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ABSTRACT

The latex of Garcinia scortechinii, upon chromatographic separation, yielded
seven new caged-polyprenylated xanthones (PP1, PP3, PP4, PPS, PP6, PP8 and
PP9) and one new degraded tetraprenylated xanthone (PP10) together with two
known caged-tetraprenylated xanthones [scortechinone A (PP2) and scortechinone B
(PP7)]. The crude methano! extract from the stem bark of G. scortfechinii, upon
repeated chromatography, afforded five new caged-tetraprenylated xanthones (PP13,
PP14, PP15, PP16 and PP17), one known xanthone [4",5"-dihydro-1,5-dihydroxy-
6'.6"-dimethylpyrano(2',3"6,7)-4",4",5 "trimethylfurano(2”,3"3,4)xanthone (PP11}]
and one known steroid [stigmasterol (PP12)] together with six caged-polyprenylated
xanthones (PP1, PP2, PP3, PP7, PP8 and PP9), previuosly isolated from the latex.
The structures were elucidated by analysis of 1D and/or 2D NMR spectroscopic data
and/or comparison of the NMR data with those of scortechinone A and scortechinone
B. The C NMR signals were assigned froﬁ DEPT, HMQC and HMBC spectra. For
known compounds, their 'H NMR data were compared with those reported in the

literature.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Figure 1 Garcinia scortechinii

Garcinia scortechinii, a plant belonging to the Guttiferae family (Clusiaceae),
is a treelet of 4 m or a small slender tree, occasionally reaching 15 m tall, 75 cm gitth,
Inner bark contains copious, opaque, yellow to orange-yellow exudate. Leaves are
occasionally grey-green. Flowers and fruits are very similar to Garcinia domosa.
Commonly, this plant is scattered through Malaya, plains, low undulating country,

ridges to 700 m and primary and secondary forest (Whitmore, 1973).




1.2 Review of Literatures
1.2.1 Chemical constituents from the genus Garcinia

The genus Garcinia (family Guttiferae) has been extensively investigated from
phytochémical and pharmacological points of view. Various compounds have been
isolated from this genus, such as xanthones (Huang, 2001; Ito, 2001; Xu, 2001; Nilar,
2002; Suksamrarn, 2002), caged-polyprenylated xanthonoids (Rukachaisirikul, 2000a;
Cao, 1998a, b; Asano, 1996; Kartha, 1963), benzophenones (Cuesta Rudio, 2001;
Huang, 2001; Ali, 2000; Iinuma, 1996d; Spino, 1995; Fukuyama, 1993; Gustafson,
1992; Nyemba, 1990), benzophenone-xanthone dimers (Kosela, 2000, 1999; linuma,
1996a, b), biflavonoids (Thoison, 2000; Spino, 1995; Fukuyama, 1993; Goh, 1992;
Gunatilaka, 1983) and triterpenes (Nguyen, 2000; Rukachaisirikuf, 2000a, b; Thoison,
2000). Some of these compounds exhibit a wide range of biological and
pharmacological activities, e.g. healing of skin infections and wounds (Ilyas, 1994),
antioxidant (Peres, 2000; Kosela, 2000; linuma, 1996¢c; Minami, 1996), antibacterial
(Permana, 2001; Peres, 2000; Rukachaisirikul, 2000a; Ito, 1997; linuma, 1996a, d;
Parveen, 1991), antifungal (Kosela, 2000; Gopalakrishnan, 1997), anti-HIV (Kosela,
2000; Lin, 1997; Gustafson, 1992), antiinflammatory (Peres, 2000; Chairungsrilerd,
1996; liyas, 1994; Parveen, 1991), antiimmunosuppressive (llyas, 1994; Parveen,
1991), antimalarial (Kosela, 2000; Likhiwitayawuid, 1998a, b), antiprotozoal
(Parveen, 1991), antitumor (Ito, 1998) and cytotoxic (Permana, 2001; Kosela, 2000;

Thoison, 2000; Xu, 2000; Cao, 1998a, b) activities.




According to information from NAPRALERT database, developed by
University of Illinois at Chicago and Chemical Abstracts in the year 2001, chemical
constituents isolated from 62 species of the genus Garcinia were summarized
(Ritthiwigrom, 2002). The continuing search on SciFinder database and
http:\\Wwww.sciencedirect.com revealed that only additional chemical constituents

isolated from G. mangostana as shown in Table 1 were reported in the year 2002.

Table 1 Compounds from Garcinia mangostana

Investigation Compound Structure Bibliography
part
green fruit | mangostenol 2a Suksamrarn,
hulls mangostenone A 2g et al., 2002
mangostenone B 2h
trapezifolixanthone 2i
tovophyllin B 2j
o~-mangostin 2e
F-mangostin 2f
garcinone B 2k
mangostinone 21
mangostanol 2m
epicatechin fa
heartwood | f-mangostin 2f Nilar, et al., 2002




Table 1 (Continued)

Investigation

part

Compound

Structure

Bibliography

heartwood

garciniafuran
1-hydroxy-8-(2-hydroxy-3-
methylbut-3-enyl)-3,6,7,-
trimethoxy-2-(3-methylbut-
2-enyl)xanthone
1,6-dihydroxy-8-(2-hydroxy-
3-methylbut-3-enyl)-3,7-
dimethoxy-2-(3-methylbut-
2-enyl)xanthone
mangostanin
6-O-methylmangostanin
1,6-dihydroxy-2-(2-hydroxy-
3-methylbut-3-enyl)- 3,7-
dimethoxy-8-(3-methylbut-
2-enyl)xanthone
1-hydroxy-2-(2-hydroxy-3-
methylbut-3-eny)-3,6,7-
trimethoxy-8-(3-methylbut-

2-enyl)xanthone

2n

2r

2s

20

2b

2¢

Nilar, et al., 2002




Table 1 (Continued)

Investigation

part

Compound

Structure

Bibliography

heartwood

1,3-dihydroxy-2-(2-hydroxy-
3-methylbut-3-enyl)-6,7-
dimethoxy-8-(3-methylbut-
2-enyl)xanthone
(16E)-1,6-dihydroxy-8-
(3-hydroxy-3-methylbut-
1-enyl)-3,7-dimethoxy-2-(3-
methylbut-2-enyl)xanthone
(16E)-1-hydroxy-8-
(3-hydroxy-3-methylbut-1-
enyl)-3,6,7-trimethoxy-2-
(3-methylbut-2-enyl)xanthone
1,6-dihydroxy-3,7-
dimethoxy-2-(3-methylbut-2-
enyl)xanthone
1,6-dihydroxy-3,7-
dimethoxy-2-(3-methyltbut-2-
enyl)-8-(2-oxo0-3-methylbut-

3-enyl)xanthone

2d

2t

2u

2v

Nilar, et al., 2002




Structures of compounds in Table 1

1. Flavonoid

OH
HO 0 _.‘\\J@ OH
“0H

OH

la: epicatechin

2. Xanthones

2a:

2b:

2¢:

2d:

R, = H; R; = H : mangostenol
Ry = CHy; Ry = H : 1,6-dihydroxy-2-(2-hydroxy-3-methylbut-3-enyl)-3,7-
dimethoxy-8-(3-methylbut-2-eny)xanthone
Ry = Ry = CHj : 1-hydroxy-2-(2-hydroxy-3-methylbut-3-enyl)-3,6,7-trimethoxy-
8-(3-methylbut-2-enyl)xanthone
R; = H; R, = CH; : 1,3-dihydroxy-2-(2-hydroxy-3-methylbut-3-enyl)-6,7-

dimethoxy-8-(3-methyibut-2-enyl)xanthone




2e: R=H : a-mangostin 2g: mangostenone A

2f: R = CIl; : fFmangostin

2h: mangostenone B 2i: trapezifolixanthone

2j: tovophyllin 2k: garcinone B




O OH
OO oo
O () (0]

HO

2l: mangostinone 2m: mangostanol

2n: garciniafuran 20: R = H ; mangostanin

2p: R = Me : 6-O-methylmangostanin
0O OH =
T
HO ) OCH,

2q: 1,6-dihydroxy-3,7-dimethoxy-2-(3-methylbut-2-enyl)xanthone




HO
H;CO.

0 OH (7
RO‘O‘OCH3

CH; : 1-hydroxy-8-(2-hydroxy-3-methylbut-3-enyl)-3,6,7-trimethoxy-2-(3-

2 R

methylbut-2-enyl)xanthone

2s: R = H : 1,6-dihydroxy-8-(2-hydroxy-3-methylbut-3-enyl)-3,7-dimethoxy-2-(3-

methylbut-2-enyl)xanthone

2t: R = H : (16E)-1,6-dihydroxy-8-(3-hydroxy-3-methylbut-1-enyl)-3,7-dimethoxy-2-
(3-methylbut-2-enyl)xanthone
2u: R = CHj : (16E)-1-hydroxy-8-(3-hydroxy-3-methylbut-1-enyl})-3,6,7-trimethoxy-

2-(3-methylbut-2-enyl)xanthone

2v: 1,6-dihydroxy-3,7-dimethoxy-2-(3-methylbut-2-enyl)-8-(2-oxo0-3-methylibut-3-

enyl)xanthone
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1.2.2 Chemical constituents from the twigs of Garcinia scortechinii

The chemical investigation of Garcinia scorrtechinii was first reported in the
year 2000 by Rukachaisirikul. From the methanol extract from the twigs of Garcinia
scortechinii, three new caged-tetraprenylated xanthones [scortechinone A-C (3-5)]
together with two known compounds [friedelin (6) and stigmasterol (7)] were
isolated. The antibacterial activity of scortechinone A-C (3-5) against methicillin-
resistant  Staphylococcus aureus (MRSA) was also examined (Rukachaisirikul,

2000a).
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1.2.3 Biosynthesis of caged-polyprenylated xanthones

Caged-polyprenylated xanthones are exclusively found in several plants which
belong to the genus Garcinia, e.g. G. morella (Kartha, 1963; Yates, 1963; Ollis, 1965;
Karanjgaonkar, 1966), G. hanburyi (Asano, 1996), G. gaudichaudii (Cao, 1998a, b)
and G. scorfechinii (Rukachaisirikul, 2000a). Their biosynthesis has already been
hypothetized. Although there are no experimental data on the biosynthesis, the
polyisoprenylated xanthonoids can be considered to be formed by polyisoprenylation
of xanthone precursor. Herein, the proposed biosyntheses for caged-polyprenylated
xanthones were summarized.

The first biosynthesis of caged-polyprenylated xanthones was reported in the
year 1963. Kartha et al. proposed that morellin (8) can be derived biogenetically from
1,3,7-trihydroxyxanthone (21) and four units of "active isoprene”, as outlined in
Scheme 1. A phenol (presumably derived from acetate or acetate-malonate units)
could be transformed to a bicyclo-octenone by the cyclization of an isoprenoid side
chain. Since there was no evidence for the reaction sequence proposed in Scheme 1, a
mechanism might or might not involve hydrogenation and dehydrogenation after the
formation of chromene 22. On the other hand, morellin (8), might be derived from
jacareubin (23) of which a dimethylallyl group has cyclized with an adjacent phenolic

hydroxyl to form a 2,2-dimethylchromene.




12

OH
HO o OH 0. o OH
OO
OH O OH O
21 23

(1) 4 units "active isoprenes"
@ -H,

22

morellin (8) -

Scheme 1 Biesynthetic pathway of morellin (8)

Based on the biosynthesis of morellin (8) (Kartha, 1963), Ollis ef al. suggested

the biosynthesis of gambogic acid (15) which is simpler and obiviates the necessity to
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have a sequence of reduction and oxidation reactions, as shown in Scheme 2. In
addition, the xanthonoid precursor could either be of jacareubin oxygenation pattern

(see 23) or a quinol intermediate (Ollis, 1965).

gambogic acid (15)

Scheme 2 Biosynthesis of gambogic acid (15)
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In the year 1968, Gottlieb proposed the xanthone biosynthesis which involves

a dienone intermediate (24). The pyrone oxygen played a major role in the
construction of bicyclic system. This allows the formation of the morellins to be

rationaliized through isoprenylation reaction as shown in Scheme 3.

24

0

0 "y \\t‘ 0 O

o
N

Scheme 3 Biosynthesis of the morellins
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In contrast to previous biogenetic suggestions, Quillin et a/,, in the year 1971,
proposed that the morellins (8-13) and gambogic acid (15) might be derived directly
from 1,3,5,6-tetrahydroxyxanthone (26) which can be formed by oxidative coupling

of benzophenone such as maclurin (25). Isoprenylation of the xanthone (26) with four

isoprene units can lead to deoxymorellin (12) and related metabolites (Scheme 4). =

They postulate that isoprenylation occurs at C-7 in the shikimate derived ring, such as
26, is unattractive since 7-isoprenylxanthones are not yet known. An alternative route
to the heterocyclic bicyclo[2, 2, 2]Joctenone system involves a Claisen rearrangement
on the 5,6-diallyl ether (27) followed by a Diels-Alder reaction on the intermediate
dienone (28) as shown in Scheme 5. Quillin ef al. also showed that 1-hydroxy-5,6-
diallyloxyxanthone and jacareubin 5,6-diallyl ether formed bicyclo[2, 2, 2]Joctenone
functionality after boiling in decalin for 14 hours. Therefore, it is suggested that this
synthetic pathway may be involved in the biosynthesis of morellins and gambogic

acid.
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0O OH
e - - 1 I
HO HO OH
OH

25

4 isoprene

units
B EE—

deoxymorellin (12) 26

morellin (8),
isomorellin (9), morellic acid (10),

isomorellic acid (11), dihydroisomorellin (13)

Scheme 4 Biosynthesis of the morellins (8-13)
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27 28

deoxymorellin (12)

Scheme 5 Biosynthetic formation of the heterocyclic bicyclo[2,2,2] octenone

system

Venkataraman, in the year 1974, proposed a modified biosynthesis pathway
which the pyrone carbonyl group (see Scheme 1), not the pyrone oxygen (see Scheme
2), played an important role in the concerted seties of reactions as shown in Scheme
6. Deoxymorellin (12) is the first pigment formed in the biosynthesis and the
progressive oxidation of a methyl group then leads to morelinol (14), morellin (8),

and morellic acid (10) (Sultanbawa, 1980).




1,3,5,6-tetrahydroxyxanthone (26) —m———=

deoxymorellin (12)
-COOH —~— -COH —— -CH,OH
morellic acid (10) morellin (8) morellinol (14)

Scheme 6 Biosynthetic pathway of the morellins

18




19

In the year 2000, Thoison ef al. proposed the biosynthesis for bractatin (16), 1-
O-methylbractatin (17), isobractatin (18), 1-O-methylisobractatin (19), 1-O-methyl-8-
methoxy-8,8a-dihydrobractatin (20) based on the biosynthesis proposed by Quillin et
al. (Quillin, 1971). The Claisen rearrangement involving migration of the allyloxy
group at C-6 to the ortho position leads to an intermediate that undergoes a Diels-
Alder cyclization of the double bond C-22 - C-21 on C-10a and C-7, respectively, as

shown in Scheme 7.

bractatin (16), 1-O-methylbractatin (17),
isobractatin (18), 1-O-methylisobractatin {(19),

1-0O-methyl-8-methoxy-8,8a-dihydrobractatin {20)

Scheme 7 Biosynthesis of bractatin (16) and its derivatives

Lastly, a plausible biosynthetic route of gaudispirolactone (29), a degraded
derivative of a caged-polyprenylated xanthone, starting from morellic acid (10), was

shown in Scheme 8 (Wu, 2001). Oxidation of the ketone (10), followed by hydrolysis




A1 Dibral¥
a . gHtw 20

ety
o
prince of o6

AR E L o
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of an ester functionality, gave the cleavaged product which underwent a series of

reactions: decarboxylation, oxidation and dehydration to afford the spirolactone (29).

Scheme 8 Biosynthetic route of gaudispirolactone (29)




Structures of caged-polyprenylated xanthones related the biosynthesis above

10:

11:

12:

me = R = i ao B« o »

13:

14: H

15: MCzC':CH-CHz

R, R;
CHO Me : morellin
Me CHO : isomorellin
Me CO,H : morellic acid
CO,1 Me : isomorellic acid
Me Me : deoxymorellin
CHO Me : dihydroisomorellin

(single bond at C-1" and C-2)
CH,OH Me : morellinol

Me CO;H : gambogic acid

21
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16: R = OH : bractatin 18: R = OH : isobractatin

17: R = OMe : 1-O-methylbractatin 19: R = OMe : 1-O-methylisobractatin

HO

H
OCHC ~ OCH,

20: 1-O-methyl-8-methoxy-8,8a-dihydrobractatin
1.3 The objectives

Based on the literature search, phytochemical studies on the twigs of Garcinia
scortechinii have shown that caged-polyprenylated xanthones, the major components,
exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus
(MRSA). Therefore, we are interested in investigating other parts of this plant with
the hope that additional new caged-polyprenylated xanthones with better antibacterial
activity against MRSA will be isolated. This research involved isolation, purification
and structure elucidation of the chemical constituents isolated from the latex and the
stem bark of G. scorfechinii which were collected at the Ton Nga Chang Wildlife

Sanctury.




CHAPTER 2

EXPERIMENTAL

2.1 Chemicals and instruments

Melting points are determined on an electrothermal melting point apparatus
(Electrothermal 9100) and reported without correction, Infrared spectra (IR) were
obtained on a FIS165 FT-IR spectometer and Perkin Elmer Spectrum GX FT-IR
system and recorded on wavenumber (em™). '"H and "*C-Nuclear magnetic resonance
('H and *C NMR) spectra were recorded on a FTNMR, Varian UNITY INOVA 500
MHz or Bruker AMX 400 using a solution in deuterochloroform with
tetramethylsilane (TMS) as an internal standard. Spectra were recorded as chemical
shift parameter (5) value in ppm down field from TMS (4 0.00). Ultraviolet spectra
(UV) were measured with specord S100 spectrophotometer (Analytik Jena Ag).
Principle bands (Amas) were recorded as wavelengths (nm) and log & in methanol
solution. Optical rotations were measured in methanol solution with sodium D line
(590 nm) on an AUTOPOL®II automatic polarimeter. Thin-layer ehromatography
(TLC) and precoated thin-layer chromatography were performed on silica gel 60
GFjs4 (Merck) or reversed-phase C-18. Column chromatography was performed on
silica gel (Merck) type 100 (70-230 Mesh ASTM) or reversed-phase C-18. The

solvents for extraction and chromatography were distilled at their boiling point ranges

23
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prior to use except for petroleum ether (bp. 40-60°C) and ethyl acetate which were

analytical grade reagent.

2.2 Plant material

The latex and the stem bark of Garcinia scortechinii were collected at the Ton
Nga Chang Wildlife Sanctuary, Hat Yai, Songkla, Thailand in June 2000. The plant
was identified by Ajarn Prakart Sawangchote, Department of Biology, Faculty of
Science, Prince of Songkla University, Hat Yai Songkla, where a voucher specimen

has been deposited.

2.3 Chemical investigation of the Iatex

The latex was primarily tested for its solubility in various solvents at room

temperature, The results were demonstrated in Table 2.

Table 2 Solubility of the crude material in various solvents at room temperature

solvent - solubility at room temperature

Petroleum ether -
Chloroforin + (yellow solution with brown solid)
Ethyl acetate + (yellow solution with brown solid)

Methanol + + (yellow solution)




Table 2 (Continued)
solvent solubility at room temperature
Water -
10% HC1 -
10% NaOH + + (red-brown solution)

Symbol meaning : - insoluble, + partailly soluble, ++ well soluble
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It was shown that the crude material was slightly soluble in both chloroform

and ethyl acetate but it was soluble well in methanol and 10% aqueous NaOH,

indicating that it contained moderately polar and acidic compounds.

The crude material (8.36 g) was separated into two parts by dissolving with

chloroform. GLT, the chloroform soluble part, was a yellow solid (8.18 g) while

GLM, the methanol soluble part, was a brown gum (0.1797 g). The chromatogram on

normal phase TLC of GLM showed no definite spot. Thus, it was not further

investigated. Further separation of GLT (8.18 g) was carried out by column

chromatography on silica gel. Elution was conducted initially with pure chloroform

and gradually increased the polarity until pure methanol. Fractions with the similar

chromatogram were combined and evaporated under reduced pressure to dryness to

afford eleven fractions, as shown in Table 3.




Table 3 Fractions obtained from GLT by column chromatography on silica gel

fraction Weight (g) Physical appearance

T1 0.1299 Yellow gum

T2 0.1881 Yellow gum

T3 0.0179 Yellow gum

T4 1.0964 Yellow solid with yellow gum
TS 1.8644 Yellow solid with yellow gum
Té 0.3211 Yellow solid with yellow gum
T7 0.0513 Yellow gum

T8 3.7317 Yellow solid with yellow gum
T9 0.5568 Yellow gum
T10 0.3268 Brown gum
T11 0.3075 Brown gum
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Fraction T1 The chromatogram on normal phase TLC (80% CHCls/Petrol)

showed many UV-active spots without any major spots, Therefore, it was not further

investigated.

Fraction T2 The chromatogram on normal phase TLC (10% EtOAc/Petrol, 2

times) showed four major yellow spots with the Revalues of 0.41, 0.37, 0.31 and 0.25.

Further separation on precoated TLC using 20% EtOAc/Petrol as a mobile phase (2

times) afforded six subfractions, as shown in Table 4.




Table 4 Subfractions obtained from fraction T2 using precoated TLC on normal

phase silica gel
fraction Weight (g) Physical appearance
Pi 0.0056 Yellow gum
P2 0.0291 Yellow solid with yellow gum
P3 0.0186 Yellow solid with yellow gum
P4 0.0283 Yellow solid
P5 0.0346 Yellow solid with yellow gum
P6 0.0326 Yellow gum
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Subfraction P1 The chromatogram on normal phase TLC (10%

EtOAc/Petrol, 2 times) showed four UV-active spots with the R¢values of 0.60, 0.28,

0.23 and 0.08. Because it was obtained in low quantity, it was not further investigated.

