Multi-Authority Secure Personal Health Record System

Phuwanai Thummavet

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Computer Engineering
Prince of Songkla University
2015
Copyright of Prince of Songkla University

Thesis Title Multi-Authority Secure Personal Health Record System

Author Mr.Phuwanai Thummavet

Major Program Computer Engineering

Major Advisor : Examining Committee :
... Chairperson
(Asst.Prof.Dr.Sangsuree Vasupongayya) (Assoc.Prof.Dr.Sinchai Kamolphiwong)

(Prof.Dr.Verapol Chandeying)

The Graduate School, Prince of Songkla University, has approved this
thesis as partial fulfillment of the requirements for the Master of Engineering Degree

in Computer Engineering.

(Assoc.Prof.Dr.Teerapol Srichana)

Dean of Graduate School

This is to certify that the work here submitted is the result of the candidate’s own

investigations. Due acknowledgement has been made of any assistance received.

... Signature
(Asst.Prof.Dr.Sangsuree Vasupongayya)

Major Advisor

... Signature
(Mr.Phuwanai Thummavet)

Candidate

| hereby certify that this work has not been accepted in substance for any degree,

and is not being currently submitted in candidature for any degree.

... Signature
(Mr.Phuwanai Thummavet)

Candidate

YoIngInug EATIR R PR TR H G K G TG LR MY BRI R Rl R

si
AT WENITY 557UY
#197139 AMINIIUABURIADS
Un1sAnen 2557

[|

ToyagunmaIuyana (Personal Health Record, (PHR)) tuuwiAnvesns

9

dan1swazniswisludeyaduneitesivguainlagdaanyana s1eaindeyanissny
8udnwseiing (Electronic Medical Record, (EMR)) #uludsigninnislaglsameuia deya

guadiuyanasgnelinisaunulaedaanuana MUMaNNIs TeyadunInadIuuAns

1%

annsaussydeyaldu lsausednd Useiinisdnuilsa nisuieiwazemis Yeyaniy

Y
¥

gunniauazinng N53%adelsn waznsliruineiveswnmg Wusu 8alunintu deya

Y

guamanyAnadisessukAnveInsiiusIvindeyanishdunneinisvesUleiitiy

v =

(Homed-monitored data) #sfegadnyaagnsivsulnegunsalifuwesuasgniuiinasly
fagnuteyavesszuuteyaguamdinyanariumsdumesidn doyaiiussqlugiudeyaves
szuudoyagunmdruyanai aunsoteliunndilulinssimainguazeinisvedlsn
voafflheldftu uundnvesteyaguamaruyanagniauetuinldldudandlddeniedu
nsquakazinwguamdainaigdluynfuivingu widmaedulenalunisinulsels
MYV

ilesannmudeulmvesteyaguaimdiuyana Ussiiusuanulasade
wazaruuduidedoyaguamauyanainaedumiuinatuiugiurondivesdaya
gunmaILyARaTILILINN WeunTassiiudingn Tallnsinauenisaauauniaidnis
foyya (Access control) varnyansguuuy wildluguuuuiildiunsihluldegisunsvans fe
Ciphertext-Policy Attribute-Based Encryption (CP-ABE) ael@ CP-ABE Lﬁifwaﬁaiﬁa
guandruyAraaunsairuaulouelunisidide (Access policy) Yayalaeivungnues

v]

wann3Tad (Attributes) vesldnlasueugaliintiateyals Teyaauaindiuynnanangt

Y 9

sgniinsiadoyanis CP-ABE laarinuawnveswennitaniieldilunisiimesdmsu

[%
(% 1 Y 1 1

Whsiadeyananand 3ndu deyaguamdiuyanafignidnsiasinaIzansagnaensiia

Ioamezgldniinauadiuyana (CP-ABE private key) @elllwnvaswennididiaenndasiy

q v 9

' (%
= [J ! L

weurglumadfangnimualagidvesdeyaguaimadiuyanalusenitadnsiadeyaming

Y

a v =

8nieila CP-ABE WugUuuunmsinuanisidhsfadeyalagldiugiunisnsivasusennsdan
RNA

luan1muindeuvessruudeyaguainduuana (lde1atiunuimmienenns

A ea

Trdfunnsnaiy W fuae aundnluaseunsivesiUle daua Wnnd YAaINTNINITLNNE
auq nuleanduseg wazhiuseiuguain JWusu egelsiniy CP-ABE gnaenuuuun

dmsuaninwindenlunsdanisglduuugiigrunaien (Single user authority) 8ntieils gld

(%
Y

warwaaniUiAnmunziesgninnisinegiigiuiauuugudnals (Centralized user
authority) fiatu Usziiuuazdodninduiunine19asiinduiloun CP-ABE ulssgnaildiv
sruudeyaguandluyanalunsufun wu dymdedndanisniuaiiuaiunsalunis
YY18AIVDITEUU (System scalability) Jaynaavan (Single point of failure) wazdgyninig
Jan1sldeenaiusednsan (Efficient user management) 1lusiy
A A Y [] Y o v ! £ £ aw & o
WenazdanisiuUseiauuazdediinsanaitneiu a1uAdeduidl CP-ABE

wUszgnaldiiieliaunsasesiuaninuinaauiuuiasealnsn (Multi-authority) dealu

ey

sruudayagunndyaraiiaueausanTEen1sENInn1sElduazwenn3tadluds

¥ o

g sIansld (User authority) #1916 19w Tsangnuiaanunsanenagiisnuianis

e

Jan13{ldveamules (Healthcare authority) JusndmiusesTuyAAININIINISUNNG VR

1Y A v I3 ¥ va o Y v &
autesld v Ulenaunsanedsdiouian1sdnnisgldiduvesnuies (Personal

authority) iievzsessuanInlunseuass gaua waziiauqls WUULNUYBITEUUTRYA
ng’dl o a v v

guamauyprawuulafeslnsantlauslunuideldslminauenalnauvasnieiienay

Snwirnuiludiuiivesdvesdayaguaindiuyana nalndainanIusenaume LUUWNUNIG

[y

Untestoyaaestu (PHR dual layer protection scheme) wuudnassadanaelawuudisiy

UU (Hierarchical trust model) wazwuuwnun1shlsdutoyaguaindiuunnastisaonde

;%4

(End-to-end secure PHR sharing scheme) menalnaulaeasdefiiiaue dvesteya

v]

guAMmdINYARAAINNTaTIIEAIUANNTSITT ey aaua I IuYAnaTataulARE19aELBEn
(Fine-grained access control) wananil nalniauedssuseiwinteyaavnindiuyans
ransngnilaeuvsegnunlulaanisdligalasueugifainidivesdeyagunindiuyana

WINTIU

Thesis Title Multi-Authority Secure Personal Health Record System

Author Mr.Phuwanai Thummavet
Major Program Computer Engineering
Academic Year 2014

ABSTRACT

Personal health record (PHR) is a concept of managing and sharing
personal health related information by an individual. Unlike an electronic medical
record (EMR) which is managed by a hospital, PHR is under a full control by the PHR
owner. Ideally, PHR can contain any type of individual health information such as
personal diseases, medical history, allergies, mental health information, diagnosis and
physicians’ recommendations. Beyond the EMR, PHR also supports an idea of
collecting home-monitored data which are captured from body sensor devices. For
example, a patient can capture his/her vital signs using body sensor devices and then
record the captured data into a database of any internet-based PHR system. With the
captured vital signs, a physician can make a better diagnosis of diseases and
symptoms. PHR is intentionally proposed in order to not only reduce some
expensive today healthcare costs but also increase an opportunity for curing
diseases.

Due to the highly sensitivity of personal health information, security
and privacy issues of PHR become a primary concern of many PHR owners. To
prevent such issues, several access control schemes were proposed. One of the
most widely adopted access control schemes for the PHR is Ciphertext-Policy
Attribute-Based Encryption (CP-ABE). Under CP-ABE, a PHR owner can specify an
access policy over a set of attributes for encrypting each particular PHR record. The
resulting encrypted PHR can only be decrypted by the users who have the CP-ABE

private key containing the set of specific attributes that satisfies the associated access

policy pre-defined by the PHR owner. In other words, CP-ABE is an attribute-based
encryption scheme.

Under a PHR system environment, there can be multiple users with
different roles/attributes; for example, patients, family members, caregivers,
physicians, other medical practitioners, emergency responders, and health insurers.
Unfortunately, CP-ABE is designed for a single user authority (UA) environment. In
other words, all users and attributes must be managed by a single centralized UA.
Consequently, several issues and limitations may be occurred when employing CP-
ABE in practice, including a system scalability problem, a single point of failure
problem, and an efficient user management problem.

To handle such issues and limitations, a multi-authority secure
personal health record (MA-PHR) scheme is proposed in this research. By adding an
initial setting, the CP-ABE can be used in a similar fashion to handle the users and
attributes from multiple authorities. With the proposed scheme, for example, a
hospital can establish a healthcare authority for supporting its medical practitioners
locally as well as a patient can create his/her own personal authority for supporting
his/her family members, caregivers, and relatives. The proposed MA-PHR scheme also
presents several security mechanisms in order to preserve the privacy of the PHR
owners including the PHR dual layer protection scheme, the hierarchical trust model,
the end-to-end secure PHR sharing scheme. With the proposed security mechanisms,
the PHR owner has a fine-grained access control on his/her PHR records whereas the
proposed mechanisms guarantee that PHR information can be read or modified only

by the owner-authorized users.

Contents

[1

UNang

Abstract

Acknowledgement

Contents

List of Figures

List of Abbreviations and Symbols
List of Publications

Reprints and Permissions

1. Introduction
2. Objectives
3. Preliminary technique
4. The proposed MA-PHR scheme
4.1 System models and assumptions
4.2 Modified CP-ABE initial settings
4.2.1 MA-PHR core system setup
4.2.2 User authority setup
4.2.3 User key generation
4.2.4 Inter-authority synchronization
4.3 Security mechanisms

4.3.1 Hierarchical trust model

xiii

Xiv

XVii

XViii

4.3.2 PHR dual layer protection
4.3.3 End-to-end secure PHR sharing
5. System development
6. System demonstration
7. Security and usability discussions
7.1 Security issues
7.2 Usability issues
8. Analysis and discussion of the proposed system and related systems
8.1 Indivo health platform
8.2 Microsoft HealthVault
8.3 Google Health
8.4 PCEHR system in Australia
9. Missing features and future works
9.1 Interoperable platform
9.2 Standard document formats
9.3 Standard API for external applications
9.4 Access duration control for each part of data

10. Conclusion

References

Appendix A - The publications of the thesis
Appendix Al — ICSEC conference paper
Appendix A2 — J-BHI journal paper

Appendix A3 — MIJST journal paper

11

12

13

15

19

19

21

23

23

26

27

28

30

30

31

32

33

33

34

41

42

a9

58

Appendix B - Development tools

Appendix C - API For the Proposed MA-PHR Framework
Calling the client backend modules from Java code
Calling the client backend modules from C code
Calling the client backend modules from Python code

Appendix D - Dependency packages/libraries installation, and software

compilation, configuration, and execution
Appendix D1 — Dependency packages/libraries installation
Appendix D2 - Software compilation, configuration, and execution

Vitae

72

74

75

14

78

80

81

85

88

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

T1.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

List of Figures

. An access policy tree of the policy P

Setting up the CP-ABE for a multi-authority environment
A hierarchical trust model

End-to-end secure PHR sharing workflow

The proposed system structure

Alice assigns different sets of access permissions to each of the

selected people
Alice specifies an access policy for her PHR record
Alice’s encrypted PHR is uploaded to the PHR server
Bob initializes his download request
Alice’s encrypted PHR stored on the PHR server
Bob can access Alice’s PHR as requested
Alice traces all accesses on her PHRs
The sequences of the PHR uploading transaction
The sequences of the PHR downloading transaction
An example of calling the client backend module by Java code

An example of a JNI-to-C mapping function of the client backend

module
An example of calling the client backend module by C code

An example of calling the client backend module by Python code

Page

10
13
14

15

16
17
17
18
18
18
20
20
76

14

78

79

1. Introduction

In recent years, the technology for storing and managing healthcare
information has been shifted from the paper-based record to the electronic medical
record (EMR) [1]. A general concept of the EMR is to transform patients’ health and
medical information recorded by a hospital, which is traditionally stored in terms of
physical paper-based records, to digital forms that can be managed by a computer
instead. EMR gains several advantages than the prior one such as reducing costs in
storing, maintaining, searching and accessing health records; providing fast searching;
and the health records can be accessed by multiple users anytime anywhere.

The personal health record (PHR) [2], [3] is gaining popularity
nowadays while the EMR is managed and controlled by a hospital. PHR is a concept
of storing the personal health information, managing and controlling by an individual.
The PHR owner can gather his/her personal health information from various hospitals
or clinics and then store the information into his/her PHRs. Then, the PHR owner can
selectively share each of his/her PHRs to any desired people. Furthermore, the PHR
also opens to an idea of collecting the home-monitored data which are captured
from body sensor devices. For example, a patient can capture his/her vital signs using
body sensor devices and then record the captured signs into any internet-based PHR
system. With the captured vital signs, a physician can make a better diagnosis of
diseases and symptoms of the patient [2]. PHR is intentionally proposed in order to
not only reduce some expensive healthcare costs but also increase an opportunity
for curing diseases.

Typically, the PHRs are stored and handled by the PHR cloud-based
service providers (PHR providers). The PHR providers typically provision an abundant
storage capacity, a high computation processing unit and a large network bandwidth
with a reasonable price to PHR owners. However, the PHR owners and the PHR
providers are generally considered in different trust domains [2], [4], [5], and [6].
Therefore, security and privacy issues on the PHR information become a primary
concern of many PHR owners [2], [4], [5], and [6], due to the highly sensitive
information contained in the PHRs [5] such as personal diseases, medical history,

allergies, mental health information, and diagnosis and physicians’ recommendations.

Thus, an access control for the PHRs is necessarily required in order to enforce an
access policy on who is able to access or modify any particular PHR. In other words,
a PHR owner must be able to define an access policy in order to control all accesses
on each of his/her PHRs.

Unfortunately, the traditional access control schemes—such as role-
based access control (RBAC) [7] and attribute-based access control (ABAC) [8]—are
not suitable for the PHR because those schemes typically require the system users
and the storage providers to be in the same trust domain [9]. In a PHR system,
however, the PHR users (i.e., PHR owners and owner-authorized users) and the PHR
providers are obviously in different trust domains [2], [4], [5], and [6]. A widely
adopted method is an encryption-based access control [10], [11]. That is, a PHR
record will be protected from its source (i.e., encrypting at the PHR owner’s client
before storing on any PHR storage). Thereby, only the authorized users who possess
a decryption key will be able to decrypt the encrypted PHR. Since PHR providers are
not included in the list of authorized users, the providers cannot access the stored
PHRs. For this reason, PHRs are securely stored.

Nowadays, several encryption schemes are available. The schemes
can be classified into two types including one-to-one encryption and one-to-many
encryption. The one-to-one encryption (e.g., symmetric-key encryption (SKE) [12],
public-key encryption (PKE) [13] and identity-based encryption (IBE) [14]) allows only
a particular user to decrypt a ciphertext. Meanwhile, the one-to-many encryption
(e.g., policy-based encryption (PolBE) [15], key-policy attribute-based encryption (KP-
ABE) [16] and ciphertext-policy attribute-based encryption (CP-ABE) [17]) allows a set
of authorized users to decrypt a ciphertext. In reality, a PHR record can be accessed
by multiple users, for example, the owner himself/herself, family members,
caregivers, and physicians. Thus, the one-to-many encryption is suitable for the PHR
system.

Concept of the one-to-many encryption is to empower a PHR owner
to specify an access control policy for each PHR record during an encryption process.
The access control policy will be expressed in terms of the roles or attributes of

authorized users. For example, if the policy states that “Physician OR Caregiver”. The

resulting encrypted PHR can be decrypted by the authorized users who possess the
key with the “Physician” and/or the “Caregiver”. PolBE can provide an access policy
described above [4]. However, a user collusion problem enables malicious users to
escalate their access privilege to unauthorized PHR [17], [18] by combining their
private keys together. To prevent such the problem, CP-ABE scheme mathematically
links all of the attributes together to produce a private key [17]. Thereby, CP-ABE
private keys cannot be combined together in order for making the user collusion
anymore. Therefore, CP-ABE becomes one of the most adopted schemes for the PHR
as was used in [19], [20], [21], and [22]. KP-ABE was used in [23], [24], and [25]. Under
KP-ABE, an access policy will be transformed into a decryption private key instead of
a ciphertext. Meanwhile, the ciphertext will be embedded a set of attributes. If the
KP-ABE is adapted to the PHR system, a PHR owner must define a set of specific
attributes for encrypting a PHR and then generate different private keys for each
authorized user before sharing the PHR. KP-ABE not only provide an unintuitive way
for protecting and sharing the PHR, but also make the PHR system more complicated
in a comparison with using CP-ABE. Moreover, KP-ABE also requires the PHR owner to
generate and distribute the decryption private keys to each authorized user
himself/herself whereas the PHR owner is not required to do that under the CP-ABE
scheme. For this reason, KP-ABE is not suitable for the PHR. In this way, the CP-ABE
scheme is selected to be applied for securing the PHRs in this research.

Under the CP-ABE scheme, the user and attribute management is
centralized. In other words, all users and all attributes are managed by a single
centralized authority. In practical, however, a PHR system consists of multiple users
with different roles/attributes [26], [27], such as, patients, family members, caregivers,
physicians, other medical practitioners, emergency responders, and health insurers.
To employ the original CP-ABE to the PHR system directly, several issues and
limitations, such as a system scalability problem, a single point of failure problem,
and an efficient user management problem [23], [24], and [26], must be considered.

This research proposes a multi-authority secure personal health
record (MA-PHR) scheme. The proposed scheme can improve the issues and

limitations discussed previously. The tasks of handling users and attributes are

distributed to multiple expert authorities under the proposed scheme. With the
proposed scheme, a company or an individual is allowed to establish its own
authority in order to support the management of users and attributes related to its
expert domain. For example, a hospital can establish a healthcare authority for
supporting its medical practitioners as well as a patient can create his/her own
personal authority for supporting his/her family members, caregivers and relatives.
Under the proposed scheme, each authority can join and take part in establishing
the network of a global MA-PHR system so that the joining authorities can
collaborate with one another.

Additional contribution of this research is to preserve the privacy of
the PHR owners. A PHR dual layer protection is proposed in this research in order to
enable the PHR owner to take a full control on his/her PHRs in terms of who can
download, upload or even delete his/her (encrypted) PHR records stored on a PHR
provider. The PHR owner can selectively grant one or more access permissions to
each user. For example, an owner may grant the upload and the download
permissions to his/her personal physicians while he/she may grant only the
download permission to his/her family members and caregivers. A hierarchical trust
model is applied in this research to provide a method to verify a user from a
different authority. Moreover, an end-to-end secure PHR sharing scheme is also
presented in order to guarantee that only the authorized users are able to access

the PHR information.

2. Objectives

The aim of this research is to propose a simple approach to transform
a traditional centralized-based user authority PHR system to a multi-user authority
PHR system (MA-PHR system for short). The proposed MA-PHR system comes with
several security mechanisms in order to protect the security and privacy of the PHRs.
The proposed approach addresses issues and limitations of the centralized-based
PHR systems including the system scalability, and the single point of failure problem.
Moreover, the proposed system provides a simple, easy, and efficient user
management. The security mechanisms used in this research assure that the PHR
owner can take a full control over his/her shared PHRs. In other words, the owner
can selectively share each of his/her PHRs to any desired user. The access control
mechanism proposed in this research allows the PHR owner to define different
access permissions, covering READ and STORE actions separately, to different group
of users, or a user. To proof the concept of this research, a software prototype is

developed and the security issues as well as the usability issues are also evaluated.

3. Preliminary technique

The background technique on the original CP-ABE scheme [17] is
presented in this section. CP-ABE is a one-to-many asymmetric-key encryption
algorithm that allows multiple authorized users to access the encrypted data. Under
CP-ABE scheme, a set of attributes reflecting the user’s roles is transformed into a
decryption CP-ABE private key and assigned to the corresponding user. The data
owner can then specify an access policy over a set of attributes of authorized users

for encrypting each particular PHR. For example, the policy is expressed as follows.

Policy P = “(family_ member) OR (physician AND hospital-A) OR
(physician AND hospital-B)”

As a result, any user can decrypt the data encrypted using CP-ABE
with the policy P if and only if he/she possesses the CP-ABE private key satisfying the
policy P. In the example, the list of authorized users includes the owner’s family
members and the physicians of hospital-A or hospital-B. The CP-ABE scheme consists
of four steps as follows.

The first step is the Setup phase. This phase generates the public
parameters PK and the master secret key MSK. The PK consists of the generator g, gB,
and e(g,g)a, where e is a computable symmetric bilinear map. The MSK'is the value B
and ga. The PK is revealed to the public, while the MSK must be kept secret.

The second step is the Encryption phase. This phase takes as input
the public parameters PK, a plaintext message M, and an access policy tree T and
outputs the ciphertext CT. The access policy tree can be generated for any policy
using a set of boolean formulas. For example, the policy P above can be

transformed into an access policy tree as shown in Fig. 1.

Family member
Physician

Hospital-A Hospital-B

Fig. 1. An access policy tree of the policy P

The third step is the KeyGen phase. This phase requires a set of input
including the public parameters PK, the master secret key MSK, and a set of user
attributes S. The attributes S are mathematically incorporated and transformed into
the private key SK. This phase generates the private key SK, associated with the set
of attributes S that describes the key, as output.

The last step is the Decryption phase. This phase takes as input the
public parameters PK, the ciphertext CT, and the private key SK. The ciphertext CT
that was encrypted with the access policy tree T, will be decrypted if and only if the
set of attributes S associated with the private key SK satisfies the policy tree T.

Typically, CP-ABE is designed for a single user authority (UA)
environment. In other words, all users must be managed by the single centralized
UA. In this research, a mechanism to extend the CP-ABE to deal with a multi-UA
environment is proposed. Under the proposed scheme, any traditional CP-ABE-based

PHR system can be modified to handle a multi-UA environment.

4. The proposed MA-PHR scheme

The detailed construction of the proposed MA-PHR scheme is
presented in this section. First, the system model and assumptions are described.
Second, the proposed mechanism to extend any traditional CP-ABE to a multi-UA
environment is described. Third, the security mechanisms including hierarchical trust
model, PHR dual layer protection, and end-to-end secure PHR sharing, are presented

in order to explain the security of the proposed scheme.

4.1 System models and assumptions

Under the proposed scheme, there are five entities as shown in Fig. 2-
4 including root authority (RA), user authority (UA), audit server (AS), PHR server, and
user. RA verifies and certifies all UAs and AS. There can be multiple UAs owned by
companies or individuals, in which each of them manages users and attributes
related to its expert domain independently. AS records all requests and transactions
and generates a log report for the PHR owners or the authorized users if any dispute
is occurred. RA, UAs and AS are assumed to be trusted by the users in the system.
The PHR server provides the users with an abundant storage space and a large
network bandwidth for storing and sharing PHRs. The PHR server can be a third-party
cloud storage provider and it can be considered untrusted. The users in question can
be anyone with different roles such as the PHR owners (patients), the family
members, the physicians. In addition, all connections under the proposed scheme
are always secured by the secure sockets layer (SSL)/transport layer security (TLS)

protocol [28].

4.2 Modified CP-ABE initial settings

The original CP-ABE setup phase typically generates the mathematical
linked key pair, namely, public parameters PK and master secret key MSK. The PK is
revealed to the public and required as the explicit parameter in the CP-ABE private
key generation and the ciphertext encryption/decryption processes. The MSK must
be kept secret by the trusted UA and also required as the explicit parameter in the

private key generation. Thereby, the ciphertext CT can be decrypted with the private

key if and only if both the ciphertext and the private keys are generated from the
same PK and MSK key pair.

