a
dominant characteristic of each cloud class. The small k value
may not be able to describe characteristics of each class while
the large k value may represent too specific characteristics and
cannot generalize to each class. A feature vector H; is
constructed by joining the k projection values of P(s) in order
from s = 0 until s =k — 1. The process is repeated with DWT2 to
obtain the second feature vector H,. The output of k-FFTPX
algorithm is H; concatenating with H,.

Algorithm 2. k-FFTPX(n, m)

for each grayscale image g do
A = FFT(FFT(g))
® = FFT_Shift(A)
M=log| ® |
[+ Compute the projection of M on the x-axis %/
Py =3 L M(x,y), xe{1,2,..., nyp,ye{l,2,..., m}
[+ Split Px in k blocks and calculate Pgyg(S) */

PEJ’L‘g(S} =X (n/k)(s+1) PXU}- s=0.,1,..., k—1

T n Leuj=s(n/k)+1

Compute a feature vector Hy = _f:éng(s}
Transform the image g with DWT

Select coefficient approximated image from DWT
Calculate A, ©, M, Py, and Pgue(S) again

Compute a feature vector H, = UL&P[”,E(S}
Output H = [H{H>]
end for
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The overall feature extraction process is summarized in
Figure 4.1. According to Figure 4.1, two features vectors, F; and
H,, are extracted from DWT1. The feature vector F; contains 18
texture features derived from Algorithm 1. The feature vector H,
is a k dimensional FFTPX feature. The feature vector H, is
extracted from DWT2. This feature vector is also a k
dimensional FFTPX feature. Finally, we concatenate all vectors
to get a feature vector F which will be the input of our classifier
in Algorithm 1. Each F represents one image. In the training
stage of the classifier, we then build a matrix of feature vectors
called V which comes from all vectors F combined.

Sky image DWTI > DWT2
v v
- Texture features
F]:[Vl Va... V]x] - k~-FFTPX
- k-FFTPX Hy=[viva oo vy
H]=['V'1 Va ... Vk]
- Feature vector
F=[F) H\ H,]

for one image

Figure 4.1. Feature extraction process for k-FFTPX.
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4.3 Experimental Results

In the following experiments, we begin to exploit the
real cloud images captured from the interested area of study
which is Prince of Songkla University, Phuket Campus. We
used over 353 ground-based cloud images. Each image has a
resolution of 640 x 480 pixels. The methodology used for all
experiments is as per depicted in Algorithm 1 except in the last
experiment Algorithm 1 and 2 are both used. LOOCYV is used to
evaluate the accuracy of the classification. Our classifier is a
multilayer feed forward neural network with a single hidden
layer for classifying seven sky conditions. The hyperbolic
tangent function is used as the activation function in hidden
layer and in output layer as shown in Figure 2.5. The number of
input nodes is equal to the size of each feature vector in each
experiment. The number of output nodes is seven. The suitable
number of hidden nodes will be determined experimentally.
Other parameters of ANN are fixed with a learning rate of 0.01
and a momentum of 0.9. There are five experiments based on
different features being tested in this chapter. In the first
experiment, we test the performance of correctly classification
with our 18 chosen texture features. Experiment 2-5, the 18
texture features are used in conjunction with 2D-moments, abs-
FFT, log-FFT, and k-FFTPX, respectively. Furthermore, we will
analyze the strengths and weaknesses of each feature used in
each experiment.

4.3.1 Experiment 1 - Texture Features

There are many features that we used in the
classification of cloud types. Therefore, we must find a way to
choose the suitable features for classification.
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Figure 4.2. Distribution of chosen features.
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We select the features by observing a distribution of
each feature where the overlapping is minimized between each
class. Figure 4.2 shows a plot of the mean distribution of the two
considered features. The horizontal axis displays a range of
distribution of a chosen feature whereas the vertical axis is a
class number identifying the cloud types. In Figure 4.2(a) we
give an example of the suitable feature (mean-R) where the
distribution has small overlapping among classes. Figure 4.2(b)
IS an example of the unsuitable feature (mean-B) where the
distribution has high overlapping among classes. This latter
feature cannot distinguish a class from each other. Although, the
mean-R feature from Figure 4.2(a) is suitable we still cannot use
one feature solely for cloud classification because the
distribution cannot distinguish all classes at once. Hence, based
on the above technique we checked the distributions of 39
texture features appeared in [13], [15], [37] and selected the best
18 texture features such that the distributions can separate
classes most effectively.

The chosen 18 texture features are implemented in the
experiment using Eq. (2.1) to Eqg. (2.3) and Eqg. (2.5) to Eaq.
(2.16). The 18 texture features are used in the training of ANN
classifier. The ANN model is constructed and fine-tuned by
varying the number of hidden nodes. According to Heaton [54],
this value is usually lied between the number of input nodes and
output nodes. We conduct separate experiments to heuristically
find which number of hidden nodes optimizes the performance
of our ANN model. For this experiment (Experiment 1 —
Texture features) the suitable number of hidden nodes is set to
15. Note that the number of hidden nodes for the remaining four
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experiments will be optimized in the same manner. This value
will be varied experimentally based on the size of feature vector.

Table 4.2. Confusion matrix classified using 18 texture features.

True Classified as
class
1 2 3 4 5 6 7

1 79.14 | 6.30 | 247 | 741 | 086 | 1.23 | 2.59
2 6.50 | 84.25 | 425 | 213 | 1.25 | 1.63 0
3 1.92 | 1346 | 7942 | 1.92 | 1.35 | 1.92 0
4 1559 | 9.15 | 1.19 | 70.00 | 1.19 0 2.88
5 8.70 0 0 435 | 73.91 | 13.04 0
6 5.26 0 5.26 0 0 89.47 0
7 1.79 0 0 0 256 | 0.77 | 94.87

From Table 4.2, the result of classification using 18
texture features is presented in the form of confusion matrix.
Each row of the confusion matrix is a true class while each
column represents the output class given by our classifier. For
example, the element in the first row and third column is a
percentage of the accuracy classified as Class 3 while in fact, it
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Is Class 1. The diagonal of the matrix is, therefore, a correct
classification for each class. From the table, the classification
accuracies of Class 2, 6 and 7 are more than 80%, however,
class 4 and 5 have quite low accuracy in comparison with the
other classes since the misclassification of Class 4 as Class 1
and Class 5 as Class 6 are still high. On the average, the
accuracy of a classification using 18 texture features is 80.76%.

4.3.2 Experiment 2 - Moments of Two-Dimensional
Functions

Moments of two-dimensional functions or 2D-moments
are used in the experiment because their ability to tolerate any
transformation changes of images. They are calculated from CA
images of DWT level 1 using Eqg. (2.18). We split this
experiment into 3 sub-experiments. First, we add in the feature
vector each n-th order forn =0, 1, .. ., 7 one by one to the
existing 18 texture features. Second, only 0-th order to 7-th
order are in the feature vector. And third, the 18 texture features
combined with all n-th orders are in the feature vector.

Table 4.3. Texture features with one additional Zernike
moments of order n.

n-th order 0 1 2 3
Accuracy (%) 81.66 82.15 81.73 82.04
n-th order 4 5 6 7

Accuracy (%) 82.58 80.52 78.56 81.78




61

Table 4.3 shows the result of the first sub-experiment
where the 18 texture features are used in combination with each
n-th order. The accuracy of classification is peaked at 82.58%
when using texture features with the 4-th order of Zernike
moments. However, in the second sub-experiment when the
texture features were removed, the accuracy is reduced to
63.03%. Therefore, we have learnt that 2D-moments work better
in the presence of 18 texture features.

Table 4.4. Confusion matrix classified using textures features
and 2D-moments.

True Classified as
class
1 2 3 4 5 6 7

1 81.73 | 8.27 | 259 | 4.07 0 099 | 2.35
2 6.25 | 85.13 | 2.00 | 4.25 0 1.25 | 1.25
3 8.08 | 4.04 | 84.62 | 0.19 0 3.08 0
4 1695 | 424 | 119 | 73.39 | 2.71 | 085 | 0.68
3) 435 | 11.30 | 1.30 | 5.22 | 66.96 | 10.87 0
6 2.63 0 1.58 | 3.68 0 92.11 0
7 1.79 | 2.56 0 0 0 0 95.64
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In the third sub-experiment when the 18 texture features and all
2D-moments are combined, we obtained more satisfiable result
with the accuracy of 82.66%. This is better than using 18 texture
features alone (see Experiment 1). The confusion matrix for this
sub-experiment is presented in Table 4.4. In particular, the
accuracy of Class 7 is increased to 95.64%. However, the
accuracy of Class 5 is reduced to 66.96%. Therefore, we will
explore another technique to improve these results in the next
experiments.

4.3.3 Experiment 3 - Absolute FFT

Absolute FFT or abs-FFT computes texture features
using the absolute magnitude of FFT. There are two sub-
experiments. First, we select four best texture features which
operate on this magnitude of FFT and add each of these features
one by one to the existing 18 texture features. Second, the 18
texture features combined with all four abs-FFT features are in
the feature vector.

Table 4.5. Texture features with one additional abs-FFT feature.

Additional feature Max | Average | Energy | VVariance

Accuracy (%) 81.30 85.44 80.74 82.55

Table 4.5 yields the result of the first sub-experiment.
The best result is at 85.44% when using average-features in
conjunction with the 18 texture features and this is superior than
the result in Experiment 2. Therefore, it is still worth to use 18
texture features with our test features as the performance has
been improved by 2.78%. The second sub-experiment gives
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85.06% of the accuracy. This result is close to using the
average-feature. However, the average-feature yields slightly
higher percentage. The confusion matrix of the average-feature
IS, therefore, shown in Table 4.6. The accuracies in most classes
are improved from Experiment 2. Especially, Class 4 and 5 we
had problems before in Experiment 2, now Class 4 is improved
by 1.02% while Class 5 is improved by 9.13%. The accuracy of
Class 7 is now climbed up to 97.18%, and the average accuracy
of Table 4.6 is 85.44%.

Table 4.6. Confusion matrix classified using texture features and
the abs-FFT average-feature.

True Classified as
class
1 2 3 4 5 6 7

1 8541 | 3.70 | 0.37 | 543 | 062 | 0.86 | 1.61
2 75 | 8575 | 363 | 1.63 | 0.25 | 1.25 0
3 2.69 | 5.00 | 90.00 | 1.15 | 0.58 | 0.58 0
4 1425 | 6.78 | 220 | 7441 | 153 | 0.17 | 0.68
5 435 | 043 | 3.04 | 9.13 | 76.09 | 6.96 0
6 8.42 0 158 | 053 | 421 | 84.74 | 0.53
7 1.54 0 0 051 | 051 | 0.26 | 97.18
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4.3.4 Experiment 4 - Logarithmic FFT

Logarithmic FFT or log-FFT closely resembles the abs-
FFT but log-FFT uses the logarithmic magnitude of FFT. There
are two sub-experiments. First, we use one additional log-FFT
feature with 18 texture features. Second, we use all log-FFT
features together with 18 textures features in order to compare
which sub-experiments give better results.

Table 4.7. Texture features with one additional log-FFT feature.

Additional feature Max | Average | Energy | Variance

Accuracy (%) 62.46 86.11 79.96 84.99

The result of the first sub-experiment is given in Table
4.7. The average of log-FFT feature outperforms the other three
features. The best accuracy is at 86.11% which is higher than the
abs-FFT average-feature in Experiment 3. In the second sub-
experiment when we use all log-FFT features with 18 texture
features, the overall accuracy is down to 78.47%. We believe
that the max-feature and energy-feature are the plausible causes
since their accuracies are not too high as shown before in Table
4.7. Therefore, only average-feature is recommended with the
18 texture features. The confusion matrix when using texture
features and the log-FFT average-feature is presented in Table
4.8. The result reveals that most of the classes have the
accuracies higher than Experiment 3 with the slight drop of
Class 1 and Class 4 performances. However, Class 5 to 7 give
rather excellent results, all are above 90%. The performances of
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Class 5 and Class 6 are enhanced by 15.21% and 10%,
respectively. Moreover, Class 7 accuracy is now 100%.

Table 4.8. Confusion matrix classified using texture features and
the log-FFT average-feature.

True Classified as
class
1 2 3 4 5 6 7

1 8272 | 494 | 123 | 494 | 247 | 123 | 247
2 6.25 | 87.50 | 3.75 | 1.25 0 1.25 0
3 3.85 | 5.77 | 90.38 0 0 0 0
4 10.17 | 8.47 | 3.39 | 71.18 | 3.39 0 3.39
5 0 0 0 0 91.30 | 8.70 0
6 0 0 5.26 0 0 94.74 0
7 0 0 0 0 0 0 100

Until now, the accuracy of Class 4 is still less than
75%. In the next experiment, we will show how our new
technique of feature extraction can lead to a significant
improvement of Class 4 and the rest of the remaining classes.
We expect to have no less than 87% accuracy for every class.
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4.3.5 Experiment5— FFT Projection on x-axis

The experiment uses the logarithmic magnitude of FFT
presented in Algorithm 2 (k-FFTPX) along with the 18 texture
features that are obtained from Algorithm 1. Algorithm 2 is
called by Algorithm 1 when the step of appending optional
features H to F is reached.

There are two sub-experiments. First, we investigate
the suitable value of k in the k-FFTPX algorithm. Table 4.9
shows the accuracy of the k-FFTPX algorithm when k =1, 5, 10,
15, and 20, respectively. The accuracy increases as the k value
increases until it reaches a peak at k = 10 and the accuracy
begins to decrease when k when k is greater than 10.

Table 4.9. Performance of k-FFTPX when K is varied.

k values k=1 | k=5 | k=10 | k=15 | k=20

Accuracy (%) | 71.84 | 89.94 | 90.40 | 30.03 | 32.44

In the second sub-experiment, we apply k = 10 and
derive the confusion matrix as shown in Table 4.10. Most of the
correctly classified instances are now over 87% which are better
than the previous four experiments. Moreover, the correctly
classified instances of all the classes are higher than 80%.
Furthermore, the accuracy of Class 4 is improved by 8.99%. The
overall (average) accuracy is at 90.40% which is better than the
results of the previous four experiments.
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Table 4.10. Confusion matrix classified using texture features

and 10-FFTPX.

True Classified as
class
1 2 3 4 5 6 7

1 89.26 | 185 | 0.12 | 7.28 | 0.12 0 13.58
2 2.38 19388 | 1.23 | 1.25 | 0.12 | 1.25 0
3 2.88 | 4.42 | 92.69 0 0 0 0
4 1153 | 6.78 | 0.68 | 80.17 | 0.85 0 0
5 1.74 0 435 | 1.74 | 87.83 | 4.35 0
6 6.32 0 0 0 0 93.68 0
7 0 0 0 2.05 0 0 97.95

with eight features of Zernike moments.

4.3.6 Comparison of Each Feature Extraction
Method

Table 4.11 shows the best results from Experiment 2 to
5 where four different feature extraction techniques are used in
conjunction with the 18 texture features. First, when we append
2D-moments to the 18 texture features, we obtain the accuracy
of 82.66% which comes from using textures features combined
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Table 4.11. Each feature extraction method and its accuracy.

Features Accuracy (%0o)
Texture + 2D moments 82.66
Texture + Abs-FFT 85.44
Texture + Log-FFT 86.11
Texture + k-FFTPX 90.40

Later, the abs-FFT average-feature improves the
accuracy to 85.44%. Then, the log-FFT average-feature
increases the result even further to 86.11%. Finally, the highest
accuracy arises from using the 18 texture features with k-FFTPX
where the confusion matrix shows the overall accuracy of
90.40%. This suggests that the 18 texture features with k-
FFTPX is the most effective among those feature extraction
techniques we presented. In addition, when the magnitude of
FFT is plotted in the logarithmic scale, the magnitude
differences are far more prominent than the scale of the absolute
magnitude (see Figure 2.2(b) and (c), for example). Hence, the
projection of log-FFT image on the x-axis works very well. Note
that the suitable k value may require tuning and it can be varied
from problems to problems. That is why we stated in the
algorithm as k-FFTPX.
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4.4  Running Time Analysis

In this section, we estimate the running time of our two
algorithms which are the cloud classification algorithm and the
k-FFTPX. The results are shown in Table 4.12.

Table 4.12. The approximate running times of the two proposed
algorithms.

Algorithms Settings Number Approx.
of images | running time
Cloud classification LOOCV 353 14.1 min
Training 353 1.7 min
Testing 1 813.9 ms
The k-FFTPX k=5 52.7 ms
k=10 52.9 ms
1
k=15 54.0 ms
k=20 54.5 ms

The 18 texture features and the k-FFTPX (with the
same setting as Section 4.3.5) are applied to the cloud
classification algorithm. The running time of the k-FFTPX
algorithm is around 52 ms which is slightly increased for the
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larger k value. The algorithm for the k-FFTPX is executed once
for each image. Therefore, a multiplication with the number of
images is requited to calculate the total running time.

4.5 Chapter Summary

Two algorithms were presented. The first algorithm
computes a matrix of feature vectors for all images before using
this information in the process of cloud classification. The
second algorithm is provoked by the first one if the feature
extraction technique is set to use k-FFTPX. None of the
literatures in Table 4.1 has provided such algorithms before.
Besides, our k-FFTPX is different from other FFT techniques in
many aspects. We project the values of logarithmic magnitude
of FFT images on the x-axis of the frequency domain and split
the projection values into k blocks and take the average of the
magnitude in each block to get k projection values whereas the
past research has calculated the characteristics of FFT using CC,
SI, or the radial average. We also add a sorting technique to sort
values in the feature vector for a better performance. Although,
there were research using DWT with FFT for word recognition
and using DTCWT with FFT for EEG analysis; the merit of this
research is that we used DWT with texture features in
conjunction with the new k-FFTPX features for cloud type
classification. By using merely a digital camera available
anywhere on the market today, our method is inexpensive. Our
next contribution is the increase of cloud types to seven different
cloud types and yet a good result, 90.40% accuracy, was
obtained. Among digital camera images used in the literatures
(see Table 1.3), there was a result showing more than 90%
accuracy; however, their output classes were limited to two



71

cloud types. In this chapter, we also delivered more than one
extraction technique; in fact, five different combinations of
feature extraction techniques were presented and the accuracies
are 80.76%, 82.66%, 85.44%, 86.11%, and 90.40%,
respectively. These results, therefore, suggest a variety of
practical solutions from the simple to the sophisticated
functionality that requires no satellite images or expensive tools.
Note that our approach will be developed until it can combine
with other inexpensive meteorological sensors to report weather
conditions and display them on a smart phone.

In addition to the practical advantages above, our
algorithm is rather simple to implement while the accuracy of
our proposed method was improved from the conventional
methods with the capability of distinguishing cloud types of up
to seven classes. By using simply a digital camera with a
resolution of at least 640 x 480 pixels, our method is less
cumbersome and less expensive than those using TSI/WSI
imagers. However, our method cannot classify more than one
type of clouds that appear on the same image. Also, our
algorithm has not yet been tested with the night time images.
Our algorithm must be used in conjunction with the texture
features to achieve the best performance because in Chapter 3
we proved that texture features are necessary as they convey key
characteristics of clouds. Since the k-FFTPX provides the
results better than the other three feature extraction techniques;
therefore, we will use the k-FFTPX as the main feature
extraction technique in the next chapter. However, we will
further improve any drawbacks of the k-FFTPX especially in the
area of a computation time while the good characteristics will be
maintained.
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CHAPTER 5

EXPERIMENT C - VALIDATING PROPOSED
FEATURES AND NOVEL ALGORITHMS

In the last chapter, the k-FFTPX has proven to perform
better than other feature extraction techniques. However, the
computation time of the k-FFTPX can still be improved. In this
chapter, we modify and bring in three more features based on
the previous k-FFTPX. The classification accuracy will be
increased from 90.40% because we use the new algorithms
based on hierarchical classification. We still perform cloud
classification on seven cloud types, namely, cirriform, high
cumuliform, stratocumulus, cumulus, cumulonimbus, stratiform,
and clear sky. In the chapter, we present eight algorithms that
are used in automatic cloud classification with ground-based
images as input. The main Cloud Classification Tree Algorithm
(CCTA) uses the technique called hierarchical classification
which is composed of three levels of tree. The design of our tree
helps reduce the number of competitions among the cloud
classes. We show that this method provides the highest accuracy
at 98.08% through a series of four experiments. The result
confirms that the hierarchical classification performs better than
a single classification.

In addition, the tree can be adapted to classify lesser
number of cloud types. Our experiment reveals that the accuracy
for classifying two classes, cloud and no-cloud, is high as 100%.
Moreover, users have freedom to specify their expected
accuracy to gain higher speed in calculation.
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5.1 Introduction

In this chapter, both texture and Fourier transform
features are extracted from images. Then, ANN is used for
training and classifying instances based on Cloud Classification
Tree Algorithm (CCTA). Our classification tree splits sky
conditions into clouded sky and clear sky before further
separating clouded sky into three forms of clouds which are
cirriform, cumuliform, and stratiform. Then, cumuliform clouds
with four different shapes are classified last. Along with the
classification tree, we also proposed three new features which
are the modified k-FFTPX, the half k-FFTPX, and the h x k-
FFT. Eight algorithms are introduced and their validated results
are presented in our four experiments.

5.2 Technical Background

In addition to Table 1.1 — 1.3, Table 5.1 shows
specifically various uses of hierarchy classification. Hansen et
al. [55] used hierarchical tree structure, a decision tree that
applies training data to generate tree structure using pruning
method to separate data into two sets. One data set is used to
grow the tree and the other is used to prune errors. This method
classifies satellite images (AVHRR) into one of twelve classes
for land cover classification. Polat and Giines [56] used a
decision tree classifier and FFT based on Welch method to
classify EEG signals as either patient or normal. Their method is
used to detect epileptic seizure. Pang et al. [57] introduced a
binary classification tree algorithm for face membership
authentication. Their classification tree is constructed by
clustering one data set from the root node into two subsets.
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Then, clustering procedure is repeated on both child nodes. The
procedure terminates when all nodes remain only either
membership or non- membership data. The result from each
node of tree is trained by SVM and all SVM classifiers are
combined into SVM classification tree. From what mentioned
above, the tree structure is generated automatically from training
data.

Table 5.1. Related works on classification tree and decision tree.

Year Proposed Application Author
method
2000 Hierarchical Land cover Hansen et al.

tree structure | classification | [55]

2000 Hierarchical Cloud Azimi-

SVM structure | classification | Sadjadi and
Zekavat [58]

2005 SVM Face Pang et al.
classification | authentication | [57]
tree

2007 Decision tree | Detection Polat and
and FFT epileptic Glines [56]

seizure
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However, some researchers prefer to construct tree
based on characteristics of each class. Azimi-Sadjadi and
Zekavat [58] used satellite images (GOES 8) IR channel to
classify areas into ten classes which composed of six cloud
classes and four no-cloud classes. They used SVM classifier
together with mean and standard deviation features to classify
each block of image. Hierarchical SVM structure was then
formed to classify at most two classes on each level of
hierarchy. Moreover, Parikh [17] suggested that hierarchical
classification leads to better results than using solely a single
classification. To the best of our knowledge, apart from SVM
classifiers there is no research on hierarchy classification using
ANN classifiers. In this paper, we will design tree structure and
use ANN to classify at most four classes on each level of
hierarchy. Other research on SVM used only binary classes (two
classes) per hierarchical level.

5.2.1 Features

Two color models, namely, RGB and HSV (Hue,
Saturation, and Value) are used for feature extraction. In this
paper, digital images are in RGB color while HSV color codes
are computed by equations below [59]. The notation R’, G" and
B’ are R, G, and B which are scaled to [0, 1]. The H, S, and V
values are all varied in a range of [0, 1]. The H values
corresponds to colors varying from red through yellow, green,
cyan, blue, magenta, and back to red, so at 0 and 1 they are both
red. The S values are varied so that the corresponding H colors
change from unsaturated to fully saturated (no white
component) whereas the V values are brightness values in scale
of [0, 1].
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V =max(R,G,B) (5.1)
X =max(R,G,B) (5.2)
0 ifVv=X
SZ{% ifV+X (5:3)
( 0ifV=X
V-B . : :
5+—if V=R and X =G
V-X
V—G, . ! '
l1—-——ifV=Rand X # G
V-X
V-R . : :
H=<1+VTXLfV=GandX=B (5.4)
3-2L ifv=GandX +B
V—-X
3+ ifv=Band X =R’
V—-X
5- 2 ifVv=Band X #R
V—-X

We will use a grayscale image which is computed by
splitting channels of image as R, G, B, H, S or V channels in
feature extraction. There are two groups of features used in the
experimental section which are the texture features and the new
features based on Fourier transform. These features are used
together because no single feature extraction method is best
suited for recognizing all classes [10]. Each method has its own
merits.
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1) Texture Features

In this chapter, there are five types of texture features
depending on data sources used in the calculation. The first type
IS when texture features are extracted straight from images.
These features are mean (ME) of R, G and B, difference of mean
(Di j) between each channel, and uniformity (U) of R defined by
Eqg. (2.1) to Eq. (2.2) and Eq. (2.4) [13], [15] in Chapter 2.

The second type is when texture features are
calculated from GLCM which is a square matrix [15]. We will
use four of Haralick texture features [37]. These type of features
are homogeneity (HOM) of B, contrast (CON) of B, energy
(EN) of B and entropy (ENT) of R, G, B, and S as depicted by
Eq. (2.5) to Eq. (2.7) and Eq. (2.13).

The third type of texture feature is computed from
edge of image which is calculated by canny edge detection [60]
on R channel. The number of edge pixels is different for each
cloud class; hence it can be used to distinguish clear sky and
stratiform clouds from other cloud classes. The ENT (Eq. (2.13))
Is calculated again, but on edge of image, this texture feature is
called entropy of edge image (EE). The sum of edge pixels (SE)
is calculated by equation below. The annotation e(i, j) is a pixel
value from the i-th row and the j-th column while A and B are
the size of edge image A x B pixels, width and height,
respectively.

