

Multi-Authority Secure Personal Health Record System

Phuwanai Thummavet

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Computer Engineering

Prince of Songkla University

2015

Copyright of Prince of Songkla University

Thesis Title Multi-Authority Secure Personal Health Record System

Author Mr.Phuwanai Thummavet

Major Program Computer Engineering

The Graduate School, Prince of Songkla University, has approved this

thesis as partial fulfillment of the requirements for the Master of Engineering Degree

in Computer Engineering.

 …………………………………………….….……..

 (Assoc.Prof.Dr.Teerapol Srichana)

 Dean of Graduate School

Major Advisor :

………………………………………………..................

(Asst.Prof.Dr.Sangsuree Vasupongayya)

Examining Committee :

……………………………………………..Chairperson

(Assoc.Prof.Dr.Sinchai Kamolphiwong)

……………………………………………………...............

(Asst.Prof.Dr.Sangsuree Vasupongayya)

…………………………………………………................

(Prof.Dr.Verapol Chandeying)

This is to certify that the work here submitted is the result of the candidate’s own

investigations. Due acknowledgement has been made of any assistance received.

 ………………………………………………. Signature

 (Asst.Prof.Dr.Sangsuree Vasupongayya)

 Major Advisor

 ………………………………………………. Signature

 (Mr.Phuwanai Thummavet)

 Candidate

I hereby certify that this work has not been accepted in substance for any degree,

and is not being currently submitted in candidature for any degree.

 ………………………………………………. Signature

 (Mr.Phuwanai Thummavet)

 Candidate

ช่ือวิทยานิพนธ์ ระบบจัดการข้อมูลสุขภาพส่วนบุคคลอย่างปลอดภัยแบบมัลติออ
โทริตี ้

ผู้เขียน นายภูวนัย ธรรมเวช
สาขาวิชา วิศวกรรมคอมพิวเตอร์
ปีการศึกษา 2557

บทคัดย่อ

ข้อมูลสุขภาพส่วนบุคคล (Personal Health Record, (PHR)) เป็นแนวคิดของการ
จัดการและการแบ่งปันข้อมูลซึ่งเก่ียวข้องกับสุขภาพโดยปัจเจกบุคคล ต่างจากข้อมูลการรักษา
อิเล็กทรอนิกส์ (Electronic Medical Record, (EMR)) ซึ่งเป็นสิ่งท่ีถูกจัดการโดยโรงพยาบาล ข้อมูล
สุขภาพส่วนบุคคลอยู่ภายใต้การควบคุมโดยปัจเจกบุคคล ตามหลักการ ข้อมูลสุขภาพส่วนบุคคล
สามารถบรรจุข้อมูลเช่น โรคประจําตัว ประวัติการรักษาโรค การแพ้ยาและอาหาร ข้อมูลด้าน
สุขภาพจิตและจิตเวช การวินิจฉัยโรค และการให้คําปรึกษาของแพทย์ เป็นต้น ยิ่งไปกว่านั้น ข้อมูล
สุขภาพส่วนบุคคลยังรองรับแนวคิดของการเก็บรวบรวมข้อมูลการเฝ้าสังเกตอาการของผู้ป่วยท่ีบ้าน
(Homed-monitored data) ซึ่งข้อมูลสัญญาณถูกรวบรวมโดยอุปกรณ์เซ็นเซอร์และถูกบันทึกลงไป
ยังฐานข้อมูลของระบบข้อมูลสุขภาพส่วนบุคคลผ่านทางอินเทอร์เน็ต ข้อมูลท่ีบรรจุในฐานข้อมูลของ
ระบบข้อมูลสุขภาพส่วนบุคคลนี้ สามารถช่วยให้แพทย์นําไปวิเคราะห์หาสาเหตุและอาการของโรค
ของผู้ป่วยได้ดีข้ึน แนวคิดของข้อมูลสุขภาพส่วนบุคคลถูกนําเสนอข้ึนมาไม่ใช่แค่ลดค่าใช้จ่ายทางด้าน
การดูแลและรักษาสุขภาพซึ่งมีราคาสูงในทุกวันนี้เท่านั้น แต่ยังช่วยเพ่ิมโอกาสในการรักษาโรคให้
หายขาดด้วย

เนื่องจากความอ่อนไหวของข้อมูลสุขภาพส่วนบุคคล ประเด็นด้านความปลอดภัย
และความเป็นส่วนตัวต่อข้อมูลสุขภาพส่วนบุคคลจึงกลายเป็นความกังวลข้ันพ้ืนฐานของเจ้าของข้อมูล
สุขภาพส่วนบุคคลจํานวนมาก เพ่ือปกป้องประเด็นดังกล่าว จึงมีการนําเสนอการควบคุมการเข้าถึง
ข้อมูล (Access control) หลากหลายรูปแบบ หนึ่งในรูปแบบท่ีได้รับการนําไปใช้อย่างแพร่หลาย คือ
Ciphertext-Policy Attribute-Based Encryption (CP-ABE) ภายใต้ CP-ABE เจ้าของข้อมูล
สุขภาพส่วนบุคคลสามารถกําหนดนโยบายในการเข้าถึง (Access policy) ข้อมูลโดยกําหนดเซตของ
แอตทริบิวต์ (Attributes) ของผู้ใช้ท่ีได้รับอนุญาติให้เข้าถึงข้อมูลได้ ข้อมูลสุขภาพส่วนบุคคลดังกล่าว
จะถูกเข้ารหัสข้อมูลด้วย CP-ABE โดยกําหนดเซตของแอตทริบิวต์เพ่ือใช้เป็นพารามิเตอร์สําหรับ

เข้ารหัสข้อมูลดังกล่าว จากนั้น ข้อมูลสุขภาพส่วนบุคคลท่ีถูกเข้ารหัสดังกล่าวจะสามารถถูกถอดรหัส
ได้เฉพาะผู้ใช้ท่ีมีกุญแจส่วนบุคคล (CP-ABE private key) ซึ่งมีเซตของแอตทริบิวต์ท่ีสอดคล้องกับ
นโยบายในการเข้าถึงท่ีถูกกําหนดโดยเจ้าของข้อมูลสุขภาพส่วนบุคคลในระหว่างเข้ารหัสข้อมูลเท่านั้น
อีกนัยนึง CP-ABE เป็นรูปแบบการกําหนดการเข้ารหัสข้อมูลโดยใช้พ้ืนฐานการตรวจสอบแอตทริบิวต์
ของผู้ใช ้

ในสภาพแวดล้อมของระบบข้อมูลสุขภาพส่วนบุคคล ผู้ใช้อาจมีบทบาทหรือแอตทริ
บิวต์ท่ีแตกต่างกัน เช่น ผู้ป่วย สมาชิกในครอบครัวของผู้ป่วย ผู้ดูแล แพทย์ บุคลากรทางการแพทย์
อ่ืนๆ หน่วยฉุกเฉินต่างๆ และผู้ให้ประกันสุขภาพ เป็นต้น อย่างไรก็ตาม CP-ABE ถูกออกแบบมา
สําหรับสภาพแวดล้อมในการจัดการผู้ใช้แบบผู้มีอํานาจเดี่ยว (Single user authority) อีกนัยนึง ผู้ใช้
และแอตทริบิวต์ท้ังหมดจะต้องถูกจัดการโดยผู้มีอํานาจแบบศูนย์กลาง (Centralized user
authority) ดังนั้น ประเด็นและข้อจํากัดจํานวนมากอาจจะเกิดข้ึนเม่ือนํา CP-ABE มาประยุกต์ใช้กับ
ระบบข้อมูลสุขภาพส่วนบุคคลในทางปฎิบัติ เช่น ปัญหาข้อจํากัดทางด้านความสามารถในการ
ขยายตัวของระบบ (System scalability) ปัญหาคอขวด (Single point of failure) และปัญหาการ
จัดการผู้ใช้อย่างมีประสิทธิภาพ (Efficient user management) เป็นต้น

เพ่ือท่ีจะจัดการกับประเด็นและข้อจํากัดดังกล่าวข้างต้น งานวิจัยชิ้นนี้นํา CP-ABE
มาประยุกต์ใช้เพ่ือให้สามารถรองรับสภาพแวดล้อมแบบมัลติออโทริตี้ (Multi-authority) ส่งผลให้
ระบบข้อมูลสุขภาพส่วนบุคคลท่ีนําเสนอสามารถกระจายภาระการจัดการผู้ใช้และแอตทริบิวต์ไปยังผู้
มีอํานาจการจัดการผู้ใช้ (User authority) ต่างๆ ได้ เช่น โรงพยาบาลสามารถก่อตั้งผู้มีอํานาจการ
จัดการผู้ใช้ของตนเอง (Healthcare authority) ข้ึนมาสําหรับรองรับบุคลากรทางการแพทย์ของ
ตนเองได้ ขณะท่ีผู้ป่วยก็สามารถก่อตั้งผู้มีอํานาจการจัดการผู้ใช้เป็นของตนเอง (Personal
authority) เพ่ือท่ีจะรองรับสมาชิกในครอบครัว ผู้ดูแล และเพ่ือนๆได้ แบบแผนของระบบข้อมูล
สุขภาพส่วนบุคคลแบบมัลติออโทริตี้ท่ีนําเสนอในงานวิจัยนีย้ังได้นําเสนอกลไกความปลอดภัยเพ่ือท่ีจะ
รักษาความเป็นส่วนตัวของเจ้าของข้อมูลสุขภาพส่วนบุคคล กลไกดังกล่าวประกอบด้วย แบบแผนการ
ปกป้องข้อมูลสองชั้น (PHR dual layer protection scheme) แบบจําลองความเชื่อใจแบบลําดับ
ข้ัน (Hierarchical trust model) และแบบแผนการแบ่งปันข้อมูลสุขภาพส่วนบุคคลอย่างปลอดภัย
(End-to-end secure PHR sharing scheme) ด้วยกลไกความปลอดภัยท่ีนําเสนอ เจ้าของข้อมูล
สุขภาพส่วนบุคคลสามารถท่ีจะควบคุมการเข้าถึงข้อมูลสุขภาพส่วนบุคคลของตนได้อย่างละเอียด
(Fine-grained access control) นอกจากนี้ กลไกท่ีนําเสนอยังรับประกันว่าข้อมูลสุขภาพส่วนบุคคล
จะสามารถถูกเปิดอ่านหรือถูกแก้ไขได้เฉพาะผู้ใช้ซึ่งได้รับอนุญาติจากเจ้าของข้อมูลสุขภาพส่วนบุคคล
เท่านั้น

Thesis Title Multi-Authority Secure Personal Health Record System
Author Mr.Phuwanai Thummavet
Major Program Computer Engineering
Academic Year 2014

ABSTRACT

Personal health record (PHR) is a concept of managing and sharing
personal health related information by an individual. Unlike an electronic medical
record (EMR) which is managed by a hospital, PHR is under a full control by the PHR
owner. Ideally, PHR can contain any type of individual health information such as
personal diseases, medical history, allergies, mental health information, diagnosis and
physicians’ recommendations. Beyond the EMR, PHR also supports an idea of
collecting home-monitored data which are captured from body sensor devices. For
example, a patient can capture his/her vital signs using body sensor devices and then
record the captured data into a database of any internet-based PHR system. With the
captured vital signs, a physician can make a better diagnosis of diseases and
symptoms. PHR is intentionally proposed in order to not only reduce some
expensive today healthcare costs but also increase an opportunity for curing
diseases.