To modify the original single-authority CP-ABE to multi-authority CP-
ABE, the key idea is to generate the PK and MSK key pair at the RA and then securely
distribute the generated key pair to all the trusted UAs. Next, all UAs generate the
CP-ABE private keys for their users using the same key pair. Thus, the PHR user of an
authority can share his/her encrypted PHR to another user of a different authority
transparently, as if they were in the same global authority. The proposed MA-PHR

system consists of four setup phases as follows:

4.2.1 MA-PHR core system setup

The RA is used as the root of all UAs under the proposed scheme.
Therefore, the MA-PHR core system setup is initiated by the RA as shown in Fig. 2.
The RA first executes the CP-ABE Setup algorithm to generate the PK and MSK key
pair (denoted as 1 in Fig. 2). Next, the generated key pair is kept secret by the RA and
prepared for securely distributing to all UAs. Specifically, the generated key pair will
be used as the root of all CP-ABE private keys that will be issued by the UAs to all

PHR users in the system.

(1) Run Setup algorithm to produce CP-ABE & ' _
public parameters and master secret key 4 v<

T3)
Root Authority m
(2) Distribute the public CP-ABE public
parameters and master secret key parameters and master
secret key

Personal Authority Healthcare Authority
W N
(p ‘ (4) Synchronize attributes ‘ "
(3) Run KeyGen Rl - —————— el -
algorithm by passing " j i
\ Wi 8 e N
the obtained keys as = o ﬁ . r!! S E
parameters to generate | User Authority User Authority ﬁ
CP-ABE private keys CP-ABE CP-ABE
to users private keys private keys
-~ - ",)
s 9 4 &
©w Ao oy W
PHR owner <)) — d Paramedic
Family members A Nurse)

Fig. 2. Setting up the CP-ABE for a multi-authority environment

4.2.2 User authority setup

After setting up the MA-PHR core system, the RA is now ready to
accept the UA request to join the system. The new UAs will send their request to
join the network of the system. Upon receiving the request, the RA must first verify
the authenticity of the requesting UA. After a successful verification process, the RA
then securely distributes the PK and MSK key pair to the new UA (denoted as 2 in
Fig. 2). The UA will use the acquired key pair for generating the CP-ABE private keys

to its members during the user key generation phase described next.

4.2.3 User key generation

When a new user is registering with a certain UA, the UA will execute
the CP-ABE KeyGen algorithm using the acquired PK and MSK key pair as the specific
parameters together with a set of user attributes associated with the user’s roles
(denoted as 3 in Fig. 2). Therefore, the user will be assigned the CP-ABE private key
that is able to decrypt any encrypted PHR from any authority in the system as if the

decryptor and the PHR owner were in the same global authority.

4.2.4 Inter-authority synchronization

The proposed scheme allows a company or an individual to create
and manage its own UA locally. For example, a hospital can create a healthcare
authority that has a certain set of attributes such as physician, nurse, and paramedic,
whereas a patient can create a personal authority that has a different set of
attributes such as PHR owner, family member, relative and friend. As a result, each
UA can have a different set of attributes. For this reason, all UAs must synchronize
their attribute sets with each other periodically (denoted as 4 in Fig. 2), in order to
enable a PHR user from a different authority to be able to define a set of attributes
in his/her access policy for a group of users from another authorities during an

encryption process.

4.3 Security mechanisms
Three security mechanisms of the proposed scheme are described in
the following subsections including hierarchical trust model, PHR dual layer

protection, and end-to-end secure PHR sharing.

4.3.1 Hierarchical trust model

As mentioned earlier, the proposed scheme allows a company or an
individual to establish its own UA for handling users and attributes related to its
expert domain. For example, a healthcare authority is created and managed by a
hospital, whereas a personal authority is owned by a patient. On the one hand, the
patient from the personal authority can share his/her PHRs to the physicians from
the healthcare authority. On the other hand, the physicians can contribute in
updating the patient’s PHRs accordingly. Since the patient and the physicians are
from different authorities, an inter-authority user verification mechanism is required in
order to build a mutual trust relationship among them.

To initiate the inter-authority wuser verification mechanism, the
proposed scheme applies a hierarchical trust model (as shown in Fig. 3), which is a
feature provided by the SSL/TLS protocol. With the hierarchical trust model,
consequently each UA can certify and issue SSL/TLS certificates to its members
locally. For the example described above, the personal authority and the healthcare
authority can certify and issue SSL/TLS certificates to their members locally. Later,
two PHR users from different authorities can mutually verify the identity and

authenticity of one another.

Level 1

Personal Authority

Root Authority

Autho1:ity certificates
signed by RA

Healthcare Authority

WES

User Authority Jﬁ/

sicu
o
fayfhenst

e L

User Authority %""

Level2 User certificates Level2 User certificates
signed by UA signed by UA

- - @ = ~

: [1 -~
. ¥V 4 - r Y, od
PHR " /Al ﬁ' Ph - . 4
owner () ysician | P
L Family members IR Nurse)

Fig. 3. A hierarchical trust model

The hierarchical trust model consists of two levels: authority level and
user level. Each level is allowed to verify and certify its sub-entities. The root of the
hierarchical trust model is the RA. When a new UA is created and requested to join
the proposed system, the RA must verify an identity of the requesting UA and issue a
unique authority certificate to the requesting UA (denoted as ‘level 1’ in Fig. 3).
Then, the requesting UA uses the obtained authority certificate for a chain certifying
and issuing a unique user certificate to each of its PHR users locally (denoted as
‘level 2’ in Fig. 3). Later, a PHR user can use the obtained user certificate for
authenticating and establishing a secure channel [27], [29]. Because each UA
generates the user certificates to its members from the same root certificate, the

user can verify the certificate of a peer user across authorities.

4.3.2 PHR dual layer protection

To protect the PHR information from an unauthorized reading and
modifying, the proposed scheme presents the PHR dual layer protection which
consists of two protection layers: read protection layer and store access control

layer. A PHR owner is allowed to define access policies for READ and STORE actions

separately. The read protection layer protects the PHR information from an
unauthorized read action by encrypting the PHR using the modified CP-ABE at the
source before securely uploading to the PHR server through a secure channel
(denoted as 4 in Fig. 4). According to the CP-ABE scheme, the PHR owner can specify
an access policy for each particular PHR and the policy will be transformed and
embedded into the encrypted PHR. The resulting encrypted PHR can be decrypted
by any user if and only if the user possesses the CP-ABE private key containing the
set of attributes satisfying the associated access policy pre-specified by the owner.
The store access control layer protects the encrypted PHRs stored on
the PHR server from an unauthorized access. The PHR owner can selectively assign
one or more of the three access permissions—including upload, download and
delete permissions—to each user. A user can perform only the authorized actions on
the encrypted PHRs stored on the PHR server. With the proposed dual protection
layers, thus the owner can have a full control over which users can read or modify

his/her PHRs.

4.3.3 End-to-end secure PHR sharing

Once a user logs in to the MA-PHR system, the certain UA that the
user has been registered will verify his/her authenticity and allow the user to obtain
his/her CP-ABE private key and user certificate if his/her claim is valid (denoted as 1
in Fig. 4). The CP-ABE private key will be used as the PHR decryption key. The user
certificate will be used for authenticating himself/herself and establishing a secure
communication channel when the user contacts with any server. Under the
proposed scheme, the PHR owner can freely grant any of the three access
permissions (i.e., upload, download, and delete permissions) to any selected user. As
depicted in Fig. 4, for explanation purpose, assuming that Alice would like to grant
some permission on her PHRs to her personal physician Bob. Alice can achieve the
permission granting task through her UA (denoted as 2 in Fig. 4). The granted access
permissions will be securely recorded in the UA database and will be used when Bob
requests access to any PHR record of Alice. In this example, since Alice and Bob are
members of different authorities, the synchronization mechanism from Alice’s

authority to Bob’s authority is required, in order to synchronize all parameters

between the two authorities such as the sets of attributes, the lists of granted access
permissions, and the lists of users (denoted as 3 in Fig. 4). Typically, all authorities
always periodically synchronize their attribute sets, user lists, and granted access
permission sets with each other.

The proposed scheme offers an end-to-end PHR protection method.
That is, the proposed scheme will encrypt Alice’s PHR information using the modified
CP-ABE at Alice’s client before securely transmitting to the PHR server through a
secure channel (denoted as 4 in Fig. 4). Since no decryption key is stored on the PHR
server, even the PHR server itself cannot read the content of the PHR information
stored. The resulting encrypted PHR would be decrypted by only the authorized
users at their clients. Thus, Alice can assure that her PHR information will be

accessed by her authorized users only.

Personal Authority Healthcare Authority
r It 4 i
(1) Obtain key - (3) Synchronize (1) Obtain key
. and certificate i attributes and . and certificate
1 access permissions =
. ‘ ——— = - - > ;
\ (2) Provide access 2 A (5) Obtain OTR token F"_
PHR owner PCTIUSSIONS S User Authority User Authority Physician
Alice Bob
F (10) Trace (9) Synchronize (8) Record 5
c transaction logs transaction logs | transaction logs c
-——————— >
PHR - PHR
) FA
Audit Server Audit Server
A J A S
(6) Send the request
along with OTR token
(4) Upload an as a request certificate
encrypted PHR f i
o% @
E- b
Encrypted PHR s % (7) Download/upload
EITH Server Encrypted PHR ~ Alice’s encrypted PHR

(public storage)

Fig. 4. End-to-end secure PHR sharing workflow

Assuming that Bob needs to access or modify Alice’s PHR information,
Bob must request and obtain a one-time request (OTR) token from his UA (denoted
as 5 in Fig. 4). The OTR token typically contains Bob’s access permissions granted by
Alice and the token will be given a specific expiration date/time. Therefore, Bob can
only perform actions indicated on the token during a valid time period. In other

words, Bob cannot re-use the token if the token lifetime is expired. After Bob gets

the OTR token, Bob sends the request message along with the obtained OTR token
to the PHR server (denoted as 6 in Fig. 4). The PHR server will verify the token and
Bob’s request. Next, Bob can perform any request action once his request is verified
(denoted as 7 in Fig. 4). In addition to provide a non-repudiation feature [27], [30],
Bob’s request will be recorded as a transaction log on the AS (denoted as 8 in Fig. 4).
The transaction logs will be periodically synchronized from Bob’s authority to Alice’s
authority (denoted as 9 in Fig. 4). This way, Alice can keep track of all accesses to her

PHRs from the log report generated by her AS later (denoted as 10 in Fig. 4).

5. System development

The software prototype of the MA-PHR system is developed in order
to proof the concept of the research. Some detailed design of the software
prototype is given. Fig. 5 shows the proposed system structure that consists of client
and server modules. The client side is executed on any PC computer supporting
Ubuntu OS. The underlying client side consists of the frontend and the backend. The
client frontend is responsible for rendering a graphical user interface (GUI) and
inputting the user commands, which is implemented using Java language. The client
backend gathers several low-level modules such as encryption, security and privacy,
network, and user management modules, which is implemented using C language.
The client frontend and backend communicate with each other via the Java Native
Interface [31]. The server side includes four servers: namely, root authority (RA), user
authority (UA), audit server (AS), and PHR server, which are fully implemented using C
and SQL languages. Each server has a local database for independently storing the
information. The server and the client sides always securely communicate with each

other via an SSL/TLS secure channel.

Servers

(- i i i
£ H 8B B
Local Local Local Local
I database I database I database I database

Root Authority User Authority Audit Server PHR Server

Implement using C and SQL languages

Connect via an SSL
secure channel
Client

Frontend
(GUD
Implement using Java language

Communicate
viaJava Native
Backend Interface
(Encryption, Security and
Network modules)
Implement using C language

Fig. 5. The proposed system structure

6. System demonstration

The demonstration of the developed MA-PHR system is presented in
this section. For the demonstration purpose, assuming that a PHR owner Alice would
like to share her PHR records to some selected people. The selected people include
Alice’s family members: John and James, and Alice’s personal physician: Bob. As the
different professional roles, Alice decides to grant different sets of access permissions
to each of the selected people as shown in Fig. 6. That is, John and James who are
Alice’s family members would be assigned only the download permission or the
read permission, while the physician Bob would be assigned the upload and the
download permissions or both the read and store permissions. However, none of the
selected people would be assigned the delete permission. As a consequent, John
and James can only download Alice’s PHR records for informing and updating their
knowledge about Alice’s health condition, while Bob can download Alice’s PHR
records for using in diagnosing Alice’s diseases and symptoms whereas Bob can also
upload or append Alice’s PHR record (e.g., medical history or recommendation). In
other words, the developed system allows Alice to selectively grant any access

permission to each particular person according to his/her professional roles.

© @ PHR system: User Main

PHR Management | Transaction Auditing
Info Access Permission Management |_
Access Permissions
Mame Upload Permission? |Download Permission?| Delete Permission?

Personal.John false true false

Personal.James false true false

Healthcare Bob true true false

Assign permissions || Edit || Remove
Login session time left: 29 minutes 26 seconds

Fig. 6. Alice assigns different sets of access permissions to each of the selected

people

After assigning the access permissions, Alice loads her PHR record to
her client application and then specifies an access policy for that record as shown in
Fig. 7. The specified access policy is expressed as follows: “Personal.family member

OR Healthcare.caregiver OR Healthcare.physician”. Thus, Alice’s family members who

are in Personal authority and the caregivers or the physicians who are in Healthcare
authority can decrypt the resulting encrypted PHR record. Fig. 8 shows the process of
encrypting the PHR record occurred on Alice’s client application before the resulting
encrypted PHR would be securely uploaded to the PHR server.

Once the physician Bob wants to download Alice’s PHR record, Bob
initializes his download request on the specific PHR-owner name (i.e., Alice) as shown
in Fig. 9. Next, Bob will be informed of all Alice’s encrypted PHR records stored on
the PHR server as shown in Fig. 10. Bob can select and download the requested
encrypted PHR from the PHR server to his client application. Then, the decryption
process will take place at Bob’s client. Bob is able to decrypt Alice’s encrypted PHR
if and only if his CP-ABE private key satisfies the associated access policy pre-
specified by Alice as shown in Fig. 11. Furthermore, Bob also has permission to
upload or update Alice’s PHR records. Specifically, Bob can achieve this task by
making the upload request on Alice’s record on his GUI interface in Fig. 9. Next, Bob
can load a new or an updated Alice’s PHR record. The PHR record will then be
encrypted before securely uploading to Alice’s repository on the PHR server as
shown in Fig. 8. Moreover, the developed system provides the transaction auditing
mechanism that enables Alice to track all actions performed on her PHR records
later. Thus, Alice can be informed of all accesses on her PHR records by Bob as

shown in Fig. 12.

PHR Management | Transaction Auditing
Info r Access Permission Management |

Authority name: | i I

PHR ownername:

Upload from: |h?n4rnyesktopfAI|ce's PHR |nformat|0n‘ | Browse

medical history, diagnosis, lab
Data description: | esults

Access Policy

¢ Root of access policy
Attribute: Personal.family_member
Attribute: Healthcare, caregiver
Attribute: Healthcare. physician

1]

Login session time left: 26 minutes 19 seconds

Fig. 7. Alice specifies an access policy for her PHR record

@ @ PHR system: User Main
[PHR Management | Transaction Auditing

Access Permission Management |

| »

Upload from:

Data description:

Access Policy

¢ Root of access policy
Attribute: Personal.family_member
Attribute: Healthcare, caregiver
Attribute: Healthcare. physician

Encrypting the PHR

Uploading the encrypted PHR

| 30% |

Login session time left: 25 minutes 33 seconds

Fig. 8. Alice’s encrypted PHR is uploaded to the PHR server

@ @ PHR system: User Main

PHR Management | Transaction Auditing
Info r Access Permission Management |

Authority name: |Persona| |v|

PHR ownername: |Alice |

Transaction

) Upload a PHR
® Download a PHR
) Delete a PHR

Login session time left: 29 minutes 10 seconds

Fig. 9. Bob initializes his download request

® @ PHR system: User Main

PHR Management | Transaction Auditing
Info I Access Permission Management |

Authority name: | | |

PHR ownername:

PHR List
Data description | Size
medical history, diagnosis, lab results 1179.73 MB

Download to: |mefbrlgh?n4rnyesktop!PHR_dropb0}c|| Browse

| Download§| Quit |

Login session time left: 28 minutes 35 seconds

Fig. 10. Alice’s encrypted PHR stored on the PHR server

PHR Management | Transaction Auditing
Info r Access Permission Management |

PHR Info

Authority name: | | ‘

PHR ownername:

@ Downloading the PHR succeeded

Decrypting the encrypted PHR

Login session time left: 27 minutes 20 seconds

Fig. 11. Bob can access Alice’s PHR as requested

Transaction log type:

[¥] Audit all transactions

Event Logs

Datejtime Actor S Event Objectiuser] Object Actor's IP addr...
2014-02-16 16:37:38 |[Personal.admin... |Actor added the user's attrib... |Personal.slice |attribute; Personal.phr_owner |127.0.0.1
2014-02-16 16:47:04 |Personal.Alice Actor assigned the access p... [Personal.John Access permission: <upload: ...[127.0.0.1
2014-02-16 16:47:13 |Personal.Alice Actor assigned the access p... [Personaljames |Access permission: <uploa 127.0.0.1
2014-02-16 16:48:17 |Personal.Alice Actor assigned the access p... [Healthcare.Bob |Access permission: <upload: ...|127.0.0.1

[»

2014-02-16 16:56:51 |Personal.alice Actor encrypted the PHR Personal Alice medical history, lab results, a...]127.0.0.1
2014-02-16 16:57:08 |Personal.Alice Actor uploaded the PHR Personal Alice medical history, lab results, a...[127.0.0.1 =
2014-02-16 17:02:37 |Healthcare.Bob 4ctor downloaded the PHR Personal.Alice |medical history, lab results, a.../127.0.0.1
2014-02-16 17:03:12 [Healthcare.Bob |Actor decrypted the PHR Personal Alice medical history, lab results, a...[127.0.0.1
2014-02-16 17:11:02 |Healthcare.Bob Actor encrypted the PHR Personal.Alice |physicians' recommendations |127.0.0.1
2014-02-16 17:11:05 |Healthcare.Bob |Actor uploaded the PHR Personal Alice physicians' recommendations |127.0.0.1
2014-02-16 17:20:15 |Personal.Alice Actor audited hisfher event log |- - 127.0.0.1 -

Fig. 12. Alice traces all accesses on her PHRs

7. Security and usability discussions

In this section, the security and usability issues of the proposed
system is discussed. The security issues consist of five attack models including
storage intruders, unauthorized actions, replay attacks, PHR client attacks, and non-
repudiation cases. The usability issues consist of four usability models including
efficient encryption scheme, efficient network bandwidth usage, read and store

access control, and system scalability and availability.

7.1 Security issues

Five attack models for the proposed scheme are discussed in this
section including storage intruders, unauthorized actions, replay attacks, PHR client
attacks, and non-repudiation cases. Additionally, all connections under the proposed
scheme are always secured by SSL/TLS protocol. Therefore, the cases of
eavesdropping on the network traffic are eliminated.

The first attack model is the storage intruders. Since the PHR server
can be a third-party cloud storage provider, the proposed scheme considers the PHR
server untrusted. That is, a storage intruder or even a storage administrator may try
to access the PHR information stored on the PHR server. To protect the PHR
information, therefore, the information is always encrypted at its source before
uploading to the PHR server and the decryption keys are securely stored on the
separated trusted user authority (UA). Thereby, the encrypted PHR stored on the PHR
server is protected as long as the storage intruder or the storage administrator cannot
break the cryptographic primitives used. And, the decryption key is not accessible by
any unauthorized person.

The second attack model is the unauthorized actions. The proposed
scheme offers the read and store actions. A PHR owner (e.g., Alice) can selectively
grant the permission either read or store to a desired user (e.g., Eve). To read, store
or modify Alice’s PHR, Eve must obtain the OTR token that indicates the permission
on the actions granted by Alice from Eve’s UA (denoted as 3 in Fig. 13 and 4 in Fig.
14). After that, Eve must present the obtained OTR token to the PHR server for

claiming her access permission on the requested PHR (denoted as 5 in Fig. 13 and 6

in Fig. 14). Nevertheless, Eve may try to modify her OTR token in order to escalate
her permission to perform any unauthorized action. To prevent such action, the OTR
token will be digitally signed with the UA private key. The PHR server can verify the
integrity of the token with the corresponding UA public key. This method ensures
that the OTR token has not been modified by any unauthorized user.

User Authority ‘ ‘ PHR Server | Audit Server

I

! ! !
;‘ 1: enc_PHR := CP-ABE _encrypt(PHR, access_policy) |
|

|

|

2. request_OTR_token{PHR_owner_identity)

3: secure_send({OTR_token)

4: secure_send{PHR_upload_request, OTR_token) 5: Verify the request using OTR token

ZI (Approve/Disapprove)

7: record_lo g{transaction_log)

6: If approved, secure_send{enc_PHR)

T T T
[[|
! ! ! !

Fig. 13. The sequences of the PHR uploading transaction

Reader User Authority PHR Server Audit Server

T T
| 1: secure_login(lo gin _info) !

4: secure_send(OTR_token)

T
|
|
|
|
|
|
|
3: request_OTR_token{PHR_owner_identity) I I
|
|
|
|
|
|

5: secure_send{PHR _download_request, OTR_token) 6: Verify the request using OTR token

ZI (ApproveDisapprove) |
_7: Iif approved, secure_senid(enc_PHR) _

8: record_log(transaction_log)

;| 9: PHR := CP-ABE_decrypt(enc_PHR, CPABE _key)

10 record_log(transaction_log)
T T T |
| | | |

1 i 1

Fig. 14. The sequences of the PHR downloading transaction

The third attack model is the replay attacks. Suppose that Eve has
been revoked the permission that was previously granted by Alice. In order to gain
her permission back, Eve may try a replay attack by using the previous OTR token
that was obtained to be used instead of the current token. However, the OTR token

used in the proposed scheme is a certificate with a specific expiration date/time, Eve

will not be able to reuse the obtained OTR token once it is expired. Thus, the
lifetime of the OTR token must be kept short and optimistic.

The fourth attack model is the PHR client attacks. Typically, once a
user logs in to the proposed system, the user gets his/her user certificate and CP-ABE
private key from his/her associated UA. The certificate and the private key will be
stored on the user’s client for convenience purpose. Therefore, the attacker may try
to steal the user certificate or the CP-ABE private key stored on the client. To protect
the key and certificate, all stored data will be encrypted using a symmetric-key
encryption method with the user’s password. The password will only be stored in
the PHR client module’s memory area for convenience purpose, assuming the
attacker cannot gain his/her privileges to the superuser/root mode to dump the
memory section of the PHR client module for reading the user’s password. This
concept can be used with any Linux-based operating system [32].

The last attack model is the non-repudiation cases. The audit server
(AS) is responsible for recording all requests and transactions that occur in the
system (denoted as 7 in Fig. 13 and 8, 10 in Fig. 14) and providing the transaction
auditing mechanism to the PHR owners. In other words, the PHR owner can keep
track of his/her PHR records by inspecting the log report generated from the AS (e.g.,
Fig. 12). Furthermore, the transaction auditing mechanism also enables the system
administrator to monitor or detect malicious users. This mechanism is very important

to guarantee a non-repudiation feature in the proposed scheme.

7.2 Usability issues

To evaluate the proposed scheme on the current environment, four
usability issues are discussed. First, the practical aspect of the encryption scheme is
evaluated. Second, the required network bandwidth for the proposed scheme to
work efficiently is discussed. Third, the control over the read and store access
permissions are investigated. Lastly, the system scalability and availability is
discussed.