Subfraction P2 The chromatogram on normal phase TLC (10%

EtOAc/Petrol, 2 times) showed two spots; one yellow spot with the Ry value of (.45

and a pale yellow spot with the Ryvalue of 0.41. Further purification was performed

by precoated TLC, using 5% EtOAc/Petrol as a mobile phase (20 times), to afford two

bands.

Band P2-1 (PP1) It was obtained as a yellow gum (0.0106 g). The

chromatogram on normal phase TLC (5% EtOAc/Petrol, 12 times) showed only one

yellow spot with the Ry value of 0.59.
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[ = -200 ° (c = 1.5x10g/100 cm’, MeOH)

UV Amax tm (MeOH) (logé) 361 (3.81)

IR (neat) Vem.1 3397 (O-H stretching), 2968, 2927, 2858 (C-H
stretching), 1746, 1634 (C=0 stretching)

'H NMR (CDCl3) (8 ppm) 13.62 (s, 1H), 7.70 (s, 11), 7.48 (d,J = 1.0 Hz,

(500 MHz) 1H), 6.43 (dd, J = 17.5 and 10.5 Hz, 1H), 5.46

(d,J=175 Hz, 1H), 5.37 (dd, J=10.5 and 1.0
Hz, 1H), 5.14 (nt, J = 6.5 Hz, 111), 4.43 (mdd,
J=10.0 and 5.0 Hz, 1H), 3.63 (s, 3H), 3.30 (d,
J=6.5 Hz, 21), 2.62-2.56 (m, 1H), 2.54 (d, J =
10.0 Hz, 1H), 2.50 (d, J= 10.0 Hz, 1H), 2.33
(d,J=13.0 Hz, 1H), 1.70 (s, 3H), 1.66 (d,J =
1.0 Hz, 310), 1.65 (s, 3H), 1.61 (dd, J=13.0
and 10.0 Hz, 1H), 1.60 (s, 3H), 1.59 (5, 3H),
1,37 (s, 310), 1.28 (s, 3H), 1.01 (s, 3H)

3C NMR (CDCly) (8 ppm) 201.96, 179.09, 163.32, 162.86, 156.27, 149.53,

(125 MHz) 135.27, 134.02, 132.35, 132.31, 122.36, 117.54,

113.69, 111.62, 108.18, 100.95, 88.68, 84.81,
83.53, 53.95, 49.71, 40.96, 30.24, 30.07, 29.01,
28.82, 27.16, 26.90, 25.66, 25.54, 22.16, 18.07,
16.69

DEPT (135°) (CDCls) CH 149.53,134.02, 122.36, 117.54,49.71

CH, 113.69,30.24,28.82,22.16

CH; 53.95,30.07,29.01, 27.16, 26.90, 25.66, 25.54,
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18.07, 16.69

EIMS (m/z) (% rel. int.) 534 (100), 465 (45), 437 (38), 247 (46),

203 (12), 149 (40), 69 (44)

Band P2-2 It was obtained as a vellow gum (0.0070 g). The
chromatogram on normal phase TLC (5% EtOAc/Petrol, 12 times) showed two
yellow spots with the R values of 0.59 and 0.53. Because it was obtained in low
quantity, it was not further investigated.

Subfraction P3 The chromatogram on normal phase TLC (10%
EtOAc/Petrol, 2 times) showed three yellow spots with the Revalues of 0.45, 0.41 and
0.30 and one UV-active spot with the Revalue of 0.12. Because it was obtained in low
quantity, it was not further investigated.

Subfraction P4 (PP2) The chromatogram on normal phase TLC (10%
EtOAc/Petrol, 2 times) showed only one spot with the same Ry value as scortechinone

A, obtained from its twigs. It melted at 152.6-154.8°C.

[a®p = +18° (c = 2.8x107 ¢/100 cm®, MeOH)
UV A it (MeOH) (loge) 362 (3.88)
IR (neat) Vem.1 3454 (O-H stretching), 2927, 2856 (C-H
stretching), 1745, 1634 (C=0 stretching)
'H NMR (CDCl3) (& ppm) 13.19 (s, 1H), 7.51 (d, J = 1.5 Hz, 1H), 5.22 (A,
(500 MHz) J =70 and 1.5 Hz, 1H), 4.41-4.36 (m, 1H),
438 (g, J=7.0 Hz, 1H), 3.63 (s, 3H), 3.27-3.17

(m, 2H), 2.69 (md, J = 14.5 Hz, 1H), 2.56 (dd, J
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= 14.5 and 10.0 Hz, 1H), 2.56 (d, J = 9.5 Hz,
1H), 2.33 (brd, J = 13.0 Hz, 1H), 1.75 (brs,
3H), 1.71 (s, 3H), 1.68 (brs, 3H), 1.65 (dd, J =
13.0 and 9.5 Hz, 1H), 1.58 (s, 3H), 1.41 (d, J =
7.0 Hz, 3H), 1.36 (brs, 3H), 1.29 (s, 3H), 1.16

(s, 3H), 1.06 (s, 3H)

Subfraction P5 The chromatogram on normal phase TLC (10%
EtOAc/Petrol, 2 times) showed two yellow spots with the Revalues of 0.25 and 0,23,
Further purification was performed by precoated TLC, using 8% EtOAc/Petrol as a
mobile phase (36 times), to afford two bands.

Band P5-1 (PP3) It was obtained as a yellow solid (0.0071 g), melting at
176.8-177.9 °C. The chromatogram on normal phase TLC (8% EtOAc/Petrol, 7

times) showed only one yeliow spot with the Rrvalue of 0.57.

[o]Pp = +222° (c = 1.8x10” /100 em®, MeOH)

UV Amax nm (MeOH) (loge) 333 (3.94), 360 (4.01)

IR (neat) vem- 3461 (O-H stretching), 2967, 2929 (C-H
stretching), 1744, 1640 (C=0 stretching)

'H NMR (CDCh) (§ ppm) 13.03 (s, 1H), 7.52 (d, J= 1.5 Hz, 11I), 6.04 (s,

(500 MHz) 1H), 4.40 (g, J = 6.5 Hz, 1H), 4.38 (md, J =

10.5 Iz, 1H), 3.64 (s, 3H), 2.71 (nd, J = 14.5
Hz, 1H), 2.59 (d, J= 9.5 Hz, 1H), 2.58 (dd, J =

14.5 and 10.5 Hz, 1H), 2.36 (d, J= 13.0 Hz,




13C NMR (CDCL) (8 ppm)

(125 MHz)
DEPT (135°) (CDCls) CII
CH,

CH,

FABMS (m/z) (%o rel. int.)
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1H), 1.72 (s, 3ID), 1.66 (dd, J=13.0 and 9.5
Hz, 1H), 1.59 (s, 3H), 1.41 (d, J=6.5 Hz, 1H),
1.38 (brs, 3H), 1.30 (s, 3H), 1.17 (s, 3H), 1.09
(brs, 3H)

202.07, 178.25, 168.68, 166.22, 155.82, 135.69,
13437, 132.02, 117.31, 113.68, 101,42, 92.75,
91,05, 89.54, 84.92, 84.23, 83.29, 53.99, 49.93,
43.16, 30.80, 30.79, 29.01, 28.99, 25.55, 23.87,
21.04, 16.90, 13.48

134.37, 117.31, 92.75, 91.05, 49.93

30.80, 28.99

53.99, 30,79, 29.01, 25.55, 23.87, 21.04, 16.90,
13.48

495 (60), 467 (100), 399 (19), 223 (17), 195

1), 127 (29), 113 (71), 97 (>100), 85 (>100)

Band P5-2 (PP4) It was obtained as a yellow solid (0.0117 g), melting at

188.9-190.0 °C. The chromatogram on normal phase TLC (8% EtOAc/Petrol, 7

times) showed only one yellow spot with the Revalue of 0.54. -

[a]®p = -240° (c = 2.5x107 g/100 cm’, MeOH)

UV Amax tm (MeOH) (loge)

IR (neat) Vim-1

333 (3.93), 361 (4.02)
3461 (O-H stretching), 2983, 2930 (C-H

stretching), 1742, 1635 (C=0 stretching)




"H NMR (CDCl3) (& ppm)

(500 MIz)

13C NMR (CDCl3) (§ ppm)

(125 MHz)

DEPT (135%) (CDCJs)

FABMS (m/z) (% rel. int.)

CH
CH;

CH;
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13.09 (s, 1H), 7.52 (d, J = 1.0 Hz, 1H), 6.03 (s,
1H), 4.55 (g, J = 6.5 Hz, 1H), 4.36 (nd, J =
11.0 Hz, 1H), 3.64 (s, 3H), 2.68 (nd, J = 14.5
Hz, 1H), 2.61 (d, J = 9.5 Hz, 1H), 2.55 (dd, J =
14.5 and 11.0 Hz, 1H), 2.36 (dd, J=13.0, 1.0
Hz, 1H), 1.72 (s, 3H), 1.67 (dd, J=13.0 and
9.5 Hz, 1H), 1.49 (5, 3H), 1.42 (s, 3H), 1.38
(brs, 3H), 1.30 (d, J = 6.5 Hz, 3H), 1.29 (s,

3H), 1.07 (brs, 3H)

202,07, 178.12, 168.47, 166.37, 156.34, 135.56,
134.36, 132.07, 117.32, 112.58, 101.39, 92.80,
91.69, 89.60, 84.91, 84.42, 83.22, 53.95, 49.99,
4339, 30.99, 30.69, 29.01, 28.98, 28.16, 25.52,
20.04, 16.76, 16.30

134.36, 117.32, 92.80, 91.69, 49.99

30.69, 28.98

53.95, 30.99, 29.01, 28.16, 25.52, 20.04, 16.76,
16.30

495 (70), 467 (100), 399 (29), 247 (23), 223
(38), 209 (26), 195 (45), 179 (36), 169 (57),
155 (74), 141 (76), 127 (>100), 113 (>100), 97

(>100), 85 (>100)
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Subfraction P6 The chromatogram on normal phase TLC (20%
EtOAc/Petrol, 2 times) showed many spots without any major spots. Because it was
obtained in low quantity, it was not further investigated.

Fraction T3 The chromatogram on normal phase TLC (20% EtOAc/Petrol, 2
times) showed many spots without any major spots. Because it was obtained in low
quantity, it was not further investigated.

Fraction T4 The chromatogram on normal phase TLC (30% EtOAc/Petrol, 2
times) showed three UV-active spots with the R values of 0.67, 0.58 and 0.46 and
two yellow spots with the R¢ values of 0.53 and 0.37. It was further separated by
column chromatography on silica gel. Elution was conducted initially with pure
chloroform and gradually increased the polarity until pure methanol. Fractions with
the similar chromatogram were combined and evaporated under reduced pressure to

dryness to afford four subfractions, as shown in Table 5.

Table 5 Subfractions obtained from fraction T4 by column chromatography on silica

gel
fraction Weight (g) Physical appearance
T4-1 0.0063 Yellow gum
T4-2 0.1112 Yellow gum
T4-3 0.0270 Yellow gum
T4-4 0.9219 Yellow solid with yellow gum
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Subfraction T4-1 The chromatogram on normal phase TLC (15%
EtOAc/Petrol, 3 times) showed many spots. Because it was obtained in low quantity,
it was not further investigated.

Subfraction T4-2 The chromatogram on normal phase TLC (15%
EtOAc/Petrol, 3 times) showed four UV-active spots with the R values of (.49, 0.40,
0.33 and 0..11 and three yellow spots with the Re values of 0.27, 0.22 and 0.04. It was
further separated by column chromatography on silica gel. Elution was conducted
initially with 15% EtOAc/Petrol and gradually increased the polarity until pure
methanol. Fractions with the similar chromatogram were combined and evaporated

under reduced pressure to dryness to afford five subfractions, as shown in Table 6.

Table 6 Subfractions obtained from subfraction T4-2 by column chromatography on

silica gel
fraction Weight (g) Physical appearance
T4-2-1 0.0128 Yellow gum
T4-2-2 0.0192 Yellow gum
T4-2-3 0.0079 Yellow gum
T4-2-4 0.0727 Yellow gum
T4-2-5 0.0078 Yellow gum

Subfraction T4-2-1 The chromatogram on normal phase TLC (20%

EtOAc/Petrol, 2 times) showed three UV-active spots with the Ry values of 0.62, 0.55
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and 0.18 and four yellow spots with the Rr values of 0.48, 0.46, 0.40 and 0.36.
Because it was obtained in low quantity, it was not further investigated.

Subfraction T4-2-2 The chromatogram on normal phase TLC (20%
EtOAc/Petrol, 2 times) showed one UV-active spot with the R¢ value of 0.46 and two
yellow spots with the R¢ values of 0.40 and 0.36. It was further separated by precoated
TLC, using 10% EtOAc/Petrol as a mobile phase (21 times), to afford two bands.

Band T4-2-2-1 It was obtained as a yellow gum (0.0053 g). The
chromatogram on normal phase TLC (10% EtOAc/Petrol, 10 times) showed one
major yellow spot with the Ry value of 0.57. Further purification was performed on
precoated TLC, using 8% EtOAc/Petrol as a mobile phase (22 times), to give a yellow
gum (0.0016 g). The chromatogram on normal phase TLC (10% EtOAc/Petrol, 10
times) showed only one yellow spot with the Ryvalue of 0.57. It became a dark yellow
spot after dipping the TLC plate in ASA reagent and subsequently heating. Because it
was obtained in low quantity, it was not further investigated.

Band T4-2-2-2 It was obtained as a yellow gum (0.0062 g). The
chromatogram on normal phase TLC (10% EtOAc/Petrol, 10 times) showed one
major yellow spot with the R¢ value of 0.52. Further purification was performed on
precoated TLC, using 8% EtOAc/Petrol as a mobile phase (22 times), to give PPS as
a yellow gum (0.0039 g). The chromatogram on normal phase TLC (10%
EtOAc/Petrol, 10 times) showed only one yellow spot with the Ry value of 0.52. It
became a dark yellow spot after dipping the TLC plate in ASA reagent and

subsequently heating,.
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[]¥p = -95° (¢ = 2.1x107 /100 em®, MeOH)

UV Amax nm (MeOH) (loge)

IR (neat) Vem-1

"H NMR (CDCL) (8 ppm)

(500 MHz)

B¢ NMR (CDCls) (S ppm)

(125 MHz)

DEPT (135°) (CDCl3)

CH
CH»

CH;

364 (3.90)
3461 (O-H stretching), 2974, 2927, 2857 (C-H
stretching), 1742, 1718, 1634 (C=0 stretching)
13.13 (s, 1H), 7.58 (s, 1H), 6.20 (mdd, J = 10.0
and 6.0 Hz, 1H), 5.22 (mu, J=7.0 Hz, 1H),

4.55 (g, J = 6.5 Hz, 1H), 3.64 (s, 3H), 3.63 (s,
3H), 3.21 (d, J= 7.0 Hz, 2H), 2.83 (dd, J =

15.5 and 6.0 Hz, 1H), 2.61 (d, /= 9.5 Hz, 1H),
2.56 (dd, J=15.5 and 10.0 Hz, 1H), 2.35 (d,J
=13.0 Hz, 1H), 1.75 (s, 3H), 1.73 (s, 3H), 1.69
(s, 3H), 1.69 (dd, /= 13.0 and 9.5 Hz, 1H),

1.47 (s, 3H), 1.41 (s, 3H), 1.38 (s, 3I1), 1.30

(d, J= 6.5 Hz, 3H), 1.30 (s, 3H)

201.80, 177.64, 167.53, 166.85, 163.48, 154.00,
135.32, 133.32, 132.08, 130.22, 121.59, 112.04,
106.10, 101.36, 91.28, 89.43, 84.90, 83.64,
83.55, 53.99, 51.82, 49.85, 43.70, 30.88, 30.77,
29.13, 28.95, 28.18, 25.72, 21.40, 20.31, 17.79,
16.35, 11.79

135.32,133.32, 121.59, 91.28, 49.85
30.77,29.13,21.40

53.99, 51.82, 30.88, 28.95,28.18, 25.72,

20.31,17.79, 16.35, 11.79
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FABMS (m/z) (% rel. int.) 607 (76), 579 (44), 553 (29), 525 (25), 467

(97), 439 (22), 391 (100)

Subfraction T4-2-3 The chromatogram on normal phase TLC (20%
EtOAc/Petrol, 2 times) showed one UV-active spot with the Ry value of 0.46 and three
yellow spots with the Ry values of 0.40, 0.36 and 0.31. Because it was obtained in low
quantity, it was not further investigated.

Subfraction T4-2-4 The chromatogram on normal phase TLC (30%
EiOAc/Petrol, 2 times) showed four yellow spots with the R¢ values of 0.55, 0.52,
0.21 and 0.17 and one UV-active spot with the Ry value of 0.37. It was further
separated by precoated TLC, using 15% EtOAc/Petrol as a mobile phase (14 times),
to afford two bands.

Band T4-2-4-1 It was obtained as a yellow gum (0.0276 g). The
chromatogram on normal phase TLC (30% EtOAc/Petrol) showed four yellow spots
with the Ryvalues of 0.34, 0.32, 0.11 and 0.09. Further purification was performed on
precoated TLC, using 8% EtOAc/Petrol as a mobile phase (26 times), to give PP6 as
a yellow gum (0.0031 g). The chromatogram on normal phase TLC (30%

EtOAc/Petrol) showed only one yellow spot with the Rrvalue of 0.32.

[]p =-120° (c = 2.5x107? g/100 cm’, MeOH)
UV Apax nm (MeOH) (loge) 360 (3.96)
IR (neat) vema 3469 (O-H stretching), 2959, 2927, 2856 (C-H

stretching), 1743, 1690, 1634 (C=0 stretching)

'H NMR (CDCls) (8 ppm) 13.08 (s, 1H), 9.23 (s, 1H), 7.60 (s, 1H), 6.23




(500 MHz)

BC NMR (CDCl3) (8 ppm)

(125 MHz)

DEPT (135°) (CDCls)

FABMS (m/z) (% rel. int.)

CH
CH

CH;
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(mdd, J=8.0 and 5.5 Hz, 1H), 5.21 (1, /=65
Hz, 1H), 4.56 (g, J= 6.5 Hz, 111}, 3.63 (s, 3H),
3.20 (d, J= 6.5 Hz, 211), 2.89 (dd, J=15.5 and
5.5 Hz, 1H), 2.66 (d, J=9.5 Hz, 1H), 2.62 (dd,
J=15.5,8.0Hz, 1H),2.38 (d, /= 13.0 Hz,

1H), 1.75 (s, 3H), 1.74 (s, 3H), 1.69 (dd, J =
13.0 and 9.5 Hz, 1H), 1.69 (s, 3H), 1.45 (s, 3H),
1.42 (s, 3H), 1.36 (s, 3H), 1.31 (s, 3H), 1.30 (d,
J=16.5Hz, 3H)

202.05, 194.45, 177.43, 167.28, 163.63, 154.06,
145.53, 140.86, 135,90, 132.37, 132,12, 121.42,
112.17, 106.37, 101.30, 91.41, 89.57, 84.92,
84.03, 83.15, 54.00, 49.82, 43.73, 30.96, 30.64,
29.38, 28.93, 28.15, 25.80, 21.44, 20.50, 17.84,
16.34, 8.75

194.45, 145.53, 135.90, 12142, 91.41, 49.82
30.64,29.38,21.44

54.00, 30.96, 28.93, 28.15, 25.80, 20.50,

17.84, 16.34,8.75

577 (13), 549 (38), 437 (35), 391 (52), 381

(82), 367 (23), 351 (29), 339 (49), 323 (206),
309 (22), 297 (23), 279 (>100), 259 (100), 245

(42), 233 (>100), 217 (88), 203 (83), 191
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(>100), 167 (>100), 149 (>100), 123 (>100),

111 (>100), 97 (>100), 83 (>100)

Band T4-2-4-2 It was obtained as a yellow gum (0.0017 g). The
chromatogram on normal phase TLC (30% EtOAc/Petrol) showed one yellow spot
with the Ry value of 0.11. Because it was obtained in low quantity, it was not further
investigated.

Subfraction T4-2-5 The chromatogram on normal phase TLC (70%
EtOAc/Petrol, 3 times) showed no definite spot. Thus, it was not further investigated.

Subfraction T4-3 The chromatogram on normal phase TLC (20%
EtOAc/Petrol, 3 times) showed many spots without any major spots. Because it was
obtained in low quantity, it was not further investigated.

Subfraction T4-4 The chromatogram on normal phase TLC (40%
EtOAc/Petrol) showed one major spot with the Ry value of 0.36 and two minor UV-
active spots with the Ry values of 0.53 and 0.45. Its was shown by TLC comparison
with PP7 that the major spot was PP7, obtained from fraction T6.

Fraction T5 The chromatogram on normal phase TLC (30% EtOAc/Petrol, 2
times) showed one major yellow spot with the same Ry value as PP7 (R¢ 0.37),
obtained from fraction T6.

Fraction T6 Upon standing at room temperature, a yellow solid (0.1715 g)
(PP7) precipitated. It melting at 161.8-163.2°C. Its chromatogram on normal phase
TLC (40% EtOAc/Petrol) showed only one yellow spot with the same Ry value as
scortechinone B, obtained from its twigs. The filtrate became a yellow gum (0.0492 g)

after evaporation to dryness under reduced pressure. The chromatogram on normat
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phase TLC (50% EtOAc/Petrol) showed one major yellow spot with the same Ryvalue
as PP7 together with three minor UV-active spots with the Ry values of 0.56, 0.53 and

0.35.