Due to the highly sensitivity of personal health information, security
and privacy issues of PHR become a primary concern of many PHR owners. To
prevent such issues, several access control schemes were proposed. One of the
most widely adopted access control schemes for the PHR is Ciphertext-Policy
Attribute-Based Encryption (CP-ABE). Under CP-ABE, a PHR owner can specify an
access policy over a set of attributes for encrypting each particular PHR record. The
resulting encrypted PHR can only be decrypted by the users who have the CP-ABE
private key containing the set of specific attributes that satisfies the associated access

policy pre-defined by the PHR owner. In other words, CP-ABE is an attribute-based
encryption scheme.

Under a PHR system environment, there can be multiple users with
different roles/attributes; for example, patients, family members, caregivers,
physicians, other medical practitioners, emergency responders, and health insurers.
Unfortunately, CP-ABE is designed for a single user authority (UA) environment. In
other words, all users and attributes must be managed by a single centralized UA.
Consequently, several issues and limitations may be occurred when employing CP-
ABE in practice, including a system scalability problem, a single point of failure
problem, and an efficient user management problem.

To handle such issues and limitations, a multi-authority secure
personal health record (MA-PHR) scheme is proposed in this research. By adding an
initial setting, the CP-ABE can be used in a similar fashion to handle the users and
attributes from multiple authorities. With the proposed scheme, for example, a
hospital can establish a healthcare authority for supporting its medical practitioners
locally as well as a patient can create his/her own personal authority for supporting
his/her family members, caregivers, and relatives. The proposed MA-PHR scheme also
presents several security mechanisms in order to preserve the privacy of the PHR
owners including the PHR dual layer protection scheme, the hierarchical trust model,
the end-to-end secure PHR sharing scheme. With the proposed security mechanisms,
the PHR owner has a fine-grained access control on his/her PHR records whereas the
proposed mechanisms guarantee that PHR information can be read or modified only
by the owner-authorized users.

Contents

 Page

บทคัดย่อ v

Abstract vii

Acknowledgement ix

Contents x

List of Figures xiii

List of Abbreviations and Symbols xiv

List of Publications xvii

Reprints and Permissions xviii

1. Introduction 1

2. Objectives 4

3. Preliminary technique 5

4. The proposed MA-PHR scheme 6

4.1 System models and assumptions 7

4.2 Modified CP-ABE initial settings 7

4.2.1 MA-PHR core system setup 8

4.2.2 User authority setup 8

4.2.3 User key generation 9

4.2.4 Inter-authority synchronization 9

4.3 Security mechanisms 9

4.3.1 Hierarchical trust model 9

4.3.2 PHR dual layer protection 11

4.3.3 End-to-end secure PHR sharing 12

5. System development 13

6. System demonstration 15

7. Security and usability discussions 19

7.1 Security issues 19

7.2 Usability issues 21

8. Analysis and discussion of the proposed system and related systems 23

8.1 Indivo health platform 23

8.2 Microsoft HealthVault 26

8.3 Google Health 27

8.4 PCEHR system in Australia 28

9. Missing features and future works 30

9.1 Interoperable platform 30

9.2 Standard document formats 31

9.3 Standard API for external applications 32

9.4 Access duration control for each part of data 33

10. Conclusion 33

References 34

Appendix A - The publications of the thesis 41

Appendix A1 – ICSEC conference paper 42

Appendix A2 – J-BHI journal paper 49

Appendix A3 – MIJST journal paper 58

Appendix B - Development tools 72

Appendix C - API For the Proposed MA-PHR Framework 74

Calling the client backend modules from Java code 75

Calling the client backend modules from C code 77

Calling the client backend modules from Python code 78

Appendix D - Dependency packages/libraries installation, and software

 compilation, configuration, and execution

80

Appendix D1 – Dependency packages/libraries installation 81

Appendix D2 – Software compilation, configuration, and execution 85

Vitae 88

List of Figures

 Page

Fig. 1. An access policy tree of the policy P 6

Fig. 2. Setting up the CP-ABE for a multi-authority environment 8

Fig. 3. A hierarchical trust model 10

Fig. 4. End-to-end secure PHR sharing workflow 13

Fig. 5. The proposed system structure 14

Fig. 6. Alice assigns different sets of access permissions to each of the

selected people

15

Fig. 7. Alice specifies an access policy for her PHR record 16

Fig. 8. Alice’s encrypted PHR is uploaded to the PHR server 17

Fig. 9. Bob initializes his download request 17

Fig. 10. Alice’s encrypted PHR stored on the PHR server 18

Fig. 11. Bob can access Alice’s PHR as requested 18

Fig. 12. Alice traces all accesses on her PHRs 18

Fig. 13. The sequences of the PHR uploading transaction 20

Fig. 14. The sequences of the PHR downloading transaction 20

Fig. 15. An example of calling the client backend module by Java code 76

Fig. 16. An example of a JNI-to-C mapping function of the client backend

module

77

Fig. 17. An example of calling the client backend module by C code 78

Fig. 18. An example of calling the client backend module by Python code 79

1

1. Introduction

In recent years, the technology for storing and managing healthcare

information has been shifted from the paper-based record to the electronic medical

record (EMR) [1]. A general concept of the EMR is to transform patients’ health and

medical information recorded by a hospital, which is traditionally stored in terms of

physical paper-based records, to digital forms that can be managed by a computer

instead. EMR gains several advantages than the prior one such as reducing costs in

storing, maintaining, searching and accessing health records; providing fast searching;

and the health records can be accessed by multiple users anytime anywhere.

The personal health record (PHR) [2], [3] is gaining popularity

nowadays while the EMR is managed and controlled by a hospital. PHR is a concept

of storing the personal health information, managing and controlling by an individual.

The PHR owner can gather his/her personal health information from various hospitals

or clinics and then store the information into his/her PHRs. Then, the PHR owner can

selectively share each of his/her PHRs to any desired people. Furthermore, the PHR

also opens to an idea of collecting the home-monitored data which are captured

from body sensor devices. For example, a patient can capture his/her vital signs using

body sensor devices and then record the captured signs into any internet-based PHR

system. With the captured vital signs, a physician can make a better diagnosis of

diseases and symptoms of the patient [2]. PHR is intentionally proposed in order to

not only reduce some expensive healthcare costs but also increase an opportunity

for curing diseases.

Typically, the PHRs are stored and handled by the PHR cloud-based

service providers (PHR providers). The PHR providers typically provision an abundant

storage capacity, a high computation processing unit and a large network bandwidth

with a reasonable price to PHR owners. However, the PHR owners and the PHR

providers are generally considered in different trust domains [2], [4], [5], and [6].

Therefore, security and privacy issues on the PHR information become a primary

concern of many PHR owners [2], [4], [5], and [6], due to the highly sensitive

information contained in the PHRs [5] such as personal diseases, medical history,

allergies, mental health information, and diagnosis and physicians’ recommendations.

2

Thus, an access control for the PHRs is necessarily required in order to enforce an

access policy on who is able to access or modify any particular PHR. In other words,

a PHR owner must be able to define an access policy in order to control all accesses

on each of his/her PHRs.

Unfortunately, the traditional access control schemes—such as role-

based access control (RBAC) [7] and attribute-based access control (ABAC) [8]—are

not suitable for the PHR because those schemes typically require the system users

and the storage providers to be in the same trust domain [9]. In a PHR system,

however, the PHR users (i.e., PHR owners and owner-authorized users) and the PHR

providers are obviously in different trust domains [2], [4], [5], and [6]. A widely

adopted method is an encryption-based access control [10], [11]. That is, a PHR

record will be protected from its source (i.e., encrypting at the PHR owner’s client

before storing on any PHR storage). Thereby, only the authorized users who possess

a decryption key will be able to decrypt the encrypted PHR. Since PHR providers are

not included in the list of authorized users, the providers cannot access the stored

PHRs. For this reason, PHRs are securely stored.

Nowadays, several encryption schemes are available. The schemes

can be classified into two types including one-to-one encryption and one-to-many

encryption. The one-to-one encryption (e.g., symmetric-key encryption (SKE) [12],

public-key encryption (PKE) [13] and identity-based encryption (IBE) [14]) allows only

a particular user to decrypt a ciphertext. Meanwhile, the one-to-many encryption

(e.g., policy-based encryption (PolBE) [15], key-policy attribute-based encryption (KP-

ABE) [16] and ciphertext-policy attribute-based encryption (CP-ABE) [17]) allows a set

of authorized users to decrypt a ciphertext. In reality, a PHR record can be accessed

by multiple users, for example, the owner himself/herself, family members,

caregivers, and physicians. Thus, the one-to-many encryption is suitable for the PHR

system.

Concept of the one-to-many encryption is to empower a PHR owner

to specify an access control policy for each PHR record during an encryption process.

The access control policy will be expressed in terms of the roles or attributes of

authorized users. For example, if the policy states that “Physician OR Caregiver”. The

3

resulting encrypted PHR can be decrypted by the authorized users who possess the

key with the “Physician” and/or the “Caregiver”. PolBE can provide an access policy

described above [4]. However, a user collusion problem enables malicious users to

escalate their access privilege to unauthorized PHR [17], [18] by combining their

private keys together. To prevent such the problem, CP-ABE scheme mathematically

links all of the attributes together to produce a private key [17]. Thereby, CP-ABE

private keys cannot be combined together in order for making the user collusion

anymore. Therefore, CP-ABE becomes one of the most adopted schemes for the PHR

as was used in [19], [20], [21], and [22]. KP-ABE was used in [23], [24], and [25]. Under

KP-ABE, an access policy will be transformed into a decryption private key instead of

a ciphertext. Meanwhile, the ciphertext will be embedded a set of attributes. If the

KP-ABE is adapted to the PHR system, a PHR owner must define a set of specific

attributes for encrypting a PHR and then generate different private keys for each

authorized user before sharing the PHR. KP-ABE not only provide an unintuitive way

for protecting and sharing the PHR, but also make the PHR system more complicated

in a comparison with using CP-ABE. Moreover, KP-ABE also requires the PHR owner to

generate and distribute the decryption private keys to each authorized user

himself/herself whereas the PHR owner is not required to do that under the CP-ABE

scheme. For this reason, KP-ABE is not suitable for the PHR. In this way, the CP-ABE

scheme is selected to be applied for securing the PHRs in this research.

Under the CP-ABE scheme, the user and attribute management is

centralized. In other words, all users and all attributes are managed by a single

centralized authority. In practical, however, a PHR system consists of multiple users

with different roles/attributes [26], [27], such as, patients, family members, caregivers,

physicians, other medical practitioners, emergency responders, and health insurers.

To employ the original CP-ABE to the PHR system directly, several issues and

limitations, such as a system scalability problem, a single point of failure problem,

and an efficient user management problem [23], [24], and [26], must be considered.

This research proposes a multi-authority secure personal health

record (MA-PHR) scheme. The proposed scheme can improve the issues and

limitations discussed previously. The tasks of handling users and attributes are

4

distributed to multiple expert authorities under the proposed scheme. With the

proposed scheme, a company or an individual is allowed to establish its own

authority in order to support the management of users and attributes related to its

expert domain. For example, a hospital can establish a healthcare authority for

supporting its medical practitioners as well as a patient can create his/her own

personal authority for supporting his/her family members, caregivers and relatives.

