

โครงการ การพัฒนาวัสดุเพียโซอิเล็กทริกไร้สารตะกั่วในระบบ Ba(Ti, Sn)O₃ – (Ba, Ca)(Ti, Zr)O₃ – (Na, K, Li)NbO₃ สำหรับประยุกต์ใช้เป็น ทรานสดิวเซอร์

Development of $Ba(Ti, Sn)O_3 - (Ba, Ca)(Ti, Zr)O_3 - (Na, K, Li)NbO_3$ lead-free piezoelectric materials for transducer applications

โดย... ผู้ช่วยศาสตราจารย์ ดร. พรสุดา บ่มไล่

ภาควิชาวิทยาศาสตร์และเทคโนโลยีวัสดุ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์

สิงหาคม 2559

รายงานวิจัยฉบับสมบูรณ์

โครงการ การพัฒนาวัสดุเพียโซอิเล็กทริกไร้สารตะกั่วในระบบ Ba(Ti, Sn)O₃ – (Ba, Ca)(Ti, Zr)O₃ – (Na, K, Li)NbO₃ สำหรับประยุกต์ใช้เป็น ทรานสดิวเซอร์

Development of $Ba(Ti, Sn)O_3 - (Ba, Ca)(Ti, Zr)O_3 - (Na, K, Li)NbO_3$ lead-free piezoelectric materials for transducer applications

โดย... ผู้ช่วยศาสตราจารย์ ดร. พรสุดา บ่มไล่

ภาควิชาวิทยาศาสตร์และเทคโนโลยีวัสดุ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์

สนับสนุนโดยมหาวิทยาลัยสงขลานครินทร์ ปีงบประมาณ 2556

กิตติกรรมประกาศ

ผู้วิจัยใคร่ขอขอบพระคุณมหาวิทยาลัยสงขลานครินทร์ ที่ได้ให้การสนับสนุนงบประมาณใน งานวิจัยผ่านทางทุนงบประมาณเงินรายได้ ประจำปี 2556

ขอขอบพระคุณ สาขาวิชาวัสดุศาสตร์ ภาควิชาวิทยาศาสตร์และเทคโนโลยีวัสดุ คณะ วิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ สำหรับสถานที่ ครุภัณฑ์ อุปกรณ์และเครื่องมือในการทำวิจัย และขอขอบพระคุณ คณาจารย์ เจ้าหน้าที่ประจำภาควิชาวิทยาศาสตร์และเทคโนโลยีวัสดุทุกท่าน และ ขอขอบคุณนักศึกษาระดับปริญญาตรี ที่ให้ความช่วยเหลือจนงานวิจัยชิ้นนี้สำเร็จลุล่วงไปด้วยดี

สุดท้ายนี้ขอขอบพระคุณครอบครัวของผู้วิจัย และเพื่อนๆ ที่ได้ส่งเสริมสนับสนุนและเป็นกำลังใจ ให้ผู้วิจัยตลอดมา

หากรายงานวิจัยฉบับนี้มีสิ่งใดขาดตกบกพร่อง ผู้วิจัยต้องขออภัยเป็นอย่างสูง และหวังว่ารายงาน วิจัยฉบับนี้จะเป็นประโยชน์สำหรับผู้ที่สนใจในงานด้านนี้ต่อไปตามสมควร

> ผู้ช่วยศาสตราจารย์ ดร. พรสุดา บ่มไล่ (หัวหน้าโครงการวิจัยฯ)

	ð	
บท	คด	ยอ

รหัสโครงการ : ชื่อโครงการ :	SCI560371S การพัฒนาวัสดุเพียโซอิเล็กทริกไร้สารตะกั่วในระบบ Ba(Ti, Sn)O ₃
	– (Ba, Ca)(Ti, Zr)O $_3$ – (Na, K, Li)NbO $_3$ สำหรับประยุกต์ใช้เป็น
	ทรานสดิวเซอร์
ชื่อนักวิจัย :	ผศ.ดร. พรสุดา บ่มไล่
E-mail Address :	ppornsuda@yahoo.com และ pornsuda.b@psu.ac.th
ระยะเวลาโครงการ :	2 ปี 6 เดือน (พฤษภาคม 2556 – ตุลาคม 2558)

้ ในงานวิจัยนี้ได้ทำการศึกษากระบวนการเตรียมและสมบัติของวัสดุเพียโซอิเล็กทริกไร้สารตะกั่วเป็น ้องค์ประกอบในระบบ Ba(Ti, Sn)O3 - (Ba, Ca)(Ti, Zr)O3 - (Na, K, Li)NbO3 โดยทำการศึกษาเงื่อนไข และตัวแปรต่างๆ ต่อการเกิดเฟส โครงสร้างจุลภาค สมบัติทางกายภาพและไฟฟ้าของเซรามิก พบว่า สมบัติ ้ทางกายภาพ การเกิดเฟส โครงสร้างจุลภาค และสมบัติทางไฟฟ้า มีค่าขึ้นอยู่กับรูปแบบการเผาซินเตอร์ ้อุณหภูมิซินเตอร์และเวลาในการซินเตอร์ ชนิดและปริมาณตัวเติมที่เติมลงไปอย่างมีนัยสำคัญ ผลการวิเคราะห์ ้ด้วยการเลี้ยวเบนของรังสีเอกซ์ พบว่า Sn⁴⁺, Ca²⁺, Zr⁴⁺, Na⁺, K⁺, Li⁺ และ Nb⁵⁺ อิออน แพร่เข้าสู่แลตทิซของ BaTiO₃ เพื่อฟอร์มเป็นสารละลายของแข็งระบบใหม่ที่มีโครงสร้างแบบเพอร์รอฟสไกต์ การเติม (Na, K, Li)NbO3 และ Sn ปริมาณ 0.12 โมล ทำให้โครงสร้างผลึกของระบบเปลี่ยนจากเตตระโกนอลเป็นคิวบิก และ (Na, K, Li)NbO3 ทำให้ขนาดเกรนเล็กลง ในขณะที่ (Ba1-aCaa)(Ti1-bZrb)O3 และ Sn ทำให้เกรนโต ู้ขึ้น นอกจากนี้ พบว่าขนาดเกรนเมื่อซินเตอร์แบบ 2 ขั้นตอน (TSS) มีขนาดเล็กกว่าการซินเตอร์แบบ ขั้นตอนเดียว (CS) การเงื่อนไขที่ใช้ในการซินเตอร์ T1/t1/T2/t2 ก็ส่งผลต่อโครงสร้างจุลภาคเช่นเดียวกัน คือ ขนาดเกรนโตขึ้น เมื่ออุณหภูมิและเวลา T₁, T₂, t₁, t₂ เพิ่มขึ้น การเติมตัวเติมทำให้อุณหภูมิคูรีลดลง ้ยกเว้นการเติมด้วย Ba_{0.7}Ca_{0.3}TiO₃ ส่งผลให้อุณหภูมิคูรีเพิ่มขึ้นเล็กน้อย เซรามิกในระบบ 0.95Ba(Ti_{0.92}Sn_{0.08})O₃ −0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃ แสดงสมบัติเพียโซอิเล็กทริกที่ดีที่สุด คือ มีค่า d₃₃ ~588 pC/N และรองลงมา คือ เซรามิก Ba(Ti_{0.92}Sn_{0.08})O₃ มีค่า d₃₃ ~465 pC/N เมื่อซินเตอร์แบบขั้นตอน เดียว จากผลการวิจัยนี้ชี้ให้เห็นว่าเซรามิกที่ศึกษาในงานวิจัยนี้สามารถเป็นวัสดุทางเลือกสำหรับเซรามิก เพียโซอิเล็กทริกไร้สารตะกั่วได้ ซึ่งเมื่อเปรียบเทียบกับระบบที่ใช้ตะกั่ว Pb(Zr, Ti)O3 พบว่าสมบัติเพียโซอิเล็ก-้ทริกของระบบนี้มีค่าใกล้เคียงกัน แต่อย่างไรก็ตามอุณหภูมิคูรียังมีค่าต่ำ ทำให้สามารถใช้งานได้ที่อุณหภูมิไม่ เกิน 50 องศาเซลเซียส

คำหลัก : วัสดุเพียโซอิเล็กตริกไร้สารตะกั่ว แบเรียมไทเทเนต การซินเตอร์แบบ 2 ขั้นตอน สมบัติทางไฟฟ้า

Abstract

Project Code :	SCI560371S
Project Title :	Development of Ba(Ti, Sn)O ₃ – (Ba, Ca)(Ti, Zr)O ₃ –
	(Na, K, Li)NbO $_3$ lead-free piezoelectric materials for
	transducer applications
Investigator :	Assist. Prof. Dr. Pornsuda Bomlai
E-mail Address :	ppornsuda@yahoo.com and pornsuda.b@psu.ac.th
Project Period :	2 years and 6 months (May 2013 – October 2015)

In this research, the processing and properties of Ba(Ti, Sn)O₃ – (Ba, Ca)(Ti, Zr)O₃ – (Na, K, Li)NbO₃ lead free piezoelectric materials were studied. The effects of processing parameters on phase formation, microstructure, physical and electrical properties of ceramics were investigated. It was found that the physical property, phase formation, microstructure, and electrical properties significantly depended on sintering profile, sintering temperature, soaking time, types and amount of dopant. The results of X-ray diffraction reveal that Sn⁴⁺, Ca²⁺, Zr^{4+} , Na⁺, K⁺, Li⁺ uae Nb⁵⁺ diffuse into the BaTiO₃ lattices to form a new solid solution with a perovskite structure. The crystal structure changed from tetragonal to cubic phase after addition of (Na, K, Li)NbO₃ and Sn (0.12 mol). The grain size decreased with (Na, K, Li)NbO₃ while increased with $(Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O_3$ and Sn addition. Moreover, it was found that the grain size of two-step sintering (TSS) is smaller than conventional sintering (CS). The sintering condition of $T_1/t_1/T_2/t_2$ was also affected to the grain size. It increased with increasing of temperature and time: T1, T2, t1, t2. The Curie temperature decreased after addition of dopants, except addition of Ba_{0.7}Ca_{0.3}TiO₃ which it was slightly increased. The best piezoelectric property can be achieved in the ceramic sintered by the conventional sintering for 0.95Ba(Ti_{0.92} Sn_{0.08})O₃ -0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃ composition (d₃₃ ~ 588 pC/N). Then, the $d_{33} \sim 465$ pC/N can be obtained in Ba(Ti_{0.92}Sn_{0.08})O₃ ceramic. These results indicate that the ceramic is a promising candidate material for lead-free piezoelectric ceramics with comparable properties to Pb(Zr, Ti)O₃ lead-based materials. However, the Curie temperature is still low and then can use at temperature limit of 50 °C

Keywords : Lead-free piezoelectric materials, Barium titanate, Two-step sintering, Electrical properties

ษ	
หนา	

ก
ข
ନ
খ
ଜ
ຄ
1
1
5
5
7
7
8
10
14
14
14
15
18
20
36
37
37
38
41

สารบัญ

หน้า

3.2.4 ผลการศึกษาสมบัติไดอิเล็กทริกของเซรามิกที่มี BaTi _{1-x} Sn _x O ₃ เป็นองค์ประกอ [ุ]	U 44
3.2.5 ผลการศึกษาสมบัติเพียโซอิเล็กทริกของเซรามิกที่มี BaTi _{1-x} Sn _x O ₃ เป็น	57
องค์ประกอบ	
3.3 ผลการศึกษาเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃	59
3.3.1 ผลการศึกษาพฤติกรรมการเกิดเฟสของเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃ ด้วย	59
เทคนิคการเลี้ยวเบนของรังสีเอกซ์ (XRD)	
3.3.2 ผลการศึกษาสมบัติทางกายภาพของเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃	61
3.3.3 ผลการศึกษาโครงสร้างจุลภาคของเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃	64
3.3.4 ผลการศึกษาสมบัติไดอิเล็กทริกของเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃	75
3.3.5 ผลการศึกษาสมบัติเพียโซอิเล็กทริกของเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃	90
3.4 ผลการศึกษาเซรามิก (1-z)[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ – 0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975}	91
Zr _{0.025} O ₃]–z(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃	
3.4.1 ผลการศึกษาพฤติกรรมการเกิดเฟสของเซรามิก (1-z)[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –	91
0.0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃]–z(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ ด้วยเทคนิค	
การเลี้ยวเบนของรังสีเอกซ์ (XRD)	
3.4.2 ผลการศึกษาสมบัติทางกายภาพของเซรามิก (1-z)[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –	92
$0.05Ba_{095}Ca_{0.05}Ti_{0.975}Zr_{0.025}O_3] - z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO_3$	
3.4.3 ผลการศึกษาโครงสร้างจุลภาคของเซรามิก (1-z)[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –	94
0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃]-z(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃	
3.4.4 ผลการศึกษาสมบัติไดอิเล็กทริกของเซรามิก (1-z)[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –	98
$0.05Ba_{0.05}Ca_{0.05}Ti_{0.975}Zr_{0.025}O_3] - z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO_3$	
3.4.5 ผลการศึกษาสมบัติเพียโซอิเล็กทริกของเซรามิก (1-z)[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ -	- 113
$0.05Ba_{0.05}Ca_{0.05}Ti_{0.975}Zr_{0.025}O_3] - z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO_3$	
3.5 ผลการตรวจสอบองค์ประกอบทางเคมีของเซรามิกที่เตรียมได้โดยใช้เทคนิค	114
ດລະຊີບອະດາທີ່ຫຼັດຫະ້າຊີບລຸດສົນພາດຮາງລາຍພາດັ່ງ ແລະ (FDC)	

การวิเคราะห์ด้วยรังสีเอกซ์แบบกระจายพลังงาน (EDS)

สารบัญ

3.6 ทดลองประยุกต์ใช้เซรามิกเพียโซอิเล็กทริกที่เตรียมได้ในอุปกรณ์อิเล็กทรอนิกส์	118
อย่างง่าย	
4. สรุปและวิจารณ์ผลการวิจัย	119
บรรณานุกรม	122
ภาคผนวก	126
ประวัติผู้เขียน	146

รูปที่ 1.1	ปรากฏการณ์ piezoelectricity	1
รูปที่ 1.2	บริเวณรอยต่อเฟสที่มีสัณฐานร่วมกัน (morphotropic phase boundary, MPB)	2
	ของเซรามิก Pb(Zr, Ti)O ₃	
รูปที่ 1.3	เปรียบเทียบค่า d ₃₃ ของวัสดุเพียโซอิเล็กทริก	3
รูปที่ 2.1	รูปแบบการเผาซินเตอร์แบบ conventional sintering และ two step-sintering	9
รูปที่ 2.2	การวัดค่าคงที่ไดอิเล็กทริกและแฟกเตอร์การสูญเสียในไดอิเล็กทริกเทียบกับอุณหภูมิ	11
รูปที่ 2.3	ก) กระบวนการ poling และ ข) การวัดค่าสัมประสิทธิ์เพียโซอิเล็กทริก (d ₃₃)	12
	ของเซรามิก	
รูปที่ 3.1	รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของเซรามิกในระบบ (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃	14
	เมื่อซินเตอร์ภายใต้เงื่อนไขแบบ CS (1100/120/0/0 และ 1160/120/0/0) และ TSS	
	(1160/10/900/6 และ 1160/10/120/6)	
รูปที่ 3.2	ความหนาแน่นของเซรามิก (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ	15
	1100-1160 °C	
รูปที่ 3.3	ความหนาแน่นของเซรามิก (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS โดยแปรค่า	16
	อุณหภูมิซินเตอร์ T ₁ (T ₁ /10/1020/6)	
รูปที่ 3.4	ความหนาแน่นของเซรามิก (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS โดยแปรค่า	16
	เวลาในการเผาซินเตอร์ t ₁ (1160/t ₁ /1020/6)	
รูปที่ 3.5	ความหนาแน่นของเซรามิก (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS โดยแปรค่า	17
	อุณหภูมิเผาแช่ T ₂ (1160/10/T ₂ /6)	
รูปที่ 3.6	ความหนาแน่นของเซรามิก (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS โดยแปรค่า	17
	เวลาในการเผาแช่ t ₂ (1160/10/1020/t ₂)	
รูปที่ 3.7	ความหนาแน่นของเซรามิก (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS โดยแปรค่า	18
_	เวลาในการเผาแช่ t ₂ (1140/10/1020/t ₂)	
รูปที่ 3.8	ภาพถ่าย SEM ของเซรามิก (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์ภายใต้เงื่อนไขแบบ CS	19
	(1100/120/0/0 และ 1160/120/0/0) และ TSS (1160/10/900/6, 1160/10/980/6,	
	1160/10/1020/6, 1160/0/1020/6, 1160/10/1020/8 และ 1140/10/1020/6)	

รูปที่	3.9	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก	21
		(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อเผาซินเตอร์แบบ CS	
รูปที่	3.10	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก	22
		(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO3 เมื่อเผาซินเตอร์แบบ TSS โดยการแปรค่าอุณหภูมิ T ₁	
		(T ₁ /10/1020/6)	
รูปที่	3.11	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก	23
Ū		(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO3 เมื่อเผาซินเตอร์แบบ TSS โดยการแปรค่าเวลาเผาแช่ t ₁ คือ	
		ไม่เผาแช่ (0) และแช่นาน 10 นาที (1160/t ₁ /1020/6)	
รูปที่	3.12	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก	24
Ū		้ (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อเผาซินเตอร์แบบ TSS โดยแปรค่าอุณหภูมิ T ₂	
		(1160/10/T ₂ /6)	
รูปที่	3.13	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก	25
Ū		(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO3 เมื่อเผาซินเตอร์แบบ TSS โดยการแปรค่าเวลาเผาแช่ t ₂	
		นาน 4, 6 และ 8 ชั่วโมง (1160/10/1020/t₂)	
รูปที่	3.14	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก	26
-		Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO3 เมื่อเผาซินเตอร์แบบ TSS โดยการแปรค่าเวลาเผาแช่ t ₂ นาน 6	
		และ 10 ชั่วโมง (1140/10/1020/t₂)	
รูปที่	3.15	ค่าคงที่ไดอิเล็กทริกที่ขึ้นกับอุณหภูมิของเซรามิกในระบบ (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO3 เมื่อ	27
-		ซินเตอร์ภายใต้เงื่อนไขแบบ CS เมื่อวัดที่ความถี่ 10 kHz	
รูปที่	3.16	ค่าคงที่ไดอิเล็กทริกที่ขึ้นกับอุณหภูมิของเซรามิกในระบบ (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO3 เมื่อ	28
Ū		ซินเตอร์ภายใต้เงื่อนไขแบบ TSS โดยการแปรค่าอุณหภูมิ T ₁ คือ 1140 และ 1160 °C	
		(T ₁ /10/1020/6) เมื่อวัดที่ความถี่ 10 kHz	
รูปที่	3.17	ค่าคงที่ไดอิเล็กทริกที่ขึ้นกับอุณหภูมิของเซรามิกในระบบ (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อ	29
-		ซินเตอร์ภายใต้เงื่อนไขแบบ TSS โดยการแปรค่าเวลาเผาแช่ t ₁ คือ ไม่เผาแช่ (0) และ	
		10 นาที (1160/t ₁ /1020/6) เมื่อวัดที่ความถี่ 10 kHz	

ร**ูปที่ 3.18** ค่าคงที่ไดอิเล็กทริกที่ขึ้นกับอุณหภูมิของเซรามิกในระบบ (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อ

หน้า

30

	ซินเตอร์ภายใต้เงื่อนไขแบบ TSS โดยการแปรค่าอุณหภูมิ T ₂ คือ 900, 940, 980 และ	
	1020 °C (1160/10/ t ₁ /6) เมื่อวัดที่ความถี่ 10 kHz	
รูปที่ 3.19	ค่าคงที่ไดอิเล็กทริกที่ขึ้นกับอุณหภูมิของเซรามิกในระบบ (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อ	31
	ซินเตอร์ภายใต้เงื่อนไขแบบ TSS โดยการแปรค่าเวลาเผาแช่ t ₂ นาน 4, 6 และ 8 ชั่วโมง	
	(1160/10/1020/t₂) เมื่อวัดที่ความถี่ 10 kHz	
รูปที่ 3.20	ค่าคงที่ไดอิเล็กทริกที่ขึ้นกับอุณหภูมิของเซรามิกในระบบ (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อ	32
	ซินเตอร์ภายใต้เงื่อนไขแบบ TSS โดยการแปรค่าเวลาเผาแช่ t ₂ นาน 6 และ 10 ชั่วโมง	
	ที่อุณหภูมิ T₁ 1140 °C (1140/10/1020/t₂) เมื่อวัดที่ความถี่ 10 kHz	
รูปที่ 3.21	รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของเซรามิกในระบบ BaTi _{1-x} Sn _x O ₃ และ (1-z)Ba(Ti _{0.88}	38
	Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ (ก) ช่วงมุมที่ 20 – 60° (ข) ช่วงมุมที่ 42 – 47° เมื่อ	
	ซินเตอร์ภายใต้ เงื่อนไข CS (1450/120/0/0 และ 1350/120/0/0 ตามลำดับ)	
รูปที่ 3.22	รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของเซรามิกในระบบ BaTi _{1-x} Sn _x O ₃ และ (1-z)Ba(Ti _{0.88}	38
	Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO _{3 3} TiO ₃ (ก) ช่วงมุมที่ 20 – 60° (ข) ช่วงมุมที่ 42 – 47° เมื่อ	
	ซินเตอร์ภายใต้เงื่อนไข TSS (1500/15/1150 และ 1500/15/900/6 ตามลำดับ)	
รูปที่ 3.23	ความหนาแน่นของเซรามิกในระบบ BaTi _{1-x} Sn _x O3 เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ	39
	แตกต่างกัน	
รูปที่ 3.24	ความหนาแน่นของเซรามิกในระบบ BaTi _{1-x} Sn _x O ₃ เมื่อซินเตอร์แบบ TSS โดยแปรค่า	39
	อุณหภูมิ T ₂ (1500/15/T ₂ /6)	
รูปที่ 3.25	ความหนาแน่นของเซรามิกในระบบ (1-z)Ba(Ti _{0.85} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ เมื่อ	40
	ซินเตอร์แบบ CS ที่อุณหภูมิแตกต่างกัน	

- **รูปที่ 3.26** ความหนาแน่นของเซรามิกในระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อ 40 ซินเตอร์แบบ TSS โดยแปรค่าอุณหภูมิ T₂ (1500/15/T₂/6)
- **รูปที่ 3.27** ภาพถ่าย SEM ของเซรามิกในระบบ BaTi_{1-x}Sn_xO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 41 1400 °C เมื่อเติม Sn ที่ x = 0.12, 0.08 และ 0.04

รูปที่ 3.28	ภาพถ่าย SEM ของเซรามิกในระบบ BaTi _{1-x} Sn _x O ₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ	41
	1500 °C เมื่อเติม Sn ที่ x = 0.12, 0.08 และ 0.04	
รูปที่ 3.29	ภาพถ่าย SEM ของเซรามิกในระบบ (1-z)Ba(Ti _{0.85} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ เมื่อ	42
	ซินเตอร์แบบ CS ที่อุณหภูมิ 1350 °C เมื่อเติม BCT ที่ z = 0.1, 0.2 และ 0.5	
รูปที่ 3.30	ภาพถ่าย SEM ของเซรามิกในระบบ (1-z)Ba(Ti _{0.85} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ เมื่อ	42
	ซินเตอร์แบบ CS ที่อุณหภูมิ 1400 °C เมื่อเติม BCT ที่ z = 0.1, 0.2 และ 0.5	
รูปที่ 3.31	ภาพถ่าย SEM ของเซรามิกในระบบ BaTi _{1-x} Sn _x O3 เมื่อซินเตอร์แบบ TSS โดยใช้	42
	เงื่อนไข 1500/15/700/6 เมื่อเติม Sn ที่ x = 0.12, 0.08 และ 0.04	
รูปที่ 3.32	ภาพถ่าย SEM ของเซรามิกในระบบ BaTi _{1-x} Sn _x O3 เมื่อซินเตอร์แบบ TSS โดยใช้	43
	เงื่อนไข 1500/15/1200/6 เมื่อเติม Sn ที่ x = 0.12, 0.08 และ 0.04	
รูปที่ 3.33	ภาพถ่าย SEM ของเซรามิกในระบบ (1-z)Ba(Ti _{0.85} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ เมื่อ	43
	ซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1500/15/900/6 เมื่อเติม BCT ที่ z = 0.1, 0.2	
	และ 0.5	
รูปที่ 3.34	ภาพถ่าย SEM ของเซรามิกในระบบ (1-z)Ba(Ti _{0.85} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ เมื่อ	43
	ซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1500/15/1200/6 เมื่อเติม BCT ที่ z = 0.1, 0.2	
	และ 0.5	
รูปที่ 3.35	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่	45
	ของเซรามิกในระบบ BaTi _{1-x} Sn _x O ₃ และ (1-z)Ba(Ti _{0.85} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ เมื่อ	
	ซินเตอร์แบบ CS ที่อุณหภูมิ 1400°C เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz	
รูปที่ 3.36	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่	46
	ของเซรามิก BaTi _{1-x} Sn _x O ₃ และ (1-z)Ba(Ti _{0.85} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ เมื่อซินเตอร์	
	แบบ CS ที่อุณหภูมิ 1450°C เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz	
รูปที่ 3.37	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่	47
	ของเซรามิก BaTi _{1-x} Sn _x O ₃ และ (1-z)Ba(Ti _{0.85} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ เมื่อซินเตอร์	
	แบบ CS ที่อุณหภูมิ 1500°C เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz	

รูปที่ 3.38	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่	48
	ของเซรามิก BaTi _{1-x} Sn _x O ₃ และ (1-z)Ba(Ti _{0.85} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ เมื่อซินเตอร์	
	แบบ TSS โดยใช้เงื่อนไข 1500/15/700/6 เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz	
รูปที่ 3.39	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถื่	49
	ของเซรามิก BaTi _{1-x} Sn _x O ₃ และ (1-z)Ba(Ti _{0.85} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ เมื่อซินเตอร์	
	แบบ TSS โดยใช้เงื่อนไข 1500/15/900/6 เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz	
รูปที่ 3.40	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่	50
	ของเซรามิก BaTi _{1-x} Sn _x O ₃ และ (1-z)Ba(Ti _{0.85} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ เมื่อซินเตอร์	
	แบบ TSS โดยใช้เงื่อนไข 1500/15/1150/6 เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz	
รูปที่ 3.41	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่	51
	ของเซรามิกBaTi _{1-x} Sn _x O ₃ และ (1-z)Ba(Ti _{0.85} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ เมื่อซินเตอร์	
	แบบ TSS โดยใช้เงื่อนไข 1500/15/1200/6 เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz	
รูปที่ 3.42	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่	52
	ของเซรามิก BaTi _{1-x} Sn _x O ₃ และ (1-z)Ba(Ti _{0.85} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ เมื่อซินเตอร์	
	แบบ TSS โดยใช้เงื่อนไข 1500/15/1300/6 เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz	
รูปที่ 3.43	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับอุณหภูมิ	54
	ของเซรามิกในระบบ BaTi _{1-x} Sn _x O ₃ และ (1-z)Ba(Ti _{0.88} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ เมื่อ	
	ซินเตอร์แบบ CS ที่อุณหภูมิ 1450°C เมื่อวัดที่ความถี่ 1 kHz	
รูปที่ 3.44	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับอุณหภูมิ	56
	ของเซรามิก BaTi _{1-x} Sn _x O ₃ และ (1-z)Ba(Ti _{0.88} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ เมื่อซินเตอร์	
	แบบ TSS โดยใช้เงื่อนไข 1500/15/1200/6 เมื่อวัดที่ความถี่ 1 kHz	
รูปที่ 3.45	ค่าคงเพียโซอิเล็กทริก (d ₃₃) ของเซรามิก BaTi _{1-x} Sn _x O ₃ และ (1-z)Ba(Ti _{0.85} Sn _{0.12})O ₃ -	58
	zBa _{0.7} Ca _{0.3} TiO ₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1350, 1400, 1450 และ 1500 °C	
รูปที่ 3.46	ค่าคงเพียโซอิเล็กทริก (d ₃₃) ของเซรามิก BaTi _{1-x} Sn _x O ₃ และ (1-z)Ba(Ti _{0.88}	58
	Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ เมื่อซินเตอร์แบบ TSS โดยแปรค่าอุณหภูมิ (T ₂) 1300,	
	1250, 1200, 1150, 1100, 900 และ 700 °C	

ฏ

รูปที่ 3.47 รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของเซรามิกในระบบ (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃ เมื่อ 59 a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 เมื่อเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1300 °C รูปที่ 3.48 รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของชิ้นงานเซรามิก (Ba_{1-a} Ca_a)(Ti_{1-b} Zr_b)O₃ O₃ เมื่อ 60 a = 0.05, 0.2, 0.4; b = 0.025, 0.05 และทำการเผาซินเตอร์แบบ CS ในอุณหภูมิ 1300°C ร**ุปที่ 3.49** รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b} Zr_b)O₃ เมื่อ a = 0.05, 60 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 ที่ผ่านการเผาซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/750/6 รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของชิ้นงานเซรามิก (Ba_{1-a} Ca_a)(Ti_{1-b} Zr_b)O₃ O₃ เมื่อ รูปที่ 3.50 61 a = 0.05, 0.2, 0.4; b = 0.025, 0.05 และทำการเผาซินเตอร์แบบ TSS ในเงื่อนไข 1400/15/700/6 ร**ุปที่ 3.51** ผลการตรวจสอบค่าความหนาแน่นของชิ้นงานเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b} Zr_b)O₃ เมื่อ a = 62 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 ที่ผ่านการเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1200, 1250, 1300, 1350 และ 1400 °C รูปที่ 3.52 ความหนาแน่นของชิ้นงานเซรามิก (Ba_{1-a} Ca_a)(Ti_{1-b} Zr_b)O₃ เมื่อ a = 0.05, 0.2, 0.4; 62 b = 0.025, 0.05 เมื่อซินเตอร์แบบ CS ผ่านการเผาซินเตอร์ที่อุณหภูมิ 1250, 1300, 1350 และ 1400 °C ร**ูปที่ 3.53** ผลการตรวจสอบค่าความหนาแน่นของชิ้นงานเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b} Zr_b)O₃ เมื่อ a = 63 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 ที่ผ่านการเผาซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/T₂/6 รูปที่ 3.54 ความหนาแน่นของชิ้นงานเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃ เมื่อ a = 0.05, 0.2, 0.4; 64 b = 0.025, 0.05 และซินเตอร์แบบ TSS โดยแปรค่าอุณหภูมิ T₂ (1400/15/T₂/6) และเวลา t₁ (1400/t₁/T₂/6) **รูปที่ 3.55** ภาพถ่าย SEM ของชิ้นงานเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b} Zr_b)O₃ เมื่อ a = 0.05, 0.1, 0.2, 66 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 เมื่อเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1300 °C

		17
วูบท <i>ว</i> .วอ	311We110 SEM VONVATUROS INFLOODED A = 0.05, 0.1,	07
	0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 เมอเผาชนเตอรแบบ CS ทอุณหภูม	
	1350 °C	
รูปที่ 3.57	ภาพถ่าย SEM ของชินงานตัวอย่างเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃ เมื่อ a = 0.05,	68
	0.2, 0.4; b = 0.025, 0.05 เมื่อเผาซินเตอร์แบบ CS เมื่อทำการแปรค่าอุณหภูมิ 1300 ℃	
รูปที่ 3.58	ภาพถ่าย SEM ของชิ้นงานตัวอย่างเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃ เมื่อ a = 0.05,	69
	0.2, 0.4; b = 0.025, 0.05 เมื่อเผาซินเตอร์แบบ CS เมื่อทำการแปรค่าอุณหภูมิ 1350 °C	
รูปที่ 3.59	ภาพถ่าย SEM ของชิ้นงานเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O เมื่อ a = 0.05, 0.1, 0.2,	70
	0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 เมื่อเผาซินเตอร์แบบTSSโดยใช้เงื่อนไข	
	1400/15/750/6	
รูปที่ 3.60	ภาพถ่าย SEM ของชิ้นงานเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O เมื่อ a = 0.05, 0.1, 0.2,	71
	0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 เมื่อเผาซินเตอร์แบบ TSS โดยใช้เงื่อนไข	
	1400/15/1100/6	
รูปที่ 3.61	ภาพถ่าย SEM ของชิ้นงานตัวอย่างเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃ เมื่อ a = 0.05,	72
	0.2, 0.4; b = 0.025, 0.05 เมื่อเผาซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/700/6	
รูปที่ 3.62	ภาพถ่าย SEM ของชิ้นงานตัวอย่างเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃ เมื่อ a = 0.05,	73
	0.2, 0.4; b = 0.025, 0.05 เมื่อเผาซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/1100/6	
รูปที่ 3.63	ค่าคงที่ไดอิเล็กทริก (ก) และค่าสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก	76
	(Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O เมื่อ a 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b =	
	0.05 ที่ผ่านการเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1300 °C	
รูปที่ 3.64	ค่าคงที่ไดอิเล็กทริก (ก) และค่าสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของ	77
	เซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ	
	a = 0.05; b = 0.05 ที่ผ่านการเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1350 °C	
รูปที่ 3.65	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถึ่	78
	ของเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 เมื่อ	
	เผาซินเตอร์แบบ CS ที่อุณหภูมิ 1300 °C เมื่อวัดที่ความถี่ 0.1 kHz - 200 kHz	
	-	

ິ	
หนา	

รูปที่ 3.66	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่	79
	ของเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 เมื่อ	
	เผาซินเตอร์แบบ CS ที่อุณหภูมิ 1350 °C เมื่อวัดที่ความถี่ 0.1 kHz - 200 kHz	
รูปที่ 3.67	ค่าคงที่ไดอิเล็กทริก (ก) และค่าสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของ	80
	เซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ	
	a = 0.05; b = 0.05 เมื่อเผาซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/750/6	
รูปที่ 3.68	ค่าคงที่ไดอิเล็กทริก (ก) และค่าสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของ	81
	เซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃ เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ	
	a = 0.05; b = 0.05 เมื่อซินเตอร์ แบบ TSS โดยใช้เงื่อนไข 1400/15/1100/6	
รูปที่ 3.69	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่	82
	ของเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 เมื่อ	
	เผาซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/700/6 เมื่อวัดที่ความถี่ 0.1 kHz - 200 kH:	Z
รูปที่ 3.70	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของ	83
	ซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 เมื่อเผา	
	ซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/1100/6 เมื่อวัดที่ความถี่ 0.1 kHz - 200 kHz	
รูปที่ 3.71	ค่าคงที่ใดอิเล็กทริก (ก) และค่าสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก	85
	(Ba _{1-a} Ca _a) (Ti _{1-b} Zr _b)O ₃ เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05;	
	b = 0.05 ที่ผ่านการซินเตอร์แบบ CS ที่อุณหภูมิ 1400 °C ที่ความถี่ 1 kHz	
รูปที่ 3.72	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของ	86
	เซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 เมื่อเผา	
	ซินเตอร์แบบ CS ที่อุณหภูมิ 1350 ºC เมื่อวัดที่ความถี่ 1 kHz	
รูปที่ 3.73	ค่าคงที่ไดอิเล็กทริก (ก) และค่าสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก	87
	(Ba _{1-a} Ca _a)Ti _{1-b} Zr _b)O ₃ เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05;	
	b = 0.05 ที่ผ่านการซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/950/6 ที่ความถี่ 1 kHz	

รูปที่ 3.74	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่	88
	ของเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 เมื่อ	
	เผาซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/1100/6 เมื่อวัดที่ความถี่ 1 kHz	
รูปที่ 3.75	ผลการวิเคราะห์โครงสร้างด้วย XRD ของเซรามิก (1-z)[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –	91
-	0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃]–z(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์ภายใต้	
	เงื่อนไข CS	
รูปที่ 3.76	ผลการวิเคราะห์โครงสร้างด้วย XRD ของเซรามิก (1-z)[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃	92
	–0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃]–z(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์ภายใต้	
	เงื่อนไข TSS (* เฟสที่สอง)	
รูปที่ 3.77	ความหนาแน่นของเซรามิกในระบบ (1-z)[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05}	93
	Ti _{0.975} Zr _{0.025} O ₃]–z(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ CS	
รูปที่ 3.78	ความหนาแน่นของเซรามิกในระบบ (1-z)[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05}	93
	Ti _{0.975} Zr _{0.025} O ₃]–z(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS โดยแปรค่าอุณหภูมิ	
	T ₂ (1500/15/T ₂ /6 สำหรับ z = 0 และ 1300/15/T ₂ /6 สำหรับ z = 0.05 - 0.20)	
รูปที่ 3.79	ภาพถ่าย SEM ของเซรามิก 0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975}	94
	Zr _{0.025} O3] (z = 0.0) เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1400 °C	
รูปที่ 3.80	ภาพถ่าย SEM ของเซรามิก 0.95[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975}	94
	Zr _{0.025} O ₃]- 0.05(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1250 °C	
รูปที่ 3.81	ภาพถ่าย SEM ของเซรามิก 0.9[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975}	95
	Zr _{0.025} O ₃]- 0.1(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1250 °C	
รูปที่ 3.82	ภาพถ่าย SEM ของเซรามิก 0.85[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975}	95
	Zr _{0.025} O3]-0.15(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO3 เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1250 °C	
รูปที่ 3.83	ภาพถ่าย SEM ของเซรามิก 0.8[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975}	95
	Zr _{0.025} O3]-0.2(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO3 เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1250 °C	
รูปที่ 3.84	ภาพถ่าย SEM ของเซรามิก 0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975}	96
	Zr _{0.025} O ₃] (z = 0.0) เมื่อซินเตอร์แบบ TSS ที่เงื่อนไข 1500/15/400/6	

