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ABSTRACT 

In this thesis, graphical and statistical methods were used to determine the trends and 

patterns of temperature change as well as to forecast of future temperatures of earth 

surface temperature change. The thesis comprises of two studies carried out for different 

issues, temperature change in Arctic and temperature change in Australia. 

In the first study, monthly temperature anomalies variation from 1973 to 2008 above 

latitude 45 degrees north, covering the Arctic Ocean, northern areas of the Atlantic and 

Pacific Oceans, and the Asian and European Continents, were examined. Temperature 

data were obtained from the Climate Research Unit (CRU) of the United Kingdom. First, 

a linear regression model was used to investigate the trends and patterns of temperature 

change of 69 sub-regions. A second order autoregressive process was used to reduce auto 

correlation at lag 1 and 2 months. Factor analysis was then used to account for spatial 

correlation. Twelve large regions having similar temperature change patterns in each 

large region were identified. A 95% confidence interval (CI) of temperature change was 

estimated for each of the 12 large regions. Each large region was reclassified into three 

levels. High rates of temperature increase (0.20˚C - 0.32˚C) occurred in the North Pacific 

Ocean, Alaska and Eastern Siberia. Moderate temperature increases (0.13˚C - 0.19˚C) 
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occurred in northern Canada, Greenland, Iceland, Norway, Sweden and Finland. 

Northern Siberia and part of the North Atlantic had low level increases (0.09˚C - 

0.129˚C) while northeast Canada and its surrounding seas did not show evidence of 

warming. 

In the second study, daily maximum temperature data from 1970 to 2012 in Australia 

were described. The data were obtained from 85 weather stations randomly selected from 

a total of more than 700 stations of the Australia Bureau of Meteorology (BOM). This 

study is based on two data sets, temperature change in daily maximum temperatures over 

consecutive 5-day periods and monthly maximum temperatures. For the first data set, the 

variation of daily maximum temperatures over consecutive 5-day periods was examined. 

A linear regression model was initially used to model seasonally adjusted daily maximum 

temperatures. The data were fitted with a first order autoregressive process to reduce auto 

correlation at lag 1 month. Factor analysis was used to classify the temperatures from the 

85 stations into seven factors corresponding to seven geographical regions. Average 

maximum annual temperature in these seven regions ranged from 23˚C to 36˚C. A sixth 

order polynomial regression model was fitted in these seven regions. Trends and patterns 

of temperatures were found to be similar in the central, eastern, southern and southeastern 

parts of the country. These trends and pattern show an increase in temperature after 1974 

and decrease in temperature around 1984 and with another steady increase from 2000 to 

2005 and decrease through 2012.  In the second data set, maximum monthly temperatures 

were defined as the highest daily temperature in a particular month. Missing values in the 

data were estimated using a regression model accounting for information from the nearest 
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stations as well as the time periods. Then factor analysis was utilized to reduce the 

dimensions of the data set. A limitation of this factor analysis is that some of the stations 

were not clearly separated. Cluster analysis was used to classify the factor loading 

produced four clusters of stations. A quartic trend model with 3
nd

 order time lag was 

fitted for each cluster and forecasting maximum temperatures over the short period. The 

results showed that the forecasted maximum monthly temperatures were decreasing 

during the period of 2013-2015. A 95% confidence interval (CI) of the maximum 

monthly temperature predictions ranged from about 27˚C - 44˚C, 26˚C - 40˚C, 31˚C - 

42˚C and 26˚C - 42˚C in clusters 1, 2, 3 and 4, respectively. 
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ชื่อวิทยานิพนธ์           แบบจ ำลองทำงสถิติของอุณหภูมิพ้ืนผิวโลกต่อพ้ืนที่และเวลำ 
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บทคัดย่อ 

วิทยำนิพนธ์ฉบับนี้ใช้วิธีกรำฟและวิธีกำรทำงสถิติศึกษำแนวโน้ม รูปแบบ และพยำกรณ์กำร

เปลี่ยนแปลงของอุณหภูมิพ้ืนผิวโลก โดยประกอบด้วยสองกรณีศึกษำคือ กำรเปลี่ยนแปลงของอุณหภูมิ

พ้ืนผิวบริเวณอำร์กติก และกำรเปลี่ยนแปลงของอุณหภูมิพ้ืนผิวของประเทศออสเตรเลีย 

กำรศึกษำแรก ศึกษำข้อมูลอุณหภูมิรำยเดือนในบริเวณเหนือละติจูด 45 องศำ เหนือ ในช่วงปี 

ค.ศ.1973 ถึง ค.ศ.2008 ครอบคลุม มหำสมุทรอำร์กติก พ้ืนที่ตอนเหนือของมหำสมุทรแอนแลนติกและ

แปซิฟิก ทวีปเอเซีย และทวีปยุโรป ข้อมูลได้มำจำกกำรเก็บรวบรวมจำกหน่วยวิจัย Climate Research 

Unit ประเทศ สหรำชอำณำจักร กำรวิเครำะห์ข้อมูลเริ่มต้นด้วยกำรศึกษำกำรเปลี่ยนแปลงของอุณหภูมิ

ใน 69 พ้ืนที ่โดยใช้ตัวแบบกำรถดถอยเชิงเส้น ขจัดสหสัมพันธ์ในตัวเองกับช่วงเวลำที่ศึกษำ ด้วยขบวนกำร

สหสัมพันธ์ในตัวเองอันดับสอง และใช้กำรวิเครำะห์ปัจจัยเพ่ือจัดกลุ่มพ้ืนที่ที่มีลักษณะกำรเปลี่ยนแปลง

ของอุณหภูมิที่คล้ำยคลึงกันเป็นกลุ่มเดียวกัน ผลกำรศึกษำพบว่ำ สำมำรถจัดกลุ่มพ้ืนที่ได้ 12 กลุ่มพ้ืนที่ 

และประมำณกำรเปลี่ยนแปลงของอุณหภูมิในแต่ละกลุ่มพ้ืนที่ด้วยช่วงควำมเชื่อมั่น 95% ของกำร

เปลี่ยนแปลงของอุณหภูมิ และจัดกลุ่มกำรเปลี่ยนแปลงของอุณหภูมิเป็น 3 ระดับดังนี้ กำรเปลี่ยนแปลง

ของอุณหภูมิระดับสูงอยู่ในช่วง 0.2 องศำเซลเซียส ถึง 0.32 องศำเซลเซียสต่อทศวรรษ เกิดข้ึนในบริเวณ

เหนือมหำสมุทรแปซิฟิก อลำสก้ำ และทำงตะวันออกของไซเบียเรีย กำรเปลี่ยนแปลงของอุณหภูมิระดับ

ปำนกลำงอยู่ในช่วง 0.13 องศำเซลเซียส ถึง 0.19 องศำเซลเซียสต่อทศวรรษ เกิดข้ึนในบริเวณตอนเหนือ

ของแคนำดำ กรีนแลนด์ ไอซ์แลนด์ นอร์เวย์ สวีเดน และฟินแลนด์ ส ำหรับกำรเปลี่ยนแปลงของอุณหภูมิ

ระดับต่ ำอยู่ในช่วง 0.09 องศำเซลเซียส ถึง 0.129 องศำเซลเซียสต่อทศวรรษ เกิดข้ึนในบริเวณทำงตอน
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เหนือของไซเบียเรีย บำงส่วนทำงตอนเหนือของแอนแลนติก ขณะที่ทำงตะวันออกเฉียงเหนือของแคนำดำ

และทะเลที่อยู่ล้อมรอบไม่พบกำรเปลี่ยนแปลงของอุณหภูมิ 

 กำรศึกษำท่ีสอง ศึกษำอุณหภูมิสูงสุดรำยวันของประเทศออสเตรเลีย ในช่วง ค.ศ.1970 ถึง ค.ศ.

2012 ข้อมูลถูกสุ่มมำ 85 สถำนีจำก Australia Bureau of Meteorology (BOM) ซึ่งมีสถำนีในกำรเก็บ

รวบรวมข้อมูลอุณหภูมิมำกกว่ำ 700 สถำนี น ำข้อมูลมำจัดกำรเป็นสองชุด ข้อมูลชุดแรก ศึกษำควำมผัน

แปรของอุณหภูมิสูงสุดรำย 5 วัน โดยเริ่มต้นใช้รูปแบบกำรถดถอยเชิงเส้นในกำรปรับอิทธิพลของฤดูกำล 

วิเครำะห์ขบวนกำรสหสัมพันธ์ในตัวเองอันดับหนึ่งเพ่ือลดสหสัมพันธ์ในตัวเอง และใช้วิธีกำรวิเครำะห์

ปัจจัย เพื่อจัดกลุ่มควำมสัมพันธ์ของอุณหภูมิจำก 85 สถำนีไปเป็น 7 กลุ่มของสถำนีซ่ึงสอดคล้องกับ

ลักษณะทำงภูมิศำสตร์ของประเทศออสเตรเลีย อุณหภูมิเฉลี่ยรำยปีทั้ง 7 กลุ่มอยู่ในช่วง 23 องศำ

เซลเซียส ถึง 36 องศำเซลเซียส รูปแบบสมกำรถดถอยโพลิโนเมียลดีกรีหกถูกก ำหนดเพ่ือศึกษำแนวโน้ม

และรูปแบบของอุณหภูมิใน 7 กลุ่มดังกล่ำว ผลกำรศึกษำพบว่ำ แนวโน้มและรูปแบบกำรเปลี่ยนแปลงของ

อุณหภูมิคล้ำยคลึงกันในตอนกลำง ตะวันออก ใต้ และบำงส่วนของทำงตะวันออกเฉียงใต้ รูปแบบและ

แนวโน้มแสดงกำรเพ่ิมข้ึนของอุณหภูมิหลังปี ค.ศ.1974 และลดลงในปี ค.ศ.1984 และมีกำรเพ่ิมข้ึนอีก

ครั้งจำกปี ค.ศ.2000 ถึง ค.ศ.2005 หลังจำกนั้นอุณหภูมิมีกำรลดลงถึงปี ค.ศ.2012 ส ำหรบัข้อมูลชุดที่สอง 

ศึกษำข้อมูลอุณหภูมิสูงสุดรำยเดือนโดยเลือกวันที่มอุีณหภูมิสูงสุดในเดือนนั้น ๆ ข้อมูลรำยวันที่สูญหำยถูก

ประมำณด้วยรูปแบบสมกำรถดถอยเชิงเส้นโดยใช้ข้อมูลสถำนีและช่วงเวลำที่ใกล้เคียงกัน กำรวิเครำะห์

ปัจจัยถูกใช้เพื่อช่วยลดมิติของข้อมูลชุดนี้ ข้อจ ำกัดของกำรวิเครำะห์ปัจจัยคือ มีบำงสถำนีไม่สำมำรถถูก

จัดกลุ่มไปยังกลุ่มใดกลุ่มหนึ่งได้อย่ำงชัดเจน กำรวิเครำะห์กลุ่มถูกน ำมำใช้ในกำรจัดกลุ่มของค่ำ factor 

loading ผลกำรวิเครำะห์กลุ่มพบว่ำ สำมำรถจัดกลุ่มสถำนีได้เป็น 4 กลุ่ม แต่ละกลุ่มถูกก ำหนดด้วย

รูปแบบ quartic trend model with 3nd order time lag และพยำกรณ์อุณหภูมิสูงสุดในช่วงเวลำสั้นๆ 

ผลกำรศึกษำพบว่ำ กำรพยำกรณ์อุณหภูมิสูงสุดรำยเดือนมีแนวโน้มลดลงในช่วงปี ค.ศ.2013 ถึง ค.ศ.

2015 ทั้ง 7 กลุ่ม ช่วงควำมเชื่อมั่น 95% ของกำรพยำกรณ์อุณหภุมิสูงสุดรำยเดือนอยู่ระหว่ำง 27 องศำ



vii 
 

 
 

เซลเซียส ถึง 44 องศำเซลเซียส ในกลุ่มท่ี 1, 26 องศำเซลเซียส ถึง 40 องศำเซลเซียส ในกลุ่มที่ 2, 31 

องศำเซลเซียส ถึง 42 องศำเซลเซียส ในกลุ่มที่ 3 และ 26 องศำเซลเซียส ถึง 42 องศำเซลเซียส ในกลุ่ม 

ที่ 4 
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CHAPTER 1 

Introduction 

1.1 Background and Rationale 

Climate change is one of the most important problems facing the world today. Attempts 

by governments to ameliorate its effect, such as attempting to reduce carbon dioxide 

emissions are hotly debated. Even scientists do not agree on the extent to which these 

emissions effect harmful global warming or on the scope, variation and magnitude of 

global warming itself. Earth surface temperatures have changed over the past 150 years 

with a slightly higher rate of warming in the 20
th

 century (Jones et al., 1999).  

Since 1880, the average surface temperature of the earth has increased by about 0.8˚C 

(NASA, 2010). During the relatively short period of 1925-1944, warming increased by 

0.37˚C (Jones et al., 1999), and since 1975, warming increased in the range of 0.15˚C - 

0.2˚C (NASA, 2010). More recently, in 2010 alone, the annual average earth surface 

temperature increase was 0.53˚C ± 0.09˚C. This was slightly higher than the annual 

average temperature increase in 1998 and 2005 which was estimated to be 0.51˚C and 

0.52˚C, respectively (WMO, 2011).  

In addition, changes in sea surface temperatures increased over the 20
th

 century and 

continued to rise. For the period of 1910-2013, average sea surface temperatures 

increased by about 0.13˚F per decade (NOAA, 2014). The warming is greater over land 

than over the oceans, because water is slower to absorb and release heat (NASA, 2010). 
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Changes in earth surface and sea surface temperatures are associated with change in sea 

levels, destruction of ecosystems, shrinkage of mountain glaciers, reduction of ice cover 

(National Academies, 2008) and altered ocean circulation patterns (Houghton et al., 

2001). In addition, climatic variability may provide indicators for several seasonal-related 

weather events and may also be related to natural disasters, such as floods, droughts, 

tropical cyclones, rising sea levels and the El Niño Southern Oscillation (Hughes, 2003). 

Temperature variability on the earth has been studied in different regions. In the Northern 

Hemisphere and the Southern Hemisphere based on data collected during 1961-1990, the 

annual average surface temperature were 14.08˚C and 13.48˚C (Jones et al., 1999). In the 

Arctic, the average temperature has increased by about 0.6˚C since the beginning of the 

20
th

 century with maximum temperatures increasing by approximately 1.2˚C since 1945 

(Overpeck et al., 1997). Temperatures in South-East Asia have also increased, ranging 

from 0.091˚C to 0.240˚C per decade during the period of 1973-2008 (Chooprateep and 

McNeil, 2014).  

In Australia, average temperatures increased by about 0.32˚C from 1981 to 2005 (Collins 

et al., 2000). Moreover, the mean surface temperatures over the period 1991, 1992, 2003 

and 2006 in four Asian cities also increased; 1.8˚C in Bangkok, 2.2˚C in Osaka, 2.5˚C in 

Seoul and 3.1˚C in Tokyo (Taniguchi et al., 2007). In the Pacific Ocean, average 

temperatures increased by about 3.1˚C in 1976 when compared to average temperatures 

during the period of 1951-1975 (Hartmann and Wendler, 2005). Sea surface temperatures 

in the North Atlantic Ocean increased by approximately 0.13˚C per decade during the 
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period 1973-1989, and at least 0.4˚C per decade during 1990-2008 (McNeil and 

Chooprateep, 2014). 

Many scientists and researchers have studied patterns of earth surface temperature change 

in different regions of the world using various methodologies, including computer 

simulation models (Johannessen et al., 2003), empirical orthogonal functions (Semenov, 

2007) and appropriate statistical techniques, such as multiple linear regression (Lean and 

Rind, 2009), multiple regression with non-Gaussian correlated errors and autoregressive 

moving average (Hughes et al., 2006) models, Pearson correlation analysis (Griffiths et 

al., 2005), linear and quadratic regression (Maiyza et al., 2009), principle components 

analysis (Jones, 1999), linear spline functions, multivariate linear regression models and 

factor analysis (Chooprateep and McNeil, 2014). 

Studies of earth surface temperature changes and the interpretations of these trends are 

complicated by sensitivity to the time period and geographic region. In this study, earth 

surface temperature trends in two different geographic regions, the Arctic and Australia, 

are investigated. 

The Arctic is a polar region located at the northern most part of the earth. The study area 

is above latitude 45 degree north consisting of a vast, ice-covered ocean and surrounded 

by treeless permafrost. Accordingly, the Arctic region is an important component of the 

earth’s climate system. Arctic air temperatures have risen at almost twice the rate of the 

global average over the past few decades. The surface waters of the Arctic Ocean have 

been warming due to declining sea-ice cover, allowing the water to absorb more heat 
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from the sun. Changes in the Arctic climate also affect the rest of the world through 

increased global warming and rising sea levels (ACIA, 2004). 

Australia is surrounded by the Indian and Pacific Oceans. The island-continent is located 

between latitudes 9˚ and 44˚S and longitudes 112˚ and 154˚E. The largest part of 

Australia, its inner core, is desert or semi-arid. The south-east and south-west corners 

have a temperate climate. The northern part of the country has a tropical climate with 

tropical rainforests, grasslands and deserts. Extreme temperatures have increased 

consistent with the warming of the climate (IPCC, 2007), the variation of maximum 

temperature in part of Australia during the 20
th

 century (Nicholls et al., 2004) and also  

warming over recent decades (Murphy and Timbal, 2007). 

The primary objective of this study is to examine the patterns of temperature change in 

the region centered around the middle part of the northern hemisphere of the earth’s 

surface in the Arctic region, including both land and sea surface temperatures, and in the 

Australian region, covering only land surface temperatures, using a combination of 

statistical techniques including linear regression, auto-regressive model, time series 

filtering to reduce auto-correlations between successive monthly and daily values, factor 

analysis, cluster analysis, quartic trend model combined with the 3
rd

 order time lag and 

polynomial regression models. 
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1.2 Research Objective 

This primary research objective will be attained through investigation of the trends, 

patterns and classification of temperature changes in the Arctic and Australia including, 

application of an appropriate statistical model to forecast temperature change. 

1.3 Literature Review 

Various studies have assessed temperature change over the Arctic region and in 

Australia. Temperature change in the Arctic has been a major topic of international 

review and indigenous observations during the last decade (Krupnik and Jolly, 2012) 

which parallels research on temperature change in Australia over recent decades (Murphy 

and Timbal, 2007). Since natural temperature change and pressure variations are 

complex, many different statistical methods have been used to explain the variability and 

trends of temperature change and to quantify the size and speed of the rate of change.  

Temperature change in the Arctic region and statistical methods 

The Arctic climate has been changing rapidly since 1980. The mean seasonal, annual 

daily maximum and minimum air temperatures and diurnal temperature range in the 

Arctic over the period 1951-1990 were studied by Przybylak (1996). The decrease in the 

mean minimum temperature was about twice as great as the rate of increase of the mean 

maximum temperature. The increased temperatures of the diurnal temperature range 

occurred in the summer rather than the winter. Linear trends of annual and seasonal 

maximum and minimum temperatures were calculated. These trends were estimated 
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using the student’s t-test. Standard deviations were then used to compare the behavior of 

the maximum and minimum temperatures. Wang et al. (2012) focused on the variability 

and trends of Arctic climate from satellite observations over the years 1982-2004. The 

annual mean surface temperature increased at a rate of 0.34˚C per decade and decreased 

significantly at an annual rate of -0.037˚C in winter. Major cooling occurred around the 

central and eastern Arctic Ocean. During the warmer seasons from spring to autumn, 

surface temperatures increased at an annual rate of 0.068˚C, 0.070˚C and 0.045˚C, 

respectively. The temperature trends were derived using least square regression over the 

period 1982-2004. The dependent variable was surface temperature, year was the 

independent variable, and the trend value was the slope of the linear regression line along 

with the standard deviation (SD) of the slope. 