SE = Y1ty X0 e(i,)) (5.5)
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The fourth type of texture feature is computed from
binary image or threshold image on S channel. Threshold
algorithm is used, if pixel value is less than threshold value then
the pixel is set to one otherwise it is set to zero. The remaining
pixels in the image are cloud pixels and we can use them to
separate cloud types by considering the number of cloud pixels
for each type. The sum of cloud pixels (SC) using threshold
image is calculated by equation below. The annotation c(i, j) is a
pixel value from the i-th row and j-th column.

SC =Yis0 X550 c(ih)) (5.6)

The fifth type of texture feature is computed from
two gradient images on S channel using Eq. (5.7) called energy
of image gradient (EG). The notation I, and I, describe image
gradients of row and column directions, respectively [61]. This
feature is used to measure sharpness of grayscale image.

EG =Y 20N+ 3GH) 6B

2) Feature Based on Fourier Transform

From Figure 5.1, we take input RGB image (Figure
5.1(a)) and transform it to grayscale image by splitting channel
into R, G, or B channel. The sample of grayscale image from R
channel is shown in Figure 5.1(b). The channel splitting
transforms HSV image to H, S or V image in grayscale. The S
channel image is shown in Figure 5.1(c). We transform pixels of
the grayscale image into frequency domain by 2D-FFT and we
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use FFT shift to move the low frequency pixels into the center
of the image (see Figure 5.1(d) and Figure 5.1(e)).

(@) Inputimage  (b) R channel image (c) S channel image

(d) FFT image of R channel (e) FFT image of S channel

Figure 5.1. A comparison of Fourier transform image of R and S
channels.

In Figure 5.1(b) the white color in cloud areas means that the
areas have high red value while Figure 5.1(c) shows the
complement of the image which presents a purity of pixels. The
pixels with the highest purity have the highest values and are
represented as white. The non-white color in cloud areas
corresponds to a mixture of colors. Furthermore, the S image
provides more details or better contrast than the R image. When
both images are transformed to FFT images, the FFT image of S
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channel (Figure 5.1(e)) also has better contrast than the FFT
image of R channel (Figure 5.1(d)). Therefore, we will use the
FFT image of S channel and the verification of results will be
presented later in the experimental section.

The shape of clouds cannot be explained by texture
features alone. Therefore, we introduced features based-on
Fourier transform for differentiating the shape of clouds.
Moreover, it helps reduce the effect of unequal brightness in
cloud images. There are three types of features based-on Fourier
transform that we exploit in the experiment, namely, the
modified k-FFTPX, the half k-FFTPX, and the h x k-FFT.

2.1) The modified k-FFTPX

The original k-FFTPX (in Chapter 4) used
coefficient approximated image from DWT to transform the
image to frequency domain using 2D-FFT. The projection of
logarithmic magnitude of Fourier transform image on the x-axis
was used. Then, we chose k uniform sampling values of the
projection data as k dimensions of a feature vector. All steps are
repeated twice and the second feature vector found was
concatenated to the first one. To reduce computation time, the
modified k-FFTPX is proposed (see Algorithm 3). The DWT is
no longer used in the algorithm; a simple grayscale image is
used instead. Moreover, it does not repeat the step of finding the
second k dimensions of a feature vector. Only the first feature
vector is required.
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Algorithm 3 The modified k-FFTPX
Input: k. a grayscale image g
Output: H
A = FFT(FFT(g))
® = FFT_Shift(A)
M = log |6]
/* Compute the projection of M on the x-axis */
P,=>" My, xe{l.2,...n}, ye {l.2,...m}
[* Sp]it-P in k blocks and calculate Pm.g(s} */

\ k < (nfk)(s+1) - _
:]1[;{5) n ZJ s(n/k)+1 P.()), s= 0,1, — 1

Compute a feature vector H = U" ! ng,( s)
return H

2.2) The half k-FFTPX

This feature is similar to the modified k-FFTPX,
but half k-FFTPX operates with a half projection of logarithmic
magnitude of Fourier transform image on the x-axis to reduce
calculation and processing time even further (See Algorithm 4).

Algorithm 4 The half k-FFTPX
Input: k, a grayscale image g
Output: H
A = FFT(FFT(g))
® = FET_Shift(A)

M = log |B]
/* Compute the half proiection of M on the x-axis */
Pe=3" My, xe{l,2,...n/2}, ye{l.2,...m]}

[* Sp]it'P n k blocks and Lalc,ulate Pave(s) */

Payg(s) = 2;: Zf:!?é;}(;;;?] P.(j), s=0,1,...k-1

Compute a feature vector H = U‘{‘ : 0 Pave(s)
return H
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2.3) Theh x k-FFT

The h x k-FFT is used to describe the shape of
clouds in greater detail than the above two FFT features because
it uses a sampling block technique on the FFT image. After
logarithmic magnitude of Fourier transform image is calculated,
we take half of the image and split it into h rows and k columns.
This becomes the sub-images as depicted in Figure 5.2. The sum
of pixel values in each sub-image is then calculated. Then, each
sum value is concatenated as a feature vector V = [vq, Vo, V3, ...,
Vixk] (See Algorithm 5)

Algorithm 5 The / X k-FFT
Input: /i, k, a grayscale image g
Output: H
A = FFT(FFT(g))
® = FFT_Shift(A)
M = log|®]
rel ., rel’
d(r,t) = (sx r/t+ 1)mod(r)
u(r.t) = (r/t)(s + 1)mod(r)
L, m ifu(m,h)=10
B { u(m, h) ifu(m.h)#0
v { n/2 ifu(n/2,.k)=20
S L un/2.k) ifun/2.k)#0
/* Split M in h x k blocks and calculate Py,,(s) */
X € {1‘2.,...13:,32}. ve{l.2,...m}
Poum(s) = X Pt M, y), s = 0,1, (hx k) — 1

:1':dfm_h}

. hixk)—1 \
Compute a feature vector H = Ui,:; "L P um(s)
return H




Sum pixel values of each sub-image
and concatenate the sum

!

V=[v1, Vo M3 ey Vth]

Figure 5.2. The h x k-FFT diagram.
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Both the half k-FFTPX and the h x k-FFT used the
left half of logarithmic magnitude of Fourier transform image
for feature extraction. Since Fourier transform is the process of
signal transformation into series of sine and cosine which are
odd and even function respectively; therefore, we can use only
half image for calculated features. These novel features are
referred to as features from the half of FFT image, or half-FFT
for short.

5.2.2 Algorithms

We introduce the algorithm for cloud type classification
based on classification tree. Figure 5.3 shows a hierarchy
classification of clouds in a tree-like fashion. There are three
levels of classification. In each level of classification, instances
are classified at the internal node (black circle in Figure 5.3)
using ANN classifier. Different features are used depending on
the types of clouds being classified. For seven types of cloud,
their subtypes and their descriptions we recommend readers to
revisit Table 2.1. Level 1, clouded sky and clear sky are
separated by the texture features. At this level, we select the
most suitable five features introduced in Section 5.2.1. Level 2
deals with three different forms of clouds which are cirriform,
cumuliform, and stratiform. At this level, the modified k-
FFTPX, the half k- FFTPX, and the h x k-FFT are tested and the
best performed feature is used to distinguish the three forms of
clouds. Level 3, cumuliform clouds with different shapes are
classified using two texture features and one of the best
performed feature from the modified k-FFTPX, the half k-
FFTPX or the h x k-FFT. Note that leaves of the tree are the
result of classification.
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If we consider the computation time, it is not necessary
the case that the single classification (one level) for seven cloud
types will be faster than the hierarchical classification. This is
because if the result is clear sky, only the first level of
classification tree is executed and this will take less time than
classifying of seven cloud types all at once. Similarly, using two
levels of tree can classify cirriform and stratiform faster than the
single classification in Chapter 4 (see Table 4.12 and 5.12).
Although using all three levels of tree may take longer to
classify seven cloud types than the single classification, the
results from the cloud classification tree is more accurate. This
Is a simple trade-off between accuracy and computation time.

Input

Clouded sky Clear sky

Cirriform Cumuliform Stratiform

High cumuliform  Stratocumulus Cumulus Cumulonimbus

Figure 5.3. Cloud classification tree.

There are two main algorithms which are used to
construct ANN models and to classify instances based on the
classification tree. To construct ANN models, Algorithm 6 is
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presented. The color ground-based images are scaled to 240 x
320 pixels before transforming to grayscale images for feature
extraction. The texture features described in Section 5.2.1 are
selected by Algorithm 7 and ANN model for Level 1 is then
constructed. After testing the three FFT features, ANN model
for Level 2 is trained by the best performed FFT feature. Note
that the optimization of k value for the first two FFT features
uses Algorithm 8 while the optimization of h and k values for
the h x k-FFT uses Algorithm 9. The three FFT feature vectors
are computed using Algorithm 3, 4, and 5, respectively.

Algorithm 6 Building ANN models

Input: all color images
Output: Cy, Ca. and C3
Resize all color images to n X m resolution
/* Create a model to classify clouded and clear sky */
for each image i/ do
Calculate a vector of texture features F
end for
Build a matrix Fy; from feature vector F;
for each image i do
Put answer into a matrix 7'y by visual inspection
end for
Use Fnq to find suitable texture features Fg
Train classifier Cy using F; and T,
/* Create a model to classify three forms of clouds */
Feed all clouded images
Ky = optimization of k value for modified-k-FFTPX
Ky = optimization of k value for half-k-FFTPX
[H. K;] = optimization of /1 and k values for i x k-FFT
for each clouded image i do
F,; = call modified-k-FFTPX function using K
F 1 = call half-A-FFTPX function using Kg
F . = call h x k-FFT function using H; and K,
end for
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Build a matrix Fg; from feature vector F
Build a matrix Fy; from feature vector Fj,

Build a matrix Fyg from feature vector F
for each clouded image i do

Put answer into a matrix 7 by visual inspection
end for

Fy = testFeatures(Fg, Fy, Fug)
/* testFeatures return the best FFT feature */
Train classifier C, using Fyyq and T,
/* Create a model to classify four cumuliform clouds */
Feed all cumuliform images
Ky = optimization of k value for modified-k-FFTPX
Ky, = optimization of k value for half-k-FFTPX
|H,, K>] = optimization of i and k values for h x k-FFT
for each cumuliform image i/ do
F 42 = call modified-k-FFTPX function using Ky
Fpp = call half-k-FFTPX function using Kg»
F ., = call h x k-FFT function using H, and K,
Calculate a vector of texture features F’»
end for
Build a matrix Fg» from feature vector F»
Build a matrix Fgs from feature vector Fj»
Build a matrix Fgyg, from feature vector F o
Build a matrix Fr from feature vector F»
for each cumuliform image i do
Put answer into a matrix 73 by visual inspection
end for
F o = testFeatures(Fgo., Fryo. Fyin)

Use Fr and Fy, to find suitable texture features Fy»
Fp = appendFeatures(Fy2, Farn)

Train classifier C3 using Fp and T3

return Cy, C5, and Cy
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Algorithm 7 Selection of a suitable minimal set of features

Input: F[1..n], H[1...(Ch x k)][1...N]. Acc
Output: result, resultldx, score
/¥ F 18 a vector of n texture features, A 1s a matrix of feature
vectors, Acc 1s a user-defined accuracy */
result = an empty sequence
resultldx = an empty sequence
score[ l...n][1...n] initial with zero  /* record % accuracy */
temp = F, seq[1...n]. c=n
for i=1;i<n:i++ do
seqli]=i
end for
for i=1;i<n:i++ do
for j=1:j<c: j++ do
if H 1s empty then
score|i][ j]=classify(result — temp[j])
else
scorelf][ jl=classify(result ~ temp[ j].H)
end if
end for
|maxVal, maxIdx]=max(score[i])
result=result = temp[maxIdx]
resultldx=resultldx = seq[maxIdx]|
Remove temp[maxIdx]
Remove seq[maxIdx]
c=c-1

if maxVal > Acc then
return result, resultldx, score
end if
end for
return result, resultldx. score
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Algorithm 8 Optimization of k value

Input: K /* user-defined maximum threshold */
Output: k, score
k=0, Acc=0
score[1...K| initial with zero
for i=1.i < K;i++do
score[i|=classify(i)
if score[i] > Acc then
Acc = score]i]
k=i
end if
end for
return k, score

Algorithm 9 Optimization of i X k value

Input: H, K /* user-defined maximum threshold */
Output: h. k, score
h=0, k=0, Acc=0
score|l...H|[]...K] imtial with zero
for i=1.i < H:i++do
for j=1; j< K ; j++ do
scorel[i][ jl=classify(i, )
if score[i][ j] > Acc then
Acc = score[i][ /]
h=i, k=]
end if
end for
end for
return /1, k, score




Algorithm 10 Cloud Classification Tree Algorithm (CCTA)

/* Test ANN models using the test data */
Input: all test images, Cy, C,, C3
Output: Cy
for each test image i do
Extract a feature vector F'y for model C
Ry = Classify(Fy, Cy)
if R, 1s clear sky then
CS = Class No. 7
else
/* Three forms of clouds */
Extract a feature vector /> for model C»
Ry = Classify(F,, C»)
if R, 1s cirriform then
CS = Class No. 1
else if R» 1s stratiform then
CS = Class No. 6
else
/* Cumuliform clouds #/
Extract a feature vector F3 for model C5
R3 = Classity(F3, C3)
if R3 1s high cumuliform then
CS = Class No. 2
else if R5 is stratocumulus then
CS = Class No. 3
else if R 1s cumulus then
CS = Class No. 4
else
CS = Class No. 3
end if
end if
end if
end for

Build a confusion matrix Cys from CS
return Cy

90
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To construct ANN model for Level 3, the best
performed FFT feature is appended to the suitable set of texture
features. The set of texture features are derived from Algorithm
7 using the 18 texture features and the best FFT feature vectors
as the inputs. Finally, to classify instances based on the
classification tree, CCTA is elaborated in Algorithm 10. The
images are scaled and transformed in the same manner as
described before in Algorithm 6. The same feature extraction
methods which used to train ANN models are used to form
feature vectors for classifying instances according to the
classification tree in Figure 5.3.

5.3 Experimental Results

In the following experiments, we used 1,660 ground-
based images from digital camera. Some cloud types are rare
naturally-occurring types; hence the number of images per class
Is collected based on the frequency of cloud occurrence in
nature. The classification of cloud images is very challenging
because these images are taken from different views and come
in different sizes but they all have at least 640 x 480 pixels in
JPEG format. Therefore, we can scale all the images down to
320 x 240 pixels. LOOCYV is used for result evaluation. For the
setting parameter of ANN in these experiments, a hyperbolic
tangent function is set as the activation function for both hidden
and output layers. The activation function of input layer is set to
linear so the input remains unchanged. The number of hidden
layers is one. The number of hidden nodes is set to 9 for the first
level of the tree and 11 for the second and third level. Learning
rate and momentum are set to 0.01 and 0.9, respectively. We set
stopping criteria when error in the training process reaches
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0.001. AIll weights are initially fixed for our first three
experiments. In the final experiment, random weights are used
to achieve better classification performance. There are four
separate experiments and the first three experiments match to
the three levels of classification tree in Figure 5.3. In the first
experiment, we classify instances into two classes either cloud
or no-cloud (clear sky). In the second experiment, we classify
three groups of clouds by considering their forms. In the third
experiment, we classify four cloud classes by considering lumpy
appearances of cumuliform clouds. Finally, all levels in the
classification tree are combined together for the final
classification.

5.3.1 Level 1 - Cloud or No-cloud

The set of n texture features are sent to Algorithm 7. In
this experiment, n is set to 18 which refers to the 18 texture
features are described in Section 5.2.1. Algorithm 7 is used to
select a suitable minimal set of features.

Table 5.2 shows the five-iteration results from
Algorithm 7 which keep in the score matrix when Acc or
expected accuracy value is set to 100%. Each iteration, one
suitable feature is selected from the feature set (F) that has a
maximum outcome of accuracy. On the next iteration, the
previously selected feature will be concatenated with the
remaining features for another classification round. The iteration
Is repeated until the accuracy reaches the expected value.
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Table 5.2. Accuracy (%) in selection of suitable features for
classifying between cloud and no-cloud.

Features Iteration

1 2 3 4 5
ME (R) 50 50 97.71 96.29 99.97
ME (G) 50 50 97.71 98.39 100
ME (B) 54.94 50 96.93 94.73 100
D (R-G) 52.03 50 99.03 99.48 99.77
D (R-B) 82.75 50 98.84 50 99.74
D (G-B) 81.81 50 98.65 99.97 -
U 69.83 49.97 98.28 92.91 99.77
CON 60.50 49.37 97.57 98.37 99.77
HOM 50.23 50 96.93 89.72 99.77
EN 50 86.75 97.38 95.86 99.77
ENT (R) | 73.47 50 99.19 - -
ENT (G) 50 50 97.76 50 99.77
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Features Iteration

1 2 3 4 5
ENT (B) | 53.76 50 96.55 50 99.77
ENT (S) | 49.97 50 97 96.41 | 99.77
EE 85.65 50 95.99 50 99.77
SE 85.44 92.25 - - i
SC 50 92.17 99.06 50 99.77
EG 86.04 - - - -

As a result, we selected five texture features from Table
5.2 and referred to them as a suitable minimal set of features.
These features in order of being added to the set (on each
iteration) are EG, SE, ENT (R), D (G — B), and ME (G),
respectively. Note that on the final iteration, ME (B) can also be
chosen in place of ME (G) as they both yielded the same result.
The five features are used in the process of building ANN model
for Level 1 to classify clouded sky and clear sky in Algorithm 6.
After executing Algorithm 10, we obtain the result for
classifying cloud and no-cloud. The accuracy is as high as
100%. The advantage of Algorithm 7 is the flexibility of user-
defined accuracy (Acc). For example, if Acc is expected at
92.25%, the algorithm will run only two iterations and only two
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features are used to classify cloud and no-cloud. Our algorithm
Is designed to have freedom to trade-off accuracy with
computation time.

5.3.2 Level 2 - Three Forms of Clouds

The aim of this level is to classify three forms of clouds
which are cirriform, cumuliform, and stratiform. In this
experiment, features based on Fourier transform are used,
namely, the modified k-FFTPX, the half k-FFTPX, and the h x
k-FFT. However, only one of these features will be selected by
Algorithm 6.

Table 5.3. Accuracy of the modified 20-FFTPX when channel is
varied.

Channel R G B H S V

Accuracy (%) |74.30 |63.23 |61.22 |79.39 |81.25 | 61.64

Table 5.3 shows the accuracy of classification using the
modified k-FFTPX for k equal to 20. Each color channel is
tested in the feature extraction process. The accuracy of S
channel is higher than the five other channels. This result
confirms that the use of FFT image of S channel has paid off.
Hence, we will use the information obtained from this channel
for the remaining experiments.
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Table 5.4. Accuracy (%) of the h x k-FFT when h and k are
varied (k=1 -6).

h value k value
1 2 3 4 5 6
1 48.27 | 45.71 | 76.59 | 78.83 | 33.33 | 84.35
2 34.02 | 80.72 | 82.59 | 80.18 | 86.27 | 64.96
3 81.6 | 88.19 | 86.69 | 88.05 | 78.72 | 89.51
4 83.02 | 63.53 | 65.31 | 71.95 | 71.25 | 77.79
5 84.14 | 88.81 | 89.2 55.3 | 90.38 | 91.24
6 85.6 | 80.94 | 78.06 | 61.58 | 91.16 | 92.56
7 84.99 | 90.38 | 91.58 | 89.05 | 90.62 | 91.44
8 66.83 | 28.87 | 90.9 | 9458 | 27.92 | 90.32
9 84.92 | 86.23 | 91.21 | 90.97 | 93.65 | 91.09
10 85.3 | 64.31 | 90.2 81.9 | 9453 | 87.1
11 38.8 | 89.61 | 89.58 | 70.22 | 90.28 | 79.36
12 86.22 | 89.58 | 81.32 | 94.17 | 66.02 | 95.7
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Table 5.5. Accuracy (%) of the h x k-FFT when h and k are

varied (k=7 - 12).

h value k value
7 8 9 10 11 12
1 85.6 | 85.48 | 33.33 | 86.56 | 85.76 | 64.41
2 88.6 | 71.09 | 8484 | 42.66 | 88.84 | 86.72
3 89.25 | 91.12 | 89.66 | 91.3 | 88.47 | 92.12
4 90.44 | 90.31 | 94.46 | 47.16 | 65.16 | 78.95
5 89.09 | 84.65 | 91.01 | 88.53 | 93.38 | 45.22
6 9257 | 93.65 | 95.16 | 65.8 | 46.76 | 90.68
7 91.54 | 92.01 | 91.83 | 90.96 | 66.28 | 95.22
8 9219 | 67.82 | 9496 | 70.41 | 926 | 88.75
9 90.88 | 90.48 | 93.47 | 67.29 | 69.6 | 75.45
10 89.69 | 89.17 | 68,5 | 91.45 | 9349 | 85.31
11 83.22 | 91.38 | 91.98 | 93.02 | 90.63 | 90.39
12 88.46 | 90.77 | 89.85 | 72.49 | 94.92 | 89.08
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The optimization of k value for the first FFT feature,
the modified k-FFTPX, is performed by Algorithm 8. Figure 5.4
shows the result of finding the optimized k value when k is
varied from 1 to 30. The accuracy of this feature on S channel
reaches the peak of 88.06% when k is 19. The k value for the
second FFT feature, the half k-FFTPX, is also optimized by
Algorithm 8. Figure 5.5 shows that the proper setting of k value
for this feature is 16 which gives the accuracy of 87.20%. The
optimization of h and k values for the third FFT feature, the h x
k-FFT, is performed by Algorithm 9. Table 5.4 to 5.5 show that
when h is equal to 12 and k is equal to 6, it yields the highest
accuracy at 95.70%. This accuracy is more than the results of
the modified k-FFTPX and the half k-FFTPX. Even with a
smaller size (14 dimensions) of feature vector; h is equal to 7
and k is equal to 2, the method still provides 90.38% accuracy
(see Table 5.4 to 5.5). Consequently, the h x k-FFT outperforms
the two previous FFT features. At this level of classification
tree, the best feature for distinguishing three forms of clouds has
been identified as the h x k-FFT. The advantage of this approach
Is that users are not required to manually specify h and k values.
Our algorithm will choose the optimized values for h and k
automatically.

Table 5.6 shows the confusion matrix obtained from
Algorithm 10. Class 1, 2 and 3 are cirriform, cumuliform and
stratiform, respectively. The classification results of Class 2 and
Class 3 are close to 100%. However, there is some
misclassification of Class 1 as Class 2. This is because cirriform
often occurs with cirrocumulus which belongs to Class 2.
Nevertheless, the accuracy of Class 1 classification is still above
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90%. The average accuracy of classification at this level is

95.70%.

Table 5.6. Confusion matrix classifying three forms of clouds

using 12 x 6-FFT.

True class Classified as
1 2 3
1 90.95 8.64 0.41
2 1.20 98.80 0
3 1.06 1.59 97.35

5.3.3 Level 3 - Shapes of Cumuliform Clouds

Considering lumpy appearances of cumuliform clouds,
they can be rounded, patchy, puffy, and mushroom-like. The
aim of this level is to classify four classes of cumuliform clouds
which are high cumuliform, stratocumulus, cumulus, and
cumulonimbus. Three features based on Fourier transform are
tested in the same way as in Section 5.2.1. However, the best
performed feature is also appended to a suitable minimal set of
texture features computed by Algorithm 7.
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Table 5.7. Accuracy (%) of the h x k-FFT when h and k are
varied (k=1 -6).

h value k value

1 2 3 4 5 6
1 4406 | 57.31 | 585 | 63.15 | 304 | 65.98
2 4483 | 57.47 | 62.63 | 63.89 | 66.96 | 67.08
3 56.19 | 69.61 | 74.75 | 76.63 | 78.41 | 78.89
4 48.8 | 7195 | 59.46 | 75.73 | 78.64 | 71.98
5 57.27 | 73.28 | 78.61 | 78.18 | 25.57 | 29.04
6 64.69 | 75.37 | 79.75 | 63.74 | 39.05 | 68.3
7 68.98 | 54.44 | 77.81 | 75.84 | 79.96 | 71.57
8 70.7 | 7559 | 61.01 | 35.2 | 78.13 | 84.15
9 69.14 | 76.15 | 77.71 | 80.55 | 81.1 | 81.54
10 71.1 77.91 | 46.05 | 77.46 | 24.81 87
11 60.48 | 775 | 78.65 | 79.53 | 81.85 | 85.38
12 70.23 | 53.86 | 82.71 | 84.07 | 78.34 | 84.04
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Table 5.8. Accuracy (%) of the h x k-FFT when h and k are

varied (k=7 - 12).

h value k value
7 8 9 10 11 12
1 67.57 | 69.55 | 69.36 | 62.09 | 56.83 | 62.1
2 57.7 | 68.15 | 69.08 69 70.18 | 70.07
3 77.04 | 78.06 | 82.78 | 47.93 | 834 | 78.44
4 71.68 | 53.41 | 63.72 | 25.95 | 77.11 | 79.95
5 78.91 | 63.24 | 80.99 | 62.15 | 80.22 | 84.33
6 52.87 | 76.14 | 83.14 | 72.48 | 81.09 | 87.53
7 66.54 | 80.23 | 80.76 | 80.52 | 84.97 | 51.77
8 82.07 | 82.51 | 82.28 | 88.31 | 84.23 | 84.09
9 84.19 | 82.83 | 53.11 89 87.45 | 85.16
10 79.41 77.2 85.07 | 85.24 | 88.41 | 84.21
11 81.97 | 83.27 | 85.05 | 88.17 | 86.61 | 84.96
12 7149 | 84.42 | 88.89 | 88.73 | 85.95 | 87.45
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Figure 5.6 shows the result of finding the suitable k
value for the modified k-FFTPX using Algorithm 8. The best
accuracy is at 76.95% for k equal to 16. The result of finding the
suitable k value for the half k-FFTPX is shown in Figure 5.7.
The best accuracy here is slightly decreased to 74.55% for k
equal to 26. Table 5.7 to 5.8 show the result of finding the
suitable h and k values for the h x k-FFT using Algorithm 9.
When h is equal to 9 and k is equal to 10, the feature yields the
highest accuracy at 89% which is about 12 — 14% higher than
the two previous FFT features. Thus, at this level of
classification tree, the 9 x 10-FFT is served as the Dbest
performed FFT feature.