Under the proposed scheme, each authority can join and take part in establishing

the network of a global MA-PHR system so that the joining authorities can

collaborate with one another.

Additional contribution of this research is to preserve the privacy of

the PHR owners. A PHR dual layer protection is proposed in this research in order to

enable the PHR owner to take a full control on his/her PHRs in terms of who can

download, upload or even delete his/her (encrypted) PHR records stored on a PHR

provider. The PHR owner can selectively grant one or more access permissions to

each user. For example, an owner may grant the upload and the download

permissions to his/her personal physicians while he/she may grant only the

download permission to his/her family members and caregivers. A hierarchical trust

model is applied in this research to provide a method to verify a user from a

different authority. Moreover, an end-to-end secure PHR sharing scheme is also

presented in order to guarantee that only the authorized users are able to access

the PHR information.

1

2. Objectives

The aim of this research is to propose a simple approach to transform

a traditional centralized-based user authority PHR system to a multi-user authority

PHR system (MA-PHR system for short). The proposed MA-PHR system comes with

several security mechanisms in order to protect the security and privacy of the PHRs.

The proposed approach addresses issues and limitations of the centralized-based

PHR systems including the system scalability, and the single point of failure problem.

Moreover, the proposed system provides a simple, easy, and efficient user

management. The security mechanisms used in this research assure that the PHR

owner can take a full control over his/her shared PHRs. In other words, the owner

can selectively share each of his/her PHRs to any desired user. The access control

mechanism proposed in this research allows the PHR owner to define different

access permissions, covering READ and STORE actions separately, to different group

of users, or a user. To proof the concept of this research, a software prototype is

developed and the security issues as well as the usability issues are also evaluated.

1

3. Preliminary technique

The background technique on the original CP-ABE scheme [17] is

presented in this section. CP-ABE is a one-to-many asymmetric-key encryption

algorithm that allows multiple authorized users to access the encrypted data. Under

CP-ABE scheme, a set of attributes reflecting the user’s roles is transformed into a

decryption CP-ABE private key and assigned to the corresponding user. The data

owner can then specify an access policy over a set of attributes of authorized users

for encrypting each particular PHR. For example, the policy is expressed as follows.

Policy P = “(family_member) OR (physician AND hospital-A) OR

(physician AND hospital-B)”

As a result, any user can decrypt the data encrypted using CP-ABE

with the policy P if and only if he/she possesses the CP-ABE private key satisfying the

policy P. In the example, the list of authorized users includes the owner’s family

members and the physicians of hospital-A or hospital-B. The CP-ABE scheme consists

of four steps as follows.

The first step is the Setup phase. This phase generates the public

parameters PK and the master secret key MSK. The PK consists of the generator g, gβ,

and e(g,g)α, where e is a computable symmetric bilinear map. The MSK is the value β

and gα. The PK is revealed to the public, while the MSK must be kept secret.

The second step is the Encryption phase. This phase takes as input

the public parameters PK, a plaintext message M, and an access policy tree T and

outputs the ciphertext CT. The access policy tree can be generated for any policy

using a set of boolean formulas. For example, the policy P above can be

transformed into an access policy tree as shown in Fig. 1.

2

Fig. 1. An access policy tree of the policy P

The third step is the KeyGen phase. This phase requires a set of input

including the public parameters PK, the master secret key MSK, and a set of user

attributes S. The attributes S are mathematically incorporated and transformed into

the private key SK. This phase generates the private key SK, associated with the set

of attributes S that describes the key, as output.

The last step is the Decryption phase. This phase takes as input the

public parameters PK, the ciphertext CT, and the private key SK. The ciphertext CT

that was encrypted with the access policy tree T, will be decrypted if and only if the

set of attributes S associated with the private key SK satisfies the policy tree T.

Typically, CP-ABE is designed for a single user authority (UA)

environment. In other words, all users must be managed by the single centralized

UA. In this research, a mechanism to extend the CP-ABE to deal with a multi-UA

environment is proposed. Under the proposed scheme, any traditional CP-ABE-based

PHR system can be modified to handle a multi-UA environment.

1

4. The proposed MA-PHR scheme

The detailed construction of the proposed MA-PHR scheme is

presented in this section. First, the system model and assumptions are described.

Second, the proposed mechanism to extend any traditional CP-ABE to a multi-UA

environment is described. Third, the security mechanisms including hierarchical trust

model, PHR dual layer protection, and end-to-end secure PHR sharing, are presented

in order to explain the security of the proposed scheme.

4.1 System models and assumptions

Under the proposed scheme, there are five entities as shown in Fig. 2-

4 including root authority (RA), user authority (UA), audit server (AS), PHR server, and

user. RA verifies and certifies all UAs and AS. There can be multiple UAs owned by

companies or individuals, in which each of them manages users and attributes

related to its expert domain independently. AS records all requests and transactions

and generates a log report for the PHR owners or the authorized users if any dispute

is occurred. RA, UAs and AS are assumed to be trusted by the users in the system.

The PHR server provides the users with an abundant storage space and a large

network bandwidth for storing and sharing PHRs. The PHR server can be a third-party

cloud storage provider and it can be considered untrusted. The users in question can

be anyone with different roles such as the PHR owners (patients), the family

members, the physicians. In addition, all connections under the proposed scheme

are always secured by the secure sockets layer (SSL)/transport layer security (TLS)

protocol [28].

4.2 Modified CP-ABE initial settings

The original CP-ABE setup phase typically generates the mathematical

linked key pair, namely, public parameters PK and master secret key MSK. The PK is

revealed to the public and required as the explicit parameter in the CP-ABE private

key generation and the ciphertext encryption/decryption processes. The MSK must

be kept secret by the trusted UA and also required as the explicit parameter in the

private key generation. Thereby, the ciphertext CT can be decrypted with the private

2

key if and only if both the ciphertext and the private keys are generated from the

same PK and MSK key pair.

To modify the original single-authority CP-ABE to multi-authority CP-

ABE, the key idea is to generate the PK and MSK key pair at the RA and then securely

distribute the generated key pair to all the trusted UAs. Next, all UAs generate the

CP-ABE private keys for their users using the same key pair. Thus, the PHR user of an

authority can share his/her encrypted PHR to another user of a different authority

transparently, as if they were in the same global authority. The proposed MA-PHR

system consists of four setup phases as follows:

4.2.1 MA-PHR core system setup

The RA is used as the root of all UAs under the proposed scheme.

Therefore, the MA-PHR core system setup is initiated by the RA as shown in Fig. 2.

The RA first executes the CP-ABE Setup algorithm to generate the PK and MSK key

pair (denoted as 1 in Fig. 2). Next, the generated key pair is kept secret by the RA and

prepared for securely distributing to all UAs. Specifically, the generated key pair will

be used as the root of all CP-ABE private keys that will be issued by the UAs to all

PHR users in the system.

Fig. 2. Setting up the CP-ABE for a multi-authority environment

3

4.2.2 User authority setup

After setting up the MA-PHR core system, the RA is now ready to

accept the UA request to join the system. The new UAs will send their request to

join the network of the system. Upon receiving the request, the RA must first verify

the authenticity of the requesting UA. After a successful verification process, the RA

then securely distributes the PK and MSK key pair to the new UA (denoted as 2 in

Fig. 2). The UA will use the acquired key pair for generating the CP-ABE private keys

to its members during the user key generation phase described next.

4.2.3 User key generation

When a new user is registering with a certain UA, the UA will execute

the CP-ABE KeyGen algorithm using the acquired PK and MSK key pair as the specific

parameters together with a set of user attributes associated with the user’s roles

(denoted as 3 in Fig. 2). Therefore, the user will be assigned the CP-ABE private key

that is able to decrypt any encrypted PHR from any authority in the system as if the

decryptor and the PHR owner were in the same global authority.

4.2.4 Inter-authority synchronization

The proposed scheme allows a company or an individual to create

and manage its own UA locally. For example, a hospital can create a healthcare

authority that has a certain set of attributes such as physician, nurse, and paramedic,

whereas a patient can create a personal authority that has a different set of

attributes such as PHR owner, family member, relative and friend. As a result, each

UA can have a different set of attributes. For this reason, all UAs must synchronize

their attribute sets with each other periodically (denoted as 4 in Fig. 2), in order to

enable a PHR user from a different authority to be able to define a set of attributes

in his/her access policy for a group of users from another authorities during an

encryption process.

4

4.3 Security mechanisms

Three security mechanisms of the proposed scheme are described in

the following subsections including hierarchical trust model, PHR dual layer

protection, and end-to-end secure PHR sharing.

4.3.1 Hierarchical trust model

As mentioned earlier, the proposed scheme allows a company or an

individual to establish its own UA for handling users and attributes related to its

expert domain. For example, a healthcare authority is created and managed by a

hospital, whereas a personal authority is owned by a patient. On the one hand, the

patient from the personal authority can share his/her PHRs to the physicians from

the healthcare authority. On the other hand, the physicians can contribute in

updating the patient’s PHRs accordingly. Since the patient and the physicians are

from different authorities, an inter-authority user verification mechanism is required in

order to build a mutual trust relationship among them.

To initiate the inter-authority user verification mechanism, the

proposed scheme applies a hierarchical trust model (as shown in Fig. 3), which is a

feature provided by the SSL/TLS protocol. With the hierarchical trust model,

consequently each UA can certify and issue SSL/TLS certificates to its members

locally. For the example described above, the personal authority and the healthcare

authority can certify and issue SSL/TLS certificates to their members locally. Later,

two PHR users from different authorities can mutually verify the identity and

authenticity of one another.

5

Fig. 3. A hierarchical trust model

The hierarchical trust model consists of two levels: authority level and

user level. Each level is allowed to verify and certify its sub-entities. The root of the

hierarchical trust model is the RA. When a new UA is created and requested to join

the proposed system, the RA must verify an identity of the requesting UA and issue a

unique authority certificate to the requesting UA (denoted as ‘level 1’ in Fig. 3).

Then, the requesting UA uses the obtained authority certificate for a chain certifying

and issuing a unique user certificate to each of its PHR users locally (denoted as

‘level 2’ in Fig. 3). Later, a PHR user can use the obtained user certificate for

authenticating and establishing a secure channel [27], [29]. Because each UA

generates the user certificates to its members from the same root certificate, the

user can verify the certificate of a peer user across authorities.

4.3.2 PHR dual layer protection

To protect the PHR information from an unauthorized reading and

modifying, the proposed scheme presents the PHR dual layer protection which

consists of two protection layers: read protection layer and store access control

layer. A PHR owner is allowed to define access policies for READ and STORE actions

6

separately. The read protection layer protects the PHR information from an

unauthorized read action by encrypting the PHR using the modified CP-ABE at the

source before securely uploading to the PHR server through a secure channel

(denoted as 4 in Fig. 4). According to the CP-ABE scheme, the PHR owner can specify

an access policy for each particular PHR and the policy will be transformed and

embedded into the encrypted PHR. The resulting encrypted PHR can be decrypted

by any user if and only if the user possesses the CP-ABE private key containing the

set of attributes satisfying the associated access policy pre-specified by the owner.