The variability and trends of temperature change are reflected in the Arctic Oscillation 

(AO) which implies a linkage between global climate change and Arctic climate change 

(Wang et al., 2012). Comprehensive information about temperature changes in and 

around the Arctic sub-regions were also studied. Anisimov et al. (2007) investigated the 

changes of air temperature in Russia over the period 1900-2004. The trend of annual 

average temperature increase was about 0.5˚C in the north of European Russia and, 1.4˚C 

- 1.6˚C in the south of Ural Siberia and the Far East. On average, for the whole of Russia, 

the trend was an increase of 1.1˚C. The coefficients of correlation between the regional 

average temperatures, linear regression and time series were analyzed for this study. In 

Greenland, the annual warming trend during 1919-1932 was 33% greater than the period 

of 1994-2007, and the recent warming was greatest in western Greenland during autumn 
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and southern Greenland in winter. The periods of these apparent temperature trends were 

estimated using least square linear regression and time series analysis. Moreover, spatial 

interpolations of regional bias patterns were estimated by Kriging interpolation 

procedures (Box et al., 2009). In North Carolina, South Finland, and Southeast England, 

temperatures from 1971 to 1997 have increased by 1.0˚C and 2.1˚C, respectively. 

However, temperatures in Southeast England were unchanged (Donaldson et al., 2002). 

In addition, the sea surface temperatures around the Arctic were studied. In the eastern 

Arctic Ocean, winter season temperatures have increased by approximately 1˚C per 

decade, whereas in the western Arctic Ocean, temperatures decreased by about 1˚C per 

decade. During the spring, the eastern Arctic Ocean showed significant warming. This 

warming was as much as 2˚C during the period of 1979-1997 (Rigor et al., 1999). 

Hartmann and Wendler (2005) focused on Pacific climate shift in the climatology of 

Alaska. The pacific decadal oscillation index shifted in 1976. Mean annual and seasonal 

temperatures were studied and compared during the periods of 1951-1975 and 1977-

2001. The temperature increased by 3.1˚C over the period 1977-2001, higher than for the 

period 1951-1975. The differences in the means were analyzed using a Student’s t-test 

and determined the temperature trend by least square linear regression. 

Sea surface temperatures in the North Atlantic Ocean over the period 1973-2008 were 

analyzed using linear spline functions, auto-regressive models to account for the auto-

correlation, and multivariate linear regression models and factor analysis to account for 

the spatial correlation. From the result of factor analysis, three factors were identified. 

Temperature changes were found to increase by approximately 0.13˚C per decade during 
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1973-1989 in these three factors, but during 1990-2008, the temperatures increased by at 

least 0.4˚C per decade in two of the three identified factors (McNeil and Chooprateep, 

2014).  

Temperature changes in Australia and statistical methods  

The average temperature in Australia has increased by approximately 0.8˚C since 1910 

(Collins, 2000). From 1910 until 1990, trends in temperature change of the average 

maximum and minimum temperature were also studied by Torok and Nicholls (1996) 

who found that the occurrence of changes and trends were 0.54˚C per 100 years and 

0.98˚C per 100 years respectively. The trends were investigated employing a linear 

regression model. The strongest trend was found in the middle of the century. Correlation 

analysis was used to assess the accuracy of the dataset between the all-Australia mean 

maximum and minimum temperature and the all-Australia annual rainfall average. The 

multiple correlations were 0.78. For the period of 1910 -2002, Karoly and Braganza 

(2004) investigated the variations of the Australian-average mean temperature and 

diurnal temperature range. Temperature variability was measured by the standard 

deviations of the temperature. Simple linear detrending was used to remove any possible 

anthropogenic signal in the observed indices. The research findings were that the 

observed temperature variations may still include variation of natural or anthropogenic 

external forcing in time scales less than a century.  
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Murphy and Timbal (2007) investigated the temperature trends during the period 1910-

2006. They found that mean temperatures reached 0.09˚C per decade while temperatures 

have been rising by 0.19˚C per decade for 1970-2006 by using a linear regression model 

as well. Moreover, part of the period 1910 to 2008 also was studied. For example, most 

parts of Australia increased in temperature by 0.1˚C - 0.2˚C per decade since 1951. This 

warming has been greatest in Queensland and the southern half of Western Australia 

(Suppiah et al., 2001) and during 1957 to 1996, the trends in annual frequency of 

warming events have generally increased and the number of cool extremes has decreased. 

Time series analysis of annual index values was investigated for each temperature record. 

Trends in the series were calculated for each station using linear regression (Collins et al., 

2000).  

Many techniques were applied to study temperature change and prediction. For instance, 

Jones (1999) used principal component analysis to investigate the characteristics and 

mechanisms of Australian temperature variability for the period 1950 to 1994. 

Approximately 80 percent of the temporal variance was explained by five independent 

models. The analysis showed that there were warming trends across much of Australia, 

but also revealed that about 80 to 90 percent of the temporal variance was unrelated to 

this trend. Grainger and Frederiksen (2008) focused on the potential predictability of 

Australian surface maximum and minimum temperature using monthly data from 

December 1950 to November 2000. They found that monthly mean variance within a 

season can be modeled by a linear relationship, and inter-monthly correlations can be 

assumed to be stationary. Potential predictability was estimated by removing the 
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intraseasonal variance from the total interannual variance. In addition, this study 

indicated that the intraseasonal variance of Australian surface maximum and minimum 

temperature estimated using the stationary variance assumption and the linear assumption 

showed qualitatively and quantitatively similar patterns of distribution. The results 

showed that the four seasons for northern Australia have high potential predictability. 
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1.4 Conceptual Framework 

The conceptual framework for analyzing data in the Arctic and Australia is shown in 

Figure 1.1 
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From Figure 1.1, the first data set is monthly anomalies temperature data in the Arctic 

during 1973 - 2008 and the second data set is maximum temperature data in Australia 

during 1970 - 2012. Patterns in the data were derived by plotting time series. Similar 

main statistical methods were employed to analyze both data sets. Time series analysis 

was used to describe the correlation of time and variation of data. A simple linear 

regression model and a polynomial regression model were used to investigate the trends, 

patterns and rate of temperature change. Factor analysis and cluster analysis were used to 

classify similar patterns into groups. This method reduced the correlation between 

variables (study area). Trends and patterns of temperature change were estimated for the 

different locations as well as for assessing the ability of models to forecast temperature 

change for short time periods.  

1.5 Organization of thesis 

In this thesis, the five chapters are organized as follows: 

Chapter1 provides an introduction to the background and rationale of temperature change 

of the Earth’s surface temperatures, the objectives of the study, the literature review and 

the conceptual framework. Chapter 2 provides a description of all methodologies used for 

this study. Chapter 3 presents the analysis of anomalies temperature data in the Arctic. 

Chapter 4 presents the analysis of maximum temperature data in Australia. Chapter 5 

concludes and discusses the research findings. Moreover, Chapter 5 gives some 

suggestions for further research. 
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CHAPTER 2 

Methodology 

This chapter consists of a discussion of data sources, data management, study diagrams 

and statistical methods. These methods are comprised of the seasonally adjusted method, 

linear regression analysis, times series analysis, auto correlation, autoregressive process 

and filtering, factor analysis, cluster analysis and polynomial regression modeling. All 

data analyses and graphical display were carried out using R program (R Development 

Core Team, 2009). 

2.1 Data Source and Data Management 

The data were obtained from two different data sources of temperature change in the 

Arctic region and Australia. 

Arctic region 

Monthly average temperature anomalies data were used to study temperature trends and 

patterns. The data were downloaded as the file HadCRUT3 from the Climate Research 

unit at University of East Anglia, UK (CRU, 2009), (http://www.cru.uea.ac.uk/). Since 

January 2006, HadCRUT3 has produced a new dataset version which combined land and 

marine anomalies from temperature anomalies for 5˚ by 5˚ latitude- longitude grid-boxes 

on the Earth’s surface. The dataset was collected from 4,349 weather stations for the 

period of 1850-2008. The temperature anomalies data are raw monthly temperatures 

subtracted from average temperatures from 1961 to 1990. Each grid-box value is the 

http://www.cru.uea.ac.uk/
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mean of all available station anomaly values, except that station outliers in excess of five 

standard deviation are omitted (Brohan et al,, 2006). Data from observation points above 

latitude 45˚N from 1973 to 2008 was selected in this study. The research locations are 

defined by 648 grid-boxes of 5˚ by 5˚ dimension. These grid-boxes cover the Arctic 

Ocean, the northern areas of the Atlantic and Pacific Oceans, the North American, Asian 

and European Continents. The data included 432 monthly average temperature anomalies 

for 5˚ by 5˚ latitude-longitude grid-boxes. Data were missing in a number of those grid-

boxes, particularly in the polar zones. Therefore, the 648 grid-boxes were combined into 

69 sub-regions following a design in the shape of an igloo. This design visually illustrates 

correlation more effectively than from the perspective of pairs of adjoining sub-regions. 

The 69 sub-regions included 1 sub-region encompassing up to 5˚ below the North Pole 

(85˚N-90˚N), 8 in the 75˚N-85˚N band, 12 in the 65˚N-75˚N band, 24 in the 55˚N-65˚N 

band and another 24 in the 45˚N-55˚N band. However, a number of the sub-regions had 

still missing data, as shown in brackets in Figure 2.1. 
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Figure 2.1: Map of the 69 sub-regions above latitude 45˚N. Numbers in brackets are the 

number of months with missing data for 1973-2008. 

 

Australia 

Daily maximum temperature data from 1970 to 2012 were downloaded from the website 

of the Australian Bureau of Meteorology (BOM, 2013), (http://www.bom.gov.au). The 

Australia BOM provided daily maximum temperature data for over 700 weather stations. 

The maximum temperature data recorded in some stations started in different time 

periods. Some stations also had incomplete records due to weather phenomena and 

changing reporting requirements (BOM, 2013). A sample of 85 stations was randomly 

selected. These stations were distributed across Australia. These selections of the stations 

were in line with Australia’s Reference Climate Station Network (RCS) and the Australia 

Climate Observations Reference Network Surface Air Temperature (ARORN-SAT). 

http://www.bom.gov.au/
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These stations had approximately 80% complete data from 1970 to 2012, as shown in 

Figure 2.2. In each station, daily maximum temperature data were collected. 

Observations on February 29 were omitted to have equal numbers of observations for 

each year, totaling 15,695 observations including missing data over the 43 year period. 

For this data set, the data were managed to form two new data sets. One data set, for the 

maximum temperatures over consecutive 5-day periods, was used for analysis to reduce 

the number of observations to 73 periods in each year, as well as reducing the correlation 

between successive observations. This data set provided 3,139 observations over the 43-

year period and another one for the monthly maximum temperatures which were defined 

as the highest daily temperature in a particular month. Therefore, the second data set 

provided 516 monthly maximum temperature observations over the 43 year period. 
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Figure 2.2: Station locations where daily maximum temperature data were collected. 

The state boundaries in Australia are also given. 

 

2.2  variables 

The dependent variables are the surface temperatures which includes both land and sea 

surface temperature and the independent variable are units of time (Monthly, daily and 

period of year). 
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2.3  Study diagrams 

The study diagrams for the Arctic region and Australia are shown as follows: 

Arctic region 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: The diagram of data analysis in Arctic region 
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Figure 2.3 shows the steps of analysis for monthly average temperature anomalies data 

from 1973 to 2008. In the first step, [1] the data were plotted and fitted to a linear 

regression model to see the temperature trends and patterns. [2] Since the data had time 

correlates, an auto-regressive model (AR2) was fitted to reduce these correlations. [3] 

After that, the data were filtered by moving auto-correlation at lag 1 and lag 2 months. [4] 

The filtered data were used for factor analysis to identify spatial correlation. [5] Finally, a 

linear regression model was fitted for each factor. The coefficients of the linear 

regression model were used to explain the rate of temperature change with a confidence 

interval of the temperature changes in each factor. 
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Australia 

 

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

Figure 2.4: The diagram of data analysis in Australia 
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The daily maximum temperatures in Australia from 1970 to 2012 were managed to form 

two data sets as shown in diagram of figure 2.4. The first data set is the maximum 

temperature over consecutive 5-day periods data. [1] Start, the data were plotted and 

fitted by linear regression model to see the trends and patterns. [2] Since the data showed 

the patterns of seasonal variation, the data were adjusted seasonally by subtracting the 

average of the maximum temperature in each period and then adding them back to the 

overall mean for all 85 stations. [3] Next, an auto-regressive model AR(1) was fitted to 

reduce correlation between the data and time periods. [4] Then, the data were filtered by 

removing auto-correlation at lag 1 month. [5] After that, factor analysis was applied to 

the filtered temperatures to identify spatial correlation and [6] fitted to a sixth order 

polynomial regression model to account for trends in the data as displayed by a 

curvilinear pattern in each factor.  

For the second data set, the monthly maximum temperature data were investigated for the 

presence of trends and patterns of temperature change. Since there were missing data in 

several stations, [1] a linear regression model was fitted to estimate these missing values 

by assuming that the maximum monthly temperature at a particular month and station 

could be predicted using the previous and next month temperatures as well as the first 

and second nearest station temperatures at the pre-defined month. After interpolating the 

missing data, [2] the data were plotted and fitted to the quartic trend model with 3
rd

 order 

time lag to see trends and patterns and [3] to identify spatial correlations by factor 

analysis. From the results of factor analysis, there were several stations having similar 

factor loadings. [4] Cluster analysis was used to regroup the 85 stations based on their 
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factor loadings. The distance or dissimilarity between groups of stations was defined 

using the completed linkage and based on the Euclidian distance. Since, the data showed 

the curve pattern in each cluster. [5] The quartic trend model with 3
rd

 order time lag was 

fitted reasonably well [6] and this model was used to forecast for short time periods in 

each cluster. 

2.4  Statistical methods 

Seasonally adjusted method 

The maximum temperatures over consecutive 5-days periods were seasonally adjusted to 

remove variation in temperature. The adjustment was carried out using the backward 

difference operator   as well as the backshift operator B (Montgomery et al., 2008)  

If     is the maximum temperature over consecutive 5-day periods in station   for period 

  and the backward difference is           whereas              , then the lag-  

seasonal operator is defined as                             

Hence,     denotes the maximum temperature over consecutive 5-day periods in station 

  for period  . From the above equation by choosing   = 73 as follows, 

                                                                                          (2.1) 
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Time series analysis  

Auto correlation 

A time series is a set of observations which each one is recorded at a specific time 

(Brockwell and Davis, 2002). The correlation between members of a series and numbers 

arranged in time is called auto correlation or serial correlation. An important guide to the 

persistence in a time series is provided by the series of quantities called sample auto 

correlation coefficients, which measure the correlation between observations separated by 

  time 

The auto correlation coefficient at lag  , is given by 

                                                     
                    

   

          
   

                                           (2.2) 

where    is the mean of n-l observations. 

The auto correlation coefficient at lag   is interpreted graphically by auto correlation 

function (ACF) plot, sometimes called a correlogram where    is plotted against the lag    

(Cryer, 1986; Chatfield, 1996). 

If a time series is completely random with a large n, auto correlation should be near zero 

for any and all time-lag separations. In fact, for independent and identically distributed 

(iid) noise with finite variances, auto correlation is approximately iid N(0,1/ n) for n  

large. Therefore, approximately 95% of auto correlation should fall within the bounds of 



24 
 

 
 

        . The dotted lines on the auto correlation function graph are the bounds 

         (Brockwell and Davis, 2002) as shown in Figure 2.5. 

 

Figure 2.5: Example of auto correlation plot. The dotted lines indicate         . 

 

Autoregressive process 

Autoregressive process AR is applied to account for auto correlation among residuals 

from the fitted linear model (Venables and Ripley, 2002). AR(p) is an autoregressive 

model of the p
th

 order, and AR(p) satisfies the equation               

                                                                                              (2.3)     

where    is the difference between temperature      and the corresponding fitted value 

     .Thus,            is the residual value at the time  ,     is the order of the past 

time for   = 1, 2, …,  ,            are the parameters of model, and    is the value that 
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is not explained by the  past values. The series is assumed to be stationary, and    is 

independent of                   (Cryer, 1986). 

Filtering 

Filtered temperature data were obtained using the equation (Chatfield, 1996) as follows:   

                                                                                       (2.4)                                  

where    is the filtered temperature data at the time  ,    is the difference between 

temperature      and the corresponding fitted value      . Thus            is the 

residual value at the time  ,     is the order of the past time for   = 1, 2, …,  , and   

           are the average coefficients of the fitted autoregressive model AR(p). 

Regression analysis 

Linear regression is an approach used to model the relationship between a dependent 

variable and one or more explanatory variables. In this study, a simple linear regression 

model was fitted to investigate the temperature trends, and a multiple linear regression 

model was fitted to estimate the missing data for temperatures in Australia. 

The simple linear regression model takes the following form: 

                                                                                                            (2.5) 

where   denotes the temperature,    is intercept,    corresponds to the temperature 

change,   is time  and   is the error assumed to follow a normal distribution with constant 

variance. 
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The multiple linear regression model takes the following form:  

                                                                                (2.6) 

for    = 1, 2, … , 516 and   = 1, 2, …, 85, where      denotes the maximum temperature 

at month   of station  ,    are regression coefficients,  = 0, 1, 2, 3, 4,       is the 

maximum temperature at month t for the nearest station from station  ,       is the 

maximum temperature at month t for the second nearest station from station  ,        is 

the maximum temperature at month     for station k,        is the maximum 

temperature at month     for station k and     is the error assumed to follow a normal 

distribution with constant variance at month   of station   (Kedem and Fokianos, 2002). 

Polynomial regression model 

Polynomial regression is a form of linear regression for quantitative independent 

variables and the dependent variable. They are among the most frequently used 

curvilinear response models (Neter et al., 1996). The general polynomial regression 

model, as an n
th

 degree polynomial takes the following form  

                                             
     

       
                     (2.7) 

where    is temperature at time  ,     represents the mean response of    when   = 0, 

           are effect coefficients and    is the error term. 
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A quartic trend model combined with the 3
rd

 order time lag was fitted to account for the 

trend and to predict the maximum monthly temperature. The model takes the following 

form 

                      
     

     
                              (2.8)                       

 where    temperature at time  , and                          are the parameters of the 

model, whereas    is the error term. 

Factor analysis 

Factor analysis is another variable-directed technique concerned with explaining the 

covariance and/or correlation structure among the measured variables and determining 

the correlation between a large set of variables in terms of a small number of underlying 

factors (Johnson, 1998).  

The factor analysis model with m factors, denoted by           , takes the form     

                                                            
 
                                              (2.9) 

where    is the temperature for time  ,   is the average temperature,    is the factor 

loadings on the     factor and    is the     common factor. 

The factors were identified using factor loadings. The cut-off value for the factor loading 

was 0.3 as the criteria for classifying the region in each factor (Hair et al., 1998). The 

loadings (usually between -1 and 1) were controlled by rotating the factors. Most rotation 

procedures require many factors loadings as close as possible to zero and maximize as 

many of the others as possible. Moreover, it would be highly desirable that the factors are 
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completely independent. However, this is not critical if response variables are not located 

heavily on more than one factor (Johnson, 1998).  

The Varimax rotation method and Promax rotation method were used in this study. The 

Varimax rotation method is an orthogonal rotation algorithm with procedures that keep 

the factors uncorrelated whenever the method starts with a set of uncorrelated factors. 

The orthogonal rotations of factor loading matrices do not affect the communalities of the 

response variables and the specific variance of the variables. The Promax rotation method 

is an alternative non-orthogonal (Oblique) rotation method. In practice, Oblique rotations 

do not produce new factors that remain uncorrelated, which is a contradiction of the 

initial factor analysis assumption. That is, the oblique rotation allows the factors to 

correlate loadings to form a conceptually clearer picture (Johnson, 1998). 

Cluster analysis 

Cluster analysis is a technique that produces classification from data that are initially 

unclassified. Cluster analysis provides the ability to measure the similarity or 

dissimilarity between two individual observations and subsequently the similarity or 

dissimilarity between two clusters of observations (Johnson, 1998). 