ษ	
หน	٦

รูปที่ 3.85	ภาพถ่าย SEM ของเซรามิก 0.95[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃]–0.05(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS ที่เงื่อนไข 1300/15/900/6	96
รูปที่ 3.86	ภาพถ่าย SEM ของเซรามิก 0.9[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃]–0.1(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS ที่เงื่อนไข 1300/15/900/6	96
รูปที่ 3.87	ภาพถ่าย SEM ของเซรามิก 0.85 [0.9]15Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃]–0.15(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS ที่เงื่อนไข 1300/15/900/6	97
รูปที่ 3.88	ภาพถ่าย SEM ของเซรามิก 0.8[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃]–0.2(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS ที่เงื่อนไข 1300/15/900/6	97
รูปที่ 3.89	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ ของเซรามิก 0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃] (z = 0.0) เมื่อซินเตอร์แบบ CS ที่อณหภมิ 1300-1450°C เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz	99
รูปที่ 3.90	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของ เซรามิก 0.95[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃]–0.05(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1150-1350°C เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz	100
รูปที่ 3.91	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ ของเซรามิก 0.95[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃]– 0.1(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1150-1350°C เมื่อวัด ที่ความถี่ 0.1 kHz – 200 kHz	101
รูปที่ 3.92	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ ของเซรามิก 0.95[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃]– 0.15(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1150-1350°C เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz	102

รูปที่ 3.93	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่	103
	ของเซรามิก 0.8[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃]–	
	0.2(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1150-1250°C เมื่อวัด	
	ที่ความถี่ 0.1 kHz – 200 kHz	
รูปที่ 3.94	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่	104
	ของเซรามิก 0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃] (z = 0.0)	
	เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1500/15/T ₂ /6 เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz	
รูปที่ 3.95	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่	105
	ของเซรามิก 0.95[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃]–	
	0.05(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1300/15/T ₂ /6	
	เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz	
รูปที่ 3.96	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่	106
	ของเซรามิก 0.95[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃]–	
	0.1(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1300/15/T ₂ /6	
	เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz	
รูปที่ 3.97	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่	107
	ของเซรามิก 0.95[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃]–	
	0.15(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1300/15/T ₂ /6	
	เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz	
รูปที่ 3.98	ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่	108
	ของเซรามิก 0.8[0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃]–	
	0.2(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1300/15/T ₂ /6	
	เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz	
รูปที่ 3.99	ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกเทียบกับอุณหภูมิของเซรามิก	109
	ในระบบ 0.95Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃] (z = 0.0)	
	เมื่อซินเตอร์แบบ CS (ก) และ TSS (ข)	

୭

-	ν
ทเ	า

รูปที่ 3.100	ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกเทียบกับอุณหภูมิของเซรามิก	110
	ในระบบ 0.8Ba(Ti _{0.92} Sn _{0.08})O ₃ –0.05Ba ₀₉₅ Ca _{0.05} Ti _{0.975} Zr _{0.025} O ₃] – 0.2(Na _{0.5}	
	K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ CS (ก) และ TSS (ข)	
รูปที่ 3.101	รูปแบบการวิเคราะห์ส่องกราดเฉพาะพื้นที่ (X -ray mapping) ของชิ้นงานเซรามิก	114
	Ba(Ti _{0.92} Sn _{0.08})O ₃ (ก) CS และ (ข) TSS	
รูปที่ 3.102	รูปแบบการวิเคราะห์ส่องกราดเฉพาะพื้นที่ (X-ray mapping) ของชิ้นงานเซรามิก	115
	Ba _{0.7} Ca _{0.3} TiO ₃ (ก) CS และ (ข) TSS	
รูปที่ 3.103	รูปแบบการวิเคราะห์ส่องกราดเฉพาะพื้นที่ (X -ray mapping) ของชิ้นงานเซรามิก	116
	(Ba _{0.8} Ca _{0.2})(Ti _{0.95} Zr _{0.05})O ₃ (ก) CS และ (ข) TSS	
รูปที่ 3.104	รูปแบบการวิเคราะห์ส่องกราดเฉพาะพื้นที่ (X -ray mapping) ของชิ้นงานเซรามิก	117
	0.5BaTi _{0.88} Sn _{0.12} O ₃ – 0.5 Ba _{0.7} Ca _{0.3} TiO ₃ (ก) CS ແລະ (ข) TSS	
รูปที่ 3.105	วงจรอย่างง่ายสำหรับทดสอบเซรามิกเพียโซอิเล็กทริกที่เตรียมได้	118

สารบัญตาราง

ตารางที่ 3.1	ขนาดของเกรนของชิ้นงานเซรามิก (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ ที่เผาซินเตอร์แบบ	20
	CS และ TSS	
ตารางที่ 3.2	ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกและอุณหภูมิในการเปลี่ยนเฟส	33
	ของชิ้นเซรามิก (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อเผาซินเตอร์แบบ CS ที่อุณหภูมิ	
	1100/120/0/0, 1120/120/0/0, 1140/120/0/0 และ1160/120/0/0 เมื่อวัด	
	ที่ความถี่ 1, 10 และ 100 kHz	
ตารางที่ 3.3	ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกและอุณหภูมิในการเปลี่ยนเฟส	33
	ของเซรามิก (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO3 เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข คือ	
	T₁/10/1020/6 เมื่อวัดที่ความถี่ 1, 10 และ 100 kHz	
ตารางที่ 3.4	ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกและอุณหภูมิในการเปลี่ยนเฟส	34
	ของเซรามิก (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข คือ	
	1160/t ₁ /1020/6 เมื่อวัดที่ความถี่ 1, 10 และ 100 kHz	
ตารางที่ 3.5	ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกและอุณหภูมิในการเปลี่ยนเฟส	34
	ของเซรามิก (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข คือ	
	1160/10/T₂/6 เมื่อวัดที่ความถี่ 1, 10 และ 100 kHz	
ตารางที่ 3.6	ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกและอุณหภูมิในการเปลี่ยนเฟส	35
	ของเซรามิก (Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข คือ	
	1160/10/1020/t ₂ เมื่อวัดที่ความถี่ 1, 10 และ 100 kHz	
ตารางที่ 3.7	ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกและอุณหภูมิในการเปลี่ยนเฟส	35
	ของเซรามิก(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข คือ	
	1140/10/1020/t ₂ เมื่อวัดที่ความถี่ 1, 10 และ 100 kHz	
ตารางที่ 3.8	ค่าสัมประสิทธิ์เพียโซอิเล็กทริก (piezoelectric constant, d ₃₃) ของเซรามิก	36
	(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ เมื่อซินเตอร์ภายใต้เงื่อนไขแบบ CS และ TSS	
ตารางที่ 3.9	ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกของชิ้นงานในระบบ BaTi _{1-x} Sn _x O ₃	55
	และ (1-z)Ba(Ti _{0.85} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ ที่ผ่านการเผาซินเตอร์แบบ CS ที่	
	อุณหภูมิ 1450°⊂ เมื่อวัดที่ความถี่ 1, 10 และ 100 kHz	
	ч чи ^г	

สารบัญตาราง

ตารางที่ 3.10	ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกของเซรามิก BaTi _{1-x} Sn _x O ₃ และ	57
	(1-z)Ba(Ti _{0.85} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ ที่ผ่านการเผาซินเตอร์แบบ TSS ที่อุณหภูมิ	
	(T₂) 1200°C เมื่อวัดที่ความถี่ 1,10 และ 100 kHz	
ตารางที่ 3.11	ขนาดเกรนของเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃ ที่ทำการเผาซินเตอร์แบบ CS	74
	ที่อุณหภูมิ 1300°C และ 1350°C	
ตารางที่ 3.12	ขนาดเกรนของเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃ ที่ทำการเผาซินเตอร์แบบ TSS	74
	โดยใช้เงื่อนไข 1400/15/550/6, 1400/0/700/6, 1400/15/750/6 และ	
	1400/15/1100/6	
ตารางที่ 3.13	ค่าคงที่ไดอิเล็กทริกและค่าสูญเสียไดอิเล็กทริกและอุณหภูมิคูรี่ (T _C) ของเซรามิก	89
	(Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O เมื่อเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1350-1400 °C	
	ที่ความถี่ 1 kHz	
ตารางที่ 3.14	ค่าคงที่ไดอิเล็กทริกและค่าสูญเสียไดอิเล็กทริกและอุณหภูมิคูรี่ (T _c) ของเซรามิก	89
	(Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/950/6	
	ที่ความถี่ 1 kHz	
ตารางที่ 3.15	ค่าคงที่เพียโซอิเล็กทริก (d ₃₃) ของเซรามิก (Ba _{1-a} Ca _a)(Ti _{1-b} Zr _b)O ₃ เมื่อซินเตอร์แบบ	90
	CS และ TSS	
ตารางที่ 3.16	ขนาดเกรนของชิ้นงานเซรามิกในระบบ (1-z)[Ba(Ti _{0.92} Sn _{0.08})O ₃ – (Ba _{0.95} Ca _{0.05})	97
	(Ti _{0.975} Zr _{0.025})O ₃] – z(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ ที่ผ่านการซินเตอร์แบบ CS	
ตารางที่ 3.17	ขนาดเกรนของชิ้นงานเซรามิกในระบบ (1-z)[Ba(Ti _{0.92} Sn _{0.08})O ₃ – (Ba _{0.95} Ca _{0.05})	98
	(Ti _{0.975} Zr _{0.025})O ₃] – z(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} NbO ₃ ที่ผ่านการซินเตอร์แบบ TSS	
ตารางที่ 3.18	ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกและอุณหภูมิคูรี (T _c) ของเซรามิก	111
	$(1-z)[Ba(Ti_{0.92}Sn_{0.08})O_3 - (Ba_{0.95}Ca_{0.05})(Ti_{0.975}Zr_{0.025})O_3] - z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO_3$	
	เมื่อซินเตอร์แบบ CS ที่ความถี่ 1, 10 และ 100 kHz	
ตารางที่ 3.19	ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกและอุณหภูมิคูรี (T _c) ของเซรามิก	111
	$(1-z)[Ba(Ti_{0.92}Sn_{0.08})O_3 - (Ba_{0.95}Ca_{0.05})(Ti_{0.975}Zr_{0.025})O_3] - z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO_3$	
	เมื่อซินเตอร์แบบ TSS ที่ความถี่ 1, 10 และ 100 kHz	

สารบัญตาราง

เนื้อหางานวิจัย

1. บทนำ

1.1 ความสำคัญและที่มาของปัญหาที่ทำการวิจัย

้วัสดุเพียโซอิเล็กทริกเป็นวัสดุที่มีความสามารถในการเปลี่ยนพลังงานกลเป็นพลังงานไฟฟ้า และเปลี่ยน พลังงานไฟฟ้าเป็นพลังงานกล เช่น การเปลี่ยนแปลงโพลาไรเซชันทางไฟฟ้าเมื่อได้รับแรงทางกล หรือ การ เปลี่ยนแปลงรูปร่างเมื่อได้รับสนามไฟฟ้า [1] โดยเมื่อได้รับแรงเค้น (mechanical stress) จะถูกเหนี่ยวนำให้ ้เกิดประจุไฟฟ้า (electrical charge) หรือการจัดเรียงตัวทางไฟฟ้าขึ้น (polarization) หรือในทางกลับกันเมื่อ ้วัสดุอยู่ภายใต้สนามไฟฟ้าจะเกิดแรงเครียดอัดภายในผลึก (compressive strain) ทำให้วัสดุเกิดการบิดรูปไป จากเดิม และหากกลับทิศทางของสนามจะเกิดแรงเครียดดึง tensile strain) เซรามิกจะเกิดการหดและ ้ขยายตัว ตามลำดับ ดังแสดงในรูปที่ 1.1 หรือ จากคุณสมบัติพิเศษดังกล่าวทำให้วัสดุเพียโซอิเล็กทริกเป็นหนึ่ง ในองค์ประกอบที่สำคัญของระบบ micro-electro mechanical system (MEMS) ซึ่งสามารถประยุกต์ใช้ได้ หลากหลาย เช่น เซ็นเซอร์ (sensor) แอ็กทูเอเตอร์ (actuator) เซ็นเซอร์ (sensors) แอ็กทูเอเตอร์ (actuators) ตัวบันทึกหน่วยความจำแบบเฟร์โรอิเล็กทริก (ferroelectric memories) และ การเก็บเกี่ยว พลังงาน (energy harvesting) [2] เป็นต้น สำหรับวัสดุทรานสดิวเซอร์นั้น สมบัติที่สำคัญที่ต้องคำนึงถึง คือ ้ ไดอิเล็กทริกและเพียโซอิเล็กทริก ซึ่งโดยทั่วไปทั้ง 2 สมบัตินี้จะสัมพันธ์กันและมีค่าสูงสุดที่บริเวณรอยต่อเฟสที่ ้มีสัณฐานร่วมกัน (morphotropic phase boundary, MPB) ดังแสดงในรูปที่ 1.2 ซึ่งสามารถปรับเปลี่ยนจุด MPB นี้ได้โดยการเติมตัวเติมที่เหมาะสม ในขณะเดียวกันตัวเติมที่เติมลงไปนั้นจะส่งผลให้อุณหภูมิคูรีของระบบ ลดลง ทำให้ไม่สามารถนำไปใช้งานที่อุณหภูมิสูงได้ ดังนั้น จุด MPB และอุณหภูมิคูรีจึงเป็นตัวแปรที่สำคัญที่ ้ต้องพิจารณาเช่นเดียวกับสมบัติไดอิเล็กทริกและเพียโซอิเล็กทริก ซึ่งโครงสร้างจุลภาค องค์ประกอบทางเคมี ้และ ความหนาแน่น เป็นตัวแปรที่สำคัญที่ส่งผลต่อสมบัติไดอิเล็กทริกและเพียโซอิเล็กทริก โดยพบว่าเซรามิกที่ ้มีขนาดเกรนและองค์ประกอบทางเคมีที่เหมาะสม จะทำให้มีสมบัติไดอิเล็กทริกและเพียโซอิเล็กทริกที่ดีเยี่ยม [3]

ร**ูปที่ 1.1** ปรากฏการณ์ piezoelectricity [4]

รูปที่ 1.2 บริเวณรอยต่อเฟสที่มีสัณฐานร่วมกัน (morphotropic phase boundary, MPB) ของเซรามิก Pb(Zr, Ti)O₃ [5]

เซรามิกเลดเซอร์โคเนตทิตาเนต (Pb(Zr_xTi_{1-x})O₃, PZT) เป็นวัสดุเพียโซอิเล็กทริกที่นิยมกันอย่าง แพร่หลายมากที่สุด และได้รับการพัฒนาอย่างต่อเนื่องเพื่อนำมาประยุกต์ใช้ในอุปกรณ์ต่างๆ มากมาย เช่น buzzer, diesel engine fuel injector, sonar, ultrasound และ nanopositioners in scanning microscopies เป็นต้น โดยองค์ประกอบเมื่อ x = 0.52 แสดงสมบัติทางไฟฟ้าที่ดีที่สุดเนื่องจากเป็นบริเวณ รอยต่อของเฟสเตตระโกนอลและรอมโบฮีดรอล (Morphotropic phase boundary, MPB) [1, 6] ดังแสดงใน รูปที่ 1.1 อย่างไรก็ตาม PZT มีตะกั่ว (Pb) เป็นองค์ประกอบมากกว่า 60% ซึ่งออกไซด์ของตะกั่วมีจุดระเหยต่ำ (800 °C) ทำให้เกิดปัญหาต่อสิ่งแวดล้อมจากการแพร่ของไอตะกั่วในระหว่างกระบวนการผลิต ปัญหาการกำจัด สารเคมีของเสีย และความยากในการขจัดตะกั่วออกจากกระบวนการรีไซเคิล นอกจากนี้เมื่ออุปกรณ์ต่างๆ ที่ ทำด้วย PZT กลายเป็นขยะอิเล็กทรอนิกส์ ก็มักจะกำจัดด้วยการฝังกลบ ซึ่งเมื่อเวลาผ่านไปก็จะเสื่อมโทรมและ เกิดการปนเปื้อนในดินและแหล่งน้ำได้ จากปัญหาต่างๆ เหล่านี้จึงนำไปสู่ความจำเป็นที่จะต้องพัฒนาวัสดุเพีย โซอิเล็ก-ทริกชนิดใหม่ขึ้นมาแทนที่ (lead-free materials) โดยสารชนิดนี้ต้องไม่เป็นอันตรายต่อสิ่งแวดล้อม และแสดงสมบัติทางไฟฟ้าได้ดีเทียบเท่ากับ PZT

อย่างไรก็ตาม การใช้เซรามิกที่มีตะกั่วเป็นองค์ประกอบทำให้เกิดปัญหาต่อสิ่งแวดล้อมจากการแพร่ ของไอตะกั่วในระหว่างกระบวนการผลิต ปัญหาการกำจัดสารเคมีของเสีย และความยากในการขจัดตะกั่วออก จากกระบวนการรีไซเคิล ซึ่งปัญหาต่างๆ เหล่านี้จึงนำไปสู่ความจำเป็นที่จะต้องพัฒนาสารจำพวกเฟร์โร-อิเล็กท ริก ไพโร-อิเล็กทริก และเพียโซอิเล็กทริกชนิดใหม่ขึ้นมาแทนที่ (lead-free materials) โดยสารชนิดนี้ต้องไม่ เป็นอันตรายต่อสิ่งแวดล้อมและชีวิตมนุษย์ และแสดงสมบัติทางไฟฟ้าได้ดีเทียบเท่ากับสารเพียโซอิเล็กทริกที่มี ตะกั่วเป็นองค์ประกอบ

สารที่ไม่มีตะกั่วเป็นองค์ประกอบ (non-lead based materials) หลายชนิดด้วยกันกำลังได้รับความ สนใจและทำการศึกษาวิจัย เช่น BaTiO₃ [7], (Na,K)NbO₃ [8], (Na,Bi)TiO₃ [9] และ (BaBi₄)Ti₄O₁₅ [10] ได้รับความสนใจ ศึกษาวิจัย และพัฒนาสมบัติต่าง ๆ อย่างไรก็ตาม ยังไม่มีสารตัวใดที่สามารถแสดงสมบัติต่างๆ ได้ดีเทียบเท่ากับสารในระบบ PZT ได้ ดังแสดงในรูปที่ 1.3 จากทั้ง 4 กลุ่มนี้ BaTiO₃ เป็นวัสดุที่มีสมบัติเพีย โซอิเล็กทริกดีที่สุด (d₃₃ ~ 191 pC/N) [6, 11] และสามารถปรับปรุงสมบัติเพียโซอิเล็กทริกให้ดีเทียบเท่า PZT ได้ โดยการเติมออกไซด์บางชนิดที่มีประจุ +2 หรือ +4 ได้แก่ Ca²⁺, Zr⁴⁺ และ Sn⁴⁺ ($d_{33} \sim 620$ pC/N) [12-13] แต่ BaTiO₃ ไม่ได้รับความนิยมในการนำไปประยุกต์ใช้เป็นอุปกรณ์ต่าง ๆ เหมือนกับ PZT เนื่องจากมี ข้อจำกัดเกี่ยวกับอุณหภูมิใช้งาน ซึ่งไม่สามารถใช้งานที่อุณหภูมิเกิน 100 °C ได้ เพราะมีอุณหภูมิคูรีที่ต่ำ ประมาณ 130 °C สำหรับ (Na,K)NbO₃ (NKN) มีอุณหภูมิคูรี (T_C) สูงประมาณ 420 °C [5-6] จึงได้รับความ สนใจนำมาศึกษาวิจัยมากที่สุด เนื่องจากมีสมบัติเพียโซอิเล็กทริกที่ดี แต่จากรายงานการวิจัยที่ผ่านมาพบว่า เซรามิก (Na,K)NbO₃ นี้ยากที่จะสังเคราะห์ให้ได้ค่าความหนาแน่นสูงด้วยกระบวนการ conventional solidstate reaction ทั้งนี้เนื่องจากความเสถียรของเฟสของเซรามิก NKN บริสุทธิ์ตามเฟสไดอะแกรมของ KNbO₃ – NaNbO₃ ถูกจำกัดที่อุณหภูมิต่ำ คือ 1140 °C [14] ดังนั้นจึงไม่สามารถเผาซินเตอร์ที่อุณหภูมิสูงได้ และ นอกจากนี้ N₂O และ K₂O เกิดการระเหยได้ง่ายเมื่อเผาแคลไซน์หรือซินเตอร์ที่อุณหภูมิสูง นำไปสู่ความไม่ สม่ำเสมอขององค์ประกอบทางเคมีและการฟอร์มตัวของเฟสอื่น (extra phase) Li₂O หรือ LiNbO₃ ถูกใช้เป็น ตัวเติมเพื่อลดอุณหภูมิซินเตอร์และเพิ่มความแน่นตัวของ (Na,K)NbO₃ ซึ่งส่งผลให้วัสดุชนิดนี้มีสมบัติทางไฟฟ้า ที่ดีขึ้น ($d_{33} \sim 235$ pC/N) และมีอุณหภูมิคูรีสูงขึ้นอีกด้วย (452 - 510 °C) [15-16]

รูปที่ 1.3 เปรียบเทียบค่า d₃₃ ของวัสดุเพียโซอิเล็กทริก [17]

การซินเตอร์แบบ 2 ขั้นตอนเป็นวิธีการซินเตอร์แบบควบคุมอัตราการขึ้นของอุณหภูมิและเป็น กระบวนการซินเตอร์ที่อุณหภูมิต่ำ ซึ่งสามารถกำจัดรูพรุนและลดการระเหยของสารตั้งต้นที่มีจุดหลอมเหลวต่ำ [18] ใช้สำหรับเตรียมเซรามิกที่มีขนาดเกรนระดับนาโนเมตร (nanograin ceramis) ซึ่งวิธีการนี้จะใช้วิธีเพิ่ม อุณหภูมิอย่างรวดเร็วไปสู่อุณหภูมิสูง (T₁) เพื่อให้มีความหนาแน่นค่าหนึ่ง จากนั้นในขั้นตอนที่ 2 จะลดอุณหภูมิ อย่างรวดเร็วไปยังอุณหภูมิต่ำ (T₂) และแช่ไว้เป็นเวลานาน (t₂) เพื่อให้มี driving force สำหรับการแพร่ของ ขอบเกรนที่เพียงพอเพื่อให้ได้ความหนาแน่นที่สูง ในขณะที่การเคลื่อนที่ของขอบเกรนสำหรับ grain growth ถูกยับยั้ง [19] และนอกจากนี้ การซินเตอร์แบบ two-step sintering สามารถลดอุณหภูมิเผาซินเตอร์ให้ต่ำลง ซึ่งค่าความหนาแน่นที่สูงจะเกิดขึ้นในการซินเตอร์ช่วงที่ 2 ผ่าน surface diffusion ที่อุณหภูมิต่ำ [20]

จากการทบทวนเอกสารที่เกี่ยวข้องพบว่า สมบัติเพียโซอิเล็กทริกของเซรามิกไร้สารตะกั่วจะขึ้นอยู่กับ การเกิด polymorphic phase boundary polymorphic phase boundary (PPT) ที่อุณหภูมิห้อง ซึ่งจะ เป็นบริเวณที่มีเฟส 2 เฟสอยู่ร่วมกัน และขึ้นอยู่กับอุณหภูมิ (ซึ่งไม่เหมือนกับ MPB ที่ขึ้นอยู่องค์ประกอบทาง เคมีเพียงอย่างเดียว ซึ่งการพัฒนาวัสดุเพียโซอิเล็กทริกที่ไม่มีตะกั่วในระบบ Ba(Ti, Sn)O₃ – (Ba, Ca)(Ti, Zr)O₃ – (Na, K, Li)NbO₃ นั้น พบว่ายังไม่มีนักวิจัยคนใดทำการศึกษาและรายงานเกี่ยวกับวัสดุในระบบนี้

Ba(Ti, Sn)O₃ เกิดจากการแทนที่ตำแหน่งของ Ti ด้วย Sn บางส่วน ทำให้ค่าคงที่ไดอิเล็กทริกมีค่า ขึ้นกับอุณหภูมิน้อยลง ซึ่งเมื่อเติม Sn ปริมาณเพิ่มขึ้น จะทำให้อุณหภูมิคูรีลดลง [21] นอกจากองค์ประกอบ ทางเคมีแล้ว พบว่า การลดลงของขนาดเกรนเป็นอีกหนทางหนึ่งที่จะพัฒนาความเสถียรของอุณหภูมิของวัสดุ เฟร์โรอิเล็กทริก ถูกนำไปประยุกต์ใช้ใน capacitors, transducers, sensors และ actuators

Xue D. และ คณะ (2011) [22] รายงานว่าองค์ประกอบในระบบ Ba(Sn_{0.12}Ti_{0.88})O₃- *x* (Ba_{0.7}Ca_{0.3)}O₃ (BTS – *x*BCT) เมื่อ *x* = 0.3 แสดงสมบัติเพียโซอิเล็กทริกที่ดีที่สุด (*d*₃₃ ~ 530 pC/N) ที่ อุณหภูมิห้อง

สำหรับ (Ba_{1-x}Ca_x)(Zr_yTi_{1-y})O₃ เป็นเซรามิกไร้สารตะกั่วชนิดใหม่ ถูกรายงานครั้งแรกโดย Liu และ Ren [23] เมื่อปี 2009 พบว่าค่าสัมประสิทธิ์เพียโซอิเล็กทริกที่สูงในระบบ Ba(Zr_{0.2}Ti_{0.8})O₃ – (Ba_{0.7}Ca_{0.3})TiO₃ (BZT-xBCT) เกิดขึ้นเมื่อ x = 0.5 ซึ่งเป็นองค์ประกอบที่เกิด MPB จากรายงานดังกล่าวนี้ทำให้สารในระบบนี้ ได้รับความสนใจสำหรับเป็นวัสดุทางเลือก (ไร้สารตะกั่ว) จนถึงปัจจุบัน [3, 24 - 26] โดยพบว่าสมบัติไดอิ-เล็กทริกและการตอบสนองต่อปรากฏการณ์เพียโซอิเล็กทริกของเซรามิกเพียโซอิเล็กทริกขึ้นอยู่กับขนาดเกรน [8-9] ซึ่งพบว่าสารตัวอย่างที่มีขนาดเกรนที่เหมาะสมจะมีสมบัติที่ดีขึ้น นอกจากนี้ พบว่าสมบัติทางไฟฟ้าจะ ขึ้นกับปริมาณ Ca และ Zr ที่เหมาะสม [27]

เซรามิก Na_{0.5}K_{0.5}NbO₃ กำลังได้รับความสนใจเนื่องจากไม่มีอันตรายจากพิษของตะกั่ว อย่างไรก็ตาม จากรายงานการวิจัยที่ผ่านมานั้นพบว่า เซรามิก (K_{0.5}Na_{0.5})NbO₃ นี้ยากที่จะสังเคราะห์ให้ได้ค่าความหนาแน่น ที่สูงด้วยกระบวนการโซลิดสเตทรีอักชันแบบดั้งเดิม ดังนั้น จึงมีการคิดค้นวิธีการปรับปรุงคุณภาพของเซรามิกช นิดนี้ให้ได้ความหนาแน่นสูงหลายวิธีด้วยกัน เช่น การซินเตอร์แบบพิเศษด้วยวิธี hot pressing [28], coldisostatic pressing [29] และ spark plasma sintering [30] และ/หรือ การเตรียมแบบพิเศษ เช่น reactive templated grain growth (RTGG) [31] และ การใช้ high energy attrition milling [32] และการปรับปรุง คุณภาพของเซรามิกชนิดนี้ด้วยการเติมตัวเติมชนิดต่าง ๆ (additives) เช่น LiNbO₃ [33], LiSbO₃ [34] และ LiTaO₃ [35] เพื่อปรับปรุงความสามารถในการซินเตอร์และสมบัติทางไฟฟ้าที่ดีขึ้น

นอกจากนี้ สมบัติไดอิเล็กทริกและเพียโซอิเล็กทริกยังขึ้นกับขนาดเกรน โดยพบว่าเทคนิคที่ใช้ในการ เผาซินเตอร์แบบ two-step sintering เป็นเทคนิคที่ใช้ในการเตรียม nanograin ในเซรามิกหลายชนิด เช่น BaTiO₃ [36], Ni-Cu-Zn ferrite [37], ZnO [38], (Na, K, Li)NbO₃ [39 - 41] และ ZrO₂ [42] หลังจากถูก รายงานครั้งแรกโดย Chen และ Wang [43]

Mazaheri M. และ คณะ (2009) [42] รายงานว่าขนาดเกรนของ nanocrystalline 8 mol%Y₂O₃ stabilized ZrO₂ เมื่อซินเตอร์แบบ two-step sintering ลดลง 7 เท่าของชิ้นงานที่ซินเตอร์แบบ conventional sintering นอกจากนี้ Hao และ คณะ (2012) [39] รายงานว่าสมบัติเพียโซอิเล็กทริกของ (K_xNa_{1-x})_{0.94} Li_{0.06}NbO₃ ดีขึ้น 10% เมื่อซินเตอร์แบบ two-step sintering

Ishihara S. และคณะ (2011) [40] เตรียมเซรามิก Na_{0.5}K_{0.5}NbO₃ ด้วยกระบวนการซินเตอร์แบบ two-step sintering พบว่าสารตัวอย่างมีสมบัติเพียโซอิเล็กทริกที่ดี (*d*₃₃ = 125 pC/N, k_p = 0.42) ซึ่งมีค่าสูง กว่าเซรามิกที่เตรียมด้วยวิธี conventional sintering

Fang J. และคณะ (2010) [41] เตรียมเซรามิก 0.9625 Na_{0.5}K_{0.5}NbO₃ – 0.0375 Li(Ta_{0.4}Sb_{0.6})O₃ (KNN-LTS) ด้วยวิธี conventional sintering และ two-step sintering พบว่า โครงสร้างเฟสของเซรามิกที่ ซินเตอร์แบบ conventional sintering จะเลื่อนไปจากบริเวณ PPT ไปสู่โครงสร้างแบบ tetragonal เมื่อ อุณหภูมิซินเตอร์สูงขึ้น สมบัติของเซรามิกจะขึ้นอยู่กับอุณหภูมิซินเตอร์เป็นอย่างมาก โดยเซรามิกที่มีสมบัติที่ดี จะพบในช่วงอุณภูมิซินเตอร์ที่แคบ ในขณะที่เซรามิกที่ซินเตอร์แบบ two-step sintering ยังคงรักษาโครงสร้าง แบบ PPT ไว้ตลอดช่วงอุณหภูมิซินเตอร์ เซรามิกที่มีสมบัติที่ดีพบได้ในอุณหภูมิช่วงกว้าง ซึ่งแสดงว่าการซิน เตอร์แบบ แบบ two-step sintering เป็นวิธีที่มีประสิทธิภาพในการเตรียมเซรามิก Na_{0.5}K_{0.5}NbO₃

ดังนั้น ในงานวิจัยนี้จึงสนใจพัฒนาวัสดุเพียโซอิเล็กทริกไร้สารตะกั่วในระบบ Ba(Ti, Sn)O₃ – (Ba, Ca)(Ti, Zr)O₃ – (Na, K, Li)NbO₃ ให้มีสมบัติเพียโซอิเล็กทริกที่ดีและมีอุณหภูมิคูรีที่สูง โดยการแปรค่า ปริมาณของ (Na, K, Li)NbO₃ ที่เติมลงไปเพื่อสามารถประยุกต์ใช้ในช่วงอุณหภูมิที่สูงขึ้นได้ และศึกษา เงื่อนไขที่ใช้ในการเตรียมที่มีต่อพฤติกรรมการเกิดเฟส การแน่นตัว โครงสร้างจุลภาค สมบัติไดอิเล็กทริก และเพียโซอิเล็กทริกของเซรามิก โดยเน้นศึกษาหาสัดส่วนทางเคมีที่เกิด MPB และอุณหภูมิคูรีค่าสูงเมื่อซิน เตอร์ที่อุณหภูมิต่ำ ซึ่งการศึกษาถึงความสัมพันธ์ของตัวแปรต่างๆ เป็นสิ่งจำเป็นต่อการสร้างความเข้าใจ การ สร้างองค์ความรู้ใหม่ในการพัฒนาเซรามิกในระบบนี้ให้เหมาะสมกับการประยุกต์ใช้งานต่อไป โดยโครงการวิจัย นี้เขียนขึ้นเพื่อเริ่มการวิจัยไปสู่การพัฒนาและผลิตเซรามิกเพียโซอิเล็กทริกซนิดที่มีผลกระทบต่อสิ่งแวดล้อมให้ น้อยที่สุดและใช้เป็นแนวทางเพื่อพัฒนาไปสู่ระดับอุตสาหกรรมได้ (ต้นทุนต่ำและมีสมบัติที่ดี)

1.2 วัตถุประสงค์ของโครงการวิจัย

- พัฒนาวัสดุเพียโซอิเล็กทริกไร้สารตะกั่วที่มีความหนาแน่นและอุณหภูมิคูรีสูงด้วยกระบวนการซิน เตอร์แบบ two-step sintering
- ศึกษาสมบัติต่างๆ ของเซรามิกในระบบ Ba(Ti, Sn)O₃ (Ba, Ca)(Ti, Zr)O₃ (Na, K, Li)NbO₃
 ที่เตรียมได้ เช่น สมบัติทางกายภาพ สมบัติไดอิเล็กทริกและสมบัติเพียโซอิเล็กทริกที่สัมพันธ์กับ เงื่อนไขการเตรียมและการซินเตอร์
- สึกษาความสัมพันธ์ของสัดส่วนทางเคมี โครงสร้างจุลภาคและสมบัติทางด้านไฟฟ้าของเซรามิกที่ เตรียมได้
- 4) เพื่อนำผลวิจัยที่ได้ไปเผยแพร่และตีพิมพ์ในวารสารระดับนานาชาติ

1.3 ขอบเขตของโครงการวิจัย

 ศึกษาเงื่อนไขที่เหมาะสมสำหรับเตรียมเซรามิกในระบบ (Na, K, Li)NbO₃, (1-x)Ba(Ti, Sn)O₃ -x (Ba, Ca)(Ti, Zr)O₃ และ (1-z)[Ba(Ti, Sn)O₃ - (Ba, Ca)(Ti, Zr)O₃] - z (Na, K, Li)NbO₃ โดยวิธีผสมออกไซด์แบบที่ใช้กันทั่วไป เพื่อให้ได้ค่าความหนาแน่นสูงที่สุดและสมบัติทางไฟฟ้าที่ดี โดยการแปรค่าต่างๆ ดังนี้

- เงื่อนไขที่ใช้ในการเตรียม เช่น อุณหภูมิและเวลาที่ใช้ในการเผาซินเตอร์ รูปแบบการเผาซินเตอร์
- ปริมาณของตัวเติม
- สึกษาการเกิดเฟส โครงสร้างผลึกและการเปลี่ยนแปลงเฟสเฟร์โรอิเล็กทริก พาราอิเล็กริกของ เซรามิกที่เตรียมได้
- 3) ศึกษา ปรับปรุง และพัฒนากระบวนการเตรียมสารตัวอย่าง
- 4) ศึกษาสมบัติทางกายภาพ โครงสร้างจุลภาคและสมบัติทางไฟฟ้า (ไดอิเล็กทริก และเพียโซอิเล็กทริก) ที่ขึ้นอยู่กับเงื่อนไขที่ใช้ในการเตรียมและองค์ประกอบทางเคมีของเซรามิกที่เตรียมได้

2. วิธีการวิจัย

ในงานวิจัยนี้ได้ทำการเตรียมเซรามิก Ba(Ti, Sn)O₃–(Ba ,Ca)(Ti, Zr)O₃–(Na, K, Li)NbO₃ ด้วย วิธีผสมออกไซด์แบบที่ใช้กันทั่วไป (conventional mixed- oxide) โดยการแปรค่าอุณหภูมิซินเตอร์ รูปแบบการเผาซินเตอร์ ชนิดและปริมาณของสารเจือ โดยมีรายละเอียดของสารเคมี วัสดุ อุปกรณ์และ เครื่องมือที่ใช้ ตลอดจนวิธีการเตรียมและการตรวจวิเคราะห์สารตัวอย่างที่เตรียมได้ ดังต่อไปนี้