The store access control layer protects the encrypted PHRs stored on

the PHR server from an unauthorized access. The PHR owner can selectively assign

one or more of the three access permissions—including upload, download and

delete permissions—to each user. A user can perform only the authorized actions on

the encrypted PHRs stored on the PHR server. With the proposed dual protection

layers, thus the owner can have a full control over which users can read or modify

his/her PHRs.

4.3.3 End-to-end secure PHR sharing

Once a user logs in to the MA-PHR system, the certain UA that the

user has been registered will verify his/her authenticity and allow the user to obtain

his/her CP-ABE private key and user certificate if his/her claim is valid (denoted as 1

in Fig. 4). The CP-ABE private key will be used as the PHR decryption key. The user

certificate will be used for authenticating himself/herself and establishing a secure

communication channel when the user contacts with any server. Under the

proposed scheme, the PHR owner can freely grant any of the three access

permissions (i.e., upload, download, and delete permissions) to any selected user. As

depicted in Fig. 4, for explanation purpose, assuming that Alice would like to grant

some permission on her PHRs to her personal physician Bob. Alice can achieve the

permission granting task through her UA (denoted as 2 in Fig. 4). The granted access

permissions will be securely recorded in the UA database and will be used when Bob

requests access to any PHR record of Alice. In this example, since Alice and Bob are

members of different authorities, the synchronization mechanism from Alice’s

authority to Bob’s authority is required, in order to synchronize all parameters

7

between the two authorities such as the sets of attributes, the lists of granted access

permissions, and the lists of users (denoted as 3 in Fig. 4). Typically, all authorities

always periodically synchronize their attribute sets, user lists, and granted access

permission sets with each other.

The proposed scheme offers an end-to-end PHR protection method.

That is, the proposed scheme will encrypt Alice’s PHR information using the modified

CP-ABE at Alice’s client before securely transmitting to the PHR server through a

secure channel (denoted as 4 in Fig. 4). Since no decryption key is stored on the PHR

server, even the PHR server itself cannot read the content of the PHR information

stored. The resulting encrypted PHR would be decrypted by only the authorized

users at their clients. Thus, Alice can assure that her PHR information will be

accessed by her authorized users only.

Fig. 4. End-to-end secure PHR sharing workflow

Assuming that Bob needs to access or modify Alice’s PHR information,

Bob must request and obtain a one-time request (OTR) token from his UA (denoted

as 5 in Fig. 4). The OTR token typically contains Bob’s access permissions granted by

Alice and the token will be given a specific expiration date/time. Therefore, Bob can

only perform actions indicated on the token during a valid time period. In other

words, Bob cannot re-use the token if the token lifetime is expired. After Bob gets

8

the OTR token, Bob sends the request message along with the obtained OTR token

to the PHR server (denoted as 6 in Fig. 4). The PHR server will verify the token and

Bob’s request. Next, Bob can perform any request action once his request is verified

(denoted as 7 in Fig. 4). In addition to provide a non-repudiation feature [27], [30],

Bob’s request will be recorded as a transaction log on the AS (denoted as 8 in Fig. 4).

The transaction logs will be periodically synchronized from Bob’s authority to Alice’s

authority (denoted as 9 in Fig. 4). This way, Alice can keep track of all accesses to her

PHRs from the log report generated by her AS later (denoted as 10 in Fig. 4).

1

5. System development

The software prototype of the MA-PHR system is developed in order

to proof the concept of the research. Some detailed design of the software

prototype is given. Fig. 5 shows the proposed system structure that consists of client

and server modules. The client side is executed on any PC computer supporting

Ubuntu OS. The underlying client side consists of the frontend and the backend. The

client frontend is responsible for rendering a graphical user interface (GUI) and

inputting the user commands, which is implemented using Java language. The client

backend gathers several low-level modules such as encryption, security and privacy,

network, and user management modules, which is implemented using C language.

The client frontend and backend communicate with each other via the Java Native

Interface [31]. The server side includes four servers: namely, root authority (RA), user

authority (UA), audit server (AS), and PHR server, which are fully implemented using C

and SQL languages. Each server has a local database for independently storing the

information. The server and the client sides always securely communicate with each

other via an SSL/TLS secure channel.

Fig. 5. The proposed system structure

1

6. System demonstration

The demonstration of the developed MA-PHR system is presented in

this section. For the demonstration purpose, assuming that a PHR owner Alice would

like to share her PHR records to some selected people. The selected people include

Alice’s family members: John and James, and Alice’s personal physician: Bob. As the

different professional roles, Alice decides to grant different sets of access permissions

to each of the selected people as shown in Fig. 6. That is, John and James who are

Alice’s family members would be assigned only the download permission or the

read permission, while the physician Bob would be assigned the upload and the

download permissions or both the read and store permissions. However, none of the

selected people would be assigned the delete permission. As a consequent, John

and James can only download Alice’s PHR records for informing and updating their

knowledge about Alice’s health condition, while Bob can download Alice’s PHR

records for using in diagnosing Alice’s diseases and symptoms whereas Bob can also

upload or append Alice’s PHR record (e.g., medical history or recommendation). In

other words, the developed system allows Alice to selectively grant any access

permission to each particular person according to his/her professional roles.

Fig. 6. Alice assigns different sets of access permissions to each of the selected

people

After assigning the access permissions, Alice loads her PHR record to

her client application and then specifies an access policy for that record as shown in

Fig. 7. The specified access policy is expressed as follows: “Personal.family_member

OR Healthcare.caregiver OR Healthcare.physician”. Thus, Alice’s family members who

2

are in Personal authority and the caregivers or the physicians who are in Healthcare

authority can decrypt the resulting encrypted PHR record. Fig. 8 shows the process of

encrypting the PHR record occurred on Alice’s client application before the resulting

encrypted PHR would be securely uploaded to the PHR server.

Once the physician Bob wants to download Alice’s PHR record, Bob

initializes his download request on the specific PHR-owner name (i.e., Alice) as shown

in Fig. 9. Next, Bob will be informed of all Alice’s encrypted PHR records stored on

the PHR server as shown in Fig. 10. Bob can select and download the requested

encrypted PHR from the PHR server to his client application. Then, the decryption

process will take place at Bob’s client. Bob is able to decrypt Alice’s encrypted PHR

if and only if his CP-ABE private key satisfies the associated access policy pre-

specified by Alice as shown in Fig. 11. Furthermore, Bob also has permission to

upload or update Alice’s PHR records. Specifically, Bob can achieve this task by

making the upload request on Alice’s record on his GUI interface in Fig. 9. Next, Bob

can load a new or an updated Alice’s PHR record. The PHR record will then be

encrypted before securely uploading to Alice’s repository on the PHR server as

shown in Fig. 8. Moreover, the developed system provides the transaction auditing

mechanism that enables Alice to track all actions performed on her PHR records

later. Thus, Alice can be informed of all accesses on her PHR records by Bob as

shown in Fig. 12.

Fig. 7. Alice specifies an access policy for her PHR record

3

Fig. 8. Alice’s encrypted PHR is uploaded to the PHR server

Fig. 9. Bob initializes his download request

4

Fig. 10. Alice’s encrypted PHR stored on the PHR server

Fig. 11. Bob can access Alice’s PHR as requested

Fig. 12. Alice traces all accesses on her PHRs

1

7. Security and usability discussions

In this section, the security and usability issues of the proposed

system is discussed. The security issues consist of five attack models including

storage intruders, unauthorized actions, replay attacks, PHR client attacks, and non-

repudiation cases. The usability issues consist of four usability models including

efficient encryption scheme, efficient network bandwidth usage, read and store

access control, and system scalability and availability.

7.1 Security issues

Five attack models for the proposed scheme are discussed in this

section including storage intruders, unauthorized actions, replay attacks, PHR client

attacks, and non-repudiation cases. Additionally, all connections under the proposed

scheme are always secured by SSL/TLS protocol. Therefore, the cases of

eavesdropping on the network traffic are eliminated.

The first attack model is the storage intruders. Since the PHR server

can be a third-party cloud storage provider, the proposed scheme considers the PHR

server untrusted. That is, a storage intruder or even a storage administrator may try

to access the PHR information stored on the PHR server. To protect the PHR

information, therefore, the information is always encrypted at its source before

uploading to the PHR server and the decryption keys are securely stored on the

separated trusted user authority (UA). Thereby, the encrypted PHR stored on the PHR

server is protected as long as the storage intruder or the storage administrator cannot

break the cryptographic primitives used. And, the decryption key is not accessible by

any unauthorized person.

The second attack model is the unauthorized actions. The proposed

scheme offers the read and store actions. A PHR owner (e.g., Alice) can selectively

grant the permission either read or store to a desired user (e.g., Eve). To read, store

or modify Alice’s PHR, Eve must obtain the OTR token that indicates the permission

on the actions granted by Alice from Eve’s UA (denoted as 3 in Fig. 13 and 4 in Fig.

14). After that, Eve must present the obtained OTR token to the PHR server for

claiming her access permission on the requested PHR (denoted as 5 in Fig. 13 and 6

2

in Fig. 14). Nevertheless, Eve may try to modify her OTR token in order to escalate

her permission to perform any unauthorized action. To prevent such action, the OTR

token will be digitally signed with the UA private key. The PHR server can verify the

integrity of the token with the corresponding UA public key. This method ensures

that the OTR token has not been modified by any unauthorized user.

Fig. 13. The sequences of the PHR uploading transaction

Fig. 14. The sequences of the PHR downloading transaction

The third attack model is the replay attacks. Suppose that Eve has

been revoked the permission that was previously granted by Alice. In order to gain

her permission back, Eve may try a replay attack by using the previous OTR token

that was obtained to be used instead of the current token. However, the OTR token

used in the proposed scheme is a certificate with a specific expiration date/time, Eve

3

will not be able to reuse the obtained OTR token once it is expired. Thus, the

lifetime of the OTR token must be kept short and optimistic.

The fourth attack model is the PHR client attacks. Typically, once a

user logs in to the proposed system, the user gets his/her user certificate and CP-ABE

private key from his/her associated UA. The certificate and the private key will be

stored on the user’s client for convenience purpose. Therefore, the attacker may try

to steal the user certificate or the CP-ABE private key stored on the client. To protect

the key and certificate, all stored data will be encrypted using a symmetric-key

encryption method with the user’s password. The password will only be stored in

the PHR client module’s memory area for convenience purpose, assuming the

attacker cannot gain his/her privileges to the superuser/root mode to dump the

memory section of the PHR client module for reading the user’s password. This

concept can be used with any Linux-based operating system [32].

The last attack model is the non-repudiation cases. The audit server

(AS) is responsible for recording all requests and transactions that occur in the

system (denoted as 7 in Fig. 13 and 8, 10 in Fig. 14) and providing the transaction

auditing mechanism to the PHR owners. In other words, the PHR owner can keep

track of his/her PHR records by inspecting the log report generated from the AS (e.g.,

Fig. 12). Furthermore, the transaction auditing mechanism also enables the system

administrator to monitor or detect malicious users. This mechanism is very important

to guarantee a non-repudiation feature in the proposed scheme.

7.2 Usability issues

To evaluate the proposed scheme on the current environment, four

usability issues are discussed. First, the practical aspect of the encryption scheme is

evaluated. Second, the required network bandwidth for the proposed scheme to

work efficiently is discussed. Third, the control over the read and store access

permissions are investigated. Lastly, the system scalability and availability is

discussed.