[o]Pp = -158° (¢ = 9.5x107g/100cm’, MeOH)

UV Amax (nm) (MeOH) (loge) 366 (3.76)

IR (neat) Vem-i 3600-2500 (O-H stretching), 2925, 2851 (C-H
stretching), 1745, 1690, 1636 (C=0 stretching)

'H NMR (CDCl3) (5 ppm) 13.10 (s, 1H), 7.58 (d, J= 1.5 Hz, 1H), 5.68

(500 MHz) (ddq,J=10.0, 4.5 and 1.5 Hz, 1H), 5.21 (ht,J

=7.5and 1.5 Hz, 1H), 4.46 (¢, /= 6.5 Hz, 1H),
3.63 (5, 3H), 3.28 (brdd, J=16.0 and 10.0 Hz,
1H), 3.18 (mdd, J = 15.0 and 7.5 Hz, 1H), 3.12
(mdd,J=15.0 and 7.5 Hz, 1H), 2.85 (ddg, J =
16.0 and 4.5 and 2.0 Hz, 1), 2.60 {d, J=9.5
Hz, 1H), 2.34 (brd, J=13.0 Hz, 1H), 1.72 (s,
9H), 1.69 (dd, J=13.0 and 9.5 Hz, 1H), 1.66
(d,J=1.5 Hz, 3H), 1.38 (s, 3H), 1.37 (s, 3H),

1.29 (s, 3H), 1.22 (d, J = 6.5 Hz, 3H)

Fraction T7 The chromatogram on normal phase TLC (50% EtOAc/Petrol)
showed two UV-active spots with the R¢ values of 0.53 and 0.35 and two yellow spots
with the Ry values of 0.47 and 0.29. It was further separated on precoated TLC, using

4% MeOH/CHC]; as a mobile phase (3 times), to afford two bands.
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Band T7-1 (PP8) It was obtained as a pale yellow gum (0.0102 g). The
chromatogram on normal phase TLC (5% MeOH/CHCls) showed only one UV-active

spot with the Revalue of 0.41.

[? = +43° (c = 2.3x107 /100 cm®, MeOIT)
UV A nm (MeOH) (loge) 304 (4.22)
IR (neat) vem.1 3600-2500 (O-H stretching), 2972, 2922 (C-H
stretching), 1751, 1687, 1634 (C=0 stretching)
'H NMR (CDCl3) (5 ppm) 12,08 (s, 1H), 6.62 (¢, J = 6.8 and 1.5 Hz, 1H),
(400 MHZ) 5.25 (mt, J="1.0 Hz, 1H), 4.46 (s, 1H), 4.40 (g,
J=6.8 Hz, 1H), 3.50 (s, 3H), 3.36 (s, 3H),
3.29-3.17 (m, 2H), 3.26-3.17 (m, 2H), 3.16
(s, 1H), 2.70 (d, J = 8.8 Hz, 1H), 2.02 (d, J =
14.2 Hz, 1H), 1.98 (d, J= 1.5 Hz, 3H), 1.76 (s,
3H), 1.69 (s, 3H), 1.63 (dd, J= 14.2 and 8.8
Iz, 1H), 1.43 (s, 3H), 1.41 (5, 3H), 1.34 (d, J =
6.8 Hz, 3H), 1.20 (s, 31), 1.10 (s, 3H)
3¢ NMR (CDCls) (8 ppm) 205.70, 195.02, 172.26, 166.84, 161.59,
(100 MHz) 152.17, 139.31, 132.14, 127.36, 121.56, 113.67,
105.35, 102.40, 90.18, 87.06, 86.33, 82.35,
81.37, 75.19, 57.38, 52.38, 48.84, 45.26, 43.92,
30.49, 28.56, 27.16, 26.08, 25.76, 23.98, 22.06,
21.42,20.72,17.71, 13.82

DEPT (135°%) (CDCl3) CH 13931, 121.56,90.18, 75.19, 48.84, 45.26
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CH, 28.56,23.98,21.42
CH, 57.38, 52.38, 30.49, 27.16, 26.08, 25.76, 22.06,
20.72,17.71, 13.82
FABMS (m/z) (% rel, int.) 625 (100), 607 (33), 289 (35), 233 (47), 153

(81),7135 (o1)

Band T7-2 It was obtained as a yellow gum (0.0176 g). The
chromatogram on normal phase TLC (5% MeOH/CHCl3) showed two spots; one UV-
active spot with the same Ry value as PP8 and pale yellow spot with the Ry value of
0.35.

Fraction T8 The chromatogram on normal phase TLC (50% EtOAc/Petrol)
showed two major spots which were PP7 and PP8 together with two minor UV-active
spots with the Revalues of 0.53 and 0.10.

Fraction T9 The chromatogram on normal phase TLC (50% EtOAc/Petrol)
showed three yellow spots with the Ry values of 0.47, 0.32 and 0.25 and one UV-
active spot with the Ry value of 0.11. It was further separated by column
chromatography on silica gel. Elution was conducted initially with pure chloroform
and gradually increased the polarity until pure methanol. Fractions with the similar
chromatogram were combined and evaporated under reduced pressure to dryness to

afford nine fractions, as shown in Table 7.
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Table 7 Subfractions obtained from fraction T9 by column chromatography on silica

gel

fraction Weight (g) - Physical appearance
T9-1 0.0071 Yellow gum
T9-2 0.0049 Yellow gum
T9-3 0.0028 Yellow gum
T9-4 0.0048 Yellow gum
T9-5 0.0119 Yellow gum
T9-6 (.0976 Yellow gum
T9-7 0.1430 Orange-yellow gum
T9-8 0.0383 Orange-yellow gum
T9-9 0.0828 Orange gum

Subfraction T9-1 The chromatogram on normal phase TLC (3%

MeOH/CHCIl3) showed one major UV-active spot with the Ry value of 0.52. It was

further separated by precoated TLC, using 2% MeOH/CHCI; as a mobile phase (2

times), to afford a yellow gum (0.0017 g). The chromatogram on normal phase TLC

(2% MeOH/CHCI3) showed one UV-active spot with the Ryvalue of 0.37. Because it

was obtained in low quantity, it was not further investigated.

Subfraction T9-2 The chromatogram on normal phase TLC (3%

MeOH/CHCIl3) showed no definite spot. Thus, it was not further investigated.
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Subfraction T9-3 The chromatogram on normal phase TLC (3%
MeOH/CHCl3) showed one major yellow spot with the Re value of 0.43. Because it
was obtained in low quantity, it was not further investigated.

Subfraction T9-4 The chromatogram on normal phase TLC (3%
MeOH/CHCl;) showed no definite spot. Thus, it was not further investigated.

Subfraction T9-5 The chromatogram on normal phase TLC (3%
MeOH/CHCls) showed one major yellow spot with the same Ry value as PP7.

Subfraction T9-6 The chromatogram on normal phase TLC (3%
MeOH/CHCI3) showed two major yellow spots which were PP7 and PP8.

Subfraction T9-7 The chromatogram on normal phase TLC (3%
MeOH/CHCls) showed three major yellow spots with the Ry values of 0.40, 0.38 and
0.29. Tt was further separated by precoated TLC, using 3% MeOH/CHCl; as a mobile
phase (4 times), to afford three bands.

Band T9-7-1 It was obtained as a yellow gum (0.0024 g). The
chromatogram on normal phase TLC (5% MeOH/CHCL) showed only one yellow
spot with the same Revalue as PP7.

Band T9-7-2 (PP9) It was obtained as a yellow gum (0.0128 2). The
chromatogram on normal phase TLC (5% MeOH/CHCl3) showed only one yellow

spot with the Ry value of 0.50.

[ = -333° (¢ = 1.5x107 g/100 cm’, MeOH)
UV Amax nm (MeOH) (logé) 362 (4.06)
IR (neat) Vem-i 3500-2500 (O-H stretching), 2960, 2928, 2857

(C-H stretching), 1746, 1691, 1635 (C=0




"H NMR (CDCl3) (6 ppm)

(500 MHz)

13C NMR (CDCl) (8 ppm)

(125 MHz)

DEPT (135% (CDCls)

EIMS (m/z) (% rel. int.)

CH
CH;

CH;

45

stretching)

13.10 (s, 11D), 7.61 (d, J= 1.0 Hz, 1H), 6.41
(ddgq, J=10.0, 5.5 and 1.5 Hz, 1H), 5.22 (mt, J
= 7.0 Hz, 11), 4.54 (¢, J= 6.5 Hz, I1H), 3.63 (s,
3H), 3.20 (d, J = 7.0 Hz, 2H), 2.79 (mdd, J =
15.0 and 5.5 Hz, 1H), 2.61 (d, /= 9.5 Hz, 1H),
2.56 (dd, J=15.0 and 10.0 Hz, 1H), 2.33 (d,
J=13.0 Hz, 1H), 1.74 (s, 3H), 1.72 (s, 3H),
1.69 (dd, J=13.0 and 9.5 Hz, 1H), 1.67 (s,
3H), 1.46 (s, 3H), 1.41 (s, 3H), 1.38 (s, 3H),
1.30 (d, J= 6.5 Hz, 3H), 1.29 (s, 3H)

202.01, 177.50, 171.00, 166.86, 163.49,
154.00, 135.86, 135.40, 132.13, 132.03, 129.34,
121.52, 111.99, 106.19, 101.34, 91.28, 89.41,
84.96, 83.70, 83.30, 54.10, 49.78, 43.70, 30.92,
30.87, 29.28, 28.87, 28.15, 25.70, 21.39, 20.32,
17.77,16.33, 11 .44

135.86, 135.40, 121.52, 91.28, 49.78
30.92,29.28, 21.39

54.10, 30.87, 28.87, 28.15, 25.70, 20.32, 17.77,
16.33,11.44

592 (10}, 564 (100), 495 (21), 437 (50), 381

(51), 289 (30), 277 (32)
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Band T9-7-3 [t was obtained as a yellow gum (0.0051 g). The
chromatogram on normal phase TLC (5% MeOH/CHCI;) showed one major yellow
spot with the Ryvalue of 0.44. Further purification was performed by precoated TLC,
using 50% EtOAc/Petrol as a mobile phase (3 times), to give PP10 as a yellow gum
(0.0028 g). The chromatogram on normal phase TLC (50% EtOAc/Petrol, 2 times)

showed only one yellow spot with the Revalue of 0.27.

[a]?p = +48° (¢ = 2.1x10 ¢/100 cm’, MeOH)
UV Amax nm (MeOH) (logs) 368 (4.11)
IR (neat} Vem-1 3600-2500 (O-H stretching), 2958, 2926, 2851

(C-H stretching), 1753, 1690, 1640 (C=0

stretching)
'H NMR (CDCl3) (8 ppm) 12.69 (s, 1H), 6.77 (mmt, J=7.5 and 1.5 Hz,
(500 MHz) 1H), 6.62 (s, 1H), 5.21 (mt, J="7.5 and 1.5 Hz,

1H), 4.37 (g, J = 6.5 Hz, 1H), 3.63 (s, 311), 3.22

(d J=1.5Hz, 2H), 3.17 (dd, J=13.0 and 7.0
Hz, 1H), 2.94 (dd, J=16.5 and 13.0 Hz, 1H),
2.79 (dd, J = 15.0 and 7.5 Hz, 11I), 2.69 (dd, J
=15.0 and 7.5 Hz, 1H), 2.62 (dd, J=16.5 and
7.0 Hz, 1H), 1.76 (s, 3H), 1.75 (s, 3H), 1.69 (s,
3H), 1.67 (s, 3H), 1.45 (5, 3H), 1.42 (s, 3H),
1.41 (d, J=6.5 Hz, 3H), 1.27 (5, 3H)

13C NMR (CDCl3) (5 ppm) 197.00, 182.07, 171.31, 170.60, 167.95,

(125 MHz) 162.94, 152.92, 145.85, 137.11, 132.37, 130.32,

i
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128.55, 121.32, 112.66, 106.44, 102.83, 93.81,
90.64, 90.62, 85.12, 55.88, 52.29, 43.46, 38.27,
35.89, 31.21, 25.78, 25.43, 24.40, 21.45, 21.06,
17.74, 13.72, 12.46

DEPT (135°) (CDCly) CH 137.11, 128.55, 121.32, 90.64, 55.88

| CH, 38.27,35.89,21.45
CHs 52.29,31.21, 25.78, 25.43, 24.40, 21.06,

17.74, 13.72, 12.46

EIMS (m/z) (% rel. int.) 608 (100), 553 (36), 509 (62), 422 (69), 407
(32), 379 (68), 367 (90), 249 (21), 178 (26),

69 (40), 57 (52)

Subfraction T9-8 The chromatogram on normal phase TLC (5%
MeOH/CHCI5) showed no definite spot. Thus, it was not further investigated.

Subfraction T9-9 The chromatogram on normal phase TLC (15%
MeOH/CHCI;) showed one major yellow spot with the Revalue of 0.27. It was further
separated by flash column chromatography. Elution was conducted initially with 15%
MeOH/CHCI; and gradually increased the polarity until pure methanol. Fractions
with the similar chromatogram were combined and evaporated under reduced pressure
to dryness to afford six subfractions of which chromatograms showed many spots
without any major spots. No further investigation was performed.

Fraction T10 The chromatogram on normal phase TLC (pure EtOAc) showed
four yellow spots with the Ry values of 0.58, 0.50, 0.08 and 0.04 and two UV-active

spots with the Ry values of 0.63 and 0.43. It was further separated by column
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chromatography over reversed-phase C18 silica gel. Elution was conducted initially

with 80% MeOH/H,O and gradually decreased the polarity until pure methanol.

Fractions with the similar chromatogram were combined and evaporated under

reduced pressure to dryness to afford four subfractions, as shown in Table 8,

Table 8 Subfractions obtained from T10 by column chromatography over reversed-

phase C18 silica gel

fraction Weight (g) Physical appearance
T10-1 0.0265 Brown gum
T10-2 0.0162 Yellow gum
T10-3 (.0455 Yellow gum
T10-4 0.0289 Yellow gum

Subfraction T10-1 The chromatogram on normal phase TLC (10%

MeOH/CHC!;) showed many spots without any major spots. Thus, it was not further

investigated.

Subfraction T10-2 The chromatogram on normal phase TLC (10%

MeOI/CHCIs) showed three yellow spots with the Revalues of 0.24, 0.14 and 0.09. It

was further separated by precoated TLC, using 10% MeOH/CHCI; as a mobile phase

(6 times), to afford two bands, both as a yellow gum in 0.0019 g and 0.0042 g. Their

chromatograms on normal phase TLC (10% MeOH/CHCI;) showed at least two

components. Because they were obtained in low quantity, they were not further

investigated.
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Subfraction T10-3 The chromatogram on normal phase TLC (10%
MeOH/CHCls) showed two yellow spots with the Revalues of 0.54 and 0.09 together
with two UV-active spots with the Revalues of 0.14 and 0.03. It was further separated
by precoated TL.C, using 10% MeOH/CHCl; as a mobile phase (7 times), to afford
two bands, both as a yellow gum in 0.0037 g and 0.0103 g. Their chromatograms on
normal phase TLC (10% MeOH/CHCl;) showed one major yellow spot but, on
reversed-phase TLC (80% MeOH/H,0), it possessed at least two yellow spots.
Therefore, they were not further investigated.

Subfraction T10-4 The chromatogram on normal phase TLC (10%
MeOH/CHCIl3) showed many UV-active spots without any major spots. Thus, it was
not further investigated.

Fraction T11 The chromatogram on reversed-phase C18 TLC (50%

MeOH/H,0) showed two yellow major spots with the Ry values of 0.14 and 0.06. It
was further separated by column chromatography over reversed-phase C18 silica gel.
Elution was conducted initially with 50% MeOH/H,0 and gradually decreased the
polarity until pure methanol. Fractions with the similar chromatogram were combined
and evaporated under reduced pressure to dryness to afford four subfractions, as

shown in Table 9.
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Table 9 Subfractions obtained from T11 by column chromatography over reversed-

plr1ase C18 silica gel
fraction Weight (g) Physical appearance
Ti1-1 0.0894 Brown-yellow gum
Ti1-2 0.0435 Orange-yellow gum
T11-3 0.0604 Orange-yellow gum
T11-4 0.0382 Orange-yellow gum

Subfraction T11-1 The chromatogram on normal phase TLC (25%
MeOH/CHCL3) showed no definite spot. Thus, it was not further investigated.

Subfraction T11-2 The chromatogram on normal phase TLC (25%
MecOH/CHCl5) showed two yellow spots with the Revalues of 0.34 and 0.07 and one
UV-active spot with the R¢ value of 0.22. It was partitioned between ethyl acetate (20
mi) and 0.1M di-sodium tetraborate (45 ml) to give a yellow gum (0.0053 g) from the
organic phase. The chromatogram on normal phase TLC (25% MeOH/CHCl3)
showed many UV-active spots. Thus, it was not further investigated. The borate layer
was acidified with 10% HCI and extracted with ethyl acetate (4x30 mi) to afford an
orange-yellow gum (0.0386 g). The chromatogram on normal phase TLC (20%
MecOH/CHCls) showed two yellow spots with the Ry values of 0.29 and 0.10 together
with two UV-active spots with the Ry values of 0.24 and 0.14. Further separation by
flash column chromatography was performed. Elution was conducted initially with
15% MeOH/CHCI; and gradually increased the polarity until pure methanol.

Fractions with the similar chromatogram were combined and evaporated under




51

reduced pressure to dryness to afford two subfractions, both as a yellow gum in
0.0196 g and 0.0349 g. Attempted purification of both subfractions by repeated

chromatography was unsuccessful.

Subfraction T11-3 The chromatogram on normal phase TLC (10%
MeOH/CHC3) showed many UV-active spots without any major spots. Thus, it was

not further investigated.

Subfraction T11-4 The chromatogram on norma! phase TLC (10%
MeOH/CHCI3) showed three UV-active spots with the Ry values of 0.91, 0.88 and
0.76. It was further separated by column chromatography over reversed-phase C18
silica gel. Elution was conducted initially with 60% MeOIV/H,0 and gradually
decreased the polarity until pure methanol. Fractions with the similar chromatogram
were combined and evaporated under reduced pressure to dryness to afford two
subfractions, both as a yellow gum in 0.0079 g and 0.0114 g. Attempted purification

by repeated chromatography was unsuccessful.

2.4 Chemical investigation of the stem bark

2.4.1 Extraction

The stem bark (2,290 g) of G. scortechinii, cut into small segments, was

extracted with MeOH (5.5 L) over the period of 7 days at room temperature for three

times. After filtration, the filtrate was evaporated to dryness under reduced pressure to

give a crude methanol extract as a dark brown gum in 114.14 g,
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2.4.2 Chemical investigation of the crude methanol extract of the stem bark

The crude methanol extract was primarily tested for its solubility in various

solvents at room temperature. The results were demonstrated in Table 10.

Table 10 Solubility of the crude methanol extract in various solvents at room

{femperature
solvent solubility at room temperature

Petroleum ether + (yellow solution with brown solid)
Chloroform + (yellow solution with brown solid)

Ethyl acetate + (yellow solution with brown solid)
Methanol + - (brown solutton)

Water + (orange-yellow solution with brown solid)
10% HCl + (orange-yellow solution with brown solid)
10% NaOH + + (brown solution)

Symbol meaning: + partailly soluble, ++ well soluble

It was shown that the crude methanol extract was slightly soluble in petroleum
ether, chloroform, ethyl acetate, water and 10% aqueous HCI but it was soluble well
in methanol and 10% aqueous NaOH, indicating that it contained less to moderately

polar and acidic compounds.
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The crude methanol extract (111.14 g) was separated into two parts by
dissolving with chloroform. GSBC, the chloroform soluble part, was a brown-yellow
gum (14.92 g) while GSBM, the methanol soluble part, was a brown solid (84.46 g).
The chromatogram on normal phase TLC of GSBM showed no definite spot. Further
separation of GSBC (14.92 g) was carried out by column chromatography on silica
gel. Elution was conducted initially with pure chloroform and gradually increased the
polarity until pure methanol. Fractions with the similar chromatogram were combined
and evaporated under reduced pressure to dryness to afford nine fractions, as shown in

Table 11.

Table 11 Fractions obtained from GSBC by column chromatography on silica gel

fraction Weight (g) Physical appearance
Bl 0.8608 Pale yellow gum
B2 0.2891 Red-purple gum
B3 0.1706 Yellow gum
B4 0.9207 Yellow gum with white solid
B5 6.7742 Brown-yellow gum
B6 0.9634 Yellow gum
B7 1.3801 Yellow gum
B8 1.8434 Brown-yellow gum
B9 2.4984 Brown gum
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Fraction B1 The chromatogram on normal phase TLC (1% EtOAc/Petrol)
showed three UV-active spots with the Ry values of 0.32, 0.16 and 0.07. Many
additional spots were observed after dipping the TLC plate in ASA reagent and
subsequently heating. It was further separated by column chromatography on silica
gel. Elution was conducted initially with 0.5% EtOAc/Hexane and gradually
increased the polarity until pure ethyl acetate. Fractions with the similar
chromatogram were combined and evaporated under reduced pressure to dryness to

afford four subfractions, as shown in Table 12.

Table 12 Subfractions obtained from fraction B1 by column chromatography on

silica gel
fraction | Weight (g) Physical appearance
B1-1 0.0301 White gum
B1-2 0.3179 Pale yellow gum
B1-3 (.2269 Pale yellow gum
Bi-4 (.1330 Brown gum

Subfraction B1-1 The chromatogram on normal phase TLC (0.5%
EtOAc/Petrol) showed one oval UV-active spot with the Ry value of 0.43. Many
additional spots were observed after dipping the TLC plate in ASA reagent and
subsequently heating. Thus, it was not further investigated.

Subfraction B1-2 The chromatogram on normal phase TLC (3%

EtOAc/Petrol) showed two UV-active spots with the Ry values of 0.54 and 0.47. Both
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of them became dark blue spots and one additional purple spot with the Re value of
0.36 was observed after dipping the TLC plate in ASA reagent and subsequently
heating. Further separation was performed by column chromatography on silica gel.
Elution was conducted with 2% EtOAc/Petrol. Fractions with the similar
chromatogram were combined and evaporated under reduced pressure to dryness to

afford two subfractions, as shown in Table 13.

Table 13 Subfractions obtained from subfraction B1-2 by column chromatography -

on silica gel

fraction Weight (g) Physical appearance
B1-2-1 0.0037 White solid
B1-2-2 0.3255 Pale yellow gum

Subfraction B1-2-1 The chromatogram on normal phase TLC (3%
EtOAc/Petrol) showed two UV-active spots with the Revalues of 0.54 and 0.47. Both
of them became dark blue spots after dipping the TLC plate in ASA reagent and
subsequently heating., Because it was obtained in low quantity, it was not further
investigated.