2.1 สารเคมี วัสดุ อุปกรณ์และเครื่องมือที่ใช้ในการวิจัย

- 2.1.1 แบเรียมคาร์บอเนต (BaCO₃) มีความบริสุทธิ์ ≥ 99 % ผลิตโดยบริษัท Sigma-Aldrich
- 2.1.2 ทินออกไซด์ (SnO₂) มีความบริสุทธิ์ ≥ 99.9 % ผลิตโดยบริษัท Sigma-Aldrich
- 2.1.3 โซเดียมคาร์บอเนต (Na₂CO₃) มีความบริสุทธิ์ ≥ 99.9 % ผลิตโดยบริษัท Sigma-Aldrich
- 2.1.4 โพแทสเซียมคาร์บอเนต (K2CO3) มีความบริสุทธิ์ 99.0 % ผลิตโดยบริษัท Aldrich
- 2.1.5 ในโอเบียมเพนท็อกไซด์ (Nb₂O₅) มีความบริสุทธิ์ 99.9 % ผลิตโดยบริษัท Aldrich
- 2.1.6 ลิเทียมคาร์บอเนต (Li₂CO₃) มีความบริสุทธิ์ > 99.0 % ผลิตโดยบริษัท Fluka
- 2.1.7 เซอร์โคเนียมออกไซด์ (ZrO2) มีความบริสุทธิ์ 99.0 % ผลิตโดยบริษัท Aldrich
- 2.1.8 ไทเทเนียมออกไซด์ (TiO2) มีความบริสุทธิ์ 99.9 % ผลิตโดยบริษัท Aldrich
- 2.1.9 แคลเซียมคาร์บอเนต (CaCO₃) ความบริสุทธิ์ ≥ 99% ผลิตโดยบริษัท Sigma Aldrich
- 2.1.10 เอธานอล มีความบริสุทธิ์ 95 % และ 99.99 % ผลิตโดยบริษัท J. T. Baker
- 2.1.11 พอลีไวนิลอะซิเตต (PVA) ผลิตโดยบริษัท Fluka
- 2.1.12 กาวเงิน ผลิตโดยบริษัท Metech Inc.
- 2.1.13 อะลูมินา มีความบริสุทธิ์ 98 % ผลิตโดยบริษัท Riedel-de Haën
- 2.1.14 กระดาษทรายเบอร์ 400, 600 และ 1200
- 2.1.15 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) รุ่น Quanta 400 ยี่ห้อ FEI
- 2.1.16 เครื่องเอกซ์เรย์ดิฟแฟรกโตมิเตอร์ (X-ray diffractometer; XRD) รุ่น X'Pert MPD ยี่ห้อ Philips
- 2.1.17 เครื่อง LCR รุ่น 821 (Series 800) ยี่ห้อ GW INSTEK
- 2.1.18 เครื่องชั่งสารระบบดิจิตอล ทศนิยม 4 ตำแหน่ง ยี่ห้อ Mettler Toledo รุ่น AB 204-S
- 2.1.19 เครื่องชั่งสารระบบดิจิตอล ทศนิยม 2 ตำแหน่ง ยี่ห้อ Mettler Toledo รุ่น AB 204-S
- 2.1.20 เครื่องบดย่อยสาร (Ball milling)
- 2.1.21 เครื่องเป่าไฟฟ้า
- 2.1.22 เครื่องหมุนผสมสารแบบแม่เหล็กพร้อมตัวให้ความร้อน
- 2.1.23 เครื่องอัดไฮโดรลิก (Hydraulic press)
- 2.1.24 เครื่องอัลตราโซนิก (ultrasonic)
- 2.1.25 เตาไฟฟ้าสำหรับเผาชิ้นงาน (Muffle furnace) ยี่ห้อ Carbolite
- 2.1.26 เตาอบไฟฟ้า
- 2.1.27 กระดาษฟอยด์
- 2.1.28 ขวดพลาสติกสำหรับใส่สารตั้งต้นในการบดผสม
- 2.1.29 แม่พิมพ์โลหะสำหรับอัดขึ้นรูป ขนาดเส้นผ่านศูนย์กลาง 15 มิลลิเมตร

- 2.1.30 ครกบดสารทำด้วยหยก
- 2.1.31 ช้อนตักสาร
- 2.1.32 ถ้วยครุซิเบิลทำจากอะลูมินา
- 2.1.33 บีกเกอร์ขนาด 50, 100, 250, 600 และ 1000 ml ยี่ห้อ Pyrrex
- 2.1.34 แท่งแม่เหล็กสำหรับหมุนผสมสาร (Magnetic bar)
- 2.1.35 ลูกบด ZrO₂
- 2.1.36 โถดูดความชื้น และ ซิลิกาเจล
- 2.1.37 ถุงพลาสติกบรรจุสาร
- 2.1.38 เทปกาวพันเกลียว
- 2.1.39 พู่กันสำหรับทากาวเงิน
- 2.1.40 เวอร์เนียร์ ยี่ห้อ KOVET (Electronic digital calipers)
- 2.1.41 น้ำมันซิลิโคน
- 2.1.42 เตาเผาไฟฟ้าอุณหภูมิต่ำ (25 600 °C) สำหรับศึกษาสมบัติไดอิเล็กทริก

2.2 การเตรียมสารตัวอย่าง

1) ทำการเตรียมผงสารตัวอย่างในระบบ (Na, K, Li)NbO3 และ (1-x) Ba(Ti, Sn)O3 - x (Ba, Ca)(Ti, Zr)O3 โดยการนำสารตั้งต้นมาผสมแบบเปียกตามสมการเคมีที่ 2.1 และ 2.2 คือ

```
สูตรที่ 1 [(Na<sub>1-x</sub>K<sub>x</sub>)<sub>1-y</sub>Li<sub>y</sub>]NbO<sub>3</sub> ------ (2.1)
โดยที่ x มีค่า 0.40 < x < 0.60
y มีค่า 0.03 < y < 0.08
สูตรที่ 2 (1-n) Ba(Ti<sub>0.88</sub>Sn<sub>0.12</sub>)O<sub>3</sub> -n (Ba<sub>1-a</sub>Ca<sub>a</sub>)(Ti<sub>1-b</sub>Zr<sub>b</sub>)O<sub>3</sub> ------ (2.2)
โดยที่ a มีค่า 0.05 ≤ a < 0.50
b มีค่า 0.0 ≤ b < 0.05
n มีค่า 0.0 ≤ n ≤ 0.5
```

2) ชั่งสารตั้งต้น

โดยนำสารตั้งต้น คือ Na₂CO₃, K₂CO₃, Li₂CO₃ และ Nb₂O₅ มาชั่งตามปริมาณที่คำนวณได้จาก สมการที่ 2.1 และ BaCO₃, CaCO₃, TiO₂, SnO₂ และ ZrO₂ มาชั่งตามปริมาณที่คำนวณได้จากสมการที่ 2.2 3) การบดผสมสารตั้งต้น

นำสารตั้งต้นทั้งหมดของแต่ละสูตร เทใส่ในขวดพลาสติกที่มีลูกบดเซอร์โคเนีย และผสมด้วย เอธานอลซึ่งเป็นตัวที่ช่วยหล่อลื่นให้สารเกิดการผสมคลุกเคล้ากันได้ดี จากนั้นนำไปบดย่อยผสมสารด้วย เครื่องบดผสมสาร (ball - mill) เป็นเวลานาน 24 ชั่วโมง 4) การระเหยแห้ง

นำสารตัวอย่างที่มีลักษณะเป็นของเหลวออกจากเครื่องหมุนผสมสาร และนำไประเหยแห้งโดยใช้ hot plate โดยมีแท่งแม่เหล็กคนสารตัวอย่างไปด้วยเพื่อป้องกันสารตัวอย่างที่มีน้ำหนักมากตกลงไปอยู่ ด้านล่าง ของบีกเกอร์ หลังจากนั้นนำไปอบให้แห้งสนิทต่อในเตาอบที่ 150 °C เป็นเวลานานประมาณ 24 ชั่วโมง

5) การเผาแคลไซน์ (calcination)

เมื่อได้ผงที่แห้งสนิทมักจับตัวเป็นกลุ่มก้อน นำมาบดให้ละเอียดและนำไปเผาแคลไซน์ที่อุณหภูมิ ในช่วง 800 °C เป็นเวลานาน 2 ชั่วโมง สำหรับสูตรที่ 1 และ 1200 °C เป็นเวลานาน 2 ชั่วโมง สำหรับ สูตรที่ 2

6) การเตรียมสารตัวอย่างในระบบ Ba(Ti, Sn)O3 - (Ba, Ca)(Ti, Zr)O3 - (Na, K, Li)NbO3

นำผงสารตัวอย่าง (1-x) Ba(Ti, Sn)O₃ -x (Ba, Ca)(Ti, Zr)O₃ และ (Na, K, Li)NbO₃ ที่ผ่านเผา แคลไซน์และบดละเอียดแล้ว มาบดผสม โดยทำการแปรค่าปริมาณ (Na, K, Li)NbO₃ ตามสมการที่ 2.3 ทำ ให้แห้งและบดละเอียดอีกครั้งหนึ่ง

> (1-z) [Ba(Ti, Sn)O₃ - (Ba, Ca)(Ti, Zr)O₃] – z (Na, K, Li)NbO₃ ----- (2.3) โดยที่ z มีค่า 0.0 ≤ z < 0.60

7) การอัดขึ้นรูป

นำสารที่ผ่านการบดละเอียดแล้วมาอัดขึ้นรูป โดยใช้แม่พิมพ์ที่มีเส้นผ่านศูนย์กลางประมาณ 16 mm. และความดันประมาณ 1.5 ตัน แช่ทิ้งไว้ประมาณ 3 นาที

8) การเผาซินเตอร์ (sintering)

นำสารที่อัดขึ้นรูปแล้วมาเผาซินเตอร์โดยการแปรค่ารูปแบบการเผาซินเตอร์ (Conventional sintering (CS) และ Two-step sintering (TSS)) อุณหภูมิซินเตอร์ (T, T₁ และ T₂) เวลาที่ใช้ในการซิน เตอร์ (t, t₁ และ t₂) และอัตราการขึ้น/ลง (H/C) ของอุณหภูมิ ดังรูปที่ 2.1

Time (h) รูปที่ 2.1 รูปแบบการเผาซินเตอร์แบบ conventional sintering และ two step-sintering

2.3 การวัดและตรวจสอบสมบัติ

 1) ศึกษาค่าความหนาแน่นโดยใช้หลักการของอาร์คีมินิสของเซรามิกที่ผ่านการขัดผิวหน้าแล้ว นำเซรามิกที่ผ่านขัดผิวหน้าแล้วมาต้มในน้ำกลั่นที่เดือดเป็นเวลา 5 ชั่วโมง แช่ทิ้งไว้ให้เย็นใน อากาศที่อุณหภูมิห้องเป็นเวลา 24 ชั่วโมง จากนั้นนำมาชั่งในน้ำ (W₁) และชั่งขณะเปียก (W₂) แล้วนำไปอบ ในตู้อบสารเป็นเวลานาน 24 ชั่วโมง จากนั้นนำมาชั่งน้ำหนักแห้งในอากาศ (W₃) และคำนวณค่าความ หนาแน่นตามสมการที่ 2.4

$$ho$$
 = $rac{W_3}{W_2 - W_1}$ ------ (2.4)
เมื่อ ho คือ ความหนาแน่นของเซรามิก
 W_1 คือ น้ำหนักของเซรามิกที่ชั่งในน้ำ

W2 คือ น้ำหนักของเซรามิกที่ชั่งในอากาศขณะเปียก
 W3 คือ น้ำหนักของเซรามิกที่ชั่งในอากาศหลังอบแห้ง

2) หาค่าการหดตัวเชิงเส้น (linear shrinkage, S_L) ของเซรามิกด้วยการวัดเส้นผ่านศูนย์กลางก่อน และเผา และคำนวณเปอร์เซ็นต์การหดตัวเชิงเส้น ตามสมการที่ 2.5

 $S_{L} = 1 - \frac{D}{D_{B}} x 100$ ------ (2.5)

เมื่อ	D	คือ	เส้นผ่านศูนย์กลางของเซรามิกหลังเผา
	D _B	คือ	เส้นผ่านศูนย์กลางของเซรามิกก่อนเผา

 สึกษาพฤติกรรมการเกิดเฟสและโครงสร้างผลึกด้วยเทคนิคการเลี้ยวเบนด้วยรังสีเอกซ์ (XRD) นำผงและเซรามิกที่ขัดผิวหน้าแล้วไปตรวจสอบด้วยเครื่อง XRD โดยใช้ความต่างศักย์ 30 kV และกระแสไฟฟ้า 20 mA แล้วทำการบันทึกมุม 20 ออกมาในรูปของพีกการเลี้ยวเบน (diffraction pattern) ที่แสดงความสัมพันธ์ระหว่างค่าความเข้มของรังสีเอกซ์กับมุม 20 จากนั้นนำมุม 20 ที่ได้มา คำนวณหาค่า d-spacing จากกฎของแบรกก์ ตามสมการที่ 2.6

	$2dsin\theta$	=	nλ	(2.6)
โดยที่	d	คือ	ค่าระยะห่างระหว่างระนาบ (d-space	cing)
	λ	คือ	ค่าความยาวคลื่นของรังสีเอกซ์ (~ 1	.5406 Å สำหรับเป้าทองแดง)
	θ	คือ	มมของแบรกก์	

4) ศึกษาการเปลี่ยนแปลงเฟสเฟร์โรอิเล็กทริก - พาราอิเล็กทริก (phase transition) โดยใช้เทคนิค Differential Scanning Calorimetry (DSC)

นำผงสารตัวอย่างมาวิเคราะห์สมบัติทางความร้อนที่เปลี่ยนแปลงตามอุณหภูมิ เพื่อศึกษาจุดที่ วัสดุเกิดการเปลี่ยนแปลงแบบ endothermic และ exothermic ซึ่งหากสารตัวอย่างเกิดการเปลี่ยนแปลง เฟสจากเฟร์โรอิเล็กทริก – พาราอิเล็กทริก กราฟจะแสดงการเปลี่ยนแปลงแบบ endothermic

5) ศึกษาสมบัติไดอิเล็กทริกโดยใช้เครื่อง LCR meter

นำชิ้นงานหลังจากทากาวเงิน มาวัดค่าความจุไฟฟ้า เพื่อคำนวณค่าคงที่ไดอิเล็กตริก (*E*_r) และค่า แฟกเตอร์การสูญเสียทางไฟฟ้าในไดอิเล็กตริก (dissipation factor; tan δ) ด้วยเครื่อง LCR meter อ่าน ค่า *C*_p และ *D* ที่ความถี่ต่างๆ ในช่วง 0.1 - 200 kHz ที่อุณหภูมิห้อง และที่ความถี่ 1, 10 และ 100 kHz ที่ อุณหภูมิห้อง – ~500 °C (รูปที่ 2.2) ซึ่งค่าคงที่ไดอิเล็กตริกสามารถคำนวณได้จากสมการที่ 2.7

	8 _r	=	$\frac{c_{p}d}{\varepsilon_{o}A} \qquad $
เมื่อ	\mathcal{E}_r	คือ	ค่าคงที่ไดอิเล็กตริก
	C_p	คือ	ค่าความสามารถในการเก็บประจุไฟฟ้า (F)
	d	คือ	ความหนาของชิ้นงาน (m)
	\mathcal{E}_{o}	คือ	ค่าคงที่ไดอิเล็กตริกของอากาศ = 8.85 x 10 ⁻¹² (F/ m)
	A	คือ	พื้นที่หน้าตัดของบริเวณที่ทำขั้วไฟฟ้า (m ²)

รูปที่ 2.2 การวัดค่าคงที่ไดอิเล็กทริกและแฟกเตอร์การสูญเสียในไดอิเล็กทริกเทียบกับอุณหภูมิ

6) ศึกษาสมบัติเพียโซอิเล็กทริก โดยการวัดค่าสัมประสิทธิ์เพียโซอิเล็กทริก (d_{33}) ด้วยเครื่อง d_{33} ค่า planar coupling factor (k_p) และ ค่า longitudinal coupling factor (k_{33}) ด้วยการวัด resonance frequency (f_r) และ antiresonance frequency (f_a) โดยใช้เครื่อง LCR meter

นำเซรามิกไปทำขั้ว (poling) โดยการให้สนามไฟฟ้ากระแสตรงขนาด 3 - 5 kV/mm แก่สาร ้ตัวอย่างที่แช่อยู่ในน้ำมันซิลิโคนที่อุณหภูมิ 80 - 160 °C เป็นเวลานาน 25 นาที (รูปที่ 2.3 ก)) เพื่อให้ไดโพล ้โมเมนต์ที่อยู่ภายในเนื้อสารจัดเรียงตัวไปตามทิศของสนามไฟฟ้า จากนั้นนำชิ้นงานที่ผ่านการโพลลิงแล้วไป วัดสมบัติเพียโซอิเล็กทริก ดังนี้

- ค่าสัมประสิทธิ์พิโซอิเล็กทริก (Piezoelectric Coefficient, d_{ij} [C/N]) ซึ่งในที่นี้วัดค่า d₃₃ ด้วยเครื่อง piezo- d₃₃ meter โดยการให้แรงกดและวัดค่าโพลาไรเซชันที่เกิดขึ้นในเซรามิกในทิศ เดียวกับทิศของแรงที่ให้ (รูปที่ 2.3 ข))

- ค่า planar coupling factor (k_{p}) คำนวณจากสมการที่ 2.8

, 2

$$k_p^2 = 2.5 \left(\frac{f_a^2 - f_a^2}{f_a^2} \right) + 0.038$$
 ----- (2.8)

 $2 r (f_{a}^2 - f_r^2) + 0.020$

ร**ูปที่ 2.3** ก) กระบวนการ poling และ ข) การวัดค่าสัมประสิทธิ์เพียโซอิเล็กทริก (d₃₃) ของเซรามิก

7) ตรวจสอบลักษณะทางสัณฐานวิทยาของผงและโครงสร้างจุลภาคของเซรามิกที่เตรียมได้โดยใช้ กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM)

้สำหรับลักษณะรูปร่าง ขนาด การกระจายตัวของอนุภาคและโครงสร้างจุลภาคของเซรามิกที่ เตรียมได้ ถูกตรวจสอบโดยเทคนิค SEM ซึ่งหลักการการทำงานของ SEM โดยย่อ คือ ภายในคอลัมน์ (column) ของเครื่องจะมีแหล่งกำเนิดอิเล็กตรอน (electron gun) ซึ่งทำหน้าที่ปลดปล่อยอิเล็กตรอน ้ออกมา (primary electron) เราจะควบคุมจำนวนอิเล็กตรอนนั้นด้วยศักย์ไฟฟ้าสูง ๆ (high voltage) และ ใช้เลนส์แม่เหล็กไฟฟ้า (electromagnetic lens) โฟกัสให้อิเล็กตรอนนั้นตกกระทบชิ้นงาน และเมื่อ อิเล็กตรอนตกกระทบชิ้นงานจะเกิดอันตรกริยา (interaction) ได้สัญญาณแบบต่าง ๆ เช่น สัญญาณจาก อิเล็กตรอนในชิ้นงานที่หลุดออกมา (secondary electron) อิเล็กตรอนที่กระเจิงกลับ (backscattered electron) หรือ X-ray สัญญาณแต่ละชนิดจะถูกจับโดย detector และแปลผลเป็นสัญญาณทางไฟฟ้า และ แปลเป็นภาพในที่สุด ซึ่งขั้นตอนการเตรียมสารตัวอย่างมีดังนี้

1. นำชิ้นงานเซรามิกมาหักให้เป็นชิ้นเล็กๆ และเลือกตัวแทนมา 2 ชิ้น ต่อ 1 ตัวอย่าง โดยใช้ดู พื้นผิวหน้า (as-sintered surface) 1 ชิ้น และดูรอยหัก (fracture surface) 1 ชิ้น หลังจากทำความ ้สะอาดผิวด้วยเครื่องอัลตร้าโซนิกส์เป็นเวลานานประมาณ 30 นาที เพื่อกำจัดเศษสิ่งสกปรกให้หลุดออกไป

จากผิวสารตัวอย่าง และอบไว้ในตู้อบไฟฟ้าเป็นเวลา 24 ชั่วโมง เพื่อทำให้เซรามิกแห้ง จากนั้นนำไปติดบน แท่งทองเหลืองด้วยเทปกาวสองหน้าหรือเทปกาวคาร์บอนให้อยู่ในลักษณะที่เหมาะสมแก่การตรวจสอบ

 2. นำสารตัวอย่างทั้ง 2 ชนิด มาฉาบผิวหน้าด้วยทองคำโดยใช้เทคนิค sputtering เป็น เวลานาน 2 นาที เพื่อให้ผิวตัวอย่างนำไฟฟ้า จากนั้นจึงนำไปตรวจสอบด้วยกล้อง SEM และเลือกบริเวณที่ สามารถเป็นตัวแทนของชิ้นงานได้ทั้งชิ้น พร้อมกับทำการถ่ายภาพบริเวณที่เลือก

8) ตรวจสอบองค์ประกอบทางเคมีของเซรามิกที่เตรียมได้โดยใช้เทคนิคการวิเคราะห์ด้วยรังสีเอกซ์ แบบกระจายพลังงาน (EDS)

นำเซรามิกที่ขัดผิวหน้าแล้วไปวิเคราะห์ด้วยเครื่อง SEM-EDS เพื่อตรวจวัดรังสีเอกซ์ที่ปล่อย ออกมาจากสารตัวอย่าง เมื่อวัดค่าพลังงานรังสีเอกซ์นี้ด้วย EDS จะสามารถวิเคราะห์ได้ว่าชิ้นงาน ประกอบด้วยธาตุชนิดใดและมีการกระจายตัวอย่างไร
บทที่ 3

ผลการทดลองและการวิเคราะห์ผล

งานวิจัยนี้ได้ศึกษาเซรามิกในระบบ Ba(Ti, Sn)O₃–(Ba ,Ca)(Ti, Zr)O₃–(Na, K, Li)NbO₃ ด้วยวิธี ผสมออกไซด์แบบที่ใช้กันทั่วไป (conventional mixed- oxide) โดยการแปรค่าเงื่อนไขที่ใช้ในการเตรียม ชนิดและปริมาณของสารเจือ ซึ่งได้ผลการวิจัย ดังรายละเอียดต่อไปนี้

3.1 ผลการศึกษาเซรามิก $(Na_{1-x}K_x)_{1-y}Li_yNbO_3$

ได้ทำการเตรียมสารตัวอย่างในระบบ (Na_{1-x}K_x)_{1-y}Li_yNbO₃ เมื่อ x = 0.5 และ y = 0.06 ด้วยวิธีผสม ออกไซด์แบบที่ใช้กันทั่วไป โดยทำการเผาแคลไซน์ที่อุณหภูมิ 800 °C เป็นเวลานาน 2 ชั่วโมง และเผา ซินเตอร์ด้วยวิธีที่แตกต่างกัน 2 วิธี คือ การซินเตอร์แบบปกติ (conventional sintering, CS) ที่อุณหภูมิ 1100 - 1160 °C เป็นเวลานาน 2 ชั่วโมง (T₁/t₁/0/0) และการซินเตอร์แบบ 2 ขั้นตอน (TSS, T₁/t₁/T₂/t₂) โดยในช่วงแรกจะเผาที่อุณหภูมิสูง (T₁) 1140-1160 °C และแช่ทิ้งไว้เพียง 0, 10 นาที (t₁) จากนั้นลดอุณหภูมิ เผาแช่มาที่อุณหภูมิ 900-1020 (T₂) เป็นเวลานาน 2-10 ชั่วโมง (t₂) ได้ผลการวิจัยดังนี้

3.1.1 ผลการศึกษาพฤติกรรมการเกิดเฟสของเซรามิก (Na_{1-x}K_x)_{1-y}Li_yNbO₃ ด้วยเทคนิคการ เลี้ยวเบนของรังสีเอกซ์ (XRD)

เมื่อทำการวิเคราะห์เซรามิกด้วยเทคนิคการเลี้ยวเบนของรังสีเอกซ์ (XRD) พบว่ารูปแบบการ เผาซินเตอร์ไม่มีผลต่อโครงสร้างผลึกอย่างมีนัยสำคัญ โดยสารตัวอย่างมีโครงสร้างผลึกแบบ orthorhombic และมีเฟสที่สองเกิดร่วมด้วยในทุกสารตัวอย่าง แต่มีปริมาณลดลงมีเพิ่มอุณหภูมิซินเตอร์แบบ CS และ นอกจากนี้ พบว่าการซินเตอร์ทั้งแบบ CS และ TSS ทำให้เกิดการเลื่อนของมุมเลี้ยวเบนไปยังค่าที่สูงขึ้นเมื่อ เพิ่มอุณหภูมิ T₁ และ T₂ (ดังแสดงในรูปที่ 3.1) แสดงว่าเซรามิกเกิด geometrical distortion เมื่อซินเตอร์ที่ อุณหภูมิสูง

รูปที่ 3.1 รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของเซรามิกในระบบ (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์ ภายใต้เงื่อนไขแบบ CS (1100/120/0/0 และ 1160/120/0/0) และ TSS (1160/10/900/6 และ 1160/10/120/6) (* = K₆Li₄Nb₁₀O₃₀)

3.1.2 ผลการศึกษาสมบัติทางกายภาพของเซรามิก (Na_{1-x}K_x)_{1-y}Li_yNbO₃

เมื่อพิจารณาค่าความหนาแน่นของเซรามิก (รูปที่ 3.2-3.7) พบว่า อุณหภูมิซินเตอร์และรูปแบบ การซินเตอร์ส่งผลต่อการแน่นตัวของสารตัวอย่างอย่างมีนัยสำคัญ สำหรับการหดตัว พบค่ามีความสอดคล้อง กับผลของค่าความหนาแน่น

เมื่ออุณหภูมิซินเตอร์แบบ CS เพิ่มขึ้น ความหนาแน่นมีค่าลดลง ทั้งนี้เนื่องจากมีการสูญหายไป ของสารตั้งต้นบางตัว เช่น Na₂CO₃และ K₂CO₃ (รูปที่ 3.2) นอกจากนี้ได้ทำการเผาซินเตอร์ที่อุณหภูมิต่ำกว่า 1100°C พบว่ายังไม่เป็นเซรามิกและมีความหนาแน่นต่ำมาก ในขณะที่ค่าความหนาแน่นมีค่าเพิ่มขึ้น เมื่อ ซินเตอร์แบบ TSS โดยเมื่อซินเตอร์ด้วยอุณหภูมิ T₁ และเวลาที่ใช้ในการซินเตอร์ t₁ ที่สูงขึ้น ค่าความหนาแน่น มีค่าเพิ่มขึ้น (รูปที่ 3.3-3.4) และเพิ่มอุณหภูมิ T₂ เท่ากับ 980 °C มีค่าความหนาแน่นสูงสุด เท่ากับ 4.38 g/cm³ (ซึ่งคิดเป็น 97% ของค่าทางทฤษฎี) และเมื่อเพิ่มอุณหภูมิขึ้นมาที่ 1020°C จะเห็นว่าความหนาแน่น ลดลง ซึ่งเกิดจากชิ้นงานหลอมตัวทำให้ความหนาแน่นลดต่ำลงนั่นเอง (รูปที่ 3.5) นอกจากนี้เมื่อเพิ่มเวลาเผา แช่ t₂ จะส่งผลให้เซรามิกมีค่าความหนาแน่นเพิ่มขึ้นด้วย ทั้งนี้ค่าความหนาแน่นที่เพิ่มขึ้นจะขึ้นกับอุณหภูมิซิน เตอร์ T₁ ที่เลือกใช้อย่างมีนัยสำคัญ (รูปที่ 3.6-3.7)

รูปที่ 3.2 ความหนาแน่นของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1100-1160 °C

รูปที่ 3.3 ความหนาแน่นของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS โดยแปรค่าอุณหภูมิ ซินเตอร์ T₁ (T₁/10/1020/6)

รูปที่ 3.4 ความหนาแน่นของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS โดยแปรค่าเวลาในการ เผาซินเตอร์ t₁ (1160/t₁/1020/6)

รูปที่ 3.5 ความหนาแน่นของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS โดยแปรค่า อุณหภูมิเผาแช่ T₂ (1160/10/T₂/6)

รูปที่ 3.6 ความหนาแน่นของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS โดยแปรค่า เวลาในการเผาแช่ t₂ (1160/10/1020/t₂)

รูปที่ 3.7 ความหนาแน่นของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS โดยแปรค่าเวลาในการ เผาแช่ t₂ (1140/10/1020/t₂)

สำหรับการหดตัวของชิ้นงาน พบว่าเมื่อทำการเพิ่มอุณหภูมิเผาซินเตอร์ (T₁) แบบ CS ในช่วง 1100°C-1140°C เปอร์เซ็นต์การหดตัวมีค่าใกล้เคียงกัน คือ 11% เมื่ออุณหภูมิเพิ่มสูงขึ้น (1160°C) ค่า เปอร์เซ็นต์การหดตัวเพิ่มขึ้นเป็น 19% เนื่องจากเมื่อเพิ่มอุณหภูมิให้สูงขึ้น ชิ้นงานเกิดการหลอมบางส่วน

สำหรับการหดตัวของเซรามิก NKLN เมื่อทำการเผาซินเตอร์แบบ TSS ที่อุณหภูมิ T₁ เท่ากับ 1140°C และ 1160°C พบว่าที่อุณหภูมิ 1160°C มีค่าเปอร์เซ็นต์การหดตัวที่มากกว่า คือ 12.2 % เนื่องจาก เมื่อทำการเผาซินเตอร์ในอุณหภูมิที่สูงขึ้นจึงทำให้ขึ้นงานเกิดการหดตัวได้มากกว่าและส่งผลให้มีค่าความ หนาแน่นสูงขึ้น และสามารถลดจำนวนรูพรุนได้ด้วย แต่ที่อุณหภูมิ 1140°C เกิดการหดตัวที่น้อยเพราะเป็น อุณหภูมิที่ไม่สูงมากนัก ซึ่งสอดคล้องกับความหนาแน่นรูปที่ 3.3 และเมื่อทำการแปรค่าเวลาที่ใช้ในการเผา ซินเตอร์ t₁ พบว่าเปอร์เซ็นต์การหดตัวที่ไม่ทำการแซ่ (t₁ = 0) มีค่าน้อย คือ 5.0% เนื่องจากเกรนไม่มีเวลาใน การเคลื่อนที่จึงทำให้มีค่าเปอร์เซ็นต์การหดตัวที่น้อย ส่วนเปอร์เซ็นต์การหดตัวที่ทำการแซ่ไว้ 10 นาที (t₁ = 10) พบว่ามีเปอร์เซ็นต์การหดตัวที่มากกว่าเนื่องจากเกรนมีเวลาในการเคลื่อนที่เข้าหากัน จึงส่งผลให้มี เปอร์เซ็นต์การหดตัวที่มากนั่นเอง คือ 12.2% ซึ่งสอดคล้องกับค่าความหนาแน่น ดังแสดงในรูป 3.4 สำหรับ การแปรค่าอุณหภูมิเผาแซ่ T₂ และเวลาในการเผาแซ่ t₂ พบว่าค่าการหดตัวที่ได้มีค่าใกล้เคียงกัน คือ ~12% แสดงว่า T₂ และ t₂ ที่เพิ่มขึ้นไม่ส่งผลต่อค่าการหดตัว ซึ่งต่างจากก่าความหนาแน่น ดังแสดงในรูปที่ 3.5-3.6

3.1.3 ผลการศึกษาโครงสร้างจุลภาคของเซรามิก (Na_{1-x}K_x)_{1-y}Li_yNbO₃

สำหรับโครงสร้างจุลภาค (รูปที่ 3.8) พบว่าลักษณะเกรนเกิดการโตแบบไม่ปกติ คือ มีขนาดเล็ก และใหญ่ปะปนกันและมีรูปร่างแบบทรงสี่เหลี่ยมในทุกสารตัวอย่าง โดยเกรนมีขนาดโตขึ้น จัดเรียงตัวแน่น เมื่อเพิ่มอุณหภูมิแบบ CS จาก 1100 – 1160 °C โดยมีขนาดโตที่สุดประมาณ 7 μm เมื่อพิจารณาชิ้นงานที่ ซินเตอร์แบบ TSS พบว่าเกรนมีขนาดเล็กลงเมื่อเทียบกับการซินเตอร์แบบ CS ซึ่งแสดงว่าการซินเตอร์แบบ TSS สามารถยับยั้งการโตของเกรนได้ โดยโครงสร้างจุลภาคที่สม่ำเสมอและมีขนาดเกรนประมาณ 2.6 μm พบในตัวอย่างเมื่อซินเตอร์ด้วยเงื่อนไข 1160/10/1020/6

การซินเตอร์แบบ TSS

รูปที่ 3.8 ภาพถ่าย SEM ของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์ภายใต้เงื่อนไขแบบ CS (1100/120/0/0 และ 1160/120/0/0) และ TSS (1160/10/900/6, 1160/10/980/6, 1160/10/1020/6, 1160/0/1020/6, 1160/10/1020/8 และ 1140/10/1020/6)

รูปแบบการเผาซินเตอร์	เงื่อนไขที่ใช้ในการเผาซินเตอร์	ขนาดเกรน (µ m)
CS	1100/120/0/0	2.05 ± 0.12
	1160/120/0/0	4.46 ± 0.25
TSS	1160/10/900/6	2.18 ± 0.08
	1160/10/980/6	2.23 ± 0.07
	1160/10/1020/6	2.64 ± 0.12
	1160/10/1020/8	2.36 ± 0.10
	1140/10/1020/6	1.39 ± 0.04
	1160/0/1020/6	1.64 ± 0.05

ิตารางที่ 3.1 ขนาดของเกรนของชิ้นงานเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ ที่เผาซินเตอร์แบบ CS และ TSS

3.1.4 ผลการศึกษาสมบัติไดอิเล็กทริกของเซรามิก (Na_{1-x}K_x)_{1-y}Li_yNbO₃

สำหรับค่าสมบัติทางไฟฟ้าทำการศึกษาสมบัติไดอิเล็กทริก (โดยเลือกชิ้นงานที่มีค่าความ หนาแน่นใกล้เคียงกัน มาสูตรละ 2 ชิ้น เมื่อผ่านการทำอิเล็กโทรดแล้ว นำมาทำการศึกษาสมบัติไดอิเล็กทริก โดยแปรค่าความถี่ (0.1 – 200 kHz) และอุณหภูมิ (อุณหภูมิห้อง – 500 ℃ ที่ความถี่ 1, 10 และ 100 kHz) ได้ผลการวิจัยดังแสดงในรูปที่ 3.9-3.20 โดยพบว่า ค่าคงที่ไดอิเล็กทริกมีค่าขึ้นอยู่กับความถี่ อุณหภูมิ อุณหภูมิ ชินเตอร์ และรูปแบบการเผาซินเตอร์

เมื่อพิจารณาสมบัติไดอิเล็กทริกที่ขึ้นกับความถี่ (รูปที่ 3.9-3.14) พบว่า เมื่อความถี่เพิ่มขึ้น เซรามิกมีค่าคงที่ไดอิเล็กทริก (\mathcal{E}_r) และค่าการสูญเสียทางไดอิเล็กทริกในรูปของความร้อน (dissipation factor, tan δ) ลดลง ซึ่งเซรามิกที่มีความหนาแน่นสูงจะมีสมบัติไดอิเล็กทริกที่ดี คือ ชิ้นงานที่ซินเตอร์แบบ CS ที่อุณหภูมิ 1100 °C สำหรับเซรามิกที่ซินเตอร์แบบ TSS เมื่อใช้ T₁ = 1160 °C (T₁/10/1020/6) หรือ t₁ = 10 นาที (1160/t₁/1020/6) จะมีค่าการสูญเสียทางไดอิเล็กทริกน้อยกว่า และเมื่อแปรค่า T₂ (1160/10/T₂/6) พบว่า ค่าการสูญเสียทางไดอิเล็กทริกน้อยที่สุด เมื่อ T₂ = 940 °C นอกจากนี้การซินเตอร์โดยใช้ T₁ ที่ต่ำลง คือ 1140 °C ทำให้ได้สมบัติไดอิเล็กทริกที่ด้วยกว่าการใช้ T₁ = 1160 °C ทั้งนี้เนื่องจากมีค่าความหนาแน่นที่