First, the proposed scheme selects CP-ABE as the main encryption

algorithm. CP-ABE is leveraged to protect the confidentiality of the PHR information.

The PHR records will be encrypted using CP-ABE at the client before uploaded to the

4

PHR server. Since the PHR client has several limitations such as the processing unit,

the power consumption, and the storage capacity, the efficiency of the CP-ABE

scheme is discussed in this section. The underlying of CP-ABE scheme is the

advanced encryption standard (AES) [33] in cipher block chaining (CBC) [34] mode

which is a symmetric-key encryption method. Hence, the encryption and decryption

time of the AES are the same. AES has good performance in terms of processing time

and power consumption [35] compared with other widely adopted symmetric

encryption schemes. The results from the research thesis conducted by Hirani [36]

showed that AES consumes less battery power and less encryption time than that of

CAST and IDEA encryption schemes on the encryption of a 5 MB file. All the schemes

use 128-bit key size. AES consumes 58% less battery and 70% less time than CAST,

while AES takes 92% less battery and 110% less time than IDEA. The experiment by

Nadeem and Javed also showed that AES has good performance in terms of the

average time consumption than Triple-DES algorithm [37]. Thus, AES was given a

choice of the encryption algorithms used in SSL/TLS protocol [38]. With CP-ABE

scheme, moreover, a PHR owner can encrypt his/her PHR information for multiple

authorized users at once, resulting in efficiency of storage and computation.

Network bandwidth availability is another important limitation of the

PHR client side. Three objects are to be used when a PHR user uploads, downloads

or deletes any PHR, the user certificate, the CP-ABE private key, and the OTR token.

To reduce the communication cost between the user client and the UA, all three

objects will be downloaded from the UA and stored in an encrypted form on the

user client module. In order to reduce the OTR token issuing task occurred at the UA,

furthermore, the OTR token is designed to have a limited lifetime. In other words,

the OTR token stored on a user’s client can be used multiple times until the token

lifetime is expired.

Under the proposed scheme, a PHR owner has a solution to

selectively grant the read (download) and store (upload and/or delete) permissions

to a particular user. This method makes our scheme realistic because in the real

world adoption often that a PHR owner would like to grant not only the read

permission, but also the store permission to his/her contributors. For example, the

5

PHR owner Alice may assign the “read only” permission to her family members

whereas Alice may want to assign both the read and the store permissions to her

personal physicians. With the proposed scheme, Alice is freely to assign any access

permission to a specific person according to his/her professional roles.

The last usability model is the system scalability and availability. A

PHR system can consist of multiple user domains such as personal domain,

healthcare domain, and emergency domain. Therefore, handling all user domains

using a single centralized UA can lead to system scalability and system availability

(single point of failure problem) problems. For this reason, the proposed scheme is

intentionally designed to be a multi-authority system that allows each user domain

to manage its users locally. While the proposed scheme allows each local domain to

be part of a global domain when works across domain. The multi-authority feature

allows the system to be scaled up. That is, the joining of a new user domain does

not affect the user and attribute management tasks of another domains else

significantly. Moreover, the multi-authority feature also makes the system distribute

the tasks of the user and attribute management to multiple authorities. This reduces

an occasion of the single point of failure problem.

1

8. Analysis and discussion of the proposed system and related systems

Analytical analysis and discussion of the proposed system and related

systems is presented in this section. The most adopted related systems are selected

to compare with the proposed system on advantages, disadvantages, and limitation

issues. The related systems include Indivo health platform [39], Microsoft HealthVault

[40], Google Health [41], and PCEHR system in Australia [42].

8.1 Indivo health platform

Indivo (formerly PING) [39] is an open source, open standards

personally controlled health record, which provides an open standard application

programming interface (API). Indivo is a web-based PHR-applications/systems platform

that allows external software developers to use its platform as a health data storage

backend for developing their own web-based PHR applications or systems via its

open standard API calls. Indivo was greatly successful in widely adoptions [43], [44]

such as Microsoft HealthVault [40], Google Health [41], Dossia [45], and Indivo X [39].

Recently, Indivo has been extended for supporting developing native PHR

applications connected with Indivo backend on iOS platform [46].

Indivo was originally designed by a patient-centric model, in which a

patient (or PHR owner) can collect, maintain, and share his/her medical data with

desired people or applications. Indivo provides a fine-grained access control to a PHR

owner, via OAuth authorization framework [47], that allows an owner to define which

part of the whole data to be shared with others or applications by what actions (e.g.,

create, read, update or modify, and delete) are allowed. In other words, Indivo

provides a PHR owner a one-to-one user-based sharing scheme. To protect the

medical data, Indivo uses a database-level encryption method. That is, the plaintext

data will be uploaded to store in an encrypted format on the encrypted data storage

server while the encryption keys are hosted on a separated physical server managed

by the Indivo server [48].

In comparison, the proposed system also offers an owner a fine-

grained access control on a read action over his/her health related data. Under the

proposed system, an owner can selectively share a read action on any part of his/her

2

whole health related data with a set of selected people. Specifically, an owner can

specify a set of selected people in question by defining a read access control policy

based on usernames or attributes of selected users. For example, if a policy states

that “Bob OR Physician” can access the data, therefore, there can be only the user

named Bob and the users who are a physician able to read that data. Interestingly

with the attribute-based access control offered, furthermore, an owner can specify a

set of read-authorized users according to roles of selected users by one transaction,

not to perform multiple transactions for specifying multiple selected users like Indivo

does. In other words, the proposed system provides a PHR owner a one-to-many

attribute-based sharing scheme.

However, the proposed system does not provision a fine-grained

access control on update or modify, and delete actions over any specific part of data

to an owner like Indivo does. The access control for update or modify, and delete

actions under the proposed system will be a repository-level access control. That is,

an owner, e.g., Alice, can freely grant any set of access permissions based on create

(we called “Upload permission”) and delete (we called “Delete permission”) actions

to any desired user, e.g., Bob; assuming Bob was granted both the create and the

delete actions by Alice; Bob is able to create some health related data to be

uploaded or remove any health data stored on Alice’s repository on the PHR server.

The resulting uploaded data will not overwrite any data stored previously (this

feature was used by Indivo as well [49]). In case Bob wants to update or modify any

certain PHR data, he can achieve by uploading a newly updated data to Alice’s

repository and then delete the previous versions of that data; to provide a non-

repudiation feature, the proposed system provides Alice the transaction auditing

mechanism; therefore, Alice can inspect any request or transaction performed by

Bob later if any concern or dispute is occurred.

Notably, the proposed system uses a client-level encryption method

for protecting health related data, whereas the database-level encryption was used

by Indivo. Subsequently, the proposed system provides a better data confidentiality

because the plaintext data will only be encrypted and decrypted at a client side and

the PHR server will not hold any encryption key. Unlike Indivo, the plaintext data will

3

be encrypted and decrypted at the storage server, where the Indivo server acts as

the encryption keys manager and document access determiner. Furthermore, the

Indivo server and the storage server are also considered in the same trust domain.

Therefore, if the Indivo server is governed by malicious administrators or is being

compromised by adversaries, every encrypted medical data stored on the storage

server tends to be leaked. Unlike the proposed system, the PHR server is considered

an untrusted external third-party server. Thus, the PHR server and the UA (the server

managing the encryption keys) are intentionally located in different trust domains. In

order to steal the health data stored in the proposed system, the adversaries or the

malicious administrators have to compromise both the UA and the PHR server.

In the aspect of registering, verifying and managing the PHR users,

Indivo was designed to be a distributed system in which a user can register to the

Indivo system at the physician offices and hospitals or through well-established

identity management systems [48] such as certificate-based Kerberos identity

management system [50]. Similarly, the proposed MA-PHR system was designed to

be a distributed e-healthcare system in which each organization (e.g., clinics and

hospitals) or even an individual (e.g., patients and family members) is allowed to

establish its own user authority for locally registering, verifying, and managing a group

of users related to its expert domain. Section 8.4 will describe the details of this

subject again.

8.2 Microsoft HealthVault

Microsoft HealthVault [40] started in October 2007, as a web-based

personal health record platform. Microsoft HealthVault equips with an API, which

enables external software/hardware vendors as partnership to develop external

applications for exchanging medical data stored on a HealthVault account. This

system was developed based on Indivo platform [43], [44], thus, it inherently derives

almost all of the access control features of medical data from Indivo. That is, a PHR

owner is able to share some parts of the whole data to any desired user or

application with any given access permissions and with any given access expiration.

The access control of Microsoft HealthVault is a one-to-one user-based sharing

scheme like Indivo. By our literally investigation, there are three levels of sharing an

4

owner can grant to other users including view only, view and modify, and act as a

custodian of the account; where the latter is a method to give a full access control

over all of the HealthVault account to other users.

Similar to the case of Indivo, Microsoft HealthVault uses a database-

level encryption method. On the one hand, the database-level encryption enables

the HealthVault system to be able to access, maintain, and index medical data

stored, resulting in several benefits such as fast data searching and retrieval, data

backup, and system maintenance. On the other hand, the database-level encryption

enables the HealthVault system to dominate over all of stored sensitive data of

every PHR users. Let’s consider if the HealthVault system is governed by malicious

administrators or is being compromised by adversaries, all sensitive medical data

stored can be easily stolen for trading or unauthorized exposures. In comparison, the

proposed system is an alternative approach that utilizes the client-based encryption

method, in which the PHR storage server and the encryption keys manager (i.e. the

UA server) are considered in different trust domains. Our approach guarantees that

the health related data stored on the PHR server will only be accessed by the

owner-selected authorized users, even the PHR server itself is unable to access the

data stored, as long as the PHR server and the UA server are not both compromised.

Unlike Indivo and the proposed system, registering, verifying, and managing users in

Microsoft HealthVault is centralized, in which a user can make an online registration

through its website.

8.3 Google Health

Google Health [41] is another web-based PHR system developed

based on Indivo platform [43] started in May 2008. Similar to Microsoft HealthVault,

Google Health provides an open API based on SOAP protocol [51] for the web-

services interoperability to external software/hardware vendors. In 2008, Google

Health (as well as Microsoft HealthVault) was selected by the Military Health System

(MHS) organization to evaluate the feasibility of delivering an interoperable PHR for

its beneficiaries [52]. Unfortunately, on June 24, 2011, Google announced to

discontinue Google Health [53] and thus this system has been shut down completely

on January 1, 2013 [41].

5

Under Google Health system, an access control model for sharing

medical data was a profile-based level [52], [54], [55], in which an owner only has a

coarse-grained access control over the whole medical data on every single access

action. In other words, an owner can only permit a write-only or a read-and-write

permission for his/her whole medical data stored [54] to any desired user or

application. That is, it is not possible to specify any specific permission for some parts

of data. In contrast, the proposed system provides an even more fine-grained access

control for sharing a read action on a portion level of health related data. More

specifically under the proposed system, an owner is freely to categorize his/her

health related data into several parts, each of which can be set a different read

access control policy, by using CP-ABE encryption scheme. Consequently, an owner

has a solution to selectively share a read action with any desired user on some parts

or the whole data. In addition to protecting the medical data stored by Google

Health, the data will be stored in an encrypted format using the database-level

encryption method. Similar to Indivo and Microsoft HealthVault discussed previously,

therefore, all medical data stored in Google Health can be leaked in case the system

is governed by malicious administrators or is being compromised by adversaries. In

addition to registering, verifying, and managing users; Google Health uses a

centralized model by achieving through its website similar to Microsoft HealthVault.