One simple measure of dissimilarity is standard Euclidean distance. This is the distance 

between two observations when plotting the two observations in the p-dimensional 

sample space and measuring the distance between them using a formula. The formula that 

calculates Euclidean distance takes the form of (Johnson, 1998). 
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                                          (2.10) 

where    and    are two points of dissimilarity. 

Classifying a set of objects mean establishing or constructing clusters or a hierarchy. 

There are two basic methods to distinguish whether the objects are either hierarchical or 

nonhierarchical. 

Hierarchical clustering method was used in this study. The observed data points were 

grouped into clusters in a nested sequence of clustering methods in the complete linkage 

of two groups between individuals A and B. The complete linkage between A and B is 

the greatest distance between an element in A and an element in B (Husson, 2011). 

Moreover, a hierarchical tree diagram is a means of providing assistance in deciding 

when to stop the clustering process. It contains branches connecting data points and 

shows the order in which the points are assigned to clusters. The lengths of its branches 

are proportional to the distance between points and clusters when points and cluster are 

combined (Johnson, 1998). 
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CHAPTER 3 

Analysis of temperature anomalies data in the Arctic 

This chapter reports the analysis of monthly average temperature anomalies data in order 

to investigate the trends and patterns of temperature changes above latitude 45 degrees 

North from 1973 to 2008.  

3.1 Summary of the temperature data 

Temperature changes above latitude 45 degrees North were investigated from 1973 to 

2008 since this period has the most complete data and also corresponds with global 

temperature anomalies which have increased during this period (CRU, 2009). The results 

also appeared in Wanishsakpong et al. (2014). 

The study area consisted of 648 grid-boxes which were combined into 69 sub-regions 

covering the Arctic Ocean, northern areas of the Atlantic and Pacific Oceans and the 

North American, Asian and European Continents. The numbers on the map in Figure 3.1 

indicate the locations of these sub-regions. In each sub-region, there were 432 

observations with some of the sub-regions having missing values. Of the 69 sub-regions, 

57 sub-regions had complete data, 10 sub-regions had less than 10% missing data and 2 

sub-regions had more than 80% missing data. 
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Figure 3.1: Map of the 69 sub-regions above latitude 45˚N 

Summaries of monthly average temperature anomalies data in each of the 69 sub-regions 

are shown in Table 3.1. 
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Table 3.1(a): Data summaries of monthly average temperature anomalies in each sub-

region 

 

 

Sub-

region 

Latitude and 

longitude 

n Mean Min Max 

1  North pole 69 2.00 0.01 6.80 

2 75-85˚N  – 180-135˚E 69 1.90 0.07 6.90 

3 75-85˚N  – 135-90˚W 409 0.82 -6.00 9.40 

4 75-85˚N  – 90-45˚W 432 0.61 -9.70 8.90 

5 75-85˚N  – 45-0˚W 432 0.43 -6.70 8.00 

6 75-85˚N  – 0-45˚E 432 0.61 -6.12 9.40 

7 75-85˚N  – 45-90˚E 423 0.76 -9.40 13.90 

8 75-85˚N  – 90-135˚E 414 0.61 -9.70 12.40 

9 75-85˚N  – 135-180˚E 399 0.61 -6.40 6.80 

10 65-75˚N  – 180-150˚W 432 0.67 -7.52 12.14 

11 65-75˚N  – 150-120˚W 432 1.07 -6.98 12.67 

12 65-75˚N  – 120-90˚W 403 0.64 -7.02 8.84 

13 65-75˚N  – 90-60˚W 403 0.32 -8.04 8.62 

14 65-75˚N  – 60-30˚W 432 0.33 -9.05 5.23 

15 65-75˚N  – 30-0˚W 432 0.41 -1.58 3.67 

16 65-75˚N  – 0-30˚E 432 0.28 -1.32 2.51 

17 65-75˚N  – 30-60˚E 432 0.49 -3.07 3.30 

18 65-75˚N  –  60-90˚E 432 0.91 -7.80 10.30 

19 65-75˚N  – 90-120˚E 432 0.56 -11.00 12.28 

20 65-75˚N  – 120-150˚E 430 0.53 -5.20 8.87 

21 65-75˚N  – 150-180˚E 431 0.59 -6.33 8.20 

22 55-65˚N  – 180-165˚W 432 0.32 -3.13 3.17 

23 55-65˚N  – 165-150˚W 432 0.40 -5.18 6.07 

24 55-65˚N  – 150-135˚W 432 0.21 -4.23 5.18 

25 55-65˚N  – 135-120˚W 432 0.45 -9.09 9.61 

26 55-65˚N  – 120-105˚W 432 0.67 -11.30 10.98 

27 55-65˚N  – 105-90˚W 432 0.67 -8.17 8.00 

28 55-65
o
N  – 90-75˚W 432 0.68 -6.66 7.96 

29 55-65˚N  – 75-60˚W 432 0.25 -7.05 8.70 

30 55-65˚N  – 60-45˚W 432 0.009 -2.56 2.51 

31 55-65˚N  – 45-30˚W 432 0.20 -1.62 2.67 

32 55-65˚N  – 30-15˚W 432 0.09 -0.98 1.74 

33 55-65˚N  – 15-0˚W 432 0.11 -1.10 1.82 

34 55-65˚N  – 0-15˚E 432 0.29 -2.10 3.30 

35 55-65˚N  – 15-30˚E 432 0.29 -3.52 3.90 
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Table 3.1(b): Data summaries of monthly average temperature anomalies in each sub-

region 

Sub- 

region 

Latitude and longitude n Mean Min Max 

36 55-65˚N   –  30-45˚E 432 0.57 -9.57 9.76 

37 55-65˚N   –  45-60˚E 432 0.59 -10.95 10.00 

38 55-65˚N   –  60-75˚E 431 0.62 -8.63 9.82 

39 55-65˚N   –  75-90˚E 432 0.71 -12.40 11.80 

40 55-65˚N   –  90-105˚E 432 0.71 -9.36 10.47 

41 55-65˚N   –  105-120˚E 432 0.64 -10.25 10.03 

42 55-65˚N   –  120-135˚E 430 0.70 -5.90 9.49 

43 55-65˚N   –  135-150˚E 432 0.43 -3.50 5.51 

44 55-65˚N   –  150-165˚E 432 0.23 -3.06 3.41 

45 55-65˚N   –  165-180˚E 432 0.11 -4.04 4.58 

46 45-55˚N   –  175-160˚W 432 0.04 -1.62 1.37 

47 45-55˚N   –  160-145˚W 432 0.11 -1.73 2.13 

48 45-55˚N   –  145-130˚W 432 0.21 -1.69 2.20 

49 45-55˚N   –  130-115˚W 432 0.17 -5.47 3.91 

50 45-55˚N   –  115-100˚W 432 0.41 -8.98 9.63 

51 45-55˚N   –  100-85˚W 432 0.39 -5.55 8.57 

52 45-55˚N   –  85-70˚W 432 0.09 -6.21 6.63 

53 45-55˚N   –  70-55˚W 432 0.20 -3.45 3.20 

54 45-55˚N   –  55-40˚W 432 0.03 -2.25 2.12 

55 45-55˚N   –  40-25˚W 432 0.21 -1.59 2.34 

56 45-55˚N   –  25-10˚W 432 0.24 -1.78 2.26 

57 45-55˚N   –  10-5˚E 432 0.35 -1.83 2.38 

58 45-55˚N   –  5-20˚W 432 0.51 -3.03 4.47 

59 45-55˚N   –  20-35˚E 432 0.35 -7.26 6.86 

60 45-55˚N   –  35-50˚E 432 0.32 -8.83 9.90 

61 45-55˚N   –  50-65˚E 432 0.44 -9.59 10.42 

62 45-55˚N   –  65-80˚E 432 0.44 -9.42 9.27 

63 45-55˚N   –  80-95˚E 432 0.63 -7.41 7.53 

64 45-55˚N   –  95-110˚W 432 0.68 -6.64 7.84 

65 45-55˚N   –  110-125˚E 432 0.70 -4.39 7.35 

66 45-55˚N   –  125-140˚E 432 0.45 -3.90 5.50 

67 45-55˚N   –  140-155˚E 432 0.21 -1.41 2.38 

68 45-55˚N   –  155-170˚E 432 0.12 -1.37 2.13 

69 45-55˚N   –  170-175˚E 432 0.09 -1.67 1.73 
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Table 3.1 presents the numerical summaries. There were 432 observations in most of the 

sub-regions except for sub-regions 1, 2, 3, 8, 9, 12, 13, 20, 21, 38 and 42. The range of 

monthly average temperature anomalies varied from -12.4˚C in sub-region 39 to 13.9˚C 

in sub-region 7. 

A time series plot of the average temperature anomalies for all 69 sub-regions is 

presented to show overall temperature patterns. The dots shown in Figure 3.2, suggest 

that there is a statistical relationship between temperature and time, and the tentative 

assumption of the straight line model (equation 2.5, page 25) appears to be reasonable. 

Therefore, a simple linear regression model (equation 2.5, page 25) was fitted with these 

data in order to investigate temperature changes in all 69 sub-regions from 1973 to 2008. 

 

Figure 3.2: Average temperature anomalies from 1973 to 2008 (432 months).              

The correlation is denoted by r. 
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In Figure 3.2, temperatures show a significant rate of increased (slope) by 0.35˚C per 

decade over this period (P-value < 0.05). A 95% confidence interval (CI) on the slope is 

0.30˚C - 0.39˚C. The correlation between temperature and time is r = 0.56. The horizontal 

line on the right panel shows the average temperature predicted by the model at the first 

time point (January 1973). 

A separate linear regression model (equation 2.5, page 25) was fitted for each of the 67 

sub-regions to explain temperature change per decade, except in sub-regions 1 (North 

Pole) and sub-region 2 (75-85˚N – 180-135˚E) that do not have enough data. The results 

of temperature change for each of the 67 sub-regions are shown in Appendix 1. 

Moreover, a 95% confidence interval (CI) of temperature changes per decade for each of 

the 67 sub-regions was estimated from the simple linear regression model (equation 2.5, 

page 25) to confirm the results shown in Figure 3.4.   
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Figure 3.3: 95% confidence interval of monthly temperature anomalies changes ordered 

by latitude N and longitude from 180 W. The horizontal axis shows sub-regions in each 

group of latitudes. 

 

Figure 3.3 shows 95% confidence intervals (CI) of temperature change per decade 

ordered by latitude N and longitude from 180 W. The 95% confidence intervals covering 

zero imply no significant temperature change. It is clear that there are 64 sub-regions in 

which temperatures have increased. There is no evidence of change in 3 sub-regions 

located at latitude 55˚N-65˚N longitude 135˚W-120˚W (p-value =0.116), latitude 55˚N -

65˚N longitude 120˚W-105˚W (p-value =0.065) and latitude 45˚N-55˚N longitude 85˚W-

70˚W (p-value =0.764). The temperature changes in the sub-regions are displayed on the 

map in Figure 3.4 
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.  

Figure 3.4: Map of temperature changes of the 69 sub-regions from 1973 to 2008. 

 

Figure 3.4, red represents a significant increase (p-value < 0.05), orange no evidence of 

change and white insufficient data in the sub-regions which were omitted from further 

analysis. 

3.2 Time series analysis with autoregressive process and filtering 

A common assumption in time series data is that the data are stationary. A stationary 

process has an auto correlation structure that does not change over time. Auto correlation 

of the residuals from a fitted simple linear model (equation 2.5, page 25) shows the 

correlations separated by time in Figure 3.5.  
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Figure 3.5: Auto correlation function plots of the residuals for two of the 67 sub-regions. 

The dotted line represents the 95% confidence interval of a zero correlation. 

 

Figure 3.5 is a graph of the auto correlation function (ACF) of the residuals for two of the 

67 sub-regions where temperatures have increased. This figure indicates that the residuals 

are not stationary, as evidenced by significant auto correlation with some lags. The graph 

of auto correlation (ACF) does not fall within the 95% confidence interval. Therefore, a 

second order autoregressive process was fitted by equation (2.3), page 24 to reduce these 

correlations. These residuals were assumed to be stationary. Coefficient   and   were 

obtained with two parameters of the data in each region, and the coefficients   and    

were then averaged across all the 67 sub-regions. The average coefficients are 0.333 and 

0.04. 

After removing the auto correlation structure using those average coefficients, the filtered 

residuals were obtained from equation (2.4), page 25. The auto correlation function 

(ACF) of the filtered residuals for the same two of the 67 sub-regions is shown in Figure 

3.6.  
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Figure 3.6: Auto correlation function plots of the filtered residuals for the two sub-

regions illustrated in Figure 3.5. The dotted line represents the 95% confidence interval 

of a zero correlation. 

 

Figure 3.6 reveals that the filtering residuals are not significantly auto correlated, because 

most of the correlations in each sub-region are within the 95% confidence interval. 

3.3 Spatial correlation and factor analysis 

Spatial correlation between adjacent sub-regions would need to be considered because 

there are still correlations remaining after filtering. The correlation coefficients among 67 

sub-regions range from 0.01 to 0.83, with a median of 0.04. 

Factor analysis was applied to identify correlations between the filtered average monthly 

temperature anomalies in the 67 sub-regions by using model (equation 2.9, page 27). The 

factor rotation used is the Promax method. The results of factor analysis are shown in 12 

factors. Factors with similar patterns represent a large region that consists of two to nine 

adjoining sub-regions, as shown in Table 3.2 and also shown in map of Figure 3.7. 
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Sub 

regions 

Factor

1 

Factor

2 

Factor

3 

Factor

4 

Factor

5 

Factor

6 

Uniqueness 

25 

26 

27 

49 

50 

51 

0.772 

0.869 

0.623 

0.786 

0.939 

0.728 

 

0.152 

0.611 

-0.203 

 

0.186 

0.521 

0.235 

 

 

-0.134 

-0.305 

 

 

-0.104 

  0.112 

0.100 

0.170 

0.402 

0.134 

0.276 

3 

4 

12 

13 

28 

29 

52 

53 

 

-0.101 

0.183 

-0.134 

 

-0.124 

0.293 

0.404 

0.434 

0.621 

0.701 

0.912 

0.766 

0.468 

0.445 

0.334 

0.292 

0.258 

0.115 

-0.123 

 

-0.313 

-0.168 

 

 

 

 

 

 

-0.203 

0.159 

0.138 

 

0.108 

 

-0.105 

-0.116 

 0.521 

0.557 

0.350 

0.458 

0.208 

0.398 

0.557 

0.713 

10 

11 

22 

23 

24 

-0.121 

0.182 

-0.129 

 

0.548 

 

0.163 
0.722 

0.606 

0.644 

0.883 

0.718 

 

0.106 

  0.270 

0.404 

0.446 

0.245 

0.161 

14 

15 

30 

31 

32 

33 

54 

55 

56 

-0.125  

-0.159 

0.153 

 

 

-0.117 

0.198 

0.120 

0.162 0.351 

0.408 

0.455 

0.748 

0.917 

0.691 

0.390 

0.400 

0.487 

 

 

 

 

 

-0.150 

0.129 

 

-0.104 

 

-0.137 

 

 

 

 

 

 

0.167 

0.800 

0.703 

0.750 

0.483 

0.241 

0.302 

0.766 

0.740 

0.686 

17 

36 

37 

59 

60 

 -0.143 

-0.100 

  

-0.12 

 

-0.127 

0.543 

0.860 

0.829 

0.522 

0.640 

0.450 

 

0.260 

-0.194 

-0.142 

0.458 

0.107 

0.074 

0.360 

0.222 

18 

38 

39 

40 

    0.135 

0.400 
0.832 

0.702 

0.840 

0.629 

0.275 

0.078 

0.073 

0.085 

 

Table 3.2(a): Results of the factor analysis. Bold values represent factor loadings greater 

than 0.3. 
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Sub 

regions 

Factor

7 

Factor

8 

Factor

9 

Factor

10 

Factor

11 

Factor

12 

Uniqueness 

61 

62 

63 

0.863 

0.813 

0.553 

 

 

0.129 

 

0.205 

0.408 

 

0.117 

0.185 

  0.131 

0.110 

0.176 

16 

34 

35 

57 

58 

-0.309 

 

-0.145 

 

0.148 

0.447 

0.857 

0.706 

0.639 

0.762 

 

0.101 

   0.437 

0.190 

0.175 

0.487 

0.442 

64 

65 

0.195 0.126 0.871 

0.783 

0.159 -0.172 

0.263 

 0.198 

0.210 

9 

21 

43 

44 

45 

0.131 0.129 -0.177 0.492 

0.895 

0.585 

0.792 

0.516 

0.157 

 

0.391 

 

-0.26 

 

 

 

 

0.129 

0.592 

0.230 

0.455 

0.470 

0.604 

19 

20 

41 

42 

66 

  -0.158 

-0.135 

0.502 

 

0.353 

 

0.434 

-0.218 

0.519 

0.655 

0.557 

0.957 

0.602 

 0.388 

0.290 

0.100 

0.081 

0.380 

46 

47 

48 

68 

69 

  

 

 

-0.128 

  

 

 

0.156 

0.108 

 0.916 

0.795 

0.519 

0.424 

0.675 

0.212 

0.345 

0.521 

0.635 

0.418 

5 

6 

7 

8 

67 

-0.283 

-0.155 

 -0.105 

 

 

0.169 

0.147 

-0.123 

 

 

-0.296 

-0.235 

0.135 

 

 

0.134 

0.281 

0.156 

 

 

 

 

0.158 

 

 

 

 

0.141 

0.857 

0.919 

0.701 

0.714 

0.788 
 

 

Table 3.2(b): Results of the factor analysis. Bold values represent factor loadings greater 

than 0.3. 
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Table 3.2, the results were considered for factor loadings greater than 0.3 for each factor. 

Ideally, each sub-region is correlated with only one factor. Sub-regions with high 

uniqueness above 0.7 are sub-region 5, 6, 7, 8 and 67. These sub-regions have variations 

in temperature that are not similar to the other sub-regions. Although sub-regions 14, 15, 

30, 54 and 55 have high uniqueness, their factor loadings are more than 0.3. Therefore, 

these sub-regions could be grouped into a single factor. Overall, there are 62 sub-regions 

classified into 12 factors and 5 sub-regions with a high degree of uniqueness that are not 

combined with the other sub-regions. 

 

 

Figure 3.7: Twelve factors (code1-12) identified from factor analysis 
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In Figure 3.7, the map shows code from 1 to 12 factors, and 5 (in cream color) of 67 sub-

regions included in the factor analysis with a high degree of uniqueness. 

In addition, the factor model can account for the correlation between those sub-regions by 

indicating that the results of factor analysis can remove the correlation between sub-

regions as shown in Figure 3.8. 

 

Figure 3.8: Bubble plots matrix of correlations between filtered monthly temperature 

anomalies in regions before (left panel) and after (right panel) fitting the factor model. 

 

Figure 3.8 presents the correlation matrix of the filtered temperatures between pairs of the 

sub-regions within each of the 12 factors before doing factor analysis, as displayed in the 

left panel. The sub-regions within each factor are highly positively correlated, and there 

is little correlation between pairs of sub-regions from different factors. After doing factor 

analysis, the factor loadings were obtained. These factor loadings show correlation 
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between sub-regions within a factor. The correlation matrix of the filtered temperatures 

was removed by the correlation matrix of the factor loading for considering the efficiency 

of the factor model. These residuals are shown in the right panel. Clearly, pairs of sub-

regions even within the same factor show very little correlation, meaning the factor 

model can reduce the correlation between sub-regions reasonably well. The black dots 

represent a positive correlation, red dots represent a negative correlation, and the size of 

each dot shows proportionality to the absolute value of the correlation coefficient.  

The filtered monthly temperature anomalies were fitted to the simple linear regression 

model (equation 2.5, page 25) to see the slope of temperature change. A 95% confidence 

interval (CI) of the temperature change was estimated for each of the 12 factors, as well 

as the five sub-regions with high uniqueness in the factor analysis as shown in Table 3.3. 