เมื่อพิจารณาสมบัติไดอิเล็กทริกที่ขึ้นกับอุณหภูมิ (รูปที่ 3.15-3.20) พบว่า เมื่ออุณหภูมิสูงขึ้น ค่าคงที่ไดอิเล็กทริกจะเพิ่มขึ้นจนถึงจุดๆ หนึ่งซึ่งเป็นจุดสูงสุดของพีค โดยเซรามิกแสดงพีคการเปลี่ยนแปลงของ ค่าคงที่ไดอิเล็กทริกขึ้นที่อุณหภูมิ transition 2 อุณหภูมิ ซึ่งพีคแรกจะบ่งบอกถึงการเปลี่ยนแปลงเฟสจาก orthorhombic ไปสู่ tetragonal (*T*_{O-T}) และพีคที่สองจะบอกถึงการเปลี่ยนแปลงเฟสจาก tetragonal ไปสู่ cubic (*T*_C) และหลังจากนั้นค่าคงที่ไดอิเล็กทริกมีค่าลดลงเมื่ออุณหภูมิเพิ่มขึ้น โดยพบว่าทั้ง *T*_{O-T} และ *T*_C ของ ชิ้นงานที่ซินเตอร์แบบ CS มีทิศทางที่ไม่แน่นอน แสดงลักษณะ composition inhomogeneity เมื่อเพิ่ม อุณหภูมิซินเตอร์ T₁ ซึ่งแสดงว่าสัดส่วนองค์ประกอบทางเคมีส่งผลต่ออุณหภูมิการเปลี่ยนแปลงเฟสอย่างมี นัยสำคัญ สำหรับชิ้นงานที่ซินเตอร์แบบ TSS พบว่า ทั้ง *T_{O-T}* และ *T_C* มีค่าเพิ่มขึ้น ดังตารางที่ 3.2-3.7 นอกจากนี้ พบว่า ค่าคงที่ไดอิเล็กทริก (**ɛ**,) มีค่าลดลง เมื่อเพิ่มอุณหภูมิ T₁ และ T₂ ทั้งนี้เนื่องจากการเพิ่มขึ้น ของขนาดเกรน ในขณะที่ *T_{O-T}* มีค่าลดลง และ *T_C* มีค่าเพิ่มขึ้น เมื่อเพิ่มเวลา t₁ และ t₂

สำหรับการศึกษาอุณหภูมิการเปลี่ยนแปลงเฟสเฟร์โรอิเล็กทริก-พาราอิเล็กทริกของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ พบว่ามีลักษณะสอดคล้องกับการศึกษาสมบัติไดอิเล็กทริกเทียบอุณหภูมิ

รูปที่ 3.9 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิกในระบบ (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อเผาซินเตอร์แบบ CS

รูปที่ 3.10 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อเผาซินเตอร์แบบ TSS โดยการแปรค่าอุณหภูมิ T₁ (T₁/10/1020/6)

รูปที่ 3.11 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อเผาซินเตอร์แบบ TSS โดยการแปรค่าเวลาเผาแช่ t₁ คือ ไม่เผาแช่ (0) และแช่นาน 10 นาที (1160/t₁/1020/6)

(ข)

รูปที่ 3.12 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อเผาซินเตอร์แบบ TSS โดยแปรค่าอุณหภูมิ T₂ (1160/10/T₂/6)

รูปที่ 3.13 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อเผาซินเตอร์แบบ TSS โดยการแปรค่าเวลาเผาแช่ t₂ นาน 4, 6 และ 8 ชั่วโมง (1160/10/1020/t₂)

1		١.
1	ົ	۱
١.	ſI	1
•	• •	/

รูปที่ 3.14 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อเผาซินเตอร์แบบ TSS โดยการแปรค่าเวลาเผาแช่ t₂ นาน 6 และ 10 ชั่วโมง (1140/10/1020/t₂)

รูปที่ 3.15 ค่าคงที่ไดอิเล็กทริกที่ขึ้นกับอุณหภูมิของเซรามิกในระบบ (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อ ซินเตอร์ภายใต้เงื่อนไขแบบ CS เมื่อวัดที่ความถี่ 10 kHz

รูปที่ 3.16 ค่าคงที่ไดอิเล็กทริกที่ขึ้นกับอุณหภูมิของเซรามิกในระบบ (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์ ภายใต้เงื่อนไขแบบ TSS โดยการแปรค่าอุณหภูมิ T₁ คือ 1140 และ 1160 °C (T₁/10/1020/6) เมื่อวัดที่ความถี่ 10 kHz

รูปที่ 3.17 ค่าคงที่ไดอิเล็กทริกที่ขึ้นกับอุณหภูมิของเซรามิกในระบบ (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์ ภายใต้เงื่อนไขแบบ TSS โดยการแปรค่าเวลาเผาแช่ t₁ คือ ไม่เผาแช่ (0) และ 10 นาที (1160/t₁/1020/6) เมื่อวัดที่ความถี่ 10 kHz

รูปที่ 3.18 ค่าคงที่ไดอิเล็กทริกที่ขึ้นกับอุณหภูมิของเซรามิกในระบบ (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์ ภายใต้เงื่อนไขแบบ TSS โดยการแปรค่าอุณหภูมิ T₂ คือ 900, 940, 980 และ 1020 °C (1160/10/ t₁/6) เมื่อวัดที่ความถี่ 10 kHz

300

Temperature (°C)

(ข)

400

500

600

0.00

0

100

200

รูปที่ 3.19 ค่าคงที่ไดอิเล็กทริกที่ขึ้นกับอุณหภูมิของเซรามิกในระบบ (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์ ภายใต้เงื่อนไขแบบ TSS โดยการแปรค่าเวลาเผาแช่ t₂ นาน 4, 6 และ 8 ชั่วโมง (1160/10/1020/t₂) เมื่อวัดที่ความถี่ 10 kHz

รูปที่ 3.20 ค่าคงที่ไดอิเล็กทริกที่ขึ้นกับอุณหภูมิของเซรามิกในระบบ (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์ ภายใต้เงื่อนไขแบบ TSS โดยการแปรค่าเวลาเผาแช่ t₂ นาน 6 และ 10 ชั่วโมง ที่อุณหภูมิ T₁ 1140 °C (1140/10/1020/t₂) เมื่อวัดที่ความถี่ 10 kHz

ตารางที่ 3.2 ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกและอุณหภูมิในการเปลี่ยนเฟสของชิ้นเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1100/120/0/0, 1120/120/0/0, 1140/120/0/0 และ1160/120/0/0 เมื่อวัดที่ความถี่ 1, 10 และ 100 kHz

ความถี่	อุณหภูมิซินเตอร์, T ₁	T (0C)		tan ð	T (0C)		
(kHz)	(°C)	Т _{О-Т} (°С)	č _r (1 _{0-T})	(Т _{О-т})	$\Gamma_{C}(\mathcal{C})$	ε _r (Τ _C)	
	1100	130	821.2	0.0230	402	3826.8	0.2959
1	1120	117	1029.2	0.3062	396	3981.1	0.5487
I	1140	144	678.1	0.0241	401	3162.3	0.3627
	1160	168	731.2	0.0721	380	3974.5	0.3450
10	1100	132	798.1	0.0283	402	3384.1	0.0767
	1120	121	770.6	0.1557	396	3009.6	0.1457
	1140	142	663.2	0.0224	401	2638.2	0.0896
	1160	167	686.3	0.0383	379	3240.6	0.1057
	1100	132	768.0	0.1069	402	3217.8	0.1478
100	1120	123	681.3	0.0601	396	2859.0	0.0413
	1140	142	644.2	0.0229	401	2534.6	0.0672
	1160	167	657.1	0.0307	379	3038.8	0.0854

ตารางที่ 3.3 ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกและอุณหภูมิในการเปลี่ยนเฟสของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข คือ T₁/10/1020/6 เมื่อวัดที่ ความถี่ 1, 10 และ 100 kHz

ความถี่	อุณหภูมิซินเตอร์, T ₁	T (°C)		Tan ð	T _C		Tan ð
(kHz)	(°C)	т _{о-т} (С)	ε _r (1 _{0-T})	(T _{O-T})	(°C)	$\boldsymbol{\mathcal{E}}_{r}(\boldsymbol{\Gamma}_{C})$	(T _C)
1	1140	117	585.1	0.0303	393	2898.6	0.5668
L	1160	129	978.0	0.1475	396	4406.0	0.3913
10	1140	115	566.2	0.0203	393	2192.9	0.1746
10	1160	132	837.2	0.0829	395	3456.4	0.1281
100	1140	112	551.2	0.0213	394	2008.0	0.1714
	1160	133	773.3	0.051	395	3220.6	0.1165

ตารางที่ 3.4 ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกและอุณหภูมิในการเปลี่ยนเฟสของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข คือ 1160/t₁/1020/6 เมื่อวัดที่ ความถี่ 1, 10 และ 100 kHz

ความถี่ (kHz)	เวลา, t ₁ (min)	Т _{О-т} (°С)	€ _r (T _{O-T})	tan ð (T _{0-T})	T _C (°C)	$\mathbf{E}_{r}(T_{C})$	tan ${\pmb{\delta}}$ (T _c)
1	0	123	511.2	0.0419	404	2509.6	0.7989
L	10	129	978.0	0.1475	396	4406.0	0.3913
10	0	127	492.0	0.0456	404	1865.6	0.1772
	10	132	837.2	0.0829	395	3456.4	0.1281
100	0	143	459.4	0.1633	402	1721.1	0.1084
	10	133	773.3	0.051	395	3220.6	0.1165

ตารางที่ 3.5 ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกและอุณหภูมิในการเปลี่ยนเฟสของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข คือ 1160/10/T₂/6 เมื่อวัดที่ ความถี่ 1, 10 และ 100 kHz

ความถี่ (kHz)	อุณหภูมิซินเตอร์, T ₂ (°C)	Т _{О-Т} (°С)	€ _r (T _{O-T})	tan δ (Τ _{0-T})	Т _С (°С)	$\mathbf{E}_{r}(T_{C})$	tan ${\pmb{\delta}}$ (T _c)
	900	126	874.2	0.0797	388	4166.3	0.3314
	940	126	767.1	0.0408	388	3306.0	0.0815
1	980	126	928.1	0.1689	392	4239.1	0.4126
	1020	129	978.0	0.1475	396	4406.0	0.3913
10	900	125	874.0	0.0518	387	3474.9	0.1276
	940	126	767.1	0.0408	388	3312.3	0.0816
	980	130	779.4	0.1125	391	3287.1	0.1393
	1020	132	837.2	0.0829	395	3456.4	0.1281
	900	122	763.7	0.0605	387	2862.1	0.4024
100	940	126	767.1	0.0407	388	3316.5	0.0816
	980	144	691.1	0.1732	391	3029.7	0.1506
	1020	133	773.3	0.0533	395	3220.6	0.1165

ตารางที่ 3.6 ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกและอุณหภูมิในการเปลี่ยนเฟสของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข คือ 1160/10/1020/t₂ เมื่อวัดที่ ความถี่ 1, 10 และ 100 kHz

ความถี่	10000 k \pm (b)	T (°C)	c (T)	tan ð	T (°C)		tan ð
(kHz)	เวลาแข, t ₂ (n)	Г _{О-Т} (°С)	ε _r (1 _{0-T})	(T _{O-T})	$\Gamma_{C}(C)$	$\boldsymbol{\mathcal{E}}_{r}(\Gamma_{C})$	(T _C)
	4	125	966.1	0.2049	394	4477.9	0.4472
1	6	129	978.1	0.1475	396	4406.0	0.3913
8	8	120	906.6	0.1462	393	3991.0	0.3278
	4	131	792.0	0.1050	394	3398.8	0.1531
10	6	132	837.2	0.0829	395	3456.4	0.1281
	8	125	787.0	0.0756	392	3314.2	0.0985
	4	130	719.2	0.0522	393	3135.8	0.0809
100	6	133	773.3	0.0533	395	3220.6	0.1165
	8	127	733.0	0.0422	392	3146.7	0.0843

ตารางที่ 3.7 ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกและอุณหภูมิในการเปลี่ยนเฟสของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข คือ 1140/10/1020/t₂ เมื่อวัดที่ ความถี่ 1, 10 และ 100 kHz

ความถี่	เวลาแช่, t ₂	T (°C)		tan ð	T (°C)	c (T)	tan ð
(kHz)	(h)	Г _{О-Т} (С)	ε _r (⊺ _{O-T})	(T _{O-T})	$\Gamma_{\rm C}$ (C)	ε _r (Τ _C)	(T _C)
1	6	117	585.1	0.0303	393	2898.6	0.5668
T	10	120	617.1	0.0382	400	2974.1	0.5593
10	6	115	566.2	0.0203	400	2192.9	0.1746
10	10	119	594.2	0.0226	393	2291.7	0.1551
100	6	112	551.2	0.0213	394	2008.0	0.1714
	10	118	578.1	0.0231	399	2132.5	0.1453

3.1.5 ผลการศึกษาสมบัติเพียโซอิเล็กทริกของเซรามิก (Na_{1-x}K_x)_{1-y}Li_yNbO_3

สำหรับสมบัติเพียโซอิเล็กทริกของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ พบว่าค่า d₃₃ มีค่าขึ้นอยู่ กับอุณหภูมิซินเตอร์ เวลาที่ใช้ในการซินเตอร์ และรูปแบบการเผาซินเตอร์ ดังแสดงในตารางที่ 3.8 โดยเซรามิก ที่เตรียมแบบ TSS โดยใช้เงื่อนไข 1160/10/940/6 มีค่า d₃₃ สูงที่สุด คือ 168 pC/N ทั้งนี้เนื่องจากมีความ หนาแน่นสูงและมี electrical resistivity ที่ดี ทำให้โพลลิ่งให้ง่าย และมี k_p เท่ากับ 40% สำหรับชิ้นงานที่ ซินเตอร์แบบ CS นั้น มีค่า d₃₃ ต่ำกว่าชิ้นงานที่ซินเตอร์แบบ TSS (129 pC/N) เนื่องจากมีการระเหยของสาร ตั้งต้นที่อุณหภูมิสูง

Samples	Sintering	<i>d</i> ₃₃
	condition	(pC/N)
CS-	1100/120/0/0	129
sample	1120/120/0/0	116
	1140/120/0/0	114
	1160/120/0/0	95
TSS-	1160/10/900/6	163
sample	1160/10/940/6	168
	1160/10/980/6	150
	1160/10/1020/6	145
	1160/10/1020/4	117
	1160/10/1020/8	105
	1140/10/1020/6	100
	1140/10/1020/4	115

ตารางที่ 3.8 ค่าสัมประสิทธิ์เพียโซอิเล็กทริก (piezoelectric constant, *d*₃₃) ของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์ภายใต้เงื่อนไขแบบ CS และ TSS

3.2 ผลการศึกษาเซรามิกในระบบที่มี BaTi_{1-x}Sn_xO₃ เป็นองค์ประกอบหลัก

ได้ทำการเตรียมสารตัวอย่างในระบบ BaTi_{1-x}Sn_xO₃ เมื่อ x = 0.04, 0.08 และ 0.12 และ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อ z = 0.1, 0.2 และ 0.5 ด้วยวิธีผสมออกไซด์แบบที่ใช้กันทั่วไป โดยทำการเผาแคลไซน์ที่อุณหภูมิ 1200 °C สำหรับ BaTi_{1-x}Sn_xO₃ และที่อุณหภูมิ 1050 °C สำหรับ Ba_{0.7}Ca_{0.3}TiO₃ เป็นเวลานาน 2 ชั่วโมง และเผาซินเตอร์ด้วยวิธีที่แตกต่างกัน 2 วิธี คือ การซินเตอร์แบบปกติ (conventional sintering, CS) ที่อุณหภูมิ 1350 - 1500 °C เป็นเวลานาน 2 ชั่วโมง (T₁/t₁/0/0) และการซิน เตอร์แบบ 2 ขั้นตอน (TSS, T₁/t₁/T₂/t₂)โดยในช่วงแรกจะเผาที่อุณหภูมิสูง (T₁) 1500 °C และแช่ทิ้งไว้ 15 นาที (t₁) จากนั้นลดอุณหภูมิเผาแช่มาที่อุณหภูมิ 700-1300 (T₂) เป็นเวลานาน 6 ชั่วโมง (t₂) ได้ผลการวิจัย ดังนี้

3.2.1 ผลการศึกษาพฤติกรรมการเกิดเฟสของเซรามิกในระบบที่มี BaTi_{1-x}Sn_xO₃ เป็นองค์ประกอบ หลัก ด้วยเทคนิคการเลี้ยวเบนของรังสีเอกซ์ (XRD)

เมื่อทำการวิเคราะห์เซรามิกด้วยเทคนิคการเลี้ยวเบนของรังสีเอกซ์ (XRD) พบว่า รูปแบบการ เผาซินเตอร์มีผลอย่างมีนัยสำคัญต่อโครงสร้างผลึกของเซรามิกในระบบ BaTi_{1-x}Sn_xO₃ และระบบ (1-z)Ba (Ti_{0.88}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์ภายใต้เงื่อนไข CS ที่อุณหภูมิ 1450 °C และ 1350 °C และ แบบ TSS ที่อุณหภูมิ T₂ เท่ากับ 900 °C, 1150 °C และ 1200 °C ตามลำดับ ดังแสดงในรูปที่ 3.21-3.22 พบว่าตัวอย่างทั้งหมดมีโครงสร้างเพอรอฟสไกต์ เมื่อมีการลดปริมาณของ Sn พีคเกิดเลื่อนไปทางด้านขวา โดยเลื่อนไปยังมุมที่สูงขึ้นเพราะเกิดจากการแทนที่ของ Ti⁴⁺ [r(Ti⁴⁺) = 74.5 pm] ด้วย Sn⁴⁺ [r(Sn⁴⁺) = 83.0 pm] แสดงให้เห็นว่า Sn⁴⁺ กระจายตัวอย่างเป็นระบบในแลตทิซ BaTiO₃ ในช่วงองค์ประกอบที่ศึกษา นอกจากนั้น พีค (002) และ (200) ที่ 2 θ = 45° เกิดการรวมเข้าด้วยกันกลายเป็นพีค (002) ทำให้เฟสมีการ เปลี่ยนแปลงจากโครงสร้างคิวบิก (x = 0.12) ไปเป็นโครงสร้างเตตระโกนอล เมื่อ x ≤ 0.08

เมื่อทำการเติม BCT ในระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ พบว่ามีการ เปลี่ยนแปลงของพีค XRD คือ เมื่อเพิ่มปริมาณของ BCT มากขึ้น พีคเกิดการเลื่อนไปทางด้านขวาโดยเลื่อนไป ยังมุมที่สูงขึ้นเล็กน้อย แต่ไม่มีการเปลี่ยนแปลงโครงสร้าง โดยโครงสร้างผลึกยังคงเป็นแบบเตตระโกนอลและไม่ มีเฟสที่สองเกิดขึ้น

ดังนั้นจึงสรุปได้ว่าเซรามิก BaTi_{1-x}Sn_xO₃ และระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ CS และ TSS เกิดลักษณะพีคเลื่อนไปทางด้านขวา เมื่อลดปริมาณของ Sn และเพิ่มปริมาณ ของ BCT และme.shเกิดการเปลี่ยนแปลงเฟสจากโครงสร้างคิวบิกไปเป็นโครงสร้างเตตระโกนอลทั้ง 2 กรณี

รูปที่ 3.21 รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของเซรามิกในระบบ BaTi_{1-x}Sn_xO₃ และ (1-z)Ba(Ti_{0.88} Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ (ก) ช่วงมุมที่ 20 – 60° (ข) ช่วงมุมที่ 42 – 47° เมื่อซินเตอร์ภายใต้ เงื่อนไข CS (1450/120/0/0 และ 1350/120/0/0 ตามลำดับ)

รูปที่ 3.22 รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของเซรามิกในระบบ BaTi_{1-x}Sn_xO₃ และ (1-z)Ba(Ti_{0.88} Sn_{0.12})O₃ -zBa_{0.7}Ca_{0.3}TiO₃ 3TiO₃ (ก) ช่วงมุมที่ 20 – 60° (ข) ช่วงมุมที่ 42 – 47° เมื่อ ซินเตอร์ภายใต้เงื่อนไข TSS (1500/15/1150 และ 1500/15/900/6 ตามลำดับ)

3.2.2 ผลการศึกษาสมบัติทางกายภาพของเซรามิกที่มี BaTi_{1-x}Sn_xO₃ เป็นองค์ประกอบ

เมื่อพิจารณาค่าความหนาแน่นของเซรามิก (รูปที่ 3.23-3.26) พบว่า อุณหภูมิซินเตอร์ รูปแบบการซินเตอร์และปริมาณตัวเติม BCT ส่งผลต่อการแน่นตัวของสารตัวอย่างอย่างมีนัยสำคัญ สำหรับการ หดตัว พบค่ามีความสอดคล้องกับผลของค่าความหนาแน่น โดยมีค่าการหดตัวอยู่ในช่วง 12.0-13.5% เมื่ออุณหภูมิซินเตอร์แบบ CS เพิ่มขึ้น ความหนาแน่นมีค่าเพิ่มขึ้น โดยความหนาแน่นต่ำสุดที่ อุณหภูมิ 1350 °C และมีค่าเพิ่มขึ้นเมื่ออุณหภูมิซินเตอร์สูงขึ้น โดยที่ x = 0.12 มีความหนาแน่นสูงสุดที่ อุณหภูมิ 1400 °C โดยมีค่า 6.00 ± 0.03 g/cm³ ที่ x = 0.08 มีความหนาแน่นสูงสุดที่อุณหภูมิ 1450 °C จากนั้นความหนาแน่นลดลงเมื่ออุณหภูมิสูงขึ้นเป็น 1500 °C ซึ่งเกิดจากชิ้นงานหลอมตัว ในขณะที่ x = 0.04 มีความหนาแน่นสูงสุดที่อุณหภูมิ 1500 °C แต่มีค่าน้อยกว่าชิ้นงานอื่น ๆ (รูปที่ 3.23)

เมื่ออุณหภูมิซินเตอร์ (T₂) แบบ TSS เพิ่มขึ้น ชิ้นงานเมื่อ x = 0.04 และ x = 0.08 มีความ หนาแน่นใกล้เคียงกันทุกอุณหภูมิซินเตอร์ (รูปที่ 3.23) ซึ่งแสดงให้เห็นว่าการซินเตอร์แบบ TSS เมื่อเลือกใช้ อุณหภูมิเผาแซ่ที่ 700 °C สามารถซินเตอร์ชิ้นงานให้มีความหนาแน่นสูงเทียบเท่ากับการซินเตอร์ที่อุณหภูมิซิน เตอร์สูงๆได้ แต่สำหรับ x = 0.12 ในช่วงอุณหภูมิ T₂ 700 - 900 °C มีความแตกต่างออกไป คือมีความ หนาแน่นต่ำที่สุด หลังจากนั้นในช่วงอุณหภูมิตั้งแต่ 1000 – 1300 °C จะมีความหนาแน่นสูงที่ใกล้เคียงกัน เมื่อ x = 0.12 มีความหนาแน่นสูงสุดที่อุณหภูมิ (T₂) 1150 °C โดยมีค่า 6.10 ± 0.09 g/cm³ เมื่อเทียบกับการซิน เตอร์แบบ CS พบว่า การซินเตอร์แบบ CS ที่อุณหภูมิซินเตอร์ต่ำไม่สามารถให้ความหนาแน่นสูงเท่ากับที่ อุณหภูมิซินเตอร์สูง เหมือนกับการซินเตอร์แบบ TSS และเมื่ออุณหภูมิซินเตอร์สูงเกินไป ทำให้ความหนาแน่น ลดลง

รูปที่ 3.23 ความหนาแน่นของเซรามิกในระบบ BaTi_{1-x}Sn_xO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิแตกต่างกัน

ร**ูปที่ 3.24** ความหนาแน่นของเซรามิกในระบบ BaTi_{1-x}Sn_xO₃ เมื่อซินเตอร์แบบ TSS โดยแปรค่าอุณหภูมิ T₂ (1500/15/T₂/6)

สำหรับเซรามิกในระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ CS ค่า ความหนาแน่นมีแนวโน้มลดลงเมื่ออุณหภูมิเพิ่มขึ้น เนื่องจากชิ้นงานเริ่มหลอมบางส่วน (รูปที่ 3.25) แต่ที่ z = 0.1 มีความหนาแน่นสูงสุดที่อุณหภูมิ 1400 °C หลังจากนั้นลดลงตามอุณหภูมิที่สูงขึ้น ขณะที่ z = 0.2 และ 0.5 มีความหนาแน่นสูงสุดที่อุณหภูมิ 1350 °C โดยมีค่า 5.64 \pm 0.02 g/cm³ สำหรับชิ้นงานที่ซินเตอร์แบบ TSS พบว่าอุณหภูมิ T₂ ไม่ส่งผลต่อค่าความหนาแน่นอย่างมีนัยสำคัญ แต่ค่าความหนาแน่นจะขึ้นกับปริมาณ z เช่นเดียวกับกันเผาซินเตอร์แบบ CS (รูปที่ 3.26) โดยเมื่อ z = 0.1 มีความหนาแน่นสูงสุดที่อุณหภูมิ 1200 °C โดยมีค่า 5.81 \pm 0.07 g/cm³ ในขณะที่ z = 0.2 และ z = 0.5 มีความหนาแน่นใกล้เคียงกันในแต่ละอุณหภูมิ ซึ่งแสดงให้เห็นว่าการซินเตอร์แบบ TSS เมื่อเลือกใช้อุณหภูมิซินเตอร์ต่ำ สามารถซินเตอร์ชิ้นงานให้มีความ หนาแน่นสูงเทียบเท่ากับการซินเตอร์ที่อุณหภูมิซินเตอร์สูง ๆ ได้

ร**ูปที่ 3.25** ความหนาแน่นของเซรามิกในระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิแตกต่างกัน

รูปที่ 3.26 ความหนาแน่นของเซรามิกในระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ TSS โดยแปรค่าอุณหภูมิ T₂ (1500/15/T₂/6)

3.2.3 ผลการศึกษาโครงสร้างจุลภาคของเซรามิกที่มี BaTi_{1-x}Sn_xO₃ เป็นองค์ประกอบ

เมื่อพิจารณาโครงสร้างจุลภาคของเซรามิก (รูปที่ 3.27-3.34) พบว่า อุณหภูมิซินเตอร์รูปแบบ การซินเตอร์และปริมาณ z ส่งผลต่อขนาดและรูปร่างของเกรนของสารตัวอย่างอย่างมีนัยสำคัญ

สำหรับโครงสร้างจุลภาค พบว่าลักษณะเกรนเกิดการโตแบบไม่ปกติ คือ มีขนาดเล็กและใหญ่ ปะปนกันและมีรูปร่างแบบทรงสี่เหลี่ยมในเซรามิก BaTi_{1-x}Sn_xO₃ โดยเกรนมีขนาดโตขึ้น จัดเรียงตัวแน่น เมื่อ เพิ่มอุณหภูมิแบบ CS จาก 1400 – 1500 °C โดยมีขนาดโตที่สุดประมาณ 100 μ m และชิ้นงานเมื่อ x = 0.04 มีเริ่มหลอมอย่างเห็นได้ชัดที่อุณหภูมิ 1500 °C สำหรับเซรามิกในระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃zBa_{0.7}Ca_{0.3}TiO₃ เกรนมีรูปร่างเป็นทรงกลมและมีขนาดเล็กลงเมื่อปริมาณ z เพิ่มขึ้น แต่มีขนาดโตขึ้นเมื่อ อุณหภูมิซินเตอร์สูงขึ้นเช่นเดียวกับ BaTi_{1-x}Sn_xO₃ เมื่อพิจารณาชิ้นงานที่ซินเตอร์แบบ TSS พบว่าเกรนมีขนาด เล็กลงเมื่อเทียบกับการซินเตอร์แบบ CS ซึ่งแสดงว่าการซินเตอร์แบบ TSS สามารถยับยั้งการโตของเกรนได้ และการซินเตอร์แบบ TSS สามารถใช้อุณหภูมิ T₂ ต่ำ เพียง 700 °C ก็สามารถซินเตอร์เซรามิกที่มีโครงสร้าง จุลภาคที่แน่นได้

รูปที่ 3.27 ภาพถ่าย SEM ของเซรามิกในระบบ BaTi_{1-x}Sn_xO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1400 °C เมื่อ เติม Sn ที่ x = 0.12, 0.08 และ 0.04

รูปที่ 3.28 ภาพถ่าย SEM ของเซรามิกในระบบ BaTi_{1-x}Sn_xO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1500 °C เมื่อ เติม Sn ที่ x = 0.12, 0.08 และ 0.04

รูปที่ 3.29 ภาพถ่าย SEM ของเซรามิกในระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1350 °C เมื่อเติม BCT ที่ z = 0.1, 0.2 และ 0.5

รูปที่ 3.30 ภาพถ่าย SEM ของเซรามิกในระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1400 °C เมื่อเติม BCT ที่ z = 0.1, 0.2 และ 0.5

รูปที่ 3.31 ภาพถ่าย SEM ของเซรามิกในระบบ BaTi_{1-x}Sn_xO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1500/15/700/6 เมื่อเติม Sn ที่ x = 0.12, 0.08 และ 0.04

รูปที่ 3.32 ภาพถ่าย SEM ของเซรามิกในระบบ BaTi_{1-x}Sn_xO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1500/15/1200/6 เมื่อเติม Sn ที่ x = 0.12, 0.08 และ 0.04

รูปที่ 3.33 ภาพถ่าย SEM ของเซรามิกในระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1500/15/900/6 เมื่อเติม BCT ที่ z = 0.1, 0.2 และ 0.5

รูปที่ 3.34 ภาพถ่าย SEM ของเซรามิกในระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1500/15/1200/6 เมื่อเติม BCT ที่ z = 0.1, 0.2 และ 0.5

3.2.4 ผลการศึกษาสมบัติไดอิเล็กทริกของเซรามิกที่มี BaTi_{1-x}Sn_xO₃ เป็นองค์ประกอบ

สำหรับค่าสมบัติทางไฟฟ้าทำการศึกษาสมบัติไดอิเล็กทริก (โดยเลือกชิ้นงานที่มีค่าความ หนาแน่นใกล้เคียงกัน มาสูตรละ 2 ชิ้น เมื่อผ่านการทำอิเล็กโทรดแล้ว นำมาทำการศึกษาสมบัติไดอิเล็กทริก โดยแปรค่าความถี่ (0.1 – 200 kHz) และอุณหภูมิ (อุณหภูมิห้อง – 200 ℃ ที่ความถี่ 1, 10 และ 100 kHz) ได้ผลการวิจัยดังแสดงในรูปที่ 3.35-3.44 โดยพบว่า ค่าคงที่ไดอิเล็กทริกมีค่าขึ้นอยู่กับความถี่ อุณหภูมิ อุณหภูมิซินเตอร์ รูปแบบการเผาซินเตอร์ และปริมาณตัวเติม

เมื่อพิจารณาสมบัติไดอิเล็กทริกที่ขึ้นกับความถี่ (รูปที่ 3.35-3.42) พบว่า เมื่อความถี่เพิ่มขึ้น เซรามิกมีค่าคงที่ไดอิเล็กทริก (ε_r) และค่าการสูญเสียทางไดอิเล็กทริกในรูปของความร้อน (dissipation factor, tanδ) ลดลง ซึ่งเซรามิกที่มีความหนาแน่นสูงจะมีสมบัติไดอิเล็กทริกที่ดี ดังนี้

- ชิ้นงานที่ซินเตอร์แบบ CS พบว่า เมื่อปริมาณ Sn ที่เติมในระบบ BaTi_{1-x}Sn_xO₃ มีปริมาณ เพิ่มขึ้น ทำให้ค่าคงที่ไดอิเล็กทริกเพิ่มขึ้นและค่าการสูญเสียไดอิเล็กทริกลดลง โดยที่ความถี่ 1 kHz ค่าคงที่ได-อิเล็กทริกสูงสุดที่อุณหภูมิซินเตอร์ 1450 °C เมื่อ x = 0.12 โดยมีค่า ε_r เท่ากับ 22273 และค่า tan δ เท่ากับ 0.028 และสำหรับในระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อปริมาณ BCT (z) ที่เติมลงไปมี ปริมาณเพิ่มขึ้น ส่งผลให้ค่าคงที่ไดอิเล็กทริกลดลงและค่าการสูญเสียไดอิเล็กทริกแนวโน้มเพิ่มขึ้น ซึ่งค่าคงที่ ไดอิเล็กทริกสูงสุดที่อุณหภูมิซินเตอร์ 1400 °C เมื่อ z = 0.1 โดยมีค่า ε_r เท่ากับ 14129 และค่า tan δ เท่ากับ 0.045 ที่ความถี่ 1 kHz

- สำหรับเซรามิกที่ซินเตอร์แบบ TSS เซรามิกในระบบ BaTi_{1-x}Sn_xO₃ มีค่าคงที่ไดอิเล็กทริกสูง ที่อุณหภูมิซินเตอร์ (T₂) 1200 °C เมื่อเติม Sn ปริมาณสูง ที่ x = 0.12 โดยมีค่า ε_r เท่ากับ 25969 และมีค่า tanδ เท่ากับ 0.026 ที่ความถี่ 1 kHz สำหรับชิ้นงานระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ มีค่าคงที่ ไดอิเล็กทริกสูงที่อุณหภูมิซินเตอร์ (T₂) 1150 °C เมื่อเติมปริมาณ BCT ที่ z = 0.1 โดยมีค่า ε_r เท่ากับ 11569 และมีค่า tanδ เท่ากับ 0.026 ที่ความถี่ 1 kHz และสังเกตุได้ว่าการเติม BCT ปริมาณ 0.1 โมล ส่งผลให้ เซรามิกมีสมบัติไดอิเล็กทริกที่สูงกว่าเซรามิก BaTi_{1-x}Sn_xO₃ เมื่อ x = 0.04 และ 0.08

รูปที่ 3.35 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิกใน ระบบ BaTi_{1-x}Sn_xO₃ และ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ CS ที่ อุณหภูมิ 1400°C เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz

รูปที่ 3.36 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก BaTi_{1-x}Sn_xO₃ และ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1450°C เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz

รูปที่ 3.37 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก BaTi_{1-x}Sn_xO₃ และ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1500°C เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz

รูปที่ 3.38 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก BaTi_{1-x}Sn_xO₃ และ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1500/15/700/6 เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz

รูปที่ 3.39 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก BaTi_{1-x}Sn_xO₃ และ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1500/15/900/6 เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz

รูปที่ 3.40 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก BaTi_{1-x}Sn_xO₃ และ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1500/15/1150/6 เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz

รูปที่ 3.41 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก BaTi_{1-x}Sn_xO₃ และ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1500/15/1200/6 เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz

(ข)

รูปที่ 3.42 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก BaTi_{1-x}Sn_xO₃ และ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1500/15/1300/6 เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz

เมื่อพิจารณาสมบัติไดอิเล็กทริกที่ขึ้นกับอุณหภูมิ (รูปที่ 3.43-3.44) พบว่า เมื่ออุณหภูมิสูงขึ้นค่าคงที่ ไดอิเล็กทริกจะเพิ่มขึ้นจนถึงจุดๆ หนึ่งซึ่งเป็นจุดสูงสุดของพีค โดยเซรามิกแสดงพีคการเปลี่ยนแปลงของค่าคงที่ ไดอิเล็กทริกขึ้นที่อุณหภูมิ transition 2 อุณหภูมิ ซึ่งพีคแรกจะบ่งบอกถึงการเปลี่ยนแปลงเฟสจาก orthorhombic ไปสู่ tetragonal (T_{O-T}) และพีคที่สองจะบอกถึงการเปลี่ยนแปลงเฟสจาก tetragonal ไปสู่ cubic (T_c) สำหรับเซรามิกที่ทำการเผาซินเตอร์แบบ CS ในระบบ BaTi_{1-x}Sn_xO₃ ที่อุณหภูมิซินเตอร์เดียวกัน พบว่าเมื่อปริมาณ Sn มากขึ้น ส่งผลให้ T_c ลดลง สำหรับในระบบ (1-z)Ba(Ti_{0.88}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ พบว่าเมื่อปริมาณ BCT เพิ่มขึ้น ส่งผลให้ T_C สูงขึ้นด้วย และเมื่ออุณหภูมิซินเตอร์เพิ่มขึ้น ส่งผลให้ T_C , $\mathbf{\epsilon}_r$ และ tan δ สูงขึ้นสำหรับเซรามิก BaTi_{1-x} Sn_xO₃ และ T_C ลดลง สำหรับในระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ TSS ทั้งเซรามิก BaTi_{1-x}Sn_xO₃ เมื่ออุณหภูมิ T₂ สูงขึ้น ส่งผลให้ T_C , $\mathbf{\epsilon}_r$ และ tan δ สูงขึ้น ในขณะที่เซรามิก (1-z)Ba(Ti_{0.88}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ มีค่า T_C เพิ่มขึ้นเล็กน้อย แต่ค่า $\mathbf{\epsilon}_r$ และ tan δ ลดลงเมื่ออุณหภูมิซินเตอร์ T₂ สูงขึ้น ดังแสดงในตารางที่ 3.9-3.10

สำหรับการศึกษาอุณหภูมิการเปลี่ยนแปลงเฟสเฟร์โรอิเล็กทริก-พาราอิเล็กทริกของเซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ พบว่ามีลักษณะสอดคล้องกับการศึกษาสมบัติไดอิเล็กทริกเทียบอุณหภูมิ

รูปที่ 3.43 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับอุณหภูมิของเซรามิก ในระบบ BaTi_{1-x}Sn_xO₃ และ (1-z)Ba(Ti_{0.88}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ CS ที่ อุณหภูมิ 1450°C เมื่อวัดที่ความถี่ 1 kHz

ตารางที่ 3.9 ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกของชิ้นงานในระบบ BaTi _{1-x} Sn _x O ₃ แล
(1-z)Ba(Ti _{0.85} Sn _{0.12})O ₃ -zBa _{0.7} Ca _{0.3} TiO ₃ ที่ผ่านการเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1450°C เมื่
วัดที่ความถี่ 1, 10 และ 100 kHz