First, the proposed scheme selects CP-ABE as the main encryption
algorithm. CP-ABE is leveraged to protect the confidentiality of the PHR information.
The PHR records will be encrypted using CP-ABE at the client before uploaded to the

PHR server. Since the PHR client has several limitations such as the processing unit,
the power consumption, and the storage capacity, the efficiency of the CP-ABE
scheme is discussed in this section. The underlying of CP-ABE scheme is the
advanced encryption standard (AES) [33] in cipher block chaining (CBC) [34] mode
which is a symmetric-key encryption method. Hence, the encryption and decryption
time of the AES are the same. AES has good performance in terms of processing time
and power consumption [35] compared with other widely adopted symmetric
encryption schemes. The results from the research thesis conducted by Hirani [36]
showed that AES consumes less battery power and less encryption time than that of
CAST and IDEA encryption schemes on the encryption of a 5 MB file. All the schemes
use 128-bit key size. AES consumes 58% less battery and 70% less time than CAST,
while AES takes 92% less battery and 110% less time than IDEA. The experiment by
Nadeem and Javed also showed that AES has g¢ood performance in terms of the
average time consumption than Triple-DES algorithm [37]. Thus, AES was given a
choice of the encryption algorithms used in SSL/TLS protocol [38]. With CP-ABE
scheme, moreover, a PHR owner can encrypt his/her PHR information for multiple
authorized users at once, resulting in efficiency of storage and computation.

Network bandwidth availability is another important limitation of the
PHR client side. Three objects are to be used when a PHR user uploads, downloads
or deletes any PHR, the user certificate, the CP-ABE private key, and the OTR token.
To reduce the communication cost between the user client and the UA, all three
objects will be downloaded from the UA and stored in an encrypted form on the
user client module. In order to reduce the OTR token issuing task occurred at the UA,
furthermore, the OTR token is designed to have a limited lifetime. In other words,
the OTR token stored on a user’s client can be used multiple times until the token
lifetime is expired.

Under the proposed scheme, a PHR owner has a solution to
selectively grant the read (download) and store (upload and/or delete) permissions
to a particular user. This method makes our scheme realistic because in the real
world adoption often that a PHR owner would like to grant not only the read

permission, but also the store permission to his/her contributors. For example, the

PHR owner Alice may assign the “read only” permission to her family members
whereas Alice may want to assign both the read and the store permissions to her
personal physicians. With the proposed scheme, Alice is freely to assign any access
permission to a specific person according to his/her professional roles.

The last usability model is the system scalability and availability. A
PHR system can consist of multiple user domains such as personal domain,
healthcare domain, and emergency domain. Therefore, handling all user domains
using a single centralized UA can lead to system scalability and system availability
(single point of failure problem) problems. For this reason, the proposed scheme is
intentionally designed to be a multi-authority system that allows each user domain
to manage its users locally. While the proposed scheme allows each local domain to
be part of a global domain when works across domain. The multi-authority feature
allows the system to be scaled up. That is, the joining of a new user domain does
not affect the user and attribute management tasks of another domains else
significantly. Moreover, the multi-authority feature also makes the system distribute
the tasks of the user and attribute management to multiple authorities. This reduces

an occasion of the single point of failure problem.

8. Analysis and discussion of the proposed system and related systems

Analytical analysis and discussion of the proposed system and related
systems is presented in this section. The most adopted related systems are selected
to compare with the proposed system on advantages, disadvantages, and limitation
issues. The related systems include Indivo health platform [39], Microsoft HealthVault
[40], Google Health [41], and PCEHR system in Australia [42].

8.1 Indivo health platform

Indivo (formerly PING) [39] is an open source, open standards
personally controlled health record, which provides an open standard application
programming interface (API). Indivo is a web-based PHR-applications/systems platform
that allows external software developers to use its platform as a health data storage
backend for developing their own web-based PHR applications or systems via its
open standard API calls. Indivo was greatly successful in widely adoptions [43], [44]
such as Microsoft HealthVault [40], Google Health [41], Dossia [45], and Indivo X [39].
Recently, Indivo has been extended for supporting developing native PHR
applications connected with Indivo backend on iOS platform [46].

Indivo was originally designed by a patient-centric model, in which a
patient (or PHR owner) can collect, maintain, and share his/her medical data with
desired people or applications. Indivo provides a fine-grained access control to a PHR
owner, via OAuth authorization framework [47], that allows an owner to define which
part of the whole data to be shared with others or applications by what actions (e.g.,
create, read, update or modify, and delete) are allowed. In other words, Indivo
provides a PHR owner a one-to-one user-based sharing scheme. To protect the
medical data, Indivo uses a database-level encryption method. That is, the plaintext
data will be uploaded to store in an encrypted format on the encrypted data storage
server while the encryption keys are hosted on a separated physical server managed
by the Indivo server [48].

In comparison, the proposed system also offers an owner a fine-
grained access control on a read action over his/her health related data. Under the

proposed system, an owner can selectively share a read action on any part of his/her

whole health related data with a set of selected people. Specifically, an owner can
specify a set of selected people in question by defining a read access control policy
based on usernames or attributes of selected users. For example, if a policy states
that “Bob OR Physician” can access the data, therefore, there can be only the user
named Bob and the users who are a physician able to read that data. Interestingly
with the attribute-based access control offered, furthermore, an owner can specify a
set of read-authorized users according to roles of selected users by one transaction,
not to perform multiple transactions for specifying multiple selected users like Indivo
does. In other words, the proposed system provides a PHR owner a one-to-many
attribute-based sharing scheme.

However, the proposed system does not provision a fine-grained
access control on update or modify, and delete actions over any specific part of data
to an owner like Indivo does. The access control for update or modify, and delete
actions under the proposed system will be a repository-level access control. That is,
an owner, e.g., Alice, can freely grant any set of access permissions based on create
(we called “Upload permission”) and delete (we called “Delete permission”) actions
to any desired user, e.g., Bob; assuming Bob was granted both the create and the
delete actions by Alice; Bob is able to create some health related data to be
uploaded or remove any health data stored on Alice’s repository on the PHR server.
The resulting uploaded data will not overwrite any data stored previously (this
feature was used by Indivo as well [49]). In case Bob wants to update or modify any
certain PHR data, he can achieve by uploading a newly updated data to Alice’s
repository and then delete the previous versions of that data; to provide a non-
repudiation feature, the proposed system provides Alice the transaction auditing
mechanism; therefore, Alice can inspect any request or transaction performed by
Bob later if any concern or dispute is occurred.

Notably, the proposed system uses a client-level encryption method
for protecting health related data, whereas the database-level encryption was used
by Indivo. Subsequently, the proposed system provides a better data confidentiality
because the plaintext data will only be encrypted and decrypted at a client side and

the PHR server will not hold any encryption key. Unlike Indivo, the plaintext data will

be encrypted and decrypted at the storage server, where the Indivo server acts as
the encryption keys manager and document access determiner. Furthermore, the
Indivo server and the storage server are also considered in the same trust domain.
Therefore, if the Indivo server is governed by malicious administrators or is being
compromised by adversaries, every encrypted medical data stored on the storage
server tends to be leaked. Unlike the proposed system, the PHR server is considered
an untrusted external third-party server. Thus, the PHR server and the UA (the server
managing the encryption keys) are intentionally located in different trust domains. In
order to steal the health data stored in the proposed system, the adversaries or the
malicious administrators have to compromise both the UA and the PHR server.

In the aspect of registering, verifying and managing the PHR users,
Indivo was designed to be a distributed system in which a user can register to the
Indivo system at the physician offices and hospitals or through well-established
identity management systems [48] such as certificate-based Kerberos identity
management system [50]. Similarly, the proposed MA-PHR system was designed to
be a distributed e-healthcare system in which each organization (e.g., clinics and
hospitals) or even an individual (e.g., patients and family members) is allowed to
establish its own user authority for locally registering, verifying, and managing a group
of users related to its expert domain. Section 8.4 will describe the details of this

subject again.

8.2 Microsoft HealthVault

Microsoft HealthVault [40] started in October 2007, as a web-based
personal health record platform. Microsoft HealthVault equips with an API, which
enables external software/hardware vendors as partnership to develop external
applications for exchanging medical data stored on a HealthVault account. This
system was developed based on Indivo platform [43], [44], thus, it inherently derives
almost all of the access control features of medical data from Indivo. That is, a PHR
owner is able to share some parts of the whole data to any desired user or
application with any given access permissions and with any given access expiration.
The access control of Microsoft HealthVault is a one-to-one user-based sharing

scheme like Indivo. By our literally investigation, there are three levels of sharing an

owner can grant to other users including view only, view and modify, and act as a
custodian of the account; where the latter is a method to give a full access control
over all of the HealthVault account to other users.

Similar to the case of Indivo, Microsoft HealthVault uses a database-
level encryption method. On the one hand, the database-level encryption enables
the HealthVault system to be able to access, maintain, and index medical data
stored, resulting in several benefits such as fast data searching and retrieval, data
backup, and system maintenance. On the other hand, the database-level encryption
enables the HealthVault system to dominate over all of stored sensitive data of
every PHR users. Let’s consider if the HealthVault system is governed by malicious
administrators or is being compromised by adversaries, all sensitive medical data
stored can be easily stolen for trading or unauthorized exposures. In comparison, the
proposed system is an alternative approach that utilizes the client-based encryption
method, in which the PHR storage server and the encryption keys manager (i.e. the
UA server) are considered in different trust domains. Our approach guarantees that
the health related data stored on the PHR server will only be accessed by the
owner-selected authorized users, even the PHR server itself is unable to access the
data stored, as long as the PHR server and the UA server are not both compromised.
Unlike Indivo and the proposed system, registering, verifying, and managing users in
Microsoft HealthVault is centralized, in which a user can make an online registration

through its website.

8.3 Google Health

Google Health [41] is another web-based PHR system developed
based on Indivo platform [43] started in May 2008. Similar to Microsoft HealthVault,
Google Health provides an open APl based on SOAP protocol [51] for the web-
services interoperability to external software/hardware vendors. In 2008, Google
Health (as well as Microsoft HealthVault) was selected by the Military Health System
(MHS) organization to evaluate the feasibility of delivering an interoperable PHR for
its beneficiaries [52]. Unfortunately, on June 24, 2011, Google announced to
discontinue Google Health [53] and thus this system has been shut down completely

on January 1, 2013 [41].

Under Google Health system, an access control model for sharing
medical data was a profile-based level [52], [54], [55], in which an owner only has a
coarse-grained access control over the whole medical data on every single access
action. In other words, an owner can only permit a write-only or a read-and-write
permission for his/her whole medical data stored [54] to any desired user or
application. That is, it is not possible to specify any specific permission for some parts
of data. In contrast, the proposed system provides an even more fine-grained access
control for sharing a read action on a portion level of health related data. More
specifically under the proposed system, an owner is freely to categorize his/her
health related data into several parts, each of which can be set a different read
access control policy, by using CP-ABE encryption scheme. Consequently, an owner
has a solution to selectively share a read action with any desired user on some parts
or the whole data. In addition to protecting the medical data stored by Google
Health, the data will be stored in an encrypted format using the database-level
encryption method. Similar to Indivo and Microsoft HealthVault discussed previously,
therefore, all medical data stored in Google Health can be leaked in case the system
is governed by malicious administrators or is being compromised by adversaries. In
addition to registering, verifying, and managing users; Google Health uses a

centralized model by achieving through its website similar to Microsoft HealthVault.

8.4 PCEHR system in Australia

On July 1, 2014, a personally controlled electronic health record
(PCEHR) system [42] was released by the Australian government, as a web-based
national-scale e-healthcare system for all Australian citizens. Interestingly, the PCEHR
system was designed to be a distributed e-healthcare system similar to our proposed
MA-PHR system. Specifically, the PCEHR system enables each organization (e.g.,
hospitals, clinics, emergency departments, and research institutions) to establish its
own local repository for holding clinical and medical data [56]. As an example, each
hospital can independently store and maintain all patients’ medical data in its local
repository. Meanwhile, the PCEHR system plays the role of a central data aggregator
which is responsible for indexing every medical data physically stored at different

repositories, managing and controlling access privileges, and searching and retrieving

medical data [56]. That is, a PCEHR user can search and retrieve medical data of
interest through the PCEHR system according to his/her access privileges. To the best
of our knowledge, PCEHR [56] does not mention any support of an API (application
programming interface) for external software applications.

Documents stored in the repositories of the PCEHR system are
protected by a database-level encryption method. With regards to an issue of data
access control; clinical and medical document creation is under controlled by a
policy specification defined by Health authority agency [56]. Each PCEHR user can
create different types of documents according to his/her roles, such as patients can
make some notes; healthcare provider can create shared health summaries, event
summaries, and discharge summaries of their patients; and Medicare agents can
create Medicare history, organ donor, childhood immunizations [56]. To control
document access, the PCEHR system supports a two-layer document access control
[56], namely, record access control layer and limited document access control layer.
A patient can hide his/her related documents from a general view by defining a
record access code (RAC). Only the users whom the patient were given RAC code will
be able to open and access the patient’s record. The patient can further restrict
access to some documents by defining a limited document access code (LDAC). Only
one LDAC code can be defined, however, which must serve for all documents the
patient wishes to restrict. In other words, the read access control of the PCEHR
system is a one-to-one user-based sharing scheme. Nevertheless, PCEHR [56] does
not state how to control an update or modify action over documents of patients. To
delete any document, every user who access to a document can delete it but the
document will not be physically removed from the repository exactly, only be
removed from document lists and trees [56]. Thereby, the unintentionally removed
documents can be recovered. All requests and transactions occurred in the system
will be logged in order for later auditing.

In comparison, the proposed MA-PHR system was designed to be a
distributed e-healthcare system, but it quite differs from the PCEHR system in which
the health related information are stored in distributed repositories but a user

management is centralized. Instead, a user management in the proposed system is

distributed to multiple user authorities whereas the health related data are stored
on the public cloud-based PHR server. More specifically, under the proposed system
each organization (e.g., clinics and hospitals) or even an individual (e.g., patients and
family members) is able to establish its own user authority in order for registering,
verifying and certifying its own related members locally. It differs from every related
system discussed previously; the proposed system employs an attribute-based
encryption method (i.e., CP-ABE encryption scheme) for protecting and controlling
access to health related data stored on the PHR server. Once a new user asks for
registering to the proposed system at a certain user authority, the user would be
verified authenticity by that authority and be given a CP-ABE private key containing a
set of attributes reflecting his/her roles, then the user will adopt the given CP-ABE
private key as a decryption key for accessing the health related data stored on the
PHR server. For this reason, the multi-authority user management is very important
for the proposed system (even more than other systems) because each user in the
system can have different roles, such as family member and medical staff. Thus,
verifying users and managing their sets of attributes by the only user-related expert
authorities is highly required under the scenario of the proposed system, in order to
guarantee that each user was justified by a related expert authority and was issued
only the right set of attributes. Furthermore, handling users with multiple user
authorities also avoids a single point of failure problem as well as providing system
scalability to the proposed system.

As mentioned earlier, the proposed system provides an owner a one-
to-many attribute-based sharing scheme while the PCEHR system only provides a
one-to-one user-based sharing scheme. The owner has to give RAC and/or LDAC
access code to every user who is granted access to the owner’s medical documents.
Also, the PCEHR system protects the medical data stored using the database-level
encryption method similar to other previously discussed systems. Meanwhile, the
health related data stored in the proposed system are protected by encrypting at a
data source client and would only be decrypted at the client of destined users

specified by the data owner.

9. Missing features and future works

There are certain features still missing in the proposed MA-PHR
system. This section discusses four missing features and future works of the proposed
system including an interoperable platform, standard document formats, standard

API for external applications, and access duration control for each part of data.

9.1 Interoperable platform

Since the software prototype of the proposed MA-PHR system was
developed based on Debian-core operating system (OS), the developed software can
only be run on any PC computer supporting Ubuntu or Debian OS. This makes a
barrier to wide adoption of the proposed system. In order to break the adoption
barrier, the proposed system has to support an interoperable platform such as a
web-based application platform, similar to Indivo, Microsoft HealthVault, Google
Health, and PCEHR system. To that point, consequently, the proposed system
becomes independent from any OS platform. A user can access the services of the
proposed system from any OS platform through any web browser.

Although the web-based application is accessible from any OS
platform through a web browser, there exists plenty of arguments that the web
application could not provide performance and the user experiences more than that
of the native application. From the aspect of Charland and Leroux [57], the web
technology today, such as WebKit and HTML5, is getting close to reach the level of
performance of the native application technology. Moreover, a cost in developing a
web application is cheaper than that of a native application, in which a developer
has to support multiple different OS platforms such as iOS, Android, Windows, Mac,
and Linux. However, there are some OS-specific features that a native application can
utilize but a web-based application cannot [57] such as a push notification service
and a hardware acceleration feature. Another interesting approach is to develop a
hybrid application that wraps a web application in a native application [57], As a
result, the cost is reduced in comparison with the cost of developing a pure native

application. However, the developed application can utilize OS-specific features.

9.2 Standard document formats

The proposed system currently treats every data a user wants to
upload as a single file or a folder of files. That is, the system will only be responsible
for protecting the data and securely delivering the data to only the owner-specified
authorized users. However, the proposed system does not support any standard
electronic clinical and medical document formats. At present, Continuity of Care
Record (CCR) [58], [59] created by ASTM and Continuity of Care Document (CCD) [60]
created by HL7 are the most adopted electronic clinical and medical document
formats, as CCR and CCD were fully supported by Microsoft HealthVault while Google
Health partially supported a subset of CCR [52], [55]. Both CCR and CCD contain
information such as patient demographics, allergies and recent medical procedures,
medication lists, and insurance and health care provider information, which are
expressed in XML (EXtensible Markup Language) format. Hence, both CCR and CCD
can be created and read by any e-healthcare system. For this reason, if the proposed
system is being extended to support such standard formats, the system would be
able to collaborate with other e-healthcare systems seamlessly as well as providing

a better user experience.

9.3 Standard API for external applications

An API for external applications is quite important and necessary for
the proposed system. The APl enables software/hardware vendors as partnership to
develop external applications for exchanging the health related data with the
proposed system. For example, a mobile medical device vendor that builds a sensor
for monitoring the vital signs can develop its own smartphone application that
facilitates its customers by automatically uploading the real-time captured vital signs
data to store in the customers’ PHR repositories managed by the proposed system.
As presented in Appendix C, the proposed system provides a simple API for an
external developer to build external applications that can connect for calling the
client backend modules (e.g., encryption, network management, user management
modules) of the proposed system and utilize the proposed system’s servers as
backend services for securely sharing health related data. However, the provided AP

is just a simple and non-standard API that the developer can call for modules, which

were compiled as a shared library, via the provided API functions/methods. Anyway,
the provided APl does not cover a remote procedure call (RPC) that the developer
can directly connect to and invoke modules of the server side. One of the
necessarily future works, hence, the proposed system should be developed to
support a standard RPC APl such as SOAP protocol [61] or JSON standard format [62]
such that the external developer can connect to and invoke modules of the

proposed system universally.

9.4 Access duration control for each part of data

Access duration control is another feature that the proposed system is
still missing. As supported in Microsoft HealthVault [52], a PHR owner can freely
define access duration of his/her specific part of medical data to each single user.
This feature makes a PHR owner more convenient when he/she wants to temporarily
share a user or even a group of users access to his/her PHR information, without the

need to manually revoke that access permission later by himself/herself.

10. Conclusion

The key contribution of this research is to handle the problems and
limitations of the centralized PHR system including system scalability, single point of
failure, and efficient user management problems. Those problems and limitations are
handled by distributing the user management tasks to multiple UAs instead of using
only a single centralized UA. The proposed scheme enhances the original CP-ABE
scheme which is designed for a single centralized UA to support the multi-UA
environment. The key idea is to distribute the initialized CP-ABE parameters, the key
pair: public parameters PK and master secret key MSK, to all local UAs in the system.
With the corresponding PK and MSK key pair, then the local UAs can establish the
multi-UA-compatible CP-ABE environment. All UAs must synchronize the attribute
sets with each other periodically.

To preserve security and privacy of the PHR information as well as its
owner, the proposed scheme applies a hierarchical trust model to enable an inter-
authority user verification mechanism to ensure the authenticity of each PHR user.
The proposed scheme offers the PHR dual layer protection, which consists of two
protection layers including read protection layer and storage access control layer,
making a fine-grained access control on the PHR possible. Moreover, the end-to-end
secure PHR sharing scheme is also presented to make sure that the PHR records
would be accessed only by the owner-authorized users. Furthermore, the proposed
scheme also provides the transaction auditing mechanism that allows the PHR

owners to keep track of all accesses performed on their PHR records.

References

(1]

(10]

Healthit.gov. 2014. What is an electronic medical record (EMR)? Healthit.gov.
http://www.healthit.gov/providers-professionals/ electronic-medical-records-
emr. (accessed November 1, 2014).

P. C. Tang, J. S. Ash, D. W. Bates, J. M. Overhage, and D. Z. Sands. 2006.
Personal health records: definitions, benefits, and strategies for overcoming
barriers to adoption. Journal of the American Medical Informatics Association
UAMIA) 13(2): 121-126.

AHIM Foundation. 2014. What is a personal health record (PHR)? AHIM
Foundation. https://www.myphr.com/StartaPHR/what _is_a _phr.aspx.
(accessed November 1, 2014).

K. Garson, and C. Adams. 2008. Security and privacy system architecture for
an e-hospital environment. Proceedings of the 7th Symposium on Identity
and Trust on the Internet (IDtrust), Gaithersburg, MD. 122-130.

B. A. Malin, K. El Emam, and C. M. O'Keefe. 2013. Biomedical data privacy:
problems, perspectives, and recent advances. Journal of the American
Mediical Informatics Association (JAMIA) 20(1): 2-6.

K. Caine, and R. Hanania. 2013. Patients want granular privacy control over
health information in electronic medical records. Journal of the American
Mediical Informatics Association (JAMIA) 20(1): 7-15.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. 1996. Role-based
access control models. Computer 29(2): 38-47.

D. R. Kuhn, E. J. Coyne, and T. R. Weil. 2010. Adding attributes to role-based
access control. Computer 43(6): 79-81.

E. E. Mon, and T. T. Naing. 2011. The privacy-aware access control system
using attribute-and role-based access control in private cloud. Proceedings of
the 4th IEEE International Conference on Broadband Network and
Multimedia Technology (IC-BNMT), Shenzhen. 447-451.

R. Singh, V. Gupta, and K. Mohan. 2013. Dynamic federation in identity

management for securing and sharing personal health records in a patient-

[19]

centric model in cloud. International Journal of Engineering and Technology
(UET) 5(3): 2201-2209.

Y. Ding, and K. Klein. 2010. Model-driven application-level encryption for the
privacy of e-health data. Proceedings of the 10th International Conference on
Availability, Reliability, and Security (ARES), Krakow. 341-346.

B. A. Forouzan. 2008. Cryptography and Network Security. McGRAW-HILL. 56-
61.

B. A. Forouzan. 2008. Cryptography and Network Security. McGRAW-HILL. 294-
296.

N. P. Smart. 2003. Access control using pairing based cryptography. RSA
conference on the cryptographers’ track (CT-RSA). 111-121.

W. Bagga, and R. Molva. 2005. Policy-based cryptography and applications.
Proceedings of the 9th International Conference on Financial Cryptography
and Data Security (FC), Roseau. 72-87.

V. Goyal, O. Pandey, A. Sahai, and B. Waters. 2006. Attribute-based encryption
for fine-grained access control of encrypted data. Proceedings of the 13th
ACM Conference on Computer and Communications Security (CCS),
Alexandria, Virginia, USA, 89-98.

J. Bethencourt, A. Sahai, and B. Waters. 2007. Ciphertext-policy attribute-
based encryption. Proceedings of the 28th IEEE Symposium on Security and
Privacy (SP), Berkeley, CA, USA. 321-334.

L. Cheung, and C. Newport. 2007. Provably secure ciphertext policy ABE.
Proceedings of the 14th ACM conference on Computer and communications
security (CCS). 456-465.

L. lbraimi, M. Asim, and M. Petkovic. 2009. Secure management of personal
health records by applying attribute-based encryption. Proceedings of the 6th
International Workshop on Wearable Micro and Nano Technologies for
Personalized Health (pHealth), Oslo. 71-74.