 

 

 

 

 

 

 

 

 



45 
 

 
 

Variables 95 % CI Increase per decade 

Factor 1 (-0.031,0.503) no significant increase 

Factor 2 (0.185,0.558) 0.371 

Factor 3 (0.160,0.552) 0.356 

Factor 4 (0.259,0.337) 0.298 

Factor 5 (0.123,0.617) 0.370 

Factor 6 (0.095,0.831) 0.463 

Factor 7 (0.119,0.740) 0.430 

Factor 8 (0.301,0.474) 0.388 

Factor 9 (0.259,0.740) 0.499 

Factor 10 (0.151,0.489) 0.320 

Factor 11 (0.193,0.788) 0.465 

Factor 12 (0.101,0.191) 0.146 

Sub-region 5 (0.113,0.448) 0.281 

Sub-region 6 (0.094,0.307) 0.186 

Sub-region 7 (0.204,0.683) 0.443 

Sub-region 8 (0.091,0.492) 0.267 

Sub-region 67 (0.090,0.181) 0.136 

 

Table 3.3:  95% confidence interval (CI) of temperature change per decade in each of 12 

factors and five sub-regions. 

 

Table 3.3, 11 of the 12 factors and all the 5 sub-regions showed a significant increase in 

temperature as the 95% CI does not cover zero, except in factor 1 in which there was no 

evidence of temperature change. 

Each such region was reclassified into three levels according to the lower boundary of the 

95% confidence interval for temperature change per decade. The three levels were 

grouped as follow between 0.090˚C and 0.129˚C represents small change, 0.130˚C - 
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0.199˚C moderate change and 0.200˚C – 0.320˚C large change. Yellow, orange and red 

colors were used to indicate the three different levels as shown in Figure 3.9. 

 

Figure 3.9: The minimum temperature increase per decade in regions. 

Obviously in Figure 3.9, the northern Pacific Ocean, Alaska and eastern Siberia have 

incurred a high increase in temperature (factor 4, 8 and 9); northern Canada, Greenland, 

Iceland, Norway, Sweden and Finland have shown a moderate increase in temperature 

(factor 2, 3, 10 and 11); and northern Siberia and part of the north Atlantic have 

experienced only a slight increase in temperature (factor 5, 6, 7 and 12); whereas 

northeast Canada and its surrounding seas (factor1) did not experience significant 

temperature change. Four out of the five sub-regions in yellow experienced a small 
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temperature increase per decade, and another sub-region covering Severanya Zemlya had 

a high degree of temperature increase. 

3.4 Conclusions 

This study provides information about temperature changes on 69 sub-regions of the 

earth surface above latitude 45 degrees north. Monthly average temperature anomalies 

were examined from 1973 to 2008. A linear regression model was used to investigate the 

trends and patterns of temperature changes. 64 sub-regions out of 69 experienced a 

significant increase in temperature, 2 sub-regions had insufficient data, and only 3 sub-

regions remained unchanged. Auto correlations of temperatures over time were also 

checked in time series analysis. Autoregressive process and filtering were used to remove 

time trends and auto correlation. Factor analysis was then used to model filtered 

temperatures for identification and classification of regions with similar temperature 

changes. Twelve factors from factor analysis, each having similar increases per decade, 

were identified. Each factor had a different quantity of temperature increase. Areas 

experiencing large temperature increases per decade included the northern Pacific Ocean, 

Alaska and eastern Siberia which temperature increased from 0.200˚C to 0.320˚C.   
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CHAPTER 4 

Analysis of maximum temperature data in Australia 

This chapter contains analyses of maximum temperature data in Australia from two main 

data sets during the period 1970 to 2012. The first data set is comprised of the maximum 

temperatures recorded over consecutive 5-day periods. The second data set consists of 

monthly maximum temperatures. 

4.1 Results from the first data set  

4.1.1 Preliminary data analysis  

Daily maximum temperature data totaling 15,695 observations including missing data 

over 43 years were recorded in each of the 85 Australian meteorological reporting 

stations. Observations on February 29 were omitted in order to have equal numbers of 

observations for each year. The first data set, maximum temperatures over consecutive 5-

day periods, was investigated to reduce the correlation between successive data and also 

to reduce the number of observations to 73 periods in each year. Therefore, there are 

3,139 observations over the 43-year period in each of the 85 stations. The results of 

analysis of maximum temperatures over consecutive 5-day periods also appeared in 

Wanishsakpong and McNeil (2015). 

First, the data were plotted and fitted to a linear regression model (equation 2.5, page 25) 

to see the trends and patterns of 5-day maximum temperatures for all stations. Figure 4.1 

shows the five selected stations because these stations have both increased and decreased. 
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Figure 4.1: Maximum temperatures over consecutive 5-day periods for 5 selected 

stations (a) Kalbarri station (b) Wyndham station (c) Merredin station (d) Balladonia 

station and (e) Giles Meteorological station.  

 

In Figure 4.1, the graph demonstrates the maximum temperatures over consecutive 5-day 

periods for 5 selected stations. The dots represent the data, and the curve represents their 

fitted values using model (equation 2.5, page 25). Overall, the data clearly show a 

noticeable seasonal periodicity pattern. Therefore, the data were seasonally adjusted by 

using equation 2.1, page 22 as shown in the graph for the five stations selected in Figure 

4.2.  
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Figure 4.2:  Seasonally adjusted maximum temperatures over consecutive 5-day periods 

of 5 selected stations (a) Kalbarri station (b) Wyndham station (c) Merredin station (d) 

Balladonia station and (e) Giles Meteorological station. 

 

Figure 4.2 presents the seasonally adjusted maximum temperatures over consecutive 5-

day periods for 5 selected stations. The dots represent the seasonally adjusted data and 

the line represents the temperature trend using model (equation 2.5, page 25). It is clear 

that the seasonal patterns were removed. Moreover, this seasonally adjusted method is 

applicable to the other stations. A linear regression model (equation 2.5, page 25) was 

fitted to the seasonally adjusted data to see the trend of temperature change in each 

station. For the 5 selected stations, the temperatures increased significantly by about 

0.0058˚C
 
, 0.00035˚C, 0.0016˚C and 0.00020˚C in the Kalbarri Station (a), Merredin 

Station (c), Balladonia Station (d) and Giles Meteorological Office Station (e) 
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respectively, except for Wyndham Station (b) which shows a significant decrease in 

temperatures of 0.00017˚C. Temperature changes in the other stations are shown in Table 

4.1. 

 

Table 4.1: Regression coefficients of 85 stations  
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Table 4.1 presents the coefficients for year   and period   at station                           

                                         which represent temperature 

change. Overall, temperatures increased in 74 stations, decreased in one station (a1013) 

in which the coefficient was significantly different from zero (p-value<0.05) and 

remained the same in 10 stations for which the coefficients were not statistically 

significant from zero. 

After the linear regression model (equation 2.5, page 25) was fitted, the normality 

assumption requires that residuals be normally distributed. This assumption was verified 

and assessed by plotting residuals against normal quantiles as shown on Figure 4.3. 

 

Figure 4.3: Residual quantile plot 
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Figure 4.3 shows that the residuals lie along a straight line. The straight line corresponds 

to an exact fit of the data to a normal distribution. Thus, the residuals are normally 

distributed. In addition, the assumption of independence should be considered because 

there are correlations between the temperature data and time. These correlations were 

removed by fitting the first autoregressive model (AR1) from equation 2.3 page 24 and 

then filtering the data by removing auto correlation at lag 1 month from equation 2.4, 

page 25. Coefficient    was obtained with a parameter of the data in each station, and the 

coefficient   was then averaged across all the 85 stations. The average coefficient is 

0.2513. The auto correlation function (ACF) of the filtered data for the same five selected 

stations is shown in Figure 4.4. 

 

Figure 4.4: Auto correlation function plots of the filtered residuals for the five selected 

stations. The dotted line represents the 95% confidence interval of a zero correlation. 
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Figure 4.4 shows that most of correlations in the five stations are within the 95% 

confidence interval. Therefore, the assumption of independence is supported, and the 

filtered seasonally adjusted maximum temperatures were obtained for analysis in the 

following section. 

4.1.2 Spatial correlation and factor analysis 

Spatial correlation of the filtered seasonally adjusted maximum temperatures was 

investigated. After removing auto correlation in each station, there are still correlations 

among the 85 stations. Correlation coefficients among the 85 stations ranged from 

0.00007 to 0.925, with a median of 0.167.  

A factor model (equation 2.9, page 27) was used to reduce these spatial correlations by 

classifying the 85 stations into factors considering the value of the factor loadings greater 

than 0.3 for each factor as shown in Table 4.2. The rotation of factors used the Promax 

method. 
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Stations Factor 

1 

Factor 

2 

Factor 

3 

Factor 

4 

Factor 

5 

Factor 

6 

Factor 

7 

Unique 

ness 

a88109 

a80023 

a99005 

a85072 

a78077 

a75031 

a90015 

a84070 

a94029 

a72043 

a47016 

a49019 

a91009 

a46043 

a19062 

a50052 

a24511 

a25507 

a26021 

0.93 

0.87 

0.87 

0.87 

0.85 

0.75 

0.75 

0.75 

0.73 

0.73 

0.63 

0.55 

0.52 

0.43 

0.47 

0.49 

0.56 

0.70 

0.70 

 

 

 

 

 

0.17 

-0.10 

 

-0.12 

0.22 

 

0.25 

 

0.28 

 

0.46 

 

-0.10 

-0.16 

 

 

0.11 

 

 

 

0.11 

 

0.11 

 

 

 

 

 

 

-0.13 

 

 

0.12 

 

 

-0.17 

-0.14 

 

0.15 

-0.16 

 

-0.15 

 

0.13 

0.26 

 

0.43 

0.27 

0.17 

0.14 

 

-0.12 

 

 

 

 

0.12 

 

0.24 

 

0.15 

 

0.21 

 

 

 

0.41 

-0.11 

0.51 

0.56 

0.55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-0.13 

-0.15 

 

 

 

 

 

 

 

-0.13 

0.23 

0.17 

0.42 

0.36 

0.13 

0.16 

0.38 

0.48 

0.55 

0.36 

0.31 

0.29 

0.79 

0.19 

0.16 

0.24 

0.11 

0.10 

0.19 

a56032 

a40082 

a60085 

a48031 

a44010 

a43015 

a61250 

a48015 

a35065 

a62013 

a51039 

a39083 

a58012 

a44026 

a69018 

 

-0.16 

 

 

 

-0.11 

0.20 

0.16 

-0.14 

0.28 

0.29 

-0.21 

-0.18 

 

0.30 

0.83 

0.81 

0.80 

0.79 

0.77 

0.75 

0.71 

0.66 

0.65 

0.63 

0.60 

0.53 

0.50 

0.69 

0.38 

 

 

-0.12 

 

 

0.24 

-0.16 

 

0.25 

-0.15 

-0.16 

0.12 

 

-0.18 

-0.14 

 

0.18 

 

 

0.25 

 

 

0.22 

-0.18 

-0.12 

0.33 

 

0.11 

 

 

 

0.10 

-0.10 

 

0.12 

 

 

 

 

 

-0.12 

 

0.10 

0.16 

 

 

 

0.16 

 

 

 

 

 

0.11 

-0.11 

0.16 

 

 

 

 

 

 

-0.11 

 

 

 

 

 

 

 

-0.13 

0.35 

0.39 

0.39 

0.28 

0.22 

0.31 

0.39 

0.28 

0.36 

0.27 

0.23 

0.50 

0.72 

0.21 

0.71 

a30045 

a29012 

a15528 

a31037 

a14401 

a14015 

a32025 

 

 

 

 

 

0.12 

0.27 0.70 

0.69 

0.52 

0.40 

0.39 

0.36 

0.36 

 

 

0.11 

-0.12 

-0.12 

 

-0.14 

 -0.18 

 

0.23 

 

0.17 

0.24 

 0.35 

0.51 

0.38 

0.75 

0.84 

0.82 

0.79 

 

Table 4.2(a): Factor loadings of the 85 stations from factor analysis by Promax method. 

 

 



56 
 

 
 

Stations Factor 

1 

Factor 

2 

Factor 

3 

Factor 

4 

Factor 

5 

Factor 

6 

Factor 

7 

Unique 

ness 

a15135 

a15085 

a37010 

a2032 

a2012 

a1013 

a38003 

a36031 

a33013 

 

0.11 

 

0.12 

 

 

 

 

-0.12 

 

 

 

-0.13 

-0.15 

-0.15 

0.22 

0.49 

0.39 

0.86 

0.85 

0.82 

0.73 

0.69 

0.67 

0.63 

0.47 

0.47 

0.45 

0.35 

0.39 

0.13 

0.21 

 

0.55 

0.17 

-0.16 

  

 

 

0.41 

0.47 

0.40 

-0.22 

-0.20 

 

 

0.11 

 

0.12 

0.18 

0.27 

0.29 

0.32 

0.28 

0.43 

0.23 

0.26 

0.52 

a38002.38 

a15511 

a17031 

a15590 

a15602 

a46037 

a16007.16 

a13017 

a38024 

a16001 

 

-0.14 

0.20 

 

 

0.22 

 

-0.18 

 

0.26 

0.24 

 

0.11 

 

 

0.35 

 

 

0.46 

0.28 

0.16 

 

0.42 

0.54 
 

 

0.13 

0.41 

0.75 

0.70 

0.60 

0.76 

0.75 

0.59 

0.56 

0.53 

0.48 

0.43 

 

0.14 

0.17 

 

 

 

0.34 

0.18 

 

0.41 

-0.13 

0.29 

 

0.11 

 

 

0.16 

0.50 

-0.19 

 

 

-0.15 

 

 

 

 

 

-0.13 

0.11 

0.22 

0.27 

0.21 

0.21 

0.22 

0.18 

0.27 

0.30 

0.22 

0.18 

a18012 

a18069 

a18110.18 

a11003 

a23034 

a18014 

a18115 

0.12 

0.20 

 

 

0.52 

0.36 

0.43 

 -0.12 

 

-0.12 

 

 

 

 

 

 

-0.12 

0.76 

0.75 

0.64 

0.57 

0.65 

0.64 

0.61 

0.11 

 

0.25 

0.22 

 0.24 

0.29 

0.37 

0.54 

0.12 

0.24 

0.37 

a5026 

a4035 

a4032 

a13012 

a4019 

a3003 

a7045 

 

 

 

-0.12 

  

 

0.13 

-0.13 

0.15 

0.16 

-0.13 

 

 

 

 

 

-0.11 

 

 

 

0.21 

 

 

0.13 

0.74 

0.68 

0.62 

0.61 

0.57 

0.41 

0.60 

 

 

 

0.22 

 

0.14 

0.35 

0.39 

0.51 

0.57 

0.39 

0.64 

0.80 

0.37 

a10647 

a10092 

a9053 

a10633 

a8051 

a9518 

a8251 

a6011 

a12038 

a11017 

  

 

 

 

 

-0.12 

0.12  

 

 

 

 

 

-0.12 

-0.14 

 

 

-0.11 

0.11 

-0.22 

 

-0.22 

-0.18 

0.28 

0.33 

 

0.24 

 

0.16 

 

 

 

 

0.41 

0.29 

0.86 

0.80 

0.77 

0.75 

0.56 

0.56 

0.48 

0.37 

0.49 

0.39 

0.26 

0.20 

0.42 

0.35 

0.64 

0.68 

0.71 

0.80 

0.35 

0.52 

A28008   0.27 -0.11   -0.12 0.86 

 

Table 4.2(b): Factor loadings of the 85 stations from factor analysis by Promax method. 
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In Table 4.2, 85 stations are classified into 7 factors with one station (Lockhart River 

Airport; a28008) having a uniqueness value 0.86. Thus, there is no dominating factor for 

this station. The factor loadings are ordered from highest to lowest within each factor 

(excluding the mixed factor loading). The results of factor analysis are also presented in 

the map of Australia as shown in Figure 4.4. 

 

Figure 4.5: Factor analysis divides the stations into 7 geographical groups. Numbers in 

brackets are the number of factors. E = east, SE = southeast, S = south, SW = southwest, 

NW = northwest, N = north, C = central. 
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Figure 4.5 shows a map of Australia in seven regions as determined by the factor model. 

The circles represent the 85 stations. The size of each circle is proportionate to the factor 

loading for each station. The superimposed circles show thirty stations with mixed factor 

loadings, which were omitted in subsequent analyses. The hollow circle shows one 

station in northern Australia with a high degree of uniqueness. 

4.1.3. Polynomial regression model 

The means of maximum temperatures for consecutive 5-day periods over 43 years are 

presented to demonstrate the patterns in each factor as shown in Figure 4.6. 

 

Figure 4.6: The mean of maximum temperatures for consecutive 5-day periods in each 

factor. 
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In Figure 4.6, the graph shows the pattern of temperature changes in the seven factors. 

The dots represent the means of maximum temperatures over consecutive 5-day periods 

based on the model (equation 2.5, Page 25). The data display a curvilinear pattern in each 

factor. Therefore, a polynomial regression model (equation 2.7, page 26) was applied 

with this pattern. The coefficients of the polynomial regression model increased 

significantly to the sixth order as shown in Table 4.3. 

 

Factor2 Coefficients p-value 

b02 

b12 

b22 

b32 

b42 

b52 

b62 

35.8 

-0.006000 

0.000012 

-1.04E-08 

3.63E-12 

-4.50E-16 

-1.14E-19 

< 0.0005 

0.03730 

< 0.0005 

< 0.0005 

< 0.0005 

< 0.0005 

< 0.0005 

 

Factor4 Coefficients p-value 

b04 

b14 

b24 

b34 

b44 

b54 

b64 

28.97 

-0.004330 

0.000014 

-1.84E-08 

1.06E-11 

-2.80E-15 

2.76E-19 

< 0.0005 

0.0490 

0.0202 

0.0155 

0.0166 

0.0219 

0.0326 

 

 

 

 

 

Factor1 Coefficients p-value 

b01 

b11 

b21 

b31 

b41 

b51 

b61 

32.99 

-0.005900 

0.000015 

-1.61E-08 

7.98E-12 

-1.89E-15 

1.71E-19 

< 0.0005 

< 0.0005 

< 0.0005 

0.00001 

0.00021 

0.00150 

0.00657 

Factor3 Coefficients p-value 

b03 

b13 

b23 

b33 

b43 

b53 

b63 

33.63 

-0.00780 

0.000024 

-2.87E-08 

1.54E-11 

-3.88E-15 

3.68E-19 

< 0.0005 

0.00869 

0.00292 

0.00394 

0.00743 

0.01496 

0.02908 
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Factor6 Coefficients p-value 

b06 

b16 

b26 

b36 

b46 

b56 

b66 

29.39 

-0.011960 

0.000037 

-4.56E-08 

2.57E-11 

-6.74E-15 

6.68E-19 

< 0.0005 

0.01187 

0.00441 

0.00383 

0.00491 

0.00757 

0.01238 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3: Sixth order polynomial regression coefficients of 7 factors. 

 

Table 4.3 shows coefficients of the sixth order polynomial regression model in each of 

the 7 factors. All coefficients are significantly different from zero (p-value < 0.05). The 

data also were plotted with a sixth order polynomial regression model to see the trends 

and patterns of temperature change in each factor as shown in Figure 4.7. 

 

Factor5 Coefficients p-value 

b05 

b15 

b25 

b35 

b45 

b55 

b65 

27.58 

0.004700 

-8.25E-06 

5.94E-09 

9.98E-12 

-3.10E-15 

3.53E-19 

< 0.0005 

0.0052 

0.0135 

0.0275 

0.0480 

0.0312 

0.0205 

Factor7 Coefficients p-value 

b07 

b17 

b27 

b37 

b47 

b57 

b67 

23.55 

-0.001810 

0.000012 

-1.88E-08 

1.11E-11 

-2.88E-15 

2.73E-19 

< 0.0005 

< 0.0005 

< 0.0005 

0.04850 

0.04830 

0.04020 

0.04420 
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Figure 4.7: The patterns of temperature change in seven factors corresponding to seven 

geographical (a)-(g) regions. The bottom centre panel shows regions with similar 

patterns, while the bottom right panel shows regions with dissimilar patterns.   