Table 5.9. Accuracy (%) in selection of suitable texture features
for classifying cumuliform clouds.

Features Iteration

1 2
ME (R) 57.35 91.79
ME (G) 37.45 91.04
ME (B) 28.20 90.82
D (R-G) 54.45 91.42
D (R-B) 65.98 92.84
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Features Iteration

1 2
D (G-B) 73.98 96.29
U 82.70 92.96
CON 42.73 94.16
HOM 82.63 94.48
EN 81.38 92.42
ENT (R) 25.19 91.52
ENT (G) 83.30 93.90
ENT (B) 86.75 91.97
ENT (S) 88.88 95.53

EE 93.24 -
SE 91.57 93.75
SC 28.55 96.21
EG 25.73 92.10
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The 18 texture features and the 9 x 10-FFT are passed
to Algorithm 7 for the additional process of selecting a minimal
set of texture features. Table 5.9 shows the two-iteration results
where the selected texture features are EE and D (G - B),
respectively. By concatenating the two suitable texture features
with the 9 x 10-FFT, we obtain the confusion matrix as shown

in Table 5.10.

Table 5. 10. Confusion matrix classifying four cumuliform

clouds.
True class Classified as
1 2 3 4
1 97.32 1.19 1.49 0
2 2.59 95.69 1.29 0.43
3 0 0 99.36 0.64
4 0 3.20 4 92.80

Class 1, 2, 3 and 4 are high cumuliform, stratocumulus,
cumulus, and cumulonimbus, respectively. The classification
results of Class 1 and Class 2 are well above 95%. The accuracy
of Class 3 classification is almost 100%. However, there are
slight misclassifications of Class 4 as Class 2 and Class 4 as
Class 3. This is because when cloudlets are very close together,
stratocumulus appears similar to cumulonimbus. Likewise,
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when cumulus is expanded high into the sky, it appears similar
to cumulonimbus. Nevertheless, the average accuracy of
classification at this level is still high at 96.29%.

5.3.4 All level - A Complete Classification Tree

In this experiment, all ANN models from Section 5.3.1
to 5.3.3 are combined for hierarchy classification as per the
proposed tree in Figure 5.3.

Table 5. 11. Confusion matrix classifying seven cloud types.

True Classified as
class
1 2 3 4 5 6 7

1 97.49 0 0 0 2.06 | 0.45 0
2 0.68 | 98.18 | 0.63 | 0.24 | 0.27 0 0
3 0 0.73 | 98.06 | 0.86 | 0.34 0 0
4 0.74 | 0.23 | 0.68 | 98.10 | 0.26 0 0
5 2.32 0 0.16 | 0.96 | 96.40 | 98.31 0
6 1.11 0 0 0 0.58 | 98.31 0
7 0 0 0 0 0 0 100
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When Algorithm 10 is executed, the confusion matrix is
obtained as shown in Table 5.11. Class 1 to Class 7 are
cirriform,  high  cumuliform,  stratocumulus,  cumulus,
cumulonimbus, stratiform, and clear sky, respectively. The
classification results of seven classes are all above 96%. Five of
the seven classes have the accuracy higher than 98%. The
accuracy of clear sky classification reaches 100%. The overall
accuracy of classification is 98.08%.

5.4 Running Time Analysis

We analyze the performance of the five main
algorithms by considering their running times. The results are
shown in Table 5.12.

Table 5.12. The approximate running times of the five main
algorithms.

Algorithms Settings Number Approx.
of images | running time

The modified k- k=10 31.8 ms
FFTPX
k=15 1 31.9 ms
k=20 32.5ms
The half k-FFTPX k=10 30.2 ms
1

k=15 30.6 ms
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Algorithms Settings Number Approx.
of images | running time
k=20 30.7 ms
The h x k-FFT h=5, k=4 32.8 ms
h=12, k=6 1 33.2ms
h=9, k=10 33.4ms
Building ANN Finding
models suitable 1660 20 d
features and ’ ays
training
Training 23.4 min
Cloud LOOCV 1,660 1.6 hr
Classification Tree
Algorithm (CCTA) | Test 1 level 701.5 ms
Test 2 levels 1 759.5 ms
Test 3 levels 817.1 ms

The running times of three new FFT features are rather
similar. The running time of the modified k-FFTPX is around 31
ms which is slightly increased when the k value is raised.
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However, this running time is clearly less than the running time
of the k-FFTPX around 20 milliseconds (see Table 4.12). The
running time of the half k-FFTPX is slightly decreased
compared to the modified k-FFTPX while the running time of
the h x k-FFT is around 33 ms which is certainly faster than the
original k-FFTPX. Although the building of ANN models by
finding suitable features and training takes a long time (around
20 days), the process is only performed once. The running time
of testing CCTA when considering no more than two levels is
less than the running time of testing cloud classification
algorithm in Chapter 4. While testing CCTA for three levels is
slightly slower than the cloud classification algorithm around 3
milliseconds (see Table 4.12). Note that, both of the building
ANN models and the CCTA use the same settings as Section
53.1-533

5.5 Chapter Summary

To achieve high accuracy of cloud classification, we
designed hierarchical classification (tree structure) based on
forms and shapes of clouds. The design was composed of three
levels of tree, with the aim to classify seven sky conditions.
Three new FFT features were proposed to use in the
classification process, namely, the modified k-FFTPX, the half
k-FFTPX, and the h x k-FFT. Three ANN classifiers were
trained separately on each level of the tree. Unlike other
previous works, we used ANN to classify up to four classes
while others used SVM to classify only two classes. The
classification result of Level 1 yields the accuracy of 100%
using texture features. The accuracy of classification for Level 2
IS 95.70% based on a selection of FFT features. The
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classification result of Level 3 is 96.29% using texture features
and the best performed FFT feature. Overall, a complete
classification tree provides a high accuracy of 98.08%. This is
because the arrangement of classification tree helps reduce the
number of competitions among the classes. The number of
features used in the algorithms was also selected at minimal
sufficient but still gave satisfied results at less computational
time. Consider the past papers listed in Table 1.3, although some
of the accuracies are higher than 90%, the number of classified
cloud classes are limited to fewer classes. In this chapter, the
result is better than our two previous experiments (Chapter 3
and 4). Thus, it confirms that the hierarchical classification
performs better than a single classification.

Our method accepts any input images from the ten
standard cloud types shown in Figure 2.1. Although, some cloud
types are rare naturally-occurring types especially for Phuket,
the method can be extended further to classify eleven cloud
classes (ten standard cloud types and one clear sky) if
application requires. In addition, the advantage of classification
tree over other methods is that the classification result at each
level of the tree is known and available in hierarchical structure;
therefore, the classification tree can be easily reconfigured or
rearranged to suit user needs. For example, the tree can be used
to classify only cloud or no-cloud or even lesser number of
cloud types. With this benefit, our method can provide a wider
range of applications. However, the drawback of our method is
that the errors from the first level of the tree may be carried on
to the second level and so on. Hence, in the design of the tree we
must place low-misclassified classes before the high-
misclassified classes. Furthermore, our method cannot deal with
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simultaneous appearances of more than one cloud class on the
same image. We suggest solving this problem using modified
sub-images or considering clouds as objects.

In conclusion, our three main contributions are the new
cloud classification method called CCTA, the three novel FFT
features, and the presentation of our eight algorithms to readers
who prefer the implementation of the method. Our algorithms
can also be adapted to suit user requirements. Users can define
their own accuracy to gain higher speed in calculation. In the
next chapter, we will fine-tune our algorithms to fit Phuket sky
conditions and to implement a low-cost cloud monitoring station
for cloud monitoring on mobile devices.
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CHAPTER 6

SYSTEM INTEGRATION TEST AND HARDWARE
INSTALLATION

In this chapter, we describe each component of our
hardware implementation. A cloud monitoring station equipped
with a fisheye lens camera is built. It retrieves cloud information
in conjunction with other meteorological sensors. The test using
images captured from our cloud monitoring station shows that
the classification accuracy in practice is as high as 99.82%. The
final cloud monitoring system can report live cloud conditions
and display them on a mobile application.

6.1 Hardware Implementation

Our hardware is implemented according to the design
shown in Figure 1.1. The hardware is composed of four
compartments. Each compartment is equipped with a different
device. To withstand sun and rain, a plastic material is used to
construct the body part using a 3D printer. We describe different
compartment of a cloud monitoring station in more details as
follows.

Figure 6.1 shows different views of mounting a cooling
device (an exhaustive fan) compartment. Inside of this
component, there is a large ventilation hole in the middle (See
Figure 6.1 (a)). In the bottom, there are four small outer holes
for mounting with the holding plate while the top of this
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compartment has a twist connector for connecting with a control

device compartment.

(a) Top view

(b) Bottom view

(c) Side view

(d) Isometric view

Figure 6.1. The mounting of a cooling device compartment.
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(a) Top view (b) Bottom view

(c) Side view (d) Isometric view

Figure 6.2. The mounting of a control device compartment.

Figure 6.2 shows different views of mounting a control
device (Raspberry Pi) compartment. Inside of this component,
there are a Raspberry Pi board and a DHT22 sensor. There are
two holes at the bottom for air passage. Two twist connectors
are at the top and bottom for connecting with the previous and
the next compartment.
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(a) Top view

(b) Bottom view

(c) Side view

(d) Isometric view

Figure 6.3. The mounting of a digital camera compartment.

Figure 6.3 shows different views of mounting a digital
camera compartment. There is a square hole for air passage
coming from the first compartment and there is an extended
column to hold a digital camera in the center. A twist connecter
Is on the side and will be joined with a glass dome.
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(a) Top view (b) Bottom view

(c) Side view (d) Isometric view

Figure 6.4. The mounting of a glass dome compartment.

Figure 6.4 shows different views of mounting a glass
dome compartment. This compartment has a glass dome on the
top. At the bottom, there is a twist connector to connect a glass
dome compartment with a digital camera compartment. Finally,
all four compartments are connected as shown in Figure 1.1.
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Wind Sensor

Solar Cell

Temperature Sensor

Rain Sensor

Data Logger

Figure 6.5. Weather station.

Figure 6.5 shows the Oregon scientific professional
WMR200A weather station which is composed of several
meteorological sensors such as a temperature sensor, a humidity
sensor, a wind sensor, a rain gauge, and a solar panel. A device
can capture over ten weather measurements such as indoor /
outdoor temperature and humidity, wind speed and direction,
wind chill, dew point, heat index, barometric pressure and
rainfall data. All of these data are sent to the central data logger.
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6.2 System Integration

/ Sever

Weather station

Database \ D

i...

Cloud station Mobile application

Figure 6.6. Overview of a local cloud monitoring system.

Figure 6.6 shows an overview of a local cloud
monitoring system. Two data sources are used to provide the
information for our database. The first source is the whole sky
images captured from the cloud station every 5 minutes. The
second source comes from meteorological sensors such as a
temperature and humidity sensor, a wind sensor, a rain gauge
and so on. These meteorological data are sent every 5 minutes to
the data logger before forwarding to the server and kept in the
database. Mobile application is developed to retrieve the images
and the meteorological data for online classification purposes.
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Mobile users can also view live cloud images and live
meteorological data from our station.

The cost of our cloud station is around 142 USD while
the cost of WMR200A weather station is around 350 USD. In
total, our estimated budget for building a complete system is
492 USD which is cheaper than using TSI-880 (around 30,000-
35,000 USD) and WSC (about 2,500 USD) [62].

6.3 A Test on Local Cloud Classification

In this experiment, we use 1,045 whole sky images
from our cloud station. The sample images are shown in Figure
6.7. Due to there are unwanted parts of buildings and trees on
the sides, the segmentation process is performed before the
feature extraction process. A binary mask technique is used for
eliminating the unwanted parts (see Figure 6.8). All algorithms
in Chapter 5 with the same settings of ANN are used again to
classify the seven cloud types. In the feature extraction process,
ANN model for Level 1 and Level 2 also use the same features
as in Chapter 5. There are five texture textures for classifying
cloud and no-cloud and 12 x 6-FFT for classifying three forms
of clouds. However, in ANN model for Level 3, two texture
features (SE and EE) with 12 x 6-FFT are used in the training of
the model.
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Cirriform

Stratocumulus Cumulus

Cumulonimbus Stratiform

Clear sky

Figure 6.7. Seven cloud types from our cloud monitoring
station.
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(a) A binary mask image
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(a) A result of segmentation

Figure 6.8. Segmentation of a typical whole sky image.

Table 6.1. Confusion matrix for classifying the local whole sky
images into seven cloud classes.

True Classified as
class
1 2 3 4 5 6 7
1 99.92 0 0 0 0.04 0 0.04

2 0.13 | 99.38 0

0 0.25 | 0.25 0

3 0.45 0 99.55 0 0 0 0
4 0 0 0 100 0 0 0
S 0 0 0 0 100 0 0
6 0 0 0 0 0.06 | 99.79 | 0.15

0 0 0 100
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Table 6.1 shows the confusion matrix for classifying
our whole sky images into seven cloud classes. Class 1 to Class
7 are cirriform, high cumuliform, stratocumulus, cumulus,
cumulonimbus, stratiform, and clear sky, respectively. The
correctly classified instances of all class are now higher than
99.30%. Among these results, three classes (cumulus,
cumulonimbus, and clear sky) have the classification accuracy
as high as 100%. The average accuracy of classification is
99.80% which is higher than the previous results presented in
Chapter 5. This is because when the camera is installed at a
fixed position, the images obtained from the cloud station are
less affected by viewpoint and zooming.

6.4 Integrating with Meteorological Data

It is interesting to see the performance of our cloud
monitoring system if we combine cloud image information with
meteorological data. Therefore, in this final experiment, we will
integrate sixteen meteorological data obtained from the
WMR200A weather station. These data are local pressure, sea
level pressure, pressure trend, weather status, rainfall rate,
current-hour rainfall, last-24-hour rainfall, temperature,
temperature trend, humidity, humidity trend, comfort zone, dew
point, heat index, gust wind, and the average wind. Using
Algorithm 7, we select only a suitable set of meteorological data
as a new feature vector and we concatenate it with the 12 x 6-
FFT. This new feature is introduced in ANN model for Level 3.
In ANN model for Level 1 and Level 2, the settings are the same
as before.
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Table 6.2 shows the confusion matrix after a
temperature data is chosen to concatenate with 12 x 6-FFT in
the third level of the tree. There is a slight misclassification of
Class 2. However, the overall accuracy of this experiment is
99.82%. This result is marginally better than the previous
experiment. Furthermore, the computation time is slightly
reduced because texture features was no longer needed in the
third level of the classification tree.

Table 6.2. Confusion matrix after adding meteorological data.

True Classified as

class 1 2 3 4 5 6 7
1 100 0 0 0 0 0 0
2 0 98.75 0 0 0 1.25 0
3 0 0 100 0 0 0 0
4 0 0 0 100 0 0 0
5 0 0 0 0 100 0 0
6 0 0 0 0 0 100 0
7 0 0 0 0 0 0 100

6.5 Mobile Application

The approach explained in Section 6.4 is used to
develop a mobile application for online cloud classification.
Figure 6.9 shows the first page of our mobile application. The
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main menu is on the top right corner of the page. The important
menus are such as live cloud image, live meteorological data,
online classification and manual classification. The basic
descriptions of cloud types and their appearances are available
in the about-page for users to study before using the application
(see Figure 6.10). Figure 6.11 shows the example of live cloud
images from our cloud station. The cloud image is automatically
updated every 5 minutes. The classification result and related
weather conditions (see Table 6.3) of each cloud image is
available along with the image. It is shown under of the cloud
image.

= Cloud Classification n

Cloud
Classification

Find Out More

(a) Main page h (b) Main menu

Figure 6.9. The first page of our mobile application.
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Automatic Cloud Type
Classification

Seven sky conditions are considered, namely
cirriform clouds, high cumuliform clouds, cumulus
clouds, stratocumulus clouds, cumulonimbus
clouds, stratiform clouds, and clear sky.

Cirrus (Ci)

Figure 6.10. The about-page for basic cloud-type descriptions.

Live Clouds

2016-06-30 17:00:20 @PSU Phuket

Classification Result

Stratiform Clouds

Weather Condition Outlook

Rain or Drizzle

Figure 6.11. Live cloud image from our cloud station.
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Table 6.3. The relationship between each cloud type and
weather conditions.

Cloud types Weather conditions

Cirriform Fair weather, changing in the weather

High cumuliform | Fair weather, indicator of bad weather

Stratocumulus Overcast or clearing

Cumulus Fair weather, sunny day

Cumulonimbus Thunderstorms

Stratiform Rain or drizzle

Clear sky No moisture in the air

Figure 6.12 shows the menu of live meteorological data
from the weather station. These data are, local pressure (mB),
rainfall rate (in/hr), temperature (°C), humidity (%), dew point
(°C), gust wind (m/s), and so on. The meteorological data is
automatically updated every 5 minutes. The information button
is placed next to the time stamp. It explains the meanings of
each meteorological data as shown in Figure 6.13.
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Live Meteorological Data

2016-07-14 13:53:18 o

Local Pressure (mB) 1005
Sea Level Pressure (mB)
Pressure Trend
Weather Status
Rain Rate (in/hr)
Current hour rainfall (inch)

Last 24 hour rainfall (inch)

@

Temperature Trend

(a) Live data

Last 24 hour rainfall (inch)

Temperature Trend

Temperature (C)

Humidity (%)

[=2]
-

Humidity Trend

Comfort Zone

Dew Point (C)

Heat Index

g

Gust Wind (m/s)

o
v

c w N -
- o

Average Wind (m/s)

(b) Live data (cont.)

Figure 6.12. Live meteorological data menu.
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The Description of
Meteorological Data

Local Pressure (mB)

The pressure that is observed at a specific
elevation and is the true barometric pressure of
a location. It is the pressure exerted by the
atmosphere at a point as a result of gravity
acting upon the "column" of air that lies directly
above the point. Consequently, higher
elevations above sea level experience lower
pressure since there is less atmosphere on
which gravity can act. Put another way, the
weight of the atmosphere decreases as one
increases in elevation.

Sea Level Pressure (mB)

The sea level pressure is the atmospheric
pressure at sea level at a given location. When
observed at a reporting station that is not at sea
level (nearly all stations), it is a correction of the
station pressure to sea level. This correction
takes into account the standard variation of
pressure with height and the influence of
temperature variations with height on the

Figure 6.13. The description of meteorological data.
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Online Classification

Choose File | 10260009_...118_n.jpg

Classification Result

Cirriform Clouds

Figure 6.14. Online classification menu.

Figure 6.14 shows the menu for online classification. In
this page, users can submit a cloud image from anywhere, then
click upload file. Our system will classify the cloud image into
one of the seven cloud types. The classification result is shown
on the bottom of the page.
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Manual Classification

(a) Login menu

Manual Classification

(b) Manual classification

Figure 6.15. Manual classification menu.

Figure 6.15 shows the menu for manual classification.
In this page, users can manually view the cloud picture and
choose one preferred type from the list, then send the answer to
our system for verifying the result. These results reflect different
perspectives of how people view the clouds; therefore, the
results will be collected in the database for improving our
classification process in the future.
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6.6 Benefits of Weather Station

The meteorological data from the weather station is
used to concatenate with cloud image information as a feature
vector for cloud classification. The accuracy of classification is
slightly improved from using cloud images alone. Moreover, the
computation time is reduced by replacing meteorological data
with texture features which is less cumbersome when
developing mobile application. However, our current algorithms
are still complicated and cannot make use of all useful
meteorological data. In the future, the system may be simplified
by using key meteorological data from the weather station to
partially classify some easy cloud types first before sending to
the normal cloud classification process.

6.7 Chapter Summary

A cloud station was designed and implemented. A
weather station provided additional useful meteorological
information. Together we have a low-cost local cloud
monitoring system installed at Prince of Songkla University,
Phuket campus. The performance test of local cloud
classification using our whole sky images yielded 99.80%
accuracy which is higher than the results in Chapter 5. Then, we
modified a feature vector in Level 3 of ANN model to include
meteorological data. The last result gave 99.82% accuracy
which is slightly higher. This approach was then used to develop
online classification for mobile users. Live cloud image and live
meteorological data can be viewed through mobile application
from anywhere in the world. In the future, the past cloud images
and the historical meteorological data can be further analyzed
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for forecasting clouds and weather conditions. Moreover, if our
cloud monitoring system is installed in many areas, it may be

useful for improving results of the weather forecast in the wider
area.
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CHAPTER 7
CONCLUSIONS

In this chapter, we summarize and discuss all
developments of cloud classification system. Then, we conclude
all contributions and open problems.

7.1 Discussion

We will discuss whether this research has met all of the
objectives in Chapter 1. Referring to the first objective, it is to
select a suitable classifier from the two commonly used
classifiers, namely, k-NN and ANN. Our result showed that the
well-performed classifier is ANN. Thus, we selected ANN as
the preferred classifier in our system design and implementation.

The second objective is to select a suitable feature
extraction technique that is effective for cloud type
classification. Our result showed the most effective feature
extraction technique is our proposed feature based on FFT called
the k-FFTPX. However, the textual contents of clouds were also
shown as useful information as the shapes of clouds. Hence, we
recommended keeping texture features (textual information)
while applying the new FFT feature (shape information).

The third objective is to propose novel features and
algorithms that are different from the previous works. We
proposed four new features, namely, the k-FFTPX, the modified
k-FFTPX, the half k-FFTPX, and the h x k-FFT. Our new
algorithm was based on a hierarchy classification tree and was
proven to gain higher accuracy in the classification.
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Table 7.1. Summary of cloud classification methods and their
accuracies from all experiments.

No. Proposed Method Accuracy (%)
1 | The 18 texture features with k-NN 72.99
5 | The 18 texture features with ANN 86.93

The most effective 7 texture features 77 44
3 | with ANN
4 | Texture features 80.76
5 | Texture features with 2D-moments 82.66
6 | Texture features with Abs-FFT 85.44
7 | Texture features with Log-FFT 86.11
g | Texture features with k-FFTPX 90.40
g | Classification of cloud and no-cloud 100
10 | Classification of three forms of cloud 95.70

Classification of fours shapes of 96.29

11 | cumuliform clouds

12 | A hierarchical classification tree 98.08
A hierarchical classification tree using 99 80
13 | whole sky images
A hierarchical classification tree using
14 | whole sky images together with 99.82

meteorological data
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The fourth objective is to propose a complete cloud
classification system for classifying seven cloud types using
ground-based images which has accuracy higher than 95%.
Table 7.1 summarizes cloud classification methods and their
accuracies from all experiments performed in this thesis. The
highest accuracy for classifying seven cloud types is 99.82%
which is a result of a hierarchical classification tree technique
integrating with the meteorological data from our cloud
monitoring station. We also obtained a by-product from the tree
for classifying two cloud types, cloud and no-cloud, the
performance here is as high as 100%.

The final objective is to implement hardware system
for capturing cloud images and to build a low-cost local cloud
monitoring station. We implemented the system. The low-cost
local cloud monitoring station was built and installed at Prince
of Songkla University, Phuket Campus. The mobile application
was developed for online classification. It is active and
operational. Users can monitor live images and live
meteorological data from our station.

Our research has opened up new directions for those
interested in the cloud classification. There are many areas
where improvements are needed; for example, how to classify
many types of clouds that appear on the same image, how to
design the algorithm that recognizes clouds in the night time,
how to enhance the accuracy of the system even closer to 100%.
Other feature extraction techniques such as point detection,
object detection, shape detection, gradient operators, and fractals
may be worth exploring because shapes of clouds are useful
information. Other classifiers such as SVM perhaps should be
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looked at and compared. Finally, more cloud types in nature
may be considered, for example, earthquake clouds.

4

’
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(a) Earthquake cloud from satellite images [63]

(b) Earthquake cloud from a digital camera [29]

Figure 7.1. Earthquake clouds.
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Figure 7.1 shows some earthquake clouds that are
caused by thermal effects intensifying from the ground. These
clouds appeared a few days before the earthquake. In Figure 7.1
(a), the earthquake epicenter is shown by the red circle while the
red line shows cloud anomalies which occurred a day before the
Virginia earthquake in 2011 [63]. Figure 7.2 (b) shows the
earthquake clouds which appeared a day before the earthquake
in Northern California in 1994 [29]. However, the challenge
ahead requires researchers to investigate more closely on the
true unknown origin of earthquake clouds and the feasibility
study of them for earthquake prediction.

7.2 Research Contribution

The research has proposed different methods of feature
extraction techniques and several classification algorithms to
improve accuracy of cloud type classification. All contributions
in different aspects are summarized below.

7.2.1 Feature Extraction

Five different combinations of feature extraction
techniques were presented and the accuracies are 80.76%,
82.66%, 85.44%, 86.11%, and 90.40%, respectively. We
showed that the most effective feature extraction technique is
based on our proposed FFT features. We, therefore, proposed
more features based on FFT. There are in total of four new FFT
features in the thesis. However, the main contribution is the
half-FFT features which refer to the half k-FFTPX and the h x k-
FFT.
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7.2.1 Classifier

The parameter settings of k-NN and ANN were
recommended. The performances of the two classifiers were
compared. We also discussed advantages and limitations of both
classifiers. The experiment revealed that the well-performed
classifier is ANN.

7.2.2 Algorithms

Two algorithms were presented in Chapter 4. Eight
algorithms were presented in Chapter 5. There are in total of ten
proposed algorithms in the thesis.