ความถี่ (kHz)	สูตร	T _c (°C)	€ _r (T _c)	tan δ (T _c)
1	x = 0.12	< 25	-	-
	x = 0.08	46	18769.5	0.0412
	x = 0.04	74	16239.0	0.0138
	z = 0.1	27	11227.2	0.0433
	z = 0.2	30	8018.1	0.0798
	z = 0.5	48	6599.3	0.0254
10	x = 0.12	< 25	-	-
	× = 0.08	46	18774.1	0.0410
	x = 0.04	73	15816.5	0.0277
	z = 0.1	26	10447.9	0.0389
	z = 0.2	30	7244.0	0.0851
	z = 0.5	48	6409.7	0.0198
100	x = 0.12	< 25	-	-
	× = 0.08	46	18778.0	0.0409
	x = 0.04	73	15223.3	0.0577
	z = 0.1	27	10105.4	0.0382
	z = 0.2	30	6332.9	0.2421
	z = 0.5	48	6246.8	0.0233

รูปที่ 3.44 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับอุณหภูมิของเซรามิก BaTi_{1-x}Sn_xO₃ และ (1-z)Ba(Ti_{0.88}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1500/15/1200/6 เมื่อวัดที่ความถี่ 1 kHz

ความถี่ (kHz)	สูตร	T _C (°C)	€ _r (T _C)	tan δ (T _c)
1	x = 0.12	< 25	_	-
	× = 0.08	46	19982.1	0.0275
	x = 0.04	73	16391.5	0.0212
	z = 0.1	27	10999.3	0.0280
	z = 0.2	31	7975.3	0.0482
	z = 0.5	43	6788.1	0.0191
10	x = 0.12	< 25	-	-
	× = 0.08	46	19152.3	0.0979
	x = 0.04	73	15930.8	0.0546
	z = 0.1	26	10541.6	0.0333
	z = 0.2	31	7511.0	0.0984
	z = 0.5	43	6639.8	0.0182
100	x = 0.12	< 25	21064.1	0.4610
	× = 0.08	48	13171.2	0.5865
	× = 0.04	73	13786.4	0.3380
	z = 0.1	26	10174.6	0.0850
	z = 0.2	31	4937.1	0.6968
	z = 0.5	44	6501.6	0.0520

ตารางที่ 3.10 ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกของเซรามิก BaTi_{1-x}Sn_xO₃ และ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ ที่ผ่านการเผาซินเตอร์แบบ TSS ที่อุณหภูมิ (T₂) 1200°C เมื่อวัดที่ความถี่ 1,10 และ 100 kHz

3.2.5 ผลการศึกษาสมบัติเพียโซอิเล็กทริกของเซรามิกที่มี BaTi_{1-x}Sn_xO₃ เป็นองค์ประกอบ

สำหรับสมบัติเพียโซอิเล็กทริกของเซรามิก BaTi_{1-x}Sn_xO₃ และ (1-z)Ba(Ti_{0.88}Sn_{0.12})O₃-zBa_{0.7} Ca_{0.3}TiO₃ พบว่าค่า d_{33} มีค่าขึ้นอยู่กับอุณหภูมิซินเตอร์ เวลาที่ใช้ในการซินเตอร์ และรูปแบบการเผาซินเตอร์ ดังแสดงในรูปที่ 3.45-3.46 โดยค่าเพียโซอิเล็กทริก (d_{33}) ของเซรามิกในระบบ BaTi_{1-x}Sn_xO₃ และ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ ที่ผ่านการเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1350, 1400, 1450 และ 1500 °C ในระบบ BaTi_{1-x}Sn_xO₃ พบว่า ทุกอุณหภูมิซินเตอร์มีค่าเพียโซอิเล็กทริก (d_{33}) สูงสุดที่ x = 0.08 โดยมีค่า 465 pC/N และสำหรับระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ พบว่ามีค่าเพียโซอิเล็กทริก (d_{33}) น้อยกว่าระบบ BaTi_{1-x}Sn_xO₃ มาก โดยมีค่าสูงสุดที่ z = 0.1 มีค่า 84.3 pC/N และที่ผ่านการซินเตอร์ แบบ TSS ที่อุณหภูมิ T₂ เท่ากับ 700, 900, 1100, 1150, 1200, 1250 และ 1300 °C ในระบบ BaTi_{1-x}Sn_xO₃ พบว่า ทุกอุณหภูมิมีค่าเพียโซอิเล็กทริก (d₃₃) สูงสุดที่ x = 0.08 โดยมีค่า 447 pC/N และระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ พบว่ามีค่ามีค่าเพียโซอิเล็กทริก (d₃₃) สูงสุดที่ z = 0.5 มีค่า 71.7 pC/N

รูปที่ 3.45 ค่าคงเพียโซอิเล็กทริก (d₃₃) ของเซรามิก BaTi_{1-x}Sn_xO₃ และ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃- zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1350, 1400, 1450 และ 1500 °C

รูปที่ 3.46 ค่าคงเพียโซอิเล็กทริก (d₃₃) ของเซรามิก BaTi_{1-x}Sn_xO₃ และ (1-z)Ba(Ti_{0.88}Sn_{0.12})O₃ - zBa_{0.7}Ca_{0.3}TiO₃ เมื่อซินเตอร์แบบ TSS โดยแปรค่าอุณหภูมิ (T₂) 1300, 1250, 1200, 1150, 1100, 900 และ 700 ℃

3.3 ผลการศึกษาเซรามิก ($Ba_{1-a}Ca_a$)($Ti_{1-b}Zr_b$) O_3

ได้ทำการศึกษาเซรามิกในระบบ (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃ เพื่อศึกษาหาปริมาณ Ca และ Zr ที่เหมาะสม เนื่องจากการเติมเซรามิกในระบบ Ba_{0.7}Ca_{0.3}TiO₃ ทำให้เซรามิกในระบบ (1-z)Ba(Ti_{0.88}Sn_{0.12})O₃ –zBa_{1-x} Ca_xTiO₃ มีสมบัติทางไฟฟ้าที่ไม่ดี ซึ่งได้ทำการศึกษาระบบ (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 และ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 โดยทำการเผาแคลไซน์ที่อุณหภูมิ 1000 - 1050 °C เป็นเวลานาน 2 ชั่วโมง และเผาซินเตอร์ด้วยวิธีที่แตกต่างกัน 2 วิธี คือ การซินเตอร์แบบปกติ (CS) ที่ อุณหภูมิ 1200 - 1400 °C เป็นเวลานาน 2 ชั่วโมง (T₁/t₁/0/0) และการซินเตอร์แบบ 2 ขั้นตอน (TSS, T₁/t₁/T₂/t₂) โดยในช่วงแรกจะเผาที่อุณหภูมิสูง (T₁) 1400 °C และแช่ทิ้งไว้เพียง 0, 15 นาที (t₁) จากนั้นลด อุณหภูมิเผาแช่มาที่อุณหภูมิ 550-1200 (T₂) เป็นเวลานาน 6 ชั่วโมง (t₂) ได้ผลการวิจัยดังนี้

3.3.1 ผลการศึกษาพฤติกรรมการเกิดเฟสของเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃ด้วยเทคนิคการ เลี้ยวเบนของรังสีเอกซ์ (XRD)

จากรูปที่ 3.47-3.48 แสดงผลการวิเคราะห์โครงสร้างของขึ้นงานเซรามิกในระบบ (Ba_{1-a}Ca_a) (Ti_{1-b}Zr_b)O₃ ที่ทำการเผาซินเตอร์แบบ CS สังเกตเห็นว่ามีการเปลี่ยนแปลงของพีค XRD คือ เมื่อปริมาณ b ที่ เท่ากัน แต่ a ต่างกัน พีคที่ได้เกิดการเลื่อนไปทางขวาและชิ้นตัวอย่างจะมีโครงสร้างแบบเพอรอฟสไกต์ และมี เฟสที่สองเกิดขึ้นเมื่อ a = 0.4 เมื่อพิจารณาพีค XRD ที่มุม 20 ประมาณ 45 - 46° จะมีโครงสร้างผลึกเป็นเฟส เตตระโกนอล ยกเว้นสูตร a = 0.05, b = 0.025 และ a = 0.05, b = 0.05 มีโครงสร้างผลึกแบบออร์โธรอมบิก สำหรับกรณีการเผาซินเตอร์แบบ TSS (3.49-3.50) สังเกตเห็นว่ามีการเปลี่ยนแปลงของพีค XRD คือ เมื่อปริมาณ b ที่ เมื่อปริมาณ b ที่ เท่ากัน แต่ a ต่างกัน พบว่าพีคเลื่อนไปยังมุมที่สูงขึ้นเล็กน้อย แต่ไม่มีการเปลี่ยนแปลง โครงสร้างผลึก โดยโครงสร้างผลึกยังคงเป็นแบบเตตระโกนอลและเกิดเฟสที่สอง เมื่อ a = 0.4 เช่นเดียวกันกับ ขึ้นงานที่ซินเตอร์แบบ CS

รูปที่ 3.47 รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของเซรามิกในระบบ (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃ เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 เมื่อเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1300 °C (* เฟสที่สอง)

รูปที่ 3.48 รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของชิ้นงานเซรามิก (Ba_{1-a} Ca_a)(Ti_{1-b} Zr_b)O₃ O₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 และทำการเผาซินเตอร์แบบ CS ในอุณหภูมิ 1300℃ (* เฟสที่สอง)

รูปที่ 3.49 รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃ เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 ที่ผ่านการเผาซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/750/6 (*เฟสที่สอง)

รูปที่ 3.50 รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของชิ้นงานเซรามิก (Ba_{1-a} Ca_a)(Ti_{1-b} Zr_b)O₃ O₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 และทำการเผาซินเตอร์แบบ TSS ในเงื่อนไข1400/15/700/6 (* เฟส ที่สอง)

3.3.2 ผลการศึกษาสมบัติทางกายภาพของเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃

เมื่อตรวจสอบความหนาแน่นเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b} Zr_b)O₃ เมื่อซินเตอร์แบบ CS ดังแสดงใน รูปที่ 3.51 พบว่าในช่วงแรกที่อุณหภูมิ 1200 °C ที่ a = 0.05, b = 0 มีค่าความหนาแน่นสูงสุดประมาณ 5.57 ± 0.09 g/cm³ และความหนาแน่นจะเพิ่มขึ้นอย่างรวดเร็วจนถึงอุณหภูมิ 1250 °C ซึ่งมีค่าความ หนาแน่นสูงสุดประมาณ 5.81 ± 0.02 g/cm³ หลังจากนั้นความหนาแน่นจะเพิ่มขึ้นเรื่อยๆ เมื่ออุณหภูมิชิน เตอร์สูงขึ้นจนถึงอุณหภูมิ 1400 °C ที่ a = 0.05, 0.1 และ 0.2 เมื่อ b = 0 มีค่าความหนาแน่นสูงสุดประมาณ 5.81± 0.08 g/cm³ ในขณะที่ a = 0.3 และ 0.4 ความหนาแน่นลดลงเมื่ออุณหภูมิชินเตอร์เพิ่มสูงขึ้น จนถึง อุณหภูมิ 1400 °C มีค่าความหนาแน่นประมาณ 5.04 ± 0.03 g/cm³ เนื่องจากอุณหภูมิในการซินเตอร์ เพิ่มขึ้นจนเลยอุณหภูมิที่เหมาะสมของขึ้นงานทำให้ชิ้นงานเกิดการหลอมค่าความหนาแน่นที่ได้จึงลงที่ a = 0.4 อุณหภูมิ 1300 °C มีค่าความหนาแน่นประมาณ 5.26 ± 0.06 g/cm³ เฉื่องจากอุณหภูมิ1400 °C มีค่าความหนาแน่นประมาณ 5.04 ± 0.03 g/cm³ ดังนั้น จึงสามารถสรุปได้ว่า การเติม Ca ในปริมาณ มาก (a = 0.4) จะส่งผลให้ความหนาแน่นดลงเมื่ออุณหภูมิชินเตอร์เพิ่มสูงขึ้น ในขณะที่ชิ้นงานที่มีการเดิม Zr (a = 0.05, b = 0.05) พบว่าในช่วงแรกที่อุณหภูมิ 1200 °C มีค่าความหนาแน่นประมาณ 5.05 ± 0.19 g/cm³ และความหนาแน่นเพิ่มขึ้นอย่างรวดเร็วจนถึงอุณหภูมิ 1250 °C ซึ่งมีค่าความหนาแน่นสูงสุดประมาณ 5.74 ± 0.03 g/cm³ หลังจากนั้นความหนาแน่นจะเพิ่มขึ้นเรื่อย ๆ เมื่ออุณหภูมิชินเตอร์สูงขึ้นจนถึง 1400 °C มีค่าความหนาแน่นลูงสุดประมาณ 5.81 ± 0.05 g/cm³

สำหรับกรณี b = 0.025, a = 0.05, 0.2, 0.4 และ b = 0.05, a = 0.2, 0.4 (รูปที่ 3.52) เมื่อ ปริมาณ a เพิ่มขึ้นทำให้ค่าความหนาแน่นลดลง และเมื่อพิจารณากรณี b = 0.025 และ b = 0.05 ที่ปริมาณ a เท่ากัน พบว่าความหนาแน่นมีค่าลดลง และเมื่ออุณหภูมิซินเตอร์เพิ่มขึ้นค่าความหนาแน่นจะใกล้เคียงกัน ยกเว้นที่อุณหภูมิ 1250℃

รูปที่ 3.51 ผลการตรวจสอบค่าความหนาแน่นของชิ้นงานเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b} Zr_b)O₃ เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 ที่ผ่านการเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1200, 1250, 1300, 1350 และ 1400 °C

รูปที่ 3.52 ความหนาแน่นของชิ้นงานเซรามิก (Ba_{1-a} Ca_a)(Ti_{1-b} Zr_b)O₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 เมื่อซินเตอร์แบบ CS ผ่านการเผาซินเตอร์ที่อุณหภูมิ 1250, 1300, 1350 และ 1400 °C

เมื่อตรวจสอบความหนาแน่นเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b} Zr_b)O₃ ที่ผ่านการเผาซินเตอร์แบบ TSS ดังแสดงในรูปที่ 3.53 พบว่าแนวโน้มของกราฟค่อนข้างคงที่ อาจมีการเปลี่ยนแปลงบ้างเล็กน้อยโดย a = 0.2, b = 0 มีค่าความหนาแน่นสูงสุด คือ 5.64 ± 0.02 g/cm³เมื่อใช้เงื่อนไข 1400/15/750/6 แน้วโน้มของ ชิ้นงานเมื่อ a = 0.05, b = 0.05 สังเกตได้ว่ามีค่าความหนาแน่นสูงที่สุด ซึ่งมีความหนาแน่นสูงสุดประมาณ 5.89 ± 0.06 g/cm³ และเมื่อ a = 0.4 ให้ค่าความหนาแน่นน้อยที่สุด เช่นเดียวกับการซินเตอร์แบบ CS ดังนั้น จึงสามารถสรุปได้ว่า การเติม Ca ในปริมาณมาก (a = 0.4) จะส่งผลให้ความหนาแน่นลดลงเมื่ออุณหภูมิซิน เตอร์เพิ่มสูงขึ้น ในขณะที่ชิ้นงานที่มีการเติม Zr (a = 0.05, b = 0.05) พบว่ามีค่าความหนาแน่นใกล้เคียงกัน ทุกอุณหภูมิ T₂ โดยมีค่าสูงสุดที่อุณหภูมิ 550 °C มีค่าความหนาแน่นประมาณ 5.89 ± 0.09 g/cm³

เมื่อทำการเปรียบเทียบระหว่างชิ้นงานที่มีการเติม Zr (b = 0.05) กับชิ้นงานที่ไม่มีการเติม Zr พบว่า ชิ้นงานจะมีค่าความหนาแน่นที่ใกล้เคียงกัน แต่จะแตกต่างกันที่ในช่วงแรกที่อุณหภูมิ 550°C ชิ้นงาน ที่มีการเติม Zr จะมีค่าความหนาแน่นสูงกว่าชิ้นงานที่ไม่มีการเติม Zr มีค่าความหนาแน่นสูงสุดประมาณ 5.89 ± 0.09 g/cm³

เมื่อตรวจสอบความหนาแน่นเซรามิกในระบบ (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃ เมื่อแปรค่าอุณหภูมิ T₂ (1400/15/T₂/6) และ t₁ (1400/t₁/T₂/6) ดังแสดงในรูปที่ 3.54 พบว่ากรณีที่แปรค่าอุณหภูมิ T₂ (b = 0.025, a = 0.05, 0.2, 0.4 และ b = 0.05, a = 0.2, 0.4) เมื่อปริมาณ a เพิ่มขึ้น ทำให้ค่าความหนาแน่นลดลง และ เมื่อพิจารณาที่ b ต่างกัน พบว่าค่าความหนาแน่นใกล้เคียงกัน ซึ่งแสดงว่าปริมาณ Ca (a) ที่เติมลงไปมีผลทำให้ ความหนาแน่นลดลง ในขณะที่ Zr (b) ไม่ส่งผลต่อค่าความหนาแน่นในระบบนี้ และกรณีแปรค่าเวลา t₁ (1400/t₁/T₂/6) จะเห็นว่าเงื่อนไข 1400/0/700/6 จะมีค่าความหนาแน่นมากกว่าเงื่อนไข 1400/15/700/6 จึงทำให้สรุปได้ว่าที่ a = 0.05, b = 0.025 ในกระบวนการซินเตอร์แบบ TSS จะมีค่าความหนาแน่นดีกว่าการ ซินเตอร์แบบ CS

รูปที่ 3.53 ผลการตรวจสอบค่าความหนาแน่นของชิ้นงานเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b} Zr_b)O₃ เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 ที่ผ่านการเผาซินเตอร์แบบ TSS โดยใช้ เงื่อนไข 1400/15/T₂/6

รูปที่ 3.54 ความหนาแน่นของชิ้นงานเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 และซินเตอร์แบบ TSS โดยแปรค่าอุณหภูมิ T₂ (1400/15/T₂/6) และเวลา t₁ (1400/t₁/T₂/6)

3.3.3 ผลการศึกษาโครงสร้างจุลภาคของเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O_3

จากภาพ SEM ในรูปที่ 3.55-3.58 ของเซรามิกในระบบ ($Ba_{1-a}Ca_a$)($Ti_{1-b}Zr_b$)O₃ เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 ที่ผ่านการเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1300 °C และ 1350 °C พบว่าเมื่อ a = 0.05, b = 0.05 เกรนมีขนาดใหญ่ที่สุดและเกรนมีขนาดเล็กลงเมื่อปริมาณ ของ Ca เพิ่มมากขึ้น เกรนมีลักษณะเป็นทรงสี่เหลี่ยม ขนาดเล็กใหญ่ปะปนกันไป ขอบเกรนเห็นซัดขึ้น เกรนมี การจัดเรียงตัวกันอย่างหนาแน่นมากยิ่งขึ้น เมื่อสังเกตภาคตัดขวาง พบว่ารูพรุนมีอยู่กระจัดกระจาย แต่มี จำนวนรูพรุนลดน้อยลง และขนาดของรูพรุนเล็กน้อยลง ดังนั้นสามารถบอกได้ว่า Ca เป็นตัวยับยั้งการโตของ เกรน และ Zr ทำให้เกรนมีขนาดโตขึ้น สำหรับเซรามิกที่ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 สังเกตได้ว่า เกรนมีขนาดเล็กลงเมื่อทำการเผาซินเตอร์ในอุณหภูมิที่สูงขึ้น โดยเมื่อปริมาณ a เพิ่มขึ้น (b = 0.025, a = 0.05, 0.2, 0.4 และ b = 0.05, a = 0.2, 0.4) เกรนมีขนาดเล็กลง เกิดการแน่นตัวมากขึ้น และเมื่อพิจารณา กรณีที่ b ต่างกัน (ปริมาณ a เท่ากัน) พบว่า b = 0.05 เกรนจะมีขนาดเล็กกว่า จะเห็นว่าเมื่อปริมาณ a และ b เพิ่มขึ้นจะทำให้เกรนมีขนาดเล็กลง

ในกรณีของการซินเตอร์แบบ TSS (รูปที่ 3.59-3.62) พบว่าขนาดของเกรนเล็กลง เมื่อปริมาณ Ca เพิ่มมากขึ้น ซึ่ง a = 0.05, b = 0.05 มีขนาดของเกรนใหญ่ที่สุดเกรนมีลักษณะเป็นทรงสี่เหลี่ยม เช่นเดียวกับกรณีซินเตอร์แบบ CS เมื่อทำการเปรียบเทียบขนาดเกรนของชิ้นงานเซรามิกที่ผ่านการเผาซินเตอร์ ทั้งสองรูปแบบ พบว่า การเผาซินเตอร์แบบ TSS ทำให้ชิ้นงานมีขนาดเกรนที่เล็กกว่าการเผาซินเตอร์แบบ CS สำหรับชิ้นงานที่ทำการเผาแบบ TSS เมื่อทำการเพิ่มอุณหภูมิ 1400/15/T₂/6 คือ 700, 1100 เห็นได้ว่าเมื่อทำ การเพิ่มอุณหภูมิขนาดของเกรนไม่แตกต่างกันมากนัก แต่เมื่อเพิ่มปริมาณ a และ b จะทำให้เกรนมีขนาดเล็ก ลง

เมื่อแปรค่าเวลา 1400/t₁/700/6 โดยไม่ทำการแซ่ไว้ก่อนขึ้น two-step sintering กับทำการ แซ่ไว้ 15 นาที พบว่าที่ปริมาณ a และ b ทุกกรณี เกรนที่ไม่ได้ทำการแซ่ไว้จะมีขนาดเกรนเฉลี่ยน้อยกว่าเกรนที่ ทำการแซ่ไว้ 15 นาที เนื่องจากเกรนที่ทำการแซ่ไว้เป็นเวลา 15 นาที จะมีเวลาในการเคลื่อนตัวของอนุภาคเกิด เป็นเกรนที่มีขนาดใกล้เคียงกัน ซึ่งแตกต่างกับเกรนที่ไม่ได้ทำการแซ่ เพราะเกรนที่ได้มีขนาดที่แตกต่างกัน ดังนั้นจึงสรุปได้ว่าเมื่อปริมาณ a และ b เพิ่มขึ้นจะทำให้เกรนมีขนาดเล็กลง การซินเตอร์แบบ TSS ที่เงื่อนไข 1400/0/700/6 เกรนมีขนาดเล็กที่สุด และมีขนาดเล็กกว่าการซินเตอร์แบบ CS

รูปที่ 3.55 ภาพถ่าย SEM ของชิ้นงานเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b} Zr_b)O₃ เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 เมื่อเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1300 °C

รูปที่ 3.56 ภาพถ่าย SEM ของชิ้นงานเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b} Zr_b)O เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 เมื่อเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1350 °C

รูปที่ 3.57 ภาพถ่าย SEM ของชิ้นงานตัวอย่างเซรามิก (Ba_{1-a} Ca_a)(Ti_{1-b} Zr_b)O₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 เมื่อเผาซินเตอร์แบบ CS เมื่อทำการแปรค่าอุณหภูมิ 1300 ℃ (ก) และ (ข) ผิวหน้า (ค) ภาคตัดขวาง

ร**ูปที่ 3.58** ภาพถ่าย SEM ของชิ้นงานตัวอย่างเซรามิก (Ba_{1-a} Ca_a)(Ti_{1-b} Zr_b)O₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 เมื่อเผาซินเตอร์แบบ CS เมื่อทำการแปรค่าอุณหภูมิ 1350 ℃ (ก) และ (ข) ผิวหน้า (ค) ภาคตัดขวาง

รูปที่ 3.59 ภาพถ่าย SEM ของชิ้นงานเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b} Zr_b)O เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 เมื่อเผาซินเตอร์แบบTSSโดยใช้เงื่อนไข 1400/15/750/6

รูปที่ 3.60 ภาพถ่าย SEM ของชิ้นงานเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b} Zr_b)O เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 เมื่อเผาซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/1100/6

รูปที่ 3.61 ภาพถ่าย SEM ของชิ้นงานตัวอย่างเซรามิก (Ba_{1-a} Ca_a)(Ti_{1-b} Zr_b)O₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 เมื่อเผาซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/700/6 (ก) และ (ข) ผิวหน้า (ค) ภาคตัดขวาง

รูปที่ 3.62 ภาพถ่าย SEM ของชิ้นงานตัวอย่างเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 เมื่อเผาซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/1100/6 (ก) และ (ข) ผิวหน้า (ค) ภาคตัดขวาง

	ขนาดเกรน (µm)			
0 11 ILL 9 PUS D	1300 °C	1350 °C		
a = 0.05, b = 0	24.0 ± 3.3	27.8 ± 4.9		
a = 0.1, b = 0	26.9 ± 4.4	19.8 ± 4.3		
a = 0.2, b = 0	10.6 ± 4.3	13.1 ± 3.1		
a = 0.3, b = 0	2.8 ± 0.7	4.4 ± 0.9		
a = 0.4, b = 0	1.6 ± 0.3	1.3 ± 0.4		
a = 0.05, b = 0.025	72.1 <u>+</u> 9.3	23.9 <u>+</u> 3.2		
a = 0.2, b = 0.025	7.3 <u>+</u> 1.8	11.4 <u>+</u> 2.9		
a = 0.4, b = 0.025	1.2 <u>+</u> 0.2	1.6 <u>+</u> 0.2		
a = 0.05, b = 0.05	40.4 ±5.1	44.4 ± 8.3		
a = 0.2, b = 0.05	4.6 <u>+</u> 1.4	7.4 <u>+</u> 1.5		
a = 0.4, b = 0.05	1.6 <u>+</u> 0.2	1.3 <u>+</u> 0.1		

ตารางที่ 3.11 ขนาดเกรนของเซรามิก (Ba_{1-a} Ca_a)(Ti_{1-b} Zr_b)O₃ ที่ทำการเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1300°C และ 1350°C

ตารางที่ 3.12 ขนาดเกรนของเซรามิก (Ba_{1-a} Ca_a)(Ti_{1-b} Zr_b)O₃ ที่ทำการเผาซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/550/6, 1400/0/700/6, 1400/15/750/6 และ 1400/15/1100/6

ปริมาณ a และ b	ขนาดเกรน (µm)			
	1400/15/550/6	1400/0/700/6	1400/15/700/6	1400/15/1100/6
a = 0.05, b = 0	30.7 ± 4.3	-	27.6 ± 2.7	28.9 ± 5.9
a = 0.1, b = 0	22.0 ± 9.1	-	22.0 ± 6.9	17.7 ± 1.6
a = 0.2, b = 0	16.1 ± 3.4	-	12.3 ± 0.9	16.9 ± 4.7
a = 0.3, b = 0	3.9 ± 0.5	-	4.0 ± 0.8	3.6 ± 0.5
a = 0.4, b = 0	1.4 ± 0.4	-	1.1 ± 0.2	1.3 ± 0.3
a = 0.05, b = 0.05	31.7 ± 2.7	-	40.3 ± 8.7	49.5 ± 8.8
a = 0.05, b = 0.025	-	12.0 <u>+</u> 1.8	42.9 <u>+</u> 5.2	41.3 <u>+</u> 12.4
a = 0.2, b = 0.025	-	11.7 <u>+</u> 1.4	17.9 <u>+</u> 2.2	16.5 <u>+</u> 1.2
a = 0.4, b = 0.025	-	1.4 <u>+</u> 0.1	2.1 <u>+</u> 0.5	1.3 <u>+</u> 0.2
a = 0.2, b = 0.05	-	1.8 <u>+</u> 0.2	6.9 <u>+</u> 1.4	4.1 <u>+</u> 0.7
a = 0.4, b = 0.05	-	1.5 <u>+</u> 0.1	1.4 <u>+</u> 0.1	1.6 <u>+</u> 0.1

3.3.4 ผลการศึกษาสมบัติไดอิเล็กทริกของเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃

จากรูปที่ 3.63-3.66 แสดงค่าคงที่ไดอิเล็กทริก (a) และค่าสูญเสียไดอิเล็กทริก (b) เทียบกับ ความถี่ของชิ้นงานเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O ที่ผ่านการเผาซินเตอร์แบบ CS เมื่อทำการวัดที่อุณหภูมิห้อง โดยแปรค่าความถี่ในช่วง 0.1 kHz - 200 kHz พบว่าเมื่อความถี่เพิ่มมากขึ้นจะส่งผลให้ค่าคงที่ไดอิเล็กทริก และค่าการสูญเสียไดอิเล็กทริกมีแนวโน้มลดลงในทุกสารตัวอย่าง และเมื่อพิจารณาค่าคงที่ไดอิเล็กทริกและค่า การสูญเสียไดอิเล็กทริกของชิ้นงานเมื่อ a = 0.05, b = 0.05 พบว่ามีค่าคงที่ไดอิเล็กทริกที่ดีและมีค่าการ สูญเสียไดอิเล็กทริกที่ต่ำ และเมื่อพิจารณาที่ปริมาณ Ca พบว่าเซรามิกที่เติม Ca ในปริมาณน้อยจะส่งผลต่อ สมบัติไดอิเล็กทริกที่ดี เมื่อปริมาณ a เพิ่มขึ้น (b = 0.025, a = 0.05, 0.2, 0.4) และ (b = 0.05, a = 0.2, 0.4) จะเห็นว่าค่าคงที่ไดอิเล็กทริกจะลดลงและเมื่อพิจารณากรณีที่ b ต่างกัน (ปริมาณ a เท่ากัน) พบว่าค่าคงที่ได-อิเล็กทริกจะลดลงด้วยเช่นกัน

สำหรับเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b} Zr_b)O ที่ผ่านการเผาซินเตอร์แบบ TSS (รูปที่ 3.67-3.70) เมื่อ ทำการวัดที่อุณหภูมิห้องโดยแปรค่าความถี่ในช่วง 0.1 kHz - 200 kHz พบว่าเมื่อความถี่เพิ่มมากขึ้นจะส่งผลให้ ค่าคงที่ไดอิเล็กทริก และค่าการสูญเสียไดอิเล็กทริกมีแนวโน้มลดลงในทุกสารตัวอย่างเช่นเดียวกัน และเมื่อ พิจารณาค่าคงที่ไดอิเล็กทริก และค่าการสูญเสียไดอิเล็กทริกที่ a = 0.05, b = 0.05 พบว่ามีค่าคงที่ไดอิเล็กท ริกที่ดี และมีค่าการสูญเสียไดอิเล็กทริกที่ต่ำ และเมื่อพิจารณาที่ปริมาณ Ca พบว่าชิ้นงานตัวอย่างเซรามิกที่เติม Ca ในปริมาณน้อยจะส่งผลต่อสมบัติไดอิเล็กทริกที่ดี เมื่อปริมาณ a เพิ่มขึ้น (b = 0.025, a = 0.05, 0.2, 0.4) และ (b = 0.05, a = 0.2, 0.4) จะเห็นว่าค่าคงที่ไดอิเล็กทริกจะลุงกว่า ที่ b = 0.025

รูปที่ 3.63 ค่าคงที่ไดอิเล็กทริก (ก) และค่าสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของชิ้นงานเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b} Zr_b)O เมื่อ a 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 ที่ผ่าน การเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1300 °C

ร**ูปที่ 3.64** ค่าคงที่ไดอิเล็กทริก (ก) และค่าสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก (Ba_{1-a}Ca_a) (Ti_{1-b} Zr_b)O เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 ที่ผ่านการเผา ซินเตอร์แบบ CS ที่อุณหภูมิ 1350 °C

รูปที่ 3.65 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 เมื่อเผาซินเตอร์แบบ CS ที่ อุณหภูมิ 1300 ℃ เมื่อวัดที่ความถี่ 0.1 kHz - 200 kHz

รูปที่ 3.66 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 เมื่อเผาซินเตอร์แบบ CS ที่ อุณหภูมิ 1350 ℃ เมื่อวัดที่ความถี่ 0.1 kHz - 200 kHz

รูปที่ 3.67 ค่าคงที่ไดอิเล็กทริก (ก) และค่าสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก (Ba_{1-a}Ca_a) (Ti_{1-b}Zr_b)O เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 เมื่อเผา ซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/750/6

รูปที่ 3.68 ค่าคงที่ไดอิเล็กทริก (ก) และค่าสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก (Ba_{1-a}Ca_a) (Ti_{1-b}Zr_b)O₃ เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 เมื่อซินเตอร์ แบบ TSS โดยใช้เงื่อนไข 1400/15/1100/6

รูปที่ 3.69 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 เมื่อเผาซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/700/6 เมื่อวัดที่ความถี่ 0.1 kHz - 200 kHz

รูปที่ 3.70 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 เมื่อเผาซินเตอร์แบบ TSS โดย ใช้เงื่อนไข 1400/15/1100/6 เมื่อวัดที่ความถี่ 0.1 kHz - 200 kHz

จากรูปที่ 3.71-3.72 ค่าคงที่ไดอิเล็กทริกและค่าสูญเสียไดอิเล็กทริกเทียบกับอุณหภูมิของ

เซรามิกในระบบ (Ba_{1-a} Ca_a)(Ti_{1-b}Zr_b)O₃ เมื่อเผาซินเตอร์แบบ CS พบว่า เมื่อปริมาณ a เพิ่มขึ้น (b = 0.025, a = 0.05, 0.2, 0.4และ b = 0.05, a = 0.2, 0.4) ทำให้ค่าคงที่ไดอิเล็กทริกลดลง และเมื่อพิจารณากรณีที่ b ต่างกัน (ปริมาณ a เท่ากัน) พบว่าจะทำให้ค่าคงที่ไดอิเล็กทริกลดลงเช่นเดียวกัน เมื่อปริมาณสาร a และ b เพิ่มขึ้น จะส่งผลให้ค่าคงที่ไดอิเล็กทริกลดลงเช่นเดียวกัน เมื่อปริมาณสาร a และ b เพิ่มขึ้น จะส่งผลให้ค่าคงที่ไดอิเล็กทริกเกิดการเปลี่ยนแปลง ซึ่งที่ปริมาณสาร a และ b ต่างกัน จะเกิดพีคที่ เหมือนกัน คือ มีพีคเกิดขึ้น 1 พีค โดยจุดแรกของกราฟที่เกิดการเปลี่ยนแปลงจากเฟสเตตระโกนอลเป็นเฟส คิวบิก ซึ่งอุณหภูมิในการเปลี่ยนแปลงเฟสนี้ เรียกว่า อุณหภูมิคูรี (T_c) ซึ่งจะเป็นอุณหภูมิที่ให้ค่าคงที่ไดอิเล็ก-ทริกสูงสุด โดยเมื่อปริมาณสาร a และ b เพิ่มขึ้น อุณหภูมิ T_c มีค่าลดลง แต่สำหรับเซรามิกเมื่อ a = 0.05, b = 0.05 มีการเปลี่ยนแปลง 2 จุด โดยจุดแรกเป็นการเปลี่ยนเฟสจากออร์โธรอมบิกไปเป็นเตตระโกนอล (T_{o-T}) และจุดที่ 2 เป็นการเปลี่ยนเฟสจากเตตระโกนอลไปเป็นคิวบิก (T_c)

จากรูปที่ 3.73-3.74 แสดงค่าคงที่ไดอิเล็กทริกและค่าสูญเสียไดอิเล็กทริกเทียบกับอุณหภูมิ ของเซรามิกเมื่อเผาซินเตอร์แบบ TSS ซึ่งเมื่อปริมาณ a เพิ่มขึ้น (b = 0.025, a = 0.05, 0.2, 0.4 และ b = 0.05, a = 0.2, 0.4) พบว่าจะทำให้ค่าคงที่ไดอิเล็กทริกลดลง และเมื่อพิจารณากรณีที่ b ต่างกัน (ปริมาณ a เท่ากัน) พบว่าจะทำให้ค่าคงที่ไดอิเล็กทริกลดลงเช่นเดียวกัน เมื่อปริมาณสาร a และ b เพิ่มขึ้น จะส่งผลให้ ค่าคงที่ไดอิเล็กทริกเกิดการเปลี่ยนแปลง และอุณหภูมิ T_c มีแนวโน้มลดลง ดังแสดงในตารางที่ 3.13-3.14

รูปที่ 3.71 ค่าคงที่ไดอิเล็กทริก (ก) และค่าสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก (Ba_{1-a}Ca_a) (Ti_{1-b}Zr_b)O₃ เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 ที่ผ่านการ ซินเตอร์แบบ CS ที่อุณหภูมิ 1400 ℃ ที่ความถี่ 1 kHz

รูปที่ 3.72 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 เมื่อเผาซินเตอร์แบบ CS ที่ อุณหภูมิ 1350 ℃ เมื่อวัดที่ความถี่ 1 kHz

รูปที่ 3.73 ค่าคงที่ไดอิเล็กทริก (ก) และค่าสูญเสียไดอิเล็กทริก (ข) เทียบกับความถี่ของเซรามิก (Ba_{1-a}Ca_a) Ti_{1-b}Zr_b)O₃ เมื่อ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 และ a = 0.05; b = 0.05 ที่ผ่านการ ซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/950/6 ที่ความถี่ 1 kHz