 

Figure 4.7(a) – 4.7(g) present the temperature trends in each of the 7 factors. The dots are 

means of maximum temperature over consecutive 5-day periods based on a linear 

regression model (equation 2.5, page 25) over 43 years. The average maximum 

temperatures in all factors ranged from 23
o
C to 36

o
C. Factor 2 represents the desert area 

of the northwest, the area with the highest average temperature of approximately 36
o
C in 

2002. The data were fitted to a polynomial regression model (equation 2.7, page 26) in 

each factor. Four geographic regions, namely the central (factor3), eastern (factor4), 

southern (factor6) and southeastern (factor7) regions were grouped with similar patterns 

as shown in figure 4.7(h). These patterns show an increase in temperatures after 1974 
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followed by a steady decrease in temperatures around 1984 and with another gradual 

increase from 2000 until 2005, and finally another decrease through 2012. Three 

geographic regions, the northern region (factor1), the northwestern region (factor2) and 

the southwestern region (factor5), had different temperature patterns as shown on figure 

4.7(i). 

 

4.1.4 Conclusions 

Maximum temperatures over consecutive 5-day periods were adjusted to remove seasonal 

effects in the data. A linear regression model was initially used to model the seasonally 

adjusted temperatures in order to examine the trends and patterns of temperatures in the 

85 Australian meteorological stations. Temperatures increased at 74 stations, decreased at 

1 station, and there was no evidence of change at 10 stations. Factor analysis was used to 

classify the temperatures of the 85 stations into seven factors, each having different 

patterns of temperature changes. These seven factors corresponded to seven geographical 

regions, namely the northern, northwestern, central, eastern, southwestern, southern and 

southeastern regions. Four geographic regions (central, eastern, southern and 

southeastern) had similar temperature patterns, whereas three geographic regions 

(northern, northwestern and southwestern) had different temperature patterns. 
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4.2 Results of the second data set 

4.2.1 Preliminary data analysis 

The monthly maximum temperature data studied were the highest daily temperature 

recorded during the particular month. Therefore, 516 months over 43 years were included 

in each of the 85 meteorological reporting stations. The sample of 85 stations was 

randomly selected using the same criteria as in the first data set as set in section 4.1.1. 

The percentage of missing data from each of the 85 meteorological stations is shown in 

Figure 4.8. The results of analysis of monthly maximum temperatures also appeared in 

Wanishsakpong et al. (2015). 

 

Figure 4.8: An area-based sample of 85 stations with indications of percentage missing 

data in each station. The state boundaries of Australia are also shown. 
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Figure 4.8 shows the percentage of missing data in each station. Most of the stations have 

missing data of less than 5%. These missing data were estimated by using multiple linear 

regression models (equation 2.6, page 26). Ideally, this model assumes that the maximum 

monthly temperature of a particular month and station can be predicted using the 

previous and subsequent monthly temperatures as well as the first and second nearest 

station temperatures at the predefined month. 

The model (equation 2.6, page 26) relating temperatures at month   and temperatures at 

neighboring stations as well as temperatures at month      and       was fitted with 

a random sample of 10 stations as shown in Figure 4.9. 

 

Figure 4.9: A random sample of 10 stations and example of configuration of    ,        

and       . 
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The results of regression equation 2.3 are shown in Table 4.4. 

Predictor Coefficient P-value Adjusted R
2
 

R
2 Constant -2.1186 < 0.05 0.942 

Nearest 1                  0.2869 < 0.05  

Nearest 2                  0.2945 < 0.05  

Previous month          0.2464 < 0.05  

Next month                0.2407 < 0.05  

 

Table 4.4: The coefficients of regression model (equation 2.6) 

 

Table 4.4 shows all coefficients of the regression model (equation 2.6, page 26) are 

statistically significant (P-value < 0.05), and the adjusted R-square is 94.2%. Thus, it 

would be confirmed that this model can estimate all missing data in the 85 stations. 

After the missing values were interpolated, maximum monthly temperatures were then 

plotted to investigate the patterns in four selected stations out of 85 stations, one each in 

the northern, southern, eastern and western regions of Australia. The regional station 

locations reflected the four different temperature curve patterns during the 10- year 

periods. Therefore, a quartic trend model combined with the 3
rd

 order time lag (equation 

2.8, page 27) was applied with these stations as shown in Figure 4.10. 



66 
 

 
 

 
Figure 4.10: Observed maximum monthly temperatures with fitted values using the 

regression equation 2.8 for four stations.  

 

Figure 4.10, the dots represent the maximum monthly temperature over 43 years in four 

selected stations. The data were fitted with the quartic trend model combined with the 3
rd

 

order time lag (equation 2.8, page 27). It is clear that this model can estimate the pattern 

and trend of the time series data reasonably well as shown by an adjusted R-squared of 

more than 80% for the four selected stations. Moreover, this model was also applied 

equally well to the other stations and was indicative of a polynomial pattern with a range 

between 20˚C and 50˚C in the 85 meteorological stations. 
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4.2.2 Spatial correlation, factor analysis and cluster analysis 

The patterns and trends of temperatures for the 85 stations have similar polynomial 

patterns. Correlation coefficients among the 85 stations ranged from 0.06 to 0.95, with a 

median of 0.86. A factor analysis model (equation 2.9, page 27) was used to group these 

85 stations into several factors to reduce these spatial correlations. The rotation of factors 

used was the Promax method. The results of factor analysis are shown in 3 factors but the 

correlations between factors were high, ranging from 0.88 to 0.95 with a median of 

0.9415. Therefore, in this case the Varimax rotation method was used because this 

procedure keeps the factors uncorrelated. The resulting factor loadings are presented in 

Table 4.5. 
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Stations Factor1 Factor2 Factor3 

a9053 

a8251 

a8051 

a10647 

a26021 

a10633 

a6011 

a91009 

a10092 

a9518 

a18115 

a99005 

a25507 

a88109 

a72043 

a90015 

a78077 

a23034 

a94029 

a85072 

a24511 

a12038 

a80023 

a18014 

a7045 

a11017 

a19062 

a13012 

a75031 

a47016 

a18069 

a18012 

a84070 

a18110.1 

a4035 

a11003 

a49019 

a50052 

a5026 

a62013 

a4032 

a17031 

0.88 

0.87 

0.86 

0.85 

0.83 

0.83 

0.83 

0.82 

0.82 

0.81 

0.81 

0.81 

0.80 

0.79 

0.79 

0.79 

0.79 

0.78 

0.78 

0.78 

0.77 

0.76 

0.76 

0.76 

0.76 

0.76 

0.75 

0.74 

0.74 

0.73 

0.73 

0.72 

0.71 

0.71 

0.71 

0.71 

0.70 

0.70 

0.69 

0.69 

0.68 

0.68 

-0.35 

-0.33 

-0.37 

-0.39 

-0.34 

-0.40 

-0.30 

-0.26 

-0.43 

-0.18 

-0.25 

-0.27 

-0.39 

-0.37 

-0.36 

-0.31 

-0.40 

-0.40 

-0.33 

-0.34 

-0.40 

-0.47 

-0.40 

-0.41 

-0.51 

-0.46 

-0.43 

-0.52 

-0.42 

-0.42 

-0.44 

-0.46 

-0.35 

-0.48 

-0.58 

-0.45 

-0.45 

-0.43 

-0.59 

-0.42 

-0.59 

-0.50 

-0.22 

-0.22 

-0.22 

-0.26 

-0.38 

-0.29 

-0.19 

-0.35 

-0.31 

0.02 

-0.38 

-0.40 

-0.42 

-0.43 

-0.46 

-0.41 

-0.44 

-0.44 

-0.40 

-0.46 

-0.46 

-0.36 

-0.47 

-0.46 

-0.35 

-0.35 

-0.47 

-0.36 

-0.50 

-0.48 

-0.43 

-0.45 

-0.49 

-0.42 

-0.31 

-0.38 

-0.51 

-0.55 

-0.35 

-0.56 

-0.31 

-0.51 

 

Table 4.5(a): The first three factor loadings of 85 stations with cumulative variances of 

90.14% 
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Stations Factor1 Factor2 Factor3 

a46043 

a16001 

a51039 

a13017 

a46037 

a16007.1 

a15511 

a48015 

a31037 

a32025 

a44026 

0.68 

0.68 

0.66 

0.65 

0.64 

0.64 

0.62 

0.61 

0.61 

0.60 

0.58 

-0.48 

-0.49 

-0.46 

-0.60 

-0.51 

-0.53 

-0.60 

-0.50 

-0.59 

-0.50 

-0.55 

-0.53 

-0.51 

-0.56 

-0.41 

-0.55 

-0.50 

-0.45 

-0.58 

-0.34 

-0.26 

-0.57 

a29012 

a1013 

a2032 

a15085 

a2012 

a14015 

a14401 

a3003 

a30045 

a37010 

a15135 

a36031 

a33013 

a38003 

a15602 

a15528 

a38024 

a15590 

a35065 

a4019 

a39083 

a38002.3 

a28008 

a43015 

0.28 

0.36 

0.39 

0.42 

0.45 

-0.06 

0.37 

0.32 

0.41 

0.44 

0.49 

0.43 

0.46 

0.48 

0.51 

0.56 

0.51 

0.55 

0.49 

0.59 

0.48 

0.54 

0.54 

0.52 

-0.85 

-0.84 

-0.82 

-0.78 

-0.78 

-0.78 

-0.76 

-0.76 

-0.75 

-0.75 

-0.74 

-0.71 

-0.70 

-0.69 

-0.67 

-0.66 

-0.64 

-0.64 

-0.64 

-0.64 

-0.64 

-0.62 

-0.60 

-0.57 

-0.32 

-0.27 

-0.32 

-0.36 

-0.35 

0.00 

-0.21 

-0.09 

-0.42 

-0.40 

-0.39 

-0.49 

-0.42 

-0.48 

-0.48 

-0.43 

-0.53 

-0.48 

-0.51 

-0.29 

-0.46 

-0.53 

-0.29 

-0.56 

 

Table 4.5(b): The first three factor loadings of 85 stations with cumulative variances of 

90.14% 
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Stations Factor1 Factor2 Factor3 

a60085 

a61250 

a40082 

a44010 

a48031 

a56032 

a69018 

a58012 

0.51 

0.59 

0.48 

0.54 

0.58 

0.58 

0.49 

0.26 

-0.51 

-0.47 

-0.55 

-0.55 

-0.51 

-0.49 

-0.39 

-0.53 

-0.62 

-0.61 

-0.59 

-0.59 

-0.59 

-0.59 

-0.58 

-0.56 

Var 36.39 24.48 16.01 

%Var 0.428 0.288 0.188 

 

Table 4.5(c): The first three factor loadings of 85 stations with cumulative variances of 

90.14% 

 

Table 4.5 shows the results of factor analysis. Three factors were obtained with a 

cumulative variance of 90.4%. Although the Varimax rotation method produced less 

correlation between these factors than the Promax rotation method, there are still high 

correlations ranging from 0.80 to 0.94, with a median of 0.934. Moreover, there are 

several stations having similar absolute factor loadings, which in this situation mean that 

it is not easy to group the stations based on the results of this factor analysis. The stations 

with similar absolute factor loadings are a5026, a4023, a13017, a15511, a48015, a31037, 

a44026, a43015, a48031 and a56032. Therefore, cluster analysis was defined based on 

the similarity of the factor loadings.  

The hierarchical clustering method and distance or dissimilarity between groups of 

stations was defined by using the complete linkage based on the Euclidian distance. The 

resulting cluster analysis produced grouped into four clusters. A description of the results 

of the cluster analysis follows in Table 4.6. 
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Table 4.6: Description of resulting clusters based on factor loadings 

 

Table 4.6 shows the statistical information about the cluster solution. The table 

summarizes each cluster by the number of observations, the within cluster sum of 

squares, the average distance from the observation to the cluster centroid and the 

maximum distance of the observation to the cluster centroid. In general, a cluster with a 

small sum of squares is more compact than one with a large sum of squares. Centroid 

distance is a measure of the homogeneity of merged clusters, and its value should be 

small. Therefore, this indicates that the four clusters are reasonably sufficient for the 

partition. These four clusters are shown in the map of Australia in Figure 4.11. 

 Number of 

observations 

Within 

cluster sum 

of squares 

Average 

distance 

from 

centroid 

Maximum 

distance 

from 

centroid   

Cluster 1 39 0.6486 0.1183 0.2541 

Cluster 2 14 0.2448 0.1165 0.3322 

Cluster 3 12 0.1615 0.1083 0.2489 

Cluster 4 20 0.3055 0.1121 0.2578 



72 
 

 
 

 

Figure 4.11: Cluster analysis divides the stations into 4 groups 

 

Figure 4.11 shows the corresponding geographical regions for the four clusters are the 

north-west with some parts of the central and south regions, the south-eastern region 

including some parts of the northern region (Cluster1); the lower boundary of the south-

western and, southern region including Tasmania (Cluster2); the north (Cluster3) and 

some parts of the central and eastern region (Cluster4). 

In each cluster, the data were plotted to see the trends and patterns of temperature as 

shown in Figure 4.12. The data in each cluster show similar polynomial patterns. 

Therefore, the quartic trend model with 3
rd

 order time lag (equation 2.8, page 27) was 

also fitted to each cluster. 



73 
 

 
 

 

Figure 4.12: The fitted values of maximum monthly temperatures in each cluster based 

on model (equation 2.8).  

 

In Figure 4.12, the dots represent the maximum monthly temperatures in each cluster. 

The temperatures decreased from 1970 to 1990 and then increased until year 2012. The 

temperatures ranged from 20˚C to 45˚C over the 43years. The curve line is the fitted 

values from the quartic trend model with 3
rd

 order time lag (equation 2.8, page 27). 

After fitting a quartic trend model with 3
rd

 order time lag in each cluster, it is necessary to 

plot the residuals to check that the assumptions of a normal distribution and 

independence of this model have been satisfied. The residuals from the model were 

plotted with normal quantiles to confirm a normal distribution as shown in Figure 4.13 
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Figure 4.13: Residual Q-Q plots (quantiles plots) for each cluster 

 

Figure 4.13, the linearity of the residual in each of the four clusters suggests that the 

residuals are normally distributed, because they lie along a straight line. 

In addition, the residuals were also plotted for auto correlation to confirm the 

independence among residuals as shown in Figure 4.14. 
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Figure 4.14: Residual auto-correlation function (ACF) plots for each cluster 

 

Figure 4.14 shows that there are no auto-correlations, because the correlations in all 

clusters stay within the 95% confidence interval of zero correlation. That is, the residuals 

are independent. 

Since the model was successfully examined for the adequacy of these assumptions, this 

model can be used to estimate the data patterns and trends as shown in the results of the 

regression coefficients for each cluster in Table 4.7. 
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 Coefficients 

Cluster1 Cluster2 Cluster3 Cluster4 

Intercept 17.9900 16.8900 15.5100 19.7000 

t 0.0647 0.0663 0.0293 0.0498 

t
2 -0.0010 -0.0010 -0.0004 -0.0009 

t
3
 3.36×10

6 
3.04×10

6
 1.51×10

6
 2.98×10

6
 

t
4
 -3.19×10

9
 -2.78×10

9
 -1.49×10

9
 -2.91×10

9
 

yt-1 0.1842 0.1545 0.1499 0.1631 

yt-2 0.1932 0.1850 0.2597 0.2208 

yt-3 0.1615 0.1777 0.1800 0.1000 

Adjusted R
2 0.9287 0.9251 0.8694 0.8924 

 

Table 4.7: Regression coefficients for each cluster 

 

Table 4.7 shows the regression coefficients in each cluster. The coefficients indicate that 

the regression lines almost perfectly fit the data, because adjusted R
2
 are close to 1. The 

adjusted R
2
 are 0.9287, 0.9251, 0.8694 and 0.8924 in cluster 1, 2, 3 and 4, respectively. 

Figure 4.12 indicates that the trends of temperature changes in each cluster occur over 10 

year periods. This means that there will be 4 different forms of curve during 10 years. 

Therefore, the most accurate forecast that can be predicted by this model will be a short-

term forecast. In this case, the forecast of monthly maximum temperatures is from the 

year 2013 up to 2015 or 36 months as shown in Figure 4.15. 
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Figure 4.15: Forecasting the maximum monthly temperature from 2013 to 2015. The 

curved lines are trend estimations based on model (equation 2.10). The highlighted lines 

are the 95% confidence interval of prediction. 

 

In Figure 4.15, the forecasted temperatures gradually decrease during the 2013-2015 

period in each cluster as shown in the highlighted curved line. The highlight shows the 

95% confidence interval (CI) of the maximum monthly temperatures predictions for the 3 

years in each cluster. The 95% CI ranges from 27˚C - 44˚C, 26˚C - 40˚C, 31˚C - 42˚C 

and 26 ˚C - 42˚C in cluster 1, 2, 3 and 4, respectively. The confidence interval of cluster 3 

is narrower than for the other clusters, and the temperature changes are higher than for 

other clusters (ranging from 32˚C - 43˚C) which occurred in the north. The highest 

predicted temperature of approximately 45˚C occurs in cluster 1 which is in a desert area. 
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Maximum monthly temperatures from January 2013 to September 2015 were compared 

with forecasted temperatures in order to check the accuracy of the model as shown in 

Figure 4.16.  

 

Figure 4.16: Forecasting the maximum monthly temperature from January 2013 to 

September 2015. The dots are maximum monthly temperature. The curved lines are trend 

estimations based on the model (equation 2.8). The highlighted lines are the 95% 

confidence interval of prediction. 
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In Figure 4.16, the dots represent the maximum monthly temperatures which are within a 

95% confidence interval of the maximum monthly temperature predictions for 33 months 

in each cluster. Mean square errors of forecasting are 2.85, 2.80, 2.66 and 2.78 in cluster 

1, 2, 3 and 4, respectively. Therefore, it is confirmed that this model can accurately 

forecast temperatures for short time periods. 

 

4.2.3 Conclusions 

The maximum monthly temperature data of 85 Australian meteorological stations from 

1970 to 2012 were investigated. Missing values were estimated by a linear regression 

model to account for information from the nearest stations as well as time periods. 

Factor analysis was applied to group the numbers of stations, but there were some 

stations having similar factor loadings. Therefore, the results of factor loading values 

were used as the input for cluster analysis. Cluster analysis grouped the number of station 

from 85 stations into 4 clusters corresponding to geographical regions. The first cluster 

consisted of 39 stations located in the northwest and some parts of the northern, central, 

southern and southeastern regions of Australia. The second cluster consisted of 14 

stations distributed within the boundary of the southwestern and southern regions of 

Australia. The third cluster consisted of 12 stations located in northern Australia. The 

fourth cluster consisted of 20 stations distributed in parts of central and eastern of 

Australia. The highest temperatures that occurred were approximately 45˚C in cluster 1, 

which is in a desert area. 
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A quartic trend model with 3
rd

 order time lag exhibited high goodness of fit the data in 

each cluster. In addition, this model can be used to forecast over relatively short time 

periods. The results of forecasting for the 3-year time period of 2013-2015 showed a 

maximum monthly 95% confidence interval of 27˚C - 44˚C, 26˚C - 40˚C, 31˚C - 42˚C 

and 26˚C - 42˚C in clusters 1, 2, 3 and 4, respectively.  



81 
 

 
 

CHAPTER 5 

Conclusions and Discussions 

This chapter consists of summaries of the main findings based on the application of 

statistical methods used to explain the trends and patterns of temperature change in the 

Arctic and Australia. Discussions of the findings, limitations and recommendations are 

also presented. 

5.1 Conclusions  

In the Arctic 

The trends and patterns of monthly averaged temperature anomalies were investigated for 

the period of 1973 through 2008 (432 months) on grid-boxes of the earth’s surface above 

45
o
 North, including both land and sea. This area has 648 grid-boxes which cover the 

Arctic Ocean, northern areas of the Atlantic and Pacific Oceans and the Asian and 

European Continents. The 648 grid-boxes were combined to form 69 sub-regions in order 

to better work through issues of missing data. Statistical techniques were applied to 

determine the trends, patterns and extent of temperature change in the large Arctic region. 