7.2.3 Performances

The final classification accuracy is 99.82%. This result
Is higher than the previous studies on cloud classification using
digital camera and ANN method. The number of cloud classes
being classified in those studies was also less than in this
research.

7.2.4 Textual Contents

The textual contents of clouds were also shown as
useful information as the shapes of clouds. Hence, we
recommended using texture features together with other
features. For texture features, we thoroughly tested 18 texture
features. The most effective texture features were also
recommended for general use in a more simple system of cloud
classification.
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7.2.5 Hierarchical Classification

The proposed Cloud Classification Tree Algorithm
(CCTA) wused the new technique called hierarchical
classification which is designed to reduce the number of
competitions among the cloud classes. The result has confirmed
that the hierarchical classification performs better than a single
classification.

7.2.6  Flexibility

According to Table 7.1, users have flexibility to choose
any of the 12 proposed methods to suit their preferred accuracy.
The results suggest a variety of practical applications from the
simple to the sophisticated ones. In our classification algorithms,
users also have freedom to reduce their expected accuracy to
gain higher speed in calculation.

7.2.7 By-Product

By-product from the hierarchical classification tree is
that the tree can also be used to classify lesser number of cloud
types. Classification of two cloud classes; cloud and no-cloud;
gave the accuracy as high as 100%. Classification of three cloud
classes; cirriform, cumuliform and stratiform; yielded the
accuracy of 95.70%. Classification of four cloud classes; high
cumuliform, stratocumulus, cumulus, and cumulonimbus;
returned the accuracy of 96.29%.

7.2.8 Real Life Application

The low-cost local cloud monitoring station was built.
It is now working in conjunction with other inexpensive
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meteorological sensors to report weather conditions and display
them through a mobile application.

7.3 Open Problems

There are still fruitful opportunities to advance our field
of research in automatic cloud classification using ground-based
images. We suggest open problems as follows.

1) To classify more cloud classes such as eleven
sky conditions.

2) To design algorithms for classifying clouds in
the night time using images from infrared camera.

3) To apply less dimensional feature vectors but
still gain high accuracy using more efficient features or
dimension reduction techniques such as principal component
analysis (PCA), linear discriminant analysis (LDA), or
independent component analysis (ICA).

4) To consider other features extraction
techniques such as point detection, object detection, shape
detection, gradient operators, and fractals

5) To consider other new classifiers such as
SVM, and MSVM. We believe these classifiers may prudently
avoid an overfitting problem that often occurs with ANN.

6) To classify more than one type of clouds that
appeared on the same image by looking at sub-images or
considering clouds as objects.
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7) To design less complicated and low
computation time algorithm while maintaining high accuracy by
exploiting meteorological data more cleverly.

8) To develop a system for weather prediction or
other applications related with clouds such as earthquake clouds.
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a. Class 1: Cirriform Clouds
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b. Class 2: High Cumuliform Clouds
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c. Class 3: Stratocumulus Clouds
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d. Class 4: Cumulus Clouds




158




159

e. Class 5: Cumulonimbus Clouds
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f. Class 6: Stratifom Clouds
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g. Class 7: Clear Sky
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Abstract. The classification of ground-based cloud images has received more attention recently.
The result of this work applies to the analysis of climate change; a correct classification is,
therefore, important. In this paper, we used 18 texture features to distinguish 7 sky conditions. The
important parameters of two classifiers are fine-tuned in the experiment, namely, k-nearest neighbor
(k-NN) and artificial neural network (ANN). The performances of the two classifications were
compared. Advantages and limitations of both classifiers were discussed. Our result revealed that
the &~-NN model performed at 72.99% accuracy while the ANN model has higher performance at
86.93% accuracy. We showed that our result is better than previous studies. Finally, seven most
effective texture features are recommended to be used in the field of cloud type classification.

Introduction

Clouds are part of a water cycle that controls the temperature of the earth by reflecting the radiation
of the sun and from the ground. Clouds have different shapes and colors in different weather
conditions. In Thailand, floodings and storms in recent years have caused damages that affected the
population of 12.8 million which 813 people are dead and the damage value is as high as 1.44
trillion baht [1]. Thus, cloud classification is important because it is related to meteorology in the
analysis of weather condition and prediction. Applications for cloud type classification include
earthquake prediction [2], air traffic control [3], radiative forcing [4] and global warming [5].

In pattern recognition, cloud classification is difficult than general object classification because
cloud has unsettled shape and changes its shape over time. Satellite images are used in cloud
classification since 1970s [6]. However, they provide limited details of clouds in the specific area
[7, 8, 9] and data access is sometimes restricted. A few years ago, ground-based images have been
increasingly used in cloud classification. Many ground-based imagers such as the total sky imager
(TSI), the whole sky camera (WSC), and the all sky imager (ASI) are widely used [10, 11]. Ground-
based images have the advantage over satellite images in terms of lower cost, and more localized
information. Souza-Echeret al. [12] proposed the supervised parallelepiped method for classifying
clear sky images with 94% accuracy using a digital camera. Singh and Glennen [3] used co-
occurrence features for classifying five sky conditions with 59.5% accuracy using k-nearest
neighbor classifier and with 64% accuracy using neural network classifier.

Texture features are used to describe characteristics of cloud. However, the accuracy depends on
how careful we choose features to use in feature extraction methods. In this paper, we develop an
automatic cloud classification using ground-based sky images from a digital camera. We combine
several texture features and we select the 18 suitable ones for classifying images into seven sky
conditions namely, cirrus, cirro and altocumulus, stratocumulus, cumulus, cumulonimbus, stratus,
and clear sky (see Fig. 1). In classification part, we use two classifiers namely, k-nearest neighbor
and artificial neural network. Then, we compare the performance of both classifiers in terms of
percentage of accuracy.

We organize the paper as follows. First, we introduce the technical background for cloud
classification. Then, the experimental results are presented. Lastly, we conclude our contribution
and suggest the future work.

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP,
www.ttp.net. (ID: 110.77.149.168-25/04/14,13:10:31)
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27 P

Cirrocumulus Stratocumulus Cumulus

Cumulonimbus Stratus  Clear Sky

Figure 1. Ground-Based Cloud Images of Seven Sky Conditions.

Technical Background

We do the feature extraction, before we apply a classifier to compute a class type based on the given
features. Features are extracted from grayscale image by splitting channels of the image into Red
(R), Green (G), or Blue (B) channel. There are several feature extraction methods. We use texture
features because they are commonly used in cloud classification [3, 7, 8].

Texture Features. Texture features describe texture of image region. This paper uses two
sources of texture features in the calculation. The first type of texture features is extracted from
image directly. These are mean of red channel (ME), standard deviation of blue channel (SD) and
difference of mean between each channel (Dj). All equations are defined below [7], [8]. The
annotation N is a number of pixels in image, x; is a value of pixel i-th, and p(x,) is a probability of x;.

Texture Feature 1: ME = Z: x.p(x,) (1
Texture Feature 2: Sp= (Z:(% _ME)ZP(XI)) 12 @)
Texture Feature 3 - 5: D, =ME,—ME, for i,j € {R, G, B} wherei#j 3)

The second type of texture features is computed from Grey Level Co-occurrence Matrix (GLCM)
which is a square matrix with a number of columns equal a number of grey levels. Each element in
the matrix is the frequency that two pixels occur (PA (a,b)) [7]. We use 11 out of 14 Haralick texture
features [13] excluding the following 3 features; correlation f3, information measures of correlation
fi3, and maximal correlation coefficient fi4. We compute Texture Feature 6 — 16 from the 11
features on the red channel and also compute on the blue channel of contrast f; and homogeneity f5
[13] become Texture Feature 17 — 18.

Two commonly used classifiers [3], [7], pattern recognition tools for distinguishes classes, for
cloud classification are k-nearest neighbor and artificial neural network.

k-Nearest Neighbor. The k-nearest neighbor (A-NN) is a popular technique in cloud
classification because of low computation and its ability to solve complex problem. Most of all, it is
simple to implement [3], [7]. A brief detail of A~-NN algorithm is that it works by considering &
neighbors of a sample before classifying that sample as a class by a majority vote of its neighbors;
that is the sample is assigned to the class most frequent among its k nearest neighbors. In theory, the
larger k is more suitable for infinite number of samples. However, this is impossible in practice
[14]. Hence, we are required to choose the optimal & within the available samples.

Artificial Neural Network. When a problem is complex, artificial neural network (ANN) is
often used [3]. ANN is composed of three main layers namely, input layer, hidden layer, and output
layer. It can be used to solve nonlinear problems without considering the relationship between input
and output. However, the classifier requires the tuning of multiple parameters in the model [15] for
the best performance. Therefore, to achieve high accuracy we will examine key parameters of ANN
in the experimental section. In this paper, multilayer feed forward neural network is used.
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Experimental Results

The experiment uses 696 ground-based cloud images taken from a digital camera. These images
are scaled to 320x240 pixels for all experiments. The 18 texture features explained earlier are
implemented and the two classifiers used are ANN and k-NN. First, we tuned the parameters of two
classifiers to achieve high accuracy. Then, we compared and discussed the performance of the two
classifiers. In all experiments, we fixed a learning rate of ANN to 0.01 and a momentum to 0.9 and
used the leave-one-out cross-validation (LOOCV) [15] to evaluate the results.

Selection of k£ Value for A&-NN. We decide a suitable £ as shown in Table 1. The accuracy [%]
values are the average percentages of all correctly classified instances.

Table 1. The k£ Value of ~-NN Model between 1 — 14.

k-value 1 2 3 4 5 6 7
Accuracy [%] 60.20 50.00 49.86 50.14 51.72 50.72 52.01
k-value 8 9 10 11 12 13 14

Accuracy [%] 51.29 51.72 49.86 48.42 49.71 49.86 50.00

The k values from 1 to 14 were tested with a distance measure set to the Euclidean distance. In
practice, k should not be too large as it can lead to over-smoothed boundaries [14]. According to
Table 1, when k& = 1 the accuracy is highest among others. For this problem, £ = 1 can separate
noises from a correct sample better than other k values. Therefore, the remaining of this paper will
apply k=1 as the parameter of ~-NN model.

Selection of Distance Measures for £-NN. Distance function is an important parameter of &~-NN
classifier for determining nearest neighbor of the test data. There are many distance measures for .-
NN and choosing a suitable measure is an important problem in supervised learning techniques
[16]. We used 7 distance measures as shown in Table 2.

Table 2. Accuracy When Using Seven Different Distance Measures.

Distance City . . . Min- | Standardized
Measure Block Chebychev | Correlation | Cosine | Euclidean Kowski Euclidean
Accuracy [%] | 61.06 61.49 59.34 59.91 60.20 60.20 72.99

From Table 2, each distance measure provides similar results except that Standardized Euclidean
distance has around 10% higher accuracy than others. We, therefore, resolve that Standardized
Euclidean distance measure is compatible with a form of our training data distribution.

Selection of Activation Function for ANN. ANN model has many parameters that we can vary.
The activation function of the hidden layer is examined here. Note that the activation function of the
input layer is fixed as linear to keep the same input values throughout the model. For the output
layer, we fixed as hyperbolic tangent because this function can generate binary outputs [17].

Table 3. Different Activation Functions in Hidden Layer.

Activation Function | Radial basis Tangent Linear Log-sigmoid
Accuracy [%] 80.45 82.04 77.87 80.32

From Table 3, there are 5 hidden nodes in the hidden layer. The result shows that the hyperbolic
tangent function outperforms the other 3 functions because the hyperbolic tangent can provide
binary outputs which are suitable for classification problems. However, it provides a good result if
this function is used in both hidden and output layers [17].

Selection of Number of Hidden Nodes for ANN. The number of hidden nodes in a hidden layer
is varied as 3, 5, 7, and 9. The activation function is set to hyperbolic tangent.
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Table 4. The Number of Hidden Nodes is Chosen as 3, 5, 7, and 9.

Number of Hidden Nodes 3 5 7 9
Accuracy [%] 77.44 82.04 86.93 82.90

From Table 4, the number of hidden nodes equal to 7 gives the best result. The number of hidden
nodes affects the generalization error. When there are fewer hidden nodes such as 3 hidden nodes,
this might cause underfitting and high statistical bias. In contrast, if we design our hidden layer with
many hidden nodes such as 9 hidden nodes, it might cause overfitting and high variance [18].

Comparison of £-NN and ANN. In the past experiments, it may seem that ANN classifier is
cumbersome to use than k&-NN due to the fine-tuning of various parameters. However, if we can
tune the parameters appropriately, it can lead to a more accurate classification over &-NN.

Table 5. The Accuracy Comparison of A-NN and ANN.

Classifiers k-NN ANN
Accuracy [%] 72.99 86.93
1 2 3 4 5 6 7 1 2 3 4 5 6 7

(5877 7.89 1.75 17.54 1140 0.88 175

13.98 64.52 1398 538 215 0.00 0.00

1.20 723 7590 6.02 361 6.02 0.00

17.12 090 1.80 6937 10.81 0.00 0.00

894 407 6.50 1382 65.04 163 0.00
1.1l 000 556 0.00 0.00 9222 1.11 222 0.00 111 000 I.11 9556 0.00

| 244 122 000 000 000 122 9512) 7/ 000 000 0.00 122 122 122 96.34 ]

(a) (b)
Figure 2. Confusion Matrix for the Ground-Based Cloud Image Using Two Different Classifiers
(a) k-NN Classifer (b) ANN Classifier.

79.82 439 263 1053 1.75 0.00 088
430 86.02 538 430 0.00 0.00 0.00
3.61 1446 7229 482 241 241 0.00
811 0.00 000 82.88 811 0.00 090
1.63 0.00 0.00 325 9512 0.00 0.00

~ N W A W N
~N N L B W N =

Table 5 shows that the accuracy of ANN is about 14% higher than A-NN. While the result of
Singh and Glennen is 64% accurate for a classification of five sky conditions using ANN, we
obtained 86.93% accuracy for a classification of seven sky conditions using also ANN.
Nevertheless, our k~-NN did not perform badly in the comparison with Singh and Glennen. For the .-
NN, we received 72.99% accuracy while Singh and Glennen have 59.5% accuracy for a
classification of less sky conditions. Although Souza-Echeret al. have 94% accuracy, their
classification is only for clear sky condition. If we classify only this class, we would get 96.34%.
The percentage of the correct classification for each class is described in Fig. 2, using confusion
matrix. According to Fig. 2, each row represents the percentage of the instances in a true class and
each column represents the percentage of the instances in a predicted class. Note that Class 1 refers
to cirrus and Class 7 refers to clear sky which is in the same order as explained in the introduction
section. In Fig. 2(a), four classes have less than 75% accuracy leading to a poorer result when using
k-NN. On the other hand, in Fig. 2(b), the majority of correctly classified instances for ANN are
over 80%, some are even as high as 96.34%. To further improve this result, we could try to find
more effective features for distinguishing cirrus and stratocumulus from the rest of the other clouds.

Recommended Texture Features. The 18 texture features used in the experiment did not
produce the same impact. Therefore, we rank the most effective texture features using a knock-out
method. The results of ranking are as follows: 1) deviation of blue channel, 2) difference of mean
red and mean blue channel, 3) homogeneity of blue channel, 4) angular second moment f; of red
channel, 5) variance f; of red channel, 6) entropy fy of red channel, and 7) information measures of
correlation fi, of red channel. With merely 7 texture features above, we get the accuracy as high as
77.44% using ANN with 7 hidden nodes.
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Conclusion

The seven texture features in recognizing each sky condition were recommended. If the 18
texture features were combined, this would give even better results. Although, ANN was difficult to
fine-tune, ANN provided a better accuracy than A-NN with 86.93% of instances are correctly
classified. This result is about 23% higher than the previous studies which were using also a digital
camera and ANN method but the number of classes in those studies was only for five sky
conditions, in our case we have seven sky conditions. In particular, our classification for clear sky
condition returned 96.34% accuracy which is higher than the previous studies. In the future, we will
experiment with not only texture features but also other kinds of features such as a 2 dimension Fast
Fourier Transform to achieve higher percentage of accuracy.
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The appearance of each cloud type can tell the different weather conditions. Clouds may tell the coming
of storms, hails, or even lightning strikes. Therefore, cloud type classification can help to reduce
preventable losses. This paper studies the classification of cloud types using ground-based images.
Seven sky conditions are considered, namely, cirrus, cirro and altocumulus, stratocumulus, cumulus,
cumulonimbus, stratus, and clear sky image. We present an algorithm that computes a matrix of feature
vectors for cloud classification with five alternative ways of extracting cloud features. The five feature
extraction techniques include textures, moments of two-dimensional functions, abs-FFT, log-FFT, and
the new technique called Fast Fourier Transform Projection on the x-axis (k-FFTPX). We propose the
k-FFTPX algorithm that extracts features by projecting the values of logarithmic magnitude of FFT images
on the x-axis of the frequency domain before selecting k sampling values of the data as k dimensions of a
feature vector. To the best of our knowledge, there is no research on ground-based cloud type classifica-
tion using such technique before. Then, a comparison of the techniques is made through a series of five
experiments and the accuracies are ranged between 80.76% and 90.40%. Our new method provides the
highest accuracy. The advantages are that we can now classify more cloud types than the existing meth-
ods with further improved in accuracy, and our method requires no expensive tools, only a digital camera
is used to obtain ground-based images. This suggests a variety of practical solutions in combination with
other meteorological sensors to report weather conditions inexpensively.
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1. Introduction

Weather conditions affect human life greatly in terms of daily
life since some occupations depend on these weather conditions,
for example, farmers and fishermen. In 2009, a total of 385 natural
disasters have caused the damages that affected over the
population of 217 million which more than 297,000 people world-
wide are dead and the damage value of economic is as high as US$
123.9 billion (Guha-Sapir, Vos, Below, & Ponserre, 2011). Therefore,
the knowledge of recognition and understanding weather
conditions is important for preventing the unexpected losses.
One area of weather element recognition is cloud type classifica-
tion since different cloud types can lead to different weather
conditions.

Traditionally, classification of cloud types requires specialists to
do it manually. However, it does not appear to have many special-
ists in this area. Moreover, the speed of manual classification is
limited and human errors are sometimes introduced into the
system. Each individual's experiences are also different. Hence,
there have been many attempts to develop an automatic cloud
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type classification system (Aha & Bankert, 1994; Ambroise, Séze,
Badran, & Thiria, 2000; Bankert, 1994; Buch, Sun, & Thorne,
1995; Calbé & Sabburg, 2008; Fan, Changsheng, & Weimin, 1997;
Heinle, Macke, & Srivastav, 2010; Heinzmann, 1993; Kaur &
Ganju, 2008; Lee, Weger, Sengupta, & Welch, 1990; Lee, Lin, &
Wahba, 2004; Martinez-Chico, Batlles, & Bosch, 2011; Shangguan,
Hao, Lu, & Wu, 2007; Singh & Glennen, 2005; Souza-Echer,
Pereira, Bins, & Andrade, 2006).

Since 1977 researchers have begun to use satellite images as the
input (Parikh, 1977). However, this solution is expensive, and the
images are sometimes restricted for public access. Furthermore,
the satellite images are not suitable for the specific area of interests
because of their lack of local details (Calbé & Sabburg, 2008; Singh
& Glennen, 2005). Later, ground based imager devices were intro-
duced (Long, Sabburg, Calbd, & Pagés, 2006). There are two types of
imagers, namely the total sky imager (TSI) and the whole sky cam-
era (WSC). Both of the imagers are expensive. Therefore, using dig-
ital camera is more suitable for smaller research groups and
independent study. Moreover, the digital camera provides specific
information, low cost, and less cumbersome than others.

In this paper, we will develop an automatic cloud type
classification system for ground-based digital camera using image
processing and pattern recognition. Seven different cloud types for
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our recognition are cirrus, cirro and altocumulus, stratocumulus,
cumulus, cumulonimbus, stratus, and clear sky. We extract texture
features from cloud images and use these information in the train-
ing process of the classification. Artificial neural network is then
used for classifying instances. Moreover, we add three types of fea-
tures based on Fourier transform. The first two types use logarith-
mic and absolute magnitudes for extracting texture features of Fast
Fourier Transform (FFT) images. The last type uses logarithmic
magnitude but we project these values on the x-axis. Our main
contribution is a novel feature that uses a projection of logarithmic
magnitude of the FFT onto the x-axis. We call this feature k-FFTPX.

We organize the paper as follows. In Section 2, we give the
literature review of cloud type classification. In Section 3, various
features used in the classification are explained. In Section 4, we
describe artificial neural network which is the main classifier used
in the experiment. In Section 5, the methodology for cloud type
classification is given. In Section 6, we apply various features for
the classification and present the experimental results. Finally, in
Section 7 we summarize the results.

2. Literature review

Most of automatic cloud type classifications use a set of satellite
images as an input. Heinzmann (1993) provided fuzzy logic
approach for classifying four cloud classes. Lee et al. (2004) per-
formed multi-category support vector machine (MSVM) to classify
each pixel into three cloud classes. Lee et al. (1990) used a neural
network with texture features to classify sub-regions into one of
three cloud types. Bankert (1994) exploited a probabilistic neural
network (PNN) to classify each area into one of ten cloud classes
which give 79.80% correctly classified. Aha and Bankert (1994)
introduced feature selection algorithms for classifying ten cloud
classes. Forward sequential selection combined with IB1 gives
the best accuracy of 88%. Fan et al. (1997) used a bispectral cloud
classification method based on man-computer interactive way to
classify land, water, and six types of clouds. The method has an
accuracy of 87.10%. Ambroise et al. (2000) presented Probabilistic
Self-Organizing Maps for classifying nine cloud types. The accuracy
of the classification is 63%. Shangguan et al. (2007) proposed tex-
ture feature analysis combined with Variational theory to extract
texture features. Kaur and Ganju (2008) used singular value
decomposition (SVD) to extract the salient spectral and textural
features to classify clouds as low, medium or high clouds. This
technique gives an accuracy of 70%-90%.

Recently, ground-based images are used more in cloud type
classification. Martinez-Chico et al. (2011) classified clouds accord-
ing to their heights by using radiation data and images from total
sky imager (TSI). The result is presented as the frequency of occur-
rence for each class. Buch et al. (1995) used images from two
whole-sky imager (WSC) to produce three-dimensional volume.
In the classification process they used the binary decision trees
with three groups of features (texture measures, position informa-
tion, and pixel brightness) to classify each pixel in the cloud scene
as either one of the five sky conditions. The accuracy of system is
61%. Calbo and Sabburg (2008) developed a system using images
from total sky imager and whole sky imager. They classified cloud
types using parallelepiped technique with features that are calcu-
lated from texture, Fourier transform, and cloudy pixels. The clas-
sification accuracy is 62% when eight sky conditions are considered
and increases to 76% when five different sky conditions are consid-
ered. Heinle et al. (2010) developed real-time classification cloud
types using whole sky images. There are 12 features from spectral
features and textural features. The k-nearest neighbor classifier is
used to classify seven different sky conditions. The accuracy of
the classification is as high as 97% when it is based on the

Leave-One-Out Cross-Validation (LOOCV) but in the general case
with unseen data, the accuracy is 75%-88%. Based on these results,
Tzoumanikas, Kazantzidis, Bais, Fotopoulos, and Economou (2013)
improved k-nearest neighbor classifier by considering multi-color
criterion where the accuracy is increased to 78%-95%. Liu, Wang,
Xiao, Zhang, and Shao (2013) developed the new feature method
called salient local binary pattern based on the previous work of
Heinle et al. (2010). Their accuracy classified by the nearest neigh-
borhood using chi-square metric is at 93.65%, the best result so far
for images from WSC. Taravat, Del Frate, Cornaro, and Vergari
(2014) used pixel values of red, green, and blue bands of the
whole-sky images for classified pixels in terms of cloud coverage
or others. The overall accuracies of 95.07% using multilayer percep-
tron (MLP) neural networks. Cheng and Yu (2015) used
block-based classification on all-sky images. Each block is extract
statistical texture features and local binary pattern for six sky con-
ditions. Then, the features are classified with Bayesian classifier
which give the accuracy of 90%.

Moreover, there are several researchers started to use the input
images captured from digital cameras. Souza-Echer et al. (2006)
showed their new algorithm that classifies each pixel based on a
criteria decision process on Illuminant-Hue-Saturate (IHS) space
using images from the digital camera. The output yields accuracy
of 94% for the classification of only a clear sky. Singh and
Glennen (2005) used five different feature extraction methods with
the k-nearest neighbor and neural network classifiers for identify-
ing five sky conditions. The best of their classification has the accu-
racy of 64%. Xia et al. (2015) used texture features, color features
and shape features with k-nearest neighbor for classifying four
sky conditions. The average accuracy is 84.82%.

From the summary of literature survey in Table 1, the texture fea-
ture is still a popular extraction technique. However, its accuracy has
been somewhat limited to around 90%. Although some authors
showed more than 90% accuracy, their output classes are limited
to two. [n this paper, the output will be seven classes of cloud types
and the input images will be from digital camera and not satellite or
TSI/WSC images. Therefore, the accuracy will be compared among
those digital camera images. Moreover, our new approach will
incorporate the strength of texture analysis into the new technique
of FFT feature extraction that focuses more on the shape of cloud. In
the most recent survey, Table 2 shows various uses of FFT tech-
niques, some are incorporated with other methods. Calb6é and
Sabburg(2008) used features based on Fourier transform to discrim-
inate cloud shapes. They extracted the characteristics of the spectral
power image using correlation with clear (CC) and spectral intensity
(SI). Daowieng, Wongkittisuksa, Tanthanuch, and Permsirivanich
(2010) used FFT and discrete wavelet transform (DWT) for word
recognition. More recently, Chen (2014) extracted dual-tree com-
plex wavelet (DTCWT) features from EEG signals and perform the
FFT to the DTCWT features subbands. Soltana, Porebski,
Vandenbroucke, Ahmad, and Hamad (2014) applied FFT with Local
Binary Patterns (LBP) histogram to calculate features from lace
images. Stepniowski, Michalska-Domanska, Norek, and Czujko
(2014) calculated the radial average of FFT for arrangement analysis
of the aluminum nanopores. To the best of our knowledge, there is
no research on ground-based cloud type classification that performs
feature extraction by projecting the values of logarithmic magnitude
of FFT images on the x-axis of the frequency domain. Furthermore,
the new idea of introducing the k-sampling and sorting techniques
in the settings of feature vector will be incorporated into our pro-
posed algorithms. These techniques will be explained later.