8.4 PCEHR system in Australia

On July 1, 2014, a personally controlled electronic health record

(PCEHR) system [42] was released by the Australian government, as a web-based

national-scale e-healthcare system for all Australian citizens. Interestingly, the PCEHR

system was designed to be a distributed e-healthcare system similar to our proposed

MA-PHR system. Specifically, the PCEHR system enables each organization (e.g.,

hospitals, clinics, emergency departments, and research institutions) to establish its

own local repository for holding clinical and medical data [56]. As an example, each

hospital can independently store and maintain all patients’ medical data in its local

repository. Meanwhile, the PCEHR system plays the role of a central data aggregator

which is responsible for indexing every medical data physically stored at different

repositories, managing and controlling access privileges, and searching and retrieving

6

medical data [56]. That is, a PCEHR user can search and retrieve medical data of

interest through the PCEHR system according to his/her access privileges. To the best

of our knowledge, PCEHR [56] does not mention any support of an API (application

programming interface) for external software applications.

Documents stored in the repositories of the PCEHR system are

protected by a database-level encryption method. With regards to an issue of data

access control; clinical and medical document creation is under controlled by a

policy specification defined by Health authority agency [56]. Each PCEHR user can

create different types of documents according to his/her roles, such as patients can

make some notes; healthcare provider can create shared health summaries, event

summaries, and discharge summaries of their patients; and Medicare agents can

create Medicare history, organ donor, childhood immunizations [56]. To control

document access, the PCEHR system supports a two-layer document access control

[56], namely, record access control layer and limited document access control layer.

A patient can hide his/her related documents from a general view by defining a

record access code (RAC). Only the users whom the patient were given RAC code will

be able to open and access the patient’s record. The patient can further restrict

access to some documents by defining a limited document access code (LDAC). Only

one LDAC code can be defined, however, which must serve for all documents the

patient wishes to restrict. In other words, the read access control of the PCEHR

system is a one-to-one user-based sharing scheme. Nevertheless, PCEHR [56] does

not state how to control an update or modify action over documents of patients. To

delete any document, every user who access to a document can delete it but the

document will not be physically removed from the repository exactly, only be

removed from document lists and trees [56]. Thereby, the unintentionally removed

documents can be recovered. All requests and transactions occurred in the system

will be logged in order for later auditing.

In comparison, the proposed MA-PHR system was designed to be a

distributed e-healthcare system, but it quite differs from the PCEHR system in which

the health related information are stored in distributed repositories but a user

management is centralized. Instead, a user management in the proposed system is

7

distributed to multiple user authorities whereas the health related data are stored

on the public cloud-based PHR server. More specifically, under the proposed system

each organization (e.g., clinics and hospitals) or even an individual (e.g., patients and

family members) is able to establish its own user authority in order for registering,

verifying and certifying its own related members locally. It differs from every related

system discussed previously; the proposed system employs an attribute-based

encryption method (i.e., CP-ABE encryption scheme) for protecting and controlling

access to health related data stored on the PHR server. Once a new user asks for

registering to the proposed system at a certain user authority, the user would be

verified authenticity by that authority and be given a CP-ABE private key containing a

set of attributes reflecting his/her roles, then the user will adopt the given CP-ABE

private key as a decryption key for accessing the health related data stored on the

PHR server. For this reason, the multi-authority user management is very important

for the proposed system (even more than other systems) because each user in the

system can have different roles, such as family member and medical staff. Thus,

verifying users and managing their sets of attributes by the only user-related expert

authorities is highly required under the scenario of the proposed system, in order to

guarantee that each user was justified by a related expert authority and was issued

only the right set of attributes. Furthermore, handling users with multiple user

authorities also avoids a single point of failure problem as well as providing system

scalability to the proposed system.

As mentioned earlier, the proposed system provides an owner a one-

to-many attribute-based sharing scheme while the PCEHR system only provides a

one-to-one user-based sharing scheme. The owner has to give RAC and/or LDAC

access code to every user who is granted access to the owner’s medical documents.

Also, the PCEHR system protects the medical data stored using the database-level

encryption method similar to other previously discussed systems. Meanwhile, the

health related data stored in the proposed system are protected by encrypting at a

data source client and would only be decrypted at the client of destined users

specified by the data owner.

1

9. Missing features and future works

There are certain features still missing in the proposed MA-PHR

system. This section discusses four missing features and future works of the proposed

system including an interoperable platform, standard document formats, standard

API for external applications, and access duration control for each part of data.

9.1 Interoperable platform

Since the software prototype of the proposed MA-PHR system was

developed based on Debian-core operating system (OS), the developed software can

only be run on any PC computer supporting Ubuntu or Debian OS. This makes a

barrier to wide adoption of the proposed system. In order to break the adoption

barrier, the proposed system has to support an interoperable platform such as a

web-based application platform, similar to Indivo, Microsoft HealthVault, Google

Health, and PCEHR system. To that point, consequently, the proposed system

becomes independent from any OS platform. A user can access the services of the

proposed system from any OS platform through any web browser.

Although the web-based application is accessible from any OS

platform through a web browser, there exists plenty of arguments that the web

application could not provide performance and the user experiences more than that

of the native application. From the aspect of Charland and Leroux [57], the web

technology today, such as WebKit and HTML5, is getting close to reach the level of

performance of the native application technology. Moreover, a cost in developing a

web application is cheaper than that of a native application, in which a developer

has to support multiple different OS platforms such as iOS, Android, Windows, Mac,

and Linux. However, there are some OS-specific features that a native application can

utilize but a web-based application cannot [57] such as a push notification service

and a hardware acceleration feature. Another interesting approach is to develop a

hybrid application that wraps a web application in a native application [57], As a

result, the cost is reduced in comparison with the cost of developing a pure native

application. However, the developed application can utilize OS-specific features.

2

9.2 Standard document formats

The proposed system currently treats every data a user wants to

upload as a single file or a folder of files. That is, the system will only be responsible

for protecting the data and securely delivering the data to only the owner-specified

authorized users. However, the proposed system does not support any standard

electronic clinical and medical document formats. At present, Continuity of Care

Record (CCR) [58], [59] created by ASTM and Continuity of Care Document (CCD) [60]

created by HL7 are the most adopted electronic clinical and medical document

formats, as CCR and CCD were fully supported by Microsoft HealthVault while Google

Health partially supported a subset of CCR [52], [55]. Both CCR and CCD contain

information such as patient demographics, allergies and recent medical procedures,

medication lists, and insurance and health care provider information, which are

expressed in XML (EXtensible Markup Language) format. Hence, both CCR and CCD

can be created and read by any e-healthcare system. For this reason, if the proposed

system is being extended to support such standard formats, the system would be

able to collaborate with other e-healthcare systems seamlessly as well as providing

a better user experience.

9.3 Standard API for external applications

An API for external applications is quite important and necessary for

the proposed system. The API enables software/hardware vendors as partnership to

develop external applications for exchanging the health related data with the

proposed system. For example, a mobile medical device vendor that builds a sensor

for monitoring the vital signs can develop its own smartphone application that

facilitates its customers by automatically uploading the real-time captured vital signs

data to store in the customers’ PHR repositories managed by the proposed system.

As presented in Appendix C, the proposed system provides a simple API for an

external developer to build external applications that can connect for calling the

client backend modules (e.g., encryption, network management, user management

modules) of the proposed system and utilize the proposed system’s servers as

backend services for securely sharing health related data. However, the provided API

is just a simple and non-standard API that the developer can call for modules, which

3

were compiled as a shared library, via the provided API functions/methods. Anyway,

the provided API does not cover a remote procedure call (RPC) that the developer

can directly connect to and invoke modules of the server side. One of the

necessarily future works, hence, the proposed system should be developed to

support a standard RPC API such as SOAP protocol [61] or JSON standard format [62]

such that the external developer can connect to and invoke modules of the

proposed system universally.

9.4 Access duration control for each part of data

Access duration control is another feature that the proposed system is

still missing. As supported in Microsoft HealthVault [52], a PHR owner can freely

define access duration of his/her specific part of medical data to each single user.

This feature makes a PHR owner more convenient when he/she wants to temporarily

share a user or even a group of users access to his/her PHR information, without the

need to manually revoke that access permission later by himself/herself.

1

10. Conclusion

The key contribution of this research is to handle the problems and

limitations of the centralized PHR system including system scalability, single point of

failure, and efficient user management problems. Those problems and limitations are

handled by distributing the user management tasks to multiple UAs instead of using

only a single centralized UA. The proposed scheme enhances the original CP-ABE

scheme which is designed for a single centralized UA to support the multi-UA

environment. The key idea is to distribute the initialized CP-ABE parameters, the key

pair: public parameters PK and master secret key MSK, to all local UAs in the system.

With the corresponding PK and MSK key pair, then the local UAs can establish the

multi-UA-compatible CP-ABE environment. All UAs must synchronize the attribute

sets with each other periodically.

To preserve security and privacy of the PHR information as well as its

owner, the proposed scheme applies a hierarchical trust model to enable an inter-

authority user verification mechanism to ensure the authenticity of each PHR user.

The proposed scheme offers the PHR dual layer protection, which consists of two

protection layers including read protection layer and storage access control layer,

making a fine-grained access control on the PHR possible. Moreover, the end-to-end

secure PHR sharing scheme is also presented to make sure that the PHR records

would be accessed only by the owner-authorized users. Furthermore, the proposed

scheme also provides the transaction auditing mechanism that allows the PHR

owners to keep track of all accesses performed on their PHR records.

1

References

[1] Healthit.gov. 2014. What is an electronic medical record (EMR)? Healthit.gov.

http://www.healthit.gov/providers-professionals/ electronic-medical-records-

emr. (accessed November 1, 2014).

[2] P. C. Tang, J. S. Ash, D. W. Bates, J. M. Overhage, and D. Z. Sands. 2006.

Personal health records: definitions, benefits, and strategies for overcoming

barriers to adoption. Journal of the American Medical Informatics Association

(JAMIA) 13(2): 121-126.

[3] AHIM Foundation. 2014. What is a personal health record (PHR)? AHIM

Foundation. https://www.myphr.com/StartaPHR/what_is_a _phr.aspx.

(accessed November 1, 2014).

[4] K. Garson, and C. Adams. 2008. Security and privacy system architecture for

an e-hospital environment. Proceedings of the 7th Symposium on Identity

and Trust on the Internet (IDtrust), Gaithersburg, MD. 122-130.

[5] B. A. Malin, K. El Emam, and C. M. O'Keefe. 2013. Biomedical data privacy:

problems, perspectives, and recent advances. Journal of the American

Medical Informatics Association (JAMIA) 20(1): 2-6.

[6] K. Caine, and R. Hanania. 2013. Patients want granular privacy control over

health information in electronic medical records. Journal of the American

Medical Informatics Association (JAMIA) 20(1): 7-15.

[7] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. 1996. Role-based

access control models. Computer 29(2): 38-47.