C. Wang, X. Liu, and W. Li. 2012. Implementing a personal health record cloud

platform using ciphertext-policy attribute-based encryption. Proceedings of

the International Conference on Intelligent Networking and Collaborative
Systems (INCoS), Bucharest. 8-14.

J. Li, G. Zhao, X. Chen, D. Xie, C. Rong, W. Li, and Y. Tang. 2010. Fine-grained
data access control systems with user accountability in cloud computing.
Proceedings of the 2th International Conference on Cloud Computing
Technology and Science (CloudCom), Indianapolis, IN, USA. 89-96.

P. Thummavet, and S. Vasupongayya. 2013. A novel personal health record
system for handling emergency situations. Proceedings of the 17th
International Computer Science and Engineering Conference (ICSEC), Nakorn
Pathom, Thailand. 266-271.

M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou. 2013. Scalable and secure sharing
of personal health records in cloud computing using attribute-based
encryption. IEEE Transactions on Parallel and Distributed Systems (TPDS)
24(1): 131-143.

M. Li, S. Yu, K. Ren, and W. Lou. 2010. Securing personal health records in
cloud computing: patient-centric and fine-grained data access control in
multi-owner settings. Proceedings of the 6th International Conference on
Security and Privacy in Communication Networks (SecureComm), Singapore.
89-106.

J. Huang, M. Sharaf, and C. T. Huang. 2012. A hierarchical framework for secure
and scalable EHR sharing and access control in multi-cloud. Proceedings of
the 41st International Conference on Parallel Processing Workshops (ICPPW),
Pittsburgh, PA, USA. 279-287.

T. Parameswaran, S. Vanitha, and K. S. Arvind. 2013. An efficient sharing of
personal health records wusing DABE in secure cloud environment.
International Journal of Advanced Research in Computer Engineering &
Technology (IJARCET) 2(3): 925-932.

J. L. F. Aleman, I. C. Sefior, P. A. O. Lozoya, and A. Toval. 2013. Security and
privacy in electronic health records: A systematic literature review. Journal of

biomedical informatics 46(3): 541-562.

(28]

[35]

H. L. McKinley. 2003. SSL and TLS: A beginners guide. SANS Institute.
http://www.sans.org/reading-room/whitepapers/protocols/ssl-tls-beginners-
guide-1029. (accessed September 4, 2014).

D. Weerasinghe, and M. Rajarajan. 2011. Secure trust delegation for sharing
patient medical records in a mobile environment. Proceedings of the 7th
International Conference on Wireless Communications, Networking and
Mobile Computing (WiCOM), Wuhan. 1-4.

J. Li, G. Zhao, X. Chen, D. Xie, C. Rong, W. Li, L. Tang, and Y. Tang. 2010. Fine-
grained data access control systems with user accountability in cloud
computing. Proceedings of the 2nd IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), Indianapolis, IN. 89-96.

C. Neil. 2009. Java Native Interface (NI. Javamex UK
http://www.javamex.com/tutorials/jni/. (accessed October 13, 2014).

S. Leppert. 2012. Android memory dump analysis. Student research paper.
Department of Computer Science, Friedrich-Alexander-University Erlangen-
Nuremberg, Germany.

National Institute of Standards and Technology. 2001. Advanced encryption
standard (AES). National Institute of Standards and Technology.
http://csrc.nist.ecov/publications/fips/fips197/fips-197.pdf. (accessed April 29,
2014).

National Institute of Standards and Technology. 2001. Recommendation for
block cipher modes of operation. National Institute of Standards and
Technology. http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.
(accessed April 29, 2014).

D. S. A. Elminaam, H. M. Abdual-Kader, and M. M. Hadhoud. 2010. Evaluating
the performance of symmetric encryption algorithms. International Journal of
Network Security 8(8): 213-219.

S. Hirani. 2003. Energy consumption of encryption schemes in wireless

devices. Doctoral dissertation, University of Pittsburgh.

[37]

A. Nadeem, and M. Y. Javed. 2005. A performance comparison of data
encryption algorithms. Proceedings of the 1st IEEE international conference
on Information and communication technologies (ICICT). 84-89.

P. Chown. 2014. Advanced encryption standard (AES) ciphersuites for
transport layer security (TLS). [IETF. http://www.ietf.org/rfc/rfc3268.txt.
(accessed May 12, 2014)

The Indivo Personally Controlled Health Record, http://indivohealth.org/.
Microsoft HealthVault, https://www.healthvault.com/.

Google Health, http://www.google.com/intl/en_us/health/about/.

PCEHR System in Australia, http://www.ehealth.gov.au/.

Indivo Research and History, http://indivohealth.org/research/.

D. Haas. 2011. Children's Hospital Boston. http://www.oscon.com/
oscon2011/public/schedule/detail/19713. (accessed July 13, 2015).

Dossia Healthcare System, http://www.dossia.org/.

P. B. Pfiffner, and K D. Mandl. 2013. An iOS framework for the Indivo X
personally controlled health record. American Medical Informatics Association
Summits on Translational Science Proceedings (AMIA). 196-200.

Ed. D. Hardt. 2012. The OAuth 2.0 authorization framework. [ETF.
https://tools.ietf.org/html/rfc6749. (accessed July 13, 2015)

K. D. Mandl, W. W. Simons, W. C. Crawford, and J. M. Abbett. 2007. Indivo: a
personally controlled health record for health information exchange and
communication. BMC Medical Informatics and Decision Making 25(7): 1-10.

B. Adida, A. Sanyal, S. Zabak, I. S. Kohane, and K. D. Mandl. 2010. Indivo X:
Developing a fully substitutable personally controlled health record platform.
American Medical Informatics Association Annual Symposium Proceedings
(AMIA). 6-10.

Massachusetts Institute of Technology. Kerberos: The network authentication
protocol. http://web.mit.edu/kerberos/. (accessed July 21, 2015)

Simple Object Access Protocol. SOAPClient. http://soapclient.com/
standards.html. (accessed July 13, 2015)

(52]

N. V. Do, R. Barnhill, K. A. Heermann-Do, K. L. Salzman, and R. W. Gimbel.
2011. The military health system's personal health record pilot with Microsoft
HealthVault and Google Health. Journal of the American Medical Informatics
Association (JAMIA) 18(2): 118-124.

B. Dolan. 2011. Official: Google Health shuts down because it couldn’t scale
adoption. http://mobihealthnews.com/11453/official-google-health-shuts-
down-because-it-couldnt-scale/. (accessed July 13, 2015)

A. Sunyaev, A. Kaletsch, and H. Krcmar. 2010. Comparative evaluation of
Google Health API vs. Microsoft HealthVault API. Proceedings of the 3rd
International Conference on Health Informatics (HEALTHINF), Valencia, Spain.
195-201.

A. Sunyaev, D. Chornyi, C. Mauro, and H. Krcmar. 2010. Evaluation framework
for personal health records: Microsoft HealthVault vs. Google Health.
Proceeding of the 43rd Hawaii International Conference on System Sciences
(HICSS), Hawaii, USA. 1-10.

C. Pearce, and M. Bainbridge. 2014. A personally controlled electronic health
record for Australia. Journal of the American Medical Informatics Association
UAMIA) 21(4): 707-713.

A. Charland, and B. Leroux. 2011. Mobile application development: web vs.
native. Communications of the ACM 54(5): 49-53.

ASTM International. Standard specification for Continuity of Care Record (CCR).
http://www.astm.org/Standards/E2369.htm/. (accessed July 17, 2015)

D. Ranjan. 2013. Introduction to Continuity of Care Record (CCR).
http://www.codeproject.com/Articles/564505/Introduction-to-Continuity-of-
Care-Record-CCR/. (accessed July 17, 2015)

HL7 International. HL7/ASTM Implementation Guide for CDA® R2 -Continuity
of Care Document (CCD®) Release 1. http://www.hl7.org/implement/
standards/product_brief.cfm?product _id=6/. (accessed July 17, 2015)

R. Cover. 2003. Simple object access protocol (SOAP).
http://xml.coverpages.org/soap.html/. (accessed July 17, 2015)

Json.org. Introducing JSON. http://json.org/. (accessed July 17, 2015)

[65]

N. Coffey. Getting started with JNI. http://www.javamex.com/tutorials/jni/
getting started.shtml. (accessed January 2, 2015)

M. Mead. Programmming in C/C++ with the Java native interface.
http://home.pacifier.com/~mmead/jni/cs510ajp/index.html. (accessed January
2, 2015)

Codingfreak blog. Creating and using shared libraries in Linux.
http://codingfreak.blogspot.com/2009/12/creating-and-using-shared-libraries-
in.html. (accessed January 2, 2015)

Codingfreak blog. Creating shared libraries in Linux - part 2.
http://codingfreak.blogspot.com/2010/11/creating-shared-libraries-in-linux-
part.html. (accessed January 2, 2015)

Python Software Foundation. Extending Python with C or C++.
https://docs.python.org/2/extending/extending.html. (accessed January 2,
2015)

Python Software Foundation. ctypes — A foreign function library for Python.
https://docs.python.org/2/library/ctypes.html. (accessed January 2, 2015)

Appendix A

The publications of the thesis

Appendix Al

Conference Paper

P. Thummavet, and S. Vasupongayya, “A novel personal health record system for
handling emergency situations,” Proceedings of the 17th IEEE International Computer
Science and Engineering Conference (ICSEC), Nakorn Pathom, Thailand, September

2013, pp. 266-271.

2013 International Computer Science and Engineering Conference (ICSEC): ICSEC 2013 English Track Full Papers

A novel personal health record system for handling
emergency situations

P. Thummavet', S. Vasupongayya’
Department of Computer Engineering, Faculty of Engineering, Prince of Songkla University,
Hat Yai, Songkhla 90112, Thailand
E-mail: 5310120127@email psu.ac.th', vsangsur@coe psu.ac th*

Abstract—Personal health record (PHR) becomes a popular
research topic nowadays. Many research works have proposed
several coneepts in managing and organizing a PHR. However,
there are several uncertain issues left such as the role of a PHR in
emergencey situations. In this paper, a solution to handle a PHR
information management in emergency situations is proposed.
Because a PHR is controlled by its owner, the eritical challenge in
handling the PHR in emergency situations is how emergency
staffs can access PHR information, even when the PHR owner is
unable to give his/her consent. The proposed scheme allows each
PHR to be classified into several categories. Each category
presents a different restriction. And, the emergency staffs can
access each category according to the policy defined by the PHR
owner. The threshold cryptosystem is adapted in this work to
allow the selected set of PHR-owner-delegates to grant
permission to the emergency staffs when the PIIR owner is
unconscious.

Keywords-personal health record; privacy; security; emergency
i ; threshold cryp

L. INTRODUCTION

Recently, a personal health record (PHR) becomes a hot
issue in rescarches and adoptions. PHR presents the concept of
individual health information sharing that is controlled by its
owner [1]. In other words, the owner can selectively share
his/her health information to selected users through a PHR
system. Typical PHR information includes congenital discases,
medical history, allergy, discase risks, lab results, physicians’
recommendations, exercise patterns and results. Thus,
information stored in a PHR is usually considered to be highly
sensitive [1], [2]. Therefore, a PHR management system must
protect the data and allow only authorized users to access the
data. Usually, a PHR is protected by encrypting before sharing.

There are a lot of research works regarding the security of
PHR [2]. [3], [4], [5], [6] and [7]. Many rescarch works
propose important and useful concepts of the PHR security.
However, there are several uncertain issues still. One of those
missing issues is how to manage PHR information in
emergency situations. Typically, emergency units do not
directly involve with the PHR owner. Thus, these personals are
not in the PHR system. Therefore, there is no access right for
these groups of people. Thus, the emergency staffs are not able
to access a PHR of the patients even in emergency situations,
even though these staffs are the first responders who will reach
the patients. Therefore, allowing an emergency staff to access
information stored in PHRs in emergency situations is

This work is supported in part by the National Research University
Funding no. MED540548S

271

essential. Information stored in the patient’s PHR may help an
emergency staff make better decisions.

In this paper, we propose a novel scheme for handling
accesses to PHR information in emergency situations. A
critical part of our work is how emergency staffs can access
PHR information, even when an owner stays unconscious or
inconvenient to give his/her consent. The proposed system
allow external units (i.e.. the emergency staffs) to access an
individual PHR according to the PHR owner’s policy. Three
levels of confidentiality of PHR information including secure,
restricted and exclusive levels are proposed. A PHR owner can
define any of the three levels to each PHR. The secure level is
defined for freely accessing by the emergency staffs without
any consent in emergency situations. The restricted level is
considered to be sensitive and the emergency staffs must have
an access right to access it. However, the PHR owner may not
be able to give his/her consent. Thus, the consent can be
granted by at least t out of n trusted users, who arc defined by
the PHR owner. Novelty, we adopt a threshold cryptosystem
|8] to originate an access granting mechanism for the
restricted-level information. The threshold cryptosystem is an
important key to create the access granting mechanism to
cmergency staffs, in which an owner can specify pre-
determined threshold wvalue (t) to the restricted-level
information. Consequently, the threshold cryptosystem allows
emergency staffs to access the restricted-level information only
if they are granted the permission by at least t (pre-determined
threshold) out of n trusted users. The exclusive level is
considered to be top secret. That is, the emergency staffs
cannot access it even in emergency situations. With our
proposed scheme, an owner can share PHR information to
emergency staffs but still be able to control privacy and
confidentiality of highly sensitive information.

The proposed scheme can be implemented as an add-on to
any existing PHR management system in order to support
emergency staffs under emergency situations. The remaining of
this document is organized as follows. Section 2 describes
related work. The traditional personal health record
management system is discussed in Section 3. Section 4
presents the proposed scheme. Finally, conclusions are given in
Section 5.

2013 International Computer Science and Engineering Conference (ICSEC): ICSEC 2013 English Track Full Papers

II. RELATED WORK

There are a few interesting PHR management systems that
have features to handle emergency situations [3], [4]. [9], [11],
[12].

Weerasinghe and Muttukrishnan [9] proposed a PHR
system that can exchange medical information in emergency
situations. Medical information is protected by the database-
level encryption concept [10]. Therefore, a PHR service
provider can be defined to serve medical information to an
emergency staff during emergency situations. In their work, a
trusted granting server (third party) is used to establish the
connection between two unknown parties (i.e., emergency staff
and PHR service provider). Therefore, each party can assure
that the peer party is genuine. The main drawback of their work
is that medical information is encrypted by the database key.
The database key may introduce privacy risks of PHR owners
because the key can allow multiple accesses without any need
to request for an authorization from the PHR owners.
Furthermore, the access right is binary. That is, the whole
database can be accessed, thus an emergency staff can access
any information on the database once he/she has the key.

Huda, Yamada and Sonchara [11] proposed a PHR system
that has strong authentication using health smart cards. A PHR
owner’s smart card keeps a digital pseudonym that is indexing
the PHRs stored on a database. In emergency situations, after
authentication, an emergency stafl can decrypt the digital
pseudonym and use it to retrieve the PHR information. They
claim that an owner’s name (field in a database) is replaced
with a pseudonym in order to protect privacy of an owner.
Therefore, even if records are exposed to unauthorized parities,
the owner’s privacy is still preserved from those unauthorized
parties. However, the same problem occurs that is the access is
still binary. Thus, an emergency staff can access any
information even though that information is highly sensitive.

The HCPP (Healthcare system for Patient Privacy) [12]
introduced a solution for handling emergency situations with
backup mechanisms. The backup mechanisms work by letting
an owner defines his/her emergency information. The
emergency information is stored at a trusted server controlled
by the government offices. In emergency situations, an
emergency staff can access the emergency information without
compromising the secret information. HCPP allows the owner
to control which information can be accessed or cannot be
accessed in emergency situations. However, HCPP does not
support any information in the case when the physicians need
more information other than the defined emergency
information. In contrast, the proposed scheme in this work
defines three levels of protections. In emergency situations, an
emergency staff can access secure-level information
immediately but if an emergency staff needs further
information beyond the secure level. An emergency staff can
request to access the restricted-level information but he must be
granted the permission by at least t out of n trusted users, who
are defined by the PHR owner.

The break-glass access was proposed by Li. Yu, Zheng,
Ren and Lou [3], [4]. Typically, a PHR is encrypted by the
key-policy attribute-based encryption (KP-ABE) [13]. KP-
ABE enables an owner to specify a set of attributes embedded

272

into an encrypted PHR file. For information selected by an
owner to be emergency information, it will be encrypted with a
set of desired attributes plus the attribute “emergency”. Then,
an owner generates the emergency key containing the attribute
“emergency” as an access policy. The emergency key is
delegated to an emergency department (ED). In emergency
situations, an emergency staff authenticates himself to ED, then
requests and obtains the emergency key for decrypting the
emergency PHR files. Similar to the HCPP, the break-glass
access mechanism does not satisfy an emergency staff if he
needs further information other than the selected emergency
information. Unlike our work, the proposed scheme can satisfy
that requirement by the access granting mechanism for the
restricted-level information.

I1I. TRADITIONAL PERSONAL HEALTH RECORD SYSTEM

The most widely used PHR model [2], [5], [6], [7] due to
its simplicity, is illustrating in Figure 1. The model consists of
three entities: user authority (UA), PHR server and users.
According to the model, UA manages all tasks concerning a
user in the PHR system, such as certifying users, generating
keys and certificates, authenticating users, distributing keys and
certificates, and revoking users. The PHR server acts as a
warchouse of the PHR in which the owners can share their
PHRs to sclected users sccurely. To protect the PHR
information, a PHR must be encrypted at a client before
uploading to the PHR server. Typically, a PHR contains health
information related to an individual but is often accessed by
multiple users, such as the owner, family members, physicians,
and caregivers. Therefore, the one-to-many encryption scheme
is employed by several PHR management systems 2], [3], [4],
[5]. [6] and [7]. The most common encryption scheme used to
protect PHRs [5], [6], [7] is Ciphertext-policy attribute-based
encryption (CP-ABE) [14]. According to the CP-ABE, the
owner can specify an access policy and embed the policy into
the encrypted PHR file. Only the user who has the CP-ABE
private key satisfying the required access policy can decrypt
the protected PHR file.

e

W

)

R PHR Server
User Authority =
manage ;
Encrypted PHR

PHR owner

7

b~
Doctor ’g(

- g,
s
Emergency staffs
(outsiders)

Family member

Figure 1. Traditional personal health record system.

Thus, only the users selected by an owner can access
information stored in the PHRs. During emergency situations,

2013 International Computer Science and Engineering Conference (ICSEC): ICSEC 2013 English Track Full Papers

however, the owner may be unconscious or inconvenient to
grant any access right to the emergency staffs, who are
typically not in the PHR system [3], [4], [9], [11], [12].
Therefore, in this paper we will improve the PHR system to
support emergency staffs in order to access the PHR
information under emergency situations. The proposed scheme
can improve the missing important requirement of traditional
PHR systems.

IV. PROPOSED SCHEME

In this scction, the proposed improvement scheme to the
referred traditional PHR system in order to support accessing
information stored in PHRs during emergency situations is
described. The primary concern of our work is similar to the
traditional system that is the privacy and confidentiality of
individual information must be protected. Therefore, the
emergency staffs referred in this paper are assumed to be
trustworthy. In addition, the emergency units, who will certify
the emergency staffs, are assumed to be trusted by the PHR
system.

In order to protect the privacy and confidentiality of the
PHR information, the proposed scheme defines three levels of
confidentiality of PHR information including secure,
restricted and exclusive levels. The secure level refers to the
information that must be protected during normal situations.
However, the emergency staffs can access the secure-level
information immediately during emergency situations. The
restricted level also refers to the information that must be
protected in normal situations. However, the emergency staffs
can access it only if they are granted the permission by at least t
out of n trusted users, who are defined by the PHR owner. The
exclusive level refers to the information that cannot be
accessed by emergency staffs even in emergency situations. In
the proposed scheme, an owner can define the confidentiality
level to his/her PHR. Thus, the PHR owner has a solution to
define a fine-grained access control on his/her PHR.

B 3 TN
/-
L Emergency staffs A
PHR Server (outsiders) 5
User Authority e PHR
u
% (3) Request
manage l Encrypted PHR |(6) Send

I v
: (5) Decrypt
= (2) Upload
B oo ¢
PHR owner ﬂ) ! 4

Emergency Server

1

(1) Delegate the (4) Grant the access

trusted users

Trusted users

Figure 2. The proposed personal health record system.

The proposed scheme is presented in Figure 2. An
emergency server (EmS) is added to the original model (Figure
1) to handle an emergency situation. EmS acts as a service
provider that serves emergency staffs (the outsiders) if
emergency situations occur. In other words, emergency staffs
can request an access to the information stored in the PHR
system through the EmS. EmS will strictly perform actions on
PHRs according to their confidentiality level defined by the
PHR owner. That is, emergency staffs can access information
only if they have an access right on that information. Note that,
EmS should be a high computational processing unit and have
a large network bandwidth in order to support any disaster
situation in which a huge number of requests are generated,
such as during tsunami, earth quake or great flood.

A. Delegating Trusted Users

In the proposed scheme, an owner can define a sct of
trusted users (denoted as 1 in Figure 2) to make a decision on
granting access rights on the restricted-level information on
behalf of the PHR owner during emergency situations. A
contact list of trusted users is sccurely recorded into an EmS
database and will be used if emergency staffs request to access
any restricted-level information stored in the PHR system.
When the emergency staffs request to access the restricted-
level information (denoted as 3 in Figure 2), EmS will
broadcast the request message to all selected trusted users. If
any trusted user approves the request, he/she sends an approval
message to EmS (denoted as 4 in Figure 2). If approval
messages collected by the EmS are more than or equal to the
pre-determined threshold (t) defined by the PHR owner, the
EmS can decrypt the protected PHR (denoted as 5 in Figure 2)
and the emergency staffs can access the information (denoted
as 6 in Figure 2).

B. Preparing PHRs for Emergency Situations

Since information stored in a PHR is considered to be
sensitive, a PHR will be encrypted by the CP-ABE at a client
before uploading to the PHR server (denoted as 2 in Figure 2).
During encryption, the PHR owner can define a confidentiality
level (i.e., secure, restricted or exclusive level) to the particular
PHR. The following sections describe how the proposed
scheme prepares the PHR system for emergency situations.

1) Secure-level information: According to the definition,
the information stored in a PHR defined at this level must be
protected during normal situations. However, the emergency
staffs can access secure-level PHR information immediately.
That is, the EmS can decrypt a secure-level PHR instantly and
send the decrypted information to the emergency staffs during
emergency situations. In other words, a secure-level PHR
must be decrypted by the EmS key, namely the emergency
key. To do so, an access policy specified by the owner must be
modified to support the decryption using the EmS key. The
sequence of transactions is shown below.

a) An owner specifies the access policy for encrypting
his/her PHR.

b) The PHR client module adds the identity attribute of
the EmS key to the access policy.

273

2013 International Computer Science and Engineering Conference (ICSEC): ICSEC 2013 English Track Full Papers

¢) The PHR client module encrypts the PHR using the
CP-ABE with the access policy as a parameter.

d) The PHR client module uploads the resulting
encrypted PHR to the PHR server through a secure channel.

e) The PHR client module inserts a metadata for this
PIR into the EmS database and sets the PIIR to the secure-
level information.

2) Restricted-level information: According to the
definition, the information stored in a PHR defined at this
level must be protected during normal situations. The
emergency staffs can access the restricted-level PHR
information if and only if they are granted the permission by at
least t out of n trusted users, pre-selected by the PHR owner.
That is, when the emergency staffs request to access a PHR,
the EmS will broadcast the request message to all trusted users
pre-defined by the PHR owner. If there are at least t approvals,
the EmS can derypt the PHR and send the decrypted
information to the emergency staffs. The pre-determined
threshold (t) is also pre-defined by the PHR owner during the
PHR encryption. Thus, the threshold cryptosystem idea is
adapted in this work in order to handle such situations.