3. Features

We use a grayscale image which is computed by splitting chan-
nels of image as R, G, and B channels for extracting features. There
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Table 1
Summary of literature survey on existing methods.
Input images Year Proposed method No. class Accuracy (%) References
Satellite 1990 NN with texture features to classify subregions 3 93 Lee et al. (1990)
1994 PNN to classify each area into one of ten cloud classes 10 79.80 Bankert (1994)
1994 Feature selection algorithms 10 88 Aha and Bankert (1994)
1997 Bispectral cloud classification method 8 87.10 Fan et al. (1997)
2000 Probabilistic self-organizing maps 9 63 Ambroise et al. (2000)
2004 MSVM classifier 3 90.11 Lee et al. (2004)
2008 SVD to extract the salient spectral and textural features 3 70-90 Kaur and Ganju (2008)
TSI/WSC 1995 Texture measures, position information, and pixel brightness 5 61 Buch et al. (1995)
2010 Spectral and textural features with k-NN 7 75-88 Heinle et al. (2010)
2013 Improved k-NN by multi-color criterion 7 78-95 Tzoumanikas et al. (2013)
2013 Salient local binary pattern feature 7 93.65 Liu et al. (2013)
2014 Pixel values with MLP NN 2 95.07 Taravat et al. (2014)
2015 Block-based classification 6 90 Cheng and Yu (2015)
Digital camera 2005 Five feature extraction methods with k-NN and NN 5 64 Singh and Glennen (2005)
2006 Classifying each pixel based on a criteria decision process on IHS 2 94 Souza-Echer et al. (2006)
2015 Texture, color and shape features with k-NN 4 84.82 Xia et al. (2015)
The second type of texture feature is computed from Gray Level
Table 2 Co-occurrence Matrices (GLCM). This is a square matrix where a
Related works on Fast Fourier Transform techniques. number of columns equals a number of gray level. Each element
Year  Proposed method Application References in the matrix is the frequency that two pixels occur (P*(a,b))
2008 Extracting CC and SI Cloud Calbé and Sabburg (Heinle et al., 2010). We will use the following Haralick texture fea-
from FFT classification (2008) tures (Haralick, Shanmugam, & Dinstein, 1973).
2010 DWT with FFT ‘Word recognition ~ Daowieng et al.
(2010)

2014 DTCWT with FFT
2014 LBP and FFT with k-NN

EEG analysis
Analysis of lace
images
Aluminum
nanopores

Chen (2014)
Soltana et al. (2014)

2014 Radial average of FFT Stepniowski (2014)

are three groups of features which are used in the experiments,
namely, the texture feature, the moments of two-dimensional,
and the features based on Fourier transform.

3.1. Texture feature

Texture feature is used to describe the texture of image region.
There are two types of texture features which are based on data
sources used in the calculation.

The first type of texture feature is extracted from images
directly. These are mean of red channel (ME), standard deviation
of blue channel (SD) and difference of mean between each channel
(Dy) defined by the equations below (Calbé & Sabburg, 2008;
Heinle et al., 2010).

Mean-R

N-1
ME = 3 xp(x;) M

i=0

Standard Deviation-B

N-1 172
(Z — ME)’p Xi)) @)

i=0
Difference R-G, R-B, and G-B

Dy = ME; — ME; 3)

The annotation N is a number of pixels in image, x; is a value of
pixel i-th, and p(x;) is a probability of x;.

Contrast-R and Contrast-B

G-1
CON = PA(a,b) (4)

a=0

o

=
I
o

Homogeneity-B

G-1 G-1 PA
HOM = (5)
= 01+|a—b\
Energy-R
G-1 G-1
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a=0 b=0
Variance-R
G-1 G—l
V= PA(G b) (7)
a=0 b:O
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G-1 G-1 PA(Q b)
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Sum Average-R
2(G-1)
SA = Z aPy.y(a) 9)
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Sum Variance-R

2(G-1)
V=3 (a-SE)Pyy(a) (10)

a=1
Sum Entropy-R

2(G-1)

SE = — Z Py.y(a)log Py.y(a) (11)
Entropy-R '
G-1 G-1
EN=-%" > P*(a,b)logP*(a.b) (12)
a=0 b=0

Difference Variance-R

DV = variance of Py, (13)
Difference Entropy-R
G-1
DEN = -y "P,_y(a)logP_,(a) (14)
a=0

Information Measures of Correlation-R

EN — HXY

~ max{HX, HY} 15
G-1 G-1

HXY = =" >"P*(a, b) log{P,(a)P,(b)} (16)
a=0 b=0

The size of GLCM matrix is defined by G where HX and HY are
entropies of summing row and column of GLCM matrix, respec-
tively, and HXY is the entropy of multiplying row and column

together. P,y (a) is a sum of GLCM element where row plus column
equals a. In contrast, P,_,(a) is a sum of GLCM element where row
minus column equals a.

3.2. Moments of two-dimensional functions

Moments of two-dimensional functions are used because of
their resistance to any transformation. That is, the value of
moments after transformation is not varied too much. The
Zernike moments is shown in equation below (Khotanzad &
Hong, 1990).

A=" Y PVt 1

Note that n is an order with repetition [ for a digital image, P, is the
current pixel, Vy(x,y) is the Zernike polynomial and « is the com-
plex conjugate (Khotanzad & Hong, 1990).

3.3. Feature based on Fourier transform

We use a grayscale image (R channel) to transform pixels into
frequency domain by two dimensional Fast Fourier Transform
(2D-FFT) and use FFT shift to move the low frequency pixels into
the center of the image (see Fig. 1). There are three types of fea-
tures based-on Fourier transform that we exploit in the experiment
namely, abs-FFT, log-FFT, and k-FFTPX.

Abs-FFT
Abs-FFT is an absolute-magnitude of Fourier transform image.
Fig. 1(a) is a grayscale image, we use 2D-FFT and FFT shift to
derive abs-FFT (see Fig. 1(b)) by calculating an absolute value
of each pixel. The transformed image in Fig. 1(b) is later on to
the texture feature extraction process.

(b) Abs-FFT

(c) Log-FFT

Fig. 1. Fast Fourier Transform of a grayscale image.
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Log-FFT
We use a grayscale image in Fig. 1(a) followed by 2D-FFT and
FFT shift. Then, we calculate the logarithmic of each pixel in fre-
quency domain which is a logarithmic magnitude of Fourier
transform image (log-FFT) as shown in Fig. 1(c). The log-FFT
image is then used in a calculation of texture feature extraction.

k-FFTPX
The proposed feature extraction method called k-FFTPX is
named after the process of projecting the log-FFT values of an
image onto the x-axis (see Fig. 2(a)) before selecting k sampling
values of the data as k dimensions of a feature vector as
depicted in Fig. 2(b). The k-FFTPX is based on FFT technique
which has more sub methods inside. First, DWT is used to
extract the key characteristics by frequency separation of an
image. Second, the image is transformed to the frequency
domain by FFT which is useful in distinguishing shapes of
clouds and reduces the effects of unequal brightness of the
image. Third, the characteristics and key features are extracted
from the logarithmic magnitude of FFT image and the values are

45000
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30000

]
2
2 15000
=
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0
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pixel no. (n)
(a) Projection on x-axis
30000
25000
20000

3
2
g 10000
=9
5000
0
0 2 1 6 8 10 12

k sampling values
(b) k-FFTPX when k = 10, n = 320

Fig. 2. k-FFTPX projection and sampling values.

projected on the x-axis. Then, these projection values are split
into k blocks in order to reduce the dimension of the feature
vector. Each block is then represented by an average value.
After that, values in the feature vectors are sorted in descending
order to increase the performance because we found that the
sorting technique works well in practice, The algorithm is
explained in full in the methodology section.

4. Classifier

A classifier is a function that assigns the input images to a
desired output class. We discuss below the most commonly used
classifiers, that is artificial neural network.

Artificial neural network (ANN) technique has appeared in
many cloud type classification research (Bankert, 1994; Lee et al.,
1990; Singh & Glennen, 2005). It is a nonlinear classifier which is
suitable for solving complex issues. Back propagation algorithm
which applies gradient descent is often used to train the network
for the best-fit value (Duda, Hart, & Stork, 2001).

There are three layers of neural network which are composed of
input layer, hidden layer, and output layer (Duda et al., 2001) as
depicted in Fig. 3.

Each node uses a net activation equation which is a sum of
weights and inputs as shown in the equation below.

n
net; = S xwj; (18)
i=0

In the equation above, the subscript i is the index of input layer,
wherej is the index of hidden layer; w; is the weight from layer i to
Jj (Duda et al,, 2001).

The output of each node uses a nonlinear function known as the
activation function. There are many activation functions with dif-
ference properties. For example, the equation below shows a
hyperbolic tangent function (Duda et al., 2001).

1 —enet

f(net) = sgn(net) = = (19)

5. Methodology

Algorithm 1. Cloud Classification Algorithm

Feed all color images
for each image i do
Resize to n x m resolution
Transform the image i with DWT
Select coefficient approximated image from DWT
Split the image into R, G, B channels
Calculate a vector of texture features F
Sort F in descending order
Sort a feature vector H in descending order
| options for H are 2D-moments, abs-FFT, log-FFT,
k-FFTPX(n, m), or none =/
Append Hto F
end for
Build a matrix of feature vectors V for all images
for each image i do
Record answer into a targeted matrix T by visual
inspection
end for
Train classifier C using Vand T
Build a matrix of feature vectors U for all test data
Pass each feature in U to C for classification
Build a confusion matrix
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This section, we explain two algorithms used in our experi-
ments. We use a set of digital camera images with no more than
36 degree field of view as the input. Algorithm 1 explains our
methodology for cloud classification starting from preprocessing
the input, extracting dominant features, training the classifier,
classifying the instances and returning the confusion matrix as
the answer.

In the preprocessing stage of Algorithm 1, we scale down each
image to the resolution of n x m size. By this process we achieve
a much smaller computational time. For each image we perform
the feature extraction method using discrete wavelet transform
(DWT). This transformation gives four images which are coefficient
approximated (CA), coefficient horizontal edge (CH), coefficient
vertical edge (CV), and coefficient diagonal edge (CD). The size of
four images is reduced by half. We select only CA image for a cal-
culation of our feature vector.

In feature extraction stage, we split channels into R, G, B chan-
nels as grayscale images before calculating a vector of texture fea-
tures F. The vector F is a based feature in our algorithm which is
calculated by Eq. (1)-(16). Note that the difference of means in
Eq. (3) are computed in three features (R-G, R-B and G-B).
Hence, there are a total of 18 texture features implemented in
the algorithm. However, to improve the accuracy of the classifica-
tion we propose to add one of the four following feature extrac-
tions, 2D-moments, abs-FFT, log-FFT, or k-FFTPX. We call this
additional feature vector, H. The moments of two-dimensional
functions extract eight features using Zernike moments in Eq.
(17) of order n=0 to n=7 and repetition m = 2. The features
based on Fourier transform are referred to abs-FFT, log-FFT, and
our proposed feature (also operated on frequency domain) called
k-FFTPX. We test and evaluate each feature separately and discuss
the performance in the experimental section. Note that the method
of computing k-FFTPX are given in Algorithm 2 which we will
explain later.

In the training stage of classifier, we build a matrix of feature
vectors V for holding the trained features. We label the answer
for each feature vector and call it a targeted matrix T. Based on
these information, we train classifier C using Vand T.

In the classification stage, we build a matrix of feature vectors U
for holding the tested features. We pass each feature in U to C for
the classification process before building confusion matrix for final
results.

Algorithm 2. k-FFTPX(n, m)
for each grayscale image g do

A = FFT(FFT(g))
© = FFT_Shift(A)
M=log|©|
[+ Compute the projection of M on the x-axis x/
Pe=3Y 0 M(x,y),xe {1,2,....,n},y € {1,2,... . m}
[+ Split Py in k blocks and calculate Pgyg(s) */
Parg(s) = KRN PyG), s =01, k—1

=s(n/k)+1

Compute a feature vector Hy = Ui"g Payg(s)
Transform the image g with DWT
Select coefficient approximated image from DWT
Calculate A, ®, M, Py, and Pq,(s) again
Compute a feature vector Hy = Uﬁz(}PMg(s)
Output H = [H{H;]

end for

Our proposed k-FFTPX is shown in Algorithm 2. We extract the
k-FFTPX feature from 2 levels which are DWT level 1 (DWT1) and
DWT level 2 (DWT2) using R channel of the CA image g. After the

Hidden
Layer

Input
Layer

Output
Layer

Fig. 3. Multilayer feed forward neural network (Chaowanawatee & Heednacram,
2013),

transformation of DWT1 (in Algorithm 1), we first transform the
image g into a frequency domain using 2D-FFT to get A as pre-
sented in Algorithm 2. After that, ® is obtained by shifting
2D-FFT of A. Then, we calculate the logarithmic magnitude of ®
to find M. We project the magnitude M on the x-axis of the trans-
formed image and called it a vector P,. We split P, into k blocks and
take the average of the magnitude in each block to get k projection
values. A feature vector H; is constructed by joining the k projec-
tion values of Py, (s) in order from s = O until s = k — 1. The process
is repeated with DWT2 to obtain the second feature vector H,. The
output of k-FFTPX algorithm is H, concatenating with H,.

The overall feature extraction process is summarized in Fig. 4.
According to Fig. 4, two features vectors, F; and H,, are extracted
from DWT1. The feature vector F, contains 18 texture features
derived from Algorithm 1. The feature vector H; is a k dimensional
FFTPX feature. The feature vector H, is extracted from DWT2. This
feature vector is also a k dimensional FFTPX feature. Finally, we
concatenate all vectors to get a feature vector F which will be the
input of our classifier in Algorithm 1. Each F represents one image.
In the training stage of the classifier, we then build a matrix of fea-
ture vectors called V which comes from all vectors F combined.

6. Experimental results

In the experiment, we used over 353 ground-based images from
our digital camera for both training and testing purposes. Each
image has a resolution of 640 x 480 pixels. The methodology used
for all experiments is as per depicted in Algorithm 1 except in the
last experiment Algorithm 1 and 2 are both used. LOOCV is used to
evaluate the accuracy of the classification. Our classifier is a multi-
layer feed forward neural network with a single hidden layer for
classifying seven sky conditions. The hyperbolic tangent function
is used as the activation function in hidden layer and in output
layer as shown in Fig. 3. The number of input nodes is equal to
the size of each feature vector in each experiment. The number
of output nodes is seven. The suitable number of hidden nodes will
be determined experimentally. Other parameters of ANN are fixed
with a learning rate of 0.01 and a momentum of 0.9. There are five
experiments based on different features being tested. In the first
experiment, we test the performance of correctly classification
with our 18 chosen texture features. Experiment 2-5, the 18 tex-
ture features are used in conjunction with 2D-moments, abs-FFT,
log-FFT, and k-FFTPX, respectively. Furthermore, we will analyze
the strengths and weaknesses of each feature used in each
experiment.



180

8300 T. Kliangsuwan, A. Heednacram / Expert Systems with Applications 42 (2015) 8294-8303

DWTI > DWT2
A 4 y
- Texture features
Fi=[vi v2 ... vis] - k-FFTPX
- k-FFTPX Hy=[vi v ... %]
Hi=[vi vs ... w]

+

- Feature vector
F=[F\ H\ H]
for one image

Fig. 4. Feature extraction process for k-FFTPX.

6.1. Experiment 1 - Texture features

There are many features that we used in the classification of
cloud types. Therefore, we must find a way to choose the suitable
features for classification. We select the features by observing a
distribution of each feature where the overlapping is minimized
between each class.

Fig. 5 shows a plot of the mean distribution of the two consid-
ered features. The horizontal axis displays a range of distribution of
a chosen feature whereas the vertical axis is a class number
identifying the cloud types. In Fig. 5(a) we give an example of
the suitable feature (mean-R) where the distribution has small
overlapping among classes. Fig. 5(b) is an example of the unsuit-
able feature (mean-B) where the distribution has high overlapping
among classes. This latter feature cannot distinguish a class from
each other. Although, the mean-R feature from Fig. 5(a) is suitable
we still cannot use one feature solely for cloud classification
because the distribution cannot distinguish all classes at once.
Hence, based on the above technique we checked the distributions
of 39 texture features appeared in Heinle et al. (2010), Calbé and
Sabburg (2008), and Haralick et al. (1973) and selected the best
18 texture features such that the distributions can separate classes
most effectively.

The chosen 18 texture features are implemented in the experi-
ment using Eq. (1) to Eq. (16) where Eq. (3) has three features (R-G,
R-B and G-B). The 18 texture features are used in the training of
ANN classifier. The ANN model is constructed and fine-tuned by
varying the number of hidden nodes. According to Heaton
(2008), this value is usually lied between the number of input
nodes and output nodes. We conduct separate experiments to
heuristically find which number of hidden nodes optimizes the
performance of our ANN model. For this experiment (Experiment
1 - using 18 texture features) the suitable number of hidden nodes
is set to 15. Note that the number of hidden nodes for the remain-
ing four experiments will be optimized in the same manner. This
value will be varied experimentally based on the size of feature
vector. From Table 3, the result of classification using 18 texture
features is presented in the form of confusion matrix. Each row
of the confusion matrix is a true class while each column

represents the output class given by our classifier. For example,
the element in the first row and third column is a percentage of
the accuracy classified as Class 3 while in fact, it is Class 1. The
diagonal of the matrix is, therefore, a correct classification for each
class. From the table, the classification accuracies of Class 2, 6 and
7 are more than 80%, however, class 4 and 5 have quite low
accuracy in comparison with the other classes since the misclassi-
fication of Class 4 as Class 1 and Class 5 as Class 6 are still high. On
the average, the accuracy of a classification using 18 texture fea-
tures is 80.76%.

6.2. Experiment 2 - Moments of two-dimensional functions

Moments of two-dimensional functions or 2D-moments are
used in the experiment because their ability to tolerate any trans-
formation changes of images. They are calculated from CA images
of DWT level 1 using Eq. (17). We split this experiment into 3
sub-experiments. First, we add in the feature vector each n-th
order for n =0,1,...,7 one by one to the existing 18 texture fea-
tures. Second, only O-th order to 7-th order are in the feature vec-
tor. And third, the 18 texture features combined with all n-th
orders are in the feature vector.

Table 4 shows the result of the first sub-experiment where the
18 texture features are used in combination with each n-th order.
The accuracy of classification is peaked at 82.58% when using tex-
ture features with the 4-th order of Zernike moments. However,
in the second sub-experiment when the texture features were
removed, the accuracy is reduced to 63.03%. Therefore, we have
learnt that 2D-moments work better in the presence of 18 texture
features. In the third sub-experiment when the 18 texture fea-
tures and all 2D-moments are combined, we obtained more satis-
fiable result with the accuracy of 82.66%. This is better than using
18 texture features alone (see Experiment 1). The confusion
matrix for this sub-experiment is presented in Table 5. In partic-
ular, the accuracy of Class 7 is increased to 95.64%. However, the
accuracy of Class 5 is reduced to 66.96%. Therefore, we will
explore another technique to improve these results in the next
experiments.
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8 Table 4
Texture features with one additional Zernike moments of order n.
T e B b PR EDRDE e B b > > n-th order 0 1 2 3
Accuracy (%) 81.66 82.15 81.73 82.04
6 T W WEYWWIETEWWYWTRWWW YW W VW
n-th order 4 5 6 7
Accuracy (%) 82.58 80.52 78.56 81.78
& - R R A - =
-]
= 4 o BB 4 B B8 b4
% Table 5
© Confusion matrix classified using textures features and 2D-moments.
3 B B NP INERR ISR 1> Db L
True class  Classified as
2 vew AT I TR TRV W T TV T 1 P 3 4 5 6 7
i 1 8173 827 2.59 4.07 0 0.99 235
[S Susal=i = i= sk (s s asn ]
" mes f———— 2 625 8513 200 425 0 125 125
3 8.08 4.04 84.62 019 0 3.08 0
0 4 1695 424 1.19 7339 271 0.85 0.68
¢ » 100 130 200 2 5 435 1130 130 522 6696 1087 O
range of data 6 263 0 1.58 3.68 0 9211 0
. 7 1.79 2.56 0 0 0 0 95.64
(a) Small overlapping
8
7 —— N S r—. Table 6
Texture features with one additional abs-FFT feature.
6 ¥ TS A W S T — Y —¥—— - Additional feature Max Average Energy Variance
Accuracy (%) 81.30 85.44 80.74 82.55
5 R R R n i R R B RE IR -
e
g 4 R —————
& in Experiment 2. Therefore, it is still worth to use 18 texture fea-
° s I ——— tures with our test features as the performance has been improved
by 2.78%. The second sub-experiment gives 85.06% of the accuracy.
2 T VW VT W ST T Y W YT This result is close to using the average-feature. However, the
average-feature yields slightly higher percentage. The confusion
1 § SN . — — matrix of the average-feature is, therefore, shown in Table 7. The
accuracies in most classes are improved from Experiment 2.
e o W s % o B e e 5% Especially, Clas§ 4 and 5 we had problems beforelin Experiment
oFdie 2, now Class 4 is improved by 1.02% while Class 5 is improved by
9.13%. The accuracy of Class 7 is now climbed up to 97.18%, and
(b) High overlapping the average accuracy of Table 7 is 85.44%.
Fig. 5. Distribution of chosen features. . X .
6.4. Experiment 4 - Logarithmic FFT
bl Logarithmic FFT or log-FFT closely resembles the abs-FFT but
Table 3 ) ) . log-FFT uses the logarithmic magnitude of FFT. There are two
Confusion matrix classified using 18 texture features. . A ..
sub-experiments. First, we use one additional log-FFT feature
True class  Classified as with 18 texture features. Second, we use all log-FFT features
1 2 3 4 5 6 7 together with 18 textures features in order to compare which
1 7914 630 247 741 086 123 259 sub-experiments give better results.
2 6.50 8425 425 213 125 1.63 0 The result of the first sub-experiment is given in Table 8. The
3 1.92 1346 7942 192 135 1.92 0 average of log-FFT feature outperforms the other three features.
4 1559 915 1.19 7000 119 0 2.88 The best accuracy is at 86.11% which is higher than the abs-FFT
5 8.70 0 0 435 7391 1304 0 ‘ - A 3 In th d sub ;
6 596 0 596 0 0 8947 0 average-feature in Experiment 3. In .t e second sub-experiment
7 1.79 0 0 0 256 0.77 94.87 when we use all log-FFT features with 18 texture features, the

6.3. Experiment 3 - Absolute FFT

Absolute FFT or abs-FFT computes texture features using the
absolute magnitude of FFT, There are two sub-experiments. First,
we select four best texture features which operate on this
magnitude of FFT and add each of these features one by one to
the existing 18 texture features. Second, the 18 texture features
combined with all four abs-FFT features are in the feature vector.

Table 6 yields the result of the first sub-experiment. The best
result is at 85.44% when using average-features in conjunction
with the 18 texture features and this is superior than the result

overall accuracy is down to 78.47% We believe that the

Table 7

Confusion matrix classified using texture features and the abs-FFT average-feature.
True class  Classified as

1 2 3 4 5 6 7

1 85.41 3.70 0.37 543 0.62 0.86 1.61
2 7.5 85.75 363 1.63 0.25 1.25 0
3 269 5.00 90.00 1.15 0.58 0.58 0
4 14.24 6.78 220 74.41 1.53 0.17 0.68
5 435 043 3.04 9.13 76.09 6.96 0
6 8.42 0 1.58 0.53 421 84.74 0.53
7 1.54 0 0 0.51 0.51 0.26 97.18
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max-feature and energy-feature are the plausible causes since
their accuracies are not too high as shown before in Table 8.
Therefore, only average-feature is recommended with the 18 tex-
ture features. The confusion matrix when using texture features
and the log-FFT average-feature is presented in Table 9. The result
reveals that most of the classes have the accuracies higher than
Experiment 3 with the slight drop of Class 1 and Class 4 perfor-
mances. However, Class 5-7 give rather excellent results, all are
above 90%. The performances of Class 5 and Class 6 are enhanced
by 15.21% and 10%, respectively. Moreover, Class 7 accuracy is
now 100%.

Until now, the accuracy of Class 4 is still less than 75%. In the
next experiment, we will show how our new technique of feature
extraction can lead to a significant improvement of Class 4 and the
rest of the remaining classes. We expect to have no less than 87%
accuracy for every class.

6.5. Experiment 5 - FFT projection on x axis

The experiment uses the logarithmic magnitude of FFT pre-
sented in Algorithm 2 (k-FFTPX) along with the 18 texture features
that are obtained from Algorithm 1. Algorithm 2 is called by
Algorithm 1 when the step of appending optional features H to F
is reached.

There are two sub-experiments. First, we investigate the suit-
able value of k in the k-FFTPX algorithm. Table 10 shows the accu-
racy of the k-FFTPX algorithm when k=1, 5, 10, 15, and 20,
respectively. The accuracy increases as the k value increases until
it reaches a peak at k = 10 and the accuracy begins to decrease
when k > 10.

In the second sub-experiment, we apply k = 10 and derive the
confusion matrix as shown in Table 11.

Most of the correctly classified instances are now over 87%
which are better than the previous four experiments. Moreover,
the correctly classified instances of all the classes are higher than
80%. Furthermore, the accuracy of Class 4 is improved by 8.99%.
The overall (average) accuracy is at 90.40% which is better than
the results of the previous four experiments.