[8] D. R. Kuhn, E. J. Coyne, and T. R. Weil. 2010. Adding attributes to role-based

access control. Computer 43(6): 79-81.

[9] E. E. Mon, and T. T. Naing. 2011. The privacy-aware access control system

using attribute-and role-based access control in private cloud. Proceedings of

the 4th IEEE International Conference on Broadband Network and

Multimedia Technology (IC-BNMT), Shenzhen. 447-451.

[10] R. Singh, V. Gupta, and K. Mohan. 2013. Dynamic federation in identity

management for securing and sharing personal health records in a patient-

2

centric model in cloud. International Journal of Engineering and Technology

(IJET) 5(3): 2201-2209.

[11] Y. Ding, and K. Klein. 2010. Model-driven application-level encryption for the

privacy of e-health data. Proceedings of the 10th International Conference on

Availability, Reliability, and Security (ARES), Krakow. 341-346.

[12] B. A. Forouzan. 2008. Cryptography and Network Security. McGRAW-HILL. 56-

61.

[13] B. A. Forouzan. 2008. Cryptography and Network Security. McGRAW-HILL. 294-

296.

[14] N. P. Smart. 2003. Access control using pairing based cryptography. RSA

conference on the cryptographers’ track (CT-RSA). 111-121.

[15] W. Bagga, and R. Molva. 2005. Policy-based cryptography and applications.

Proceedings of the 9th International Conference on Financial Cryptography

and Data Security (FC), Roseau. 72-87.

[16] V. Goyal, O. Pandey, A. Sahai, and B. Waters. 2006. Attribute-based encryption

for fine-grained access control of encrypted data. Proceedings of the 13th

ACM Conference on Computer and Communications Security (CCS),

Alexandria, Virginia, USA, 89-98.

[17] J. Bethencourt, A. Sahai, and B. Waters. 2007. Ciphertext-policy attribute-

based encryption. Proceedings of the 28th IEEE Symposium on Security and

Privacy (SP), Berkeley, CA, USA. 321-334.

[18] L. Cheung, and C. Newport. 2007. Provably secure ciphertext policy ABE.

Proceedings of the 14th ACM conference on Computer and communications

security (CCS). 456-465.

[19] L. Ibraimi, M. Asim, and M. Petkovic. 2009. Secure management of personal

health records by applying attribute-based encryption. Proceedings of the 6th

International Workshop on Wearable Micro and Nano Technologies for

Personalized Health (pHealth), Oslo. 71-74.

[20] C. Wang, X. Liu, and W. Li. 2012. Implementing a personal health record cloud

platform using ciphertext-policy attribute-based encryption. Proceedings of

3

the International Conference on Intelligent Networking and Collaborative

Systems (INCoS), Bucharest. 8-14.

[21] J. Li, G. Zhao, X. Chen, D. Xie, C. Rong, W. Li, and Y. Tang. 2010. Fine-grained

data access control systems with user accountability in cloud computing.

Proceedings of the 2th International Conference on Cloud Computing

Technology and Science (CloudCom), Indianapolis, IN, USA. 89-96.

[22] P. Thummavet, and S. Vasupongayya. 2013. A novel personal health record

system for handling emergency situations. Proceedings of the 17th

International Computer Science and Engineering Conference (ICSEC), Nakorn

Pathom, Thailand. 266–271.

[23] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou. 2013. Scalable and secure sharing

of personal health records in cloud computing using attribute-based

encryption. IEEE Transactions on Parallel and Distributed Systems (TPDS)

24(1): 131-143.

[24] M. Li, S. Yu, K. Ren, and W. Lou. 2010. Securing personal health records in

cloud computing: patient-centric and fine-grained data access control in

multi-owner settings. Proceedings of the 6th International Conference on

Security and Privacy in Communication Networks (SecureComm), Singapore.

89-106.

[25] J. Huang, M. Sharaf, and C. T. Huang. 2012. A hierarchical framework for secure

and scalable EHR sharing and access control in multi-cloud. Proceedings of

the 41st International Conference on Parallel Processing Workshops (ICPPW),

Pittsburgh, PA, USA. 279-287.

[26] T. Parameswaran, S. Vanitha, and K. S. Arvind. 2013. An efficient sharing of

personal health records using DABE in secure cloud environment.

International Journal of Advanced Research in Computer Engineering &

Technology (IJARCET) 2(3): 925-932.

[27] J. L. F. Alemán, I. C. Señor, P. Á. O. Lozoya, and A. Toval. 2013. Security and

privacy in electronic health records: A systematic literature review. Journal of

biomedical informatics 46(3): 541-562.

4

[28] H. L. McKinley. 2003. SSL and TLS: A beginners guide. SANS Institute.

http://www.sans.org/reading-room/whitepapers/protocols/ssl-tls-beginners-

guide-1029. (accessed September 4, 2014).

[29] D. Weerasinghe, and M. Rajarajan. 2011. Secure trust delegation for sharing

patient medical records in a mobile environment. Proceedings of the 7th

International Conference on Wireless Communications, Networking and

Mobile Computing (WiCOM), Wuhan. 1–4.

[30] J. Li, G. Zhao, X. Chen, D. Xie, C. Rong, W. Li, L. Tang, and Y. Tang. 2010. Fine-

grained data access control systems with user accountability in cloud

computing. Proceedings of the 2nd IEEE International Conference on Cloud

Computing Technology and Science (CloudCom), Indianapolis, IN. 89-96.

[31] C. Neil. 2009. Java Native Interface (JNI). Javamex UK.

http://www.javamex.com/tutorials/jni/. (accessed October 13, 2014).

[32] S. Leppert. 2012. Android memory dump analysis. Student research paper.

Department of Computer Science, Friedrich-Alexander-University Erlangen-

Nuremberg, Germany.

[33] National Institute of Standards and Technology. 2001. Advanced encryption

standard (AES). National Institute of Standards and Technology.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf. (accessed April 29,

2014).

[34] National Institute of Standards and Technology. 2001. Recommendation for

block cipher modes of operation. National Institute of Standards and

Technology. http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.

(accessed April 29, 2014).

[35] D. S. A. Elminaam, H. M. Abdual-Kader, and M. M. Hadhoud. 2010. Evaluating

the performance of symmetric encryption algorithms. International Journal of

Network Security 8(8): 213-219.

[36] S. Hirani. 2003. Energy consumption of encryption schemes in wireless

devices. Doctoral dissertation, University of Pittsburgh.

5

[37] A. Nadeem, and M. Y. Javed. 2005. A performance comparison of data

encryption algorithms. Proceedings of the 1st IEEE international conference

on Information and communication technologies (ICICT). 84-89.

[38] P. Chown. 2014. Advanced encryption standard (AES) ciphersuites for

transport layer security (TLS). IETF. http://www.ietf.org/rfc/rfc3268.txt.

(accessed May 12, 2014)

[39] The Indivo Personally Controlled Health Record, http://indivohealth.org/.

[40] Microsoft HealthVault, https://www.healthvault.com/.

[41] Google Health, http://www.google.com/intl/en_us/health/about/.

[42] PCEHR System in Australia, http://www.ehealth.gov.au/.

[43] Indivo Research and History, http://indivohealth.org/research/.

[44] D. Haas. 2011. Children's Hospital Boston. http://www.oscon.com/

oscon2011/public/schedule/detail/19713. (accessed July 13, 2015).

[45] Dossia Healthcare System, http://www.dossia.org/.

[46] P. B. Pfiffner, and K. D. Mandl. 2013. An iOS framework for the Indivo X

personally controlled health record. American Medical Informatics Association

Summits on Translational Science Proceedings (AMIA). 196-200.

[47] Ed. D. Hardt. 2012. The OAuth 2.0 authorization framework. IETF.

https://tools.ietf.org/html/rfc6749. (accessed July 13, 2015)

[48] K. D. Mandl, W. W. Simons, W. C. Crawford, and J. M. Abbett. 2007. Indivo: a

personally controlled health record for health information exchange and

communication. BMC Medical Informatics and Decision Making 25(7): 1-10.

[49] B. Adida, A. Sanyal, S. Zabak, I. S. Kohane, and K. D. Mandl. 2010. Indivo X:

Developing a fully substitutable personally controlled health record platform.

American Medical Informatics Association Annual Symposium Proceedings

(AMIA). 6-10.

[50] Massachusetts Institute of Technology. Kerberos: The network authentication

protocol. http://web.mit.edu/kerberos/. (accessed July 21, 2015)

[51] Simple Object Access Protocol. SOAPClient. http://soapclient.com/

standards.html. (accessed July 13, 2015)

6

[52] N. V. Do, R. Barnhill, K. A. Heermann-Do, K. L. Salzman, and R. W. Gimbel.

2011. The military health system's personal health record pilot with Microsoft

HealthVault and Google Health. Journal of the American Medical Informatics

Association (JAMIA) 18(2): 118-124.

[53] B. Dolan. 2011. Official: Google Health shuts down because it couldn’t scale

adoption. http://mobihealthnews.com/11453/official-google-health-shuts-

down-because-it-couldnt-scale/. (accessed July 13, 2015)

[54] A. Sunyaev, A. Kaletsch, and H. Krcmar. 2010. Comparative evaluation of

Google Health API vs. Microsoft HealthVault API. Proceedings of the 3rd

International Conference on Health Informatics (HEALTHINF), Valencia, Spain.

195-201.

[55] A. Sunyaev, D. Chornyi, C. Mauro, and H. Krcmar. 2010. Evaluation framework

for personal health records: Microsoft HealthVault vs. Google Health.

Proceeding of the 43rd Hawaii International Conference on System Sciences

(HICSS), Hawaii, USA. 1-10.

[56] C. Pearce, and M. Bainbridge. 2014. A personally controlled electronic health

record for Australia. Journal of the American Medical Informatics Association

(JAMIA) 21(4): 707-713.

[57] A. Charland, and B. Leroux. 2011. Mobile application development: web vs.

native. Communications of the ACM 54(5): 49-53.

[58] ASTM International. Standard specification for Continuity of Care Record (CCR).

http://www.astm.org/Standards/E2369.htm/. (accessed July 17, 2015)

[59] D. Ranjan. 2013. Introduction to Continuity of Care Record (CCR).

http://www.codeproject.com/Articles/564505/Introduction-to-Continuity-of-

Care-Record-CCR/. (accessed July 17, 2015)

[60] HL7 International. HL7/ASTM Implementation Guide for CDA® R2 -Continuity

of Care Document (CCD®) Release 1. http://www.hl7.org/implement/

standards/product_brief.cfm?product_id=6/. (accessed July 17, 2015)

[61] R. Cover. 2003. Simple object access protocol (SOAP).

http://xml.coverpages.org/soap.html/. (accessed July 17, 2015)

[62] Json.org. Introducing JSON. http://json.org/. (accessed July 17, 2015)

7

[63] N. Coffey. Getting started with JNI. http://www.javamex.com/tutorials/jni/

getting_started.shtml. (accessed January 2, 2015)

[64] M. Mead. Programmming in C/C++ with the Java native interface.

http://home.pacifier.com/~mmead/jni/cs510ajp/index.html. (accessed January

2, 2015)

[65] Codingfreak blog. Creating and using shared libraries in Linux.

http://codingfreak.blogspot.com/2009/12/creating-and-using-shared-libraries-

in.html. (accessed January 2, 2015)

[66] Codingfreak blog. Creating shared libraries in Linux - part 2.

http://codingfreak.blogspot.com/2010/11/creating-shared-libraries-in-linux-

part.html. (accessed January 2, 2015)

[67] Python Software Foundation. Extending Python with C or C++.

https://docs.python.org/2/extending/extending.html. (accessed January 2,

2015)

[68] Python Software Foundation. ctypes — A foreign function library for Python.

https://docs.python.org/2/library/ctypes.html. (accessed January 2, 2015)

1

Appendix A

The publications of the thesis

2

Appendix A1

Conference Paper

P. Thummavet, and S. Vasupongayya, “A novel personal health record system for

handling emergency situations,” Proceedings of the 17th IEEE International Computer

Science and Engineering Conference (ICSEC), Nakorn Pathom, Thailand, September

2013, pp. 266–271.