รูปที่ 3.74 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 เมื่อเผาซินเตอร์แบบ TSS โดย ใช้เงื่อนไข 1400/15/1100/6 เมื่อวัดที่ความถี่ 1 kHz

สูตรที่	Т _с (°С)	$oldsymbol{\mathcal{E}}_{ m r}$ (max)	tan $oldsymbol{\delta}$ (T _c)
a = 0.05, b = 0	104	8259.9	0.0078
a = 0.1, b = 0	103	10432.5	0.0121
a = 0.2, b = 0	100	7472.1	0.0087
a = 0.3, b = 0	97	2411.9	0.0073
a = 0.4, b = 0	87	2326.1	0.0060
a = 0.05, b = 0.05	90	7904.0	0.0157
a = 0.05, b = 0.025	104	11717.7	0.0107
a = 0.2, b = 0.025	105	7876.5	0.0140
a = 0.4, b = 0.025	96	3176.9	0.0095
a = 0.2, b = 0.05	90	8517.3	0.0133
a = 0.4, b = 0.05	94	3069.9	0.0087

ตารางที่ 3.13 ค่าคงที่ไดอิเล็กทริกและค่าสูญเสียไดอิเล็กทริกและอุณหภูมิคูรี่ (T_c) ของเซรามิก (Ba_{1-a} Ca_a)(Ti_{1-b} Zr_b)O เมื่อเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1350-1400 °C ที่ความถี่ 1 kHz

ตารางที่ 3.14 ค่าคงที่ไดอิเล็กทริกและค่าสูญเสียไดอิเล็กทริกและอุณหภูมิคูรี่ (T_c) ของเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/15/950/6 ที่ ความถี่ 1 kHz

สูตรที่	Т _с (°С)	$oldsymbol{\mathcal{E}}_{ m r}$ (max)	tan $oldsymbol{\delta}$ (T _c)
a = 0.05, b = 0	94	10901.7	0.0047
a = 0.1, b = 0	91	11090.1	0.0099
a = 0.2, b = 0	89	9927.2	0.0096
a = 0.3, b = 0	92	5921.6	0.0117
a = 0.4, b = 0	96	3318.7	0.0061
a = 0.05, b = 0.05	96	14540.2	0.0095
a = 0.05, b = 0.025	119	12352.4	0.0153
a = 0.2, b = 0.025	116	9633.2	0.0106
a = 0.4, b = 0.025	103	3094.1	0.0076
a = 0.2, b = 0.05	102	9327.8	0.0114
a = 0.4, b = 0.05	93	3388.6	0.0174

3.3.5 ผลการศึกษาสมบัติเพียโซอิเล็กทริกของเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_b)O₃

จากตารางที่ 3.15 แสดงค่าคงที่เพียโซอิเล็กทริก (d_{33}) ของเซรามิก ($Ba_{1-a}Ca_a$)($Ti_{1-b}Zr_b$)O₃ พบว่าชิ้นงานเมื่อ a = 0.05, b = 0.025 ที่ผ่านการเผาซินเตอร์แบบ CS มีค่า d_{33} ที่มากที่สุด โดยมี ค่าประมาณ 223 pC/N เมื่อซินเตอร์ที่อุณหภูมิ 1300 °C เช่นเดียวกับชิ้นงานที่ผ่านการเผาซินเตอร์แบบ TSS พบว่าแนวโน้มของค่า d_{33} มีค่ามากที่สุดที่ a = 0.05, b = 0.025 ในทุกอุณหภูมิของการเผาซินเตอร์ ซึ่งให้ค่า d_{33} มากที่สุด มีค่า d_{33} เท่ากับ 219 pc/N และซิ้นงานเมื่อ a = 0.4 ให้ค่า d_{33} น้อยที่สุดในทุกอุณหภูมิในการ เผาซินเตอร์ ทั้งนี้อาจเนื่องมาจากชิ้นงานเมื่อ a = 0.05, b = 0.025 มีการเติม Zr ลงไปเมื่อผ่านการเผาซิน เตอร์ที่อุณหภูมิต่างๆ ทำให้ชิ้นงานที่ได้มีขนาดเกรนที่ใกล้เคียงกัน มีการจัดเรียงตัวของเกรนกันอย่าง สม่ำเสมอ ส่งผลให้การโพลลิ่งชิ้นงานดี นอกจากนี้ สังเกตได้ว่า ค่า d_{33} ลดลงเมื่อปริมาณ Ca หรือ Zr เพิ่มขึ้น

ตารางที่ 3.15 ค่าคงที่เพียโซอิเล็กทริก (d₃₃) ของเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b} Zr_b)O₃ เมื่อซินเตอร์แบบ CS และ TSS

สูตรที่	d ₃₃ (pc/N)			
	CS	TSS		
a = 0.05, b = 0	164	148		
a = 0.1, b = 0	149	137		
a = 0.2, b = 0	135	128		
a = 0.3, b = 0	113	117		
a = 0.4, b = 0	78	79		
a = 0.05, b = 0.025	223	219		
a = 0.2, b = 0.025	143	199		
a = 0.4, b = 0.025	80	108		
a = 0.05, b = 0.05	209	174		
a = 0.2, b = 0.05	144	132		
a = 0.4, b = 0.05	83	133		

3.4 ผลการศึกษาเซรามิก (1-z)[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ – 0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]–

$z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO_3$

ได้ทำการเตรียมเซรามิก (1-z)[0.95Ba(Ti_{0.92}Sn_{0.08})O₃-0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]-z(Na_{0.5} K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อ x = 0, 0.05, 0.10, 0.15 และ 0.20 ด้วยวิธีผสมออกไซด์แบบที่ใช้กันทั่วไป โดยทำ การเผาแคลไซน์ Ba(Ti_{0.92}Sn_{0.08})O₃ (BTS) ที่อุณหภูมิ Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃ (BCTZ) และ (Na_{0.5}K_{0.5})_{0.94} Li_{0.06}NbO₃ (NKLN) ที่อุณหภูมิ 1200 °C, 1000 °C และ 850 °C ตามลำดับ เป็นเวลานาน 2 ชั่วโมง และเผา ซินเตอร์ด้วยวิธีที่แตกต่างกัน 2 วิธี คือ การซินเตอร์แบบปกติ (CS) ที่อุณหภูมิ 1350 - 1500 °C เป็นเวลานาน 2 ชั่วโมง (T₁/t₁/0/0) และการซินเตอร์แบบ 2 ขั้นตอน (TSS, T₁/t₁/T₂/t₂)โดยในช่วงแรกจะเผาที่อุณหภูมิสูง (T₁) 1300-1500 °C และแซ่ทิ้งไว้ 15 นาที (t₁) จากนั้นลดอุณหภูมิเผาแซ่มาที่อุณหภูมิ 400-1200 (T₂) เป็น เวลานาน 6 ชั่วโมง (t₂) ได้ผลการวิจัยดังนี้

3.4.1 ผลการศึกษาพฤติกรรมการเกิดเฟสของเซรามิก (1-z)[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ – 0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]–z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ ด้วยเทคนิคการเลี้ยวเบน ของรังสีเอกซ์ (XRD)

เมื่อทำการวิเคราะห์เซรามิกด้วยเทคนิคการเลี้ยวเบนของรังสีเอกซ์ (XRD) พบว่า รูปแบบการ เผาซินเตอร์ไม่มีผลอย่างมีนัยสำคัญต่อโครงสร้างผลึกของเซรามิก (1-z)[0.95Ba(Ti_{0.92}Sn_{0.08})O₃–0.05Ba₀₉₅ Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]–z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ แต่การเติม NKLN ทำให้เซรามิกมีโครงสร้างเป็นคิวบิก ดัง แสดงในรูปที่ 3.75-3.76

รูปที่ 3.75 ผลการวิเคราะห์โครงสร้างด้วย XRD ของเซรามิก (1-z)[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ −0.05Ba₀₉₅ Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]−z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์ภายใต้เงื่อนไข CS (* เฟสที่สอง)

รูปที่ 3.76 ผลการวิเคราะห์โครงสร้างด้วย XRD ของเซรามิก (1-z)[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ −0.05Ba₀₉₅ Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]−z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์ภายใต้เงื่อนไข TSS (* เฟสที่สอง)

3.4.2 ผลการศึกษาสมบัติทางกายภาพของเซรามิก (1-z)[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ – 0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]−z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃

เมื่อพิจารณาค่าความหนาแน่นของเซรามิก (รูปที่ 3.77 – 3.78) พบว่า อุณหภูมิซินเตอร์ รูปแบบการซินเตอร์และปริมาณตัวเติม NKLN ส่งผลต่อการแน่นตัวของสารตัวอย่างอย่างมีนัยสำคัญ เมื่ออุณหภูมิซินเตอร์แบบ CS เพิ่มขึ้น ความหนาแน่นมีค่าเพิ่มขึ้น โดยความหนาแน่นต่ำสุดเมื่อ z = 0.0 ที่อุณหภูมิ 1300 °C และมีค่าเพิ่มขึ้นเมื่ออุณหภูมิซินเตอร์สูงขึ้น โดยมีความหนาแน่นสูงสุดที่อุณหภูมิ 1350 °C โดยมีค่า 5.93 ± 0.03 g/cm³ หลังจากนั้นมีค่าลดลงเล็กน้อยเมื่ออุณหภูมิเพิ่มขึ้น สำหรับ z = 0.05 - 0.20 ค่าความหนาแน่นจะขึ้นกับปริมาณ z และอุณหภูมิซินเตอร์ โดยมีความหนาแน่นสูงสุดเท่ากับ 5.94 ± 0.02 g/cm³ เมื่อ z = 0.05 ซินเตอร์ที่อุณหภูมิ 1300 °C จากนั้นความหนาแน่นลดลงเมื่อปริมาณ z และอุณหภูมิซินเตอร์สูงขึ้น ซึ่งเกิดจากชิ้นงานเริ่มหลอมตัว

รูปที่ 3.77 ความหนาแน่นของเซรามิกในระบบ (1-z)[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ −0.05Ba₀₉₅Ca_{0.05}Ti_{0.975} Zr_{0.025}O₃]−z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ CS

เมื่ออุณหภูมิซินเตอร์ T₂ แบบ TSS เพิ่มขึ้น ชิ้นงานมีค่าความหนาแน่นลดลง เมื่อ z เพิ่มขึ้น และขึ้นกับอุณหภูมิ (รูปที่ 3.78) โดยเงื่อนไขที่ให้ค่าความหนาแน่นดีที่สุดเมื่อเติม NKLN คือ 1300/15/900/6 เมื่อ z = 0.05 และ ค่าความหนาแน่นเมื่อซินเตอร์แบบ TSS มีค่าสูงกว่าการซินเตอร์แบบ CS ซึ่งแสดงให้เห็น ว่าการซินเตอร์แบบ TSS เมื่อเลือกใช้อุณหภูมิซินเตอร์ T₂ ต่ำ เพียง 400 °C สามารถซินเตอร์ชิ้นงานให้มีความ หนาแน่นสูงเทียบเท่ากับการซินเตอร์แบบ CS ที่อุณหภูมิซินเตอร์สูงๆได้ และเมื่ออุณหภูมิซินเตอร์ T₂ สูงเกินไป ทำให้ความหนาแน่นลดลง

ร**ูปที่ 3.78** ความหนาแน่นของเซรามิกในระบบ (1-z)[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ −0.05Ba₀₉₅Ca_{0.05}Ti_{0.975} Zr_{0.025}O₃]−z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS โดยแปรค่าอุณหภูมิ T₂ (1500/15/T₂/6 สำหรับ z = 0 และ 1300/15/T₂/6 สำหรับ z = 0.05 - 0.20)

3.4.3 ผลการศึกษาโครงสร้างจุลภาคของเซรามิก (1-z)[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ - 0.05Ba₀₉₅

$Ca_{0.05}Ti_{0.975}Zr_{0.025}O_{3}]-z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO_{3}$

เมื่อพิจารณาโครงสร้างจุลภาคของเซรามิก (รูปที่ 3.79-3.88) พบว่า อุณหภูมิซินเตอร์รูปแบบ การซินเตอร์และปริมาณ z ส่งผลต่อขนาดและรูปร่างของเกรนของสารตัวอย่างอย่างมีนัยสำคัญ ดังแสดงใน ตารางที่ 3.15-3.16

สำหรับโครงสร้างจุลภาค พบว่า การเติม NKLN ส่งผลทำให้เกรนมีขนาดเล็กลงและมีลักษณะ เกรนเกิดการโตแบบไม่ปกติ คือ มีขนาดเล็กและใหญ่ปะปนกัน โดยเกรนมีขนาดโตขึ้นและจัดเรียงตัวแน่น เมื่อ z ≥ 0.15 เมื่อพิจารณาชิ้นงานที่ซินเตอร์แบบ TSS พบว่าเกรนมีขนาดเล็กลงเมื่อเทียบกับการซินเตอร์แบบ CS ซึ่งแสดงว่าการซินเตอร์แบบ TSS สามารถยับยั้งการโตของเกรนได้ และการซินเตอร์แบบ TSS สามารถใช้ อุณหภูมิ T₂ ต่ำ เพียง 400 °C ก็สามารถซินเตอร์เซรามิกที่มีโครงสร้างจุลภาคที่แน่นได้

รูปที่ 3.79 ภาพถ่าย SEM ของเซรามิก 0.95Ba(Ti_{0.92}Sn_{0.08})O₃ −0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃] (z = 0.0) เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1400 °C

รูปที่ 3.80 ภาพถ่าย SEM ของเซรามิก 0.95[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ −0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]− 0.05(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1250 °C

รูปที่ 3.81 ภาพถ่าย SEM ของเซรามิก 0.9[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ −0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]− 0.1(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1250 °C

รูปที่ 3.82 ภาพถ่าย SEM ของเซรามิก 0.85[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ −0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]− 0.15(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1250 °C

รูปที่ 3.83 ภาพถ่าย SEM ของเซรามิก 0.8[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ −0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]− 0.2(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1250 °C

รูปที่ 3.84 ภาพถ่าย SEM ของเซรามิก 0.95Ba(Ti_{0.92}Sn_{0.08})O₃ −0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃] (z = 0.0) เมื่อซินเตอร์แบบ TSS ที่เงื่อนไข 1500/15/400/6

รูปที่ 3.85 ภาพถ่าย SEM ของเซรามิก 0.95[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ −0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]− 0.05(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS ที่เงื่อนไข 1300/15/900/6

รูปที่ 3.86 ภาพถ่าย SEM ของเซรามิก 0.9[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ −0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]− 0.1(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS ที่เงื่อนไข 1300/15/900/6

รูปที่ 3.87 ภาพถ่าย SEM ของเซรามิก 0.85 [0.9]15Ba(Ti_{0.92}Sn_{0.08})O₃ −0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]− 0.15(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS ที่เงื่อนไข 1300/15/900/6

ร**ูปที่ 3.88** ภาพถ่าย SEM ของเซรามิก 0.8[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ –0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]– 0.2(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS ที่เงื่อนไข 1300/15/900/6

ตารางที่	3.16 ขนาดเกรนของ	ชิ้นงานเซรามิกในระ	ะบบ (1-z)[Ba(Ti _{o.}	₉₂ Sn _{0.08})O ₃ – 1	(Ba _{0.95} Ca _{0.05})(T	i _{0.975}
	Zr _{0.025})O ₃] – z(Na _{0.5} K _{0.5}) _{0.94} Li _{0.06} Nb	O3 ที่ผ่านการซินเต	เอร์แบบ CS		

สูตรทางเคมี	ขนาดเกรน (µm)
z = 0	68.4 ± 10.1
z = 0.05	1.8 ± 0.9
z = 0.1	1.6 ± 0.7
z = 0.15	1.5 ± 0.3
z = 0.2	1.4 ± 0.6

สูตรทางเคมี	ขนาดเกรน (µm)
z = 0	66.87 ± 17.23
z = 0.05	1.57 ± 1.11
z = 0.10	1.84 ± 0.94
z = 0.15	2.04 ± 0.87
z = 0.20	-

ตารางที่ 3.17 ขนาดเกรนของชิ้นงานเซรามิกในระบบ (1-z)[Ba(Ti_{0.92} Sn_{0.08})O₃ – (Ba_{0.95}Ca_{0.05})(Ti_{0.975} Zr_{0.025})O₃] – z(Na_{0.5} K_{0.5})_{0.94}Li_{0.06}NbO₃ ที่ผ่านการซินเตอร์แบบ TSS

3.4.4 ผลการศึกษาสมบัติไดอิเล็กทริกของเซรามิก (1-z)[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ – 0.05Ba₀₉₅ Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]−z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃

สำหรับค่าสมบัติทางไฟฟ้าทำการศึกษาสมบัติไดอิเล็กทริก (โดยเลือกชิ้นงานที่มีค่าความ หนาแน่นใกล้เคียงกัน มาสูตรละ 2 ชิ้น เมื่อผ่านการทำอิเล็กโทรดแล้ว นำมาทำการศึกษาสมบัติไดอิเล็กทริก โดยแปรค่าความถี่ (0.1 – 200 kHz) และอุณหภูมิ (อุณหภูมิห้อง – 200 °C ที่ความถี่ 1, 10 และ 100 kHz) ได้ผลการวิจัยดังแสดงในรูปที่ 3.89-3.100 โดยพบว่า ค่าคงที่ไดอิเล็กทริกมีค่าขึ้นอยู่กับความถี่ อุณหภูมิ อุณหภูมิชินเตอร์ รูปแบบการเผาซินเตอร์ และปริมาณ NKLN

เมื่อพิจารณาสมบัติไดอิเล็กทริกที่ขึ้นกับความถี่ (รูปที่ 3.89-3.98) พบว่า เมื่อความถี่เพิ่มขึ้น เซรามิกมี ค่าคงที่ไดอิเล็กทริก (**ɛ**_r) และค่าการสูญเสียทางไดอิเล็กทริกในรูปของความร้อน (dissipation factor, tanδ) ลดลง ซึ่งเซรามิกที่มีความหนาแน่นสูงจะมีสมบัติไดอิเล็กทริกที่ดี โดย z = 0 แสดงสมบัติไดอิเล็กทริกที่ดีที่สุด คือ **ɛ**_r = 4791 และ tanδ = 0.032 และหลังจากนั้นมีค่าลดลงเมื่อ z เพิ่มขึ้น ทั้งนี้เนื่องจากโครงสร้างจุลภาค ที่ไม่สม่ำเสมอและมีค่าความแน่นตัวน้อย ซึ่งชิ้นงานที่ซินเตอร์แบบ CS แสดงสมบัติไดอิเล็กทริกที่ดีกว่าชิ้นงาน ที่ซินเตอร์แบบ TSS เล็กน้อย

รูปที่ 3.89 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก 0.95Ba(Ti_{0.92}Sn_{0.08})O₃ –0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃] (z = 0.0) เมื่อซินเตอร์แบบ CS ที่ อุณหภูมิ 1300-1450°C เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz

รูปที่ 3.90 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก 0.95[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ -0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]-0.05(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1150-1350°C เมื่อวัดที่ความถี่ 0.1 kHz - 200 kHz

รูปที่ 3.91 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก 0.95[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ −0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]−0.1(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1150-1350°C เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz

รูปที่ 3.92 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก 0.95[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ -0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]-0.15(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ CS ที่อุณหภูมิ 1150-1350°C เมื่อวัดที่ความถี่ 0.1 kHz - 200 kHz

รูปที่ 3.93 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก 0.8[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ –0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]–0.2(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อ ซินเตอร์แบบ CS ที่อุณหภูมิ 1150-1250°C เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz

รูปที่ 3.94 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก 0.95Ba(Ti_{0.92}Sn_{0.08})O₃ –0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃] (z = 0.0) เมื่อซินเตอร์แบบ TSS โดย ใช้เงื่อนไข 1500/15/T₂/6 เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz

รูปที่ 3.95 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก 0.95[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ -0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]-0.05(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1300/15/T₂/6 เมื่อวัดที่ความถี่ 0.1 kHz - 200 kHz

รูปที่ 3.96 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก 0.95[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ –0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]–0.1(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1300/15/T₂/6 เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz

3500.0

3000.0

2500.0

2000.0

1500.0

1000.0

500.0

0.0

0.0

0.1

Dielectric constant

รูปที่ 3.97 ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก 0.95[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ -0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]-0.15(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1300/15/T₂/6 เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz

ร**ูปที่ 3.98** ค่าคงที่ไดอิเล็กทริก (ก) และค่าการสูญเสียไดอิเล็กทริก (ข) เปรียบเทียบกับความถี่ของเซรามิก 0.8[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ –0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]–0.2(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อ ซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1300/15/T₂/6 เมื่อวัดที่ความถี่ 0.1 kHz – 200 kHz

เมื่อพิจารณาสมบัติไดอิเล็กทริกที่ขึ้นกับอุณหภูมิ (รูปที่ 3.99-3.100) พบว่า การเติม NKLN ทำให้ อุณหภูมิคูรีของระบบ (1-z)[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ – 0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃] – z(Na_{0.5}K_{0.5})_{0.94} Li_{0.06}NbO₃ ลดลง โดยมีค่าใกล้เคียงกับอุณหภูมิห้องสำหรับ z ≥ 0.15 และมีค่าต่ำกว่าอุณหภูมิห้องสำหรับ z = 0.05 - 0.10 ดังแสดงในตาราง 3.18-3.19 เนื่องจากขนาดเกรนเล็กลง ซึ่งขัดแย้งกับจุดประสงค์ของการเติม เพราะ NKLN มีอุณหภูมิคูรีสูง 470 °C นอกจากนี้ยังพบว่า ค่า tanδ มีค่าต่ำจนถึงอุณหภูมิประมาณ 150 °C

รูปที่ 3.100 ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกเทียบกับอุณหภูมิของเซรามิกในระบบ 0.8Ba(Ti_{0.92}Sn_{0.08})O₃ -0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃] - 0.2(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อ ซินเตอร์แบบ CS (ก) และ TSS (ข)

ตารางที่ 3.18 ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกและอุณหภูมิคูรี (T_c) ของเซรามิก

(1-z)[Ba(Ti_{0.92}Sn_{0.08})O₃ - (Ba_{0.95}Ca_{0.05})(Ti_{0.975}Zr_{0.025})O₃] – z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อ ซินเตอร์แบบ CS ที่ความถี่ 1, 10 และ 100 kHz

สูตร	ความถี่ (kHz)	T _c (°C)	∈ _r (max)	tan ${f \delta}$
	1	36	11460.09	0.0275
z = 0	10	36	11022.34	0.0255
	100	36	10618.53	0.0286
	1	33	1629.65	0.575
z = 0.05	10	29	2079.98	0.1205
	100	< 27	-	-
z = 0.10	1	< 26	-	-
	10	< 26	-	-
	100	< 26	-	-
	1	34	1258.18	0.0109
z = 0.15	10	36	1236.33	0.0113
	100	36	1213.53	0.0172
z = 0.20	1	36	1171.88	0.0095
	10	34	1152.45	0.0125
	100	36	1129.72	0.0194

ตารางที่ 3.19 ค่าคงที่ไดอิเล็กทริกและค่าการสูญเสียไดอิเล็กทริกและอุณหภูมิคูรี (T_c) ของเซรามิก (1-z)[Ba(Ti_{0.92}Sn_{0.08})O₃ - (Ba_{0.95}Ca_{0.05})(Ti_{0.975}Zr_{0.025})O₃] – z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อ ซินเตอร์แบบ TSS ที่ความถี่ 1, 10 และ 100 kHz

สูตร	ความถี่ (kHz)	T _c (°C)	∈ _r (max)	tan δ
	1	49	16255.32	0.0196
z = 0	10	49	15739.2	0.0275
	100	49	15114.45	0.0559
	1	< 29	-	-
z = 0.05	10	< 29	-	-
	100	< 27	-	-
z = 0.10	1	< 26	-	-
	10	< 26	-	-
	100	< 26	-	-
	1	31	1292.66	0.0121
z = 0.15	10	33	1269.83	0.0118
	100	33	1244.23	0.0176
z = 0.20	1	42	1150.08	0.0152
	10	42	1149.85	0.0193
	100	41	1150.15	0.0142

3.4.5 ผลการศึกษาสมบัติเพียโซอิเล็กทริกของเซรามิก (1-z)[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ −0.05Ba₀₉₅ Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]−z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃

สำหรับสมบัติเพียโซอิเล็กทริก (d₃₃) ของเซรามิกในระบบ (1-z)[Ba(Ti_{0.92}Sn_{0.08})O₃ – 0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃] – z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ พบว่าสามารถวัดค่า d₃₃ ได้เฉพาะชิ้นงาน z ≤ 0.10 สำหรับกรณีซินเตอร์แบบ CS และวัดได้ทุก z เมื่อซินเตอร์แบบ TSS โดยมีค่าสูงสุด 583 pC/N เมื่อ ซินเตอร์แบบ CS เมื่อ z = 0 ทั้งนี้เนื่องจากชิ้นงานที่เติม NKLN มีอุณหภูมิคูรีที่ต่ำ จึงทำให้ไม่สามารถโพลลิงได้ ดังแสดงในตารางที่ 3.20

ตารางที่ 3.20 ค่าคงที่เพียโซอิเล็กทริก (d₃₃) ของชิ้นงาน (1-z)[Ba(Ti_{0.92}Sn_{0.08})O₃ -(Ba_{0.95}Ca_{0.05})(Ti_{0.975} Zr_{0.025})O₃] – z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ ที่ผ่านการซินเตอร์แบบ CS และ TSS

สูตร	d ₃₃ (pC/N)			
	CS	TSS		
z = 0	588	142		
z = 0.05	75	65		
z = 0.10	72	70		
z = 0.15	โพลไม่ได้	70		
z = 0.20	โพลไม่ได้	70		

3.5 ผลการตรวจสอบองค์ประกอบทางเคมีของเซรามิกที่เตรียมได้โดยใช้เทคนิคการวิเคราะห์ด้วยรังสีเอกซ์ แบบกระจายพลังงาน (EDS)

จากรูปที่ 3.101-3.104 แสดงการวิเคราะห์องค์ประกอบทางเคมีของเซรามิกที่เตรียมได้ในระบบ Ba(Ti, Sn)O₃–(Ba ,Ca)(Ti, Zr)O₃–(Na, K, Li)NbO₃ ที่ผ่านการเผาซินเตอร์แบบ CS และ TSS ด้วย X ray –mapping เพื่อดูการกระจายตัวของธาตุในสารตัวอย่าง พบว่าธาตุทุกตัวมีการกระจายตัวอย่างสม่ำเสมอ ทั่วทั้งชิ้นงาน และมีปริมาณธาตุแสดงดังตารางที่ 3.21 ซึ่งจะเห็นได้ว่าปริมาณธาตุที่ได้กรณีซินเตอร์แบบ CS และ TSS ไม่เท่ากัน ทั้งนี้เนื่องจากอุณหภูมิและเวลาในการซินเตอร์แตกต่างกัน นอกจากนี้ จากการคำนวณ wt% ของค่าทางทฤษฎีขององค์ประกอบทางเคมีของเซรามิก พบว่าค่าที่ได้เมื่อเทียบกับค่าทางทฤษฏีมีค่า ต่างกันเล็กน้อย ทั้งนี้เนื่องจากค่าพลังงานของ Ba และ Ti มีการซ้อนทับกัน (over lap) ซึ่งอาจทำให้การ วิเคราะห์เชิงปริมาณคลาดเคลื่อนจากที่ควรจะเป็น

ตารางที่ 3.21 ปริมาณธาตุที่มีในสารตัวอย่างเซรามิก BaTi_{0.92}Sn_{0.08}O₃, Ba_{0.7}Ca_{0.3}TiO₃,

(Ba_{0.8}Ca_{0.2})(Ti_{0.95}Zr_{0.05})O₃ และ 0.5BaTi_{0.88}Sn_{0.12}O₃ – 0.5 Ba_{0.7}Ca_{0.3}TiO₃ เมื่อเผาซินเตอร์ แบบ CS และ TSS

	ปริมาณธาตุ (wt%)				
0.105.10f.03.1711	Ва	Ti	Sn	Ca	Zr
BaTi _{0.92} Sn _{0.08} O ₃ – CS	72.0	24.1	3.9	-	-
BaTi _{0.92} Sn _{0.08} O ₃ – TSS	72.5	22.2	5.3	-	-
Ba _{0.7} Ca _{0.3} TiO ₃ – CS	55.8	37.7	-	6.4	-
Ba _{0.7} Ca _{0.3} TiO ₃ – TSS	60.6	30.6	-	8.8	-
(Ba _{0.8} Ca _{0.2})(Ti _{0.95} Zr _{0.05})O ₃ – CS	66.6	25.7	-	4.9	2.9
(Ba _{0.8} Ca _{0.2})(Ti _{0.95} Zr _{0.05})O ₃ – TSS	66.1	26.1	-	4.7	2.9
0.5BaTi _{0.88} Sn _{0.12} O ₃ – 0.5 Ba _{0.7} Ca _{0.3} TiO ₃ – CS	67.3	25.8	3.8	3.1	-
0.5BaTi _{0.88} Sn _{0.12} O ₃ – 0.5 Ba _{0.7} Ca _{0.3} TiO ₃ – TSS	68.5	24.1	4.4	3.0	-

รูปที่ 3.101 รูปแบบการวิเคราะห์ส่องกราดเฉพาะพื้นที่ (X -ray mapping) ของชิ้นงานเซรามิก Ba(Ti_{0.92}Sn_{0.08})O₃ (ก) CS และ (ข) TSS

รูปที่ 3.102 รูปแบบการวิเคราะห์ส่องกราดเฉพาะพื้นที่ (X-ray mapping) ของชิ้นงานเซรามิก Ba_{0.7}Ca_{0.3}TiO₃ (ก) CS และ (ข) TSS

รูปที่ 3.103 รูปแบบการวิเคราะห์ส่องกราดเฉพาะพื้นที่ (X -ray mapping) ของชิ้นงานเซรามิก (Ba_{0.8}Ca_{0.2})(Ti_{0.95}Zr_{0.05})O₃ (ก) CS และ (ข) TSS

(ข)

รูปที่ 3.104 รูปแบบการวิเคราะห์ส่องกราดเฉพาะพื้นที่ (X -ray mapping) ของชิ้นงานเซรามิก 0.5BaTi_{0.88}Sn_{0.12}O₃ - 0.5Ba_{0.7}Ca_{0.3}TiO₃ (ก) CS และ (ข) TSS

3.6 ทดลองประยุกต์ใช้เซรามิกเพียโซอิเล็กทริกที่เตรียมได้ในอุปกรณ์อิเล็กทรอนิกส์อย่างง่าย

เมื่อทำการประยุกต์เซรามิกที่เตรียมได้โดยใช้วงจรอย่างง่าย ดังแสดงในรูปที่ 3.105 พบว่า เมื่อให้แรง กดแก่เซรามิก สามารถวัดความต่างศักย์ V ที่เกิดขึ้นได้ โดยความต่างศักย์จะมีค่าเพิ่มขึ้นเมื่อให้แรงกดและ ปล่อยอย่างต่อเนื่องเป็นระยะเวลานาน จึงสามารถสรุปได้ว่าเซรามิกที่เตรียมได้สามารถนำไปประยุกต์ใช้เป็น ทรานสดิวเซอร์ได้เมื่อต่อกับวงจรขยายสัญญาณที่เหมาะสม

รูปที่ 3.105 วงจรอย่างง่ายสำหรับทดสอบเซรามิกเพียโซอิเล็กทริกที่เตรียมได้

4. สรุปและวิจารณ์ผลการวิจัย

ในงานวิจัยนี้ได้ทำการศึกษากระบวนการเตรียมและสมบัติของวัสดุเพียโซอิเล็กทริกไร้สารตะกั่วเป็น องค์ประกอบในระบบ Ba(Ti, Sn)O₃ – (Ba, Ca)(Ti, Zr)O₃ – (Na, K, Li)NbO₃ โดยทำการศึกษา เงื่อนไขและตัวแปรต่างๆ ต่อการเกิดเฟส โครงสร้างจุลภาค สมบัติทางกายภาพและไฟฟ้าของเซรามิก ดังนี้

- ศึกษาอุณหภูมิซินเตอร์ รูปแบบการเผาซินเตอร์ และเวลาในการเผาซินเตอร์ของเซรามิก (Na_{1-x}K_x)_{1-y}Li_yNbO₃ เมื่อ x = 0.5 และ y = 0.06 ต่อการเกิดเฟส โครงสร้างจุลภาค สมบัติ ทางกายภาพและไฟฟ้า โดยเผาซินเตอร์ที่อุณหภูมิต่าง ๆ คือ 1100 – 1160 °C เป็นเวลา 2 ชั่วโมง สำหรับการซินเตอร์แบบ CS และ T1/10/1020/6, 1160/t₁/1020/6, 1100/10/T₂/6, 1160/10/1020/t₂ และ 1140/10/1020/t₂
- 2) ศึกษาอิทธิพลของปริมาณตัวเติมของเซรามิก BaTi_{1-x}Sn_xO₃ เมื่อ x = 0.04, 0.08 และ 0.12 และ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อ z = 0.1, 0.2 และ 0.5 เมื่อเผาซินเตอร์ แบบ CS ที่อุณหภูมิ 1350 1500 °C เป็นเวลานาน 2 ชั่วโมง และซินเตอร์แบบ TSS โดยใช้ เงื่อนไข 1500/15/T₂/6 เมื่อ T₂ เท่ากับ 700-1300 °C (T₂)
- สึกษาอิทธิพลของปริมาณตัวเติมของเซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_bO₃ เมื่อ a = 0.05, 0.2, 0.4; b = 0.025, 0.05 และ a = 0.05, 0.1, 0.2, 0.3, 0.4; b = 0 เมื่อเผาซินเตอร์แบบ CS ที่ อุณหภูมิ 1200 - 1400 °C เป็นเวลานาน 2 ชั่วโมง และซินเตอร์แบบ TSS โดยใช้เงื่อนไข 1400/t₁/T₂/6 เมื่อ t₁ เท่ากับ 0, 15 นาที และ T₂ เท่ากับ 550-1200 °C
- 4) ศึกษาอิทธิพลของปริมาณตัวเติมของเซรามิกในระบบ (1-z)[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ 0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]-z(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ เมื่อ x = 0, 0.05, 0.10, 0.15 และ 0.20 เมื่อเผาซินเตอร์แบบ CS ที่อุณหภูมิ 1350 1500 °C เป็นเวลานาน 2 ชั่วโมง และ ซินเตอร์แบบ TSS โดยใช้เงื่อนไข T₁/15/T₂/6 เมื่อ T₁ เท่ากับ 1300-1500 °C และ T₂ เท่ากับ 400-1200 °C

ผลจากการวิจัยสรุปได้ว่า สมบัติทางกายภาพ การเกิดเฟส โครงสร้างจุลภาค และสมบัติทางไฟฟ้า มีค่าขึ้นอยู่กับรูปแบบการเผาแคลไซน์ อุณหภูมิซินเตอร์และเวลาในการซินเตอร์ ชนิดและปริมาณตัวเติมที่ เติมลงไปอย่างมีนัยสำคัญ ดังรายละเอียดต่อไปนี้

1) เซรามิก (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ มีโครงสร้างผลึกแบบ orthorhombic และมีเฟสที่สองเกิด ร่วมด้วยในทุกสารตัวอย่าง ชิ้นงานที่ซินเตอร์แบบ TSS มีเกรนขนาดเล็กลงเมื่อเทียบกับการ ซินเตอร์แบบ CS ซึ่งแสดงว่าการซินเตอร์แบบ TSS สามารถยับยั้งการโตของเกรนได้ โดย โครงสร้างจุลภาคที่สม่ำเสมอและมีขนาดเกรนประมาณ 2.5 μ m พบในตัวอย่างเมื่อซินเตอร์ ด้วยเงื่อนไข 1160/10/1020/6 เซรามิกที่มีความหนาแน่นสูงจะมีสมบัติไดอิเล็กทริกที่ดี คือ ซิ้นงานที่ซินเตอร์แบบ CS ที่อุณหภูมิ 1100 oC สำหรับเซรามิกที่ซินเตอร์แบบ TSS เมื่อใช้ T₁ = 1160 oC (T₁/10/1020/6) หรือ t₁ = 10 นาที (1160/t₁/1020/6) จะมีค่าการสูญเสียทาง ไดอิเล็กทริกน้อยกว่า และเมื่อแปรค่า T₂ (1160/10/T₂/6) พบว่า ค่าการสูญเสียทางได-อิเล็กทริกน้อยที่สุด เมื่อ T₂ = 940 °C นอกจากนี้การซินเตอร์โดยใช้ T₁ ที่ต่ำลง คือ 1140 °C ทำให้ได้สมบัติไดอิเล็กทริกที่ด้วยกว่าการใช้ $T_1 = 1160$ °C โดยค่าคงที่ไดอิเล็กทริกมีค่า ลดลง เมื่อเพิ่มอุณหภูมิ T_1 และ T_2 ทั้งนี้เนื่องจากการเพิ่มขึ้นของขนาดเกรน ในขณะที่ T_{O-T} มีค่าลดลง และ T_C มีค่าเพิ่มขึ้น เมื่อเพิ่มเวลา t_1 และ t_2