Typically, a PHR is encrypted using the CP-ABE before
uploading to the PHR server. However, the access policy,
which is embedded into the resulting encrypted PHR file, must
be modified. By adding the identity attribute of the unique
emergency key. which is generated to be a key for this
particular PHR, the resulting encrypted PHR file can be
decrypted by the unique emergency key as well. However, this
unique emergency key is also encrypted using the threshold
cryptosystem. Once the PHR owner selects a set of trusted
users, the PHR system will assign a secret key for each of these
trusted users. The secret key is a random string. Each secret
key is encrypted with the associated trusted user’s public key.
Thus, only the pre-defined users can decrypt the secret keys.
The encrypted unique emergency key and the encrypted secret
key of cach trusted user are then uploaded to the EmS databasc.
The encrypled restricted-level PHR is however uploaded to the
PHR server. The sequence of transactions is shown below.

a) An owner specifies the access policy for encrypting
his/her PIR.

b) The PHR client module contacts the user authority

(UA) in order to generate the secrel keys and the unique
emergency key.

¢) The UA encrypts the unique emergency key by the
threshold cryptosystem with a list of secret keys and the pre-
determined threshold as parameters. Then, the U4 maps each
secret key to each trusted user and encrypts each secret key
with the corresponding trusted user’s public key.

d) The UA sends the encrypted unique emergency key
and the encrypted secret keys to the PHR client module
through a secure channel.

e) The PIIR client module adds the identity attribute of
the unique emergency key to the access policy.

274

) The PHR client module encrypts the PHR using the
CP-ABE with the access policy as a parameler.

g The PHR client module wuploads the resulting
encrypted PHR to the PHR server through a secure channel.

h) The PHR client module uploads the encrypted unique
emergency key and a set of encrypted secrel keys to the EmS
database through a secure channel.

i) The PHR client module inserts a metadata for this
PHR into the EmS database and sets the PHR to the
restricted-level information.

3) FExclusive-level information: According to the
definition, the information stored in a PHR defined at this
level is not accessible by emergency staffs even in emergency
situations. Therefore, the EmS cannot decrypt this kind of
PHR. Thus, the PHR client module will encrypt a PHR
without the need to add any identity attribute of the emergency
keys. The sequence of transactions is shown below.

a) An owner specifies the access policy for encrypting
his/her PHR.

b) The PHR client module encrypts the PHR using the
CP-ABE with the access policy as a parameler.

¢) The PHR client module uploads the resulting
encrypted PHR lo the PHR server through a secure channel.

C. Accessing PHR Information by Emergency Staffs

Under the proposed scheme, the emergency staffs can
access information stored in the PHR system through the EmS.
Two levels of PHR confidentiality are defined for emergency
staffs including secure and restricted levels. If the secure-level
information is requested, the emergency staffs can access it
instantly. However, if the restricted-level information is
requested, the emergency staffs must be granted an access by a
set of trusted users pre-selected by the PHR owner. At least t
out of n pre-selected trusted users must approve the access
right.

The tasks of authenticating the emergency staffs, however,
are left for the emergency units that are trusted by the PHR
system. Typically, an emergency unit issues some identity
information (such as certificate or token) to its emergency
staffs. When an emergency staff requests to access PHR
information, the EmS will verify the requestor by using such
information. Thus, the proposed system does not restrict any
authentication protocol for verifying the users. That is, the
authentication protocol of the proposed scheme can be applied
with any protocol, such as the secure socket layer protocol
[15], the challenge and response protocol [11], or the token-
based protocol [9]. In addition, the EmS should have a
transaction log that records all transactions. This way, the PHR
owners can trace all accesses to their PHR information. The
following paragraphs describe how emergency staffs can
access the PHR information during emergency situations.

1) Secure-level information: To access the secure-level
information stored in a requested PHR, an emergency staff
sends a request message to the EmS (denoted as 3 in Figure 2).

2013 International Computer Science and Engineering Conference (ICSEC): ICSEC 2013 English Track Full Papers

Then, the EmS and an emergency staff authentication process
occurs. Once, the authentication process succeeds, the EmS
downloads the requested encrypted PHR from the PHR server.
Then, the EmS decrypts the encrypted PHR with its
emergency key (denoted as 5 in Figure 2). Finally, the EmS
sends the requested PHR information to the emergency staff
through a secure channel (denoted as 6 in Figure 2). More
concretely, Figure 3 illustrates the sequence of actions
occuring during the secure-level information accessing
process.

2) Restricted-level information: To access the restricted-
level information stored in a requested PHR, an emergency
staff sends a request message to the EmS (denoted as 3 in
Figure 2). Then, the authentication process between the EmS
and the emergency staff occurs. Once the authentication

Emergency Staff

| |
| secure_send(PHR_request) |

Mutual authentication

Emergency Server

succeeds, the EmS broadcasts the request message along with
the encrypted secret key to cach corresponding pre-sclected
trusted user. If a trusted user approves the request, he/she
decrypts the encrypted secret key with his/her private key and
sends the secret key to the EmS through a secure channel
(denoted as 4 in Figure 2). If the number of approvals is more
than or equal to the pre-determined threshold (variable t), the
EmS can decrypt the encrypted unique emergency key, which
is encrypted using the threshold cryptosystem. Then, the EmS
downloads the requested encrypted PHR from the PHR server
and uses the unique emergency key to decrypt the encrypted
PHR (denoted as 5 in Figure 2). Finally, the requested PHR
information is sent to the emergency staff through a secure
channel (denoted as 6 in Figure 2). More concretely, the
process of accessing the restricted-level information is shown

in Figure 4.
PHR Server

req_download(PHR _request)

secure_send(enc_PHR)

secure_send(PHR)

g PHR := CP-ABE _decrypt(enc_PHR, EmS_key)

Figure 3. The secure-level PHR information accessing sequence.

Emergency Staft ‘ | Emergency Seiver

T T
| |
| secure_send{PHR _request) |

Mutua authentication

secure_hroadcast(PHR _request, enc_secret_key)

Each Trusted User PHR Server

secure_send(secret_key)

secret_key := PKE_deciypt(
enc_secret_key, priv_key)

Collect secret_keys until >=t

unique_emergency_key := ThresholdCS_decrypt(
enc_unique_emergency_key, list<secret_key>)

req_download(PHR _request)

secure_s _PHR)

secure_send(PHR)

PHR := CPABE_decrypt(enc_PHR,
unique_emergency_key)

Figure 4. The restricted-level PHR information accessing sequence.

275

2013 International Computer Science and Engineering Conference (ICSEC): ICSEC 2013 English Track Full Papers

V. CONCLUSIONS

A scheme for managing the PHR information during
emergency situations is proposed in this paper. Because the
PHR information is usually sensitive, the critical challenge of
this work is to manage the PHR access for emergency staffs
when the PHR owner is not able to grant his/her consent.
Under the proposed scheme, the PHR owner is allowed to
define a fine grain access control over his/her PHR information
during emergency situations. Three levels of confidentiality
including sccure, restricted and exclusive are defined. The PHR
owner can define one of the three levels to his/her PHR
information. The secure-level PHR information is considered
open to emergency staffs during the emergency situations.
Meanwhile, the restricted-level PHR information can be
opened to emergency staffs if and only if there are enough
approvals from the pre-selected trusted users. The exclusive-
level PHR information, however, is not opened to the
emergency staffs.

Thus, the secure-level and restricted-level information
enable the owner to specify fine-grained access control on
his/her information to emergency staffs. Furthermore, if the
owner does not agree to give any access right on any of his/her
PHR information, he/she can define the information as
exclusive-level PHR information. All access controls are
achieved through the use of an additional emergency
management server. The emergency management server acts as
a connection between the emergency unit staffs and the
traditional PHR management system. The emergency units
must have a method to authenticate their emergency staffs.
Thus, the tasks of authenticating the emergency staffs are done
according to the method used by the emergency units.
Furthermore, the emergency units in this work are assumed to
be trustworthy.

The contribution of this work is to enable the emergency
staffs to gain an access to the PHR management system
according to the policy defined by the PHR owner. Under the
proposed system, the PHR owner can specify a fine grain
access control policy during emergency situations. To the best
of our knowledge, existing methods still do not allow fine grain
access control like what has been proposed in this paper.

276

(11

[4]

[51

[6]

[8]
91

[10]

[11]

[12]

REFERENCES

P. C. Tang, J. S. Ash, D. W. Bates, J. M. Overhage, and D. Z. Sands,
“Personal health records: definitions, benefits, and strategies for
overcoming barriers to adoption,” Journal of the American Medical
Informatics Association, JAMIA2006., in press.

K. Garson, and C. Adams, “Security and privacy system architecture for
an e-hospital environment,” Identity and trust on the Internet,
IDtrust2008., in press.

M. Li, S. Yu, K. Ren, and W. Lou, “Securing personal health records in
cloud computing: patient-centric and fine-grained data access control in
multi-owner settings,” Security and Privacy in Communication
Networks, SecureComm2010., in press.

M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and secure
sharing of personal health records in cloud computing using attribute-
based encryption,” Parallel and Distributed Systems, PDS2013., in press.
J. Huang, M. Sharaf, and C. T. Huang, “A hierarchical framework for
secure and scalable EHR sharing and access control in multi-cloud,”
Parallel Processing Workshops, ICPPW2012., in press.

L. Tbraimi, M. Asim, and M. Petkovic, “Secure management of personal
health records by applying attribute-based encryption,” Wearable Micro
and Nano Technologies for Personalized Health, pHealth2009., in press.
C. Wang, X. Liu, and W. Li, “Implementing a personal health record
cloud platform using ciphertext-policy attribute-based encryption,”
Intelligent Networking and Collaborative Systems, INCoS2012., in
press.

T. P. Pedersen, “A threshold cryptosystem without a trusted party,”
Advances in Cryptology. EUROCRYPT1991., in press.

D. Weerasinghe, and M. Rajarajan, “Secure trust delegation for sharing
patient medical records in a mobile environment,” Wireless
Communications, Networking and Mobile Computing, WiCOM2011., in
press.

Y. Ding, and K. Klein, “Model-driven application-level encryption for
the privacy of e-health data,” Availability, Reliability, and Security,
ARES2010., in press.

M. N. Huda, S. Yamada, and N. Sonehara, “Privacy-aware access to
patient-controlled personal health records in emergency situations,”
Pervasive Computing Technologies for Healthcare,
PervasiveHealth2009., in press.

J. Sun, X. Zhu, C. Zhang, and Y. Fang, “HCPP: Cryptography based
secure EHR system for patient privacy and emergency healthcare,”
Distributed Computing Systems, ICDCS2011., in press.

V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,” Computer
and Communications Security, CCS2006., in press.

J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” Security and Privacy, SP2007., in press.

J. Viega, M. Messier, and P. Chandra, Network Security with OpenSSL:
Cryptography for Secure Communications, O'Reilly Media, 2002,
pp.93-142.

Appendix A2
Journal Paper

P. Thummavet, and S. Vasupongayya, “A simple ciphertext-policy attribute-based
encryption extension to provide multi-authority personal health record systems,”

Journal of Biomedical and Health Informatics (J-BHI), X(X), 2015, pp. X-X. (under the

reviewing process)

10

>REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

A Simple Ciphertext-Policy Attribute-based
Encryption Extension to Provide Multi-
Authority Personal Health Record Systems

Phuwanai Thummavet and Sangsuree Vasupongayya

Abstract—A PHR concept enables an individual to create,
manage, and share his/her health information to a group of
selected people through an online PHR system. The majority of
current PHR systems use a single user authority to manage all
participants. However, a PHR system usually involves several
user domains. Thus, a simple multi-authority secure personal
health record scheme is proposed in this work. The proposed
scheme allows an individual to create, verify, and manage a
group of selected PHR users locally. The main idea is to
distribute the key pair to all authorities for generating the user
CP-ABE private keys. Thus, the PHR user of some authority can
share his/her encrypted PHR to a user of other authority
transparently as if they are in the same single global authority.
The hierarchical trust model is applied to provide a method to
verify a user from other authority. SSL protocol is also used for
establishing a secure end-to-end communication channel for the
proposed scheme.

Index Terms—ciphertext-policy attribute-based encryption,
multi-user domain, personal health record, privacy.

1. INTRODUCTION

PREVENTIVE healthcare is an alternative healthcare idea that
emphasizes on preventing the disease instead of curing the
disease afterward. However, the majority of today healthcare
styles are curative healthcare at a severe stage of the symptom
because the disease typically cannot be easily detected at the
early stage [1]. As a result, the late detection of a disease can
increase the healthcare cost. Moreover, the late detection of a
disease may cause a difficulty to cure a disease, or may be too
late for a dangerous disease such as heart disease, stroke,
cancer, chronic respiratory diseases, and diabetes [2]. A
preventive healthcare, on the other hand, emphasizes on
monitoring a person condition, detecting a difference or
symptom, and avoiding a disease. For example, an elder can
capture his/her physiological responses from some wearable
sensor devices [3]. The monitored data can be of various types
depending on the elder’s interest such as body temperature,
blood pressure, electrocardiogram (ECG) signal, dietary

This work was supported in part by the National Research University
Funding no. MED5405488S. The authors thank Centre for Network Research
(CNR) lab at Prince of Songkla University for providing equipments and
facilities.

The authors are with the Department of Computer Engineering, Faculty of
Engineering Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
(e-mail: vsangsur @fivedots.coe.psu.ac.th).

details, exercise patterns, sleeping patterns, and transient
symptoms. This information can be used later by the elder’s
physician. This way, any early symptom or threat of a disease
can be detected early. However, the monitored data must be
stored and shared with the physician.

A concept of personal health record (PHR) [4] enables an
individual to create, manage, and share his/her health
information to a group of selected people through an online
PHR management system. In addition to the home-monitored
data, PHRs can contain other health related information such
as medical history, personal diseases, past allergic reactions,
laboratory results, mental health information, physician
diagnostic results and recommendations, Therefore, a PHR is
usually considered to be highly sensitive which raises a
concern on the security of such data [5].[6.],[7],[8]. Typical
PHR system requires an encryption method to provide security
by encrypting the data at the source before transferring to a
PHR storage system.

However, only encryption is not enough to manage a PHR
system because the selected encryption method must also
allow multiple people to access the same encrypted data since
the PHR information is often accessed by multiple potential
users. A list of potential users includes the PHR owner, his/her
family members, the medical staffs, and the caregivers.
Therefore, an encryption method must also enforce an access
control of each user on the defined PHR. As a result, the one-
to-many encryption schemes such as Policy-based encryption
(PolBE) [10], Key-policy attribute-based encryption (KP-
ABE) [11], and Ciphertext-policy attribute-based encryption
(CP-ABE) [12] are usually applied in order to enforce an
access control on the PHR.

The one-to-many encryption scheme allows the PHR owner
to define a specific access policy on his/her PHR. Then, the
PHR will be encrypted such that only the user with a specific
set of attributes defined in the policy can access the encrypted
PHR. This way, the owner has a full control on who can
access his/her PHR information. For example, a PHR owner
can define a policy to allow his/her family member, the
physician at Hospital A and the physician at Hospital B to
access his/her PHR information. Thus, the person who has the
attribute defined in the policy can access the PHR information.
In other words, only the user who has the attribute defined in
the policy (i.e., a family member, a physician at Hospital A
and a physician at Hospital B) will be able to decrypt the

>REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

encrypted PHR. This way, multiple users can access the same
information as long as they process the attribute(s) satisfied
the access policy of the encrypted PHR. The one-to-many
encryption schemes—PolBE, KP-ABE, and CP-ABE—are
applied in many traditional PHR systems. PolBE was used in
[5]. KP-ABE was used in [13][15]. CP-ABE was used in
[16][18].

A limitation to these PHR systems are the requirement of a
single user authority or a centralized user control system, in
which all users must be pre-registered with the single user
authority in the system. In the real environment, however, the
PHR may be involved several user domains [20] such as a
personal domain (e.g., patient/PHR owner and family
members), a healthcare domain (e.g., medical staffs), a health
insurance domain (e.g., insurers), and a medical research
domain (e.g., researchers). Each of these domains may already
establish an authentication and verification method. However,
the traditional one-to-many encryption schemes may not be
able to utilize such features. Moreover, handling multiple user
domains on a centralized user authority environment can
create several issues and limitations [13], [20] such as the
system scalability, a single point of failure, and a trust
management problem.

To solve such issues and limitations, [13] and [14] proposed
a multi-user domain PHR system, which is divided into two
security domains: personal domain and public domain. The
personal domain is managed by the PHR owner directly. The
PHR owner can add users such as his/her family members and
friends to the personal domain. A user in the personal domain
can access the PHRs according to the access permissions
given by the PHR owner. On the other hand, the public
domain consists of multiple types of PHR users such as
physicians, nurses, and paramedics. A user in the public
domain can access the PHRs according to the access
permissions defined by his/her roles. In their work, the KP-
ABE and multi-authority attribute-based encryption (MA-
ABE) [22] were applied to protect the PHR information in the
personal domain and the public domain respectively. With the
MA-ABE, their system can distribute the user verification and
key management tasks to multiple expert authorities.
However, there are only two types of domains. In addition,
[23] proposed a multi-authority cloud storage system which
applied CP-ABE for multi-authority ABE where the tasks of
user and attribute management are distributed to multiple
attribute authorities.

In this paper, a simple multi-authority secure personal
health record (MA-PHR) scheme is proposed to allow an
individual to create, verify, and manage a group of selected
PHR users locally. The idea is to modify the CP-ABE initial
setting to handle a multi-authority environment. This way, any
existing single-authority personal health record system can
utilize the proposed method in order to handle multi-authority
environment. Furthermore, a dual layer protection is also
proposed to enable the user to control which users can
download, upload or even delete his/her (encrypted) PHR
stored on the PHR server. The end-to-end secure PHR sharing
scheme is also ensured in order to guarantee that only the

authorized users is able to access the PHR information. With
the proposed scheme, the traditional centralized user authority
PHR systems can be easily transformed to multi-user authority
PHR systems.

The remaining of this document is organized as follows.
The original CP-ABE scheme is described in Section II. The
proposed MA-PHR scheme is presented in Section III. Section
IV provides related works. Finally, the conclusion is given in
Section V.

II. CIPHERTEXT-POLICY ATTRIBUTE-BASED ENCRYPTION

The original CP-ABE scheme [12] is presented in this
section in order to layout the background information required
for understanding the proposed scheme presented in the next
section. CP-ABE is a one-to-many encryption algorithm that
allows multiple users to access the encrypted data. Under CP-
ABE scheme, a set of attributes is used to describe the user’s
decryption key (called the CP-ABE private key). The data
owner can specify an access policy using a list of attributes
associated with the authorized person. The policy is then
embedded into the encrypted data. For example, the policy in
the previous example can be expressed as follow.

Policy P = “(family_member) OR (physician, hospital-A) OR
(physician, hospital-B)”

This way, the encrypted data can be decrypted if the user
processes the defined attributes. There is no method to make a
decision of who can access the data because the data can be
decrypted if the user processes the attributes family_member
or a physician at either hospital-A or hospital-B. Otherwise,
the data cannot be decrypted. The CP-ABE scheme consists of
four steps as follows.

The first step is the setup phase. The setup phase generales
a public parameter PK and a master secret key MSK. The PK
consists of the generator g, gﬁ, and e(g, g)”, where e is a
efficiently computable symmetric bilinear map. The MSK is
the value Sand g“. The PK can be reveal publicly, while the
MSK must be kept secret.

The second step is the encryption phase. The encryption
phase generates the ciphertext CT from a set of input including
the public parameters PK, a plaintext message M, and an
access policy tree T. The access policy tree can be generated
for any policy using a set of boolean formulas. For example
the policy P above can be transformed into an access policy
tree as shown in Figure 1.

Family member

Physician

Hospital-A Hospital-B

Fig. 1. An access policy tree of the policy P.

11

12

>REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

The third step is the keygen phase. The keygen phase
generates the private key SK associated with the set of
attribute S that described the key. This process takes in the
public parameters PK, the master secret key MSK, and a set of
user attributes § as a set of input. That is, the attributes are
mathematically incorporated into the key.

The last step is the decryption phase. At this phase, the
ciphertext CT will be decrypted if and only if the set of
attributes associated with the private key SK satisfies the
access policy tree T.

Typically, CP-ABE is designed for a single user authority
(UA) environment. In other words, all users must be managed
by the centralized UA. In this work, a specific initial setting of
CP-ABE in order to handle the multi-UA environment is
proposed. By using our proposed scheme, any traditional CP-
ABE-based PHR system can be modified to handle the multi-
UA environment.

III. THE PROPOSED SCHEME

The proposed scheme extends the original CP-ABE to
handle a multi-user authority environment by modifying an
initial setting of the original CP-ABE. Under the proposed
scheme, each user authority or domain is allowed to manage
its members locally. However, a method to verify a user from
other authority is needed. To solve such problem, the
hierarchical trust model [24] which is a feature provided by
the SSL protocol [25] is applied in this work to provide this
mechanism. Furthermore, the SSL protocol is also used for
establishing a secure end-to-end channel for secure
communication in the proposed scheme. In addition, the PHR
dual layer protection is also proposed in this scheme in order
to provide a security on READ and STORE actions separately.

The details of all mechanisms proposed are given in the
next two sections. The last section presents the resulting
prototype MA-PHR developed in this work.

A. Modified CP-ABE Initial Settings

Traditionally, CP-ABE setup step is performed during the
system installation process. The setup phase generates the key
pair: public parameters PK and master secret key MSK. This
key pair is mathematically linked. Whereas PK can be reveal
publicly, MSK must be privately stored by the trusted UA. PK
is required as the explicit parameter for generating the CP-
ABE private key and encrypting/decrypting the ciphertext CT.
MSK is required as the explicit parameter when generating any
private key. The ciphertext C7' can be decrypted with the
private key if and only if both the ciphertext and private key
are produced from the corresponding PK and MSK key pair.

The following subsections describe how to set up the
original CP-ABE for a multi-authority environment. The main
idea is to distribute the PK and MSK key pair to all authorities
and let them generate the CP-ABE private keys for their users
by using the corresponding key pair, a PHR user of some
authority can share his/her encrypted PHR to another user of
some authority transparently, as if they were in the same
global authority. The setup transactions consist of four phases
as follows:

1) MA-PHR Core System Setup

This phase is used for setting up the MA-PHR core system
that is controlled by the root authority (RA) as shown in Fig.
2. The RA runs CP-ABE Setup algorithm to generate the key
pair: public parameters PK and master secret key MSK
(denoted as 1 in Fig. 2). Then, this key pair is privately stored
by RA and will be used as the root of all children CP-ABE
private keys in the system.
2) User Authority Setup

‘When a new user authority (UA) requests to join the MA-
PHR core system, the RA must first verify the new UA. After
a successful verification process, the RA is then securely
distributing the PK and MSK key pair to the UA (denoted as 2
in Fig.). This key pair will be used as the specific parameters
for generating the CP-ABE private keys in the user key
generation phase. While PK can be reveal publicly, MSK must
be privately stored by trusted UA. Thus, the MSK must be
distributed securely to the UA.

3) User Key Generation

‘When a user at a certain UA is requesting for his/her private
key, the UA executes the CP-ABE KeyGen algorithm using
the obtained PK and MSK key pair as the specific parameters
together with a set of user attributes (denoted as 3 in Fig. 2).
This way, the user will receive the CP-ABE private key that is
able to decrypt the encrypted data from any authority in the
system as if they were in the same single global authority.
4) Inter-Authority Synchronization

Since each user authority (UA) manages a different user
domain, thus, each UA can have a different set of attributes.
For example, a personal authority has a set of attributes: PHR
owner, family member, relative and friend, whereas a
healthcare authority has a set of attributes: physician, nurse,
paramedic and other medical staff attributes. Therefore, all
UAs must synchronize their attribute sets with each other
periodically (denoted as 4 in Fig. 2). This way, the PHR user
of some authority will be able to define a set of attributes in
his/her access policy for a group of users from other
authorities during an encryption process.