Separate linear regression models were first fitted to the 69 sub-regions to determine the 

trends of temperature change. Of the 69 sub-regions, the temperatures increased in all but 

two sub-regions which had insufficient data for analysis and in three sub-regions which 

showed no evidence of temperature change. Auto regressive process and filtering were 

applied to reduce time correlations. Spatial correlations also were considered because 
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similar temperature changes occurred in each sub-region. Classification of sub-regions 

with similar temperature changes was analyzed by factor analysis. 

Twelve factors were identified from factor analysis. Each of these factors was classified 

into three levels based on the lower bound of the 95% CI of temperature change per 

decade. Three different temperature levels were indicated. Larger temperature increases 

occurred in the northern Pacific Ocean, Alaska and eastern Siberia (0.200
o
C to 0.320

o
C). 

Increases in the temperatures of northern Canada, Greenland, Iceland, Norway, Sweden 

and Finland were moderate (0.130
o
C to 0.199

o
C). Small increases occurred in northern 

Siberia and part of the northern Atlantic Ocean (0.090
o
C to 0.129

o
C). Almost all sub-

regions experienced some level of temperature increase. An exception to the trend of 

increased temperatures occurred in northeast Canada and its surrounding seas which did 

not experience much change. 

In Australia 

Maximum temperatures over consecutive 5-day periods data and the maximum monthly 

temperatures data were studied from 1970 to 2012 for a random sample of 85 

meteorological reporting stations. These stations were spread approximately evenly over 

Australia and had 80% complete data. Missing data were estimated using linear 

interpolation. This study was conducted using statistical methods including linear 

regression model, polynomial regression model, time series analysis, factor analysis, 

cluster analysis and forecasting to investigate the characteristics and classification of 

temperature variability.  
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Analysis of maximum temperatures over consecutive 5-day periods indicated that there 

were different patterns of temperature change in the seven factors corresponding to seven 

geographic regions in Australia. Average maximum temperatures ranged from 23
o
C to 

36
o
C. The highest average temperature, approximately 36

o
C, occurred in the desert area 

of the northwest in 2002. Similar temperature trends occurred in the central, eastern, 

southern and southeastern parts of Australia. 

For the maximum monthly temperature data, 4 clusters were found to have different 

patterns of temperature change. The highest temperatures, approximately 45
o
C, occurred 

in the desert area of the northwest and some parts of the central, southern and 

southeastern regions. In addition, a quartic trend model combined with a 3
rd

 order time 

lag fitted the data well for each cluster. This model can be used to forecast maximum 

monthly temperature for the 3-year period of 2013-2015. The forecasted maximum 

monthly temperatures decreased during this period. The 95% CI of the maximum 

monthly temperatures ranged from about 27
o
C-44

o
C, 26

o
C-40

o
C, 31

o
C-42

o
C and 26

o
C-

42
o
C for clusters 1, 2, 3 and 4, respectively. 
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5.2 Discussions 

In this study, temperature change in the Arctic region of the Northern Hemisphere 

showed a temperature increase almost everywhere, which is consistent with the findings 

of Jones et al., 1999 that temperatures increased on average by 0.37
o
C from 1925-1944 

and 0.32
o
C over 1978-1997. Temperature increase in the Arctic was investigated in the 

same region during the same period and in similar periods by Rigor et al., 1999 and 

Polyakov et al., 2002. They found that both land and sea parts of the northern Atlantic 

Arctic region experienced temperature increases.  Later research by McNeil and 

Chooprateep (2014) reported similar findings of rising temperatures in their study of sea 

surface temperatures on the northern Atlantic Ocean. The rate of temperature increase is 

greater in the polar region than in lower latitudes, which is then manifested in the 

variation of surface air temperatures between the Arctic and northern Atlantic regions 

(Polyakov et al., 2002). Moreover, Delworth and Knutson, (2000) and Mann (2000) 

suggest that variability in the North Atlantic is influenced by slow change in oceanic 

thermohaline circulation. 

In the analysis of temperature change in Australia, monthly maximum temperatures 

showed a polynomial pattern with a range between 20
o
C and 50

o
C. This result was 

similar to the general pattern of maximum temperatures over consecutive 5-day periods, 

but it differed in the range of maximum temperatures, which was between 23
o
C and 

36
o
C. These differences have occurred because different times were used. In addition, the 

trends and patterns of temperature change of maximum temperatures over consecutive 5-

day periods in the central, eastern, southern and southeastern regions were similar within 
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regions when grouped into 4 clusters corresponding to these geographic regions.  

Temperature change in these clusters is influenced by reduced rainfall and duration of 

droughts since 1973, with increased temperatures during 2002 and 2003 in the 

southeastern region (Deo et al., 2009; Nicholls, 2004). The eastern region experienced 

increased temperatures by approximately 2
o
C to2.5

o
C during 1982-1983 and 2002-2003 

in the summer periods with decreased rainfall in this period.  Central New South Wales 

and northern Victoria experienced increased rainfall by about 15% and found of droughts 

about 3-5 days for the period 1951-2003 (Deo et al., 2009). Moreover, there was a  

decrease in the Pacific trade winds and a warming of the central and eastern tropical 

Pacific Ocean. (Nicholls et al., 2004; Alexander et al., 2007; Murphy and Timbal, 2007; 

Deo et al., 2009). 

The methodological approach used in the present study can explain the variability of 

temperature on the Earth’s surface by using simple linear regression modeling as the first 

step in identifying trends (Nicholls et al., 2004), but may not be the best way to estimate 

trends for shorter periods (Benestad, 2003). Temperature change showed periodic 

variations. A polynomial regression model was considered to account for the detailed 

description of the trend within a calibration interval (Benestad, 2003). However, this 

model is not suitable for forecasting long-term trends because of uncertainly with other 

factors in the future. Predicting regional climate change with uncertainly runs the risk of 

both over- and under-estimation. Therefore, the unpredictability of the climate and global 

systems should be a concern in further studies (Mitchell and Hulme, 1999). Moreover, 

the regional patterns of temperature change in the Arctic and Australia were classified by 
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factor analysis and cluster analysis. This procedure offers the occasion to define regions 

with the variable of interest having similar values (Mahlstein and Knutti, 2009), so this 

method can be applied to identify spatial correlation, combining small surface areas of a 

region into larger sub-regional groups. This statistical technique was also used in other 

studies as mentioned in Unal et al., (2003), Mahlatein and Knutti (2009) and McNeil and 

Chooprateep (2014),  but the results from the classification grouping were different 

because of the different time periods and regions studied. 

5.3 Recommendations and Further study 

The recommendations and further study are as follows: 

5.3.1. The data sets of this study have many missing data, whether the Arctic region or 

Australia. Although the grid-boxes were combined to reduce these missing data and 

missing data were also interpolated by a multiple linear regression model, the data sets 

still lost information and may be not a good representation. Therefore, the evaluate 

performance of other methods for missing data estimation such as artificial neural 

network (ANN), optimized regression analysis and cubic spline methods (CDP) should 

be considered in future studies. 

5.3.2 In this study, identification of the order of the autoregressive model (AR) was only 

considered from an auto correlation function plot (ACF) which was insufficient to 

confirm the order of the autoregressive model (AR). In some cases, the auto correlations 

were significant for a large number of lags. Perhaps the auto correlations at lag 2 and 

above are merely due to the propagation of the auto correlation at lag 1. Therefore, the 
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order of autoregressive model (AR) is needed to correct any auto correlation that remains 

in the differenced series by looking at both the auto correlation function plot (ACF) and 

the partial auto correlation function plot (PACF) of the differenced series in further study. 

5.3.3 For the study of spatial correlation, factor analysis was used to group similar 

patterns in the region into larger regional groupings by considering factor loading values. 

Some cases may have had similar factor loading values in each factor which were not 

easy to group in these regions. Although cluster analysis was used to help create 

geographic groupings in this study, there are many other methods that could be applied to 

compare and efficiently classify groupings such as principle component analysis, T-mode 

PCA with k-mean clustering and Ward’s method, empirical orthogonal function analysis 

and functional analysis. 

5.3.4 In this study, the data showed a periodic pattern of temperature change. A 

polynomial regression model was fitted to explain trends and patterns of temperature 

change, but this model is not the best model for forecasting. Although the quartic trend 

model combined with a 3
nd

order time lag was fitted well with the data but it could not 

forecast for longer periods. However, there are many statistical methods for forecasting 

periodic patterns of temperature change such as periodogram analysis, sine and cosine 

function, harmonic function, spline regression models and locally weight regression 

model to compare the results with further study. 

5.3.5 The results of the present research provide comprehensive information about 

temperature changes on land and sea surfaces in the Arctic region and Australia which 

are the most important areas of global warming. This study focused on only temperature 
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data without considering other factors affecting the fluctuation of temperature. Thus, 

additional factors affecting climate such as distance from the sea, ocean currents, and 

direction of prevailing winds, the EI Niño phenomenon and human activities should be 

investigated. The methodological approach presented in this research can be applied to 

the studies of other factors such as rainfall, wind, and solar radiation in future research.  
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Appendix 1 

Regression coefficients of 67 sub-regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sub-region Latitude and longitude     P-value 

3 75-85
o
N – 135-90

o
W 0.673 < 0.05 

4 75-85
o
N – 90-45

o
W 0.717 < 0.05 

5 75-85
o
N – 45-0

o
W 0.447 < 0.05 

6 75-85
o
N – 0-45

o
E 0.272 < 0.05 

7 75-85
o
N – 45-90

o
E 0.670 < 0.05 

8 75-85
o
N – 90-135

o
E 0.418 0.001 

9 75-85
o
N – 135-180

o
E 0.406 < 0.05 

10 65-75
o
N – 180-150

o
W 0.560 < 0.05 

11 65-75
o
N – 150-120

o
W 0.733 < 0.05 

12 65-75
o
N – 120-90

o
W 0.412 < 0.05 

13 65-75
o
N – 90-60

o
W 0.391 0.001 

14 65-75
o
N – 60-30

o
W 0.231 < 0.05 

15 65-75
o
N – 30-0

o
W 0.312 < 0.05 

16 65-75
o
N –  0-30

o
E 0.288 < 0.05 

17 65-75
o
N – 30-60

o
E 0.209 < 0.05 

18 65-75
o
N  –  60-90

o
E 0.472 < 0.05 

19 65-75
o
N – 90-120

o
E 0.535 < 0.05 

20 65-75
o
N – 120-150

o
E 0.441 < 0.05 

21 65-75
o
N – 150-180

o
E 0.464 < 0.05 

22 55-65
o
N – 180-165

o
W 0.200 < 0.05 

23 55-65
o
N – 165-150

o
W 0.165 0.019 

24 55-65
o
N – 150-135

o
W 0.124 0.031 

25 55-65
o
N – 135-120

o
W 0.167 0.116 

26 55-65
o
N – 120-105

o
W 0.246 0.065 

27 55-65
o
N – 105-90

o
W 0.362 0.002 

28 55-65
o
N – 90-75

o
W 0.478 < 0.05 

29 55-65
o
N – 75-60

o
W 0.349 < 0.05 

30 55-65
o
N – 60-45

o
W 0.251 < 0.05 

31 55-65
o
N – 45-30

o
W 0.353 < 0.05 

32 55-65
o
N – 30-15

o
W 0.338 < 0.05 

33 55-65
o
N – 15-0

o
W 0.239 < 0.05 

34 55-65
o
N – 0-15

o
E 0.349 < 0.05 

35 55-65
o
N – 15-30

o
E 0.401 < 0.05 
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Sub-region Latitude and longitude     P-value 

36 55-65
o
N  –  30-45

o
E 0.402 0.01 

37 55-65
o
N  –  45-60

o
E 0.405 0.001 

38 55-65
o
N  –  60-75

o
E 0.384 0.003 

39 55-65
o
N  –  75-90

o
E 0.492 0.001 

40 55-65
o
N  –  90-105

o
E 0.448 < 0.05 

41 55-65
o
N  –  105-120

o
E 0.441 0.001 

42 55-65
o
N  –  120-135

o
E 0.478 < 0.05 

43 55-65
o
N  –  135-150

o
E 0.305 < 0.05 

44 55-65
o
N  –  150-165

o
E 0.228 < 0.05 

45 55-65
o
N  –  165-180

o
E 0.322 < 0.05 

46 45-55
o
N  –  175-160

o
W 0.149 < 0.05 

47 45-55
o
N  –  160-145

o
W 0.133 < 0.05 

48 45-55
o
N  –  145-130

o
W 0.128 < 0.05 

49 45-55
o
N  –  130-115

o
W 0.176 0.001 

50 45-55
o
N  –  115-100

o
W 0.232 0.051 

51 45-55
o
N  –  100-85

o
W 0.259 0.003 

52 45-55
o
N  –  85-70

o
W 0.023 0.764 

53 45-55
o
N  –  70-55

o
W 0.372 < 0.05 

54 45-55
o
N  –  55-40

o
W 0.321 < 0.05 

55 45-55
o
N  –  40-25

o
W 0.314 < 0.05 

56 45-55
o
N  –  25-10

o
W 0.303 < 0.05 

57 45-55
o
N  –  10-5

o
E 0.373 < 0.05 

58 45-55
o
N  –  5-20

o
W 0.448 < 0.05 

59 45-55
o
N  –  20-35

o
E 0.356 < 0.05 

60 45-55
o
N  –  35-50

o
E 0.368 0.001 

61 45-55
o
N  –  50-65

o
E 0.411 0.001 

62 45-55
o
N  –  65-80

o
E 0.413 < 0.05 

63 45-55
o
N  –  80-95

o
E 0.461 < 0.05 

64 45-55
o
N  –  95-110

o
W 0.505 < 0.05 

65 45-55
o
N  –  110-125

o
E 0.488 < 0.05 

66 45-55
o
N  –  125-140

o
E 0.356 < 0.05 

67 45-55
o
N  –  140-155

o
E 0.210 < 0.05 

68 45-55
o
N  –  155-170

o
E 0.170 < 0.05 

69 45-55
o
N  –  170-175

o
E 0.159 < 0.05 
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ABSTRACT 

In this study, we examined monthly temperature variation from 1973 to 2008 

on grid regions of the earth surface above latitude 45˚North, covering the Arctic 

Ocean, northern areas of the Atlantic and Pacific Oceans, and the Asian and 

European continent. Linear modelling was used to investigate the trends and 

patterns of temperature changes and account for auto-correlations of the 

temperature changes over time. Factor analysis was then used to model filtered 

residuals, i.e., the residuals after removing time trends and auto-correlation, 

providing a basis for identifying and classifying regions with similar temperature 

change. Twelve large regions, each having similar temperature change patterns,  

DOI: 10.12982/CMUJNS.2014.0034 
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were identified. Of the 69 sub-regions considered in the study, 64 sub-regions 

experienced significant increase in temperature, 2 sub- regions had insufficient 

data, and only 3 sub-regions remained unchanged. High temperature increases 

(0.200˚Cto 0.320˚C) occurred in the North Pacific Ocean, Alaska and Eastern 

Siberia. Moderate temperature increases (0.130˚C to 0.199˚C) occurred in north 

Canada, Greenland, Iceland, Norway, Sweden and Finland. The north of Siberia 

and part of the North Atlantic had low increases (0.090˚C to 0.129˚C) while north 

east Canada and its surrounding seas did not show evidence of warming. 

 

Key words: Latitude, Climate change, Time series analysis, Correlation,  

                     Auto-correlation, Factor analysis. 

 

INTRODUCTION 

Earth surface temperature change is one of the most important issues the world 

faces today. Global surface temperature has changed over the past 150 years with a 

slightly higher rate of warming in the 20
th

 century (Jones et al., 1999). This warming 

is associated with change in sea levels, destruction of ecosystems, shrinkage of 

mountain glaciers, reduction of ice cover (National Academies Report, 2008) and 

altered ocean circulation patterns (Houghton et al., 2001). 

Increased surface temperature in the Arctic Ocean has been a major topic of 

international reviews and indigenous observations during last decade (Krupnik and 

Jolly, 2012). According to the study by Overpeck et al., (1997), the average  
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temperature in the Arctic increased about 0.6˚C from the beginning of the 20
th

 century 

and the maximum temperatures there have increased approximately 1.2˚C since 1945.  

The temperature change was about +1˚C per decade (increase) in the eastern Arctic 

Ocean and -1˚C per decade (decrease) in the western Arctic Ocean during the winter 

season. Furthermore, significant warming in spring has been detected across most of 

the Arctic region (Rigor et al., 1999). 

Various studies have assessed temperature changes over the Earth’s surface. 

For example, Box et al., (2007) studied temperature changes in Greenland over period 

1840-2007. The annual warming trend in 1919-1932 was 33% greater than in 1994-

2007 and the recent warming was high in western Greenland during autumn and 

southern Greenland in winter. In addition, Anisimov et al., (2007) investigated the 

changes of air temperature in Russia over the periods of 1900-2004. The trend of 

annual average temperature was 0.5˚C per 100 years in the north of European Russia, 

1.4˚C-1.6˚C per 100 years in the south of Ural Siberia and the Far East. On average 

for the entire territory of Russia the trend was 1.1˚C per 100 years. 

It is not easy to understand and explain the variability and trends of change in 

Earth surface temperatures or quantify the size and speed of the rate of change. Many 

scientists and researchers have studied patterns of Earth surface temperature changes 

in different regions of the world using various methodologies, including computer 

simulation models (Johannessen et al., 2003), empirical orthogonal functions 

(Semenov, 2007) and statistical techniques, such as multiple linear regression (Lean 

and Rind, 2009), multiple regression  with non-Gaussian correlated errors and linear  
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autoregressive moving average (ARMA) model (Hughes et al., 2006) and linear 

spline functions and factor analysis (McNeil and Chooprateep, 2013). 

An investigation of temperature changes a region covering northern Atlantic 

Ocean was carried out in a more recent study by McNeil and Chooprateep (2013). 

The present study examines the region centered around middle part of the Northern 

hemisphere on Earth surface for temperature changes, using a combination of 

statistical techniques including linear regression allowing for auto-correlation 

(Venables and Ripley, 2002) and factor analysis (Johnson, 1998).We examined and 

quantified the trend and patterns of the temperature changes across the Earth surface 

above 45 degrees north from 1973 to 2008, based on monthly temperature data. The 

area studied includes both land and sea.  

 

MATERIALS AND METHODS 

Temperature data from 1973 to 2008 for the study area were obtained from the 

Climatic Research Unit at the University of East Anglia, UK (CRU, 2009). They 

include 432 monthly average temperature anomalies (defined as excesses over 

monthly averages for 1961-1990; CRU, 2009 ) for all 5˚ by 5˚ latitude- longitude 

grid-boxes on the Earth’s surface studied, and were collected from weather stations, 

ships, and more recently satellites. This area comprises 648 5˚by 5˚grid-boxes above 

latitude 45 degrees North, including the Arctic Ocean, the northern areas of the 

Atlantic and Pacific Oceans, the North America, Asian and European continents. 

However temperature data were missing in a number of those grid-boxes, particularly 

in the polar zones. Therefore, the 648 grid-boxes were combined into 69 sub-regions  
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of similar size (approximately 0.45 km
2
) for each region, following a design in the 

shape of an igloo. These 69 sub-regions include one covering up to 5˚ below the 

North Pole (85˚N-90˚N), eight in the 75˚N-85˚N band, 12 in the 65˚N-75˚N band, 24 

in the 55˚N-65˚N band and another 24 in the 45˚N-55˚N band (Figure 1). A number of 

those sub-regions have missing data, as shown in brackets in Figure 1. 