- 2) เซรามิก BaTi_{1-x}Sn_xO₃ มิโครงสร้างผลึกแบบ tetragonal มีแนวโน้มเปลี่ยนแปลงโครงสร้าง ผลึกเป็น Cubic เมื่อ x = 0.12 ชิ้นงานที่ชินเตอร์แบบ TSS มีเกรนขนาดเล็กลงเมื่อเทียบกับ การซินเตอร์แบบ CS และชิ้นงานที่เติม Ba_{0.7}Ca_{0.3}TiO₃ มีขนาดเกรนเล็กกว่าชิ้นงาน BaTi_{1-x}Sn_xO₃ เซรามิกที่มีความหนาแน่นสูงจะมีสมบัติไดอิเล็กทริกที่ดี คือ ชิ้นงานที่ชินเตอร์ แบบ CS ที่อุณหภูมิ 1450 °C เมื่อ x = 0.12 โดยมีค่า \mathbf{c}_r เท่ากับ 22,273 และค่า tanδ เท่ากับ 0.028 ที่ความถี่ 1 kHz สำหรับเซรามิกที่ชินเตอร์แบบ TSS โดยใช้เงื่อนไข 1500/15/1200/6 เมื่อ x = 0.12 มีค่า \mathbf{c}_r เท่ากับ 25,969 และมีค่า tanδ เท่ากับ 0.026 ที่ ความถี่ 1 kHz สำหรับอุณหภูมิ T_c มีค่าลดลง เมื่อปริมาณ x มากขึ้น สำหรับในระบบ (1-z)Ba(Ti_{0.88}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ พบว่าเมื่อปริมาณ BCT (z) เพิ่มขึ้น ส่งผลให้ T_c สูงขึ้นเล็กน้อย สมบัติเพียโซอิเล็กทริก (d₃₃) สูงสุดพบในกรณี x = 0.08 โดยมีค่า 465 pC/N เมื่อเผาซินเตอร์แบบ CS และ 447 pC/N เมื่อเผาซินเตอร์แบบ TSS สำหรับระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ พบว่ามีค่า d₃₃ น้อยกว่าระบบ BaTi_{1-x}Sn_xO₃ มาก โดยมีค่าสูงสุดที่ z = 0.1 มีค่า 84.3 pC/N เมื่อเผาซินเตอร์แบบ CS และที่ z = 0.5 มีค่า 71.7 pC/N เมื่อเผาซินเตอร์แบบ TSS
- เซรามิก (Ba_{1-a}Ca_a)(Ti_{1-b}Zr_bO₃ มีโครงสร้างผลึกแบบ orthorhombic การเติม Ca ทำให้การ แน่นตัวของสารตัวอย่าง อุณหภูมิซินเตอร์และขนาดเกรนเล็กลง ในขณะที่การเติม Zr ส่งผล ให้เกรนมีขนาดโตขึ้น อุณหภูมิ T_c ลดลงเมื่อ a และ b เพิ่มขึ้น ซึ่งเซรามิก (Ba_{0.95}Ca_{0.05}) (Ti_{0.975}Zr_{0.025})O₃ แสดงสมบัติทางไฟฟ้าที่ดีที่สุด คือ d₃₃ ~233 pC/N เมื่อซินเตอร์แบบ CS
- 4) เซรามิกในระบบ (1-z)[0.95Ba(Ti_{0.92}Sn_{0.08})O₃ -0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃]-z(Na_{0.5} K_{0.5})_{0.94}Li_{0.06}NbO₃ การเติม (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ ทำให้เซรามิกมีโครงสร้างผลึกแบบ คิวบิก ค่าความหนาแน่น ขนาดเกรนและอุณหภูมิ *T_C* ลดลง ส่งผลให้เซรามิกในระบบนี้มี สมบัติไฟฟ้าที่ไม่ดี แต่อย่างไรก็ตาม เซรามิก 0.95Ba(Ti_{0.92}Sn_{0.08})O₃ -0.05Ba₀₉₅Ca_{0.05} Ti_{0.975}Zr_{0.025}O₃(z = 0) แสดงสมบัติเพียโซอิเล็กทริกที่ดีที่สุดในตัวอย่างทุกระบบที่เตรียมได้ คือ *d₃₃* ~588 pC/N เมื่อซินเตอร์แบบ CS
- 5) สำหรับการศึกษาอุณหภูมิการเปลี่ยนเฟส พบว่า T_C ขึ้นอยู่กับชนิดและปริมาณตัวเติมที่เติมลง ไป คือ T_C มีแนวโน้มเพิ่มขึ้นในระบบ (1-z)Ba(Ti_{0.85}Sn_{0.12})O₃-zBa_{0.7}Ca_{0.3}TiO₃ เมื่อ z มาก ขึ้น ในขณะที่ T_C มีแนวโน้มลดลงเมื่อเติม Sn, Ca, Zr และ (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ ซึ่งเป็น การยืนยันว่าตัวเติมเข้าไปแทนที่ตำแหน่งของ A และ B site ของโครงสร้าง perovskite ของ สารตัวอย่าง และ อุณหภูมิ T_C ที่สูงที่สุดพบในสารตัวอย่างในระบบ (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ โดยมีค่าสูงประมาณ 402 °C

6) สำหรับสมบัติเพียโซอิเล็กทริกของเซรามิกที่เตรียมได้ พบว่า d₃₃ มีค่าขึ้นอยู่กับชนิดและ ปริมาณตัวเติมที่เติมลงไป โครงสร้างผลึก ค่าความหนาแน่น และโครงสร้างจุลภาค โดย เซรามิกในระบบ 0.95Ba(Ti_{0.92}Sn_{0.08})O₃ –0.05Ba₀₉₅Ca_{0.05}Ti_{0.975}Zr_{0.025}O₃ มีค่า d₃₃ สูงที่สุด คือ 588 pC/N ทั้งนี้เนื่องจากความหนาแน่นสูงและโครงสร้างจุลภาคที่แน่นและสม่ำเสมอ มากที่สุด
บรรณานุกรม

- 1) Aksel E. and Jone J.L. 2010. Advances in lead-free piezoelectric materials for sensors and actuators. *Sensor.* **10** : 1935-1954.
- Lim J. H., Jrong S. S., Kim N. R., Cheon S. K. Kim M. H. and Park T. G. 2012. Design and fabrication of a cross-shaped piezoelectric generator for energy harvesting. *Ceramics International.* 39 : S641-S645.
- Moon S. H., Choi J. H., Chae K. W. Kim J. S. and Cheon C. 2012. The effect of pre-annealing on the microstructure of (K, Na)NbO₃ ceramics. *Ceramics International.* 39[3]: 2431-2436.
- 4) Moulson A. J. and Herbert J. M. 1990. Electroceramics materials properties application. Chapman and Hall. London.
- 5) Cross E. 2004. Materials science: Lead-free at last. *Nature*. **432** : 24-25.
- 6) Shrout T.R. and Zhang S.J. 2007. Lead-free piezoelectric ceramics: Alternatives for PZT?. Journal of *Electroceramics*. **19** : 111 – 124.
- Xie Y., Yin S., Hashimoto T., Tokano Y., Sasaki A. and Sato T. 2010. Sintering and dielectric properties of BaTiO₃ prepared by a composite-hydroxide-mediated approach. *Materials Research Bulletin.* 45[10] : 1345-1350.
- 8) Singh K., Lingwal V., Bhatt S., Panwar, C. and Semwal B. S. 2001. Dielectric properties of potassium sodium niobate mixed system. *Materials Research Bulletin.* **36** : 2365 2374.
- Pettry J.-R. G., Saïd S., Marchet P. and Mercurio J.-P. 2004. Sodium-bismuth titanate based lead-free ferroelectric materials. *Journal of European Ceramic Society*. 24 : 1165 - 1169.
- 10) Chakrabarti A., Bera J. and Sinha T. P. 2009. Dielectric properties of $BaBi_4Ti_4O_{15}$ ceramics produced by cost-effective chemical method. *Physica B*. 404 : 1498 1502.
- 11) Takenaka T. and Nagata H. 2005. Current status and prospects of lead-free piezoelectric ceramic. *Journal of the European Ceramic Society*. **25** : 2693 2700.
- 12) Tang X. G., and Chan H. L. W. 2005. Effect of grain size on the electrical properties of (Ba, Ca)(Zr, Ti)O₃ relaxor ferroelectric ceramics. *Journal of Applied Physics.* **97** : 034109.
- Li W., Xu Z. J., Chu R.Q., Fu P., and Zang G. Z., 2010. Piezoelectric and dielectric properties of (Ba_{1-x}Ca_x)(Ti_{0.95}Zr_{0.05})O₃ lead-free ceramic. *Journal of the American Ceramic Society*. 93 : 2942-2944.

- Maeder M.D., Damjanovic D. and Setter N. 2004. Lead-free piezoelectric materials. *Journal of Electroceramics*. 13: 385 – 392.
- Guo Y., Kakimoto K. I. and Ohsato H. 2004. Phase transitional behavior and piezoelectric properties of (Na_{0.5}K_{0.5})NbO₃ – LiNbO₃ ceramics. *Applied Physics Letters*. 85[18]: 4121 - 4123.
- Niu X. K., Zhang J. L., Wu L., Zheng P., Zhao M. L. and Wang C. L. 2008. Crystalline structural phase boundaries in (K, Na, Li)NbO₃ ceramics. *Solid State Communications*. 146 : 395 – 398.
- 17) Cross E. Materials science: Lead-free at last. Nature. 2004; 432 : 24-25.
- Pang X., Qiu J., Zhu K. and Du J. 2012. (K, Na)NbO₃- based lead free piezoelectric ceramic manufactured by two step sintering. *Ceramics International.* 38: 2521–2527.
- Meng W., Zuo R., Su S., Wang X. and Li L. 2011. Two step sintering and electrical properties of sol gel derived 0.94 (Bi_{0.5}Na_{0.5})TiO₃- 0.06BaTiO₃ lead free ceramics. *Journal of Materials Science: Materials in Electronics.* 22, 1841 1847.
- Zou T., Wang X., Zhao W. and Li L. 2008. Preparation and properties of finegrain (1-x)BiScO₃ – xPbTiO₃ ceramics by two-step sintering. *Journal of the American Ceramic Society*. 91(1): 121 – 126.
- Geske L., Lorenz V., Müller T., Jäger L., Beige H., Abicht H. P. and Mueller V. 2005. Dielectric and electromechanical characterization of fine-grain BaTi _{0.95}Sn_{0.05}O₃ ceramic sintered from glycolate-precursor powder. *Journal of the European Ceramic Society*. 25 : 2537-2542.
- 22) Xue D., Zhou Y., Bao H., Gao J., Zhou C., and Ren X. 2011. Large piezoelectric effect in Pb-free Ba(Ti, Sn)O₃ x(Ba, Ca)TiO₃ ceramics. *Applied Physics Letter*.
 99 : 122901.
- 23) Hao J, Bai W, Li W, and Zhai J, 2012. Correlation between the microstructure and electric properties in high – performance (Ba_{0.85}Ca_{0.15})(Zr_{0.1}Ti_{0.9})O₃ lead – free piezoelectric ceramics. *Journal of the American Ceramic Society*. 95(6) : 1998-2006.
- 24) Bao H. X., Zhou C., Xue D. Z., Gao J. H. and Ren X. B. 2010. A modified lead-free piezoelectric BZT-xBCT system with higher T_c. *Journal of Physics D: Applied Physics.* 43: 465401.
- 25) Su S., Zuo R. Z., Lu S. B., Xu Z. K., Wang X. H. and Li L. T. 2011. Poling dependence and stability of piezoelectric properties of Ba(Zr_{0.2}Ti_{0.8})O₃- (Ba_{0.7}Ca_{0.3})TiO₃ ceramics with huge piezoelectric coefficients. *Current Applied Physics.* 11: s120–s123.

- 26) Wang P., Li Y. X. and Lu Y. Q. 2011. Enhanced piezoelectric properties of (Ba_{0.85}Ca_{0.15})(Ti_{0.9}Zr_{0.1})O₃ lead-free ceramics by optimizing calcination and sintering temperature. *Journal of the European Ceramic Society*. **31** : 2005– 2012.
- 27) Li W., Xu Z., Chu R., Fu P. and Zang G. 2012. Enhanced ferroelectric properties in (14Ba_{1-x}Ca_x)(Ti_{0.94} Sn_{0.06})O₃ lead free ceramics. *Journal of the European Ceramic Society*. **32**: 517 520..
- 28) Haertling G. H. 1967. Properties of hot-pressed ferroelectric alkali niobate ceramics. *Journal of the American Ceramic Society*. **50** : 329 330.
- 29) Ichiki M., Zhang L., Tanaka M. and Maeda R. 2004. Electrical properties of piezoelectric sodium-potassium niobate. *Journal of the European Ceramic Society.* **24** : 1693 1697.
- Wang R., Xie R., Sekiya T., Shimojo Y. 2004. Fabrication and characterization of potassium-sodium niobate piezoelectric ceramics by spark-plasmasintering method. *Materials Research Bulletin.* 39 : 1709 – 1715.
- 31) Saito Y., Takao H., Tani T., Nonoyama T., Takatori K., Homma T., Nagaya T. and Nakamura M. 2004. Lead-free piezoelectrics. *Nature*. **432** : 84 87.
- Zuo R., Rödel J., Chen R. and Li L. 2006. Sintering and electrical properties of lead-free Na_{0.5}K_{0.5}NbO₃ piezoelectric ceramics. *Journal of the American Ceramic Society.* 89[6]: 2010 – 2015.
- Du H., Tang F., Lou F., Zhu D., Qu S., Pei Z. and Zhou W. 2007. Influence of sintering temperature on piezoelectric properties of (K_{0.5}Na_{0.5})NbO₃ – LiNbO₃ lead-free piezoelectric ceramics. *Materials Research Bulletin*. 42 : 1594 – 1601.
- 34) Zhang Q., Zhang B.-P., Li H.-T. and Shang P.-P. 2010. Effect of Sb content on electrical properties of lead-free piezoelectric [(Na_{0.535}K_{0.480})_{0.942}Li_{0.058}](Nb₁₋ _xSb_x)O₃ ceramics. *Journal of Alloys and Compounds*. **490** : 260 - 263.
- 35) Guo Y., Kakimoto K.-I. and Ohsato H. 2005. (Na_{0.5}K_{0.5})NbO₃ LiTaO₃ lead-free piezoelectric ceramics. *Materials Letters*. **59** : 241-244.
- 36) Wang X. H., Deng X. Y., Zhou H., Li L.T. and Chen I.W. 2008. Bulk dense nanocrystalline BaTiO₃ ceramics prepared by novel pressureless two-step sintering method. *Journal of Electroceramics*. 21 : 230 – 233.
- 37) Wang X. H., Deng X. Y., Bai H. L., Zhou H., Qu W. G., Li L. T. and Chen I. W. 2006. Two-step sintering of ceramics with constant grain size, II: BaTiO₃ and Ni-Cu-Zn ferrite. *Journal of the American Ceramic Society*. 89(2) : 438 443.

- 38) Mazaheri M., Zahedi A. M. and Sadrnezhaad S. 2008. Two-step sintering of nanocrystalline ZnO compacts: effect of temperature on densification and grain growth. *Journal of the American Ceramic Society*. **91(1)** : 56 63.
- 39) Hao J., Bai W., Shen B. and Zhai J. 2012. Improve piezoelectric properties of (K_xNa_{1-x})_{0.94}Li_{0.06}NbO₃ lead – free ceramics fabricated by combining two – step sintering. *Journal of Alloys and Compounds.* 534 : 13 – 19.
- 40) Ishihara S., Kamimoto K. and Kagomiya I. 2011. Densification of (Na, K)NaO₃ piezoelectric ceramics by two step mixing process. *Journal of Materials Science*. **46** : 3822 3827.
- 41) Fang J., Wang X., Tian Z., Zhong C. Li L. and Zuo R. 2010. Two-step sintering: an approach to broaden the sintering temperature range of alkaline niobate-based lead-free piezoceramics. *Journal of the American Ceramic Society*.
 93(11): 3552 3555.
- Mazaheri M., Valefi M., Hesabi R. Z. and Sadrnezhaad S. K. 2009. Two step sintering of nanocrystalline 8Y₂O₃ stabilized ZrO₂ synthesized by glycine nitrate process. *Ceramics International*. 35 : 13 20.
- 43) Chen I. W. and Wang X. H. 2008. Sintering dense nanocrystalline ceramics without final-stage grain growth. *Nature*. **404** : 168 171.

ภาคผนวก

Output จากโครงการวิจัยที่ได้รับทุน

1. ผลงานวิจัยตีพิมพ์ในวารสารระดับนานาชาติ

- Bomlai, P. 2014. Sintering Effects on Microstructure and Electrical Properties of (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ Lead- Free Ceramics. *Advanced Materials Research*, 970: 39 – 43. (ดูเอกสารแนบในภาคผนวก ก)
- Bomlai, P. 2015. Two-step sintering, microstructure and electrical properties of (Ba, Ca)(Ti, Zr)O₃ lead-free ceramics. *Applied Mechanics and Materials*, 749: 79 – 83. (ดูเอกสารแบบในภาคผนวก ข)

2. การนำผลงานวิจัยไปใช้ประโยชน์ คือ ประโยชน์เชิงวิชาการ

- สามารถสร้างองค์ความรู้ใหม่เกี่ยวกับการพัฒนาวัสดุชนิดใหม่ขึ้นมาใช้แทน PZT
- สามารถใช้งานวิจัยนี้เป็นส่วนหนึ่งในการพัฒนาการเรียนการสอนในหลักสูตรวัสดุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์
- สามารถผลิตผลงานวิจัยเพื่อนำเสนอในงานประชุมเชิงวิชาการ และตีพิมพ์ในวารสารทางวิชาการ ระดับนานาชาติได้

ภาคผนวก ก

Bomlai, P. 2014. Sintering Effects on Microstructure and Electrical Properties of (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ Lead- Free Ceramics. *Advanced Materials Research*, **970**: 39 – 43.

Scopus		Scopus SciVal Register Login Help
Search	Aleris Lists	My Scopus
Advanced M	laterials Research	Follow this source Receive emails when new documents are available in Scopus
Subjec Pub Scopus Coverage	t Area: Engineering Jisher: Trans Tech Publications ISSN: 1022-6680 Years: from 2005 to 2014	SJR, IPP, and SNIP SJR = SCImago Journal Rank is weighted by the prestice of a journal. Subject field, quality and
Journal Metrics Scopus Journal Me for direct comparise www.journalmetric	etrics offer the value of context with their citation measuring tools. The metric on of journals, independent of their subject classification. To learn more, visit s.com.	s below allow differences in citation behavior between subject fields.
SNI Compare with	SJR (SCImago Journal Rank) (2015) : 0.115 IPP (Impact per Publication) (2015) : 0.064 P (Source Normalized Impact per Paper) (2015) : 0.096 other journals	IPP = Impact per Publication (IPP) measures the ratio of citations per article published in the journal. SNIP = Source Normalized Impact per Paper measures contextual citation Impact by weighting citations based on the total number of citations in a subject field.
Documents availa	able from	Open Access Journals
2014	29263 documents	Journals covered by Scopus are indicated as Open Access if the journal is listed in the Directory of Open Access Journals (DOAJ)
2012	35329 documents	and/or the Directory of Open Access Scholarly Resources (ROAD).
2011	27974 documents	For questions recarding Open Access Journals
2010	5116 documents	please see the Content info page.
2009	1573 documents	For questions regarding the Open Access Journa
2008	1508 documents	search options please see the Scopus OA help file.
2007	814 documents	
2006	291 documents	
2005	101 documents	

About Scopus What is Scopus Content coverage Scopus Blog Scopus API Privacy Matters Language 日本語に切り替える 切換到简体中文 切換到繁體中文 Customer Service Help and Contact Live Chat

ELSEVIER

Terms and Conditions Privacy policy

Copyright © 2016 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V. Cookies are set by this site. To decline them or learn more, visit our Cookies page

RELX Group[™]

Scopus	Search	Sources	Alerts	Lists	Help	Register	Login

Document details

Back to results | < Previous 5 of 26 Next >

View at Publisher Export Download Add to List More...

Advanced Materials Research

Volume 970, 2014, Pages 39-43

1st International Conference on Science and Engineering of Materials, ICoSEM 2013; Kuala Lumpur; Malaysia; 13 November 2013 through 14 November 2013; Code 106246

Sintering effects on microstructure and electrical properties of (Na0.5K0.5)0.94Li0.06NbO3 lead- free ceramics (Conference Paper)

Bomlai, P.ab

Abstract

^a Department of Materials Science and Technology, Prince of Songkla University, Songkhla, 90112, Thailand

^b Center of Excellence in Nanotechnology for Energy (CENE), Prince of Songkla University, Songkhla, 90112, Thailand

View references (6)

(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ lead-free ceramics were prepared using two different sintering methods: a conventional sintering (CS) and a two-step sintering (TSS) techniques. Different sintering temperatures were considered to optimize the density, microstructure and electrical properties. For CS, the grain size of samples sintered in this method increased continuously with the density decreased. By TSS the sample initially heated to 1160 °C, highest density (97%) was achieved after holding at 980 °C for 6 h. SEM micrographs revealed that two-step sintering decreased the grain size from 7.0 µm to 2.5 µm compared with conventional sintering, as the result of a lower holding temperature. Moreover, the volatilization loss of Na and K elements could be inhibited by two-step sintering. XRD results indicated that the secondary phase formed in all samples but it decreased after increasing of CS-sintering temperature. It was also obtained that the two-step sintering improved electrical properties of samples. The Curie temperature (T_C) increased with increasing of the holding temperature. Sample with the optimal sintering process: T₁=1160 °C, t₁=10 min, T₂ = 940 °C, t₂ = 6 h, excellent properties of dielectric constant (ϵ_r) = 530, dissipation factor (tan δ) = 0.02, Curie temperature = 388 °C, and piezoelectric charge constant (d₃₃) =168 pC/N were achieved. © (2014) Trans Tech Publications, Switzerland.

Author keywords

Electrical properties; Lead-free materials; Two-step sintering

Indexed keywords

Engineering controlled terms: Ceramic materials; Curie temperature; Electric properties; Grain size and shape; Lithium; Microstructure; Niobium oxide; Sodium

Conventional sintering; Dissipation factors; Holding temperatures; Lead-free material; Piezoelectric charge constant; Sintering temperatures; Two-step sintering; Volatilization loss

Engineering main heading: Sintering

ISSN: 10226680 ISBN: 978-303835092-7 Source Type: Book series Original language: English DOI: 10.4028/www.scientific.net/AMR.970.39 Document Type: Conference Paper Sponsors: Publisher: Trans Tech Publications Ltd

References (6)

O All Export | Print | E-mail | Create bibliography

Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., (...), Nakamura, M.

1 Lead-free piezoceramics

(2004) *Nature*, 432 (7013), pp. 84-87. Cited 2731 times. doi: 10.1038/nature03028 View at Publisher

Birol, H., Damjanovic, D., Setter, N.

Preparation and characterization of ($K_{0.5}Na_{0.5}$) NbO₃ ceramics

(2006) Journal of the European Ceramic Society, 26 (6), pp. 861-866. Cited 208 times. doi: 10.1016/j.jeurceramsoc.2004.11.022

View at Publisher

2

Chen, I.-W., Wang, X.-H.

3 Sintering dense nanocrystalline ceramics without final-stage grain growth

(2000) *Nature*, 404 (6774), pp. 168-171. Cited 683 times. doi: 10.1038/35004548 View at Publisher

O Wang, D., Zhu, K., Ji, H., Qiu, J.

Cited by 0 documents

Inform me when this document is cited in Scopus: Set citation alert | Set citation feed

Related documents

Two-step sintering of the pure K0.5Na0.5NbO 3 leadfree piezoceramics and its piezoelectric properties Wang, D., Zhu, K., Ji, H. (2009) Ferroelectrics

Sintering, microstructure and electrical properties of MnO2 and CuO doped [Na0.515K0.485]0.94Li0.06(Nb0.99Ta0.01)O3 ceramics Bomlai, P.

(2013) Advanced Materials Research

Fabrication of Na 0.5K 0.5NbO 3 thin film on glass substrate by pulsed laser at room temperature Zhou, W., Liu, F., He, C.

(2012) 2012 Symposium on Photonics and Optoelectronics, SOPO 2012

View all related documents based on references

Find more related documents in Scopus based on:

Author | Keywords

View in search results format

12/25/2016

Scopus - Document details

	Two-step sintering of the pure K $_{0.5}$ Na $_{0.5}$ NbO $_3$ lead-free piezoceramics and its piezoelectric properties
	(2009) <i>Ferroelectrics</i> , 392 (1), pp. 120-126. Cited 15 times. doi: 10.1080/00150190903412622
	View at Publisher
\bigcirc	Zhao, P., Zhang, BP., Li, JF.
5	Enhanced dielectric and piezoelectric properties in LiTaO3-doped lead-free (K,Na)NbO3 ceramics by optimizing sintering temperature
	(2008) <i>Scripta Materialia</i> , 58 (6), pp. 429-432. Cited 43 times. doi: 10.1016/j.scriptamat.2007.10.028
	View at Publisher
\bigcirc	Bomlai, P., Wichianrat, P., Muensit, S., Milne, S.J.
6	Effect of calcination conditions and excess alkali carbonate on the phase formation and particle morphology of Na0.5K0.5NbO 3 powders
	(2007) Journal of the American Ceramic Society, 90 (5), pp. 1650-1655. Cited 57 times. doi: 10.1111/j.1551-2916.2007.01629.x
	View at Publisher
emai	Bomlai, P.; Department of Materials Science and Technology, Prince of Songkla University, Thailand; il:ppornsuda@yahoo.com
© Co	opyright 2014 Elsevier B.V., All rights reserved.

Top of page

About ScopusLanguageCWhat is Scopus日本語に切り替えるHContent coverage切換到简体中文LiScopus blog切換到繁體中文CScopus APIFFPrivacy mattersFF

Customer Service Help Live Chat Contact us

ELSEVIER

Terms and conditions Privacy policy

Copyright © 2016 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V. Cookies are set by this site. To decline them or learn more, visit our Cookies page.

≪ RELX Group[™]

Full text search...

My Cart

Log in

PAPER TITLES

The Potential of Quercetin in *Psidium guajava L.* Leaves Extract as Bioinhibitor for Controlled Released Fertilizer, p.16

Synthesis and Properties of Biphasic Calcium Phosphate Prepared by Different Methods, p.20

Decolorization of Methylene Blue by Photocatalyst in the Ag₃PO₄-AgI System, p.29

Investigation of Ultrasonic Pretreatment on the Synthesis of Zeolite-T and its CO_2 Adsorption Characteristics, p.35

> Sintering Effects on Microstructure and Electrical Properties of (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ Lead-Free Ceramics,

Vapochromic Copper (I) Pyrazolate Complex Materials for Phosphorescent Chemosensors of Ethanol, p.44

A Study on Biocompatibility of Gadolinium Based Anodizing Coating AZ91D Magnesium Alloy in Simulated Body Fluid (SBF) Solution, p.51

Characterization of Oxide Film by Vanadium Based Anodic Oxidation Coating, p.55

Investigation of Surface Characteristics of Hydroxyapatite/Titanium Composite Layer Obtained by HF Magnetron Sputtering, p.60 <u>Home</u> > <u>Advanced Materials Research</u> > <u>Science and Engineering of Materials</u> > Sintering Effects on Microstructure and Electrical...

Paper Title: Sintering Effects on Microstructure and Electrical Properties of (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ Lead-Free Ceramics

Periodical	Advanced Materials Research (Volume 970)	An environmental and the set of the Constant and a set of the set
Main Theme	Science and Engineering of Materials	The start of banges the interview, impures the NTLP bandles. Construction of the interview is the interview of the interview is the interview of the interview is the interview of the intervie
Chapter	Chapter 3: Ceramics	View full size
Edited by	Mohd Rafie Johan and Noorsaiyyidah Darman Singho	[12] Yen a dataset Markanina B. Samo Lano, and an primary ladies ("bull-calls"). SNN load water provides and primary of black and and the samo structures of the NN balance data programming of primary structures of the NN balance dataset and programming the samo structure of the NN balance dataset. SNN balance dataset programming the samo structure of the NN balance dataset and programming the NN balance dataset and the NN balance dataset and programming the NN balance dataset and the NN balance dataset and programming the NN balance dataset and programming the SNN balance dataset programming the NN balance dataset and programming the SNN balance dataset programming the NN balance dataset and programming the SNN balance dataset programming the NN balance dataset and programming the SNN balance dataset programming the NN balance dataset and programming the SNN balance dataset programming the NN balance dataset and programming the SNN balance dataset programming the NN balance dataset and programming the SNN balance dataset programming the NN balance dataset and programming the SNN balance dataset programming the NN balance dataset and programming the SNN balance dataset programming the NN balance dataset and programming the SNN balance dataset programming the NN balance dataset and programming the SNN balance dataset programming the NN balance dataset and programming the SNN balance dataset programming the NN balance dataset and programming the SNN balance dataset programming the NN balance dataset and programming the SNN balance dataset programming the NN balance dataset and programming the SNN balance dataset and programming the SNN balance dataset programming the SNN balance dataset and programming the SNN balance dataset and progra
Pages	39-43	special statemy present and the same in the internet parameterial framework and the ten- mentparameterial statements in the statement of the statement of the statement and the statement of the statement on the statement of the
DOI	10.4028/www.scientific.net/AMR.970.39	(Nucl., Luck., 2004). NORNA (NUCK) to the first prime ways priparally is a constrained in oblivate instance of the second sec
Citation	Pornsuda Bomlai, 2014, Advanced Materials Research, 970, 39	
Online since	June, 2014	
Authors	Pornsuda Bomlai *	
Keywords	<u>Electrical Properties, Lead-Free Materials, Two-Step</u> <u>Sintering</u>	
Price	US\$ 28,-	
Share	0	₩ Add to Cart

* Corresponding Author

Abstract Comments (0)

 $(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO_3$ lead-free ceramics were prepared using two different sintering methods: a conventional sintering (CS) and a two-step sintering (TSS) techniques. Different sintering temperatures were considered to optimize the density, microstructure and electrical properties. For CS, the grain size of samples sintered in this method increased continuously with the density decreased. By TSS the sample initially heated to 1160 °C, highest density (97%) was achieved after holding at 980 °C for 6 h. SEM micrographs revealed that two-step sintering decreased the grain size from 7.0 µm to 2.5 µm compared with conventional sintering, as the result of a lower holding temperature. Moreover, the volatilization loss of Na and K elements could be inhibited by two-step sintering. XRD results indicated that the secondary phase formed in all samples but it decreased after increasing of CS-sintering temperature. It was also obtained that the two-step sintering improved electrical properties of samples. The Curie temperature (T_C) increased with increasing of the holding temperature. Sample with the optimal sintering process: $T_1=1160$ °C, $t_1=10$ min, $T_2=940$ °C, $t_2=6$ h, excellent properties of dielectric constant (ϵ_r) = 530, dissipation factor (tan δ) = 0.02, Curie temperature = 388 °C, and piezoelectric charge constant (d_{33}) =168 pC/N were achieved.

INFORMATION TERMS & CONDITIONS POLICY AND ETHICS

Scientific.Net is a registered brand of Trans Tech Publications Inc. © 2014 by Trans Tech Publications Inc. All Rights Reserved

http://www.scientific.net/AMR.970.39

HELP

CONTACT US

Sintering Effects on Microstructure and Electrical Properties of (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ Lead- Free Ceramics

Pornsuda Bomlai^{1,2,a*}

¹Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand

²Center of Excellence in Nanotechnology for Energy (CENE), Prince of Songkla University, Songkhla, 90112, Thailand

^{a*}ppornsuda@yahoo.com

Keywords: Lead-free materials, Two-step sintering, Electrical properties

Abstract. (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ lead-free ceramics were prepared using two different sintering methods: a conventional sintering (CS) and a two-step sintering (TSS) techniques. Different sintering temperatures were considered to optimize the density, microstructure and electrical properties. For CS, the grain size of samples sintered in this method increased continuously with the density decreased. By TSS the sample initially heated to 1160 °C, highest density (97%) was achieved after holding at 980 °C for 6 h. SEM micrographs revealed that two-step sintering decreased the grain size from 7.0 µm to 2.5 µm compared with conventional sintering, as the result of a lower holding temperature. Moreover, the volatilization loss of Na and K elements could be inhibited by two-step sintering. XRD results indicated that the secondary phase formed in all samples but it decreased after increasing of CS-sintering temperature. It was also obtained that the two-step sintering improved electrical properties of samples. The Curie temperature (T_C) increased with increasing of the holding temperature. Sample with the optimal sintering process: T₁=1160 °C, t₁=10 min, T₂ = 940 °C, t₂ = 6 h, excellent properties of dielectric constant (ϵ_r) = 530, dissipation factor (tan δ) = 0.02, Curie temperature = 388 °C, and piezoelectric charge constant (d_{33}) =168 pC/N were achieved.

Introduction

In recent years, sodium potassium niobate (Na_{0.5}K_{0.5}NbO₃, NKN)-based lead-free piezoelectric ceramics have been widely studied to replace Pb-based ceramics as being more environmental friendly [1]. However, pure NKN ceramics are difficult to densify by normal sintering due to the high volatility of alkaline elements at high sintering temperatures, and so the NKN ceramics exhibit poor piezoelectric properties ($d_{33} \sim 80$ pC/N and $k_p \sim 36\%$) [2].

The two-step sintering has been reported for preparing another ceramics to obtain fully dense nanograin ceramics because it suppresses grain growth in the final stage of sintering [3]. This special sintering process could be seen as the heating rate-controlled sintering and the low-temperature sintering process. It can eliminate the pores and reduce the volatilization of the low-melting-point substances [4]. Microstructures as well as electrical properties of NKN ceramics are extremely sensitive to sintering temperature and also the sintering time. Zhao et al. reported the piezoelectric coefficient of ~268 pC/N can be achieved by optimizing the sintering temperature of LiTaO₃-doped NKN ceramics [5]. In the present work, a study concerning the sintering of $(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO_3$ ceramics was carried out using the conventional and two-step sintering methods, and the effects of sintering condition on the phase structure, microstructure and electrical properties of $(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO_3$ ceramics was systematically investigated.

Experimental

 $(Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO_3$ (NKLN) lead-free ceramics were prepared by a conventional solid-state reaction process using two different sintering methods: a conventional sintering (CS) and a two-step sintering (TSS) techniques. The starting materials were Na_2CO_3 (99.9%), K_2CO_3 (99.0%), Li_2CO_3 (>99.0%) and Nb_2O_5 . The powders in stoichiometric proportions were thoroughly mixed and ball-

milled in ethanol for 24 h using zirconia grinding media. After mixing, the slurry was dried and calcined at 800 °C for 2 h in air, then re-milled and dried again. The obtained powders with 3 wt% PVA binder were pressed into disc-shaped pellets of 15 mm in diameter at 100MPa. Sintering of the green bodies was carried out by CS and TSS methods. The CS was carried out at 1100 – 1160 °C (T₁) for 2 h (t₂) in air with a heating rate of 5°C/min. For the TSS, the sintering procedure was programmed from the first-step sintering temperature (T₁) with a rapid heating rate 10 °C/min, then held for 10 min (t₁), and then rapidly cooled to a lower second-step temperature T₂ at 20 °C/min. The temperature was held at T₂ for 6 h (t₂). The symbols "T₁/t₁/0/0" and "T₁/t₁/T₂/t₂" were used to indicate for conventional sintering and two-step sintering, respectively.

The phase structure of the samples was examined by the X-ray diffraction (XRD, X'Pert MPD, Philips) using CuK α radiation. Surface morphologies of sintered specimens were observed by a scanning electron microscope (SEM, Quanta400, FEI). The bulk density of sintered samples was determined by the Archimedes method. Silver paste was coated on both sides of the specimens after firing at 600 °C for 10 min to form electrodes for the dielectric and piezoelectric measurements. The dielectric constant as a function of temperature of the sample was obtained by using a high precision LCR meter (LCR 821, GW INSTEK). Piezoelectric properties were measured using a piezo- d_{33} meter (YE2730A d_{33} Meter, APC International, Ltd.).

Results and discussion

Figure 1 shows the XRD patterns of the NKLN samples sintered under CS and TSS conditions. Both the samples displayed a similar pattern to that reported previously for orthorhombic NKNbased ceramics [6]. It was also found the secondary phase of a tungsten bronze phase (e.g., $K_6Li_4Nb_{10}O_{30}$) formed in all samples but it decreased after increasing of CS-sintering temperature. In addition, the positions of the diffraction peaks of the ceramics slightly shifted to higher angles with increase of temperature T_1 and T_2 . Therefore, the geometrical distortion of the ceramics was induced by sintering at high temperature.

Figure 1. X-ray diffraction patterns of the NKLN ceramics sintered under CS (1100/120/0/0 and 1160/120/0/0) and TSS (1160/10/900/6, 1160/10/120/6) conditions (* = K₆Li₄Nb₁₀O₃₀).