Subfraction B1-2-2 The chromatogram on normal phase TLC (3%
EtOAc/Petrol) showed two UV-active spots with the Revalues of 0.48 and 0.47. Both
of them became dark blue spots and three additional purple spots with the Ryvalues of

0.36, 0.27 and 0.24 were observed after dipping the TLC plate in ASA reagent and
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subsequently heating. Attempted purification by column chromatography on silica gel
was unsuccessful.

Subfraction B1-3 The chromatogram on normal phase TLC (3%
EtOAc/Petrol) showed many spots without any major spots after dipping the TLC
plate in ASA reagent and subsequently heating. Therefore, it was not further
investigated.

Subfraction B1-4 The chromatogram on normal phase TLC (3%
EtOAc/Petrol) showed no definite spot. Thus, it was not further investigated.

Fraction B2 The chromatogram on normal phase TLC (10% EtOAc/Petrol)
showed many spots without any major spots. Thus, it was not further investigated.

Fraction B3 The chromatogram on normal phase TLC (10% EtOAc/Petrol)
showed three major UV-active spots with the Ry values of 0.35, 0.27 and 0.17. It was
further separated by flash column chromatography. Elution was conducted initially
with 5% EtOAc/Petro! and gradually increased the polarity until pute ethyl acetate.
Fractions with the similar chromatogram were combined and evaporated under

reduced pressure to dryness to afford four subfractions, as shown in Table 14.

Table 14 Subfractions obtained from fraction B3 by flash column chromatography

on silica gel

fraction Weight (g) Physical appearance

B3-1 0.1164 Yellow gum

B3-2 0.0306 Yellow gum
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Table 14 (Continued)
fraction Weight (g) Physical appearance
B3-3 0.0011 Yellow gum
B3-4 0.0169 Yellow gum

Subfraction B3-1 The chromatogram on normal phase TLC (3%
EtOAc/Petrol) showed many spots without any major spots. Therefore, it was not
further investigated.

Subfraction B3-2 The chromatogram on normal phase TLC (8%
EtOAc/Petrol) showed three UV-active spots with the Ry values of 0.41, 0.35 and
0.28. It was further separated by flash column chromatography. Elution was
conducted initially with 5% EtOAc/Petrol and gradually increased the polarity until
10% EtOAc/Petrol. Fractions with the similar chromatogram were combined and
evaporated under reduced pressure to dryness to afford three subfractions, as shown in

Table 15.

Table 15 Subfractions obtained from subfraction B3-2 by flash column

chromatography on silica gel

fraction Weight (g) Physical appearance
B3-2-1 0.0027 Yellow gum
B3-2-2 0.0020 Yellow gum
B3-2-3 0.0262 Yellow gum
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Subfraction B3-2-1 The chromatogram on normal phase TLC (8%
EtOAc/Petrol) showed two UV-active spots with the Ry values of 0.32 and 0.25.
Because it was obtained in low quantity, it was not further investigated.

Subfraction B3-2-2 The chromatogram on normal phase TLC (8%
EtOAc/Petrol) showed two UV-active spots with the Ry values of 0.25 and 0.18.
Becausc it was obtained in low quantity, it was not further investigated.

Subfraction B3-2-3 The chromatogram on normal phase TLC (8%
EtOAc/Petrol) showed one UV-active spot with the Ry values of 0.18 and one
additional dark blue spot was observed after dipping the TLC plate in ASA reagent
and subsequently heating. Further purification was performed on precoated TLC,
using 8% EtOAc/Petrol as a mobile phase (18 times), to afford two bands.

Band B3-2-3-1 It was obtained as a yellow solid (0.0157 g). The
chromatogram on normal phase TLC (10% EtOAc/Petrol, 2 times) showed two UV-
active spots with the Ry values of 0.26 and 0.22. Further purification was performed
on precoated TLC, using 10% EtOac/Petrol as a mobile phase (10 times), to give
PP11 as a yellow solid (0.0118 g), melting at 173.2-174.9°C. The chromatogram on
normal phase TLC (10% EtOAc/Petrol, 2 times) showed only one UV-active spot

with the Revalue of 0.22.

[o]”’p = +83° (¢ = 1.2x107 g/100 cm®, MeOH)

UV Apax nm (MeOH) (logé) 273 (4.72), 331 (4.20), 373 (3.97)

IR (neat) ven.1 3380 (O-H stretching), 2967, 2923, 2856 (C-H
stretching), 1639 (C=0 stretching)

'H NMR (CDCls) (6 ppm) 13.28 (s, LH), 7.49 (s, 1H), 6.45 (d, J = 10.5




(500 MIlz)

13C NMR (CDCl3) (8 ppm)

(125 MHz)

DEPT (135°) (CDCl3) CH
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Hz, 1H), 6.24 (s, 111), 5.73 (d, /= 10.5 Hz,
{H), 5.49 (brs, 1H), 4.55 (g, J = 7.0 Hz, 1H),
1.60 (s, 3H), 1.53 (s, 3H), 1.52 (s, 3H), 1.42 (d,
J=17.0 Hz, 3H), 1.32 (s, 3H)

180.10, 165.89, 164.16, 152.61, 144.82, 144.53,
132.30, 130.77, 121.44, 117.52, 114.75, 113.45,
113.00, 103.36, 93.81, 90.88, 78.87, 43.75,
28.46, 25.55, 21.25, 14.28

130.77, 121.44, 113.45,93.81, 90.88

CH; 28.46,25.55,21.25, 14.28

Band B3-2-3-2 (PP12) It was obtained as a white solid (0.0037 g),

melting at 154.3-156.1°C. The chromatogram on normal phase TLC (10%

EtQAc/Petrol, 2 times) showed only one dark blue spot with the same Ry value as

stigmasterol after dipping the TLC plate in ASA reagent and subsequently heating.

[]Pp=-31° (¢ = 1.6x107 /100 cm?, MeOH)

IR (KBI) Vem-1

"H NMR (CDCl3) (8 ppm)

(500 MHz)

3341 (O-H stretching), 2958, 2936, 2868 (C-H
stretching)

5.36-5.33 (m, 1H), 5.15 (dd, J=15.0 and 9.0
Hz, 1H), 5.01 (dd, J=15.0 and 9.0 Hz, 1H),
3.56-3.48 (m, 1H), 2.29 (ddd, J=13.0, 5.0 and
2.0 Hz, 1H), 2.24 (¢d, J=11.5 and 2.0 Hz, 1H),

2.09-1.93 (m, 3H), 1.88-1.80 (m, 2H), 1.75-1.66
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(m, 1H), 1.60-1.39 (m, 11H), 1.30-1.04 (m, SH),
1.05 (d, J = 6.5 Hz, 3H), 1.01 (s, 3H), 0.97-0.90
(m, 2H), 0.84 (d, /= 6.5 Hz, 3H), 0.80 (1, J=
7.5 Hz, 3H), 0.79 (d, J= 6.5 Hz, 3H), 0.69 (s,

3H)

Subfraction B3-3 The chromatogram on normal phase TLC (15%
EtOAc/Petrol) showed three UV-active spots with the R¢ values of 0.41, 0.36 and
0.32. Because it was obtained in low quantity, it was not further investigated.

Subfraction B3-4 The chromatogram on normal phase TLC (15%
EtOAc/Petrol) showed three major UV-active spots with the Ry values of 0.29, (.23
and 0.21. Further purification was performed on precoated TLC, using 10%
EtOAc/Petrol as a mobile phase (17 times), to afford four bands, as a yellow gum in
0.0013 g, 0.0031 g, 0.0019 and 0.0018 g. Their chromatograms on normal phase TLC
(15% EtOAc/Petrol) showed at least two components. Because they were obtained in
low quantity, they were not further investigated.

Fraction B4 Upon standing at room temperature, a white solid (0.1032 g)
precipitated. Its chromatogram on normal phase TLC (10% EtOAc/Petrol) showed
only one dark blue spot with the same Ry value as PP12 after dipping the TLC plate in
ASA reagent and subsequently heating. The filtrate became a yellow gum (0.8175 g)
after evaporation to dryness under reduced pressure. The chromatograzﬁ on normal
phase TLC (20% EtOAc/Petrol) showed five UV-active spots with the Ry values of
0.52, 0.46, 0.37, 0.23 and 0.21 and one oval yellow spot with the R¢ value of 0.10

together with a dark blue spot with the same Ry value as PP12 after dipping the TLC
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plate in ASA reagent and subsequently heating. Further separation was performed by
column chromatography on silica gel. Elution was conducted initially with 15%
EtOAc/Petrol and gradually increased the polarity until 20% EtOAc/Petrol. Fractions
with the similar chromatogram were combined and evaporated under reduced pressure

to dryness to afford nine subfractions, as shown in Table 16.

Table 16 Subfractions obtained from fraction B4 by column chromatography on

silica gel

fraction Weight (g) Physical appearance
B4-1 0.0249 _ Yellow gum
B4-2 0.0263 Yellow gum
B4-3 0.0860 Orange-yellow gum
B4-4 0.0828 Yellow gum with white solid
B4-5 0.1428 Yellow gum with white solid
B4-6 0.1842 Yellow gum
B4-7 0.0728 Yellow gum
B4-8 0.0717 Brown-yellow gum
B4-9 0.0976 Brown-yellow gum

Subfraction B4-1 The chromatogram on normal phase TLC (8%
EtOAc/Petrol, 2 times) showed no definite spot. Thus, it was not further investigated.
Subfraction B4-2 The chromatogram on normal phase TLC (8%

EtOAc/Petrol, 2 times) showed one major UV-active spot with the Ry value of 0.29.
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Further purification was performed on precoated TLC, using 5% EtOAc/Petrol as a
mobile phase (8 times), to give a pale yellow gum (0.0029 g). The chromatogram on
normal phase TLC (5% EtOAc/Petrol) showed only one UV-active spot with the Re
value of 0.15. However, its 'H NMR spectrum indicated that it was not pure. Because
it was obtained in low quantity, it was not further investigated.

Subfraction Bd4-3 The chromatogram on normal phase TLC (8%
EtOAc/Petrol, 2 times) showed two yellow spots with the R values of 0.28 and 0.12
and one UV-active spot with the Ry value of 0.25. It was further separated by flash
column chromatography. Elution was conducted initially with 5% EtOAc/Petrol and
gradually increased the polarity until 50% EtOAc/Petrol. Fractions with the similar
chromatogram were combined and evaporated under reduced pressure to dryness to

afford three subfractions, as shown in Table 17,

Table 17 Subfractions obtained from subfraction B4-3 by flash column

chromatography on silica gel

fraction Weight (g) Physical appearance
B4-3-1 0.0012 Pale yellow gum
B4-3-2 0.0612 Yellow gum
B4-3.-3 0.0160 Yellow gum

Subfraction B4-3-1 The chromatogram on normal phase TLC (8%

EtOAc/Petrol, 3 times) showed no definite spot. Thus, it was not further investigated.
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Subfraction B4-3-2 The chromatogram on normal phase TLC (8%
EtOAc/Petrol, 3 times) showed one UV-active spot with the Ry value of 0.48 and two
yellow spots with the Ry values of 0.46 and 0.42. It was further separated by f{lash
column chromatography. Elution was conducted initially with 2% EtOAc/Petrol and
gradually increased the polarity until 50% EtOAc/Petrol. Fractions with the similar
chromatogram were combined and evaporated under reduced pressure to dryness to

afford five subfractions, as shown in Table 18.

Table 18 Subfractions obtained from subfraction B4-3-2 by flash column

chromatography on silica gel

fraction Weight (g) Physical appearance
B4-3-2-1 0.0274 Yellow gum
B4-3-2-2 0.0047 Yellow gum
B4-3-2-3 0.0050 Yellow gum
B4-3-2-4 0.0122 Yellow gum
B4-3-2-5 0.0159 Yellow gum

Subfraction B4-3-2-1 The chromatogram on normal phase TLC (8%
EtOAc/Petrol, 4 times) showed two UV-active spots with the Rr values of 0.54 and
0.47 and three yellow spots with the R values of 0.42, 0.40 and 0.36. Further
purification was performed on precoated TLC, using 8% EtOAc/Petrol as a mobile

phase (11 times), to afford four bands.
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Band B4-3-2-1-1 It was obtained as a pale yellow gum (0.0042
g). The chromatogram on normal phase TLC (8% EtOAc/Petrol, 3 times) showed one
UV-active spot with the Ry value of 0.48. However, its '"H NMR spectrum indicated
that it was not pure.

Band B4-3-2-1-2 It was obtained as a pale yellow gum (0.0014
2). The chromatogram on normal phase TLC (8% EtOAc/Petrol, 3 times) showed one
UV-active spot with the Ry value of (.37, Because it was obtained in low quantity, it
was not further investigated.

Band B4-3-2-1-3 It was obtained as a yellow gum (0.0106 g).
The chromatogram on normal phase TLC (8% EtOAc/Petrol, 3 times) showed one
yellow spot with the same R value as PP1, obtained from the latex.

Band B4-3-2-1-4 It was obtained as a pale yellow gum (0.0043
g). The chromatogram on normal phase TLC (8% EtOAc/-Petrol, 3 times) showed one
yellow spot with the Ry value of 0.34, However, its '"H NMR spectrum indicated that it
was not pure.

Subfraction B4-3-2-2 The chromatogram on normal phase TLC (8%
EtOAc/Petrol, 4 times) showed one major yellow spot with the same Ry value as PP,
obtained from the latex, and under this spot, there was one minor yellow spot with the
Ry value of 0.40. Because it was obtained in low quantity, it was not further
investigated.
Subfraction B4-3-2-3 The chromatogram on normal phase TLC (8%

EtOAc/Petrol, 4 times) showed two yellow spots with the Ry values of 0.40 and 0.32
and one UV-active spot with the Ry value of 0.36. Further purification was performed

on precoated TLC, using 8% EtOAc/Petrol as a mobile phase (11 times), to afford two
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bands, both as a yellow gum in 0.0018 g and 0.0010 g. Each chromatogram on normal
phase TLC (8% EtOAc/Petrol, 3 times) showed only one yellow spot with the R¢
values of 0.33 and 0.30, respectively. Because they were obtained in low quantity,

they were not further investigated.

Subfraction B4-3-2-4 The chromatogram on normal phase TLC (8%

EtOAc/Petrol, 4 times) showed three yellow spots with the R values of 0.40, 0.32 and

0.30 and one UV-active spot with the Ry value of 0.36. Further purification was

performed on precoated TLC, using 8% EtOAc/Petrol as a mobile phase (11 times), to
afford three bands

Band B4-3-2-4-1 It was obtained as a pale yellow gum (0.0011

g). The chromatogram on normal phase TLC (8% EtOAc/Petrol, 3 times) showed one

UV-active spot with the Ry value of 0.32. Because it was obtained in low quantity, it

was not further investigated.

Band B4-3-2-4-2 It was obtained as a yellow gum (0.0016 g).
The chromatogram on normal phase TLC (8% EtOAc/Petrol, 3 times) showed one
UV-active spot with the Ry value of 0.32 and one yellow spot with the Ry value of
0.29. Because it was obtained in low quantity, it was not further investigated.

Band B4-3-2-4-3 It was obtained as a yellow gum (0.0044 g).
The chromatogram on normal phase TLC (8% EtOAc/Petrol, 3 times) showed one
yellow spot with the Re value of 0.27. However, its 'H NMR spectrum indicated that it

was not pure,

Subfraction B4-3-2-5 The chromatogram on normal phase TLC (8%

EtOAc/Petrol, 4 times) showed no definite spot. Thus, it was not further investigated.
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Subfraction B4-3-3 The chromatogram on normal phase TLC (8%
EtOAc/Petrol, 3 times) showed many spots without any major spots. Thus, it was not
further investigated.

Subfraction B4-4 The chromatogram on normal phase TLC (10%
EtOAc/Petrol, 2 times) showed one UV-active spot with the Ry value of 0.50 and two
yellow spots with the Ry values of 0.46 and 0.42. it was further separated by flash
column chromatography. Elution was conducted initially with 2% EtOAc/Petrol and
gradually increased the polarity until 50% EtOAc/Petrol. Fractions with the similar
chromatogram were combined and evaporated under reduced pressure to dryness to

afford five subfractions, as shown in Table 19.

Table 19 Subfractions obtained from subfraction B4-4 by flash column

chromatography on silica gel

fraction Weight (g) Physical appearance
B4-4-1 0.0061 Yellow gum
B4-4-2 0.0076 Yellow gum
B4-4-3 0.0046 Yellow gum
B4-4-4 0.0110 Yellow gum
B4-4-5 0.0522 Yellow gum

Subfraction B4-4-1 The chromatogram on normal phase TLC (8%
EtOAc/Petrol, 5 times) showed many spots without any major spots. Thus, it was not

further investigated.
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Subfraction B4-4-2 The chromatogram on normal phase TLC (8%
EtOAc/Petrol, 5 times) showed one major UV-active spot with the Ry value of 0.36
and one minor yellow spot with the R¢ value of 0.34. Further purification was
performed on precoated TLC, using 8% EtOAc/Petrol as a mobile phase (3 times), to

afford two bands.

Band B4-4-2-1 It was obtained as a yellow solid (0.0026 g). The
chromatogram on normal phase TLC (8% EtOAc/Petrol, 5 times) showed one UV-
active spot with the same Ry value as PP11.

Band B4-4-2-2 It was obtained as a yellow solid (0.0010 g). The
chromatogram on normal phase TLC (8% EtOAc/Petrol, 5 times) showed one yellow
spot with the same Ry value as PP2.

Subfraction B4-4-3 The chromatogram on normal phase TLC (8%
EtOAc/Petrol, 5 times) showed one UV-active spot with the Ry value of 0.36 and two
yellow spots with the Ry values of 0.34 and 0.32. Because it was obtained in low
quantity, it was not further investigated.

Subfraction B4-4-4 The chromatogram on normal phase TLC (8%
EtOAc/Petrol, 5 times) showed two yellow spots with the Ry values of 0.34 and 0.32.
Further purification was performed on precoated TLC, using 8% EtOAc/Petrol as a
mobile phase (22vtimeS), to afford two bands.

Band B4-4-4-1 It was obtained as a yellow solid (0.0022 g). The
chromatogram on normal phase TLC (8% EtOAc/Petrol, 5 times) showed one yellow

spot with the same Ry value as PP2.




68

Band B4-4-4-2 (PP13) It was obtained as a yellow gum (0.0024 g).

The chromatogram on normal phase TLC (8% EtOAc/Petrol, 5 times) showed one

yellow spot with the Ry value of 0.32.

[0Pn = -176 ° (¢ = 1.7x10°%g/100 cm’, MeOH)

UV Apax nm (MeOH) (loge)

IR (I‘leat) Vem-1

'H NMR (CDCl3) (8 ppm)

(500 MHz)

363 (4.03)

3461 (O-H stretching), 2959, 2926, 2849 (C-H
stretching), 1745, 1634 (C=0 stretching)

13.24 (s, 1H), 7.51 (d, /= 1.0 Hz, 1H), 5.22
(mt, J=7.0 Hz, 1H), 4.54 (¢, J = 7.0 Hz, 111),
4.36 (md, J=10.5 Hz, 1H), 3.64 (s, 3H), 3.22
(d, J=17.0 Hz, 2H), 2.67 (nd, J=14.5 Hz, 1H),
2.58 (d, J=9.5 Hz, 111), 2.54 (dd, J = 14.5 and
10.5 Hz, 1H), 2.34 (d, /= 13.0 Hz, 1H), 1.75
(s, 3H), 1.72 (s, 3H), 1.68 (brs, 3H), 1.66 (dd,
J=13.0 and 9.5 Hz, 1H), 1.49 (s, 3H), 141 (s,
3H), 1.36 (brs, 3H), 1.30 (d, /= 7.0 Hz, 3H),

1.29 (s, 3H), 1.02 (s, 3H)

Subfraction B4-4-5 The chromatogram on normal phase TLC (8%

FtOAc/Petrol, 5 times) showed no definite spot. Thus, it was not further investigated.

Subfraction B4-5 The chromatogram on normal phase TLC (10%

EtOAc/Petrol, 2 times) showed one UV-active spot with the Ry value of 0.50 and three

yellow spots with the Ry values of 0.46, 0.42 and 0.35. One additional dark blue spot
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with the same Ry value as PP12 was observed after dipping the TLC plate in ASA
reagent and subsequently heating. Further separation was performed by flash column
chromatography. Elution was conducted initially with 2% EtOAc/Petrol and gradually
increased the polarity until 20% EtOAc/Petrol. Fractions with the similar
chromatogram were combined and evaporated under reduced pressure to dryness to

afford four subfractions, as shown in Table 20.

Table 20 Subfractions obtained from subfraction B4-5 by flash column

chromatography on silica gel

fraction Weight (g) Physical appearance
B4-5-1 0.0041 Yellow gum

B4-5-2 0.0460 Yellow gum with white solid
B4-5-3 0.0077 Yellow gum

B4-5-4 0.0500 Yellow gum

Subfraction B4-5-1 The chromatogram on normal phase TLC (8%
EtOAc/Petrol) showed many UV-active spots without any major spots. Thus, it was
not further investigated. |

Subfraction B4-5-2 The chromatogram on normal phase TLC (8%
EtOAc/Petrol) showed one UV-active spot with the Ry value of 0.20 and one yellow
spot with the R¢ value of 0.16. One additional dark-blue spot with the Ryvalue of 0.17
(PP12), the major spot, was observed after dipping the TLC plate in ASA reagent and

subsequently heating.
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Subfraction B4-5-3 The chromatogram on normal phase TLC (8%
EtOAc/Petrol) showed one UV-active spot with the R¢ value of 0.20 and two yellow
spots with the R¢ values of 0.16 and 0.14. Further purification was performed on
precoated TLC, using 8% EtOAc/Petrol as a mobile phase (7 times), to afford three
bands.