Table 8
Texture features with one additional log-FFT feature.
Additional feature Max Average Energy Variance
Accuracy (%) 62.46 86.11 79.96 84.99
Table 9
Confusion matrix classified using texture features and the log-FFT average-feature.
True class  Classified as
1 2 3 4 5 6 7
1 82.72 494 123 4.94 2.47 1.23 2.47
2 6.25 87.50 3.75 1.25 0 1.25 0
3 3.85 5.77 90.38 0 0 0 0
4 10.17 847 339 7118 3.39 0 3.39
5 0 0 0 0 91.30 8.70 0
6 0 0 5.26 0 0 94.74 0
7 0 0 0 0 0 0 100
Table 10

Performance of k-FFTPX when k is varied.

k values k=1 k=5 k=10 k=15 k=20
71.84% 89.94% 90.40% 30.03% 32.44%

Accuracy (%)

Table 11
Confusion matrix classified using texture features and 10-FFTPX.

True class  Classified as
1 2 3 4 5 6

1 89.26 1.85 0.12 728 0.12 0 13.58
2 238 93.88 123 1.25 0.12 1.25 0

3 2.88 4.42 92.69 0 0 0 0

4 11.53 6.78 0.68 80.17 085 0 0

5 174 0 435 1.74 87.83 4.35 0

6 6.32 0 0 0 0 9368 0

7 0 0 0 2.05 0 0 97.95

Table 12

Each feature extraction method and its accuracy.

Feature Accuracy (%)
Texture + 2D moments 82.66
Texture + Abs-FFT 85.44
Texture + Log-FFT 86.11
Texture + k-FFTPX 90.40

6.6. Comparison of each feature extraction method

Table 12 shows the best results from Experiment 2-5 where
four different feature extraction techniques are used in conjunction
with the 18 texture features. First, when we append 2D-moments
to the 18 texture features, we obtain the accuracy of 82.66% which
comes from using textures features combined with eight features
of Zernike moments.

Later, the abs-FFT average-feature improves the accuracy to
85.44%. Then, the log-FFT average-feature increases the result even
further to 86.11%. Finally, the highest accuracy arises from using
the 18 texture features with k-FFTPX where the confusion matrix
shows the overall accuracy of 90.40%. This suggests that the 18 tex-
ture features with k-FFTPX is the most effective among those fea-
ture extraction techniques we presented. In addition, when the
magnitude of FFT is plotted in the logarithmic scale, the magnitude
differences are far more prominent than the scale of the absolute
magnitude (see Fig. 1(b) and (c), for example). Hence, the projec-
tion of log-FFT image on the x-axis works very well. Note that
the suitable k value may require tuning and it can be varied from
problems to problems. That is why we stated in the algorithm as
k-FFTPX.

7. Conclusion

Two algorithms were presented. The first algorithm computes a
matrix of feature vectors for all images before using this informa-
tion in the process of cloud classification. The second algorithm is
provoked by the first one if the feature extraction technique is set
to use k-FFTPX. None of the literatures in Table 2 has provided such
algorithms before. Besides, our k-FFTPX is different from other FFT
techniques in many aspects. We project the values of logarithmic
magnitude of FFT images on the x-axis of the frequency domain
and split the projection values into k blocks and take the average
of the magnitude in each block to get k projection values whereas
the past research has calculated the characteristics of FFT using CC,
SI, or the radial average. We also add a sorting technique to sort
values in the feature vector for a better performance. In Expert
and Intelligent Systems, there were research using DWT with FFT
for word recognition and using DTCWT with FFT for EEG analysis;
the merit of this research is that we used DWT with texture fea-
tures in conjunction with the new k-FFTPX features for cloud type
classification. By using merely a digital camera available anywhere
on the market today, our method is inexpensive. Our next
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contribution is the increase of cloud types to seven different cloud
types and yet a good result, 90.40% accuracy, was obtained. Among
digital camera images used in the literatures (see Table 1), there
was a result showing more than 90% accuracy; however, their out-
put classes were limited to two cloud types. In this paper, we also
delivered more than one extraction technique; in fact, five different
combinations of feature extraction techniques were presented and
the accuracies are 80.76%, 82.66%, 85.44%, 86.11%, and 90.40%,
respectively. These results, therefore, suggest a variety of practical
solutions from the simple to the sophisticated functionality that
requires no satellite images or expensive tools. Note that our
approach will be developed until it can combine with other inex-
pensive meteorological sensors to report weather conditions and
display them on a smart phone.

In addition to the practical advantages above, our algorithm is
rather simple to implement while the accuracy of our proposed
method was improved from the conventional methods with the
capability of distinguishing cloud types of up to seven classes. By
using simply a digital camera with a resolution of at least
640 % 480 pixels, our method is less cumbersome and less expen-
sive than those using TSI/WSI imagers. However, our method can-
not classify more than one type of clouds that appear on the same
image. Also, the k-FFTPX algorithm has not yet been tested with
the night time images. The algorithm must be used in conjunction
with the texture features to achieve the best performance.

Our research has opened up new directions for those interested
in the cloud classification. There are many areas where improve-
ments are needed; for example, how to classify many types of
clouds that appear on the same image, how to design the algorithm
that recognizes clouds in the night time, how to enhance the accu-
racy of the system to at least 95%. Other feature extraction tech-
niques such as point detection, gradient operators, and fractals
may be worth exploring because shapes of clouds are useful infor-
mation. Other classifiers such as decision tree and SVM perhaps
should be looked at and compared. Finally, more cloud types in
nature may be considered, for example, earthquake clouds.
However, this requires researchers to investigate more closely on
the unknown mystery of earthquake clouds and the feasibility
study of earthquake prediction.
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FFT features and hierarchical classification algorithms for cloud images

Thitinan Kliangsuwan®, Apichat Heednacram”

Department of Computer Engineering, Prince of Songkla University, Phuket, Thailand

Abstract

The formation of different cloud types is one of the important components of weather recognition. Cloud-type recognition is useful
in preventing losses caused by adverse weather conditions. This paper performs cloud classification on seven cloud types, namely
cirriform, high cumuliform, cumulus, stratocumulus, cumulonimbus, stratiform, and clear sky. We present eight algorithms that
are used in automatic cloud classification with ground-based images as input. Three new fast Fourier transform (FFT) features are
introduced in the feature extraction process, namely the modified k-FFTPX, the half k-FFTPX, and the /1 X k-FFT. The proposed
Cloud Classification Tree Algorithm (CCTA) uses the technique called hierarchical classification which is composed of three levels
of tree. The design of our tree helps reduce the number of competitions among the cloud classes. We show that this method provides
the highest accuracy at 98.08% through a series of four experiments. The result confirms that the hierarchical classification performs
better than a single classification. In addition, the tree can be adapted to classify lesser number of cloud types. Our experiment
reveals that the accuracy for classifying two classes, cloud and no-cloud, is high as 100%. Moreover, users have freedom to specify
their expected accuracy to gain higher speed in calculation. Finally, the hardware implementation of a low-cost cloud monitoring

station is briefly discussed in the paper.

Keywords: Pattern recognition; Cloud classification; Ground-based images.

1. Introduction

‘Weather conditions have received increasing attention be-
cause of climate change and global warming which affects
many areas of the world. Studying weather conditions is vi-
tal in help preparing for incoming natural disasters and extreme
weather changes such as storm, lightning, heavy rain, land-
slides, and flash flood. In 2013, super typhoon Haiyan in Philip-
pines have caused severe damages, 822 people died and 35 peo-
ple disappeared (Carine et al., 2015). Weather also relates to
occupations in agriculture and fisheries which need to rely on
suitable weather conditions. Analyzing weather conditions in-
volves essential elements of celestial phenomena and clouds.
The appearance of each cloud type changes upon the weather
conditions at the time and in the near future. Therefore, we can
recognize weather conditions using cloud classification. Nowa-
days, with the help of image processing, weather conditions
can be monitored without any use of sophisticated instruments,
even in the remote or rural areas. Hence, cloud classification is
worth exploring.

Automatic cloud classification has been highly appreciated
over the last decades (Lee et al., 1990; Heinzmann, 1993; Aha
& Bankert, 1994; Bankert, 1994; Buch et al., 1995; Fan et al.,
1997; Ambroise et al., 2000; Lee et al., 2004; Singh & Glen-
nen, 2005; Souza-Echer et al., 2006; Shangguan et al., 2007;
Calb6 & Sabburg, 2008; Kaur & Ganju, 2008; Heinle et al.,
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2010; Martinez-Chico et al., 2011) because the traditional tech-
niques of using human for manual classification can take a long
time and human errors may occur. Unique shape and disorder
of clouds can lead to different results for different observers.
Moreover, the observation of cloud requires experts and there is
limited number of experts in the area. Hence, automatic cloud
classification has been developed since 1977 (Parikh, 1977) to
serve the purpose of auto-recognition.

Satellite images have been used in the analysis of cloud clas-
sification. It can provide information and overview, but is un-
able to provide local details on a specific area. Furthermore, it
is an expensive solution and the access to image data is some-
what limited (Singh & Glennen, 2005; Calb6 & Sabburg, 2008).
Consequently, ground-based images which obtained by imager
devices have been utilized more extensively. Two types of im-
agers are common (Long et al., 2006), namely the total sky im-
ager (TSI) and the whole sky camera (WSC). Both of them can
take an image with wide angle of more than 160° field of view
(FOV) that can cover large area of sky. However, these devices
are rather expensive and may not be suitable for small research
groups. For this reason, a normal digital camera is used. Al-
though, this type of camera provides a fraction of sky image,
it has more specific information needed, easier acquisition, and
lower cost.

In this paper, we proposed automatic ground-based cloud
classification system using a digital camera. Seven sky condi-
tions are considered, namely cirriform clouds, high cumuliform
clouds, cumulus clouds, stratocumulus clouds, cumulonimbus
clouds, stratiform clouds, and clear sky. Texture and Fourier
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Summary of literature survey on existing methods.
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Year Feature/Method Classifier No. class  Accuracy (%) Reference
Satellite

1990  Texture features Neural network 3 93 (Lee et al., 1990)

1994 Spectral, textural, and physical measures PNN 10 79.80 (Bankert, 1994)

1994 Feature selection algorithms IB1 10 88 (Aha & Bankert, 1994)

1997  Bispectral cloud classification method Look up table 8 87.10 (Fan et al., 1997)

2000  Distribution of pixels Hierarchical clustering 9 03 (Ambroise et al., 2000)

2004  Radiance profiles MSVM 3 90.11 (Lee et al., 2004)

2008 SVD Unclear 3 70-90 (Kaur & Ganju, 2008)
TSI/WSC

1995  Texture, position info, and pixel brightness Binary decision trees 5 61 (Buch et al., 1995)

2008  Fourier transform, texture, and cloudy pixels  Parallelepiped technique 5 76 (Calbo & Sabburg, 2008)

2010  Spectral and textural features k-NN 7 75-88 (Heinle et al., 2010)

2012 Existence of raindrops k-NN 7 87.90 (Kazantzidis et al., 2012)

2013  SLBP feature Nearest neighbor 7 93.65 (Liu et al., 2013)

2015  Pixel values MLP neural network 2 95.07 (Taravat et al., 2015)

2015  Block-based classification Bayesian 6 90 (Cheng & Yu, 2015)

2016  BoMs SVM 5 90.90 (Lietal., 2016)
Digital camera

2005  Five feature extraction methods Neural network and &-NN 5 64 (Singh & Glennen, 2005)

2006  Criteria decision process on IHS Parallelepiped method 2 94-99 (Souza-Echer et al., 2006)

2014 CCT and automatic block assignment SVM 6 81.17 (Zhuo et al., 2014)

2014 Texture features ANN and k-NN 7 86.93 (Kliangsuwan & Heednacram, 2014)

2015 Texture, color, and shape features ELM and k-NN 4 84.82 (Xia et al., 2015)

2015 Texture, color, and SIFT features ELM 4 86.64 (Wu et al., 2015)

2015 Texture and Fourier transform ANN 7 90.40 (Kliangsuwan & Heednacram, 2015)

Fourier transform features are extracted from images. Then,
artificial neural network (ANN) is used for training and clas-
sifying instances based on Cloud Classification Tree Algo-
rithm (CCTA). Our classification tree splits sky conditions into
clouded sky and clear sky before further separating clouded sky
into three forms of clouds which are cirriform, cumuliform, and
stratiform. Then, cumuliform clouds with four different shapes
are classified last. Along with the classification tree, we also
proposed three new features which are the modified k-FFTPX,
the half k-FFTPX, and the /& x k-FFT. Eight algorithms are in-
troduced and their validated results are presented in our four
experiments.

‘We organize the paper as follows. In Section 2, the literature
review of cloud type classification are presented. In Section 3,
we introduce the input cloud types and describe characteristics
of each cloud type. In Section 4, various features used in the ex-
periment section are explained. In Section 5, ANN and its main
parameters used in the experiment are described. In Section 6,
the methodology and our proposed algorithms for cloud type
classification are given. In Section 7, we discuss experimental
results. In Section 8, we briefly mention hardware implemen-
tation and future work. Finally, in Section 9 we summarize the
results and our contributions.

2. Literature review

Several researchers use satellite images as an input for auto-
matic cloud type classification. Lee et al. (1990) presented a
classification of sub-regions into one of three cloud types us-
ing a neural network with texture features. The overall accu-
racy of classification is 93%. Heinzmann (1993) used fuzzy
logic approach to classify four cloud classes in form of cloud

cover percentage. Bankert (1994) suggested a probabilistic
neural network (PNN) with spectral, textural, and physical mea-
sures for classifying each region into one of ten cloud classes
which achieve an accuracy of 79.80%. Aha & Bankert (1994)
provided feature selection algorithms for classifying ten cloud
classes using IB1. The best accuracy here is 88%. Fan et al.
(1997) used a bispectral cloud classification method based on
man-computer interactive way to classify six types of clouds,
land, and water through looking up table. This method pro-
vides an accuracy of 87.10%. Ambroise et al. (2000) used dis-
tribution of pixels with hierarchical clustering to classify nine
cloud types. The method achieves an accuracy of 63%. Lee
et al. (2004) applied multi-category support vector machine
(MSVM) to classify radiance profiles as one of three cloud
classes. The result of classificationis 90.11%. Shangguan et al.
(2007) studied texture feature analysis combined with Varia-
tional theory to extract texture features. Kaur & Ganju (2008)
used singular value decomposition (SVD) to extract the salient
spectral and textural features to classify clouds based on their
heights. This method has an accuracy of 70-90%. All the pa-
pers mentioned above used satellite images.

Recently, ground-based images have been used increasingly
in cloud classification. Buch et al. (1995) used images from
two whole-sky imagers (WSIs) to create three-dimensional vol-
ume. Binary decision trees with three groups of features (tex-
ture measures, position information, and pixel brightness) are
used to classify each pixel into one of five sky conditions. The
accuracy of classification is 61%. Calbé & Sabburg (2008)
used images from two ground-based imagers, namely, TSI and
WSC. They applied parallelepiped technique with three types of
features (texture, Fourier transform, and cloudy pixels). When
classifying eight sky conditions, it yields accuracy of 62%



Table 2
Related works on classification tree and decision tree.
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Year  Proposed method Application

Reference

Land cover classification
Cloud classification

Face authentication
Detection epileptic seizure

2000  Hierarchical tree structure
2000  Hierarchical SVM structure
2005  SVM classification tree
2007  Decision tree and FFT

(Hansen et al., 2000)
(Azimi-Sadjadi & Zekavat, 2000)
(Pang et al., 20053)

(Polat & Giineg, 2007)

and is increased to 76% when classifying five sky conditions.
Heinle et al. (2010) used whole sky images as an input for cloud
type classification. Their k-nearest neighbor (k-NN) classifier
applied 12 features from spectral features and textural features
to classify seven sky conditions. The accuracy classification is
as high as 97% but in general case with unseen data, the accu-
racy is between 75% and 88%. Martinez-Chico et al. (2011)
used radiation data and images from TSI to classify clouds
according to their heights. The result was shown as the fre-
quency of occurrence for each class. Afterwards, there were
two papers based on the previous work of Heinle et al. (2010).
First, Kazantzidis et al. (2012) proposed method to detect rain-
drops for feature extraction. The average of classification is
87.9%. Second, Liu et al. (2013) proposed the new feature
method called salient local binary pattern (SLBP). Their ac-
curacy classified by the nearest neighborhood using chi-square
metric is 93.65%. Taravat et al. (2015) used pixel values of the
whole-sky images to classify pixels into either cloud coverage
or others (cloud-free and sun). They used Multilayer perceptron
(MLP) neural networks in the classification and the overall ac-
curacy is 95.07%. Cheng & Yu (2015) used block-based clas-
sification on all-sky images to classify six sky conditions. In
each block, statistical texture features and local binary pattern
are extracted. Then, these features are classified using Bayesian
classifier which gives the accuracy of 90%. Lietal. (2016) pro-
posed new method named bag of micro-structures (BoMs) for
classifying five sky conditions using s support vector machine
(SVM) classifier. Their result yields an accuracy of 90.9%.

The input images captured from digital cameras have re-
ceived high attention from several researchers since around
2005. Singh & Glennen (2005) classified five sky conditions
using k-NN and neural network classifiers with five different
feature extraction methods. The best result has an accuracy of
64%. Souza-Echer et al. (2006) presented the new algorithm
based on a criteria decision process on Illuminant-Hue-Saturate
(IHS) space to classify each pixel as clear sky, cloudy or unde-
fined using parallelepiped method. This method estimates the
percentage of sky cloud coverage, the output yields better than
94% for classifying clear sky and better than 99% for classify-
ing cloudy sky. Most recently, Zhuo et al. (2014) introduced
color census transform (CCT) and automatic block assignment
method. Then, texture and structure information are extracted
in every block and are concatenated as a feature vector. SVM
classifier is used to classify six sky conditions and the result
is 81.17%. Kliangsuwan & Heednacram (2014) selected 18
texture features to classify seven sky conditions using ANN
and k-NN. The best classification result is 86.93%. Xia et al.
(2015) presented texture features, color features, and shape fea-

tures which performed with a hybrid method based on k-NN
and extreme learning machine (ELM). The overall accuracy of
classifying four sky conditions is 84.82%. Wu et al. (2015)
used ELM classifier to classify four sky conditions. By com-
bining three features, namely, texture features, color features,
and SIFT features, it provides accuracy is 86.64%.

From the literature survey in Table 1, the texture features are
commonly used for feature extraction. However, the classifi-
cation accuracy using only texture features is not very high;
therefore, they must be combined with other features to achieve
higher accuracy. Although some result using a digital camera
shows the high accuracy of 94%, the number of cloud classes
being considered is only two. Our previous work (Kliangsuwan
& Heednacram, 2015) proposed the new technique of FFT fea-
ture extraction called k-FFTPX. It used 18 texture features for
classifying seven cloud classes. Using ANN as a classifier, our
last accuracy was 90.04%. In this paper work, we will enhance
the accuracy of our algorithm by improving techniques used in
the classification process. We will incorporate ANN classifier
based on hierarchy classification in a tree-like fashion. More-
over, we will propose three new FFT features.

In the most recent survey, Table 2 shows various uses of hi-
erarchy classification. Hansen et al. (2000) used hierarchical
tree structure, a decision tree that applies training data to gen-
erate tree structure using pruning method to separate data into
two sets. One data set is used to grow the tree and the other
is used to prune errors. This method classifies satellite images
(AVHRR) into one of twelve classes for land cover classifica-
tion. Polat & Giines (2007) used a decision tree classifier and
fast Fourier transform (FFT) based on Welch method to classify
EEG signals as either patient or normal. Their method is used
to detect epileptic seizure. Pang et al. (2005) introduced a bi-
nary classification tree algorithm for face membership authenti-
cation. Their classification tree is constructed by clustering one
data set from the root node into two subsets. Then, clustering
procedure is repeated on both child nodes. The procedure ter-
minates when all nodes remain only either membership or non-
membership data. The result from each node of tree is trained
by SVM and all SVM classifiers are combined into SVM clas-
sification tree. From what mentioned above, the tree structure
is generated automatically from training data. However, some
researchers prefer to construct tree based on characteristics of
each class. Azimi-Sadjadi & Zekavat (2000) used satellite im-
ages (GOES 8) IR channel to classify areas into ten classes
which composed of six cloud classes and four no-cloud classes.
They used SVM classifier together with mean and standard de-
viation features to classify each block of image. Hierarchical
SVM structure was then formed to classify at most two classes



(b) Cirrostratus

(e) Stratocumulus () Curnulus

(¢) Cirrocumulus

(g) Cumulonimbus (h) Altostratus

(i) Nimbostatus (j) Stratus (k) Clear sky
Fig. 1. Ten standard cloud types by WMO.
Table 3
Seven sky conditions and their descriptions.
Class No. Cloud types Description Subtypes

1 Cirriform Hair-like, milky whitening of the blue, thin, white. Cirrus and cirrostratus
2 High cumuliform  Rounded, patched clouds of small cloudlets, white or gray. ~ Cirrocumulus and altocumulus
3 ‘Cumulus Puffy with flat bases, white or light-gray. Cumulus
4 Stratocumulus Patches of clouds, white or gray. Stratocumulus
5 ‘Cumulonimbus Mushroom-like, dark base, gray. Cumulonimbus
6 Stratiform Layer of cloud, uniform, usually overcast, gray or dark. Altostratus, nimbostratus and stratus
7 Clear sky No cloud or a very few of clouds, blue. Clear sky

on each level of hierarchy. Moreover, Parikh (1977) suggested
that hierarchical classification leads to better results than using
solely a single classification. To the best of our knowledge,
apart from SVM classifiers there is no research on hierarchy
classification using ANN classifiers. In this paper, we will de-
sign tree structure and use ANN to classify at most four classes
on each level of hierarchy. Other research on SVM used only
binary classes (two classes) per hierarchical level.

3. Cloud types

Cloud classification can have multiple criteria. However,
there are two main classifications based on shapes and their
heights. In general case, meteorologists classify cloud by
shapes into one of the three classes, namely, cirriform, cumuli-
form, and stratiform. According to the World Meteorological
Organization (WMO), clouds are classified into one of the ten
genera (classes). Each class has its own species. There are four-
teen species that describe shape, size or inside structure. In ad-
dition, many varieties can appear in each cloud type which can

be used to describe transparency or spreading or arrangement of
the cloud. Moreover, for each cloud type it may appear together
with accessory clouds and supplementary features. Each cloud
type will change shape over time and can be changed to other
types (WMO, 1956). Fig. 1 shows the example of ten cloud
types and clear sky. These clouds are grouped into seven sky
conditions as discussed in Table 3. In this table, some cloud
types are combined together because they have similar char-
acteristics. For example, cirrus and cirrostratus are grouped
into one class because cirrostratus rarely occurs in nature and
it usually appears together with cirrus. Similarly, cirrocumulus
is hardly found in nature. Hence, it is grouped with altocumulus
and being classified under the name of high cumuliform cloud.

4. Features

Two color models, namely, RGB and HSV (hue, saturation,
and value) are used for feature extraction. In this paper, digital
images are in RGB color while HSV color codes are computed
by equations below (Smith, 1978).
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Table 4

The texture features used in the image feature extraction.

Features Equations
N-1
Mean ME =) xip(x) M
i=0
Difference of mean D;;= ME; - ME; wherei, j€{R,G,B}andi # j 2
N-1
Uniformity U= ZP'(XJ 3
i=0
G-1G-1
Contrast CON = (a~byPa,b) *
a=0 b=0
G-1G-1
) - Pa,b)
Homogeneity HOM = 2 bZ:l; Tp— (5)
G-1G-1
Energy EN = Z[PA(a.b)]z (6)
a=0 b=0
G-1G-1
Entropy ENT = - PAa,b)log [P (a, b)] @)
a=0 b=0
A-1 B-1
Sum of edge pixels SE= Z e(i, J) (8)
i=0 j=0
A-1B-1
Sum of cloud pixels SC= (i, J) ©
i=0 j=0
A-1B-1
Energy of image gradient EG = (3G, )+ LG, ) (10)
i=0 j=0
(no white component) whereas the V values are brightness val-
V = max(R',G', B) (11) ues in scale of [0,1].
P, We will use a grayscale image which is computed by split-
X = R',G',B 12 E . .
min ) a2 ting channels of image as R, G, B, H, S or V channels in feature
B 0 ifv=0 13 extraction. There are two groups of features used in the ex-
S = VX iy z0 a3 perimental section which are the texture features and the new
v . .
features based on Fourier transform. These features are used
0 ifv=X together because no single feature extraction method is best
5+ % ifV=RandX =G’ suited for recognizing all classes (Singh & Glennen, 2005).
VG e , Each method has its own merits.
I_TX, ifV=RandX # G
H=: 1+%& ifv=CGandX =8 (14 41 Tou ]
37% iV =G andX # B 1. Texture feature
34 ‘(;_g(’ ifV=BandX=R We use texture feature to represent the textual contents of
5. % ifV =B andX £ R image. There are five types of texture features depending on

The notation R’, G" and B’ are R, G, B which are scaled to
[0, 1]. The H, S, and V values are all varied in a range of [0, 1].
The H values corresponds to colors varying from red through
yellow, green, cyan, blue, magenta, and back to red, so at 0 and
1 they are both red. The S values are varied so that the corre-
sponding hue colors change from unsaturated to fully saturated

data sources used in the calculation. The first type is when tex-
ture feature is extracted straight from images. These features
are mean (ME) of R, G and B, difference of mean (D;;) be-
tween each channel, and uniformity (U) of R defined by Eq. 1
to Eq. 3 (Calbé & Sabburg, 2008; Heinle et al., 2010) in Ta-
ble 4. The notation N in the equation is the number of pixels
in image, x; is a value of pixel i-th, and p(x;) is a probability of
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(a) Input image

(b) R channel image

(¢) S channel image

-

(d) FFT image of R channel

(e) FFT image of S channel

Fig. 2. A comparison of Fourier transform image of R and S channels.

x;. This type of texture features is used to distinguish between
dark clouds and white clouds as well as to separate thin clouds
like cirrus from others. However, some clouds have the same
color tone such as cumulus and stratocumulus; hence we can-
not separate them by these features alone (Heinle et al., 2010).
Therefore, other texture features will be combined to solve this
problem.