The SEM micrographs of the samples sintered under CS and TSS conditions are shown in Figure 2. All compositions showed secondary recrystallization and the grains were generally rectangular in shape. For CS-samples, the microstructure became denser and the grains size was much larger (up to 7.0 μ m) when T₁ increased from 1100 to 1160 °C. The reduction in grain size can be observed in the microstructure of TSS- samples. It is revealed that the two-step sintering had an evident effect on grain size reduction, as a grain growth inhibitor. A fine-grain microstructure can thus be obtained using two-step sintering with average grain sizes ~2.5 μ m for sample with 1160/10/1020/6 condition. Thus, two-step sintering method avoids undesirable grain growth and provides a finer and uniform microstructure, which is an attractive feature for the processing of electroceramics.

The densities of the NKLN samples sintered under different condition are shown in Table 1. For CS, the highest density $(4.256 \pm 0.01 \text{ g/cm}^3)$ was obtained for the samples with 1100/120/0/0 condition, equivalent to the relative densities of 94%. Further increasing sintering temperature to 1160°C led to the decrease of density, which was due to the volatility of K₂O and Na₂O in the ceramics for high sintering temperature. The sintering of NKLN ceramics was much improved for two-step sintering, and the sample with 1160/10/980/6 condition demonstrated the highest density of 4.375 g/cm³, which corresponds to 97% of the theoretical density. This result indicates that the two-step sintering process is effective for the densification of lead-free NKLN ceramics, despite no sintering additive and cold isostatic pressing are used.

Figure 2. SEM micrographs of the NKLN ceramics sintered under CS and TSS conditions.

The temperature dependence of the dielectric properties for the samples sintered under CS and TSS conditions measured at 10 kHz is shown in Figure 3, and Table 1. The two phase transitions, corresponding to the orthorhombic to tetragonal (T_{O-T}) and ferroelectric tetragonal to paraelectric cubic (T_C) phase transition, are clearly observed. It was found that the T_{O-T} and T_C of the CS-samples showed composition inhomogeneity with increasing sintering temperature T₁. After sintering by two-step sintering, the T_{O-T} shifted to higher temperature. The T_C value of the TSS-samples also increased slightly from 387 to 395 °C. It is obvious that the ε_r of the NKLN ceramics decreased after the sintering temperature T₁ and holding temperature T₂ increased. This is due to the increase in grain size.

The piezoelectric property of poled NKLN ceramics is shown in Table 1. The two-step sintering method greatly enhanced the piezoelectric properties of the NKLN ceramics. The best property with a d_{33} value of 168 pC/N was obtained in the composition with 1160/10/940/6 condition. It is believed that the observed high piezoelectric property should be ascribed to the high density, and good electrical resistivity of the ceramic. The CS-samples showed the lower value of the d_{33} value. It may be partly caused by the volatilization of alkali elements during the high temperature sintering.

Table 1. The density, ε_r and tan δ at room temperature (RT) at 10 kHz, orthorhombic-tetragonal polymorphic phase transition temperature (T_{O-T}), Curie temperature (T_C) and piezoelectric constant (d_{33}) of the NKLN samples sintered under CS and TSS conditions.

Samples	Sintering condition	Density (g/cm ³)	$\mathcal{E}_{r}, \mathrm{RT}$	$ an \delta$, $_{ m RT}$	<i>Т_{о-т}</i> (°С)	<i>T_C</i> (°C)	<i>d</i> ₃₃ (pC/N)
CS-sample	1100/120/0/0	4.256	486	0.031	132	402	129
	1120/120/0/0	4.162	431	0.033	121	396	116
	1140/120/0/0	4.014	416	0.232	142	401	114
	1160/120/0/0	4.018	340	0.217	167	380	95
TSS-sample	1160/10/900/6	4.260	519	0.029	125	387	163
	1160/10/940/6	4.280	530	0.021	126	388	168
	1160/10/980/6	4.375	433	0.017	130	391	150
	1160/10/1020/6	4.258	520	0.031	132	395	145

Summary

Two-step sintering method was successfully applied to improve density and piezoelectric property of the NKLN ceramics. Results show that an orthorhombic phase appeared in all samples. The density, microstructure and electrical properties of the ceramics sintered by conventional and twostep sintering techniques were obviously dependent on sintering temperature (T₁, T₂). The final grain size of the samples sintered by two-step method was ~ 2.5 µm, while it was ~ 7.0 µm for the conventional sintering. The two-step sintering also enhanced electrical properties of samples. The T_C increased with increasing of the holding temperature T₂. The sample with the optimal sintering condition: T₁=1160 °C, t₁=10 min, T₂ = 940 °C, t₂ = 6 h displayed excellent overall properties: $\varepsilon_r =$ 530, tan $\delta = 0.02$, $T_C = 388$ °C and $d_{33} = 168$ pC/N.

Acknowledgements

This research is financially supported by Prince of Songkla University under contract number SCI560371S.

References

- [1] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics, Nature. 432 (2004) 84-87.
- [2] H. Birol, D. Damjanovic, N. Setter, Preparation and characterization of (K_{0.5}Na_{0.5})NbO₃ ceramics, J. Eur. Ceram. Soc. 26 (2006) 861-866.
- [3] I.W. Chen, X.H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature. 404 (2000) 168-171.
- [4] D.L. Wang, K.J. Zhu, H.L. Ji, J.H. Qiu, Two-step sintering of the pure K_{0.5}Na_{0.5}NbO₃ Lead-Free piezoceramics and its piezoelectric properties, Ferroelectric. 392 (2009) 120-126.
- [5] P. Zhao, B. Zhang, J. Li, Enhanced dielectric and piezoelectric properties in LiTaO₃-doped lead-free (K, Na)NbO₃ ceramics by optimizing sintering temperature, Scripta. 58 (2008) 429-432.
- [6] P. Bomlai, P. Wichianrat, S. Muensit, S.J. Milne, Effect of calcinations and excess alkali carbonate on the phase formation and particle morphology of Na_{0.5}K_{0.5}NbO₃ powders, J. Am. Ceram. Soc. 90[5] (2007) 1650-1655.

ภาคผนวก ข

Bomlai, P. 2015. Two-step sintering, microstructure and electrical properties of (Ba, Ca)(Ti, Zr)O₃ lead-free ceramics. *Applied Mechanics and Materials*, **749**: 79 – 83.

Scopus - Applied Mechanics and Materials

Scopus SciVal Register Login

Follow this source

fields.

journal.

a subject field.

SJR, IPP, and SNIP

Help

Receive emails when new documents are available

in Scopus

SJR = SCImago Journal Rank is weighted by the prestige of a journal. Subject field, quality and

reputation of the journal have a direct effect on the value of a citation. SJR also normalizes for

differences in citation behavior between subject

IPP = Impact per Publication (IPP) measures the ratio of citations per article published in the

SNIP = Source Normalized Impact per Paper

measures contextual citation impact by weighting citations based on the total number of citations in

Search Alerts

Scopus

My Scopus

Applied Mechanics and Materials

My list

ISSN:

Subject Area: Engineering Publisher: Trans Tech Publications 1660-9336

Scopus Coverage Years: from 2005 to Present

Journal Metrics

Scopus Journal Metrics offer the value of context with their citation measuring tools. The metrics below allow for direct comparison of journals, independent of their subject classification. To learn more, visit: www.journalmetrics.com.

> SJR (SCImago Journal Rank) (2014): 0.150 IPP (Impact per Publication) (2014): 0.080 SNIP (Source Normalized Impact per Paper) (2014): 0.200

Compare with other journals

Documents available from

2014	32970 documents
2013	28459 documents
2012	18986 documents
2011	7595 documents
2010	1984 documents
2009	290 documents
2008	227 documents
2007	44 documents
2006	61 documents
2005	65 documents

Top of page 🔺

About Scopus What is Scopus Content coverage Scopus Blog Scopus API Language 日本語に切り替える 切换到简体中文 切換到繁體中文

Customer Service Help and Contact Live Chat

About Elsevier Terms and Conditions Privacy Policy

Copyright © 2015 Elsevier B.V. All rights reserved.Scopus® is a registered trademark of Elsevier B.V. Cookies are set by this site. To decline them or learn more, visit our Cookies page.

Two-Step Sintering, Microstructure and Electrical Properties of (Ba, Ca)(Ti, Zr)O3 Lead-Free Ceramics

Your options
HOME PARTICIPANT AUTHOR

logged in: Pornsuda Bomlai

My Account Log off

My Cart

Full text search ...

Advanced Search

PAPER TITLES

Plantar Pressure Analysis on Polyurethane Foam Materials in Footwear Exclusive for Overweight/Obese, p.56

Batch Biosorption of Copper(II) by Sunflower Shell, p.65

Novel Applications for Biomaterials: The Case of Remediation of Wine Taints Using Poly-Lactic Acid Polymer, p.70

Micro-Inactivation of Coliforms by Low-Temperature and Atmospheric-Pressure Plasma Irradiation, p.74

> Two-Step Sintering, Microstructure and Electrical Properties of (Ba, Ca)(Ti, Zr)O₃ Lead-Free Ceramics, p.79

Durable Press Finishing of Cotton Fabrics Dyed with Henna (*Lawsonia inermis* Linn.) Leaves Extract, p.84

Dyeing Properties and Color Fastness of Chitosan Treated Cotton Fabrics with Thian King Leaves Extract, p.89

Improvement of Hydrogen Permeability of Pd-Gd Film by Removal of Inclusion Particles – Part 1: Removal of Inclusion Particles, p.94

Characteristics of Fe-Si-B-Cr-C Powders Synthesized by the Spinning Water Atomization Process (SWAP) and its Application in Magnetic Core, p.101 <u>Home</u> > <u>Applied Mechanics and Materials</u> > <u>Materials and Manufacturing Engineering</u> > Two-Step Sintering, Microstructure and Electrical...

Access Status

Paper Title: Two-Step Sintering, Microstructure and Electrical Properties of (Ba, Ca)(Ti, Zr)O₃ Lead-Free Ceramics

Periodical	Applied Mechanics and Materials (Volume 749)	the second
Main Theme	Materials and Manufacturing Engineering	¹ Gener of Penderon Is beneformed by the pp CPUI Pend of trade branchistops (Second Penderon Is Second Penderon III) Particular Second Penderon III (Second Penderon III) Particular Second Penderon III) Retext. In Second Penderon III (Second Penderon III) Retext. In Second Penderon III (Second Penderon III) Retext. IIII (Second Penderon III
Chapter	Chapter 1: Materials, Chemical Processes and Technologies, Biotechnologies	View full size
Edited by	Anil K. Bhatnagar	with VPC. The over-topic management is an arrangement of integrate balance in the fore present signature. The over-topic management is the present management is the signature of the topic management is the present management is the signature and the topic management is the signature and the signa
Pages	79-83	Equational Theories was proved to a understand or RVZ or ~ 004, 31 and 31 or ~ 5021 and 5003 had date Theories was proved to a understand and the methods have block of 0040, 1000, 1000 (2000) (20
DOI	10.4028/www.scientific.net/AMM.749.79	
Citation	Pornsuda Bomlai, 2015, Applied Mechanics and Materials, 749, 79	
Authors	Pornsuda Bomlai	
Keywords	<u>Electrical Properties</u> , <u>Lead-Free Materials</u> , <u>Two-Step</u> <u>Sintering</u>	Add to Favorites
Share		<u>Full Text PDF</u> <u>By Email</u>

Abstract Related Articles

In this work, the (Ba_{1-x}Ca_x)(Ti_{1-y}Zr_y)O₃ lead-free ceramics were prepared by the two-step sintering method, and effects of Ca and Zr contents on phase structure, densification, microstructure, and electrical properties were investigated. It was found that all samples showed orthorhombic phase. The highest density of 5.84 ± 0.01 g/cm³ was achieved in x = 0.05, y = 0.05 sample. The average grain size, phase transition temperature, dielectric and piezoelectric properties significantly decreased by introducing of the Ca/Zr content. The ceramics with a small amount of Ca and Zr maintain good piezoelectric properties, and a lower dielectric loss. The composition with x = 0.05, y = 0.025 demonstrated optimum electrical properties of $d_{33} \sim 211$ pC/N, $T_C \sim 119$ °C, $\varepsilon_r \sim 1788$, and tan $\delta \sim 0.04$.

HELP

INFORMATION TERMS & CONDITIONS POLICY AND ETHICS

CONFERENCE ETHICS AND QUALITY CONTROL

Two-Step Sintering, Microstructure and Electrical Properties of (Ba, Ca)(Ti, Zr)O₃ Lead-Free Ceramics

Pornsuda Bomlai^{1,2,a}

¹Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand

²Center of Excellence in Nanotechnology for Energy (CENE), Prince of Songkla University, Songkhla, 90112, Thailand

^appornsuda@yahoo.com

Keywords: Lead-free materials, Two-step sintering, Electrical properties.

Abstract. In this work, the $(Ba_{1-x}Ca_x)(Ti_{1-y}Zr_y)O_3$ lead-free ceramics were prepared by the two-step sintering method, and effects of Ca and Zr contents on phase structure, densification, microstructure, and electrical properties were investigated. It was found that all samples showed orthorhombic phase. The highest density of 5.84 ± 0.01 g/cm³ was achieved in x = 0.05, y = 0.05 sample. The average grain size, phase transition temperature, dielectric and piezoelectric properties significantly decreased by introducing of the Ca/Zr content. The ceramics with a small amount of Ca and Zr maintain good piezoelectric properties, and a lower dielectric loss. The composition with x = 0.05, y = 0.025 demonstrated optimum electrical properties of $d_{33} \sim 211$ pC/N, $T_C \sim 119$ °C, $\varepsilon_r \sim 1788$, and tan $\delta \sim 0.04$.

Introduction

Ferroelectric materials have been extensively studied for application in electronic devices. As environmentally friendly materials, lead-free piezoelectric ceramics are of potential interest as alternatives to lead- based piezoelectric ceramics. Barium titanate (BaTiO₃) is one of the most widely studied lead free piezoelectric materials due to its excellent dielectric properties [1].

It is known that the doping is an effective way to improve the material performance in electroceramics. The substitution of Ba by Ca in the BaTiO₃ perovskite results in an improvement in the temperature stability of piezoelectric properties for many practical applications [2]. In addition, Zr-substition at Ti-site has been found to be an effective way to decrease the Curie temperature and improve the dielectric behavior of BaTiO₃ [3]. Liu and Ren [4] also reported a Ca and Zr co-doped BT system with extraordinarily high d_{33} (~ 620 pC/N), which can be comparable with PZT.

The two-step sintering as a pressureless sintering technique has been used for preparing another ceramics to obtain fully dense nanograin ceramics because it suppresses grain growth in the final stage of sintering [5]. This special sintering process is the heating rate-controlled sintering and the low-temperature sintering process. It can eliminate the pores and reduce the volatilization of the low-melting-point substances [6].

In general, the two-step sintering technique is effective not only to densify the ceramics, but also to decrease their sintering temperatures. In the present work, the sintering of $(Ba_{1-x}Ca_x)(Ti_{1-y}Zr_y)O_3$ ceramics was carried out using the two-step sintering method, and the effects of Ca and contents on the phase structure, microstructure and electrical properties of $(Ba_{1-x}Ca_x)(Ti_{1-y}Zr_y)O_3$ ceramics was systematically investigated.

Experimental

 $(Ba_{1-x}Ca_x)(Ti_{1-y}Zr_y)O_3$ (abbreviated as BCTZ: x = 0.05, 0.2 and 0.4; y = 0.025 and 0.05) lead-free ceramics were prepared by a solid-state method. Raw materials were BaCO₃ (99.0%), CaCO₃ (99.0%), TiO₂ (99.9%) and ZrO₂ (99.0%). All powders were weighted according to the

corresponding chemical formula of BCTZ, and then were ball milled in alcohol using zirconia balls for 24 h. BCTZ powders were first calcined at 1050 °C for 2 h. The obtained powders were mixed were ball-milled again for 24 h, dried and then mixed with a polyvinyl alcohol (PVA) binder solution. These powders were uniaxial pressed into disk samples with a diameter of 15.0 cm at 100 MPa, and then were finally sintered by a two step sintering method as described below: firstly, the samples were heated from room temperature to a high temperature T₁ (1400 °C) with a heating rate of 10 °C/min, held for a short time (t₁ = 15 min), and then rapidly decreased to a low soaking temperature of T₂ (700–1100 °C) at 20 °C/min, and held at T₂ for a long time (t₂ = 6 h) to ensure enough driving force for grain boundary diffusion to realize a desire final density and while to inhibit the migration of grain boundary for controlling the grain growth. The symbols "T₁/t₁/T₂/t₂" are used to indicate two-step sintering condition.

The crystalline structures of the ceramic samples were characterized by a Powder X-ray diffractometer (XRD, X'Pert MPD, Philips) using CuK_{α} radiation. Scanning electron microscopy (SEM, Quanta400, FEI) was employed to study the surface morphology of these sintered ceramics. The bulk density of sintered samples was determined by the Archimedes method. Silver electrodes were fired on the top and bottom surfaces of these sintered ceramics for electrical properties measurements. The temperature dependence of the dielectric constant of these sintered ceramics was measured using a programmable furnace with a high precision LCR meter (LCR 821, GW INSTEK). After poling under dc field of 2-3 kV/mm at 50 °C in a silicone oil bath for 25 min, the piezoelectric constant d₃₃ of these poled ceramics was measured using a piezo-*d₃₃* meter (YE2730A *d₃₃* Meter, APC International, Ltd.).

Results and Discussion

Fig. 1 shows the X-ray diffraction patterns of the $(Ba_{1-x}Ca_x)(Ti_{1-y}Zr_y)O_3$ ceramics with different Ca and Zr contents. The compositions with x < 0.4 showed a single phase perovskite structure with orthorhombic symmetry (PDF card #81-2200) and no impurity phase was found within the XRD detection limit, indicating that Ca²⁺ and Zr⁴⁺ have completely diffused into BaTiO₃ lattices to form solid solutions in the studied composition range. However, the extra peak of CaTiO₃ (PDF card #82-0232) was appeared in the x = 0.4 composition. Thus, it was not possible to obtain pure perovskite phase with x = 0.4. With increasing Ca content from 0.05 to 0.4 mol. the diffraction peaks shifted to higher diffraction angles, since the substitution of Ba²⁺ sites (1.35 Å) by smaller Ca²⁺ (r = 1.00 Å) would distort the crystals of BCTZ [7]. Increasing Zr content from 0.025 to 0.05 mol. the diffraction peaks shifted to lower diffraction angles, since the substitution of Ti⁴⁺ sites (0.67 Å) by larger Zr⁴⁺ (0.72 Å) would expand the crystals of BCTZ [7].

Fig. 1 X-ray diffraction patterns of the BCTZ ceramics (* = CaTiO₃)

The SEM micrographs of the as-sintered surface of BCTZ ceramics sintered at 1400/15/700/6 condition are shown in Fig. 2. It is clear that the average grain size decreased with the increasing of the Ca and Zr contents. This revealed that the Ca²⁺ ions enter A site and substitute for the Ba²⁺ ions and Zr⁴⁺ ions enter B site and substitute for the Ti⁴⁺ ions, leading to a decreased grain size to about 2 μ m at x = 0.4, y = 0.05 sample. It suggested that a reasonable addition of Ca/Zr contents to BaTiO₃ solid solution ceramics can modify the grain size of the sample. Fig.3 shows the microstructures of the ceramics sintered at 1400/15/1100/6 condition. The grain size of all samples was smaller than the sample sintered at 1400/15/700/6 condition. It is reported that the grain size is strongly dependent on the sintering methods, and also the sintering temperature and soaking time [8] such as if T₂ is too high, grain growth still occurs in the second step. This reduction in grain size is due to the addition of Ca/Zr content promoted liquid phase at higher soaking temperature, T₂.

Fig. 2 SEM micrographs of the BCTZ ceramics sintered at 1400/15/700/6 condition.

Fig. 3 SEM micrographs of the BCTZ ceramics sintered at 1400/15/1100/6 condition.

Fig. 4 shows the dielectric constant of BCTZ ceramics as a function of temperatures at 1 kHz. The BCTZ ceramics exhibited two obvious polymorphic phase transitions corresponding to the orthorhombic–tetragonal (T_{O-T}) and tetragonal–cubic phase transitions (T_C), presenting a normal ferroelectric behavior respectively. It was observed that T_{O-T} and T_C shifted towards lower temperature with an increase in Ca/Zr contents, Table 1. This phenomenon has been found in other

compounds such as $Pb_{1-x}Ca_xTiO_3$ and $CaTiO_3$ doped (K_{0.5}Na_{0.5})NbO₃ [9-10]. However, Zhu *et al.* reported that the T_C of (Ba, Ca)(Ti, Sn)O_3 samples was increased from 58°C to 64°C by adding Ca²⁺ ions from 0.00 to 0.06 [2]. The x = 0.05, y = 0.025 sample showed the highest T_C of 119 °C. The maximum dielectric constant ($\varepsilon_{r, max}$) was also observed for ~12000 in samples with x = 0.05. Further increasing x content, the $\varepsilon_{r, max}$ significantly decreased to lower value of ~3300 for the x = 0.4 sample. At room temperature, the dielectric constant (ε_r) was significantly improved by addition of Zr content, however decreased by addition of Ca content. The improvement of ε_r is due to the highest density (Table 1) and there was no affect from the ε_r of BaZrO₃ ($\varepsilon_r < 100$) [11]. The tan δ of the BCTZ ceramics also tended to decrease with increasing Ca/Zr content in the studied range and the maximum value was <0.03 until temperature of ~150 °C.

The piezoelectric property of poled BCTZ ceramics is shown in Table 1. The two-step sintering method greatly enhanced the piezoelectric properties of the BCTZ ceramics at lower sintering temperature, T₂ of 700 °C. The best property with a d_{33} value of 211 pC/N was obtained in the x = 0.05, y = 0.025 composition. Further increment of Ca/Zr content, the d_{33} gradually drop to 108 pC/N for x = 0.4, y = 0.025 sample. It is believed that the observed high piezoelectric property should be ascribed to the high density, good electrical resistivity of the ceramic. Meanwhile, Zhang *et al.* reported the enhancement of piezoelectric properties of (Ba_{0.95}Ca_{0.05})(Ti_{1-x}Zr_x)O₃ ceramics synthesized by the conventional solid-state reaction method could be achieved by sintering at 1350 °C and optimizing Zr content in the range of $0 \le x \le 15$ at.% [12].

Table 1, The density, ε_r a	and $tan\delta$ at room tempera	ature (RT) at 1 kHz	, Curie temperature	(T_C) and
p	piezoelectric constant (d_{3}	3) of the BCTZ same	ples	

Samples	Density (g/cm ³)	$\mathcal{E}_{r, RT}$	$\tan\delta$, RT	T_C	d_{33}
				(°C)	(pC/N)
a = 0.05, b = 0.025	5.794	1788	0.0406	119	211
a = 0.2, b = 0.025	5.495	950	0.0361	116	199
a = 0.4, b = 0.025	5.150	942	0.0096	96	108
a = 0.05, b = 0.05	5.839	1861	0.0335	103	147
a = 0.2, b = 0.05	5.538	1371	0.0234	102	132
a = 0.4, b = 0.05	5.158	1288	0.0113	93	133

Fig. 4 Temperature dependence of dielectric constant for the BCTZ ceramics

Summary

The $(Ba_{1-x}Ca_x)(Ti_{1-y}Zr_y)O_3$ lead-free compositions were successful fabricated by two-step sintering method at lower soaking temperature, T₂ of 700 °C. Addition of Ca and Zr contents affected to phase behavior, density, microstructure and electrical properties. All samples showed the orthorhombic phase at room temperature; however the secondary phase was found in the x > 0.2

samples. The highest density of $5.84 \pm 0.01 \text{ g/cm}^3$ was achieved in x = 0.05, y = 0.05 sample, and then gradually drop to ~ $5.15 \pm 0.01 \text{ g/cm}^3$ for samples with x = 0.4. The increment of Zr content enhanced densification. The average grain size and phase transition temperature significantly decreased with increasing of the Ca/Zr content. The best property ($d_{33} \sim 211 \text{ pC/N}$, $T_C \sim 119 \text{ °C}$, $\varepsilon_r \sim 1788$, and tan $\delta \sim 0.04$) was obtained in the x = 0.05, y = 0.025 composition.

Acknowledgements

This research is financially supported by Prince of Songkla University under contract number SCI560371S.

References

- [1] N. Ma, B. P. Zhang, W. G. Yang, D. Guo, Phase structure and nano-domain in high performance of BaTiO₃ piezoelectric ceramics, J. Eur. Ceram. Soc. 32 (2012) 1059–1066.
- [2] L.-F. Zhu, B.-P. Zhang, X.-K. Zhao, L. Zhao, P.-F. Zhou, J.-F. Li, Enhanced piezoelectric properties of (Ba_{1-x}Ca_x)(Ti_{0.92}Sn_{0.08})O₃ lead-free ceramics, J. Am. Ceram. Soc. 96 (2013) 241– 245.
- [3] N. Nanakorn, P. Jalupoom, N. Vaneesorn, A. Thanaboonsombut, Dielectric and ferroelectric properties of Ba(Zr_xTi_{1-x})O₃ ceramics, Ceram. Int. 34 (2008)779–782.
- [4] W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics, Phys. Rev. Lett. 103 (2009) 257602.
- [5] I.W. Chen, X.H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature. 404 (2000) 168-171.
- [6] D.L. Wang, K.J. Zhu, H.L. Ji, J.H. Qiu, Two-step sintering of the pure K_{0.5}Na_{0.5}NbO₃ lead-free piezoceramics and its piezoelectric properties, Ferroelectric. 392 (2009) 120-126.
- [7] Information on http://abulafia.mt.ic.ac.uk/shannon/
- [8] J. Hao, W. Bai, W. Li, J. Zhai, Correlation between the microstructure and electrical properties in high-performance (Ba_{0.85}Ca_{0.15})(Zr_{0.1}Ti_{0.9})O₃ lead-free piezoelectric ceramics, J. Am. Ceram. Soc. 95 (2012) 1998-2006.
- [9] F.M. Pontes, D.S.L. Pontes, E.R. Leite, E. Longo, A.J. Chiquito, M.A.C. Machado, P.S. Pizani, J.A. Varela, A Raman and dielectric study of a diffuse phase transition in (Pb_{1-x} Ca_x)TiO₃ thin films, Appl. Phys. A 78 (2004) 349–354.
- [10] L. Ramajo, R. Parra, M. A. Ramíres, M. S. Castro, Electrical and microstructural properties of CaTiO₃-doped K_{1/2}Na_{1/2}NbO₃-lead free ceramics, Bull. Mater. Sci. 34 (2011) 1213–1217.
- [11] A.-M. Azad, S. Subramaniam, Temperature dependence of the dielectric response of BaZrO₃ by immittance spectroscopy, Mater. Res. Bull., 37 (2002) 11-21.
- [12] S.-W. Zhang, H. Zhang, B.-P. Zhang, S. Yang, Phase-transition behavior and piezoelectric properties of lead-free (Ba_{0.95}Ca_{0.05})(Ti_{1-x}Zr_x)O₃ ceramics, J. Alloys Comp. 506 (2010) 131– 135.

ประวัติผู้วิจัย

ชื่อ – ชื่อสกุล	พรสุดา บ่มไล่
ที่อยู่ปัจจุบัน	781 หมู่ 3 ตำบลพะวง อำเภอเมือง จังหวัดสงขลา 90100
ที่ทำงานปัจจุบัน	ภาควิชาวิทยาศาสตร์และเทคโนโลยีวัสดุ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ อำเภอหาดใหญ่ จังหวัดสงขลา 90112
ตำแหน่งหน้าที่ปัจจุบัน	ผู้ช่วยศาสตราจารย์
ประสบการณ์การทำงาน	
พ.ศ. 2541-ปัจจุบัน	ภาควิชาวิทยาศาสตร์และเทคโนโลยีวัสดุ คณะวิทยาศาสตร์
	มหาวิทยาลัยสงขลานครินทร์ อำเภอหาดใหญ่ จังหวัดสงขลา 90112
ประวัติการศึกษา	
พ.ศ. 2547	วท.ด. (วัสดุศาสตร์) มหาวิทยาลัยเชียงใหม่
พ.ศ. 2544	วท.ม. (วัสดุศาสตร์) มหาวิทยาลัยเชียงใหม่
พ.ศ. 2541	วท.บ. (ฟิสิกส์) เกียรตินิยม มหาวิทยาลัยสงขลานครินทร์

ผลงานตีพิมพ์ (ย้อนหลัง 5 ปี)

1) ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

- Matchawet, S. Kaesaman, A., Bomlai, P. and Nakason, C. 2016. Electrical, dielectric, and dynamic mechanical properties of conductive carbon black/epoxidized natural rubber composites. *Journal of Composite Materails*, 50(16): 2191 – 2202.
- 2) Matchawet, S. Kaesaman, A., **Bomlai, P.** and Nakason, C. 2015. Effects of multi-walled carbon nanotubes and conductive carbon black on electrical, dielectric, and mechanical properties of epoxidized natural rubber composites. *Polymer Composites,* In press.
- Bomlai, P. 2015. Two-step sintering, microstructure and electrical properties of (Ba, Ca)(Ti, Zr)O₃ lead-free ceramics. *Advanced Materials Research*, 749: 79 – 83.
- 4) Bomlai, P. 2014. Effects of YMnO₃ addition on phase structure, microstructure and electrical properties of (Na_{0.515}K_{0.485})_{0.94}Li_{0.06} (Nb_{0.8}Ta_{0.2})O₃ lead-free ceramics. *Advanced Materials Research*, 979: 167 170.

- Bomlai, P. 2014. Sintering Effects on Microstructure and Electrical Properties of (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ Lead- Free Ceramics. *Advanced Materials Research*, 970: 39 – 43.
- Bomlai, P. and Milne, S.J. 2014. Structural and electrical properties of AgTaO₃-modified (Na_{0.465}K_{0.465}Li_{0.07})NbO₃ lead-free ceramics. *Ferroelectrics*, 458: 98 - 105.
- Bomlai, P. 2013. Sintering, microstructure and electrical properties of MnO₂ and CuO doped [Na_{0.515}K_{0.485}]_{0.94}Li_{0.06}(Nb_{0.99}Ta_{0.01})O₃ ceramics. Advanced Materials Research, 770: 258 – 261.
- Bomlai, P. 2013. Phase structure, microstructure and electrical properties of lead-free (1-x)[Na_{0.515}K_{0.485}]_{0.94}Li_{0.06}(Nb_{0.99}Ta_{0.01})O₃ BiAlO₃ ceramics. *Advanced Materials Research*, **747**: 781 784.
- Bomlai, P. 2013. Phase structure, microstructure and electrical properties of BiMnO₃-doped (Na_{0.515}K_{0.485})_{0.96}Li_{0.04}(Nb_{0.8}Ta_{0.2})O₃ lead-free ceramics. *Advanced Materials Research*, **717**: 27 – 32.
- Bomlai, P., Muensit, N. and Milne, S.J. 2012. Structural and electrical properties of (Na_{0.47}K_{0.47}Li_{0.06})NbO₃ lead-free piezoelectric ceramics modified by AgSbO₃. *Ceramics International*, 39 (SUPPL.1): S135 – S138.
- Petnoi, N., Bomlai, P., Jiansirisomboon, S. and Watcharapasorn, A. 2012. Effects of Nb-doping on the microstructure and dielectric properties of (Bi_{0.5}Na_{0.5})Ti_{1-x}Nb_xO₃ ceramics. *Ceramics International*, **39 (SUPPL.1)**: S113 – S117.
- 12) Bomlai, P., Muensit, N. and Milne, S.J. 2012. Structural and electrical properties of (1-x)(Na_{0.465}K_{0.465}Li_{0.07})NbO₃ x CaTiO₃ lead-free piezoelectric ceramics with high Curie temperature. *Proceedia Engineering*, 32: 814 820.
- Salaeh, S., Muensit, N., Bomlai, P. and Nakason C. 2011. Ceramic/natural rubber composites: influence types of rubber and ceramic materials on curing, mechanical, morphological, and dielectric properties. *Journal of Materials Science*, 46(3): 1723 – 1731.
- 14) Bomlai, P., Songsurin, C., Muensit, N. and Milne S.J. 2010. Structural and electrical properties of (1-*x*)Na_{0.465}K_{0.465}Li_{0.07}Nb_{0.93}Ta_{0.07}O₃ *x*MnO lead-free piezoelectric ceramics synthesized at low sintering temperatures. *ScienceAsia*, **36(3)**: 231 236.

2) ผลงานวิชาการอื่น ๆ (เช่น Proceeding ๆลๆ)

- 1) **Bomlai, P.** 2015. Two-step sintering, microstructure and electrical properties of (Ba, Ca)(Ti, Zr)O₃ lead-free ceramics, International Conference on Intelligent Materials and Manufacturing Engineering, Phuket, Thailand, 16-17 January, 2015.
- 2) Bomlai, P. 2013. Effects of YMnO₃ addition on phase structure, microstructure and electrical properties of (Na_{0.515}K_{0.485})_{0.94}Li_{0.06} (Nb_{0.8}Ta_{0.2})O₃ lead-free ceramics, 5th International Science, Social Science, Engineering and Energy Conference (ISEEC2013), Kanchanaburi, Thailand, 18-20 December 2013.
- Bomlai, P. 2013. Sintering Effects on Microstructure and electrical properties of (Na_{0.5}K_{0.5})_{0.94}Li_{0.06}NbO₃ lead- free ceramics, International Conference on the Science and Engineering of Materials 2013 (ICoSEM2013), Kuala Lumpur, Malaysia, 13-14 November 2013.
- Bomlai, P. 2013. Sintering, microstructure and electrical properties of MnO₂ and CuO doped [Na_{0.515}K_{0.485}]_{0.94}Li_{0.06}(Nb_{0.99}Ta_{0.01})O₃ ceramics, The 4th International Conference on Multi-Functional Materials and Structures (MFMS2013), Bangkok, Thailand, 14-17 July 2013.
- 5) Bomlai, P. 2013. Phase structure, microstructure and electrical properties of lead-free (1-x) [Na_{0.515}K_{0.485}]_{0.94}Li_{0.06}(Nb_{0.99}Ta_{0.01})O₃ BiAlO₃ ceramics, International Conference on Applied Physics and Material Applications (ICAPMA2013), Phetchaburi, Thailand, 20-22 February 2013.
- 6) Bomlai, P. 2013. Phase structure, microstructure and electrical properties of BiMnO₃-doped (Na_{0.515}K_{0.485})_{0.96}Li_{0.04}(Nb_{0.8}Ta_{0.2})O₃ lead-free ceramics, 2nd International Conference on Key Engineering Materials and Computer Science (KEMCS2013), Phuket, Thailand, 3-4 March 2013.
- 7) Bomlai, P., Muensit, N. and Milne, S.J. 2012. Structural and electrical properties of (1-x)(Na_{0.465}K_{0.465}Li_{0.07})NbO₃ xCaTiO₃ lead-free piezoelectric ceramics with high Curie temperature, 3rd International Science, Social Science, Engineering and Energy Conference (ISEEC2011), Nakhon Pathom, Thailand, 2-5 February 2012.
- 8) Rachakom, A., Jaiban, P., Bomlai, P., Jiansirisomboon, S. and Watcharapasorn. 2011. Crystal structure and dielectric properties of bismuth sodium titanate zirconate ceramics, International Forum on Functional Materials & The 2nd Special Symposium on Advances in

Functional Materials (IFFM 2011 & AFM-2). Jeju, Korea, 28-31 July 2011 : 246.

- Bomlai, P., Muensit, S. and Milne, S. J. 2010. Fabrication and properties of (Na_{0.5} K_{0.5})NbO₃ - LiTaO₃ based lead-free piezoelectric ceramics, การ ประชุมนักวิจัยรุ่นใหม่พบเมธีวิจัยอาวุโส สกว. ครั้งที่ 10, เพชรบุรี, ประเทศไทย, 14 – 16 ต.ค. 2553 : 73.
- Bomlai, P., Muensit, N. and Milne, S. J. 2010. Physical and electrical properties of (1-x)(Na_{0.47}K_{0.47}Li_{0.06})NbO₃ x(Ag_{0.5}Li_{0.5})NbO₃ lead-free piezoelectric ceramics with high Curie temperature, Proc. 6th Thailand Materials Science and Technology Conference. Bangkok, Thailand; 26 27 August 2010 : 292-294.
- Pasitsuparoad, P., Bomlai, P. and Amornpitaksuk, P. 2010. Physical and electrical properties of (1-x)(Na_{0.47}K_{0.47}Li_{0.06})NbO₃-xCuO ceramics, The 5th Conference on Science and Technology for Youths. Bangkok, Thailand; 19-20 March 2010 : 115.
- 12) Salaeh, S., Muensit, S., Bomlai, P. and Nakason, C. 2010. Mechanical, morphological and electrical properties of ceramics/natural rubber composites, Joint Conferences 12th International Seminar on Elastomer 2010 and 2nd Thai-Japan Rubber Symposium. Petburi, Thailand; 8 – 11 March 2010 : 99 - 101.