Band B4-5-3-1 It was obtained as a pale yellow gum (0.0001 g). The
chromatogram on normal phase TLC (8% EtOAc/Petrol, 5 times) showed one UV-
active spot with the Ry value of 0.35. Because it was obtained in low quantity, it was
not further investigated.

Band B4-5-3-2 It was obtained as a yellow gum (0.0006 g). The
chromatogram on normal phase TLC (8% EtOAc/Petrol, 5 times) showed one yellow
spot with the Ry value of 0.33. Because it was obtained in low quantity, it was not
further investigated.

Band B4-5-3-3 It was obtained as a yellow solid (0.0025 g). The
chromatogram on normal phase TLC (8% EtOAc/Petrol, 5 times) showed one yellow
spot with the same Ry value as PP3.

Subfraction B4-5-4 The chromatogram on normal phase TLC (8%
EtOAc/Petrol) showed many UV-active spots without any major spots. Thus, it was
not further investigated.

Subfraction B4-6 The chromatogram on normal phase TLC (10%
EtOAc/Petrol, 2 times) showed one yellow spot with the Ry value of 0.35 and one
UV-active spot with the Ry value of 0.27. One additional dark blue spot with the same
R; value as PP12 was observed after dipping the TLC plate in ASA reagent and

subsequently heating. Further separation was performed by flash column
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chromatography. Elution was conducted initially with 2% EtOAc/Petrol and gradually
increased the polarity until 20% EtOAc/Petrol. Fractions with the similar
chromatogram werc combined and evaporated under reduced pressure to dryness to

afford five subfractions, as shown in Table 21.

Table 21 Subfractions obtained from subfraction B4-6 by flash column

chromatography on silica gel

fraction Weight (g) Physical appearance
B4-6-1 0.0586 Yellow gum
B4-6-2 0.0191 Yellow gum
B4-6-3 0.0026 Yellow gum
B4-6-4 0.0237 Yellow gum
B4-6-5 0.0668 Yellow gum

Subfraction B4-6-1 The chromatogram on normal phase TLC (10%
EtOAc/Petrol, 3 times) showed two yellow spots with the Ry values of 0.33 and 0.31
and one UV-active spot with the Ry value of 0.32. One additional dark blue spot with
the Ryvalue of 0.17 (PP12), the major spot, was observed after dipping the TLC plate
in ASA reagent and subsequently heating.

Subfraction B4-6-2 The chromatogram on normal phase TLC (10%
EtOAc/Petrol, 3 times) showed one major yellow spot with the Ry value of 0.31 and
two yellow minor spots with the R¢ values of 0.33 and 0.29. The major spot had the

same Ry value as PP3.
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Subfraction B4-6-3 The chromatogram on normal phase TLC (10%
EtOAc/Petrol, 3 times) showed two pale spots; one yellow spot with the Ry value of
0.29 and one UV-active spot with the Ry value of 0.27. Because it was obtained in low
quantity, it was not further investigated.

Subfraction B4-6-4 The chromatogram on normal phase TLC (10%
EtOAc/Petrol, 3 times) showed one major UV-active spot with the Ry value of 0.27.
Further purification was performed on precoated TLC, using 5% MeOH/CHCl; as a
mobile phase, to afford a white solid (0.0051 g). The chromatogram on normal phase
TLC (10% EtOAc/Petrol) showed two UV-active spots with the Re values of 0.13 and
0.07. Attempted purification by repeated chromatography was unsuccessful.

Subfraction B4-6-5 The chromatogram on normal phase TLC (10%
EtOAc/Petrol, 3 times) showed no definite spot. Thus, it was not further investigated.

Subfraction B4-7 The chromatogram on normal phase TLC (15%
EtOAc/Petrol) showed three UV-active spots with the Ry values of 0.30, 0.27 and
0.22. Further separation was performed by column chromatography. Elution was
conducted initially with 10% EtOAc/Petrol and gradually increased the polarity until
50% EtOAc/Petrol. Fractions with the similar éhrornatogram were combined and
evaporated under reduced pressure to dryness to afford two subfractions, as shown in

Table 22. N




on silica gel

Table 22 Subfractions obtained from subfraction B4-7 by column chromatography

fraction Weight (g) Physical appearance
B4-7-1 0.0248 Yellow gum
B4-7-2 0.0556 Yellow gum
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Subfraction B4-7-1 The chromatogram on normal phase TLC (0.5%
MeOH/CHCl3) showed many UV-active spots without any major spots. Thus, it was
not further investigated.

Subfraction B4-7-2 The chromatogram on normal phase TLC (0.5%
MeOH/CHCl;) showed three UV-active spots with the Ry values of 0.50, 0.44 and
0.39. Further separation was performed by flash column chromatography. Elution was
conducted with 0.1% MeQH/CHClI;. Fractions with the similar chromatogram were
combined and evaporated under reduced pressure to dryness to afford three

subfractions, as shown in Table 23.

Table 23 Subfractions obtained from subfraction B4-7-2 by flash column

- chromatography on silica gel

fraction Weight (g) Physical appearance
B4-7-2-1 0.0103 Yellow gum
B4-7-2-2 0.0194 Yellow gum
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Table 23 (Continued)

fraction Weight (g) Physical appearance

B4-7-2-3 0.0155 Yellow gum

Subfraction B4-7-2-1 The chromatogram on normal phase TLC
(0.1% MeOH/CHCl3, 3 times) showed many UV-active spots without any major
spots. Thus, it was not further investigated.
Subfraction B4-7-2-2 The chromatogram on normal phase TLC
(0.1% MeOH/CHCls, 3 times) showed three UV-active spots with the Ry values of
0.42, 0.37 and 0.34. Further purification was performed on precoated TLC, using
0.1% MeOH/CHC; as a mobile phase (11 times), to afford four bands.
Band B4-7-2-2-1 It was obtained as a pale yellow gum (0.0015
g). The chromatogram on normal phase TLC (0.1% MeOH/CHCI;, 3 times) showed
one UV-active spot with the Ry value of 0.42. Because it was obtained in low quantity,
it was not further investigated.
Band B4-7-2-2-2 It was obtained as a pale yellow gum (0.0020
g). The chromatogram on normal phase TLC (0.1% MeOH/CHCl3, 3 times) showed
two UV-active spots with the Ry values of 0.37 and 0.34. Because it was obtained in
low quantity, it was not further investigated.
Band B4-7-2-2-3 It was obtained as a pale yellow gum (0.0018
g). The chromatogram on normal phase TLC (0.1% MeOH/CHCl;, 3 times) showed
one UV-active spot with the Ry value of 0.34. Because it was obtained in low quantity,

it was not further investigated.
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Band B4-7-2-2-4 It was obtained as a pale yellow gum (0.0020
g). The chromatogram on normal phase TLC (0.1% MeOH/CHCl;, 3 times) showed
two UV-active spots with the Ry value of 0.41 and 0.34. Because it was obtained in
low quantity, it was not further investigated.
Subfraction B4-7-2-3 The chromatogram on normal phase TLC
(0.1% MeOH/CHCl;, 3 times) showed no definite spot. Thus, it was not further
investigated.

Subfraction B4-8 The chromatogram on normal phase TLC (15%
EtOAc/Petrol) showed three UV-active spots with the Rr values of 0.22, 0.20 and
0.15. Further separation was performed by column chromatography. Elution was
conducted initially with 0.1% EtOAc/CHCI; and gradually increased the polarity until
0.5% EtOAc¢/CHCls. Fractions with the similar chromatogram were combined and
evaporated under reduced pressure to dryness to afford eight subfractions. Each
subfraction was obtained in low quantity and their chromatograms on normal phase
TLC (0.1% MeOH/CHCI3, 3 times) showed many spots. Therefore, they were not
further investigated.

Subfraction B4-9 The chromatogram on normal phase TLC (15%
EtOAc/Petrol) showed no definite spot. Thus, it was not further investigated.

Fraction B3 The chromatogram on normal phase TLC (50% EtOAc/Petrol)
showed one major yellow spbt with the same Revalue as PP7.

Fraction B6 The chromatogram on normal phase TLC (50% EtOAc/Petrol)
showed two major spots which were PP7 and PP8.

Fraction B7 The chromatogram on normal phase TLC (50% EtOAc/Petrol)

showed two major spots which were PP7 and PP8 together with one yellow spot with
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the Ry value of 0.26. Further separation was performed by column chromatography.
Elution was conducted initially with 30% EtOAc/Petrol and gradually increased the
polarity until pure methanol. Fractions with the similar chromatogram were combined
and evaporated under reduced pressure to dryness to afford nine subfractions, as

shown in Tabie 24.

Table 24 Subfractions obtained from fraction B7 by column chromatography on

silica gel

fraction Weight (g) Physical appearance
B7-1 0.0096 Yellow gum
B7-2 0.1059 Orange-yellow gum
B7-3 0.3287 Orange-yellow gum
B7-4 0.2949 Orange-yellow gum
B7-5 0.2341 Orange-yellow gum
B7-6 0.1101 Orange-yellow gum
B7-7 0.0443 Brown-yellow gum
B7-8 0.2048 Brown-yellow gum
B7-9 0.0912 Brown-yellow gum

Subfraction B7-1 The chromatogram on normal phase TLC (40%

EtOAc/Petrol) showed no definite spot. Thus, it was not further investigated.
Subfraction B7-2 The chromatogram on normal phase TLC (40%

EtOAc/Petrol) showed one yellow spot with the same Ryvalue as PP7.
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Subfraction B7-3 The chromatogram on normal phase TLC (40%
EtOAc/Petrol) showed two major spots which 'wcre PP7 and PP8.

Subfraction B7-4 The chromatogram on normal phase TLC (40%
EtOAc/Petrol) showed two major spots which were PP7 and PP8 together with one
UV-active spot with the R value of 0.29. Further separation was performed by
column chromatography. Elution was conducted initially with pure chloroform and
gradually increased the polarity with methanol until 70%MeOH/CHCIs. Fractions
with the similar chromatogram were combined and evaporated under reduced pressure

to dryness to afford four subfractions, as shown in Table 25.

Table 25 Subfractions obtained from subfraction B7-4 by column chromatography

on silica gel

fraction Weight (g) Physical appearance
B7-4-1 0.0055 Yellow gum
B7-4-2 0.0019 Yellow gum
B7-4-3 0.2172 Yellow gum
B7-4-4 0.0279 Yellow gum

Subfraction B7-4-1 The chromatogram on normal phase TLC (30%
EtOAc/Petrol) showed no definite spot. Thus, it was not further investigated.
Subfraction B7-4-2 The chromatogram on normal phase TLC (30%

EtOAc/Petrol) showed two major spots which were PP7 and PP8.
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Subfraction B7-4-3 The chromatogram on normal phase TLC (30%
EtOAc/Petrol) showed two major spots which were PP7 and PP8 together with one
UV-active spot with the R¢ value of 0.21. Further separation was performed by
column chromatography. Elution was conducted initially with 10% EtOAc/Petrol and
gradually increased the polarity until pure ethyl acetate. Fractions with the similar
chromatogram were combined and evaporated under reduced pressure to dryness to

afford four subfractions, as shown in Table 26.

Table 26 Subfractions obtained from subfraction B7-4-3 by column chromatography

on silica gel

fraction Weight (g) Physical appearance
B7-4-3-1 0.0050 Yellow gum

B7-4-3-2 0.0469 Orange-yellow gum
B7-4-3-3 0.1178 Orange-yellow gum
B7-4-3-4 0.0184 Brown-yellow gum

Subfraction B7-4-3-1 The chromatogram on normal phase TLC
(30% EtOAc/Petrol, 2 times) showed no definite spot. Thus, it was not further
investigated.

Subfraction B7-4-3-2 The chromatogram on normal phase TLC
(30% EtOAc/Petrol, 2 times) showed two major spots which were PP7 and PP8.

Subfraction B7-4-3-3 The chromatogram on normal phase TLC

(30% EtOAc/Petrol, 2 times) showed one major UV-active spot which was PP8
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together with one UV-active spot with the Revalue of 0.21. Attempted purification by
flash column chromatography on silica gel was unsuccessful.

Subfraction B7-4-3-4 The chromatogram on normal phase TLC
(30% EtOAc/Petrol, 2 times) showed no definite spot. Thus, it was not further
investigated.

Subfraction B7-5 The chromatogram on normal phase TLC (40%
EtOAc/Petrol) showed two major spots which were PP7 and PP8 together with four
minor UV-active spots with the Ry values of 0.29, 0.24, 0.22 and 0.16. Further
separation was performed by column chromatography on silica gel. Elution was
conducted initially with 30% EtOAc/Petrol and gradually increased the polarity until
pure ethyl acetate. Fractions with the similar chromatogram were combined and
evaporated under reduced pressure to dryness to afford five subfractions, as shown in

Table 27,

Table 27 Subfractions obtained from subfraction B7-§ by column chromatography

on silica gel

fraction Weight (g) Physical appearance
B7-5-1 0.0029 Yellow gum
B7-5-2 0.1333 Yellow gum
B7-5-3 0.0383 Yellow gum
B7-5-4 0.0381 Yellow gum
B7-5-5 0.0117 Yellow gum
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Subfraction B7-5-1 The chromatogram on normal phase TLC (2%
MeQH/CHCI,, 2 times) showed no definite spot. Thus, it was not further investigated.

Subfraction B7-5-2 The chromatogram on normal phase TLC (2%
MeOH/CHCl3, 2 times) showed one major spot which was PP8 together with three
minor UV-active spots with the R values of 0.30, 0.26 and 0.22. Further separation
was performed by flash column chromatography on silica gel. Elution was conducted
initially with 2% MeOH/CHCl; and gradually increased the polarity until 5%
MeQH/CHCl;. Fractions with the similar chromatogram were combined and
evaporated under reduced pressure to dryness to afford two subfractions, as shown in

Table 28.

Table 28 Subfractions obtained from subfraction B7-5-2 by flash column

chromatography on silica gel

fraction Weight (g) Physical appearance
B7-5-2-1 0.0186 Yellow gum
B7-5-2-2 0.1269 Yellow gum

Subfraction B7-5-2-1 The chromatogram on normal phase TLC
(30% EtOAc/Petrol, 2 times) showed three UV-active spots with the Ryvalues of 0.34,
0.20 and 0.14. It was further separated by precoated TLC, using 30% EtOAc/Petrol as
a mobile phase (5 times), to afford two bands, as pale yellow gum in 0.0015 g and

0.0017 g. Their chromatograms on normal phase TLC (30% EtOAc/Petrol, 5 times)
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showed it possessed at least two yellow spots. Therefore, they were not further
investigated.

Subfraction B7-5-2-2 The chromatogram on normal phase TLC
(30% EtOAc/Petrol, 2 times) showed one major UV-active spot which was PP8.

Subfraction B7-5-3 The chromatogram on normal phase TLC (2%
MeOQH/CHCI3, 2 times) showed two major spots which were PP8 and PP9.

Subfraction B7-5-4 The chromatogram on normal phase TLC (2%
MeOQH/CHCI3, 2 times) showed one major yellow spot which was PP9.

Subfraction B7-5-5 The chromatogram on normal phase TLC (2%
MeOH/CHCl;, 2 times) showed no definite spot. Therefore, it was not further
investigated.

Subfraction B7-6 The chromatogram on normal phase TLC (50%
EtOAc/Petrol) showed three yellow spots with the Ry values of 0.49, 0.43 and 0.36
and one UV-active spot with the Ry value of 0.23. It was further separated by column
chromatography over reversed-phase C18 silica gel. Elution was conducted initially
with 50% MeOH/H,O and gradually decreased the polarity until pure methanol.
Fractions with the similar chromatogram were combined and evaporated under

reduced pressure to dryness to afford five subfractions, as shown in Table 29.
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Table 29 Subfractions obtained from B7-6 by column chromatography over

reversed-phase C18 silica gel

fraction Weight (g) Physical appearance
B7-6-1 0.0076 ~ Yellow gum
B7-6-2 0.0537 Yellow gum
B7-6-3 0.0016 Yellow gum
B7-6-4 0.0027 Yellow gum
B7-6-5 0.0580 Yellow gum

Subfraction B7-6-1 The chromatogram on normal phase TLC (40%

EtOAc/Petrol, 3 times) showed no definite spot. Thus, it was not further investigated.

Subfraction B7-6-2 The chromatogram on normal phase TLC (40%

EtOAc/Petrol, 3 times) showed two major yellow spots with the R¢ values of 0.52 and

0.42, It was further separated by precoated TLC, using 40% EtOAc/Petrol as a mobile

phase (4 times), to afford two bands.

Band B7-6-2-1 (PP14) It was obtained as a yellow gum (0.0040 g).

The chromatogram on normal phase TLC (40% EtOAc/Petrol, 3 times) showed one

yellow spot with the Ry value of 0.52.

[a]®h = -353° (c = 1.7x10? g/100 cm’, MeOH)

UV Apax nm (MeOH) (loge)

IR {neat) vim-1

366 (4.23)
3600-2500 (O-H stretching), 2952, 2927, 2849

(C-H stretching), 1745, 1694, 1634 (C=0




'H NMR (CDCL) (8 ppm)

(400 MHz)

3C NMR (CDCl3) (5 ppm)

(100 MHz)

DEPT (135° (CDCl3)

EIMS (m/z) (% rel. int.)

CH
CH,

CHs
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stretching)

7.52 (d,J=1.3 Hz, 1H), 5.43 (ind, J = 10.4 Hz,
1H), 5.03 (brs, 111), 4.88 (brs, 111),

4,55 (g, J = 6.6 Hz, 1H), 4.50 (dd, J= 10.8 and
3.0 Hz, 1H), 3.63 (s, 311), 3.51 (dd, J=15.6
and 10.4 Hz, [H), 2.92 (dd, J=14.3 and 10.8
Hz, 1H), 2.75 (mmd, J=15.6 Hz, 1H), 2.68 (dd,
J=143 and 3.0 Hz, [H), 2.63 (d, /= 9.5 Hz,
1H), 2.32 (d, J=13.6 Hz, 1H), 1.84 (s, 3H),
1.72 (dd, J=13.6 and 9.5 Hz, 1H), 1.72 (s,
3H), 1.67 (brs, 3H), 1.46 (s, 3H), 1.39 (s, 3H),
1.37 (d, J= 6.6 Hz, 3H), 1.28 (s, 3H)

203.08, 177.82, 167.90, 167.68, 164.12, 155.00,
147.13, 135.81, 134.80, 132.50, 129.45, 112.72,
110.58, 102.36, 101.32, 92.07, 89.18, 85.10,
84.08, 83.56, 74.88, 53.84, 49.69, 43.49, 30.91,
30.44, 29.00, 28.69, 28.50, 27.98, 21.09, 19.68,
18.25, 16.19

135.81, 134.80, 92.07, 74.88, 49.6%

110.58, 30.44, 29.00, 28.50

53.84, 30.91, 28.69, 27.98, 21.09, 19.68, 18.25,
16.19

608 (13), 580 (77), 537 (66), 509 (100), 383

(24), 277 (30), 233 (31)
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Band B7-6-2-2 (PP15) It was obtained as a yellow gum (0.0185 g).
The chromatogram on normal phase TLC (40% EtOAc/Petrol, 3 times) showed one

yellow spot with the Ry value of 0.42.

[a]®p =-263° (c = 1.9x10 g/100 cm®, MeOH)
UV Amax nm (MeOH) (logé) 367 (4.16)
IR (neat) v 3600-2500 (O-H stretching), 2967, 2929 (C-H
stretching), 1745, 1690, 1634 (C=0 stretching)
"H NMR (CDCls) (8 ppm) 7.52 (d, J = 2.4 Hz, 1H), 5.20 (md, J = 12.0 Hz,
(400 MHz) 1H), 4.60 (¢, J = 6.8 Hz, 1H), 3.79 (dd, J= 16.2
and 12.0 Hz, 1H), 3.64 (s, 3H), 2.72 (ddd, J =
14.7,7.2 and 3.2 Hz, 1H), 2.71 (md, J=16.2
Hz, 1H), 2.62 (d, J = 9.6 Hz, 1H), 2.61 (dd, J =
14.7 and 3.2 Hz, 1H), 2.35 (d, J = 13.5 Hz, 1H),
2.05 (ddd, J=13.5,7.2 and 3.2 Hz, 111), 1.73-
1.66 (m, 1H), 1.70 (s, 3H), 1.69 (dd, J = 13.5
and 9.6 Hz, 1H), 1.63 (dd, J=2.3 and 1.4 Hz,
3H), 1.52 (s, 3H), 1.42 (d, /= 6.8 Hz, 3H), 1.40
(s, 3H), 1.38 (s, 3H), 1.28 (s, 3H), 1.24 (s, 310)
BC NMR (CDCL) (8 ppm) 202,90, 178.09, 167.67, 165.86, 163.73, 154.31,
(100 MHz) 135.38, 134.68, 132.48, 129.88, 112.24, 105.98,
101.46, 92.12, 89.09, 85.09, 84.32, 83.41,
73.18, 5§3.79, 49.78, 43.74, 39.42, 30.83, 30.35,

30.04,29.10, 28.89, 28.77, 27.60, 21.01, 19.38,
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17.27, 16.83
DEPT (135°) (CDCl;) CH 135.38,134.68, 92.12, 49.78
CH, 39.42,30.35,29.10, 17.27
CH; 53.79, 30.83, 30.04, 28.89, 28.77, 27.60, 21.01,
19.38, 16.83
EIMS (m/z) (% rel. int.) 610 (6), 582 (78), 564 (71), 508 (63), 456 (20),
438 (29), 381 (100), 275 (26), 233 (29), 191
(20), 177 (37), 161 (22), 149 (30), 135 (34),

123 (32), 109 (28), 97 (33), 81 (36), 69 (69)

Subfraction B7-7 The chromatogram on normal phase TLC (50%
EtOAc/Petrol) showed many spots without any major spots, Thus, it was not further
investigated.