3

4

5

6

7

8

9

Appendix A2

Journal Paper

P. Thummavet, and S. Vasupongayya, “A simple ciphertext-policy attribute-based

encryption extension to provide multi-authority personal health record systems,”

Journal of Biomedical and Health Informatics (J-BHI), X(X), 2015, pp. X-X. (under the

reviewing process)

10

11

12

13

14

15

16

17

18

Appendix A3

Journal Paper

P. Thummavet, and S. Vasupongayya, “Privacy-preserving emergency access control

for personal health records,” Maejo International Journal of Science and Technology

(MIJST), 9(01), 2015, pp. 108-120.

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Appendix B

Development tools

33

• Development tools

o Ubuntu 10.04 LTS (Lucid Lynx)

o TextEdit and Eclipse

o Java SDK 6

o OpenSSL 1.0.1e

o MySQL 14.14 Distrib 5.1.62

o GCC compiler 4.4.3

o m4-1.4.16, gmp-5.0.2, pbc-0.5.12, cpabe-0.11, libpbc-0.5.12, and libbswabe-0.9

o simclist-1.6 and curl-7.27.0

o paillier.jar

o Java, C, and SQL languages

34

Appendix C

API For the Proposed MA-PHR Framework

35

This section provides a guideline to developing an external application

based on the proposed MA-PHR framework to an external software developer. That

is, the external developer can develop his/her PHR client application using the

proposed MA-PHR system as a secure data storage backend through provided

application programming interface (API) functions. With the proposed system, the

developer does not need to develop security and privacy mechanisms, user and

attribute management mechanisms or transaction auditing mechanisms

himself/herself.

As presented in the system development section, the proposed

system consists of two sides: client and server sides. The client side consists of the

backend and the frontend. The client backend gathers several low-level modules

such as encryption, security and privacy, network, and user management modules,

which were implemented using C language. The client frontend is the place where

the external developer can develop and customize his/her application (using any

language such as C, Java, JavaScript, and Python) and the application can utilize the

features of the client backend via the provided API functions which will be

introduced later. In addition, the server side of the proposed system includes four

servers, namely, root authority (RA), user authority (UA), audit server (AS), and PHR

server, which were fully implemented using C and SQL languages. Each server has a

local database for independently storing the information. The server and the client

sides always securely communicate with each other via an SSL/TLS secure channel.

Under the proposed framework, the client backend modules will be

compiled and built as the shared library (.so file) which allows the external

developer to load it onto his/her client application (the client frontend) at the

runtime. As an example, the following shows how the client frontend application

that is implementing using any language (e.g., Java, C, and Python) to collaborate

with the proposed MA-PHR framework’s client backend modules.

Calling the client backend modules from Java code

Basically, the client backend was designed and developed to support

a call from Java code. That is, the Java code can invoke the client backend modules

36

using the Java Native Interface (JNI) [31] without modifying any backend code. For

example, assuming that a client frontend application wants to invoke the PHR

encryption module, Fig. 15 demonstrates an example Java snippet code.

Fig. 15. An example of calling the client backend module by Java code

According to the example above, if the application calls the method

encryptPHR(), the method will load the shared library “libPHRapp_User_JNI.so” into

the application’s memory section (line 9 in Fig. 15), and then the application will

initiate the backend encryption module by calling the JNI-to-C mapping function

encrypt_phr_main() (line 12 in Fig. 15) that is provided by the loaded library. Note

that, every shared library always has the “lib” prefix and the “.so” suffix as

extension. But, when calling the library in the Java code, we have to exclude them

as shown at line 9 in Fig. 15. Furthermore, we have to declare the native JNI-to-C

mapping function prototype at line 4 in Fig. 15 so that the Java compiler can know

the being of the function. Please refer to the tutorials [63], [64] for more information

about the JNI.

At this point, if the developer goes to the source code file named

“client_user_main_jni.c” (the client backend source code), the developer will found

the JNI-to-C mapping function named Java_UserMain_encrypt_1phr_1main() as

illustrated in Fig. 16. This mapping function will be called when the frontend

application is calling the encrypt_phr_main(). Next, the mapping function will call the

real encryption function encrypt_phr() (line 31-32 in Fig. 16) to encrypt the PHR

record. Additionally, if the developer goes to the file named “client_common.h”, the

37

developer will found the list of all functions for all client backend modules available

for the client frontend application to invoke.

Fig. 16. An example of a JNI-to-C mapping function of the client backend module

Calling the client backend modules from C code

To call the backend modules from C code, since the backend

modules were developed based on C language, the client frontend application can

call the backend modules directly, without the need to communicate with any JNI-

to-C mapping function. Fig. 17 shows an example C snippet code. For more

information, please refer to the tutorials [65], [66]. Note that, when compiling the

frontend C code, use the following command:

38

“gcc –g –o application/name

 list/of/source/files

 –lshared/library/name/excluding/prefix/and/suffix

 –Lshared/library/directory

 –Wl,–rpath=shared/library/directory”

Fig. 17. An example of calling the client backend module by C code

Calling the client backend modules from Python code

There are two approaches that Python code can call the C-

implemented functions, the proposed client backend modules. The first is to extend

Python with C [67]. The second is to use the foreign function library for Python called

ctypes [68]. In this document, we present the latter approach since it enable us call

the native C functions in a shared library directly, no need to communicate with any

JNI-to-C mapping function. Fig. 18 shows an example Python snippet code calling the

proposed client backend module.

39

Fig. 18. An example of calling the client backend module by Python code

40

Appendix D

Dependency packages/libraries installation, and software compilation, configuration,

and execution

41

Appendix D1

Dependency packages/libraries installation

42

• Dependency packages/libraries installation

o On Ubuntu OS, open Applications>Accessories>Terminal

o Type a command “sudo su” then press Enter button and type the root

password

o Type a command “apt-get update”

o Type a command “apt-get install build-essential” and press “Y” to confirm

the installation

o Type a command “apt-get install openjdk-6-jdk” and press “Y” to confirm

the installation

o Type a command “apt-get install mysql-server” and press “Y” to confirm the

installation

� Then the package configuration will be prompted to ask you for defining

the password for the MySQL root user; type “bright” as the root

password

o Type a command “apt-get install libmysqlclient-dev” and press “Y” to

confirm the installation

o Download the following packages to the current directory: openssl-

1.0.1e.tar.gz, curl-7.27.0.orig.tar.gz, m4-1.4.16.tar.gz, gmp-5.0.2.tar.gz,

libpbc_0.5.12.tar.gz, pbc-0.5.12.tar.gz, libbswabe-0.9.tar.gz, and cpabe-

0.11.tar.gz

o Type a command “tar –zxvf openssl-1.0.1e.tar.gz”

o Type a command “cd openssl-1.0.1e”

o Type a command “./config”

o Type a command “make install”

o Type a command “apt-get install libssl-dev” and press “Y” to confirm the

installation

43

o Type a command “cd ..”

o Type a command “tar –zxvf curl-7.27.0.orig.tar.gz“

o Type a command “cd curl-7.27.0”

o Type a command “./configure --with-ssl=/usr/local/openssl --enable-smtp”

o Type a command “make install”

o Type a command “cd ..”

o Type a command “tar –zxvf m4-1.4.16.tar.gz”

o Type a command “cd m4-1.4.16”

o Type a command “./configure”

o Type a command “make”

o Type a command “make install”

o Type a command “cd ..”

o Type a command “tar –zxvf gmp-5.0.2.tar.gz”

o Type a command “cd gmp-5.0.2”

o Type a command “./configure”

o Type a command “make”

o Type a command “make install”

o Type a command “cd ..”

o Type a command “tar –zxvf libpbc_0.5.12.tar.gz“

o Type a command “cd libpbc”

o Type a command “./configure”

o Type a command “make”

o Type a command “make install”

o Type a command “cd ..”

44

o Type a command “tar –zxvf pbc-0.5.12.tar.gz“

o Type a command “cd pbc-0.5.12”

o Type a command “./configure”

o Type a command “make”

o Type a command “make install”

o Type a command “cd ..”

o Type a command “tar –zxvf libbswabe-0.9.tar.gz“

o Type a command “cd libbswabe-0.9”

o Type a command “./configure”

o Type a command “make”

o Type a command “make install”

o Type a command “cd ..”

o Type a command “tar –zxvf cpabe-0.11.tar.gz“

o Type a command “cd cpabe-0.11”

o Type a command “./configure”

o Type a command “make”

o Type a command “make install”

45

Appendix D2

Software compilation, configuration, and execution

46

• Software compilation, configuration, and execution

o Download PHRapp-0.30.tar.gz package to the current directory

o Type a command “tar –zxvf PHRapp-0.30.tar.gz”

o Configuring the OpenSSL certification

� Type a command “cd PHRapp-0.30/Certs”

� Type a command “./cert_gen.sh”; the script will process for a while and

then ask you for entering the root password

� Type a command “cd ..”

o Creating the PHRapp database

� Type a command “cd database_scripts”

� Type a command “./db_setup.sh”

� Type a command “cd ..”

o Generating Diffie-Hellman key exchange parameters

� Type a command “cd DH_params”

� Type a command “./dh_params_gen.sh”

� Type a command “cd ..”

o Generating the Emergency Server key

� Type a command “cd EmS_key”

� Type a command “./key_gen.sh”

� Type a command “cd ..”

o Compiling the software for both server and client sides (Option 1)

� Type a command “cd bin”

� Type a command “make”

o Compiling the software for server side only (Option 2)

47

� Type a command “cd bin”

� Type a command “make server_main”

o Compiling the software for client side only (Option 3)

� Type a command “cd bin”

� Type a command “make client_main”

o Executing the server applications

� In the “PHRapp-0.30” directory

� Execute the User Authority application: type a command “./UA_start.sh”

� Execute the Audit Server application: type a command “./AS_start.sh”

� Execute the PHR Server application: type a command

“./PHR_server_start.sh”

� Execute the Emergency Server application: type a command

“./EmS_start.sh” (Only need when you would like to enable the

software to support the emergency access control feature)

� Execute the Emergency-Staff Authority application: type a command

“./ESA_start.sh” (Only need when you would like to enable the

software to support the emergency access control feature)

o Executing the client application

� Execute the PHR client application for a general PHR user/admin: type a

command “./PHR_client_start.sh”

� Execute the PHR client application for an emergency staff/admin: type a

command “./EmU_client_start.sh”

� Default administrator (username: “admin” and password: “bright23”)