 

Figure 1: Map of the 69 sub-regions above latitude 45 degrees North. Numbers in 

brackets are the number of months with missing data for 1973-2008. 
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Statistical methods 

A separate linear regression model was first fitted to the average monthly 

temperature anomalies for each of the 69 sub-regions. The model takes the following 

form: 

                                for  i = 1,2,...,69 and   = 1,2,...,432                           (1) 

where yit denotes the average monthly temperature anomaly in sub-region i for month 

 ,    corresponds to the temperature anomaly change per month in sub-region i and 

   is the intercept (not of  direct interest to our study) and     is the error assumed to 

follow a normal distribution with constant variance. 

Residuals      from the linear model (1) were analyzed using an auto-

regressive model AR(2). Filtered average monthly temperature anomalies       were 

then obtained by removing auto-correlations at lags 1 and 2 months using the equation 

(Chatfield, 1996) as follows. 

                      ,                                                                                           (2),                                                          

                                            for i = 1,2,...,69 and   = 3,4,...,432,    (3) 

In these equations     is the difference between the average monthly temperature 

anomaly in sub-regions i for month        and the corresponding fitted value       ,     

is the filtered average monthly temperature anomaly in sub-region  and at month  , 

and a1, a2 are the average coefficients of the fitted auto-regressive models AR(2) 

across all 69 sub-regions. 
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Factor analysis (Johnson, 1998) was used to model the filtered average 

monthly temperature anomalies of the 67 sub-regions, not including the two sub-

regions with insufficient data (see Figure 2 in next section), having 84% data missing. 

The factor analysis model with m factors (m < 67), denoted by           , takes the 

form     

                            
 
       for i = 1,2,...,67,   = 3,4,...,432 and   = 1,2,...,m    (4) 

where     is the filtered average monthly temperature anomaly in sub-region   at 

month  ,    is the average across 432 months for sub-region  ,     is the factor 

loadings at the    sub-region on the     factor and    is the     common factor.                                                                                                                                                           

As a result, inter-correlated sub-regions among the 67 sub-regions were 

identified. The highest inter-correlated sub-regions, i.e., those with similar filtered 

average monthly temperature anomalies, were classified and regrouped to form a 

larger region (factor) by maximizing the likelihood of the covariance matrix and 

minimizing the correlation between the factors for a specified number of factors, 

which needed to be specified in advance. The loadings (usually between -1 and 1) 

were controlled by rotating the factors, using the Promax method, to make these 

loadings as close as possible to 0 or 1. Ideally, each variable (i.e., a sub-region in our 

data) is correlated with only one factor, so that the correlation matrix of the residuals 

from this model is close to a diagonal matrix. For each of the large regions identified 

in the factor analysis, change in (filtered) temperature was estimated by fitting a linear 

model. All analyses and graphical displays were carried out using R (R Development 

Core Team, 2009). 
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RESULTS 

Based on the estimated temperature change per month, obtained from the 

simple linear regression of time for each of the 69 sub-regions, temperature change 

per decade was derived and mapped in Figure 2, where red is for a significant increase 

(p-value < 0.05), orange if no evidence of change and white for insufficient data in the 

sub-region. Of the 69 sub-regions, average monthly temperature increased in all but 5 

sub-regions. There is no evidence of change in three and insufficient data in two of 

these five sub-regions. The two sub regions with insufficient data were omitted in 

further analysis. 

 

Figure 2: Map of temperature changes of the 69 sub-regions from 1973 to 2008 

(before removing auto-correlations). 

 

 



107 

 

 

      CMU J. Nat. Sci. (2014) Vol. 13(3) 

 

The time series plots of the three sub-regions which had no evidence of 

temperature change from 1973 to 2008 are presented in Figure 3. These sub-regions 

were latitude 55˚N–65˚N longitude 135˚W–120˚W (p-value = 0.116), latitude 55˚N–

65˚N longitude 120˚W–105˚W (p-value = 0.065) and latitude 45
o 
N–55

o 
N longitude 

85˚W–70˚W (p-value = 0.764). 

 

 

Figure 3: The time series plot of filtered average monthly temperatures anomalies  

in the three sub-regions with no evidence of change. 

 

 

The 95% confidence intervals of temperature change per decade for each of 

the 67 sub-regions were estimated and plotted in Figure 4, ordered by latitude N and 

longitude from 180 W. A 95% confidence interval covering zero implies no 

significant temperature change.It confirms the results shown in Figures 2 and 3. 
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Figure 4: 95% confidence intervals of monthly temperature anomalies changes, 

ordered by latitude N and longitude from 180W. The horizontal axis shows sub-

regions in each group of latitudes. 

 

Residuals after removing a time trend for each region were used to assess possible 

auto-correlations over time. These residual time series are assumed to be stationary. 

Figure 5 is a graph of auto-correlation functions (ACF) of the residuals for two of the 

67 sub-regions. Coefficients a1 and a2 were obtained by fitting an auto-regressive 

model with two parameters to the data in each region. 

 

Figure 5: Auto-correlation function plots of the residuals for two of the 67sub-

regions. The dotted line represents the 95% confidence interval of a zero correlation. 
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The average coefficients,     and     of the fitted auto-regressive models AR(2) 

across all the 67 sub-regions, are 0.333 and 0.04, respectively. Filtered residuals were 

then obtained after removing the auto-correlation structure using those average 

coefficients. Figure 6 contains the ACF plots of the filtered residuals for the same two 

of the 67 sub-regions illustrated in Figure 5. It shows that those filtering residuals are 

reasonably free of any auto-correlation. 

 

Figure 6: Auto-correlation function plots of the filtered residuals for the two sub-

regions illustrated in Figure5. The dotted line represents the 95% confidence interval 

for a zero correlation. 

 

 

 Factor analysis of those filtered residuals was applied to the 67 sub-regions 

and resulted in 12 factors. Each factor with a unique pattern of temperature change 

represents a large region that consists of two to nine adjoining sub-regions (coded 

from 1 to 12 in Figure 7). Five (in cream in Figure 7) of the 67 sub-regions included 

in the factor analysis had high uniqueness. 
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Figure 7: Twelve large regions (coded 1-12) identified from factor analysis. 

 

 

The correlation matrix of the filtered residuals between pairs of the sub-

regions within each of the 12 large regions is displayed as dots in the left panel of 

Figure 8. It is clear that sub-regions within each large region are highly positively 

correlated (showing large black dots) with each other, but there is little correlation 

(small faded dots) between pair of sub-regions from different large regions. The 

circles in the right panel of Figure 8 is based on residuals derived from the factor 

model, which shows very little correlation between pairs of sub regions even within 

the same large region, as expected. This indicates that the factor model has largely 

accounted for the correlation between those sub-regions considered, suggesting that 

the 12 factors explain the correlations between sub-regions reasonably well. 
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Figure 8: Bubble plots matrix of correlations between filtered monthly temperature 

anomalies in regions before (left panel) and after (right panel) fitting the factor model. 

Positive correlations are shown as black dots and negative correlation are shown as 

red dots. The size of each dot is proportional to the absolute value of the correlation 

coefficient. 

 

The average changes with 95% confidence intervals (CI) of filtered monthly 

temperature anomalies per decade over 1973-2008 were estimated for each of the 12 

large regions, as well as the five sub-regions with high uniqueness in the factor 

analysis, and are mapped in Figure 9. Eleven of the 12 large regions and all the five 

sub-regions showed a significant increase in temperature (p-values< 0.05). Each such 

region was re-classified into three levels according to the lower bound of the 95% CI 

of its temperature change per decade: small if between 0.090˚C and 0.129˚C, 

moderate (0.130˚C-0.199˚C) and large (0.200˚C-0.320˚C) temperature increase. Three 

colours, yellow, orange and red, were used to indicate the three different levels in 

Figure 9. 
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Clearly, large temperature increases occurred in the north Pacific Ocean, 

Alaska and Eastern Siberia (large regions 4, 8 and 9). Increases in north Canada, 

Greenland, Iceland, Norway, Sweden and Finland (large regions 2, 3, 10 and 11) were 

moderate. Small increases occurred in northern Siberia and part of the north Atlantic 

(large regions 5, 6, 7 and 12), whereas north-east Canada and its surrounding seas 

(large region 1) did not experience much change (coloured green in Figure 9). Four 

out of the five sub-regions (coloured cream in Figure7) experienced a small 

temperature increase per decade, but the other sub-region, covering Severanya 

Zemlya, had a large temperature increase. Note that the two sub-regions with more 

than 80% missing data are coloured blue in Figure 9. 

                

Figure 9:  The minimum temperature increased per decade in regions 

 



113 

 

 

      CMU J. Nat. Sci. (2014) Vol. 13(3) 

 

 

DISCUSSION AND CONCLUSIONS 

Twelve large regions covering 62 of the 69 sub regions studied, each with 

different warming patterns, were identified from our study. Some had relatively large 

temperature increases per decade, including the north Pacific Ocean, Alaska and 

Eastern Siberia. A large temperature change was also detected in Severanya Zemlya. 

Except for north-east Canada and its surrounding seas, almost all regions included in 

the study experienced some level of temperature increase. 

An earlier study by Jones et al., (1999) suggested that temperature in the 

Northern hemisphere rose on average by 0.37˚C in 1925-1944 and 0.32˚C over 1978-

1997. As in Jones’s study, our study showed a temperature increase almost 

everywhere. Temperature increase detected in Arctic in the present study is consistent 

with that from the studies of the same region over a similar period by Polyakov 

(2012) and Rigor et al., (1999). In addition, this study showed that rising temperature 

in the northern areas (land and sea) of the Atlantic, similar to that on the surface of the 

northern Atlantic Ocean reported recently by McNeil and Chooprateep (2013).  

The results from the present research provide comprehensive information 

about temperature changes on the Earth surface close to Arctic region (land and sea), 

which has been one of the most important areas for global warming research. Any 

change in the Arctic may result in a substantial change in climate globally, and by the 

same token global change may have pronounced effects on the Arctic region. The 

methodological approach used in the present study can be applied to similar studies in 

other regions of the Earth surface. Furthermore, there are other statistical methods or  
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techniques, such as linear spline model, T-mode PCA with K-means clustering and 

polynomial functions, which could be utilised to extend the approach used in the 

current study. Although the present study only considered temperature, the approach 

presented here can be applied to the studies of other factors, such as solar radiation, 

wind, and rainfall in future studies. 
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Abstract 

The variations of daily maximum temperatures over consecutive 5-day periods from 

1970 to 2012 in Australia are described. The data were obtained from the Australia 

Bureau of Meteorology comprising measurements from 85 weather stations. Linear 

regression was initially used to model the seasonally adjusted daily maximum 

temperatures. Factor analysis was used to classify the temperatures from the 85 

stations into seven factors which correspond to seven geographical regions. The 

average maximum annual temperature in these seven regions ranged from 23
o
C to 

36
o
C. A sixth order polynomial regression model was then fit to investigate the trend 

and pattern of the temperatures in these seven regions. Similar increasing temperature 

trends occurred in the central, eastern, southern, and southeastern parts of the country. 

Key words Australia; climate change; time series analysis; linear regression; factor 

analysis; polynomial regression model 
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1. Introduction  

Australia has become the most interesting country for conducting research on global 

atmospheric systems because its climate has geographical variety and it is also 

surrounded by the Indian and Pacific Oceans. The majority of Australia is desert or 

semi-arid land. The southeastern and southwestern corners have a temperate climate. 

The northern part of the country has a tropical climate and contains tropical 

rainforests, grasslands as well as desert areas. The climate and geographic 

characteristics could also be a related factor to natural disasters, such as floods, 

droughts, tropical cyclones, rising sea levels, and the EI Nino southern oscillation 

(ENSO) (Hughes, 2003). The temperature in Australia has been increasing over the 

recent decades (Murphy and Timbal, 2007). The average temperature has increased 

by approximately 0.8
o
C since 1910 (Collins, 2000), and has been increasing by about 

0.32
o
C from 1981 to 2005 (Collins et al., 2000). An increase in temperature by 0.1

o
C 

- 0.2
o
C per decade was found over most of Australia since1951. From 1910 to 2006, 

the temperatures have increased by approximately 0.19
o
C per decade (Murphy and 

Timbal, 2007). During the period 1910-1929, the seas around Australia have 

experienced warmer temperatures by around 0.7
o
C with waters warming faster in the 

southwestern and southeastern areas (Poloczanska et al., 2009). 

Many studies have assessed the trend and pattern of temperature change using 

various methodologies including computer simulation models (Johannessen et al., 

2003), empirical orthogonal functions (Semenov, 2007) and various statistical 

techniques. Griffiths et al. (2005) used linear regression models and Pearson 

correlation to study the relationship between mean and extreme temperatures in the 

Asia Pacific region. Jones (1999) used principal component analysis to investigate the 
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characteristics and some mechanisms of Australian temperature variability. More 

recently, McNeil and Chooprateep (2014) used linear regression models, spline linear 

regression models and factor analysis to examine the trend and pattern of sea surface 

temperature in the North Atlantic Ocean.  

Increases in extreme temperatures are consistent with warming of the climate 

(IPCC, 2007). It also associated with the variations of maximum temperature in part 

of Australia during the 20
th 

century (Nicholls et al., 2004). In southeastern Australia 

the temperature records during 1958-2008 revealed increasingly hot summers since 

the 1990s, with daily maximum temperatures reaching 10
o
C above average (Richman 

and Leslie, 2014). Therefore, this study the maximum temperature over consecutive 

5-day periods from 1970 to 2012 in Australia are investigated by using linear 

regression models, factor analysis and polynomial regression models to assess the 

trends and patterns of temperature change.  

2. Data management and study areas 

The daily maximum temperatures were downloaded from the Australian Bureau of 

Meteorology (BOM) website at http://www.bom.gov.au for over 700 weather stations. 

These stations have different periods of observation, some records starting earlier or 

have incomplete records due to weather phenomena and changing requirements 

(BOM, 2013). An area-based sample of 85 stations was selected consistent with data 

from Australia’s Reference Climate Station Network (RCS) and the Australian 

Climate Observations Reference Network-Surface Air Temperature (ACORN-SAT). 

These sampled stations are spread approximately evenly over Australia as shown in 

Figure 1. Moreover, they have 80% complete data from 1970 to 2012. 

http://www.bom.gov.au/
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Daily maximum temperature data was collected at each station. Observations on 

February 29 were omitted to have equal numbers of observations for each year, 

totaling 15,695 observations including missing data over the 43-year period. The 

maximum temperature over consecutive 5-day periods was used for analysis to reduce 

the number of data to 73 periods in each year, as well as reducing correlation between 

successive observations. Missing data was imputed using linear interpolation. 

 

3. Methods 

The data were seasonally adjusted to remove variation in the maximum 

temperature over consecutive 5-day periods by subtracting the average of the 

maximum temperatures in each period and then adding back the overall mean for all 

85 stations. The equation takes the form 

                                                                                                (1)              

where     is the seasonally adjusted maximum temperature over consecutive 5-day 

periods at year   period  ,     is the maximum temperature over consecutive 5-day 

periods at year   period  ,      is the average of period   over 43 years and      is overall 

mean. 

A linear regression model was fitted to the seasonally adjusted maximum 

temperatures for each of the 85 stations (Venables and Ripley, 2002). The model 

takes the form                                                                                   (2)              

where      denotes the seasonally adjusted maximum temperature over consecutive 5-

day periods at year   for period   and station  ,    is a constant for station k and the 

terms     and     are effects for year   and period   at station  , repectively. 
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The dependences among the seasonally adjusted maximum temperature data 

were reduced by removing the auto-correlations at lag 1 term (equivalent to 5-day 

period) (Chatfield, 1996). Factor analysis (Johnson, 1998) was used to model the 

maximum temperatures over consecutive 5-day periods in the 85 stations. The factor 

analysis model with m factors (m<85), denoted by           , takes the form     

               
 
                                                                           (3) 

where       is the seasonally adjusted maximum temperature over consecutive 5-day 

periods at year   for period   of station  ,      is the average across all times for 

station  ,     is the factor loading at station   for factor  , and     is the     common 

factor of station  . 

The highest inter-correlated stations, i.e., those with similar seasonally adjusted 

maximum temperature over consecutive 5-day periods, were classified into factors by 

maximizing the likelihood of the covariance matrix. These factors were identified 

using factor loadings. The loadings were controlled by rotating the factors using the 

Promax method (Venables and Ripley, 2002). The cut-off value for factor loadings 

was 0.3 (Hair et al., 1998). Stations with high uniqueness, that is, those stations which 

have variations in temperatures that are not similar to the other stations, were omitted 

from further analysis. 

Since the temperature displayed a curvilinear pattern, polynomial regression 

was used to model this pattern. A sixth order polynomial regression model with 

consecutive 5-day periods as the sole predictor variable was fitted to account for the 

trend of maximum temperatures over consecutive 5-day periods in each factor. The 

model takes the form:  
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                           (4)  

where     is the maximum temperature over consecutive 5-day periods at period   of 

factor        represents the mean response of    when   = 0, and               are 

effect coefficients of factor  . 

All data analysis and graphical displays were carried out using R (R Development 

Core Team, 2008).  

 

4. Results 

Figure 2 shows the pattern of 5-day maximum temperatures for five selected 

stations. There is a noticeable seasonal periodicity pattern. 

The data were seasonally adjusted and the auto-correlation at lag 1was 

removed; the normality distributed assumption was also verified. A linear regression 

model (model 2) was then fitted to the seasonally adjusted, decorrelated data and the 

results are shown in Figure 3. The quantile-quantile (Q_Q) plot shown in Figure 4 

indicates that the residuals from the model are normally distributed. The coefficients 

for the periods (bjk), which represent the temperature trends and p-values, are also 

displayed in Table I. The most coefficients were significantly different from zero (p-

value<0.05), indicating that the temperatures for these stations increased but one 

station (a1013) had decreased in temperature as negative coefficient. Overall, the 

trend increased in 74 stations, decreased in one station and remained the same in 10 

stations that was not significant. 

The spatial correlation of the seasonally adjusted maximum temperatures was 

also investigated. The correlations of the seasonally adjusted temperature in the 85 
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stations ranged from 0.00007 to 0.925, with a median of 0.167. A factor model was 

used to reduce these correlations by classifying the 85 stations into groups (factors) by 

considering the value of the factor loadings. Table II shows the factor loadings 

ordered from highest to lowest within each factor (excluding the mixed factor 

loading), and uniqueness values. Figure 5 shows a map of Australia and the seven 

regions as determined by the factor model. The circles represent the 85 stations. The 

size of each circle is proportional to the factor loading for each station. Thirty stations 

with mixed factor loadings were omitted in further analyses as shown in 

superimposed circles. One station (Lockhart River Airport; a28008) in northern 

Australia (hollow circle in Figure 5) had a uniqueness value above 0.85, thus there is 

no dominating factor for this station. 

In each factor, the average of maximum temperatures over consecutive 5-day 

periods ranged from 23
0
C to 36

0
C over the 43 years as shown in Figure 6. The data 

shows distinct periodic variation. A sixth order polynomial regression model was 

fitted with these trends and is shown as curves in Figure 6(a)-6(g). The coefficients of 

the polynomial regression models up to the sixth order were all significantly different 

from zero (p-value <0.05) as shown in Table III. 

Overall, temperatures increased with some decreases occurring during some 

periods. It can be seen that factor 2 represents the desert area of the northwestern area 

with the highest average temperature of approximately 36 
0
C in 2002. The trend and 

pattern of temperature change in the central (factor3), eastern (factor 4), southern 

(factor 6) and southeastern (factor 7) regions were grouped with similar patterns as 

shown in Figure 6(h). The maximum temperatures increased after 1974, steadily 

decreased around 1984, then gradually increased from 2000 until 2005, and finally 
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decreased. Figure 6(i) shows the three regions with different temperature trends, 

namely factor 1(northern), factor 2 (northwestern) and factor 5 (southwestern).  

 

5. Conclusion and discussion  

The seasonally adjusted maximum temperatures over consecutive 5-day 

periods were analyzed using factor analysis. Seven factors corresponding to seven 

geographical regions, namely the northern, northwestern, central, eastern, 

southwestern, southern and southeastern regions, were identified each having 

different patterns of temperature changes. The average maximum temperatures in all 

regions between 1970 and 2012 ranged from 23
o
C to 36

o
C.  