Subfraction B7-8 The chromatogram on normal phase TLC (50%
EtOAc/Petrol) showed four yellow spots with the Ry value of 0.49, 0.43, 0.36 and
0.27. It was further separated by column chromatography over reversed-phase C18
silica gel. Elution was conducted initially with 50% MeOH/H,0 and gradually
decreased the polarity until pure methanol. Fractions with the similar chromatogram
were combined and evaporated under reduced pressure to dryness to afford five

subfractions, as shown in Table 30.
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Table 30 Subfractions obtained from B7-8 by column chromatography over reverse-

phase C18 silica gel
fraction Weight (g) Physical appearance
B7-8-1 0.0294 Yellow gum
B7-8-2 0.0732 Yellow gum
B7-8-3 0.0126 Yellow gum
B7-8-4 0.0234 Yellow gum
B7-8-5 0.0667 Yellow gum

Subfraction B7-8-1 The chromatogram on normal phase TLC (40%

EtOAc/Petrol, 3 times) showed no definite spot. Thus, it was not further investigated.

Subfraction B7-8-2 The chromatogram on normal phase TLC (40%

RtOAc/Petrol, 3 times) showed two major yellow spots with the Ry values of 0.45 and

0.36. It was further separated by flash column chromatography on silica gel. Elution

was conducted initially with 30% EtOAc/Petrol and gradually increased the polarity

until pure ethyl acetate. Fractions with the similar chromatogram were combined and

evaporated under reduced pressure to dryness to afford three subfractions, as shown in

Table 31.
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Table 31 Subfractions obtained from subfraction B7-8-2 by flash column

chromatography on silica gel

fraction Weight (g) Physical appearance
B7-8-2-1 0.0020 Yellow gum
B7-8-2-2 0.0339 Yellow gum
B7-8-2-3 0.0378 Yellow gum

Subfraction B7-8-2-1 The chromatogram on normal phase TLC
(40% EtOAc/Petrol) showed no definite spot. Therefore, it was not further
investigated.
Subfraction B7-8-2-2 The chromatogram on normal phase TLC
(40% EtOAc/Petrol) showed three yellow spots with the Ry values of 0.29, 0.27 and
0.23. It was further separated by precoated TLC, using 40% EtOAc/Petrol as a mobile
phase (3 times), to afford three bands.
Band B7-8-2-2-1 It was obtained as a yellow gum (0.0014 g).
The chromatogram on normal phase TLC (40% EtOAc/Petrol) showed two yellow
spots with the Ry values of 0.29 and 0.19. Because it was obtained in low quantity, it
was not further investigated.
Band B7-8-2-2-2 It was obtained as a yellow gum (0.0023 g).
The chromatogram on normal phase TLC (40% EtOAc/Petrol) showed one yellow

spot with the same Ry value as PP14.
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Band B7-8-2-2-3 It was obtained as a yellow gum (0.0228 g).
The chromatogram on normal phase TLC (40% EtOAc/Petrol) showed one yellow
spot with the same Ry value as PP1S.

Subfraction B7-8-3 The chromatogram on notmal phase TLC (40%
EtOAc/Petrol, 2 times) showed many spots without any major spots. Thus, it was not
further investigated.

Subfraction B7-8-4 The chromatogram on normal phase TLC (40%
EtOAc/Petrol, 2 times) showed one major yellow spot with the same Ry value as PP9.

Subfraction B7-8-5 The chromatogram on normal phase TLC (40%
EtOAc/Petrol, 2 times) showed no definite spot. Therefore, it was not further
investigated.

Subfraction B7-9 The chromatogram on normai phase TLC (50%
EtOAc/Petrol) showed no definite spot. Thus, it was not further investigated.

Fraction BS The chromatogram on normal phase TLC (70% EtOAc/Petrol)
showed three UV-active spots with the R¢ values of 0.57, 0.49 and 0.37. It was further
separated by column chromatography over reversed-phase C18 silica gel. Elution was
conducted initially with 15% MeOH/H,O and gradually decreased the polarity until
pure methanol. Fractions with the similar chromatogram were combined and

evaporated under reduced pressure to dryness to afford twelve subfractions, as shown

in Table 32.




89

Table 32 Subfractions obtained from fraction B8 by column chromatography over

reversed-phase C18 silica gel

fraction Weight (g) Physical appearance
B8-1 (.0045 Brown gum
B8-2 0.0044 Brown gum
B8&-3 0.0457 Brown gum
B8-4 0.0909 Yellow gum
B8-5 0.0597 Yellow gum
B8-6 0.1217 Yellow gum
B8-7 0.0427 Yellow gum
B8-8 0.1447 Yellow gum
B8-9 0.0882 Yellow gum
B8-10 0.3036 Yellow gum
B8-11 0.0927 Yellow gum
B8-12 0.4361 Brown gum

Subfraction B8-1 The chromatogram on normal phase TLC (5%
MeOH/CHCl3) showed no definite spot. Thus, it was not further investigated.

Subfraction B8-2 The chromatogram on normal phase TLC (5%
MeOH/CHC3) showed one UV-active spot with the Ry value of 0.21. However, its '
NMR spectrum indicated that it was not pure. Because it was obtained in low

quantity, it was not further purified.
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Subfraction B8-3 The chromatogram on normal phase TLC (5%
MeOH/CHCL3) showed two UV-active spots with the R¢ values of 0.29 and 0.21.
Attempted purification by flash column chromatography on silica gel was
unsuccessful.

Subfraction B8-4 The chromatogram on normal phase TLC (5%
MeOH/CHC}3) showed many spots without any major spots. Thus, it was not further
investigated.

Subfraction B8-5 The chromatogram on normal phase TLC (5%
MeOH/CHCL3) showed four yellow spots with the Ry values of 0.41, 0.38, 0.32 and
0.27 and two UV-active spots with the R¢ values of 0.22 and 0.18. Further separation
was performed by flash column chromatography on silica gel. Elution was conducted
initially with 2% MeOH/CHCl; and graduaily increased the polarity until 20%
MeOH/CHCl;. Fractions with the similar chromatogram were combined and
evaporated under reduced pressure to dryness to afford three subfractions, as shown in

Table 33.

Table 33 Subfractions obtained from subfraction B8-5 by flash column

chromatography on silica gel

fraction Weight (g) Physical appearance
B8-5-1 0.0052 Yellow gum
B8-5-2 0.0311 Yellow gum

B§-5-3 0.0200 Yellow gum
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Subfraction B8-5-1 The chromatogram on normal phase TLC (5%
MeOH/CHCl3) showed no definite spot. Thus, it was not further investigated,

Subfraction B8-5-2 The chromatogram on normal phase TLC (8%
MeOH/CHCL3) showed two major yellow spots with the Ry values 0of 0.32 and 0.27. It
was further separated by column chromatography on silica gel. Elution was conducted
initially with 2% MeOH/CHCI; and gradually increased the polarity until 20%
MeOH/CHCl;. Fractions with the similar chromatogram were combined and
evaporated under reduced pressure to dryness to afford two subfractions, as shown in

Table 34.

Table 3¢ Subfractions obtained from subfraction B8-5-2 by column chromatography

on silica gel

fraction Weight (g) Physical appearance
B8§-5-2-1 (.0062 Yellow gum
B8-5-2-2 0.0230 Yellow gum

Subfraction B8-5-2-1 The chromatogram on normal phase TLC (5%
MeOH/CHC3) showed many spots. Because it was obtained in low quantity, it was
not further investigated.

Subfraction B8-5-2-2 The chromatogram on normal phase TLC (5%
MeOH/CHCs) showed two major yellow spots with the Ry values of 0.32 and 0.27. It
was further scparated on precoated TLC, using 4% MeOH/CHC];3 as a mobile phase

(7 times), to give a yellow gum (0.0025 g). The chromatogram on normal phase TLC
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(4% MecOH/CHCl3) showed only one yellow spot with the R¢value of 0.21, However,
its 'H NMR spectrum indicated that it was not pure. Because it was obtained in low
quantity, it was not further investigated.
Subfraction B8-5-3 The chromatogram on normal phase TLC (5%
MeOH/CHCl3) showed no definite spot. Thus, it was not further investigated.
Subfraction B8-6 The chromatogram on normal phase TLC (5%
MeOH/CHCl;) showed four yellow spots with the Ry values of 0.51, 0.48, 0.44 and
0.38 and three UV-active spots with the R values of 0.34, 022 and 0.16. It was
further separated by column chromatography on silica gel. Elution was conducted
initially with 3% MeOH/CHC]; and gradually increased the polarity until 50%
MeOH/CHCl;. Fractions with the similar chromatogram were combined and
evaporated under reduced pressure to dryness to afford four subfractions, as shown in

Table 35.

Table 35 Subfractions obtained from subfraction B8-6 by column chromatography

on silica gel

fraction Weight (g) Physical appearance ]
B8-6-1 0.0477 Yellow gum
B8-6-2 0.0251 Yellow gum
B8-6-3 0.0229 Yellow gum
B8-6-4 0.0173 Yellow gum
| _ -
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Subfraction B8-6-1 The chromatogram on normal phase TLC (4%
MeOH/CHCl5) showed many spots. Thus, it was not further investigated.

Subfraction B8-6-2 The chromatogram on normal phase TLC (4%
MeOH/CHCI3) showed two major UV-active spots with the Ry values of 0.19 and
0.11. Tt was further separated on precoated TLC, using 4% MeOH/CHCl3 as a mobile
phase (7 times), to afford two bands, both as a yellow gum in 0.0013 g and 0.0018 g.
Their chromatograms on normal phase TLC (4% MeOH/CHCl3) showed at least two
components. Because they were obtained in low quantity, they were not further
investigated.

Subfraction B8-6-3 The chromatogram on normal phase TLC (4%
MeQH/CHC!3) showed two yellow spots with the Ry values of 0.22 and 0.15 and two
UV-active spots with the Re values of 0.19 and 0.07. It was further separated by
column chromatography on silica gel. Elution was conducted initially with 3%
MeOH/CHC!; and gradually increased the polarity until 10% MeOH/CHCl;.
Fractions with the similar chromatogram were combined and evaporated under

reduced pressure to dryness to afford two subfractions, as shown in Table 36.

Table 36 Subfractions obtained from subfraction B8-6-3 by column chromatography

on silica gel

fraction Weight (g) Physical appearance

B8-6-3-1 0.0179 Yellow gum

B8-6-3-2 0.0017 Yellow gum
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Subfraction B8-6-3-1 The chromatogram on normal phase TLC (4%
MecOH/CHCI3) showed one major UV-active spots with the Ry values of 0.07. It was
further separated on precoated TLC, using 4% MeOH/CHCI; as a mobile phase (7
times), to give a yellow gum (0.0021 g). The chromatogram on normal phase TLC
(4% MeOH/CHCl3) showed only one UV-active spot with the Ry value of 0.07.
However, its 'H NMR spectrum indicated that it was not pure. Because it was
obtained in low quantity, it was not further purified.
Subfraction B8-6-3-2 The chromatogram on normal phase TLC (4%
MeOH/CHCI5) showed one yellow spot with the Ry value of 0.15 and two UV-active
spots with the Ry values of 0.07 and 0.06. Because it was obtained in low quantity, it
was not further investigated.
Subfraction B8-6-4 The chromatogram on normal phase TLC (4%
MeOH/CHCI3) showed no definite spot. Thus, it was not further investigated.
Subfraction B8-7 The chromatogram on normal phase TLC (2%
MeOH/CHCI3) showed four yellow spots with the Ry values of 0.33, 0.28, 0.23 and
0.16 and one UV-active spot with the R¢ value of 0.12. It was further separated by
column chromatography on silica gel. Elution was conducted initially with 2%
MeOH/CHCl; and gradually increased the polarity until 50% MeOH/CHCls.
Fractions with the similar chromatogram were combined and evaporated under

reduced pressure to dryness to afford three subfractions, as shown in Table 37.




g5

Table 37 Subfiactions obtained from subfraction B8-7 by column chromatography

on silica gel

fraction Weight (g) Physical appearance j
B8-7-1 0.0187 Yellow gum
B8-7-2 0.0095 Yellow gum
B8-7-3 0.0095 Yellow gum
L

Subfraction B8-7-1 The chromatogram on normal phase TLC (5%
MeOH/CHC,, 2 times) showed many spots without any major spots. Thus, it was not
further investigated.

Subfraction B8-7-2 The chromatogram on normal phase TLC (5%
MeOH/CHC3, 2 times) showed one major UV-active spot with the Ry value of 0.47
together with three minor yellow spots with the Re values of 0.58, 0.54 and 0.50. It
was further separated on precoated TLC, using 5% MeOH/CHCl; as a mobile phase
(6 times), to give a pale yellow gum (0.0019 g). The chromatogram on normal phase
TLC (4% MeOH/CHCl3) showed only one UV-active spot with the Ry value of 0.15.
Because it was obtained in low quantity, it was not further investigated.

Subfraction B8-7-3 The chromatogram on normal phase TLC (5%
MeOH/CHCls, 2 times) showed many spots without any major spots. Thus, it was not
further investigated.

Subfraction B8-8 The chromatogram on ‘normal phase TLC (2%
MeOH/CHCl3) showed five yeliow spots with the Ry values of 0.36, 0.30, 0.23, 0.15

and 0.10 and one UV-active spot with the Rs value of 0.19. It was further separated by
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column chromatography on silica gel. Elution was conducted initially with 2%
MeOIL/CHC]; and gradually increased the polarity until 50% MeOH/CHCls.
Fractions with the similar chromatogram werc combined and evaporated under

reduced pressure to dryness to afford four subfractions, as shown in Table 38.

Table 38 Subfractions obtained from subfraction B8-8 by column chromatography

on silica gel

fraction Weight (g) Physical appearance
B8-8-1 0.0042 Yellow gum
B8-8-2 0.0562 Yellow gum
B8-8-3 0.0566 Yellow gum
Bg-8-4 0.0171 Yellow gum

Subfraction B8-8-1 The chromatogram on normal phase TLC (4%
MeOH/CHCl3) showed two UV-active spots with the Ry values of 0.80 and 0.74 and
one yellow spot with the Ry value of 0.60. Because it was obtained in low quantity, it
was not further investigated.

Subfraction B8-8-2 The chromatogram on normal phase TLC (4%
MeOH/CIICls) showed three yeliow spots with the Ry values of 0.60, 0.48 and 0.40
and one UV-active spot with the Ry value of 0.30. Further separation was performed
by flash column chromatography on silica gel. Elution was conducted initially with

1% MeOH/CHC]; and gradually increased the polarity until 20% MeQOH/CHCls.
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Fractions with the similar chromatogram were combined and evaporated under

reduced pressure to dryness to afford three subfractions, as shown in Table 39.

Table 39 Subfractions obtained from subfraction B8-8-2 by flash column

chromatography on silica gel

fraction Weight (g) Physical appearance
B8-8-2-1 0.0027 Yellow gum
B8-8-2-2 (.0339 Yellow gum
B8-8-2-3 0.0063 Yeliow gum

Subfraction B8-8-2-1 The chromatogram on normal phase TLC (4%

MeOH/CHCI,, 2 times) showed four UV-active spots with the Ry values of 0.49, 0.45,

0.42 and 0.38. Because it was obtained in low quantity, it was not further investigated.

Subfraction B8-8-2-2 The chromatogram on normal phase TLC (4%

MeOH/CHCls, 2 times) showed four yellow spots with the Ry values of 0.68, 0.57,

0.46 and 0.40. It was further separated by precoated TLC, using 4% MeOH/CHCl; as
a mobile phase (3 times), to afford four bands.

Band B8-8-2-2-1- It was obtained as a yellow gum (0.0013 g).

The chromatogram on normal phase TLC (4% MeQH/CHCI3, 2 times) showed one

yellow spot with the R¢ value of 0.68. Because it was obtained in low quantity, it was

not further investigated.
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Band B8-8-2-2-2 [t was obtained as a yellow gum (0.0025 g).
The chromatogram on normal phase TLC (4% MeOH/CHCl,, 2 times) showed one
yellow spot with the same Re value as PP14.

Band B8-8-2-2-3 It was obtained as a yellow gum (0.0154 g).
The chromatogram on normal phase TLC (4% MeOH/CHCl3, 2 times) showed one
yellow spot with the same Re value as PP15.

Band B8-8-2-2-4 It was obtained as a yellow gum (0.0021 g).
The chromatogram on normal phase TLC (4% MeOH/CHCl3, 2 times) showed only
one yellow spot with the Revalue of 0.40. However, its 'H NMR spectrum indicated
that it was not pure. Because it was obtained in low quantity, it was not further
purified.

Subfraction B8-8-2-3 The chromatogram on normal phase TLC (4%

MeOH/CHCL, 2 times) showed many yellow and UV-active spots. Because it was
obtained in low quantity, it was not further investigated.

Subfraction B8-8-3 The chromatogram on normal phase TLC (4%
MeOH/CHCls) showed one yellow spot with the Ry value of 0.38 and four UV-active
spots with the Ry values of 0.30, 0.21, 0.17 and 0.14. Further separation was
performed by flash column chromatography on silica gel. Elution was conducted
initially with 1% MeOH/CHCl3 and gradually increased the polarity until 30%
MeOH/CHCl;. Fractions with the similar chromatogram were combined and
evaporated under reduced pressure to dryness to afford three subfractions, as shown in

Table 40.
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Table 40 Subfractions obtained from subfraction B8-8-3 by flash column

chromatography on silica gel

fraction Weight (g) Physical appearance
B8-8-3-1 0.0070 Yeilow gum
B8-8-3-2 0.0091 Yellow gum
B8-8-3-3 0.0249 Yellow gum

Subfraction B8-8-3-1 The chromatogram on normal phase TLC (4%
MeOH/CHCls, 2 times) showed many spots. Because it was obtained in low quantity,
it was not further investigated.

Subfraction B§-8-3-2 The chromatogram on normal phase TLC (4%
MeOH/CIICl;, 3 times) showed one major yellow spot with the same Ry value as
PP1S.

Subfraction B8-8-3-3 The chromatogram on normal phase TLC (4%
MeOH/CHCl;, 3 times) showed one major UV-active spot with the Re value of 0.47
together with three minor yellow spofs with the Ry values of 0.67, 0.65 and 0.59. It
was further separated on precoated TLC, using 4% MeOH/CHCI; as a mobile phase
(5 times), to give a pale yellow gum (0,0130 g). The chromatogram on normal phase
TLC (6% MeQH/CHCl3) showed one major UV-active spot with the R¢ value of 0.44
together with one minor yellow spot with the Ry value of 0.54. Three additional dark-
blue spots with the Ry values of 0.50, 0.34 and 0.28 were observed after dipping the
TLC plate in ASA reagent and subsequently heating. Further purification was

performed on precoated TLC, using 6% MeOH/CHCl3 as a mobile phase, to give
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PP16 as a pale yellow gum (0.0065 g). The chromatogram on normal phase TLC (4%

MeOH/CHCl3) showed only one UV-active spot with the Revalue of 0.30.

[oPp = +77° (c = 1.3x107 g/100 cm’, MeOH)

UV Amax tm (MeOH) (logé) 304 (4.24)

IR (neat) Vem-1 3690-2350 (O-H stretching), 2971, 2930 (C-H
stretching),1751, 1692, 1633 (C=0 stretching)

'H NMR (CDCl3) (& ppm) 12.11 (s, 1H), 6.60 (mt, J= 7.0 Hz, 1H), 4.47

(500 MHz) (d, J= 1.0 Hz, 1H), 4.40 (¢, J= 6.5 Hz, 1H),

3.51 (s, 3H), 3.38 (s, 3H), 3.21 (mdd, J=17.0
and 7.0 Hz, 1H), 3.18 (brs, 1H), 3.12 (mdd, J =
17.0 and 7.0 Hz, 1H), 2.70 (d, J = 8.5 Hz, 1H),
2.63-2.59 (m, 2H), 2.02 (d, J = 14.0 Hz, 1H),
1.97 (d, J= 1.0 Hz, 3H), 1.72-1.68 (m, 2H),
1.65 (dd, J=14.0 and 8.5 Hz, 1H), 1.44 (s,
3H), 1.43 (5, 310), 1.35 (d, J = 6.5 Hz, 3H), 1.29
(s, 3H), 1.28 (s, 3H), 1.21 (5, 3H), 1.11 (5, 3H)

13C NMR (CDCls) (8 ppm) 205.50, 192.09, 170.87, 166.64, 161.50, 152.17,

(125 MHz) 137.77, 128.14, 113.75, 106.10, 102.37, 90.31,

87.03, 86.42, 82.68, 81.40, 75.10, 71.03, 57.41,
52.39, 48.90, 45.24, 43.93, 42.18, 30.46, 29.09,
29.06, 28.42, 27.19, 26.08,23.92, 22.11, 20.838,
17.18, 13.87

DEPT (135%) (CDCl3) CH 137.77,90.31,75.10,48.90, 45.24
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CH, 42.18,28.42,23.92,17.18
CHi 57.41,52.39,30.46, 29.09, 29.06, 27.19, 26.08,

22.11,20.88, 13.87

Subfraction B8-8-4 The chromatogram on normal phase TLC (4%
MeOH/CHCI3) showed many spots without any major spots. Thus, it was not further
investigated.

Subfraction B8-9 The chromatogram on normal phase TLC (2%
MeOI/CHCI;) showed no definite spot. Thus, it was not further investigated.

Subfraction BS8-10 The chromatogram on normal phase TLC (2%
MeOH/CHCI;) showed three major spots; two yellow spots with the same Ry values
" as PP7 and PP9 and one UV-active spot with the R¢ value of 0.09. It was further
separated by column chromatography on silica gel. Elution was conducted initially
with 2% MeOH/CHCI; and gradually increased the polarity until 70% MeOH/CHCl;.
Fractions with the similar chromatogram were combined and evaporated under

reduced pressure to dryness to afford six subfractions, as shown in Table 41.

Table 41 Subfractions obtained from subfraction B8-10 by column chromatography

on silica gel

fraction Weight (g) Physical appearance

B8-10-1 0.0044 Yellow gum

B8-10-2 0.1131 Yellow gum
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Table 41 (Continued)
fraction Weight (g) Physical appearance
B8-10-3 0.1174 Yellow gum with white solid
B8-10-4 0.0366 Yellow gum
B8-10-5 0.0795 Yellow gum
B8-10-6 0.0344 Brown gum

Subfraction B8-10-1 The chromatogram on normal phase TLC (4%
MeOH/CHCl5) showed many spots. Because it was obtained in low quantity, it was
not further investigate

Subfraction B8-10-2 The chromatogram on normal phase TLC (4%
MeOH/CHCls) showed two major yellow spots with the same Ry value as PP7 and
PP9.