The second type is when texture feature is calculated from
Grey Level Co-occurrence Matrices (GLCM) which is a square
matrix where the number of columns equal the number of grey
levels. An element in the matrix refers to the frequency that two
pixels occurred (P*(a, b)) (Heinle et al., 2010). We will use four
of Haralick texture features (Haralick et al., 1973). The GLCM
matrix size is denoted by G and a row and a column of G are
represented by a and b, respectively. In Table 4, these type
of features are contrast (CON) of B, homogeneity (HOM) of
B, energy (EN) of B and entropy (ENT) of R, G, B, and S as
depicted by Eq. 4 to Eq. 7.

The third type of texture feature is computed from edge of
image which is calculated by canny edge detection (Canny,
1986) on R channel. The number of edge pixels is different
for each cloud class; hence it can be used to distinguish clear
sky and stratiform clouds from other cloud classes. The ENT
(Eq. 7) is calculated again, but on edge of image, this texture
feature is called entropy of edge image (EE). The sum of edge
pixels (SE) is calculated by Eq. 8. The annotation e(i, j) is a
pixel value from the i-th row and the j-th column while A and
B are the size of edge image A X B pixels, width and height,
respectively.

The fourth type of texture feature is computed from binary
image or threshold image on S channel. Threshold algorithm

is used, if pixel value is less than threshold value then the pixel
is set to one otherwise it is set to zero. The remaining pixels
in the image are cloud pixels and we can use them to separate
cloud types by considering the number of cloud pixels for each
type. The sum of cloud pixels (S C) using threshold image is
calculated by Eq. 9. The annotation ¢(i, j) is a pixel value from
the i-th row and the j-th column.

The fifth type of texture feature is computed from two gra-
dient images on S channel using Eq. 10 called energy of image
gradient (EG). The notation /, and /, describe image gradients
of row and column directions, respectively (Tian et al., 2011).
This feature is used to measure sharpness of grayscale image.

4.2. Feature based on Fourier transform

From Fig. 2, we take input RGB image (Fig. 2(a)) and trans-
form it to grayscale image by splitting channel into R, G, or B
channel. The sample of grayscale image from red channel is
shown in Fig. 2(b). The channel splitting transforms HSV im-
age to H, S or V image in grayscale. The S channel image is
shown in Fig. 2(c). We transform pixels of the grayscale image
into frequency domain by two dimensional Fast Fourier Trans-
form (2D-FFT) and we use FFT shift to move the low frequency
pixels into the center of the image (see Fig. 2(d) and Fig. 2(e)).
In Fig. 2(b) the white color in cloud areas means that the areas
have high red value while Fig. 2(c) shows the complement of
the image which presents a purity of pixels. The pixels with
the highest purity have the highest values and are represented
as white. The non-white color in cloud areas corresponds to
a mixture of colors. Furthermore, the S image provides more
details or better contrast than the R image. When both images
are transformed to FFT images, the FFT image of S channel



(Fig. 2(e)) also has better contrast than the FFT image of R
channel (Fig. 2(d)). Therefore, we will use the FFT image of S
channel and the verification of results will be presented later in
the experimental section.

Algorithm 1 The modified k-FFTPX
Input: k, a grayscale image g
Output: H
A = FFT(FFT(g))
© = FFT_Shift(A)
M =1log|0|
/* Compute the projection of M on the x-axis */
Pr=3" M(xy), xe{l,2,...n}, yel{l,2, .. ,m}
/* Split P, in k blocks and calculate Py,,(s) */
Pog(s) = %Z‘fl’f(:;;f)?l P(j), s=0,1,..k-1
Compute a feature vector H = ’;;(1, Poag(s)
return H

Algorithm 2 The half &-FFTPX
Input: k, a grayscale image g
Output: H
A = FFT(FFT(g))
© = FFT_Shift(A)
M =log|@|
/* Compute the half projection of M on the x-axis */
Po=Y0 M(x,y), xe{l,2,..,n/2}, y e {1,2,....m)}
/* Split P, in k blocks and calculate Py,,(s) */
Pagls) = L g P, s=0,1,0 k=1
Compute a feature vector H = ’f;(l, Paig(s)
return H

Algorithm 3 The & x k-FFT

Input: /1, k, a grayscale image g

Output: H

A =FFT(FFT(g))

© = FFT_Shift(A)

M =1log|0|

relt, tel"

d(r, 1) = (s x v/t + 1)mod(r)

u(r,t) = (r/)(s + Dmod(r)
ifu(m,h)=0
if u(m,h) #0

, n/2 ifu(n/2,k)=0

- { u(n/2,k) ifun/2,k)#0
/* Split M in i X k blocks and calculate Py, (s) */
xel{l,2,...n/2}, ye{l,2,...m}
Pon($) = Z) sy Zncdtnjzpy MOGY), 5= 0,1,y (hx k) = 1
Compute a feature vector H = Uﬁ;(l) Pyun(s)
return H

= { M(Zl, h)

The shape of clouds cannot be explained by texture fea-
tures alone. Therefore, we introduced features based on Fourier
transform for differentiating the shape of clouds. Moreover, it
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helps reduce the effect of unequal brightness in cloud images.
There are three types of features based on Fourier transform that
we exploit in the experiment, namely, the modified k-FFTPX,
the half k-FFTPX, and the h x k-FFT.

The modified k-FFTPX

The original A-FFTPX (Kliangsuwan & Heednacram,
2015) used coefficient approximated image from discrete
wavelet transform (DWT) to transform the image to fre-
quency domain using FFT. The projection of logarithmic
magnitude of Fourier transform image on the x-axis was
used. Then, we chose k uniform sampling values of the
projection data as k dimensions of a feature vector. All
steps are repeated twice and the second feature vector
found was concatenated to the first one. To reduce compu-
tation time, the modified k-FFTPX is proposed (see Algo-
rithm 3). The DWT is no longer used in the algorithm, a
simple grayscale image is used instead. Moreover, it does
not repeat the step of finding the second k dimensions of a
feature vector. Only the first feature vector is required.

The half k-FFTPX
This feature is similar to the modified k-FFTPX, but half k-
FFTPX operates with a half projection of logarithmic mag-
nitude of Fourier transform image on the x-axis to reduce
calculation and processing time even further (See Algo-
rithm 4).

The h X k-FFT
The h x k-FFT is used to describe the shape of clouds in
greater detail than the above two FFT features because it
uses a sampling block technique on the FFT image. After
logarithmic magnitude of Fourier transform image is cal-
culated, we take half of the image and split it into A rows
and k columns. This becomes the sub-images as depicted
in Fig. 3. The sum of pixel values in each sub-image is
then calculated. Then, each sum value is concatenated as a
feature vector V = [v1,v2,v3, ..., Vixi] (See Algorithm 5).

Both the half k--FFTPX and the 4 X k-FFT used the left half
of logarithmic magnitude of Fourier transform image for fea-
ture extraction. Since Fourier transform is the process of signal
transformation into series of sine and cosine which are odd and
even function, respectively; therefore, we can use only half im-
age for calculated features.

5. Classifier

A classifier is used to assign a feature vector of input image
to a correct output class. Learning algorithm is used to teach
classifier using training data before it can be used to classify
the image feature vector.

ANN classifier is commonly used for automatic cloud clas-
sification (Lee et al., 1990; Bankert, 1994; Singh & Glennen,
2005). Itis a nonlinear classifier which can solve complex prob-
lems, and gives relatively high accuracy. Three main layers in



; Sub-image |

Sum pixel values of each sub-image
and concatenate the sum

|

V=[v1, v2, V3, ... Viok]

Fig. 3. The h x k-FFT diagram.

ANN are input, hidden, and output layers. ANN is trained us-
ing back propagation algorithm based on gradient descent tech-
nique that maps inputs to outputs by adjusting weights (Duda
et al., 2001; Saechai et al., 2013; Heednacram & Werapun,
2014). Input of each node is calculated by net activation equa-
tion and its output is calculated using activation function. There
are many activation functions, each with difference characteris-
tics. In our experiments, a hyperbolic tangent function is set as
the activation function for both hidden and output layers. The
activation function of input layer is set to linear so the input
remains unchanged. The number of hidden layers is one. In
general, a single hidden layer can approximate a solution to
any problem, if the number of hidden nodes is enough (Heed-
nacram & Samitalampa, 2014). The number of hidden nodes is
set between the number of input nodes and the number of output
nodes. We set the number of hidden nodes to 9 for the first level
of the tree and 11 for the second and third level. The number of
input nodes is equal to the size of a feature vector and the num-
ber of output nodes is equal to the number of classes which is
seven. Learning rate is set to 0.01. If it is set to a smaller value,
learning process will consume more time to construct a correct
model. On the other hand, if it is set to a larger value, learning
process will use less time to construct a model but the error may
be high. Therefore, learning rate should be set to a reasonable
small value. Momentum is set to 0.9 for avoiding local mini-
mum in the learning process. Stopping criteria is a criterion to
stop learning process. We set stopping criteria when error in the
training process reaches 0.001. All weights are initially fixed
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for our first three experiments. In the final experiment, random
weights are used to achieve better classification performance.

6. Methodology

This section, we introduce the algorithm for cloud type clas-
sification based on classification tree. Fig. 4 shows a hierarchy
classification of clouds in a tree-like fashion. There are three
levels of classification. In each level of classification, instances
are classified at the internal node (black circle in Fig. 4) using
ANN classifier. Different features are used depending on the
types of clouds being classified. For seven types of cloud, their
abbreviations and their descriptions we recommend readers to
revisit Table 3. Level 1, clouded sky and clear sky are separated
by the texture features. At this level, we select the most suitable
five features introduced in Section 4.1. Level 2 deals with three
different forms of clouds which are cirriform, stratiform, and
cumuliform. At this level, the modified k-FFTPX, the half k-
FFTPX, and the h x k-FFT are tested and the best performed
feature is used to distinguish the three forms of clouds. Level
3, cumuliform clouds with different shapes are classified using
two texture features and one of the best performed feature from
the modified k-FFTPX, the half k-FFTPX or the hxk-FFT. Note
that leaves of the tree are the result of classification.

Input
Clouded sky Clear sky
Cirriform Cumuliform Stratiform
High cumuliform Cumulus Stratocumulus Cumulonimbus

Fig. 4. Cloud classification tree.

There are two main algorithms which are used to construct
ANN models and to classify instances based on the classifica-
tion tree. To construct ANN models, Algorithm 6 is presented.
The color ground-based images are scaled to 240 x 320 pixels
before transforming to grayscale images for feature extraction.
The texture features described in Section 4.1 are selected by
Algorithm 7 and ANN model for Level 1 is then constructed.
After testing the three FFT features, ANN model for Level 2
is trained by the best performed FFT feature. Note that the
optimization of k value for the first two FFT features uses Al-
gorithm 8 while the optimization of /2 and k values for the /1 x k-
FFT uses Algorithm 9. The three FFT feature vectors are com-
puted using Algorithm 3, 4, and 5, respectively. To construct
ANN model for Level 3, the best performed FFT feature is ap-
pended to the suitable set of texture features. The set of texture



Algorithm 4 Building ANN models

Input: all color images
Output: Cy, C2,and C3
Resize all color images to n x m resolution
/* Create a model to classify clouded and clear sky */
for cach image i do
Calculate a vector of texture features F
end for
Build a matrix Fy; from feature vector F
for each image i do
Put answer into a matrix 7' by visual inspection
end for
Use Fy; to find suitable texture features F
Train classifier Cy using I’y and T
/* Create a model to classify three forms of clouds */
Feed all clouded images
Ky = optimization of k value for modified-k-FFTPX
Ky = optimization of k value for half-k-FFTPX
[H;, K1] = optimization of k and k values for i X k-FFT
for each clouded image i do
F,1 = call modified-k-FFTPX function using K
Fj1 = call half-k-FFTPX function using K
F, = call h X k-FFT function using H; and K
end for
Build a matrix Fg, from feature vector F;
Build a matrix Fy; from feature vector Fj,
Build a matrix Fyg from feature vector I
for cach clouded image i do
Put answer into a matrix T, by visual inspection
end for
Fyy1 = testFeatures(Fg, Fy, Frk)
/* testFeatures return the best FFT feature */
Train classifier C, using Fyy and 7>
/* Create a model to classify four cumuliform clouds */
Feed all cumuliform images
K = optimization of k value for modified-k-FFTPX
Kp» = optimization of k value for half-k-FFTPX
[H>, K>] = optimization of & and k values for i x k-FFT
for each cumuliform image i do
F > = call modified-k-FFTPX function using K
Fy = call half-k-FFTPX function using Ky
Fe = call h x k-FFT function using A, and K,
Calculate a vector of texture features F»
end for
Build a matrix Fg; from feature vector F,
Build a matrix Fys3 from feature vector Fjy
Build a matrix Fpg» from feature vector F»
Build a matrix Fr from feature vector F»
for each cumuliform image i do
Put answer into a matrix 73 by visual inspection
end for
Fp = testFeatures(Fio, Fro, Fryka)
Use Fr and Fyy, to find suitable texture features Fy;
Fp = appendFeatures(F 2, Fn)
Train classifier C3 using Fp and T3
return Cy, Ca, and C;
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Algorithm 5 Selection of a suitable minimal set of features
Input: F[1..n], H[1...(h X K)][1...N], Acc
QOutput: result, resultldx, score
/* F is a vector of n texture features, H is a matrix of feature
vectors, Acc is a user-defined accuracy */
result = an empty sequence
resultldx = an empty sequence
score[1...n][1...n] initial with zero  /* record % accuracy */
temp = F, seq[1...n], c=n
for i=1;i <n;i++ do

seqli]=i
end for
for i=1;i < n;i++ do
for j=1;j<c; j++ do
if H is empty then
score[i][ j]1=classify(result ~ temp[j])
else
score[i][ j1=classify(result ~ temp[;].H)
end if
end for
[max Val, maxIdx]=max(score[i])
result=result ~ temp[maxIdx]
resultldx=resultldx ~ seq[maxIdx]
Remove temp[maxIdx]
Remove seq[maxIdx]
c=c-1
if maxVal > Acc then
return result, resultldx, score
end if
end for
return result, resultldx, score

Algorithm 6 Optimization of k value
Input: K /* user-defined maximum threshold */
Output: k, score
k=0, Acc=0
score[1...K] initial with zero
for i=1;i < K;i++ do

score[i]=classify(i)
if score[i] > Acc then
Acc = scoreli]
k=i
end if
end for
return k, score

features are derived from Algorithm 7 using the 18 texture fea-
tures and the best FFT feature vectors as the inputs. Finally, to
classify instances based on the classification tree, Cloud Classi-
fication Tree Algorithm (CCTA) is elaborated in Algorithm 10.
The images are scaled and transformed in the same manner as
described before in Algorithm 6. The same feature extraction
methods which used to train ANN models are used to form fea-
ture vectors for classifying instances according to the classifi-
cation tree in Fig. 4.



Algorithm 7 Optimization of & X k value

Input: H, K /* user-defined maximum threshold */
Output: A, k, score
h=0, k=0, Acc=0
score[1...H][1...K] initial with zero
for i=1;i < H; i++ do
for j=1; j< K ; j++ do
scoreli][ j]1=classify(i. j)
if score[i][j] > Acc then
Acc = score[i][ ]
h=i, k=]
end if
end for
end for
return h, k, score

Algorithm 8 Cloud Classification Tree Algorithm (CCTA)

/* Test ANN models using the test data */
Input: all test images, Cy, Ca, C3
Output: Cyy
for cach test image i do
Extract a feature vector F; for model C
R, = Classify(Fy, Cy)
if R is clear sky then
CS = Class No. 7
else
/* Three forms of clouds */
Extract a feature vector F, for model C,
R» = Classify(F», C2)
if R, is cirriform then
CS§ = Class No. 1
else if R, is stratiform then
CS§ = Class No. 6
else
/* Cumuliform clouds */
Extract a feature vector F3 for model C3
R3 = Classify(F3, C3)
if R is high comuliform then
CS = Class No. 2
else if R; is cumulus then
CS = Class No. 3
else if R; is stratocumulus then
CS = Class No. 4
else
CS = Class No. 5
end if
end if
end if
end for
Build a confusion matrix Cy; from CS
return Cy
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7. Experimental results

In the following experiments, we used 1,660 ground-based
images from digital camera. Some cloud types are rare
naturally-occurring types; hence the number of images per class
is collected based on the frequency of cloud occurrence in na-
ture. The classification of cloud images is very challenging be-
cause these images are taken from different views and come
in different sizes but they all have at least 640 x 480 pixels in
JPEG format. Therefore, we can scale all the images down to
320%240 pixels. Least-One-Out-Cross-Validation (LOOCV) is
used for result evaluation. There are four experiments and the
first three experiments match to the three levels of classifica-
tion tree in Fig. 4. In the first experiment, we classify instances
into two classes either cloud or no-cloud (clear sky). In the
second experiment, we classify three groups of clouds by con-
sidering their forms. In the third experiment, we classify four
cloud classes by considering lumpy appearances of cumuliform
clouds. Finally, all levels in the classification tree are combined
together for the final classification.

7.1. Level I - Cloud or no-cloud

The set of n texture features are sent to Algorithm 7. In this
experiment, n is set to 18 which refers to the 18 texture features
are described in Section 4.1. Algorithm 7 is used to select a
suitable minimal set of features.

Table 5 shows the five-iteration results from Algorithm 7
which keep in the score matrix when Acc or expected accuracy
value is set to 100%. Each iteration, one suitable feature is se-
lected from the feature set (F) that has a maximum outcome of
accuracy. On the next iteration, the previously selected feature
will be concatenated with the remaining features for another
classification round. The iteration is repeated until the accuracy
reaches the expected value. As a result, we selected five texture
features from Table 5 and referred to them as a suitable mini-
mal set of features. These features in order of being added to
the set (on each iteration) are EG, SE, ENT(R), D(G — B), and
ME(G), respectively. Note that on the final iteration, ME(B)
can also be chosen in place of ME(G) as they both yielded the
same result. The five features are used in the process of build-
ing ANN model for Level 1 to classify clouded sky and clear
sky in Algorithm 6. After executing Algorithm 10, we obtain
the result for classifying cloud and no-cloud. The accuracy is as
high as 100%. The advantage of Algorithm 7 is the flexibility
of user-defined accuracy (Acc). For example, if Acc is expected
at 92.25%, the algorithm will run only two iterations and only
two features are used to classify cloud and no-cloud. Our al-
gorithm is designed to have freedom to trade-off accuracy with
computation time.

7.2. Level 2 -Three forms of clouds

The aim of this level is to classify three forms of clouds
which are cirriform, stratiform, and cumuliform. In this experi-
ment, features based on Fourier transform are used, namely, the
modified k&-FFTPX, the half ~-FFTPX, and the & X k-FFT. How-
ever, only one of these features will be selected by Algorithm 6.



Table 5

Accuracy (%) in selection of suitable features for classifying between cloud and no-cloud.
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. Features
lteration ey ME (G) ME ) D(R-C) D(RB) D(GB U CON HOM EN ENT(R) ENT(G) ENT(B) ENT(S) FE _SE__SC_EG
1 50 50 5494 5203 8275 S8I81 06983 60.50 50.23 50 7347 50 5376 4997 85.65 8544 50 86.04
2 50 50 50 50 50 50 4997 4937 50 8675 50 50 50 50 50 9225 92.17 -
3 9771 9771 9693  99.03  98.84  98.65 98.28 97.57 96.93 97.38 99.19 9776  96.55 97 9599 - 99.06 -
4 96.29 9839 9473  99.48 50 99.97 9291 98.37 89.72 95.86 50 50 9641 50 - 50 -
5 99.97 100 100 9977 99.74 - 9977 99.77 99.77 99.77 99.77 9977 9977 9977 - 9977 -
i‘zlztemﬁcy of the modified 20-FFTPX when channel is varied. The optimization of k value for the first FFT feature, the mod-
) ified k-FFTPX, is performed by Algorithm 8. Fig. 5 shows the
Channel R G B H S v result of finding the optimized k value when £ is varied from
Accuracy (%) 7430 6323 6122 7939 8125 61.64 I to 30. The accuracy of this feature on S channel reaches the

Table 6 shows the accuracy of classification using the mod-
ified k-FFTPX for k equal to 20. Each color channel is tested
in the feature extraction process. The accuracy of S channel is
higher than the five other channels. This result confirms that the
use of FFT image of S channel has paid off. Hence, we will use
the information obtained from this channel for the remaining
experiments.

100

/.————'—"‘\v—_,,_—-O
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Fig. 5. Accuracy of the modified k-FFTPX on S channel when £ is varied.
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Fig. 6. Accuracy of the half k-FFTPX on S channel when k is varied.
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peak of 88.06% when k is 19. The k value for the second FFT
feature, the half k-FFTPX, is also optimized by Algorithm 8.
Fig. 6 shows that the proper setting of k value for this feature
is 16 which gives the accuracy of 87.20%. The optimization of
h and k values for the third FFT feature, the & x k-FFT, is per-
formed by Algorithm 9. Table 7 shows that when 7 is equal to
12 and k is equal to 6, it yields the highest accuracy at 95.70%.
This accuracy is more than the results of the modified k-FFTPX
and the half k&-FFTPX. Even with a smaller size (14 dimensions)
of feature vector; h is equal to 7 and & is equal to 2, the method
still provides 90.38% accuracy (see Table 7). Consequently,
the h x k-FFT outperforms the two previous FFT features. At
this level of classification tree, the best feature for distinguish-
ing three forms of clouds has been identified as the & x k-FFT.
The advantage of this approach is that users are not required to
manually specify i and k values. Our algorithm will choose the
optimized values for & and k automatically.

Table 8
Confusion matrix classifying three forms of clouds using 12 x 6-FFT.

Classified as
True class > 3
1 90.95 8.64 0.41
2 .20 98.80 0
3 1.06 1.59  97.35

Table 8.shows the confusion matrix obtained from Algo-
rithm 10. Class 1, 2 and 3 are cirriform, cumuliform and strat-
iform, respectively. The classification results of Class 2 and
Class 3 are close to 100%. However, there is some misclassi-
fication of Class 1 as Class 2. This is because cirriform often
occurs with cirrocumulus which belongs to Class 2. Neverthe-
less, the accuracy of Class 1 classification is still above 90%.
The average accuracy of classification at this level is 95.70%.

7.3. Level 3 - Shapes of cumuliform clouds

Considering lumpy appearances of cumuliform clouds, they
can be rounded, pufty, patchy, and mushroom-like. The aim of
this level is to classify four classes of cumuliform clouds which
are high cumuliform, cumulus, stratocumulus, and cumulonim-
bus. Three features based on Fourier transform are tested in
the same way as in Section 7.2. However, the best performed
feature is also appended to a suitable minimal set of texture fea-
tures computed by Algorithm 7.



Table 7
Accuracy (%) of the h X k-FFT when # and k are varied.
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1 val k value
e 2 3 3 5 6 7 8 9 10 1l 2
1 48.27 4571 76,59 78.83 3333 8435 85.6 8548 3333 8656 8576 6441
2 3402 8072 8259 80.18 8627 6496 886 71.09 8484 4266 88.84 86.72
3 81.6 88.19  86.69 88.05 7872 8951 89.25 91.12  89.606 91.3 88.47 92.12
4 83.02 6353 6531 7195 7125 7779 9044 9031 9446 47.16 65.16 7895
5 84.14 8881 892 553 9038 91.24 89.09 8465 9101 8853 9338 4522
6 85.6 8094 7806 6158 91.16 9256 9257 9365 95.16 65.8 46.76  90.68
7 8499 9038 91.58 89.05 90.62 9144 9154 9201 91.83 9096 6628 9522
8 66.83  28.87 90.9 9458 2792 9032 9219 67.82 9496 7041 92.6 88.75
9 8492 8623 9121 9097 9365 91.09 90.88 9048 9347 6729 69.6 7545
10 85.3 64.31 90.2 81.9 94.53 87.1 89.69 89.17 685 9145 9349 8531
11 38.8 89.61 89.58 70.22 9028 7936 83.22 91.38 9198 93.02 90.63 90.39
12 86.22 89.58 8132 9417 6602 957 8846 9077 89.85 7249 9492 89.08
%0 which is about 12-14% higher than the two previous FFT fea-
80 tures. Thus, at this level of classification tree, the 9 X 10-FFT is
0 served as the best performed FFT feature.
The 18 texture features and the 9 x 10-FFT are passed to
3\?60 P Algorithm 7 for the additional process of selecting a minimal
750 set of texture features. Table 10 shows the two-iteration results
540 where the selected texture features are EE and D(G - B), re-
2 o spectively. By concatenating the two suitable texture features
with the 9 x 10-FFT, we obtain the confusion matrix as shown
20 in Table 11. Class 1, 2, 3 and 4 are high cumuliform, cumulus,
10 stratocumulus, and cumulonimbus, respectively. The classifica-
. tion results of Class 1 and Class 2 are well above 95%. The ac-
0 5 10 15 20 25 30 35 curacy of Class 3 classification is almost 100%. However, there
k values

Fig. 7. Accuracy of the modified k-FFTPX on § channel when k is varied.
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are slight misclassifications of Class 4 as Class 2 and Class 4 as
Class 3. This is because when cumulus is expanded high into
the sky, it appears similar to cumulonimbus. Likewise, when
cloudlets are very close together, stratocumulus appears similar
to cumulonimbus. Nevertheless, the average accuracy of clas-
sification at this level is still high at 96.29%.

Table 11
Confusion matrix classifying four cumuliform clouds.

Accuracy (%o)
g8 B

15

15 20
k values

25

Fig. 8. Accuracy of the half ~-FFTPX on S channel when k is varied.