B. Security Mechanisms of the Proposed Scheme

This section provides the details of all security mechanisms
that make the proposed scheme secure under the multi-
authority environment. First, the hierarchical trust model to
build a mutual trust relationship among PHR users is given.
Next, the PHR dual layer protection is offered to make a fine-
grained access control on the PHR. Finally, the end-to-end
secure PHR sharing scheme is also provided.

1) Hierarchical Trust Model

The proposed scheme allows each user authority to create,
verity, and manage a group of selected PHR users locally.
Basically, a PHR user can collaborate with other users across
the authority. For example, a PHR owner namely Alice wants
to share her PHR record with Matt, her boyfriend, who is in
Alice’s personal authority and Bob, her physician, who is in
the healthcare authority. Because Bob and Matt are from
different authority, an inter-authority user verification
mechanism is required.

In the proposed scheme, the hierarchical trust model (as
shown in Fig. 3), which is a feature provided by the SSL

>REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

protocol to provide the inter-authority user verification
mechanism, is applied. The hierarchical trust model allows
each user authority to certify and issue a SSL certificate to its
members locally. For example, a personal authority and a
healthcare authority can certify and issue a SSL certificate to
their users locally and then a PHR user under a personal
authority can verify an identity of a peer user from a
healthcare authority using the peer user’s certificate, and vice
versa.

R D A oo GDLARE) 4
public parameters and master seeret key)

A7)
b
CP-ABE public

parameters and master
secretkey

Root Authority

‘ (2) Distribute the public
parameters and master secret key

Personal Authority Healthcare Authority

(4) Synchronize attribu

(3) Run KeyGen o
algorithin by passing
the obtained keys as :,i
parametersto generate | User Authority R‘L

User Authority

CP-ABE private keys CP-ABE CP-ABE
to users private keys privatekeys
@&) ™ 4 . ~
V'3 . 17 >
"" o) Prysician {9 ™
PHR owner (gl ¢ Paramedic
Family members Nurse

Fig. 2. Setting up CP-ABE for multi-authority environment.

The hierarchical trust model consists of two levels: authority
and user levels. Each level is allowed to verify and certify its
sub-entities. The root of the hierarchical trust model is called
the root authority (RA). When a new user authority is created
and requested to join the proposed MA-PHR system, the RA
must verify an identity of the requesting authority and issue
the authority certificate to the requesting authority (denoted as
‘level 1’ in Fig. 3). Then, the requesting authority uses the
obtained authority certificate for chain certifying and issuing
the user certificates to its PHR users locally (denoted as ‘level
2’ in Fig. 3). Later, a PHR user can use the obtained user
certificate for authenticating and establishing a secure channel
[21], [26]. Since each authority generates the user certificates
to its members using the same root certificate, a user can
verify the certificate of a peer user across authorities.
Therefore, in case of Alice discussed previously, she can make
sure that she shares her PHR information with her physician
via this hierarchical trust model, because Bob will be verified
and authenticated by the hospital (ie., the healthcare
authority).

2} PHR Dual Layer Protection

The proposed PHR dual layer protection consists of two
protection layers: read protection layer and store access
control layer. The read protection layer protects the PHR
information from unauthorized read actions. As such, the PHR
information will be encrypted at a source before securely
uploaded to a PHR server. The read protection layer uses the
CP-ABE to encrypt the PHR information at a client before
securely upload to the PHR server through a secure channel

(denoted as 4 in Fig. 4). According to the CP-ABE scheme,
the PHR owner is allowed to specity an access policy for each
PHR and the access policy will be embedded into the
encrypted PHR. The user can decrypt the encrypted PHR if
and only if his/her CP-ABE private key contains the set of
attributes satisfying the associated access policy embedded in

the encrypted PHR.

Root Authority {.‘”
Authority certificates
signed by RA

Levell

Personal Authority Healthcare Authority

User Authority ;.{

User Authority ‘..i y

Level2 User certificates Level2 User certificates
signed by UA signed by UA
* - R = ~
w R AN W -
PHR owner Q - Physician 7
s 2 Paramedic
Family members Nurse

Fig. 3 A hierarchical trust model of the proposed scheme.

On the other hand, the store access control layer protects the
encrypted PHRs stored on the PHR server from unauthorized
accesses. The PHR owner can selectively assign any
permission to each user. The permission can be upload,
download and delete. The user can perform any action on the
encrypted PHRs stored on a PHR server according to the
access permissions granted by the PHR owner. With the
proposed dual protection layers, thus, a PHR owner can have a
full control over which users can read or modify his/her PHRs.

3) End-to-End Secure PHR Sharing

When a user enters the MA-PHE system, the UA that he/she
is a member will allow the user to obtain his/her CP-ABE
private key and the user certificate (denoted as 1 in Fig. 4).
The CP-ABE private key will be used as the PHR decryption
key and the user certificate will be used for authenticating
himself/herself and establishing a secure channel when the
user contacts with any server. In the proposed scheme, the
PHR owner (e.g., Alice) can selectively grant any of the
access permissions (i.e., upload, download, and delete
permissions) to a selected user through the UA (denoted as 2
in Fig 4). This way, Alice can control accesses on her
encrypted PHRs stored on the PHR server for each selected
user. The granted access permissions will be securely recorded
in the UA database and will be used when a user requests an
access to any record of Alice’s PHRs. If Alice and the user
(c.g., Bob) are in different authorities as shown in Fig 4, the
granted access permissions have to be synchronized from
Alice’s authority to Bob’s authority (denoted as 3 in Fig 4). In
the proposed scheme, all authorities always periodically
synchronize their attribute sets, user lists, and granted access
permission sets with each other.

The proposed scheme offers an end-to-end PHR protection
method. That is, the PHR information will be encrypted using

14

>REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

the modified CP-ABE at the client before securely uploading
to the PHR server through a secure channel (denoted as 4 in
Fig 4) and the resulting encrypted PHR would be decrypted by
only the authorized users at their clients. Thus, Alice can make
sure that her PHR information will be protected and her
information will only be exposed to the authorized users. The
PHR server storing the encrypted PHR also cannot learn the
plaintext information, because it does not have the decryption
key [5], [13], [14], [16].

Assuming that Bob needs to access Alice’s PHR
information after the PHR uploading process at Alice’s client
side, Bob will have to request and obtain a one-time request
(OTR) token from his UA (denoted as 5 in Fig. 4). The OTR
token contains Bob’s access permissions granted by Alice and
this token will be used as a request certificate for accessing

Alice’s encrypted PHRs stored on the PHR server. Thus, Bob
can only perform actions indicated on this OTR token. Since
the OTR token is a certificate with a specific expiration
date/time, Bob cannot re-use the token if the token lifetime is
expired. After Bob gets the OTR token, Bob sends a request
message along with the OTR token to the PHR server
(denoted as 6 in Fig 4). The PHR server then uses the OTR
token for verifying Bob’s request. Next, Bob can download,
upload or delete the requested PIIR (denoted as 7 in Fig 4). In
addition to provide a non-repudiation feature [21], Bob’s
request will be recorded as a transaction log on the audit
server (denoted as 8 in Fig 4). The transaction logs will be
periodically synchronized from Bob’s authority to Alice’s
authority (denoted as 9 in Fig 4). This way, Alice can trace all
accesses on her PHRs later (denoted as 10 in Fig 4).

Personal Authority Healthcare Authority
-
(1) Obtain key (3) Synchronize (1) Obtain key
and certificate attributes and and certificate

W access permissions —— ' |
5 - ——————— > —_—
<) (2) Provide access . (5) Obtain OTR token P"

PHR owner PErmissions to Hob User Authority User Authority Physician
Alice Bob
: (10) Trace % (9) Synchronize (8) Record :
¢ transaction logs transaction logs transaction logs e
PHR 4/l - PHR
4 / y
Audit Server Audit Server
J
(6) Send the request
along with OTR token
(4) Upload an e 4 as a request certificate
encrypted PHR f [»]
% R j e
Encrypted PHR l\ % (7) Download/upload

PHR Server
(public storage)

Encrypted PHR ~ Alice’s encrypted PHR

Fig. 4 End-to-end secure PHR sharing workflow.

C. The Proposed MA-PHR System Demonstration

The proposed MA-PHR system is developed and
demonstrated in this section. The case scenario used in this
section consists of four players including Alice—the PHR
owner, John—Alice’s family member, James—Alice’s family
member, and Bob—Alice’s physician. Alice is a subscriber of
the proposed MA-PHR system. John and James are in Alice’s
personal authority which is created and managed by Alice
herself. Bob is a physician at a hospital which is part of the
healthcare authority in the proposed systen1. Alice can define a
list of access permissions on her PHRs to anyone in the system
as shown in Fig 5. According to the access permission defined
in the figure, Alice allows her family members to only
download her PHRs meaning a read permission. However,
Alice allows her physician, Bob, to be able to download and
upload her PHRs meaning both read and store permissions.
Therefore, Bob can update Alice’s PHRs by himself. Note
that, each player will be identified by two identities. First is
the domain such as Personal or Healthcare. Second is the

person such as Bob, John and James. This is part of the
modification made in this project to be able to identify an
authority under a multi-user authority environment in the
access policy.

Next, Alice loads her PHR information containing her
medical history, diagnosis information, and lab results on her
PHR client module. Alice can specify an access policy for this
record before the record is being encrypted as shown in Fig 6.
Next, the record will be encrypted at a client using the CP-
ABE scheme with the access policy as a parameter and the
resulting encrypted PHR will be uploaded to the PHR server
through a secure channel as shown in Fig 7.

Assuming that Bob wants to access Alice’s PHR, Bob must
log in to the system with his identity specified by the
healthcare authority. Once Bob is authenticated and in the
system, Bob can search for Alice’s PHR and request to
download the record as shown in Fig. 8. Then, the decryption
process will be performed at Bob’s client if and only if his CP-
ABE private key satisfies the associated access policy
embedded in the encrypted PHR as shown in Fig 9. The

>REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

process of decryption is either success or fail at this stage
because of the CP-ABE scheme. There is no extra step to
make a decision whether the action is allowed or disallowed.

@ PHR system: User Mai
' PHR Management | Transaction Auditing
o

Access Permission Management 1]
Access
Name Upload Permission? |Download Permission?|_Delste Permission?
Fersonaljohr false trae false
Fersonal.James false [true false
=althcare Bob [true ftrae false

Assign permissions || Edit || Remove
Refresh

Login session time left: 29 minutes 26 seconds

Fig. 5. Alice assigns access permissions to each player.

ent | Transaction Auditing |
Access Permission Management

Authority name:

PHR ownername:

_PHR Manag

Info

IO

Upload from: [17n4ry/Deckiop/alice s °HR u\fcrmatlon” Browse

medical history, diagnosis, lab
Data description: | results

Access Palicy
Root of access policy
Attribute: Personal family_member
Attribute: Healthcare caregiver
Attribute: Hezltheare physiciar

Login session time left: 26 minutes 19 seconds

Fig 6. Alice specifies an access policy for her PHR.

© PHR system: User Main
((PHR Management | Transaction Auditing |

nfo Access Permission Management

Upload from:

Data description:

Access Policy

Personal family member
: Healthcare, caragiver
Attribiite; Healthcare, physician

Encrypting the PHR

Uploading the encrypted PHR

| 39% |
cancel |

Login session time left: 25 minutes 33 seconds

Fig 7. Alice’s encrypted PHR is uploaded to the PHR server.

With the developed PHR system, users from different user
authorities can collaborate with each other transparently. From
the user’s viewpoint, therefore, users can share their PHRs
with each other with the same experience like using the
traditional centralized PHR system. From the PHR
administrator’s viewpoint, the developed system allows the
administrator to identify, verify, and manage a group of
selected users related to his/her individual or organization
locally. However, the proposed MA-PHR system allows the
users from various authorities to participate in the system
without an need to re-register with the system if they are a
member of an authority in the system. This way, various
organizations with well establishing verification and
authentication methods can be included in the system.

However, the drawback of the proposed system is that the
trusts are relaying on the security mechanisms of these various
organizations. From the personal healthcare standpoint, most
healthcare authorities or health service providers such as
hospitals, emergency units, and rescuer units, are well
established in the verification and authentication their
personals. The only concern will be any unconventional unit
that is requesting to join the system. Thus, the administrator of
the system must pay close attention on the verification such
units before adding such authority to the proposed system.

© © PHR system: User Main
" PHR Management
’ v

Info_ |

]
Access Permission Management

PHR ownername:
Transaction

Upload a PHR
Download a PHR
 Delete a PHR

lustasind

Login session time left: 29 minutes 10 seconds

Fig 8 Bob initializes his download request.

PHR Info

Authority name:

PHR ownername:
© Message

® Downloading the PHR succeeded

oo

Decrypting the encrypted PHR

Cancel

Login session time |eft: 27 minutes 20 seconds

Fig 9 Bob can access Alice’s PHR as requested.

15

16

>REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

1IV. RELATED WORK

Other than e-Healthcare system domain like in this work,
the multi-authority concept was applied in many practical
adoptions/research domains such as emergency situation
process modeling [27], traffic engineering [28], and
anonymous authentication [29].

In [27], a concept of multi-authority was applied for
managing multiple emergency response units such as rescue,
healthcare, and police units. The plan for emergency situations
was presented in order to prepare each authority for react in
case of a particular emergency situation efficiently.

In traffic engineering [28], an integrated network composing
of TV camera sensors, databases, and physical networks is
applied for intelligent transportation system. There can be
multiple authorities in the traffic way such as drivers of
vehicles, traffic polices, and ambulances. Each authority can
request for monitoring a traffic status in real time, but there
are limited resources such as network bandwidth and
processing units. In order for efficient response, when clients
compete for a resource, the client who has a higher priority
gets the resource.

The multi-authority concept was also applied for making a
digital signature scheme. In [29], a multi-authority attribute-
based signature scheme was proposed. A signer can sign a
message with his/her attributes, and the verifier can check
whether the signer owns attributes satisfying his/her policy. A
signer can be a member of multiple attribute authorities. Thus,
this signature scheme is suitable for the applications in the real
world because often a wuser can affiliate to multiple
organizations. This signature scheme can be applied for an
anonymous authentication or attribute-based messaging
systems.

V. CONCLUSION

A scheme for distributing the user management tasks of a
PHR system is proposed in this paper. The proposed multi-
authority secure PHR scheme allows each user domain to
organize and manage a group of selected PHR users locally.
This way, the well-establish organization can join the system
easily without any need to re-register with the PHR system.
The original CP-ABE is modified in order to handle multi-user
authority environment. The key idea is to distribute the
initialized CP-ABE parameters (i.e., the key pair: public
parameters PK and master secret key MSK) to all local UAs in
the system. With the corresponding PK and MSK key pair, the
local UAs can establish the multi-UA-compatible CP-ABE
environment. All UAs must synchronize the attribute sets with
each other periodically. A hierarchical trust model is applied
to make an inter-authority user verification mechanism. PHR
dual layer protection which consists of two protection layers:
read protection layer and storage access control layer is
offered to make a fine-grained access control on the PHR.
Moreover, the end-to-end secure PHR sharing scheme is also
provided.

The contribution of this work is to handle the system
scalability, single point of failure, and efficient and trustable
user management problems occurred in the centralized PHR
system by distributing user management tasks to multiple user
authorities while preserving security and privacy of the PHR.

The future improvement of this work is to make a more
flexible solution for access permission assignment of the PHR
dual layer protection’s storage access control layer.

REFERENCES

[1] A. Aridarma, T. L. Mengko, and S. Soegijoko, “Personal medical
assistant: Future exploration,” Pr dings of the I i
Conference on Electrical Engineering and Informatics (ICEEI),
Bandung, Indonesia, July 2011, pp. 1-6.

[2] M. Kuroda, and Y. Nohara, “IEEE802. 15.6 NB portable BAN clinic
and M2M international standardization,” Proceedings of the 35th Annual
Intemational Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), July 2013, pp. 1660-1663.

[3] Z.Pang, Q. Chen, and L. Zheng, “A pervasive and preventive healthcare
solution for medication noncompliance and daily monitoring,”
Pr dings of the 2nd In ional ium on Applied Sciences in
Bi dic and Ci ication Technologies (ISABEL), Bratislava,
November 2009, pp. 1-6.

[4] P.C. Tang, J. S. Ash, D. W. Bates, J. M. Overhage, and D. Z. Sands,
“Personal health records: definitions, benefits, and strategies for
overcoming barriers to adoption,” Journal of the American Medical
Informatics Association (JAMIA), 13(2), 2006, pp. 121-126.

[51 K. Garson, and C. Adams, "Security and privacy system architecture for
an e-hospital environment," Proceedings of the 7th Symposium on
Identity and Trust on the Internet (IDtrust), Gaithersburg, MD, March
2008, pp. 122-130.

[6] B. A. Malin, K. El Emam, and C. M. O'Keefe, “Biomedical data
privacy: problems, perspectives, and recent advances,” Journal of the
American Medical Informatics Association (JAMIA), 20(1), 2013, pp. 2-
6.

[71 K. Caine, and R. Hanania, “Patients want granular privacy control over
health information in electronic medical records,” Journal of the
American Medical Informatics Association (JAMIA), 20(1), 2013, pp. 7-

[8] R. Singh, V. Gupta, and K. Mohan, “Dynamic federation in identity
management for securing and sharing personal health records in a
patient-centric model in cloud,” International Journal of Engineering
and Technology (IJET), 5(3), 2013, pp. 2201-2209.

[9]Y. Ding, and K. Klein, “Model-driven application-level encryption for the
privacy of e-health data,” Proceedings of the 10th International
Conference on A bility, Reliability, and Security (ARES), Krakow,
February 2010, pp. 341-346.

[10] W. Bagga, and R. Molva, “Policy-based cryptography and applications,”
Proceedings of the 9th International Conference on Financial
Cryptography and Data Security (FC), Roseau, March 2005, pp. 72-87.

[11] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Auribute-based
encryption for fine-grained access control of encrypted data,”
Proceedings of the 13th ACM Conference on Computer and
Communications Security (CCS), Alexandria, Virginia, USA, October
2006, pp. 89-98.

[12] J. Bethencourt, A. Sahai, and B. Waters, "Ciphertext-policy attribute-
based encryption," Proceedings of the 28th IEEE Symposium on Security
and Privacy (SP), Berkeley, CA, USA, May 2007, pp. 321-334.

[13] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, "Scalable and secure
sharing of personal health records in cloud computing using attribute-
based encryption," Proceedings of the IEEE Transactions on Parallel
and Distributed Systems (TPDS), 24(1), 2013, pp. 131-143.

[14] M.Li, S. Yu, K. Ren, and W. Lou, "Securing personal health records in
cloud computing: patient-centric and fine-grained data access control in
multi-owner settings,” P ings of the 6th I ional Conference
on Security and Privacy in Communication Networks (SecureComm),
Singapore, September 2010, pp. 89-106.

[15] J. Huang, M. Sharaf, and C. T. Huang, "A hierarchical framework for
secure and scalable EHR sharing and access control in multi-cloud,"
Proceedings of the 41st International Conference on Parallel
Processing Workshops (ICPPW), Pittsburgh, PA, USA, September
2012, pp. 279-287.

[16] L. Ibraimi, M. Asim, and M. Petkovic, “Secure management of personal
health records by applying attribute-based encryption,” Proceedings of
the 6th International Workshop on Wearable Micro and Nano
Technologies for Personalized Health (pHealth), Oslo, June 2009, pp.
71-74.

[17] C. Wang, X. Liu, and W. Li, “Implementing a personal health record
cloud platform using ciphertext-policy attribute-based encryption,”

>REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 8

[18]

[19]

[20]

[21]

[22]

[23]

Proceedings of the International Conference on Intelligent Networking
and Collaborative Systems (INCoS), Bucharest, September 2012, pp. 8-
14.

J. Li, G. Zhao, X. Chen, D. Xie, C. Rong, W. Li, and Y. Tang, “Fine-
grained data access control systems with user accountability in cloud
computing,” Proceedings of the 2th International Conference on Cloud
Computing Technology and Science (CloudCom), Indianapolis, IN,
USA, December 2010, pp. 89-96.

P. Thummavet, and S. Vasupongayya, "A novel personal health record
system for handling emergency situations," Proceedings of the 17th
International Computer Science and Engineering Conference (ICSEC),
Nakorn Pathom, Thailand, September 2013, pp. 266-271.

T. Parameswaran, S. Vanitha, and K. S. Arvind, “An efficient sharing of
personal health records using DABE in secure cloud environment,”
International Journal of Advanced Research in Computer Engineering
& Technology (IJARCET), 2(3), 2013, pp. 925-932.

J. L. F. Alemin, 1. C. Sefior, P. A. 0. Lozoya, and A. Toval, “Security
and privacy in electronic health records: A systematic literature review,”
Journal of biomedical informatics, 46(3), 2013, pp. 541-562.

M. Chase, and S. S. Chow, “Improving privacy and security in multi-
authority attribute-based encryption,” Proceedings of the 16th ACM
Conference on Computer and Communications Security (CCS), Chicago,
IL, USA, November 2009, pp. 121-130.

K. Yang, X. Jia, K. Ren, and B. Zhang, “Dac-macs: Effective data
access control for multi-authority cloud storage systems,” Proceedings
of the IEEE INFOCOM, Turin, April 2013, pp. 2895 - 2903.

[24]

How CA Certificates Establish Trust. (2014). [Online]. Available:
https://access.redhat.com/site/documentation/en-US/Red_Hat_Certificat
e_Systeny/8.0/html/Deployment_Guide/Introduction_to_Public_Key_Cr
yptography-Certificates_and_Authentication html#Certificates_and_Aut
hentication-How_CA_Certificates_Establish_Trust

J. Viega, M. Messier, and P. Chandra, “Network Security with
OpenSSL: Cryptography for Secure Communications,” O'Reilly Media,
Incorporated, 2002, pp. 93-142.

D. Weerasinghe, and M. Rajarajan, "Secure trust delegation for sharing
patient medical records in a mobile environment," Proceedings of the
7th International Conference on Wireless Communications, Networking
and Mobile Computing (WiCOM), Wuhan, September 2011, pp. 1-4.

P. Linna, J. Leppaniemi, J. Soini, and H. Jaakkola, “Harmonizing
emergency management knowledge representation,” Proceedings of the
Portland I ional Conference M. of Engineering &
Technology (PICMET).Portland, OR, August 2009, pp. 1047-1051.

I Mizunuma, and I. Masaki, “Multi-authority virtual network for
intelligent transportation systems,” Proceedings of the IEEE Intelligent
Vehicles Symposium (IV), Dearborn, ML, 2000, pp. 430-435.

D. Cao, B. Zhao, X. Wang, J. Su, and G. Ji, “Multi-authority attribute-
based signature,” Proceedings of the 3rd International Conference on
Intelligent Networking and Collaborative Systems (INCoS), Fukuoka,
November 2011, pp. 668-672.

17

18

Appendix A3

Journal Paper

P. Thummavet, and S. Vasupongayya, “Privacy-preserving emergency access control
for personal health records,” Maejo International Journal of Science and Technology

(MIST), 9(01), 2015, pp. 108-120.