The data from each region showed distinct periodic variations and were 

investigated using a sixth order polynomial regression model. Four geographic 

regions, namely the central, eastern, southern and southeastern regions, had similar 

temperature patterns. The temperatures of these regions are influenced by rainfall and 

EI Nino southern oscillation events (Nicholls et al., 2004; Alexander et al., 2007; 

Murphy and Timbal, 2007; Deo et al., 2009). The increase in temperature and 

decrease in rainfall has direct consequences such as increasing occurrence and 

duration of droughts (Deo et al., 2009). In the southeastern region, droughts have 

been occurring since 1973 with increased temperatures during 2002 and 2003 

(Nicholls, 2004).The rainfall in central New South Wales and northern Victoria 

decreased by about 15% and the number of dry days increased 3-5 days per year for 

the period 1951-2003. Moreover, eastern Australia has experienced significant 

increased temperatures and decreased rainfall in the summer periods during 1982-
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1983 and 2002-2003. The temperature increased by around 2
o
C to 2.5

o
C with rainfall 

deficit in this period (Deo et al., 2009). 

The variability of temperature can be explained by a simple linear regression 

model, which is used in the first step to identify trends (Nicholls et al., 2004) but may 

not be the best way to estimate trends for shorter periods (Benestad, 2003). In the 

same way, a sixth order polynomial regression model was considered to account for 

detailed description of the trend within the calibration interval (Benestad, 2003). 

However, this method is not suitable for forecasting trends and there is no conclusive 

evidence that the trend could be predicted (Woodward and Gray, 1992; Benestad, 

2003). It is clear that Australia has a periodic pattern of temperature change. 

Therefore, other methods for projection of temperature trends, such as periodogram 

analysis and use of harmonic functions could be used to investigate the temperature 

trend in future. 
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Figure 1. Station locations where daily maximum temperature data were collected. 

The state boundaries in Australia are also given. 
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Figure 2. Maximum temperatures over consecutive 5-day periods of 5 selected stations (a) 

Kalbarri station (b) Wyndham station (c) Merredin station (d) Balladonia station and (e) Giles 

Meteorological station. The dots represent the data and the curve represents their fitted values 

using model (2). 
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Figure 3. Seasonally adjusted maximum temperatures over consecutive 5-day periods of 5 

selected stations (a) Kalbarri station (b) Wyndham station (c) Merredin station (d) Balladonia 

station and (e) Giles Meteorological station. The dots represent the data and the lines 

represents temperature trend using model (2). 
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Figure 4. Quantile-quantile (Q-Q) plot of residuals from model (2). 
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Figure 5. Factor analysis divides the stations into 7 geographical groups. Numbers in brackets 

are the number of factors. E = east, SE = southeast, S = south, SW = southwest, NW = 

northwest, N = north, C = central. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



134 

 

 

 
 

 
Figure 6. The patterns of temperature change in seven factors corresponding to seven 

geographical (a)-(g). The dots are mean of maximum temperature over consecutive 5-day 

periods based on model (2). The curved lines are trend estimation based on model (4). The 

bottom centre panel shows regions with similar patterns, while the bottom right panel shows 

regions with dissimilar patterns. 
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Table I. Regression coefficients of 85 stations. 
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Table II. The factor loading of 85 stations from the factor analysis. 
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Table III. Sixth order polynomial regression coefficients of 7 factors. 
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ABSTRACT 

The objectives of this paper were to investigate the trend and patterns of maximum 

temperature data in Australia as well as to forecast maximum temperature during the 

period of 2013-2015.  Data obtained from the Australia Bureau of Meteorology 

(BOM) involved maximum monthly temperature from 85 of 700 stations during the 

period of 1970 to 2012. These 85 stations were randomly chosen in the same way as 

was previously done by Australia’s Reference Climate Station Network, which took 

into account some stations had incomplete records due to weather phenomena and 

changing reporting requirements. Moreover, these 85 stations were spread 

approximately evenly over Australia and had more complete data than other stations 

during this period. Missing values in the data were estimated using a regression model 

accounting for information from the nearest stations as well as the time periods. The 

http://epg.science.cmu.ac.th/ejournal/
mailto:wandee43@gmail.com
mailto:wandee43@gmail.com


139 

 

 

dimensions of the dataset, i.e. number of stations and time periods were of 

considerable magnitude, hence factor analysis was utilized to reduce the dimensions 

of the dataset.  The resulting factor loadings were used as the input for cluster analysis 

based on complete linkage methods using Euclidian distances. Cluster analysis 

produced four clusters of stations. For each cluster, a quartic trend model with 3
nd 

order time lag was fitted. It was demonstrated in this paper that the forecasted 

maximum monthly temperature during the period of 2013-2015 was decreasing. This 

model is most effective in forecasting maximum temperatures over relatively short 

multiple-year periods. Future research should focus techniques for more effectively 

modeling longer-term time periods. 

Keywords:  Australia, Cluster Analysis, Factor analysis, Linear Regression Model, 

Time-lags, Autocorrelation Function 

 

1. INTRODUCTION  

The characteristics of climate change are determined by the variation of globally 

averaged surface temperature [1] resulting from rainfall, drought, raise of sea level, 

melting of snow and ice, the El Niño Southern Oscillation [2, 3] and the increase of 

carbon dioxide (CO2) from human activities [2]. The climate of various regions in the 

world has changed in different ways and has presented distinctive patterns of changes 

[4]. 

Australia is a continent which has remarkable geographical differences. Climate 

change in different regions of the continent may also reflect these geographical 

differences. Since 1910, the average temperature on this continent has increased by 

approximately 0.8
0
C [5] and about 0.32

0
C from 1981 to 2005 [6].  The mean of 
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maximum temperature has increased 0.9
0
C since 1950. However, the north west has 

exhibited a trend toward cooling during the summer, and a cooling trend in the south 

coast of western Australia has been evident in most seasons [7]. Moreover, the mean 

of minimum temperatures has increased over almost all of Australia except in some 

parts in the north west as mentioned in Nicholls [7]. 

In large regions, the possibility of having incomplete data is higher than in small 

regions since different temperatures are averaged together [4]. There have been 

studies carried out by many researchers demonstrating methods to investigate the 

characteristics and classification of temperature variability including computer 

simulation modeling [8], Empirical orthogonal function [9] and various statistical 

techniques such as principal component analysis [10] and factor analysis [11, 12]. In 

addition, cluster analysis is another method suitable for grouping regions together 

based on similarity of their climate signals [4, 13].  

In this study, the limitation of factor analysis is that some of the stations are not 

clearly separated. Therefore, this study was conducted using similar approaches as the 

above mentioned studies, combining factor analysis and cluster analysis prior to the 

modeling of monthly maximum temperatures being carried out.  We redefined the 

climate division, which is usually based on geographic positions, based on the factor 

loadings in combination with cluster analysis measuring the similarity of the loadings. 

Furthermore, the trends and patterns of maximum temperature data were investigated 

as well as forecasting of the temperature for the period of 2013-2015 within these 

clusters by polynomial trend models with time lags. The forecasting method was 

based on historical data. Thus, there was no other usage of weather parameters in this 

study. This method has been known as a univariate time series technique. 
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2. DATA MANAGEMENT AND STUDY AREAS 

Daily maximum temperatures were obtained from the website http://www.bom.gov.au 

of the Australia Bureau of Meteorology (BOM) for over 700 weather stations across 

the country. These stations have different periods of observation. In this study, an 

area-based sample of 85 stations was randomly selected and these stations are 

distributed across Australia. The selection of these 85 stations was in line with 

Australia’s Reference Climate Station Network (RCS) and the Australia Climate 

Observations Reference Network Surface Air Temperature (ARORN-SAT). These 

stations have approximately 80% complete data from 1970 to 2012. Prior to the 

analysis, missing data were estimated using linear regression models [14] and then the 

maximum monthly temperatures were defined as the highest daily temperature in a 

particular month for analysis in this study. (Figure 1) shows the distribution of 85 

sample stations across the country. This figure also indicates the percentage of 

missing data in each station. 

  

http://www.bom.gov.au/
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Figure 1. An area-based sample of 85 stations with indication of percentage missing data in each 

station.  The state boundaries of Australia are also shown. 

 

 
3. METHODS 

As shown earlier there were missing data in several stations (see Figure 1). A linear 

regression model was fitted to estimate the missing data in 85 stations. Let t denote 

index for time and k denote index for station, the model takes the form  

                                                                           (1) 

for    =1, 2, … , 516 and   = 1, 2, …, 85, where      denotes the maximum 

temperature at month   of station  ,       is a maximum temperature at month t for the 

nearest station from station  ,       is the maximum temperature at month t for the 

second nearest station from station  ,        is the maximum temperature at month t-1 

for station k, and        is the maximum temperature at month t+1for station k. 
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Random samples of 10 stations were used to estimate missing values. The details of 

configuration for    ,        and        are displayed in (Figure 2). 

 

 

Figure 2. A random sample of 10 stations and example of configuration of    ,        and       . 

 

The corresponding regression parameters of the models are denoted by   ,   ,   ,   , 

and   , whereas the error terms are denoted by    . This model assumes that the 

maximum monthly temperature at a particular month and station can be predicted 

using the previous and following month temperatures as well as the first and second 

nearest station temperatures at the predefined month. The model combines time series 

and spatial information to estimate the missing data.  Adjustment has to be taken for 

the initial and end of times as well as for the edges of station locations [15]. 

A random sample of 10 stations was utilized to fit a model that relates temperature at 

month t and temperatures of neighboring stations as well as temperatures at month   
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(t-1) and (t+1). Using this model the missing values in all 85 stations were estimated 

with accuracy measured by adjusted R
2
. 

The dimensions of the data, i.e. number of stations and time period were quite large, 

hence factor analysis was applied to reduce the dimension. A factor analysis model 

was employed with m factors (m<85), denoted by           , and takes the form     

                                                 
 
                                                             (2) 

where      is maximum temperature at month   of station  ,    is the average across 

all times for station  ,     is the factor loading at station   for factor  , and    is the 

    common factor [16]. 

The highest inter-correlated stations, i.e., those with similar maximum temperature, 

were grouped into factors by maximizing the likelihood of the covariance matrix. 

These factors were identified using factor loadings. The loadings were controlled by 

rotating the factors using the varimax method [17]. The cut-off value for factor 

loadings was 0.3 [18]. 

Factor analysis provides factor loadings which are correlation between stations and 

time periods. Based on the resulting factor loadings, cluster analysis was applied to 

cluster the 85 stations into several geographic groupings. The number of clusters was 

determined by the level of similarity among stations. This technique is concerned with 

exploring factor loadings to assess whether or not they can be summarized 

meaningfully in terms of a relatively small number of groups of stations which 

resemble each other and which are different in some respects from stations in other 

clusters. The complete linkage method was used in the analysis based on similarity 

measures [19]. 
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For each cluster of stations, a quartic trend model combined with the 3
rd

 order time 

lag was fitted to account for the trend and to predict the maximum monthly 

temperature. The model takes the following form, 

                
     

     
                                         (3) 

for   =1, 2, … , 516, where    denotes the maximum monthly temperature at month  , 

and                          are the parameters of the model, whereas    is the error 

term. All data analysis and graphical displayed were carried out using R [20]. 

 

4. RESULTS AND DISCUSSION 

Maximum monthly temperature data for 85 Australian stations were studied. As 

mentioned earlier there were missing data in some stations. A linear regression model 

(1) was used to estimate these missing data by using a random sample of 10 stations 

out of the 85 stations. The resulting regression is as follows:  

                                                            

This equation was used to provide estimates of all missing data in all stations. 

Accuracy of these estimates was indicated by the fact that all coefficients of the 

regression were significant (P-value < 0.05) and adjusted R-squared was 94.2%.  

After the missing data were estimated, in (Figure 3), examples are shown of the 

patterns of maximum monthly temperatures in four selected stations out of 85 

stations. These stations were located in the northern, southern, eastern and western 

region of Australia, respectively. The observed data were plotted by dots whereas the 

fitted values were drawn using curve lines from the regression equation (3). It is 
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clearly demonstrated that the equation can estimate the patterns and trends of the time 

series data as shown by the adjusted R-squared for these stations. In addition, the 

model applies equally well to the other stations. In general, the pattern showed 

polynomial pattern with range was between 20
0
C and 50

0
C. This result was similar 

with Wanishsakpong and McNeil’s study [21] in term of the general pattern but it was 

different in the range of maximum temperatures which was between 23
0
C to 36

0
C. 

These differences could be due to different times used in this study. 

 

 

Figure 3. Observed maximum monthly temperatures with fitted values using the regression equation 

(3) for four stations. The horizontal axis is the year from 1970 to 2012. 

 

Since there has been a similarity of patterns and trends of temperatures for the 85 

stations, these stations were then placed into several clusters as follows. The data 

structure was arranged into a matrix of 85 stations as the rows and 516 times 
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measurements as the columns. First the dimensions of the data were reduced using 

factor analysis as mentioned in section 2. Three factors were obtained with a 

cumulative variance of 90.4%.  Factor loadings are presented in (Table 1). The factor 

loading clearly show that there are several stations having similar absolute factor 

loadings such as stations a5026, a4023, a13017, a15511, a48015, a31037, a44026, 

a43015, a48031, and a56032. In this situation it is not easy to group the 85 stations 

based on the results of factor analysis directly without using cluster analysis 

techniques.  

Hence, the continuing use of cluster analysis was based on the resulting factor loading 

of 85x3 dimensions as the input for cluster analysis.  To construct a hierarchical tree, 

the distance or dissimilarity between groups of stations was defined using the 

complete linkage and it was based on the Euclidian distance [19]. In general if you 

consider two groups of individuals A and B then the complete linkage between A and 

B is the greatest distance between an element in A and an element in B. 
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Table 1. The first three factor loadings of 85 stations with cumulative variances of 90.14% 

 

Based on the similarity of the factor loadings, the results of cluster analysis showed 

the 85 stations were grouped into four clusters.  The description of these clusters is 

shown in (Table 2). 

 

Table 2. Description of resulting clusters based on factor loadings 

 Number of 

observations 

Within cluster 

sum of 

squares 

Average 

distance from 

centroid 

Maximum 

distance from 

centroid   

Cluster 1 39 0.6486 0.1183 0.2541 

Cluster 2 14 0.2448 0.1165 0.3322 

Cluster 3 12 0.1615 0.1083 0.2489 

Cluster 4 20 0.3055 0.1121 0.2578 
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(Figure 4) provides a visualization of the clusters of the 85 stations on the map of 

Australia. It can be seen in the figure that the corresponding geographical regions for 

the four clusters are north-west with some parts of the central and south regions, the 

south-eastern region including some part of the northern region (Cluster 1); the lower 

boundary of the south-western and, southern region including Tasmania (Cluster 2); 

the north (Cluster 3) and some parts of the central and eastern regions (Cluster 4).  

Factor analysis and cluster analysis were similar methods used for classification of the 

data. This statistical technique was used in other studies as mentioned in Mahlstein 

and Knutti [4], Wanishsakpong et al.[12] and Unal et al.[13] but the result from 

classified group were different because of different time period and region studied.  

Moreover, time series data for each cluster were studied separately and forecasting 

models were developed for future temperatures in each cluster. 

 

 

Figure 4. Cluster analysis divides the stations into 4 groups 
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In each cluster, the data showed distinct periodic variation.  The maximum monthly 

temperatures ranged from 20
0
C to 45

0
C over the 43 years. Temperatures decreased 

around from 1970 to 1990 and gradually have increased until year 2012. A quartic 

trend model with 3
rd

 order time lag was fitted to the time series data as shown in 

(Figure 5), the goodness of fit was high. The regression equation for each cluster is 

shown in (Table 3). The quantile-quantile (Q-Q) plot shown in (Figure 6) indicates 

that the residuals from the model are normally distributed and the residuals are 

independent as shown in (Figure 7). 

 

 Coefficients 

Cluster1 Cluster2 Cluster3 Cluster4 

Intercept 17.9900       16.8900       15.5100        19.7000 

t   0.0647  0.0663   0.0293  0.0498 

t
2 -0.0010 -0.0010  -0.0004 -0.0009 

t
3
   3.36×10

6 
 3.04×10

6
  1.51×10

6
  2.98×10

6
 

t
4
 -3.19×10

9
 -2.78×10

9
 -1.49×10

9
 -2.91×10

9
 

yt-1  0.1842  0.1545   0.1499  0.1631 

yt-2  0.1932  0.1850   0.2597  0.2208 

yt-3  0.1615  0.1777   0.1800  0.1000 

Adjusted R
2  0.9287  0.9251   0.8694  0.8924 

 

Table 3. Regression coefficients for each cluster 
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Figure 5. The fitted values of maximum monthly temperatures in each cluster based on model (3). The 

horizontal axis is the year 1970 to 2012. 

 

 
 

Figure 6. Residual Q-Q plots (quantiles plots) for each cluster 
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Figure 7. Residual auto-correlation function (ACF) plots for each cluster 

 

 

The trend of temperature changes in each cluster was found to occur over 10 year 

periods. Therefore, the most accurate forecast that could be done by the model should 

be a short term forecast. In this case, the forecast of monthly maximum temperatures 

is shown from year 2013 up to 2015 or 36 months. The forecast have gradually 

decreased over 2013-2015 in each clusters as shown in the curved lines highlighted in 

(Figure 8). The highlight showed 95% confidence intervals (CI) of the maximum 

monthly temperatures predictions for each cluster. The 95% CI ranged from about 

27
0
C-44

0
C, 26

0
C-40

0
C, 31

0
C-42

0
C and 26

0
C-42

0
C in cluster 1, 2, 3 and 4, 

respectively. Clearly, the confidence interval of cluster 3 is narrower than other 

clusters and the temperature changes are higher than for other clusters (ranging from 

32
0
C-43

0
C) which occurred in the north. In addition, the highest temperatures 

approximately 45
0
C occurred in cluster 1 which is in a desert area. 
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The polynomial model should be used carefully to forecast for long period of times 

[22, 23]. Benestad [22] suggested that the polynomial regression model can be 

considered to account for the detailed description of trends but should be used 

carefully to forecast for long periods of time due to the uncertainty of other factors in 

the future. 

 

Figure 8. Forecasting the maximum monthly temperature from 2013 to 2015. The curved lines are 

trend estimation base on model (3). The highlighted lines are 95% confidence interval of prediction. 

 

 

 

5. CONCLUSION 

 

The trends and patterns of monthly maximum temperature data for 85 Australian 

stations from 1910 to 2012 were investigated. A linear regression model was used to 

estimate missing values in all 85 stations by using the information of neighboring 

stations and previous as well as following year temperatures of the same month. 

Factor analysis and cluster analysis were combined to group the number of station 
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from 85 stations into 4 clusters corresponding to geographical regions.  Cluster 1 

consisted of 39 stations, most of them located in the southern part of the continent, but 

a few of them located in the northern and central regions of Australia. Cluster 2 

consisted of 14 stations, distributed at the boundary of the south-west and south of 

Australia. Cluster 3 consisted of 12 stations which were located in northern Australia 

whereas cluster 4 consisted of 20 stations and distributed in parts of the central and 

eastern region of Australia. 

The patterns of monthly maximum temperature for the four clusters were found to be 

a polynomial pattern. The overall temperature trend was a decrease between 1970 and 

1990, afterwards continuously increasing until 2012. A quartic trend model combined 

with 3
nd

order time lag has reasonably well been fitted to the data in each cluster. This 

model was used to forecast the maximum temperatures from 2013 to 2015. The result 

of forecasting showed a 95% confidence interval (CI) of the maximum monthly 

temperature prediction ranged from about 27
0
C-44

0
C, 26

0
C-40

0
C, 31

0
C-42

0
C and 

26
0
C-42

0
C in cluster 1, 2, 3 and 4, respectively. 

Future work should evaluate the performance of other models for missing data 

estimation. Furthermore, we should develop models that enable us to forecast for 

much longer periods. Other models such as sine and cosine models need to be 

considered. 
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