Fig. 7 shows the result of finding the suitable k value for the
modified k-FFTPX using Algorithm 8. The best accuracy is at
76.95% for k equal to 16. The result of finding the suitable k
value for the half k-FFTPX is shown in Fig. 8. The best ac-
curacy here is slightly decreased to 74.55% for k equal to 26.
Table 9 shows the result of finding the suitable /4 and k values
for the hxk-FFT using Algorithm 9. When / is equal to 9 and
k is equal to 10, the feature yields the highest accuracy at 89%

12

'y Classified as
True class T 5 3 7
1 97.32  L.19 1.49 0
2 2.59 95.69 1.29 0.43
3 0 0 99.36  0.64
4 0 3.20 4 92.80

7.4. All level - A complete classificaion tree

In this experiment, all ANN models from Section 7.1 to 7.3
are combined for hierarchy classification as per the proposed
tree in Fig. 4. When Algorithm 10 is executed, the confusion
matrix is obtained as shown in Table 12. Class 1 to Class 7
are cirriform, high cumuliform, cumulus, stratocumulus, cumu-
lonimbus, stratiform, and clear sky, respectively. The classifi-
cation results of seven classes are all above 96%. Five of the
seven classes have the accuracy higher than 98%. The accuracy
of clear sky classification reaches 100%. The overall accuracy
of classification is 98.08%.



Table 9
Accuracy (%) of the h x k-FFT when h and k are varied.
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h value k value
2 3 4 5 6 7 8 9 10 11 12
1 44.06  57.31 585 6315 304 6598 6757 6955 6936 6209 5683  62.1
2 4483 5747 6263 6389 6696 67.08 577  68.15 69.08 69 70.18  70.07
3 56.19  69.61 7475 76.63 78.41 7889 77.04 78.06 8278 4793 33.4 78.44
4 488 7195 5946 7573 7864 7198 T71.68 5341 6372 2595 77.11 79.95
5 57.27 7328 7861 7818 2557 29.04 7891 6324 8099 62.15 8022 8433
6 64.69 7537 7975 6374 39.05 683 5287 76.14 83.14 7248 81.09 8753
7 68.98 5444 7781 7584 7996 7157 6654 80.23 80.76 80.52 8497 51.77
8 707 7559  61.01 352 7813 8415 8207 8251 8228 8831 8423 84.09
9 69.14 76,15 7771  80.55 81.1 81.54 8419 8283 53.11 89 8745 85.16
10 711 7791 46.05 7746 2481 87 7941 772 8507 8524 8841 8421
11 60.48 775 7865 7953 81.85 8538 8197 8327 8505 88.17 86.61 8496
12 70.23  53.86 8271 8407 7834 84.04 7149 8442 8889 88.73 8595 8745
Table 10
Accuracy (%) in selection of suitable texture features for classifying cumuliform clouds.
Iteration Features
ME (R) ME (G) ME (B) D(R-G) D(R-B) D(G-B) U CON HOM EN ENT (R) ENT(G) ENT(B) ENT(S) EE SE SC EG
1 57.35 3745 2820 5445 6598 7398 8270 42.73 82.63 81.38 25.19 83.30 86.75 88.88 93.24 91.57 28.55 25.73
2 91.79 91.04 90.82 9142 9284  96.29 9296 94.16 9448 9242 91.52 93.90 91.97 95.53 - 93.75 96.21 92.10
Table 12

Confusion matrix classifying seven cloud types.

Classified as

True class T 3 3 7 5 rs vl
1 97.49 0 0 0 2.06 0.45 0
2 0.68 98.18 0.63 0.24 0.27 0 0
3 0 0.73 98.06 0.86 0.34 0 0
4 0.74 0.23 0.68  98.10 0.26 0 0
5 232 0 0.16 0.96 96.40 0.16 0
6 L.11 0 0 0 0.58 98.31 0
7 0 0 0 0 0 0 100

8. Hardware implementation and future work

‘We have recently built a low-cost cloud monitoring station
at Prince of Songkla University, Phuket, Thailand. Our hard-
ware is designed to capture whole sky images. The hardware
has 5 main components as depicted in Fig. 9. The first compo-
nent is a glass dome for protecting the hardware from the rain
and dust particles. The second component consists of a digital
camera with fish-eye lens of 170° FOV. This provides a color
images with a resolution of 2048 x 1536 pixels in JPEG format.
The third component is a Raspberry Pi 2 Model B processor for
controlling camera and cooling device. The fourth component
is a humidity and temperature sensor, DHT22. The final com-
ponent is a cooling device that will be activated only if a tem-
perature inside the glass dome is above 30° C. Fig. 10 shows
the hardware installation and the sample image obtained from
the station. The images from the station are being recorded ev-
ery 5 minutes. Once we have sufficient number of images, our
future work is to deploy the algorithms presented in this paper
for cloud classification at this specific location. Our algorithms
will be also further modified to have a small computational time
so they can be used on a smart phone.

Glass Dome

Digital Camera

Raspberry Pi

E
T
3
£

3

Cooling Device

Fig. 9. Simple hardware design for a low-cost cloud monitoring station,

9. Conclusion

To achieve high accuracy of cloud classification, we designed
hierarchical classification (tree structure) based on forms and
shapes of clouds. The design was composed of three levels of
tree, with the aim to classify seven sky conditions. Three new
FFT features were proposed to use in the classification process,
namely, the modified k-FFTPX, the half k-FFTPX, and the hxk-
FFT. Three ANN classifiers were trained separately on each
level of the tree. Unlike other previous works, we used ANN
to classify up to four classes while others used SVM to clas-



(a) Hardware installation.

L
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(b) A sample image.

Fig. 10. Cloud monitoring station at PSU Phuket.

sify only two classes. The classification result of Level 1 yields
the accuracy of 100% using texture features. The accuracy of
classification for Level 2 is 95.70% based on a selection of FFT
features. The classification result of Level 3 is 96.29% using
texture features and the best performed FFT feature. Over-
all, a complete classification tree provides a high accuracy of
98.08%. This is because the arrangement of classification tree
helps reduce the number of competitions among the classes.
The number of features used in the algorithms was also selected
at minimal sufficient but still gave satisfied results at less com-
putational time. Consider the past papers listed in Table 1, al-
though some of the accuracies are higher than 90%, the number
of classified cloud classes are limited to fewer classes. In this
paper, the result is better than our two previous works (Kliang-
suwan & Heednacram, 2014, 2015). Thus, it confirms that the
hierarchical classification performs better than a single classifi-
cation.

Our method accepts any input images from the ten standard
cloud types shown in Fig. 1. Although, some cloud types are
rare naturally-occurring types especially for Phuket, the method
can be extended further to classify eleven cloud classes (ten
standard cloud types and one clear sky) if application requires.
In addition, the advantage of classification tree over other meth-
ods is that the classification result at each level of the tree is
known and available in hierarchical structure; therefore, the
classification tree can be easily reconfigured or rearranged to
suit user needs. For example, the tree can be used to classify
only cloud or no-cloud or even lesser number of cloud types.
With this benefit, our method can provide a wider range of ap-
plications. However, the drawback of our method is that the
errors from the first level of the tree may be carried on to the
second level and so on. Hence, in the design of the tree we must
place low-misclassified classes before the high-misclassified
classes. Furthermore, our method cannot deal with simulta-
neous appearances of more than one cloud class on the same
image. We suggest solving this problem using modified sub-
images or considering clouds as objects.

In conclusion, our three main contributions are the new cloud
classification method called CCTA, the three novel FFT fea-
tures, and the presentation of our eight algorithms to readers
who prefer the implementation of the method. Our algorithms
can also be adapted to suit user requirements. Users can de-
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fine their own accuracy to gain higher speed in calculation. The
future work is to fine-tune our algorithms to fit Phuket sky con-
ditions and to improve our low-cost cloud monitoring station
so that it can produce an acceptable computational time for
weather forecast on mobile devices.
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A Low-Cost Local Cloud Monitoring System

Thitinan Kliangsuwan
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Abstract—In this paper, a local cloud monitoring station
equipped with a fisheye lens camera is proposed and installed
at Prince of Songkla University, Phuket Campus. The station
retrieves cloud images in conjunction with several meteorological
sensors. The methodology and cloud classifier algorithm is
proposed. The performance test using images captured from
our cloud monitoring station shows that the cloud classification
accuracy in practice is as high as 98.58%. The installed cloud
monitoring system can report live cloud conditions and display
them on a mobile application. Our complete system is inexpensive
and suitable for local use of weather monitoring and alerting.

Index Terms—Image processing, cloud classification, ground-
based images.

I. INTRODUCTION

Different cloud characteristics can distinguish different
weather conditions. The study of cloud types is useful in
weather prediction and the prevention of natural disasters.
Automatic cloud classification has been introduced since 1977
[1]. In early stage, satellite images have been used as an
input for automatic cloud classification. However, they are
not suitable to be used for local cloud classification due to
their lack of local details of clouds on a specific area [2]-[4].
Besides, this solution is expensive and the access to satellite
images is sometimes restricted.

Recently, ground-based images have been increasingly used
for cloud classification because they can provide more specific
information and have lower cost than satellite images. To
cover large area in the sky, various ground-based imagers were
developed for capturing sky image with wide angle such as
total sky imager (TSI) and the whole sky camera (WSC) [5].
Calbo and Sabburg [2] used input images from TSI and WSC.
In their paper, texture, Fourier transform, and cloudy pixels
features are extracted and parallelepiped technique is used to
classify eight sky conditions which yields accuracy of 62%. It
is increased to 76% when classifying only five sky conditions.
Heinle et al. [3] used k-nearest neighbor (k-NN) classifier
with 12 features from spectral features and textural features to
classify seven sky conditions. The accuracy of classification is
between 75% and 88%. Based on previous work of Heinle et
al., Liu et al. [4] proposed the new feature extraction technique
called salient local binary pattern (SLBP). The classification
result using the nearest neighborhood is 93.65%. Cheng and
Yu [6] applied block-based classification on all-sky images. In
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each block, statistical texture features and local binary pattern
are extracted and used to classify six sky conditions using
Bayesian classifier. The result yields the accuracy of 90%.
Li et al. [7] proposed the new method called bag of micro-
structures (BoMs). Five sky conditions are classified using
support vector machine (SVM) classifier. The result gives
an accuracy of 90.9%. All research mentioned above used
ground-based imagers which are still rather expensive and not
appropriate for our research group that has limited budget and
has no imagers such as TSI or WSC.

In this paper, we use ground-based images from our low-
cost cloud station to develop an automatic cloud classification
system. Seven cloud types are considered, namely, cirriform
clouds, high cumuliform clouds, stratocumulus clouds, cu-
mulus clouds, cumulonimbus clouds, stratiform clouds, and
clear sky. Fourier transform and texture features are used
in the feature extraction process. Moreover, meteorological
data from our weather station are combined together with a
feature vector to improve the result. Artificial neural network
classifier is used in the classification process. Finally, a low-
cost cloud monitoring system is constructed and monitored via
mobile application. We organize the paper as follows. First,
we suggest the low-cost cloud monitoring station. Second,
the system overview of our system is described. Third, we
introduce features and classifier. Fourth, we explain our cloud
classification algorithm. Fifth, the experimental results are pre-
sented and discussed. Sixth, we present our mobile application.
Lastly, we conclude our contribution and suggest the future
work.

II. Low-CosT CLOUD MONITORING STATION

Two stations from our low-cost cloud monitoring system
are described. These are cloud station and weather station.

A. Cloud Station

Our cloud station is implemented according to the design
shown in Fig. 1. It is composed of four compartments. Each
compartment is equipped with a different device. To withstand
sun and rain, a plastic material is used to construct the body
part using a 3D printer. The first compartment is used for
mounting a cooling device (an exhaustive fan) The cooling
device will run when a temperature inside is more than 30°C.
Inside of this component, there is a large ventilation hole in
the middle. In the bottom, there are four small outer holes



for mounting with the holding plate while the top of this
compartment has a twist connector for connecting with a
control device compartment. The second compartment is used
for mounting a control device (Raspberry Pi 2 Model B).
Inside of this component, there are a Raspberry Pi board
to capture images and control cooling device and a DHT22
which is humidity and temperature sensor. There are two
holes at the bottom for air passage. Two twist connectors
are at the top and bottom for connecting with the previous
and the next compartment. The third compartment is used for
mounting a digital camera. The digital camera can capture
color image 170° field of view (FOV) with a resolution of
2048 x 1536 pixels in JPEG format. There is a square hole
for air passage coming from the first compartment and there
is an extended column to hold a digital camera in the center.
A twist connector is on the side and will be joined with a
glass dome. The fourth compartment is used for mounting a
glass dome which protects camera from the rain and other
particles. This compartment has a glass dome on the top. At
the bottom, there is a twist connector to connect a glass dome
compartment with a digital camera compartment. Finally, all
four compartments are connected as the cloud station (see Fig.
3)

Glass Dome and
Its Compartment

Raspberry Pi

Digital |
and DHT22

Camera

Cooling
Device

Fig. 1: Hardware architecture.

B. Weather Station

Fig. 2 shows the Oregon scientific professional WMR200A
weather station which is composed of several meteorological
sensors such as a temperature sensor, a humidity sensor, a wind
sensor, a rain gauge, and a solar panel. A device can capture
over ten weather measurements such as indoor / outdoor
temperature and humidity, wind speed and direction, wind
chill, dew point, heat index, barometric pressure and rainfall
data. All of these data are sent to the central data logger.

The cost of our cloud station is around 142 USD while
the cost of WMR200A weather station is around 350 USD.
In total, our estimated budget for building a complete system

202

is 492 USD which is cheaper than using TSI-880 (around
30,000-35,000 USD) and WSC (about 2,500 USD) [8].

‘Wind Sensor

Solar Cell

Temperature Sensor

Rain Sensor

Data Logger

Fig. 2: Weather station.

III. SYSTEM OVERVIEW

Fig. 3 shows an overview of a local cloud monitoring
system. Two data sources are used to provide the information
for our database. The first source is the whole sky images
captured from the cloud station every 5 minutes. The second
source comes from meteorological sensors such as a temper-
ature and humidity sensor, a wind sensor, a rain gauge and
so on. These meteorological data are sent every 5 minutes to
the data logger before forwarding to the server and kept in
the database. Mobile application is developed to retrieve the
images and the meteorological data for real-time classification
purposes. Mobile users can also view live cloud images and

live meteorological data from our station.

|
-/Sever
N

Data logger
Cloud station

o

‘Weather station

Mobile application

Fig. 3: Overview of a local cloud monitoring system.
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IV. FEATURE EXTRACTION AND CLASSIFIER

Two feature extraction techniques are described, namely,
Fourier transform feature and texture features. These features
are extracted from grayscale image by splitting channels of the
image into Red (R), Green (G), or Blue (B) channel. Moreover,
we also split channels of Hue-Saturation-Value (HSV) color
model into H, S, or V channel for grayscale image.

A. Texture Feature

Two types of texture features are used for feature extraction.
The first type is extracted directly from image. These features
are mean of R channel, standard deviation of B channel
and difference of mean among the three channels [2], [3].
The second type is extracted from Grey Level Co-occurrence
Matrix [3]. We use 11 Haralick texture features excluding fs,
fia, and fi4 [9]. The 11 features are computed only on R
channel except that f, and f5 are computed both on R and
B channels. There are 5 features from the first type and 13
features from the second type, therefore, there are 18 texture
features in total. These features were used in our previous
works [10], [11].

B. Fourier Transform Feature

This feature is powerful in recognizing different shapes
of clouds which cannot all recognize by texture features.
Moreover, the feature can also reduce the effect of different
luminance in cloud images. The h x k-FFT is firstly introduced
in our previous work [12]. It uses S channel obtained from
splitting channel of HSV as grayscale image to transform
the pixels into frequency domain using two dimensional Fast
Fourier Transform (2D-FFT). Then, we use FFT shift to move
the low frequency pixels into the center of image and calculate
logarithmic magnitude of Fourier transform image. We use
only half of the image and split it into A rows and k£ columns
which becomes /i x k sub-images. After that, we sum all
pixels in each sub-image and concatenate these sum values
as a feature vector.

C. Artificial Neural Network

Artificial neural network (ANN) classifier is often used to
handle complex problems. Back propagation algorithm based
on gradient descent technique is used to train ANN. The
network is composed of three main layers which are input
layer, hidden layer, and output layer [13]. Each layer is
composed of one or more nodes. The output of each node
is calculated using activation function. We use a hyperbolic
tangent function as the activation function for hidden layer
and output layer. The activation function of input layer is set
to a linear function. The number of hidden layers is set to
one because a single hidden layer can estimate a result of any
problems, if the number of hidden nodes is sufficient [14]. We
set the number of hidden nodes to 11. Learning rate is set to
0.01 and momentum is set to 0.9. Stopping criteria is set to
0.001, therefore, when the error in the training process reduces
to 0.001, the process will stop.
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V. METHODOLOGY

In Fig. 4, the input image to our system will be in RGB
color. Then, the image will pass to cloud classification algo-
rithm and return the output class which belongs to one of the
seven cloud types. Each stage is explained in more details as
follows.

| Input RGB image I
Preprocessing
{ Resize |

RGB2HSV
Y

| Split channel |

i
| Segmentation ‘
i

‘ Feature Extraction ‘

Training Testing

| Building classifier algorithm ‘

v L2
| Classifier model |

i

‘ Output class

| Feature vectors | | Label vectors |

Fig. 4: System overview of proposed cloud classification.

In the preprocessing step, the image resolution is scaled for
a suitable size. Channel splitting is used to convert an RGB
image to a grayscale image. Moreover, the transformation
of RGB to HSV color model (RGB2HSV) is used before
channel splitting of HSV. Then, we use a binary mask image
for segmentation. A segmentation of each pixel is made by
multiplying a pixel value of image with a mask pixel in the
same position; the result is set to zero if the pixel value
is multiplied by zero, otherwise the result is equal to the
pixel value itself if it is multiplied by one. By removing
the unwanted parts such as buildings and trees, the output
of segmentation will give only clouds and sky. Then, we
extract texture feature and Fourier transform feature from the
image. The classification is performed based on the extracted
features. There are two parts involved in this step which are
the training and the testing. The training process is used to
construct a classifier model by building classifier algorithm
(see Algorithm 1) using feature vectors together with their
pre-defined classes (label vectors). Then, the classifier model
is tested by utilizing feature vectors in the testing process.
The automatic cloud classification system will be implemented
and installed at Prince of Songkla University, Phuket Campus
where local cloud classification will be performed every 5
minutes.



Algorithm 1 Building classifier algorithm
Input: all training grayscale n images, label vectors L
Output: classifier model C'
Compute a feature vector H K from h x k-FFT [12]
Compute M as the second feature vector
/# In Experiment A, set M to the 18 texture features */
/* In Experiment B, set M to the 16 meteorological data */
Set V=M"HK
Build a matrix F' from a vector V for all n images
Build a label matrix 7" from label vectors L
Train classifier C' using /' and T’
return C'

VI. EXPERIMENTAL RESULT

In the experiment, we retrieve 1,045 whole sky images for
seven cloud types from the database (see Fig. 3) and used
them as the input. The number of images per class depends on
the frequency appearance of each cloud type during the past
2 months of image collection. There are 244 cloud images
for cirriform, 80 images for high cumuliform, 22 images
for stratocumulus, 153 images for cumulus, 8 images for
cumulonimbus, 332 images for stratiform, and 206 images
for clear sky which represent various forms of each cloud
type. The sample images of these cloud types are as shown
in Fig. 5. Due to the unwanted parts of buildings and trees
on the sides, the segmentation process is performed before
the feature extraction process. A binary mask technique is
used for eliminating the unwanted parts (see Fig. 6). We use
Leave-One-Out-Cross-Validation (LOOCYV) for evaluation of
the ANN classifier. The process uses one image for testing
and the remaining images for training. The test image is
shifted and the training process is repeated 1,045 times.
Finally, the errors of 1,045 judgments are averaged to yield the
overall correctness. There are two experiments which involves
different settings of two feature vectors in Algorithm 1. In
the first experiment, we use the concatenation of 18 texture
features and h x k-FFT feature. In the second experiment, we
replace the 18 texture features by the 16 meteorological data
and the result is compared with the first experiment.

A. Local Cloud Classification

In this first experiment, we concatenate 18 texture features
and 12 x 6-FFT feature. Table I shows the confusion matrix
for classifying our whole sky images into seven cloud classes.
Class 1 to Class 7 are cirriform, high cumuliform, stratocu-
mulus, cumulus, cumulonimbus, stratiform, and clear sky,
respectively. The correctly classified instances of all class are
higher than 87%. Among these results, two classes (cumulus
and clear sky) have the classification accuracy as high as
100%. The average accuracy of classification is 96.28% which
is higher than the previous study results [2]-[4], [6], [7].

B. Integrating with Meteorological Data

It is interesting to see the performance of our cloud moni-
toring system if we combine cloud image information with
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(a) Cirriform (b) High cumuliform

(e) Cumulonimbus () Stratiform

(g) Clear sky

Fig. 5: Seven cloud types from our cloud monitoring station.

o 1

(a) A binary mask image

(b) A result of segmentation

Fig. 6: Segmentation of a typical whole sky image.

TABLE I: Confusion matrix for classifying the local whole
sky images into seven cloud classes.

Classified as

True class T 3 3 3 =
1 99.39 0 0 0.61 0 0 0
2 0.63 9875 0 0.63 0 0 0
3 0 0 88.64 1136 0 0 0
4 0 0 0 100 0 0 0
5 0.25 6.25 0 0 87.50 0 0
6 0 0 0.15 0.15 0 99.70 0
7 0 0 0 0 0 0 100
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meteorological data. Therefore, in this second experiment,
we integrate sixteen meteorological data obtained from the
WMR200A weather station. These data are local pressure,
sea level pressure, pressure trend, weather status, rainfall
rate, current-hour rainfall, last-24-hour rainfall, temperature,
temperature trend, humidity, humidity trend, comfort zone,
dew point, heat index, gust wind, and the average wind. We
set the 16 meteorological data as the first feature vector before
we concatenate 12 x 6-FFT feature vector to the first one.

TABLE II: Confusion matrix after adding meteorological data.

Classified as

True class T 3 3 7 3 I 7
1 99.18 0 0 0.82 0 0 0
2 0 100 0 0 0 0 0
3 0 0 90.91 455 0 4.55 0
4 0 0 0 100 0 0 0
5 0 0 0 0 100 0 0
6 0 0 0 0 0 100 0
7 0 0 0 0 0 0 100

Table II shows the confusion matrix after using the concate-
nation of 16 meteorological data and 12 x 6-FFT feature. There
is some misclassification of Class 3. However, the correctly
classified instances of this class are still over 90%. Five classes
now give the accuracy of 100%. The average accuracy of
classification for this experiment is 98.58%. This result is
clearly better than the previous experiment. Furthermore, the
computation time is reduced because the 18 texture features
was no longer needed in the feature extraction process.

VII. MOBILE APPLICATION

The approach explained in experiment section is used to
develop a mobile application for real-time and online cloud
classification. Fig. 7 shows the first page of our mobile
application. The main menu is on the top right corner of the
page. The important menus are live cloud image, live meteo-
rological data, online classification and manual classification.
In addition, the basic descriptions of cloud types and their
appearances are available in the about-menu for users to study
each cloud characteristic before using the application. Fig. 8
shows the example of live cloud images from our cloud station.
The cloud image is automatically updated every 5 minutes.
The classification result and the weather condition outlook of
each cloud image are available under the image.

Fig. 9 shows the menu of live meteorological data from
the weather station. These data are, local pressure (mB),
rainfall rate (in/hr), temperature (°C), humidity (%), dew point
(°C), gust wind (m/s), and so on. The meteorological data is
automatically updated every 5 minutes.

Fig. 10 shows the menu for online classification. In this
page, users can submit a cloud image from anywhere, then
click upload file. Our system will classify the cloud image
into one of the seven cloud types. The classification result is
shown on the bottom of the page.

Fig. 11 shows the menu for manual classification. In this
page, users can manually view the cloud picture and choose
one preferred type from the list, then send the answer to our
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Cloud
Classification Clas

Find Out More

b

(b) Main menu

(a) Main page
Fig. 7: The first page of our mobile application.

Live Clouds

2016-06-30 17:00:20 @PSU Phuket

Classification Result

Stratiform Clouds.

Weather Condition Outlook

_re,m or Drizzle

Fig. 8: Live cloud image from our cloud station.
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i e e

Last 24 hour mintal inch) (8

(a) Live data (b) Live data (cont.)

Fig. 9: Live meteorological data menu.

system for verifying the result. These results reflect different
perspectives of how people view the clouds; therefore, the
results will be collected in the database for improving our
classification process in the future.



Online Classification

Choose File |10260009_.. 118_njpg

Classification Result

Cirriform Clouds.

Fig. 10: Online classification menu.

Manual Classification Manual Classification

(a) Login menu

(b) Manual classification

Fig. 11: Manual classification menu.

VIII. CONCLUSION

A cloud station was designed and implemented. A weather
station provided additional useful meteorological information.
Together we have a low-cost local cloud monitoring system
installed at Prince of Songkla University, Phuket Campus. The
performance test of the local cloud classification using our
whole sky images yielded 96.28% accuracy which is higher
than the previous study results. Then, we replaced the 18
texture features by the 16 meteorological data. The second
result gave 98.58% accuracy which is better than relying
solely on the whole sky images. This approach was then
used to develop real-time and online classification for mobile
users. Live cloud image and live meteorological data can
be viewed through mobile application from anywhere in the
world. Although our system can provide a high performance
and has a practical use, it cannot classify clouds in the night-
time or in very low light condition. Our approach cannot cover
a large area as in the satellite approach. In the future, if our
cloud monitoring system is installed in more locations, it may
be useful for improving results of the weather forecast in the

206

wider area. Moreover, the past cloud images and the historical
meteorological data can be further analyzed for forecasting
clouds and weather conditions.
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