Maejo Int. J. Sci. Technol. 20185, 9(01), 108-120; doi: 10.14456/mijst.2015.7
Maejo International
Journal of Science and Technology

ISSN 1905-7873
Available online at www.mijst.mju.ac.th
Technical Note

Privacy-preserving emergency access control for personal
health records

Phuwanai Thummavet and Sangsuree Vasupongayya*

Department of Computer Engineering, Faculty of Engineering, Prince of Songkla University,
P.O. Box 2 Kohong, Hatyai, Songkhla, 90112, Thailand

* Corresponding author, e-mail: vsangsur@coe.psu.ac.th

Received: 19 June 2014/ Accepted.: 2 April 2015 / Published: 9 April 2015

Abstract: Recently, a flexible scheme for handling personal health records (PHRs) in
emergency situations has been proposed. Under such a scheme, each PHR is classified as
secure, restricted, or exclusive information. Secure PHRs are immediately available to the
emergency response unit (ERU) staff. Restricted PHRs require additional approvals from a
set of authorised people who are pre-selected by the PHR owner. Exclusive PHRs are only
accessible by the owner. Previous work assumed that all ERU staff is trustworthy. To be
practical, this work eliminates such an assumption. Several mechanisms are applied to
ensure the usability and security of the newly proposed scheme. For example, an access-
request authentication mechanism is applied to enhance the trustworthiness of the requests
that are invoked by the ERU staff. Moreover, a transaction auditing mechanism is applied
to provide a non-repudiation feature. This paper discusses the usability and security issues
of the proposed scheme in practice and suggests how to classify a PHR considering the
above-mentioned privacy levels.

Keywords: personal health record, privacy, security, ciphertext-policy attribute-based
encryption, threshold cryptosystem

INTRODUCTION

Today, people are more aware of information concerning their health because of the rising
cost of healthcare. Recently, alternative medicines such as dietary supplements and herbal products
have gained popularity [1]. In addition, personal health record (PHR) system is emerging as a
preventive healthcare method [2]. The PHR system allows an individual to collect, store, analyse,
and share his/her personal health data with a group of trusted people such as family members,
family doctors and caretakers [3]. The PHR system usually contains highly sensitive information

19

20

109
Maejo Int. J. Sci. Technol. 2015, 9(01), 108-120; doi: 10.14456/mijst.2015.7

[4]; it can include information related to the PHR owner’s health such as his/her mental health,
disease risks and laboratory test results. Therefore, the PHR system must ensure the security and
privacy of the PHR owner’s information, and the actual PHRs must be protected from an
unauthorised access or modification. Moreover, the PHR owner must be able to manage and control
all authorised access to his/her PHRs. To achieve such features, the PHR system should allow the
PHR owner to define an access control policy on his/her PHRs, which must be enforced by the PHR
system. Thus, an individual can access a PHR if and only if that individual has been granted the
authority by the PHR owner via an access control policy. For example, John can grant access to his
family doctor, Jason, by defining a policy such as “Jason, who is a doctor, can access my records.”
Hence the PHR system will allow only Jason, who is a doctor, to access John’s PHRs.

An interesting PHR management issue arises during an emergency [5, 6]. Generally, an
emergency response unit (ERU) staff member is the first care provider to reach the victim.
Providing correct and useful health information (e.g. personal diseases) about the victim in the
emergency situation can increase the opportunity to provide proper treatment to save the victim’s
life or alleviate his/her critical conditions. Therefore, it is vital to allow the ERU staff to access the
necessary PHR information of the victim in an emergency situation [7]. According to the above
example, John can allow Dr. Jason to access his PHRs because John knows Dr. Jason. In an
emergency, John may not know any ERU staff. Thus, John will not be able to define a policy to
allow a specific ERU staff member to access his PHRs. During an emergency situation, John may
be unconscious and may not be able to grant any permission to the ERU staff at the scene.
Moreover, ERU staff should not access John’s PHRs unless they are necessary to save his life.
Thus, the question is how to allow ERU staff to access the victim’s PHRs during an emergency
situation.

A scheme to manage and handle PHRs during an emergency situation has been proposed in
our previous work [8], which allows different access restrictions. Under such a scheme, each PHR
is classified into secure, restricted, and exclusive categories. Different categories provide different
access permissions to ERU staff for the victim’s PHRs. Secure PHRs are freely available to ERU
staff during an emergency situation. Restricted PHRs are accessible to an ERU staff member if and
only if he/she was granted access permission by at least 7 out of » trusted people who are pre-
selected by the PHR owner, where ¢ is an acceptable threshold, pre-defined by the PHR owner and »
is the total number of trusted people on the PHR owner’s list. Exclusive PHRs are not accessible
even during an emergency situation. With the proposed scheme, the PHR owners can selectively
share their PHRs with the ERU staff while additional data can be requested if needed.

This work extends the previous scheme to cover external ERUs that were not included in the
original design [8]. The ERU staff authentication process was not considered in the original design
because the ERU staff was assumed to be trustworthy and part of the PHR system. However, in the
real world ERU staff can be from various external sources such as public organisations, medical
care institutions, private organisations, non-profit organisations or a group of volunteers. Therefore,
the ERU staff must be verified by their authorised commander/manager. To guarantee the reliability
of the verification process, an access request authentication (ARA) mechanism is proposed in this
work as an extension of the previous scheme. Hence the PHR access request from any ERU staff
can be performed if and only if the staff member is granted access permission by his/her authorised
ERU commander/manager. In addition, a transaction auditing mechanism is used in this study to
provide a non-repudiation feature. Furthermore, the security of all connections in the proposed
scheme is provided by means of secure sockets layer protocols and secure shell protocols.

110
Maejo Int. J. Sci. Technol. 2015, 9(01), 108-120; doi: 10.14456/mijst.2015.7

RELATED WORK

A database-level encryption was employed by Weerasinghe and Muttukrishnan [9] to
provide an information exchange scheme between the ERU staff and the PHR service providers via
a trusted third party. Under such a scheme, the actual PHRs are encrypted and stored by a PHR
service provider. During emergency situations, the PHR service provider delivers the requested
PHR to the ERU staff on behalf of the PHR owner. The authentication of each party should be done
by the trusted third party. However, the use of a database key becomes an issue because such a
technique can introduce a privacy risk for the PHR owner [10]. To access the information, the ERU
staff has access to the key through which multiple access can be performed. Typically, the access
permission under such a scheme is binary and the ERU staff can access the entire database. In other
words, the ERU staff can access all records stored in a particular database even though some
records may not be related to their tasks.

To solve the privacy concern of the database-level encryption technique, a digital
pseudonym was introduced by Huda et al [11]. The pseudonym indexes the PHRs for each PHR
owner, whose name (i.e. a field in the database) is replaced by a random pseudonym. Then the
pseudonym is encrypted and stored on the PHR owner’s health smart card. The ERU staff uses the
pseudonym to retrieve the victim’s PHRs during an emergency situation. Using the pseudonym,
even though the database records are exposed to unauthorised users, the PHR owner’s privacy is
still preserved. However, the scope of the information accessed by the ERU staff cannot be limited
because the ERU staff can access all records indexed by a particular pseudonym.

A backup mechanism at a trust centre for the PHR owner was proposed by the healthcare
system for patient privacy [12]. Under such a scheme, the PHR owner can define the information
that will be available during emergency situations and selects his/her PHRs to be stored at a trusted
server. The information stored at the trust centre is freely available to the ERU staff during an
emergency situation. Hence the privacy of the PHR owner and the secrecy of the PHR can be
preserved. However, only static information pre-selected by the PHR owner is available. In our
proposed scheme both static and additional information is available to the ERU staff. The static pre-
selected information is the secure PHRs and the additional information is the restricted PHRs,
which are available upon request.

A key-policy attribute-based encryption (KP-ABE) [13] was employed in the break-glass
access [14, 15] to protect the PHR information. The KP-ABE enables a PHR owner to specify a set
of attributes embedded in the encrypted PHR. The PHR owner selects a set of PHRs to be freely
available to the ERU staff during emergency situations. Then a special ‘emergency’ attribute is
added during the PHR encryption process. A set of PHRs can only be decrypted by a key that
contains the ‘emergency’ attribute and is distributed to the ERUs during an emergency situation.
However, only static pre-selected information is available.

The KP-ABE was also employed by Huang et al. [6] to offer the PHR information according
to the severity level of the situation. The PHR owner can assign any of the three severity levels
(mild, moderate and severe) to each PHR. Then each PHR is encrypted using the KP-ABE
technique with a set of owner-desired attributes and the severity level. The KP-ABE private keys
that are based on different severity levels can access the PHR information with different scopes.
Under such a scheme, the availability of the pre-defined information is an issue. For example, if the
ERU staff is allowed to access mild-level and moderate-level information, then the information is
always available even when it is not required.

21

22

111
Maejo Int. J. Sci. Technol. 2015, 9(01), 108-120; doi: 10.14456/mijst.2015.7

OUR PROPOSED PRIVACY-PRESERVING EMERGENCY ACCESS CONTROL SCHEME

Our proposed privacy-preserving emergency access control scheme for PHRs is illustrated
in Figure 1. The scheme consists of five modules and three players. The modules comprises the user
authority (UA), the emergency server (EmS), the PHR server, the audit server and the emergency
authority (EA). The players include the PHR owner, the PHR trusted users and the ERU staff.

Emergency Authority

User Authority " (6) Download (3) Verify th
Syt dd t erl. (<]
(2) Uploas £ and decryp ERU staffs and

Manigs [Enerypted PHR issue OTR token

0w

(4) Send the request

PHR } along with OTR token as
e | (7) Record > arequest certificate - ~
} (9) View logs I/ o / o
¢ _e —_— | - e =
3 N s
ELER

PHR owner Audit Server (8) Send

A
B Emergency staff
c

Emergency Server (outsiders)

(1) Delegate the
trusted users

(5) Grant the
access

Trusted users

Figure 1. Proposed privacy-preserving emergency access control scheme

The UA is responsible for performing all PHR user management tasks such as creating a
user, generating a user key, distributing the user key and revoking the user. The PHR server is an
actual PHR storage, which can be internal or public storage. The PHRs are encrypted and uploaded
to the storage. The EmS handles all tasks related to an emergency situation. These three modules
were presented in the original design [8]. The next two modules are added in this work. The audit
server records all activities performed by the ERU staff during emergency situations and produces
reports for the PHR owner. The EA is responsible for managing tasks related to the ERU staff, such
as verifying ERU staff identity, authorising ERU staff, revoking ERU staff access and generating a
one-time request (OTR) token for ERU staff. The EA can be either distributed or centralised as long
as it is registered with the proposed scheme.

The PHR owners can manage and track all activities conducted on their PHRs. Trusted users
can be partially granted restricted access on behalf of the PHR owner during emergency situations.
When the total number of approvals received from the pre-selected trusted users is equal to or
greater than the pre-defined threshold, restricted PHR access permission is granted. The ERU staff
must be verified and authorised by their corresponding EA.

112
Maejo Int. J. Sci. Technol. 2015, 9(01), 108-120; doi: 10.14456/mijst.2015.7

The ARA mechanism ensures that only authorised ERU staff is allowed to access the PHR
system. Each PHR access request invoked by the ERU staff must be verified by its commander/
manager (denoted as EA in Figure 1). Once the ERU staff member is verified, the OTR token,
which is a certificate with a specific expiration time, is generated. The request with a valid OTR
token is processed by the EmS. The ERU staff cannot reuse the token once it is expired. To expedite
this process, the ERU staff can be verified and issued with the OTR token in an emergency vehicle
before they arrive at the emergency location. Hence the delay time to access any secure PHR is
eliminated because the secure PHRs can be immediately accessed once the valid OTR token is
presented. In addition, a transaction auditing mechanism is employed to guarantee a non-
repudiation feature of all access conducted by the ERU staff.

Under our proposed scheme, the PHRs are encrypted at the data origin using the ciphertext-
policy attribute-based encryption (CP-ABE) technique [16]. Then the encrypted PHR is uploaded to
the PHR server (denoted as (2) in Figure 1). Using the CP-ABE scheme, the access policy of each
PHR is embedded during the PHR encryption process. The policy is defined by the PHR owner.
Only the user who has the CP-ABE private key that satisfies the access policy can decrypt the
encrypted PHR. In addition, the secure sockets layer protocol and the secure shell protocol are
employed to provide a secure communication among the modules and players under the proposed
scheme. The information collected by the network traffic eavesdropping technique remains
protected. In the following section the assignment of a privacy level to each PHR is presented. Then
the PHR pre-processing and accessing methods are described.

Defining Privacy Level

This section provides a guideline for the PHR owners in order to classify their PHRs into
one of the three privacy levels: secure, restricted and exclusive. The guideline is created according
to the sensitivity of the PHR information. Typically, health related information of an individual
stored in a PHR system has different sensitivity levels. For example, some information such as
mental health, domestic abuse/violence, drug abuse, disorders and disabilities is considered to be
sensitive for some people. A person usually does not disclose such information to others. Such
information can result in disgrace or even unfair job opportunities to its owner [4, 5]. However,
other information such as congenital diseases, allergies and disease risks can help the ERU staff
make a better decision in treating the victim during emergency situations [7].

The secure PHRs are available to the ERU staff during emergency situations. Therefore, the
basic information of a person’s health that is necessary to treat the person must be provided. Some
people are allergic to simple medicine such as Paracetamol. Such information is important during a
life-threatening condition. Thus, a list of information such as congenital diseases, allergies and
disease risks is suggested to be under the secure-level category [17]. In addition, a list of emergency
contact people for the victim is classified under this category so the people who know the victim
can be informed about the situation.

The ERU staff is allowed to access the restricted-level information if an access permission is
granted by a certain number of the victim’s delegates. Unlike the secure-level information, the
restricted-level information will not be available immediately. Thus, the information under this
category can only be used by the physicians that are away from the emergency scene, in a fully
equipped emergency vehicle or an intensive care unit at a hospital. This set of information should
include the person’s medical history, laboratory test results, physicians’ recommendations, his/her

23

24

113
Maejo Int. J. Sci. Technol. 2015, 9(01), 108-120; doi: 10.14456/mijst.2015.7

physicians’ contact information, and some relevant health-monitoring data. Such information will
help physicians make a better judgment on the next actions.

Finally, the exclusive-level information is considered to be highly sensitive according to the
PHR owner judgment. Usually, this set of information includes mental health, domestic
abuse/violence, drug abuse, disorders and disabilities [4, 5]. Note that this guideline is provided as a
suggestion and the proposed scheme is not limited to it.

PHR Pre-processing

The proposed scheme uses the EmS to perform all PHR retrieving and decrypting tasks
during emergency situations. The EmS attribute must be defined in the access policy of the secure
and restricted PHRs. The exclusive PHR access policy does not include any attribute of the EmS.
As a result, the ERU staff is not allowed to access exclusive PHRs even during emergency
situations while the secure PHR is accessible by the authorised ERU staff during emergency
situations. To assign a secure PHR, the EmS attribute must be added to the access policy of that
particular PHR. Then the PHR is encrypted using the CP-ABE with a defined access policy and the
encrypted PHR is securely uploaded to the PHR server. By adding the EmS attribute to the access
policy, the EmS is able to decrypt a particular PHR. During an emergency situation, the authorised
ERU staff can access the secure PHRs instantly via the EmS.

The restricted PHR is accessible by the authorised ERU staff if and only if they are granted
an access permission by at least 7 (pre-determined threshold) out of # trusted users who are pre-
selected by the PHR owner. To assign a restricted PHR, the PHR owner must first select a set of
trusted users (denoted as (1) in Figure 1). These trusted users are asked to make a decision to grant
access permission on any restricted PHR on behalf of the PHR owner. A restricted emergency key
(REK) attribute is added to the access policy of that particular PHR. Then the PHR is encrypted
using the CP-ABE with defined access policy. Next, a set of random secret keys associated with the
number of trusted users are generated. The REK attribute is encrypted using threshold cryptosystem
[18] with a set of random secret keys and a pre-determined threshold (/) as encryption parameters. A
random secret key is assigned to each trusted user. Each secret key is encrypted using a
corresponding trusted user’s public key. The encrypted PHR is securely uploaded to the PHR server
while the encrypted REK attribute and the set of encrypted secret keys are securely uploaded to the
EmS. Thus, the EmS can decrypt any restricted PHR if and only if at least ¢ trusted users provide
their approval. Because each secret key is encrypted with a trusted user’s public key, only the
trusted user’s private key can decrypt the secret key. With the threshold cryptosystem, the REK
attribute can be decrypted if at least 7 secret keys are provided. Using the REK attribute, the EmS
can decrypt the restricted PHRs.

PHR Accessing

In this section both secure and restricted PHR accessing sequences are explained. Figure 2
and Figure 3 show sequences of transactions occurring when accessing secure PHRs and restricted
PHRs respectively. To enhance the trustworthiness of a request invoked by the ERU staff, the ARA
mechanism guarantees that each request must be verified by his/her EA (steps 1-4 in Figure 2 and
Figure 3). The OTR token ensures that the ERU staff is verified by his/her EA (step 3 in Figure 2
and Figure 3). The verification process can be expedited by issuing an OTR token to the ERU staff
once the emergency case is assigned. Because the OTR token is a certificate with a specific
expiration time, the token cannot be reused when its lifetime expires. Therefore, this mechanism

114
Maejo Int. J. Sci. Technol. 2015, 9(01), 108-120; doi: 10.14456/mijst.2015.7

assures that only authorised ERU staff can access the PHRs. All requests and transactions are
recorded. Figure 4 shows the transactions collected by the auditing system using our prototype
software.

‘ Emergency Authority ‘ | Emergency Server

Audit Server

T
|
| 1. secure_send(PHR_request) |

2. Verify the request
(ApproveDisapprove)

e 3. If approved, secure_send(OTR_token)

4.secure_send(PHR_request, OTR_token)

5. Authenticate the emergency staff and
verify the request using OTR token

6. req_download (PHR_request)

7. secure_send(enc_PHR)

g 8. PHR := CP-ABE_deciypt(enc_PHR, EmS_key)

9. record_log(transaction_log)
10. secure_send(PHR) /U

Figure 2. Secure PHR access sequences.

Emergency Staff ‘ Emergency Authority ‘ ‘ Emergency Server Each Trusted User Audit Server PHR Server

! 1, secure_send(PHR _request)

2. Verify the request
(ApproveDisapprove)
3. If approved, secure_send(OTR_token)

4. secure_send(PHR _request, OTR _token)

T
|

i

|

|

|

|

|

|

|

i

5. Authenticate the emergency staff and |
verify the request using OTR token |

|
6. secure_broadcast(PHR_request, enc_secret_key) |
> :l 7. secrel_key 14 PKE_decrypt(

8. secure t_key) enc_secret_key, priv_key)

|] 9. Collect secret_keys unil>=t

10. REK_key := ThresholdCS_deciypt(
enc_REK_key, list<secret_key>)

11. req_download(PHR _request)

12 secure_send(enc_PHR)

13 PHR :=CP-ABE _decrypt{enc_PHR, REK_key)

14. record_log(transaction_log)

14 secure_send(PHR) /U
T T W w

Figure 3. Restricted PHR access sequences

26

115
Maejo Int. J. Sci. Technol. 2015, 9(01), 108-120; doi: 10.14456/mijst.2015.7

@ Transaction Auditing

Transaction log type:

[¥] Audit all tra: tion:

Event Logs

—getetimel
2014-0115

- T . Oblectlusen | . Qbject |ActersIF addr..,
Actor uploaded the PHR Personal Al =
lctor encrypted the PHR Personal.Al
|Actor uploaded the PHR Personal, A
lActor encrypted the PHR Personal.Alice_|allergies, dise

fActor uploaded the PHR Personal.Alice |allergies, disease risks 2 ,

Emergency.Mike |Actor downloaded the secure-level .., |Personal.Alice |allergies, disease risks a... |127.0,0,
Al

Al

Al

Al

ice |mental health results an... 12

ice |medical history. diag
ce_|medical history. di

20140116
2014-01] Emergency.Mike |Actor requested an access to the r... [Personal.Alice |medical history, diagnasi...
ersonaljohn _|Actor approved the access request... [Personal.Alice |medical history, diagnosi..

Heal:hcare.Bob |Actor approved the access request... Personal.
Emergency.Mike |Actor downloaded the restricted-lev...|Personal.,
ersonal.Aice _|Actor audited his/her event log

| Close

ice |medical history. diagnosi...
ice |medical history. diagnosi...

=

Figure 4. List of transactions collected by the audit server

To access secure PHRs, the ERU staff must send a PHR access request along with the OTR
token to the EmS (step 4 in Figure 2). The OTR token is sent to the ERU staff if he/she is verified
by his/her corresponding EA. Once the EmS successfully verifies the OTR token, the requested
secure PHRs are downloaded and decrypted using the EmS attribute (steps 5-8 in Figure 2). Then
the EmS stores the transaction information on the audit server (step 9 in Figure 2) and securely
sends the requested secure PHRs to the ERU staff (step 10 in Figure 2).

To access restricted PHRs, the ERU staff must send a PHR access request along with the
OTR token to the EmS (step 4 in Figure 3). The OTR token is sent to the ERU staff if he/she is
verified by his/her corresponding EA. Once the EmS successfully verifies the OTR token (step 5 in
Figure 3), the EmS securely broadcasts the request message to each corresponding trusted user for
approval (step 6 in Figure 3). If the trusted user approves the request, the corresponding encrypted
random secret key will be decrypted by the trusted user’s private key (step 7 in Figure 3). The
random secret key is sent to the EmS through a secure channel (step 8 in Figure 3). If the total
number of random secret keys collected by the EmS is equal to the pre-determined threshold (#), the
EmS decrypts the encrypted REK attribute value using the threshold cryptosystem (steps 9-10 in
Figure 3). Next, the EmS downloads the requested PHRs from the PHR server and uses the REK
attribute to decrypt the PHRs (steps 11-13 in Figure 3). Finally, the ERU staff receives the
requested PHRs from the EmS via a secure channel (step 15 in Figure 3). In addition, the EmS
records a transaction log on the audit server (step 14 in Figure 3).

USABILITY AND SECURITY DISCUSSIONS
Usability Issues

Figure 5 shows a typical flow of events during an emergency situation. First, an emergency
situation occurs. Second, the call is made to the emergency hotline centre. Third, the emergency
location and victim’s current conditions are provided to the assigned ERU staff. Fourth, the ERU
staff reach the victim. Fifth, the victim is transferred to a hospital or a medical facility. The
commonly accepted standard response time from the first call (step 2 in Figure 5) until the ERU
staff reach the victim (step 4 in Figure 5) is 8 minutes [19]. This section will cover only secure and
restricted PHRs because the proposed scheme allows the ERU staff to access only these types of
PHRs.

116
Maejo Int. J. Sci. Technol. 2015, 9(01), 108-120; doi: 10.14456/mijst.2015.7

(2) Call emergency hotline —
Volunteer

Emergency Authority

(3) Provide location and basic

1) Emergenc S o
@ gency victim conditions

Hospital occurs

M v & (4 Reach the emergency location y’:
>

~

(5) Transfer the victim "

Victim Emergency staff

Figure 5. Typical flow of events during an emergency situation

According to the secure PHR access sequences shown in Figure 2, the total processing time
to retrieve the secure PHRs includes the required time for: (1) the ERU staff to request an OTR
token, (2) the EA to authorise and issue the OTR token, (3) the OTR token to be sent to the ERU
staff, (4) the ERU staff to send the PHR request along with their OTR token to the EmS, (5) the
EmS to download and decrypt the requested PHRs, and (6) the EmS to send the PHRs to the ERU
staff. According to the cellular standard for the third generation [20], the data transmission rate in a
moving vehicle is 348 kbps, meaning that 348,000 bits or 43.5 KB of data can be transferred each
second. This amount of data can contain a text of approximately 10 novel-size pages. Therefore, the
amount of time to transmit a request, an OTR token and a secure PHR is negligible. The EmS
processing time depends on the PHR storage and the decryption process. The underlying encryption
scheme of the CP-ABE is an advanced encryption standard (AES) [21] in cipher block chaining
(CBC) mode [22], which takes less than 3.25 s to encrypt an image with the size of 468 KB [23].
Because the encryption and decryption time for AES-CBC is the same, the decryption processing
time can be negligible. Using the current data storage technology, 50,000 records can be searched in
2.5 s [24]. Thus, the PHR storage processing time is not a problem. The only external factor to the
total processing time is the EA processing time, which will be discussed later. Using the above
supporting evidence, the secure PHR accessing time is reasonable in practical situations.