Subfraction B8-10-3 Upon standing at room temperature, a white solid
(0.0409 g) precipitated. Its chromatogram on normal phase TLC (4% MeOH/CHCl3)
showed two green spots with the Ryvalue of 0.27 and 0.23. Attempted purification by
repeated chromatography was unsuccessful. The filtrate became a yellow gum
(0.0679 g) after evaporation to dryness under reduced pressure. The chromatogram on
normal phase TLC (4% MeOH/CHCls) showed many spots. Thus, it was not further
investigated.

Subfraction B8-10-4 The chromatogram on normal phase TLC (6%
MeOH/CHCl, 2 times) showed one major UV-active spot with the Ry value of 0.48

together with four minor spots; three UV-active spots with the R¢ values of 0.65, 0.43
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and 0.39 and one yellow spot with the R¢ value of 0.55. Its was shown by TLC
comparison with PP17 that the major spot was PP17, obtained from fraction B8-10-5-2.
Subfraction B8-10-5 The chromatogram on normal phase TLC (6%
MeOH/CHCIs, 2 times) showed one major UV-active spot with the Ry value of 0.48
together with three minor spots; two yellow spots with the Ry values of 0.78 and 0.55
and one UV-active spot with the Ry value of 0.26. Further separation was performed
by flash column chromatography on silica gel. Elution was conducted initially with
2% MeOH/CHCl; and gradually increased the polarity until 40% MeQH/CHCl;.
Fractions with the similar chromatogram werc combined and evaporated under

reduced pressure to dryness to afford two subfractions, as shown in Table 42.

Table 42 Subfractions obtained from subfraction B8-10-5 by flash column

chromatography on silica gel

fraction Weight (g) Physical appearance
B8-10-5-1 0.0086 Yellow gum
B8-10-5-2 0.0372 Pale yellow gum

Subfraction B§-10-5-1 The chromatogram on normal phase TLC
(6% MeOH/CHCl;) showed one yellow spot with the Re value of 0.61 and two UV-
active spots with the Ry values of 0.38 and 0.33. Because it was obtained in low

quantity, it was not further investigated.

Subfraction B8-10-5-2 The chromatogram on normal phase TLC

(6% MeOH/CHCl3) showed one major UV-active spot with the R¢ value of 0,38 and
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one minor UV-active spot with the Ry value of 0.33. Tt was further separated on

precoated TL.C, using 594 MeOH/CHCI; as a mobile phase (7 times), to give PP17 as

a pale yellow gum (0.0211 g). The chromatogram on normal phase TLC (6%

MeOH/CHCls) showed only one UV-active spot with the Revalue of 0.38.

[P = +83° (¢ = 1.2x107 g/100 em’, MeOH)

UV Apax nm (MeOF) (loge)

IR (neat) Vem-1

'H NMR (CDCh) (8 ppm)

(500 MHz)

13C NMR (CDCl3) (6 ppm)

(125 MHz)

304 (4.31)

3650-2360 (O-H stretching), 2967, 2929 (C-H
stretching),1750, 1690, 1633 (C=0 stretching)
12.08 (s, 1H), 6.64 (mt,J=17.0 Hz, 1H), 5.23
(mt,J=7.01z, 1H),4.82 (d,J = 1.0 Hz, 1H),
4.40 (g, J = 6.5 Hz, 1H), 3.48 (s, 3H), 3.26-3.13
(m, 2H), 3.24-3.17 (m, 2H), 3.19 (s, 1H), 2.72
(d,J=8.5Hz, 1H),2.08 (4, /= 14.0 Hz, 111),
1.97 (d, J=1.0 Hz, 3H), 1.76 (s, 3H), 1.69 (s,
3H), 1.57 (dd, J= 14.0 and 8.5 Hz, 1H), 1.43

(s, 3H), 1.42 (s, 3H), 1.34 (d, J =6.5 Hz, 3H),
1.22 (s, 31D, 1.10 (s, 3H)

206.43, 191:72, 171.77, 166.85, 161.65, 152.10,
138.66, 132.16, 127.65, 121.59, 113.62, 105.34,
102.41, 90.18, 86.97, 86.35, 82.54, 81.97,
67.24, 52.05, 49.70, 45.44, 43.94, 30.47, 28.33,
2731, 26.09, 25.79, 22.59, 22.12, 21.43, 20.76,

17.74,13.83
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DEPT (135% (CDCl3) CH 138.66, 121.59, 90.18, 67.24, 49.70, 45.44
CH, 28.33,22.59,21.43
CH, 52.05,30.47,27.31,26.09,25.79,22.12, 20.76,

17.74,13.83

Subfraction B8-10-6 The chromatogram on normal phase TLC (6%
MeOH/CHCI;, 2 times) showed no definite spot. Thus, it was not further investigated.
Subfraction B8-11 The chromatogram on normal phase TLC (2%
MeOH/CHCl3) showed two major yellow spots with the same Ry value as PP7 and
PPY.

Subfraction B8-12 The chromatograms on normal phase TLC (2%
MeOI/CHCL3) and reversed-phase C18 TLC (60% MeOH/H,0) showed no definite
spot. Thus, it was not further investigated.

Fraction B9 The chromatograms on normal phase TLC (70% EtOAc/Petrol)
and reversed-phase C18 TLC (60% MeOH/H,0) showed no definite spot. Thus, it

was not further investigated.




CHAPTER 3

RESULTS AND DISCUSSION

Chemical investigation of Garcinia scortechinii involved isolation,
purification and structural elucidation of compounds isolated from its latex and stem
bark. The latex was separated into two patts by dissolving with chloroform. The
chloroform soluble part, upon repeated chromatography, afforded two known caged-
tetraprenylated xanthones (PP2 and PP7), seven new caged-polyprenylated xanthones
(PP1, PP3, PP4, PP5, PP6, PP8 and PP9) and one new degraded tetraprenylated
xanthone (PP10). The stem bark was extracted with methanol. The crude methanol
extract was separated into two patts by dissolving with chloroform. Upon
chromatographic separation, the chloroform soluble part yielded six Vcaged-
polyprenylated xanthones (PP1, PP2, PP3, PP7, PP8 and PP9), previously isolated
from the latex, and seven additional compounds: five new caged-tetraprenylated
xanthones (PP13, PP14, PP15, PP16 and PP17), one known xanthone (PP11) and
one known steroid (PP1.2). The structures of caged-polyprenylated xanthones were
elucidated by analysis of 1D and/or 2D NMR spectroscopic data and/or comparison of
the NMR data with those of scortechinone A and scortechinone B. The 3¢ NMR
signals were assigned from DEPT, HMQC and HMBC spectra. For other known

compounds, their ' NMR data were compared with those reported in the literature.
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3.1 Characteristic spectroscopic data of caged-polyprenylated xanthones

Most of compounds isolated from the latex and the stem bark of G.
scortechinii were caged-polyprenylated xanthones. Their UV spectrum showed an
absorption band in the range of 360-368 nm due to a conjugated carbonyl
chromophore. The IR spectrum exhibited absorption bands of a hydroxyl group (in
the range of 3600-2500 cm™), an unconjugated carbonyl group (approximately at
1746 cm’") and a chelated ortho-hydroxyl carbonyl group (approximately at 1636
em™). Compounds of this type showed signals for a chelated hydroxy proton (Jy
13.00, 1-OH), an olefinic proton of an a,f-unsaturated carbonyl moiety at §7.58 (H-
8) and characteristic signals for -OC(Me);-CHCH;-C- unit of a caged-prenylated
moiety at & 2.55 (d, J=9.6 Hz, 1H, H-26), 2.33 (dd, J=12.8, 1.4 Hz, 1H, H,-25), 1.66
(dd, J=12.8, 9.6 Hz, 1H, Hp-25), 1.71 (s, 3H, Me-28) and 1.29 (s, 3H, Me-29) in the
'H NMR spectrum [see scortechinone A (1) (Rukachaisirikul, 2000a)]. This moiety
was assigned to be located on C-4b, C-5 and C-7 due to the HMBC correlations of the
olefinic proton, H-8, with C-25, the methylene protons, He-25 and Hy-25, with C-4b,
C-6, C-7 and C-8 and the methine proton, H-26, with C-4b, C-5 and C-7. The
chemical-shift values of Me-28 and Me-29 were assigned by the NOEDIFF data
observed between Me-28 and H-26 and between Me-29 and H.-25 as well as the
methoxy protons (7-OCHz). Furthermore, the 'H NMR spectrum of most of caged-
polyprenylated xanthones, isolated from the latex and the stem bark of G.
scortechinii, also showed characteristic signals for a 2.3,3-trimethylhydrofuran unit:
the quartet signal of the methine proton (du 4.37, H-15) coupled to the doublet signal

of the methyl protons (& 1.41, H-19) with a J-coupling constant value of 6.6 Hz
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together with two methyl protons (S 1.16 (Me-17) and 1.58 (Me-18)]. This unit was
fused to the aromatic ring by linkage of its gem-dimethyl carbon and ring oxygen
atom with C-4 and C-3, respectively, according to the HMBC correlations of Me-17
and Me-18 with C-4 together with the chemical-shift values of C-3 (& 166.87) and
C-4 (6c 113.03). Caged-polyprenylated xanthones, which had the 2,3,3-
trimethylhydrofuran ring, were divided into two types by the consideration of the
relative stereochemistry of H-15, the @~ and S-position. In the case of scortechinone
A, Me-18 gave enhancement with H-15 and the methylene proton (H;-20) and Me-24
of a C-5 prenyl group in the NOEDIFF spectrum. These indicated that Me-18, H-15
and the C-5 prenyl group were located on the same side of the molecule, the a-side.
For scortechinone C (2) (Rukachaisirikul, 2000a), H-15 was assigned to be located on
the S-position since irradiation of Me-17 and Me-18 enhanced the signals of H-15 of
the hydrofuran unit and ;20 of the C-5 o, F-unsaturated carboxylic acid unit,
respectively. In the case of caged-polyprenylated xanthones which had a 3-methylbut-
2-enyl group [see (1)], the chemical-shift values of Me-13 and Me-23 were assigned
by the NOE enhancement observed between Me-13 and H-11 and between Me-23 and

H-21.

1: scortechinone A
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2: scortechinone C

3.2 Structural determination of compounds isolated from the latex of G.

scortechinii
3.2.1 Compound PP7

Compound PP7 was isolated as a yellow solid, melting at 161.8-163.2°C. The
IR spectrum (Figure 3) exhibited absorption bands at 3600-2500 (a hydroxyl group of
a carboxylic aéid), 1745 (an unconjugated carbonyl group), 1690 (an a,f-unsaturated
carboxyl group) and 1636 cm™! (a chelated ortho-hydroxyl carbonyl group). Its uv
spectrum (Figure 2) showed an absorption band due to a conjugated carbonyl
chromophore at Apay 366 nm. Compound PP7 was identified as scortechinone B (3),
which was previously isolated from the twigs of G. scortechinii (Rukachaisirikul,
2000a) by comparison of its 'H NMR data (Figure 4) (Table 43) and co-

chromatography with scortechinone B (3).




Table 43 The 11 NMR data of scortechinone B and PP7
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Position Scortechinone B (&) PP7 (n)
1-OH 13.10 (s, 1H) 13.10 (s, 1H)
7-OCH; 3.52 (s, 3H) 3.63 (s, 3H)
H-8 7.56 (d, J=1.2 Hz, 11} 7.58 (d, /=1.5 Hz, 1H)
H,-10 3.17 {mdd, /=144, 72 Hz, 1H) 3.18 (mdd, J=15.0,7.5 Hz, 1H)
Hp-10 3.11 (mdd, J=14.4,7.2 Hz, [H) 3.12 (mdd, J=15.0, 7.5 Hz, 1H)
H-11 5.20 (, J=7.2, 1.5 Hz, 1H) 5.21 (b, J<1.5, 1.5 Hz, 1H)
Me-13 | 165 (g, J=1.5 Hz, 3H) 1.66 (d, J=1.5 Hz, 31)
Me-14 1.72 (brs, 3H) 1.72 (s, 3H)
H-15 | 4.46 (g, J=6.6 Hz, 1H) 4.46 (g, /=65 Hz, 1H)
Me-17 1.37{s, 3H) 1.38% (s, 3H)
Me-18 1.37 (s, 3H) 1.37% (s, 3H)
Me-19 1.23 (d, J=6.6 Hz, 3H) 1.22 (d, J=6.5 Hz, 3H)
H,-20 3.27 (brdd, J=16.0, 9.6 Hz, 1H) 3.28 (brdd, J=16.0, 10.0 Hz, 11}
He20 | 2.83 (ddg, J=16.0,4.5,2.0 Hz, 1H) | 2.85 (ddg, J=16.0,4.5,2.0 iz, 1H)
H-21 5.67 (ddq, J=9.6,4.5, 1.5 Hz, 1H} 5.68 (ddg, /=10.0, 4.5, 1.5 Hz, 1H)
Me-23 | 1.72(s, 3H) 1.72 (s, 3H)
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Table 43 (Continued)

Position Scortechinone B (&) PP7 (&)

H,-25 2.33 (dd, /=13.2, 1.2 Hz, 1H} 2.34 (brd, J=13.0 Hz, 1H)
Hy-25 1.68 (dd, J=13.2,9.2 Hz, 1H) 1.69 (dd, J=13.0, 9.5 Hz, 1H)
H-26 2.60 (d, /=9.2 Hz, 1H) 2.60 (d, J=9.5 Hz, IH)
Me-28 1,72 (s, 3H) 1.72 {s, 3H)

Me-29 1.28 (s, 3H) 1.29 (s, 3H)

* interchangeable

3.2.2 Compound PP9

Compound PP9, a yellow gum, was found to have a molecular formula of
C34H407 by EIMS (m/z 592) (Figure 5). The IR spectrum (Figure 7) exhibited
almost identical absorption bands to scortechinone B at 3500-2500 (a hydroxyl group
of a carboxylic acid), 1746 (an unconjugated carbonyl group), 1691 (an o,
unsaturated carboxyl group) and 1635 em” (a chelated ortho-hydroxyl carbonyl
group). The presence of three carbonyl groups was confirmed by the signals at &
202.01, 177.50 and 171.00 in the 3¢ NMR spectrum (Figure 9) (Table 45). The UV
absorption band at Ama 362 nm (Figure 6) was similar to that of scortechinone B.
These results suggested that PP9 had a caged-polyprenylated xanthone moiety. Its ‘H
NMR signals (Figure 8) (Table 44) were similar to those of scoftechinone B. lis
consisted of signals for one chelated hydroxy proton (84 13.10, 5, 1-OH), one olefinic
proton (& 7.61, d, /=1.0 Hz, H-8), one methoxy! group (i 3.63, 5), one unit of a 3-

methylbut-2-enyl group [u 5.22 (m1, J=1.0 Hz, 111, H-11), 3.20 (d, /=7.0 Hz, 2H, H-
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10), 1.74 (s, 3H, Me-13) and 1.67 (s, 3H, Me-14)], one unit of -OC(Me),-CHCH,-C-
(81261 (d, J=9.5 Hz, 1H, H-26), 2.33 (d, J=13.0 Hz, 1H, H,-25), 1.72 (s, 3H, Me-
28), 1.69 (dd, J=13.0, 9.5 Hz, 1H, Hy-25) and 1.29 (s, 3H, Me-29)], one unit of a
2,3,3-trimethylhydrofuran ring [Ju 4.54 (g, J=6.5 Hz, H-15), 1.46 (s, 3H, Me-18),
1.41 (s, 3H, Me-17) and 1.30 (4, J=6.5 Hz, 31, Me-19)] and one unit of a 3-
carboxybut-2-enyl group [ 6.41 (¢dd, J=10.0, 5.5, 1.5 Hz, 1H, H-21), 2.79 (mdd,
J=15.0, 5.5, 1.5 Hz, 1H, H,-20), 2.56 (dd, J=15.0, 10.0 Hz, 1H, H,-20) and 1.38 (s,
31, Me-23)]. The °C NMR, DEPT (Figure 10) and HMQC (Figure 14) specira
showed resonances for 17 quaternary carbons, 5 methine carbons, 3 methylene
carbons and 9 methy! carbons. The HMBC data (Figure 15) (Table 46) established
the attachment of all substituents to be identical to that of scortechinone B. However,
the olefinic proton (II-21) of the C-5 substituent was shifted to lower field than that of
scortechinone B (Table 44), suggesting that H-21 lied in the deshielding zone of the
carboxyl group. These indicated that PP9 differed from scortechinone B in the
configuration of a double bond of the C-5 side chain. The configuration at the double
bond was found to be E since irradiation of H-21 (Figure 11) enhanced the signal of
methylene proton (He-20), not the methyl protons (Me-23) in the NOEDIFF
experiment. The relative stereochemistry was also provided by NOEDIFF results.
When the oxymethine proton (H-15) of the hydrofuran ring was irradiated (Figure
12), a singlet signal of the methyl protons at &y 1.41 (Me-17) and a doublet signal of
the methyl protons at & 1.30 (Me-19) were enhanced. The NOEDIFF data observed
between the methyl protons (Me-18) and H-21 as well as the methylene protons
(Ha-20 and Hyp-20) of the C-5 3-carboxybut-2-enyl group (Figure 13) indicated that

the C-5 substituent was cis to Me-18. These results suggested that H-15 was on Jis




113

position. Thus, PP9 had the structurc 4, a new naturally occurring caged-
tetraprenylated xanthone of which the structure differed from scortechinone B in the
stereochemistry of C-15 and the configuration of the double bond of the C-5

substituent.

Table 44 The lt] NMR data of scortechinone B and PP9

Position Scortechinone B (&) PP9 (&) ]
1-OH 13.16 (s, 1H) 13.10 (s, 1H)
7-0OCH; 3.52 (s, 3H) 3.63 (s, 3H)

H-8 1.56 (d, J=1.2 Hz, 1H) 7.61 (d, /=1.0 Hz, 1H)
H.-10 3.17 (mdd, J~14.4, 7.2 Hz, 1H) 3.20 (d, /=1.0 Hz, 2H)
Hp-10 3.11 (mdd, J=14.4, 7.2 Hz, 1H)

H-11 5.20 (i, J=7.2, 1.5 Hz, 1H) 5.22 {mt, J=1.0 Hz, 1H)
Me-13 | 1.65 (g, J=1.5 Hz, 3H) 1.67 (s, 3H)

Me-14 | 172 (brs, 3H) 1.74 (s, 3H)

H-15 4.46 (g, J=6.6 Hz, 11) 4.54 (g, J=6.5 Hz, 1H)
Me-17 | 1.37 (s, 3H) 141 (s, 3H)
Me-18 1.37 (s, 3H) 1.46 (s, 3H)
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Table 44 (Continued)

Position Scortechinone B (&) PP9 (Jn)

Me-19 1.23 (d, J=6.6 Hz, 3H) 1.30 (d, J=6.5 Hz, 311)

H,-20 3.27 (brdd, J=16.0, 9.6 Hz, 1H) 2.79 (mdd, J=15.0, 5.5 Hz, 1H)
Hy-20 2.83 (ddg, J=16.0,4.5,2.0 Hz, 1H) | 2.56 (dd, /=15.0, 10.0 Hz, 1H)
H-21 5.67 (ddg, /=9.6,4.5, 1.5 Hz, 1H) 6.41 (ddg, J=10.0, 5.5, 1.5 Hz, 1H)
Me-23 1.72 (s, 3H) 1.38 (s, 3H)

H,-25 2.33 (dd, J=13.2, 1.2 Hz, 1H) 2,33 (d, /=13.0 Hz, 1H)

Hy-25 1.68 (dd, /=13.2,9.2 Hz, 1H) 1.69 (dd, J=13.0, 9.5 Hz, 1H)
H-26 2.60 (d, /=9.2 Hz, 1H) 2.61 (d, J=9.5 Hz, 1H)

Me-28 1.72 (s, 3H) 1.72 (s, 3H)

Me-29 1.28 (s, 3H) 1.29 (s, 3H)

|

Table 45 The B NMR data of scortechinone B and PPY

Position C-type Scortechinone B (&) PPY {&c)
1-OH C 163.46 163.49
2 C 105.81 106.19
3 C 167.08 166.86
4 C 112.30 111.99
4a C 154.07 154.00
4b C 89.37 89.41
5 C 83.77 831.30
6 Cc=0 202.30 202.01
7 C 84.93 84.96
7-OCHj; CH, 53.88 54.10




Table 45 (Continued)

Position C-type Scortechinone B (&) PPO (6 |
8 CH 135.09 135.40
8a C 132.38 132.13
9 C=0 177.60 177.50
9a c 1027 101.34
10 CH, 21.35 21.39
1 CH 121.69 121.52
2 C 132.05 132.03
13 CH; 25.66 25.70
14 CH, 17.72 17.77
5 CH 91.40 91.28
16 c 43.50 43.70
17 CH; 19.95* 28.15
18 CH, 28.00* 2032
19 CH; 15.81 16.33
20 CH, 29,91 29.28
21 CH 136.99 135.86
22 c 128.68 129.34
23 CH; 20.57 11.44
24 C=0 170.67 [71.00
25 CH, 30.54 30.92
26 cH 49.75 49.78
27 c $3.71 $3.70
28 CH; 30.93 30.87
29 CH; 28.79 28.87

* interchangeable

115




Table 46 The HMBC correlations of scortechinone B and PP9
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Proton Scortechinone B {Carbon) PP9 (Carbon)
1-OH C-1,C-2,C-3,C-9,C-9a C-1,C-2,C-3,C-9a