As described previously, the restricted PHRs are designed for the medical staff at the
hospital to treat the victim when he/she is no longer at the emergency location. Therefore, there is a
period of time between the call to the hotline and the victim arrival at the hospital during which the
medical staff can obtain the necessary approval to access the necessary restricted PHRs. The
processing time to retrieve the restricted PHRs includes the required time for: (1) the ERU staff to
receive the OTR token, (2) the ERU staff to send the PHR request along with the OTR token, (3)
the EmS to send the request to each trusted user, (4) each trusted user to respond to the request, (5)
the partial secret key of each trusted user to be sent to the EmS, (6) the EmS to download and
decrypt the requested PHRs, and (7) the EmS to send the PHRs to the ERU staff. The above factors
discussed for the secure PHRs can also be applied to the restricted PHRs, the only difference being
the response time of the trusted user. According to a study [25], the average response time of a
person to an incoming text messaging is 431.28 s during simultaneous conversations and 391.88 s
during non-simultaneous conversations. Therefore, it can take up to 7 min. for the trusted users to
respond to a restricted PHR access approval request. Considering the 8-min. response time standard,

27

28

117
Maejo Int. J. Sci. Technol. 2015, 9(01), 108-120; doi: 10.14456/mijst.2015.7

the medical staff at the hospital are able to access the restricted PHRs of the victim before the
victim reaches the hospital.

To provide an additional assurance that the trusted users will respond to the request, the
PHR owner should include at least one of the trusted users on the emergency contact list. Because
the list is classified as a secure PHR, the ERU staff can contact the trusted user directly. The
restricted PHRs are designed for the medical staff at the hospital; therefore, the medical staff can be
added as an attribute in the access policy during the CP-ABE encryption of the PHRs and can thus
access the PHRs. However, they must be a member of an authority that is recognised by the
victim’s PHR system.

Under the proposed scheme, the EA acts as a trusted agent to verify all of its ERU staff.
Because the EA can be from various sources, the process of adding a new EA to the proposed
scheme must be done carefully and the new EA must be verified. To ensure the performance of the
ERU staff, each EA must be periodically evaluated. The request approval processing time and the
OTR token generation time must be used as the key performance indicators to evaluate the EA. In
addition, the OTR token lifetime may allow the ERU staff to perform a replay attack on the PHR
system. Therefore, the ERU staff misconducts and performances can be used as another key
performance indicator to evaluate the EA. The EA with poor performance must be removed.

Security Issues

Four attack models are discussed to account for possible security threats. The first model
involves a database intruder. Under the proposed scheme, the actual PHR storage can be a public
storage. Therefore, the database intruder or the storage administrator may try to access the
information. However, the PHR is encrypted and the decryption keys are securely stored on
separate trusted servers (i.e. the UA and the EmS). Hence the encrypted PHR stored on the PHR
storage is protected with the assumption that the cryptographic primitives are not broken and the
decryption key is not accessible.

The second attack model concerns an unauthorised access. The ERU staff may try to access
the PHRs. However, the ARA mechanism prevents such access by allowing only the ERU staff with
an approval from their corresponding EA to access the data. The approval is in the form of a valid
OTR token. The ERU staff uses the received OTR token as a request certificate to access the
requested PHRs through the EmS. An unauthorised access is prevented at the EmS and any attempt
from the ERU staff is recorded by the audit server. Because the conduct of each ERU staff is used
as a key performance indicator during the EA evaluation process, any misconduct by the ERU staff
affects its EA performance. The EA evaluation process and the transaction auditing mechanism can
indirectly prevent unauthorised access.

The third attack model is a replay attack. The ERU staff with a valid OTR token may
conduct a replay attack. However, the OTR token is a certificate with a specific expiration time.
Therefore, the ERU staff will not be able to reuse the OTR token once it is expired. However, this
does not cover the period of time that the OTR token remains valid. Therefore, the lifetime of the
OTR token must be short. The auditing information can show any misconduct of the ERU staff,
which affects the performance of the corresponding EA.

The last attack model is a non-repudiation case. The audit server records all transactions
invoked by the ERU staff and all activities can be tracked by the PHR owner. The transaction
auditing mechanism is a very important mechanism to provide a non-repudiation feature.

118
Maejo Int. J. Sci. Technol. 2015, 9(01), 108-120; doi: 10.14456/mijst.2015.7

CONCLUSIONS

This work has extended the original design of a PHR system for handling emergency
situations to support a more practical scenario. In the original design all players were assumed to be
trustworthy. In this work the ERU staff is considered an outsider and unknown to the system. Two
mechanisms have been proposed to enhance the trustworthiness of the PHR access requests from an
ERU staff member during an emergency situation. First, an ARA mechanism is designed to ensure
the verification of the ERU staff by an on-duty emergency unit commander/manager. Any request
invoked by an ERU staff member must be approved by his/her corresponding on-duty EA
commander. Second, the transaction auditing mechanism is added to allow the PHR owners to track
all transactions related to their PHRs. In addition, the auditing mechanism serves as a method for
providing a non-repudiation feature for all PHR access performed by the ERU staff. Using the
proposed extension, the trustworthiness of the requests invoked by the ERU staff is enhanced and
the limitation of the previous work is eliminated.

The current data transmission rate and storage technology allows the proposed scheme to
provide the requested PHRs within a commonly acceptable time and there is only one security
limitation in the proposed scheme, which is the period of time that the OTR token remains valid.
The suggested solution is to keep the lifetime of the OTR token short and to evaluate the EA based
on its ERU staff performance and misconduct. Furthermore, a guideline on defining a proper
privacy level for each PHR has been presented. The idea of collecting and storing transactions by an
audit server is demonstrated using our developed prototype.

ACKNOWLEDGEMENTS

This work was supported by the Higher Education Research Promotion and National
Research University Project of Thailand, Office of the Higher Education Commission (under the
funding no. MED540548S at Prince of Songkla University).

REFERENCES

1. W. Wangcharoen, D. Amornlerdpison and K. Mengumphan, "Factors influencing dietary
supplement consumption: A case study in Chiang Mai, Thailand", Maejo Int. J. Sci. Technol.,
2013, 7, 155-165.

2. A. A Ozok, H Wu, M. Garrido, P. J. Pronovost and A. P. Gurses, "Usability and perceived
usefulness of personal health records for preventive health care: A case study focusing on
patients' and primary care providers' perspectives", Appl. Ergonom., 2014, 45, 613-628.

3. P.C. Tang, J. S. Ash, D. W. Bates, J. M. Overhage and D. Z. Sands, "Personal health records:
Definitions, benefits, and strategies for overcoming barriers to adoption", J. Am. Med. Inform.
Assoc., 2006, 13, 121-126.

4. B. A, Malin, K. El Emam and C. M. OKeefe, "Biomedical data privacy: Problems,
perspectives, and recent advances", J. Am. Med. Inform. Assoc., 2013, 20, 2-6.

5. K. Caine and R. Hanania, "Patients want granular privacy control over health information in
electronic medical records", J. Am. Med. Inform. Assoc., 2013, 20, 7-15.

6. J. Huang, M. Sharaf and C. T. Huang, "A hierarchical framework for secure and scalable EHR
sharing and access control in multi-cloud", Proceedings of 41* International Conference on
Parallel Processing Workshops, 2012, Pittsburgh, USA, pp. 279-287.

29

30

119

Maejo Int. J. Sci. Technol. 2015, 9(01), 108-120; doi: 10.14456/mijst.2015.7

7.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21

22.

J. L. Fernandez-Aleman, 1. C. Sefior, P. A. Lozoya and A. Toval, "Security and privacy in
electronic health records: A systematic literature review", J. Biomed. Inform., 2013, 46, 541-
562.

P. Thummavet and S. Vasupongayya, "A novel personal health record system for handling
emergency situations", Proceedings of 17" International Computer Science and Engineering
Conference, 2013, Nakorn Pathom, Thailand, pp.266-271.

D. Weerasinghe and R. Muttukrishnan, "Secure trust delegation for sharing patient medical
records in a mobile environment", Proceedings of 7" International Conference on Wireless
Communications, Networking and Mobile Computing, 2011, Wuhan, China, pp.1-4.

. Y. Ding and K. Klein, "Model-driven application-level encryption for the privacy of e-health

data", Proceedings of 5" International Conference on Availability, Reliability and Security,
2010, Krakow, Poland, pp.341-346.

M. N. Huda, S. Yamada and N. Sonehara, "Privacy-aware access to patient-controlled personal
health records in emergency situations", Proceedings of 3™ International Conference on
Pervasive Computing Technologies for Healthcare, 2009, London, UK, pp.1-6.

J. Sun, X. Zhu, C. Zhang and Y. Fang, "HCPP: Cryptography based secure EHR system for
patient privacy and emergency healthcare", Proceedings of 31" International Conference on
Distributed Computing Systems, 2011, Minneapolis, USA, pp.373-382.

M. Li, S. Yu, K. Ren and W. Lou, "Securing personal health records in cloud computing:
Patient-centric and fine-grained data access control in multi-owner settings", Proceedings of 6"
International Conference on Security and Privacy in Communication Networks, 2010,
Singapore, pp.89-106.

V. Goyal, O. Pandey, A. Sahai and B. Waters, "Attribute-based encryption for fine-grained
access control of encrypted data", Proceedings of 13" ACM Conference on Computer and
Communications Security, 2006, Alexandria, USA, pp.89-98.

M. Li, S. Yu, Y. Zheng, K. Ren and W. Lou, "Scalable and secure sharing of personal health
records in cloud computing using attribute-based encryption", IEEE Trans. Parallel Distr. Syst.,
2013, 24, 131-143.

J. Bethencourt, A. Sahai and B. Waters, "Ciphertext-policy attribute-based encryption",
Proceedings of IEEE Symposium on Security and Privacy, 2007, Berkeley, USA, pp.321-334.

S. Aguinaga and C. Poellabauer, "Method for privacy-protecting display and exchange of
emergency information on mobile devices", Proceedings of International Conference on
Collaboration Technologies and Systems, 2012, Denver, USA, pp.596-599.

T. P. Pedersen, "A threshold cryptosystem without a trusted party", Proceedings of Workshop
on Theory and Application of Cryptographic Techniques, 1991, Brighton, UK, pp. 522-526.

.P. T. Pons and V. J. Markovchick, "Eight minutes or less: Does the ambulance response time

guideline impact trauma patient outcome?", J. Emerg. Med., 2002, 23, 43-48.

International Telecommunication Union, "About mobile technology and IMT-2000", 2011,
http://www.itu.int/osg/spu/imt-2000/technology. html#Cellular ~ Standards for the Third
Generation (Accessed: April 2014).

National Institute of Standards and Technology, "Advanced encryption standard (AES)", 2001,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf (Accessed: April 2014).

National Institute of Standards and Technology, "Recommendation for block cipher modes of
operation", 2001, http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf (Accessed:
April 2014).

120
Maejo Int. J. Sci. Technol. 2015, 9(01), 108-120; doi: 10.14456/mijst.2015.7

23. R. Doomun, J. Doma and S. Tengur, "AES-CBC software execution optimization", Proceedings
of International Symposium on Information Technology, 2008, Kuala Lumpur, Malaysia, pp. 1-
8.

24. K. K. Lee, W. Tang and K. Choi, "Alternatives to relational database: Comparison of NoSQL
and XML approaches for clinical data storage", Comput. Meth. Programs Biomed., 2013, /10,
99-109.

25. A. Battestini, V. Setlur and T. Sohn, "A large scale study of text-messaging use", Proceeding of
12" International Conference on Human Computer Interaction with Mobile Devices and
Services, 2010, Lisbon, Portugal, pp.229-238.

© 2015 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for
noncommercial purposes.

31

32

Appendix B

Development tools

33

® Development tools

O

O

Ubuntu 10.04 LTS (Lucid Lynx)

TextEdit and Eclipse

Java SDK 6

OpenSSL 1.0.1e

MySQL 14.14 Distrib 5.1.62

GCC compiler 4.4.3

md-1.4.16, gmp-5.0.2, pbc-0.5.12, cpabe-0.11, libpbc-0.5.12, and libbswabe-0.9
simclist-1.6 and curl-7.27.0

paillier.jar

Java, C, and SQL languages

34

Appendix C

API| For the Proposed MA-PHR Framework

35

This section provides a guideline to developing an external application
based on the proposed MA-PHR framework to an external software developer. That
is, the external developer can develop his/her PHR client application using the
proposed MA-PHR system as a secure data storage backend through provided
application programming interface (API) functions. With the proposed system, the
developer does not need to develop security and privacy mechanisms, user and
attribute management mechanisms or transaction auditing mechanisms
himself/herself.

As presented in the system development section, the proposed
system consists of two sides: client and server sides. The client side consists of the
backend and the frontend. The client backend gathers several low-level modules
such as encryption, security and privacy, network, and user management modules,
which were implemented using C language. The client frontend is the place where
the external developer can develop and customize his/her application (using any
language such as C, Java, JavaScript, and Python) and the application can utilize the
features of the client backend via the provided API functions which will be
introduced later. In addition, the server side of the proposed system includes four
servers, namely, root authority (RA), user authority (UA), audit server (AS), and PHR
server, which were fully implemented using C and SQL languages. Each server has a
local database for independently storing the information. The server and the client
sides always securely communicate with each other via an SSL/TLS secure channel.

Under the proposed framework, the client backend modules will be
compiled and built as the shared library (so file) which allows the external
developer to load it onto his/her client application (the client frontend) at the
runtime. As an example, the following shows how the client frontend application
that is implementing using any language (e.g., Java, C, and Python) to collaborate

with the proposed MA-PHR framework’s client backend modules.

Calling the client backend modules from Java code
Basically, the client backend was designed and developed to support

a call from Java code. That is, the Java code can invoke the client backend modules

36

using the Java Native Interface (UNI) [31] without modifying any backend code. For
example, assuming that a client frontend application wants to invoke the PHR
encryption module, Fig. 15 demonstrates an example Java snippet code.

public class PHRclient{

1
e
3 // Declare the native C function

4 private native boolean encrypt_phr_main{5tring phr_path, String access_policy);
5

[

public encryptPHR(String phr_path, String access_policy){

// Load the shared library “PHRapp_User_INI.so”
System. loadLibrary(*PHRapp_User_JNI");

// Call the native C function
Lf(encrypt_phr_main{phr_path, access_policy))
System.out.println{*encryption succeeded”);
else
System.out.println{*encryption failed”);
}

Sm kR LR E D © e o~

}

Fi

g. 15. An example of calling the client backend module by Java code

According to the example above, if the application calls the method
encryptPHR(), the method will load the shared library “libPHRapp User JNLso” into
the application’s memory section (line 9 in Fig. 15), and then the application will
initiate the backend encryption module by calling the JNI-to-C mapping function
encrypt_phr_main() (line 12 in Fig. 15) that is provided by the loaded library. Note
that, every shared library always has the “lib” prefix and the “.so” suffix as
extension. But, when calling the library in the Java code, we have to exclude them
as shown at line 9 in Fig. 15. Furthermore, we have to declare the native JNI-to-C
mapping function prototype at line 4 in Fig. 15 so that the Java compiler can know
the being of the function. Please refer to the tutorials [63], [64] for more information
about the JNI.

At this point, if the developer goes to the source code file named
“client_user_main_jni.c” (the client backend source code), the developer will found
the JNI-to-C mapping function named Java UserMain _encrypt 1phr Imain() as
illustrated in Fig. 16. This mapping function will be called when the frontend
application is calling the encrypt_phr_main(). Next, the mapping function will call the
real encryption function encrypt phr() (line 31-32 in Fig. 16) to encrypt the PHR

record. Additionally, if the developer goes to the file named “client_ common.h”, the

37

developer will found the list of all functions for all client backend modules available

for the client frontend application to invoke.

B m Y @ b B LN E S B B @ s W e

20
21
22
23
24
25
26

27
28
29
El

31

EF

EE]
34
35
36
37
38
39

40

J,r’lk
* (Class: UserMain
* Method: encrypt_phr_main

* Signature: (Ljaova/lang/String;Ljava/lang/String;)Z

JINIEXPORT jboolean JNICALL Java_UserMain_encrypt_lphr_lmain(

{

1

INIEnv *env, jobject obj, jstring j_phr_path, jstring j_access_policy)

const char *phr_path;

const char *access_policy;
jclass cls;

boolean encrypting_flag;

// Get variables from Java
phr_upload_from_path = (*env)->GetS5tringUTFChars(env, j_phr_path, @);
access_policy = (*env)->GetS5tringUTFChars(env, j_access_policy, @);
Java_env = env;

Java_object = obj;

// Get the method id for returning output to Java

cls = (*env)->GetObjectClass(env, obj);

Java_backend_alert_msg_callback_handler_id = (*env)-=GetMethodID(env, cls,
"backend_alert_msg_callback_handler", "(Ljava/lang/String;JV");

1f(Java_backend_alert_msg_callback_handler_id == @)
int_error("Could not find the method \"backend_alert_msg_callback_handler’"");

// Encrypt the PHR
set_phr_encrypting_working_flag(true);
encrypting_flag = encrypt_phr{(char *)phr_path,
{char *)access_policy, backend_alert_msg_callback_handler);
set_phr_encrypting_working_flag(false);

// Free up the Java string arguments
(*env)->ReleaseStringUTFChars(env, j_phr_path, phr_path);

(*env)->ReleaseStringUTFChars(env, j_access_policy, access_policy);

return encrypting_flag;

Fig. 16. An example of a JNI-to-C mapping function of the client backend module

Calling the client backend modules from C code

To call the backend modules from C code, since the backend

modules were developed based on C language, the client frontend application can

call the backend modules directly, without the need to communicate with any JNI-

to-C mapping function. Fig. 17 shows an example C snippet code. For more

information, please refer to the tutorials [65], [66]. Note that, when compiling the

frontend C code, use the following command:

38

“gcc —g —o application/name
list/of/source/files
—Ishared/library/name/excluding/prefix/and/suffix
—Lshared/library/directory
-WL,—rpath=shared/library/directory”

#include <stdio.h>

int main{int argc, char **argv)
{

char *phr_path;

char *access_policy;

iflargc 1= 3)
printf{"failed to get the correct argumentsin");

[r I R T T

phr_path = argv[1l];
access_policy = argv[2];

// Call the backend module
Lf(encrypt_phr(phr_path, access_policy))
printf{"encryption succeededn");

else
printf{"encryption failed\n");

B @ W M N B W M - @

20 return @;

2| |}

Fig. 17. An example of calling the client backend module by C code

Calling the client backend modules from Python code

There are two approaches that Python code can call the C-
implemented functions, the proposed client backend modules. The first is to extend
Python with C [67]. The second is to use the foreign function library for Python called
ctypes [68]. In this document, we present the latter approach since it enable us call
the native C functions in a shared library directly, no need to communicate with any
JNI-to-C mapping function. Fig. 18 shows an example Python snippet code calling the

proposed client backend module.

1 | def encryptPHR(phr_path, access_policy):

2 "Example of Python code calls the nmative C function"
. # Load the shared library and define its symbolic name as "backend"
5 cdll.LoadLibrary("1ibPHRapp_User.so")

6 backend = CDLL({"1libPHRapp_User.so")

] # Call the backend module

] if backend.encrypt_phr(phr_path, access_policy) == 1:
10 print "encryption succeeded"

11 else

12 print "encryption failed"

13

4 return

Fig. 18. An example of calling the client backend module by Python code

40

Appendix D

Dependency packages/libraries installation, and software compilation, configuration,

and execution

Appendix D1

Dependency packages/libraries installation

41

42

® Dependency packages/libraries installation

On Ubuntu OS, open Applications>Accessories>Terminal

Type a command “sudo su” then press Enter button and type the root

password
Type a command “apt-get update”

Type a command “apt-get install build-essential” and press “Y” to confirm

the installation

Type a command “apt-get install openjdk-6-jdk” and press “Y” to confirm

the installation

Type a command “apt-get install mysqgl-server” and press “Y” to confirm the

installation

B Then the package configuration will be prompted to ask you for defining
the password for the MySQL root user; type “bright” as the root

password

Type a command “apt-get install libmysqglclient-dev” and press “Y” to

confirm the installation

Download the following packages to the current directory: openssl-
1.0.1e.tar.gz, curl-7.27.0.orig.tar.gz, md-1.4.16.tar.qz, gmp-5.0.2.tar.gz,
libpbc 0.5.12.tar.gz, pbc-0.5.12.tar.gz, libbswabe-0.9.tar.gz, and cpabe-
0.11.tar.gz

Type a command “tar —zxvf openssl-1.0.1e.tar.gz”
Type a command “cd openssl-1.0.1e”

Type a command “./config”

Type a command “make install”

Type a command “apt-get install libssl-dev” and press “Y” to confirm the

installation

43

Type a command “cd ..”

Type a command “tar —zxvf curl-7.27.0.orig.tar.gz*
Type a command “cd curl-7.27.0”

Type a command “./configure --with-ssl=/usr/local/openssl --enable-smtp”
Type a command “make install”

Type a command “cd ..”

Type a command “tar —zxvf md-1.4.16.tar.gz”
Type a command “cd m4-1.4.16”

Type a command “./configure”

Type a command “make”

Type a command “make install”

Type a command “cd ..”

Type a command “tar —zxvf gmp-5.0.2.tar.¢z”
Type a command “cd gmp-5.0.2”

Type a command “./configure”

Type a command “make”

Type a command “make install”

Type a command “cd ..”

Type a command “tar —zxvf libpbc 0.5.12.tar.gz“
Type a command “cd libpbc”

Type a command “./configure”

Type a command “make”

Type a command “make install”

Type a command “cd ..”

44

Type a command “tar —zxvf pbc-0.5.12.tar.gz“
Type a command “cd pbc-0.5.12”

Type a command “./configure”

Type a command “make”

Type a command “make install”

Type a command “cd ..”

Type a command “tar —zxvf libbswabe-0.9.tar.gz*

Type a command “cd libbswabe-0.9”

Type a command “./configure”

Type a command “make”

Type a command “make install”

Type a command “cd ..”

Type a command “tar —zxvf cpabe-0.11.tar.gz“
Type a command “cd cpabe-0.11"

Type a command “./configure”

Type a command “make”

Type a command “make install”

Appendix D2

Software compilation, configuration, and execution

45

46

® Software compilation, configuration, and execution

O Download PHRapp-0.30.tar.gz package to the current directory
O Type a command “tar —zxvf PHRapp-0.30.tar.gz”
O Configuring the OpenSSL certification

® Type a command “cd PHRapp-0.30/Certs”

B Type a command “./cert gen.sh”; the script will process for a while and

then ask you for entering the root password
" Type a command “cd ..”
O Creating the PHRapp database
" Type a command “cd database scripts”
" Type a command “./db_setup.sh”
" Type a command “cd ..”
O Generating Diffie-Hellman key exchange parameters
® Type a command “cd DH_params”
® Type a command “./dh params_gen.sh”
" Type a command “cd ..”
O Generating the Emergency Server key
B Type a command “cd EmS key”
" Type a command “./key gen.sh”
" Type a command “cd ..”
O Compiling the software for both server and client sides (Option 1)
" Type a command “cd bin”
" Type a command “make”

O Compiling the software for server side only (Option 2)

47

Type a command “cd bin”

Type a command “make server main”

O Compiling the software for client side only (Option 3)

Type a command “cd bin”

Type a command “make client_main”

O Executing the server applications

In the “PHRapp-0.30" directory
Execute the User Authority application: type a command “./UA start.sh”
Execute the Audit Server application: type a command “./AS_start.sh”

Execute the PHR Server application: type a command

“/PHR server start.sh”

Execute the Emergency Server application: type a command
“/EmS start.sh” (Only need when you would like to enable the

software to support the emergency access control feature)

Execute the Emergency-Staff Authority application: type a command
“/ESA start.sh” (Only need when you would like to enable the

software to support the emergency access control feature)

O Executing the client application

Execute the PHR client application for a general PHR user/admin: type a

command “./PHR_client_start.sh”

Execute the PHR client application for an emergency staff/admin: type a

command “./EmU_client_start.sh”

Default administrator (username: “admin” and password: “bright23”)