7.-0CH, | C-7 c-7

H-3 C-4b, C-6, C-7, C-8a, C-9, C-25 C-4b, C-6, C-8a, C-9

H-10 C-1,C-2,C-3,C-11,C-i2 C-1,C-2,C-3,C-11,C-12
H-1i C-10,C-13,C-14 C-10,C-13,C-14

Me-13 C-11,C-12,C-14 C-11,C-12,C-14

Me-14 C-11,C-12,C-13 C-11,C-12,C-13
H-15 C-3, C-4, C-16, C-17, C-18, C-19 C-3,C-4,C-17,C-18
Me-17 C-4, C-15,C-16, C-138 Cc-4,C-15,C-16,C-18
Me-18 C-4, C-15, C-16, C-17 C-4, C-15,C-16, C-17
Me-19 C-15,C-16 C-15,C-16

H,-20 C-4b, C-5, C-6, C-21, C-22 C-4b, C-5, C-6, C-21, C-22
H,-20 C-4b, C-5, C-6, C-21, C-22 C-5, C-6, C-21, C22
H-21 C-22,C-23 C-24

Me-23 C-21,C-22,C-24 C-21,C-22,C-24

H,-25 C-4b, C-6, C-7, C-8, C-26, C-27 C-4b, C-7, C-8, C-26, C-27
Hg-25 C-6, C-7, C-8, C-27 c-6, C-7, C-8, C-26, C-27
H-26 C-4b, C-5, C-7, C-27, C-28 C-4b, C-5, C-7, C-28
Me-28 C-26, C-27,C-29 C-26, C-27,C-29

Me-29 C-26, C-27,C-28 C-26, C-27,C-23
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3.2.3 Compound PPS

Compound PPS with a molecular formula of C35H4200 determined by FABMS
(m/z 607, [M+H]") (Figure 16) was isolated as a yellow gum. The IR spectrum
(Figure 18) with absorption bands at 3461 (a hydroxyl group), 1742 (an unconjugated
carbony! group), 1718 (an a, f-unsaturated carbonyl for ester group) and 1634 em’' (2
chelated ortho-hydroxy} carbonyl group) and UV absorption band at Amax 364 nm
(Figure 17) suggested that PPS was a caged-polyprenylated xanthone. Its 'H NMR
spectrum (Figure 19) (Table 47) was similar to that of PP9 except for one additional
singlet of a methoxyl group. The presence of the methoxyl group was confirmed by a
signal of an oxymethyl carbon at & 51.82 in the B NMR spectrum (Figure 20)
(Table 47). The HMBC data (Figure 26) (Table 47) between the methoxy protons
(& 3.64, 24-OCHs) and C-24 (& 167.53) established the attachment of the methoxyl
group at C-24, suggesting that the C-5 substituent was a,S-unsaturated methyl ester,
not ¢, f-unsaturated carboxylic acid. The configuration at C-21/C-22 double bond was
found to be the same as that of PP9 by NOEDIFF experiment since irradiation of the
olefinic proton (& 6.20, H-21) (Figure 22) gave enhancement with the methylene
proton (& 2.83, H,-20), not the methyl protons (& 1.38, Me-23). The attachment of
other substiu;ents were identical to that of PPY, according to the HMBC data.
Irradiation of the oxymethine proton (du 455, H-15) (Figure 23) enhanced a singlet
signal of the methyl protons (&1 1.41, Me-17) and a doublet signal of the methyl
protons (& 1.30, Me-19) whereas irradiation of the methyl protons (ou 1.47, Me-18)

(Figure 24) enhanced signals of one of the methylene protons (& 2.56, Hp-20) of the
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C-5 unsaturated ester unit and the methy! protons (Me-19). These suggested that the
relative configurations at C-5 and C-15 in PPS were the same as those of PP9.
‘Therefore, the structure of PP5 was assigned as 3, a new naturally occurring caged-

tetraprenylated xanthone with the C-5 methyl 2-butenyl-3-carboxylate unit.

5
Table 47 The NMR data of compound PPS
Position & (mut., Juz) & (C-type) HMBC correlation
1-CH 13.13 (s} 163.48 (C) C-1,C-2,C-9

2 106.10 (C)

3 166.85 (C)

4 112.04 (C)
4a 154.00 (C)
4b 89.43 (C)

5 83.55(C)

6 201.80 (C=0)

7 84.90 (C)
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Table 47 (Continued)
Position Sq (mult., Juz) & (C-type) HMBC correlation
7-OCH; | 3.63 (s) 53.99 (CHs) C-7
8 7.58 (5) 135.32 (CH) C-4b, C-5, C-6, C-8a, C-9
%a 132.08 (C)
9 177.64 (C=0)
9a 101.36 (C)
10 3.21(d,7.0) 21.40 (CH2) C-1,C-2,C-3, C-11, C-12
11 5.22 (mt, 1.0) 121.59 (CH) C-10,C-13,C-14
12 132.08 (C)
13 1.69 (s) 2570 (CHs) | C-11,C-12,C-14
14 1.75 (5) 17.79 (CH;) C-11,C-12,C-13
is 4.55(g, 6.5) 91.28 (CH) C-3,C-4,C-17
16 43.70(C)
17 1.41(s) 28.18 (CH3) C-4, C-15,C-16,C-18
18 1.47 (s) 2031 (CH3) C-4, C-15, C-16, C-17
19 1.30 (4, 6.5) 16.35 (CH;) C-15,C-16
20 H,: 2.83 (dd, 15.5 and 6.0) 29.13 (CHy) C-4b, C-5, C-6, C-21,C-22
Hy: 2.56 (dd, 15.5 and 10.0) C-5, C-6,C-21,C-22
2] 6.20 (mdd, 10.0 and 6.0) 133.32 (CH) C-24
22 130.22 (C)
23 1.38 (s) 11.79 (CH;) C-21,C-22,C-24
24 167.53 (C=0)
24-OCH; | 3.64 (s) 51.82 (CHs) C-24
25 H,: 2.35(d, 13.0) 30.77 (CHy) C-4b, C-7, C-8, C-26, C-27
Hy: 1.69 (dd, 13.0 and 9.5) C-6, C-8, C-26, C-27
26 2.61(d, 9.5) 49.85 (CH) C-4b, C-5, C-7
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Table 47 (Continued)
Position & (mult., Ju) & (C-type) HMBC correlation
27 $3.64 (C)
28 173 (s) 30.88 (CIL) | C-26,C-27, C-29
29 1.30 {s) 28.95 (CH;) C-26, C-27, C-28

3.2.4 Compound PP6

Compound PP6, a yellow gum, was found to have a molecular formula of
C34H4oO0s by FABMS (m/z 577, [M+H]") (Figure 27). The IR spectrum (Figure 29)
exhibited absorption bands at 3469 (a hydroxyl group), 1743 (an unconjugated
carbonyl group), 1690 (an a,f-unsaturated carbonyl group) and 1634 e (a chelated
ortho-hydroxyl group). The presence of these catbonyl functionalities was confirmed
by the carbon signals in the BC NMR spectrum (Figure 31) (Table 48) at §202.05,
194.45 and 177.43. Furthermore, the DEPT spectrum (Figure 32) revealed that the
carbon signal at § 194,45 was an aldehyde carbonyl catbon. The UV absorption band
at A 360 nm (Figure 28) was similar to that of PP9. These results suggested that
PP6 had a caged-polyprenylated xanthone moiety. Its 'H NMR spectrum (Figure 30)
(Table 48) was similar to that of PP9 except for an additional signal of an aldehyde
proton at & 9.23. The formyl group was assigned to be at C-24 due to HMBC data
(Figure 37) (Table 48) between the aldehyde proton (& 9.23, H-24) and C-21 (&
145.53), C-22 (& 140.86) and C-23 (dc 8.75). These suggested the replacement at C-

5 of the 3-carboxybut-2-enyl substituent in PP9 with a 2-butenyl-3-carboxaldehyde
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unit. Trradiation of the olefinic proton (& 6.23, H-21) (Figure 33) caused an NOE

enhancement of the aldehyde proton (H-24), suggesting that the configuration at the

C-21/C-22 double bond was E. The attachment of other substituents was identical to
that of PP9, according to the HMBC data. Irradiation of the methine proton (&4 4.56,
H-15) (Figure 34) enhanced signals of the methy! protons at &y 1.42 (Me-17) and &y
1.30 (Me-19) whereas irradiation of the methyl protons (& 1.45, Me-18) (Figure 35)
enhanced signals of Me-19 and the methylene protons [y 2.89 (H-20) and 2.62 (H,-
20)] of the C-5 unsaturated aldehyde unit, indicating that the relative configuration at
C-5 and C-15 in PP6 was the same as PP9 (H-15 and the C-5 substituent were on f-
and a-face, respectively). Thus, the structure of PP6 was assigned as 6, a new
naturally occurring caged-tetraprenylated xanthone with the C-5 2-butenyl-3-

carboxaldehyde unit.




Table 48 The NMR data of compound PP6
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Position Sa (mult., Juz) & (C-type) HMBC correlation
{-OH | 13.08(s) 163.63 (C) C-1,C-2,C-3,C9a
2 106.37 (C)
3 167.28 (C)
4 112.17 (C)
da 154.06 (C)
4b 89.57(C)
5 83.15 (C)
6 202.05 (C=0)
7 84.92 (C)
7-OCH; | 3.63 (s} 54.00 (CHs) C-7
3 7.60 (s) 135.90 (CH}) C-4b, C-6, C-9
8a 132.37 (C)
9 177.43 (C=0)
9a 101.30(C)
10 3.20(d, 6.5) 21.44 (CHyp) C-1,C-2,C-3,C-11,C-12
11 521(,6.5) 121.42 (CH) C-10, C-13, C-14
12 132.12 (C)
13 1.69 (s) 25.80 (CHs} C-11,C-12,C-14
14 1.75(s) 17.84 (CH3) C-11,C-12,C-13
15 4.56 (g, 6.5) 91.41 (CH) C-3, C-4,C-17
16 43.73(C)
17 1.42 (s) 28.15 (CHy) C-4, C-15, C-16, C-18
18 145 (s) 20.50 (CHa) C-4, C-15,C-16,C-17
19 1.30 (d, 6.5) 16.34 (CHs) C-15,C-16
20 H,: 2.89 (dd, 15.5 and 5.5) 29.38 (CHy) C-4b, C-5, C-6, C-21, C-22
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Table 48 (Continued)
Position S (mudt., Juz) & (C-type) HMBC correlation

Hy: 2.62 (dd, 15.5 and 8.0) C-5, C-6,C-21,C-22

21 6.23 (mdd, 8.0 and 5.5) 145.53 (CH) C-23,C-24

22 140.86 (C)

23 1.36 (s) 8.75 (CHy) C-21,C-22,C-24

24 9.23 (s) 194.45 (HC=0) | C-21,C-22,C-23

25 H,: 2.38 (4, 13.0) 30.64 (CHy) C-4b, C-8, C-26, C-27
Hy: 1.69 (dd, 13.0 and 9.5) C-6, C-27

26 2.66 (d, 9.5) 49.82 (CH) C-4b, C-7, C-28

27 84.03 (C)

28 1.74 (s) 30.96 (CH,) C-26,C-27,C-29

29 1.31 (s) 28.93 (CH,) C-26, C-27, C-28

3.2.5 Compound PP8

Compound PP8 was obtained as a pale yellow gum with a molecular formula

of C3sH44010 determined by FABMS (m/z 625, [M+H]") (Figure 38). The IR spectrum

(Figure 40) exhibited absorption bands at 3600-2500 (a hydroxyl group of carboxylic

acid), 1751 (an unconjugated carbonyl group), 1687 (an a,f-unsaturated carboxyl

group) and 1634 cm’! (a chelated ortho-hydroxyl carbonyl group), indicating that PP8

had three carbonyl groups. The carbon signals at §205.70, 195.02 and 177.26 in the

3C NMR spectrum (Figure 42) (Table 49) confirmed the presence of three carbonyl

groups. Although, its UV spectrum (Figure 39) showed an absorption band at lower

wavelength (Amax 304 nm) but the 'H NMR spectrum (Figure 41) (Table 49) showed
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characteristic signals of a caged-prenylated moiety, -OC(Me),-CHCH,-C- [&42.70 (d,
J=8.8 Hz, 1H, H-26), 2.02 (d, J=14.2 Hz, 1H, Hy-25), 1.63 (dd, J=14.2, 8.8 Hz, 1H,
H,-25), 1.41 (s, 3H, Me-28) and 1.20 (s, 3H, Me-29)]. Comparison of its 'H NMR
data with those of PP9 revealed the similar results except for the absence of the
olefinic proton signal at the lowest field (&1 7.61, H-8 in PP9), suggesting that PP8
did not have C-8 double bond. In addition, two additional methine-proton signals {Ju
4.46 (s, 1H, H-8) and 3.16 (s, 1H, H-8a)] and one additional methoxy-proton signal (&
1 3.36, 3H, 8-OCH;) were present. The methoxyl group was assigned to be at C-8 due
to a HMBC correlation (Figure 50) (Table 49) between the methoxy protons (8-
OCH;) and C-8 (& 75.18), suggesting the 1,4-addition of methanol to the a,f-
unsaturated ketone functionality. These corresponded to the 3¢ NMR and DEPT
(Figure 43) spectra which showed 16 quaternary carbons, 6 methine carbons, 3
methylene carbons and 10 methyl carbons. The attachment of other substituents was
aiso identical to that of PP9, acco.rding to the HMBC data. The relative
stercochemistry was provided by NOEDIFF experiments. When the oxymethine
proton (& 4.40, H-15) of the hydrofuran ring was irradiated (Figure 44), the singlet
signal of the methyl protons (& 1.43, Me-17) and the doublet signal of the methyl
protons (& 1.34, Me-19) were enhanced, indicating that H-15 was cis to Me-17.
Irradiation of the methyl protons (& 1.10, Me-18) (Figure 48) enhanced signals of
Me-19, Me-17, the methylene protons (y 3.29-3.17, H-20), the olefinic proton (éu
6.62, H-21) and the methyl protons (én 1.98, Me-23) of the C-5 «,f-unsaturated
carboxylic acid unit. These indicated that Me-18, Me-19 and the C-5 a,f-unsaturated

carboxylic acid unit were located on the same side of the molecule, the a-position.
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Therefore, 11-15 was on S-position. The configuration at C-21/C-22 double bond was
assigned to be Z by enhancement of H-21 after irradiation of Me-23 (Figure 46).
Trradiation of the methylene proton (& 1.63, Hp-25) (Figure 47) enhanced signals of
the methine proton (& 2.70, H-26), the methylene proton (& 2.02, Hp-25) and the
oxymethine proton (& 4.46, H-8) but did not affect the signals of the Iﬁethoxy
protons (&y 3.36, 8-OCHs) and the methine proton (& 3.16, H-8a). In addition,
itradiation of H-8a (Figure 45) enhanced signals of H-8, 8-OCHz and H-21 of the C-5
3-carboxybut-2-enyl substituent. These results indicated that H-8 and H-8a were trans
and located on - and a-position, respectively. Therefore, PP8 had the structure 7, a
new caged-tetraprenylated xanthone. Compound PP8 might be derived from PP9 by
addition of methanol to C-8 double bond. The lack of this a,f-unsaturated carbonyl

functional group might affect the absorption maximum in the UV spectrum.




Table 49 The NMR data of compound PP8
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Position S (mult., Juz) & (C-type) HMBC correlation
1-0H | 12.08 (s) 161.59 (C) C-1,C-2,C-3,C9a
2 105.35 (C)
3 166.84 (C)
4 113.67 (C)
4a 15217 (C)
4b 86.33 (C)
5 $7.06 (C)
6 205.70 (C=0)
7 81.37(C)
7-OCH; | 3.50(s) 52.38 (CH,) C-7
8 4.46 (s) 75.19 (CH) C-5,C-6, C-7, 8-OCH,, C-8a, C-9, C-25
8-OCH; | 3.36(s) 57.38 (CHy) C-8
8a 3.16 () 48.84 (CH) C-5,C-7,C-8, C-9,C-26
9 195.02 (C=0)
9a 102.40 (C)
10 3.26-3.17 (m) 21.42 (CHyp) C-1,C2,C-3,C-11,C-12
11 5.25 (mt, 7.0) 121.56 (CH) | C-10,C-13,C-14
12 132.14 (C)
13 1.69 (s) 2576 (CHy) | C-2,C-11,C-12, C-14
14 1.76 (5) 17.71 (CHy) | C-2,C-11,C-12,C-13
15 4.40(g,6.8) 90.18 (CH) C-3,C-4,C-16,C-17,C-18
16 4392 (C)
17 143 (5) 26.08 (CH;) | C-4,C-15,C-16, C-18
18 L.10 () 22.06 (CH3) C-15, C-16, C-17
19 1.34 (d, 6.8) 13.82 (CH3) C-15, C-16
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Table 49 (Continued)

Position S (mult., Juz) & (C-type) HMBC correlation
20 3.29-3.17 (in) 28.56 (CHy) C-4b, C-5, C-6, C-21, C-22,C-24
21 6.62 (qt, 6.8 and 1.5) 139.31 (CH) C-5,C-6,C-23, C-24
22 127.36 (C)

23 1.98 (d, 1.5) 20.72 (CHy) C-21,C-22,C-24

24 172.26 (C=0)

25 H,:2.02(d, 14.2) 23.98 (CHy) C-5, C-7,C-8, C-26, C-27
Hy: 1.63 (dd, 14.2 and 8.8) C-7,C-8, C-26, C-27

26 2,70 (d, 8.8) 4526 (CH) C-4b, C-5, C-7, C-25, C-28

27 82.35(C)

28 141 (s) 30.49 (CHy) C-26, C-27, C-29

29 1.20 (s) 27.16 (CHs) C-25, C-26,C-27,C-28

3.2.6 Compound PP10

Compound PP10, a yellow gum, was found to have a molecular formula of

Ca4H4010 by EIMS (m/z 608) (Figure 51). The IR spectrum (Figure 53) exhibited

absorption bands at 3600-3500 (a hydroxyl group of a carboxylic acid), 1753 (a

carbonyl of ester group), 1690 (&, f-unsaturated carbonyl groups) and 1640 cm” (a

chelated ortho-hydroxyl carbonyl group). The presence of four carbonyl

functionalities was confirmed by the signals at § 197.00, 182.07, 171.31 and 170.60 in

the 3C NMR spectrum (Figure 55) (Table 50). Compound PP10 had one carbonyl

group more than PP9. Its UV absorption band at Amay 368 nm (Figure 52) was due to

a conjugated carbonyl chromophore. The {1 NMR spectrum (Figure 54) (Table 50)
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showed signals of one chelated hydroxy proton (& 12.69, 5, 1-OH), one olefinic
proton (& 6.62, s, H-8), one methoxyl group (& 3.63, s, 6-OCH3), one unit of a 3-
methylbut-2-enyl group [& 5.21 (mt, J=7.5 Hz, 1H, H-11), 3.22 (d, J=7.5 Hz, 2H, H-
10), 1.75 (s, 3H, Me-14) and 1.69 (s, 3H, Me-13)], one unit of a 3-carboxybut-2-enyl
group [& 6.67 (mt, J=7.5 Hz, 1H, H-21), 2.79 (dd, J=15.0, 7.5 Hz, 1H, Ha-20), 2.69
(dd, J=15.0, 7.5 Hz, 1H, H,-20) and 1.67 (s, 3H, Me-23)], one unit of a 2,3,3-
trimethylhydrofuran ring [& 4.37 (g, J=6.5 Hz, 1H, H-15), 1.42 (s, 3H, Me-17), 1.41
(d, J=6.5 Hz, 1H, Me-19) and 1.27 (s, 3H, Me-18) ] and onc unit of -OC(Me),-
CHCH,-C- {8 3.17 (dd, J=13.0, 7.0 Hz, 1H, H-26), 2.94 (dd, J=16.5, 13.0 Hz, 1H,
H,-25), 2.62 (dd, J=16.5, 7.0 Hz, 1H, Hy-25), 1.76 (s, 3H, Me-28) and 1.45 (s, 3H,
Me-29)]. The B NMR, DEPT (Figure 56) and HMQC (Figure 60) spectra showed
resonances for 17 quaternary carbons, 5 methine carbons, 3 methylene carbons and 9
methyl carbons. The 3-methylbut-2-enyl group was assigned to be located on C-2 (&
106.44) since its methylene protons (H-10) showed the correlations with C-1 (&
162.94), C-2 and C-3 (& 167.95) in the HMBC spectrum (Figure 61) (Table 50).
Both Me-17 and Me-18 of the 2,3,3-trimethylhydrofuran ring showed the HMBC
correlations with C-4 (& 112.66) and C-4a (& 152.92), suggesting the attachment of
its gem-dimethyl carbon and ring oxygen atom on C-4 and C-3, respectively. The
chemical-shift values of C-3 and C-4 in the C NMR spectrum supported these
conclusions. The methoxyl group was connected to the carbonyl carbon at §171.31
(C-6) based on a correlation between the methoxy protons and C-6, indicating the
presence of the methyl ester group. Both the methyl ester group and the 3-carboxybut-

2-enyl group were attached on the same oxyquaternary carbon (& 93.81, C-5) due to
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the HMBC correlations of the methylene proton (Hy-20) of the side chain with C-5
and C-6. The HMBC correlation of the methylene protons (H-25) with the carbonyl
carbon at & 197.00 revealed that C-7 was a carbonyl carbon. One of these methylene
protons (Hy-25) also showed a 37 correlation only with an oxyquaternary carbon (&
90.62, C-4b) but did not correlate with C-6. These suggested bond cleavage between
C-6 and C-7 in the structure of PP9. Both C-6 and C-7 in PP9 became a carbonyl
carbon in PP10. The remaining olefinic proton (& 6.62), which was directly attached
to C-8 (& 128.55) in the HMQC spectrum, was attributed to H-8 according to its >J
HMBC correlations with a quaternary carbon (C-4b) and a carbonyi carbon (&
182.07, C-9). The relative stercochemistry was provided by NOEDIFF results. The
NOE enhancement between the oxymethine proton (H-15) and Me-17 and Me-19 of
the 2,3,3-trimethylhydrofuran ring (Figure 58) and between Me-18 and Me-19 and
the methylene proton (Hy-20) of the C-5 3-carboxybut-2-enyl unit (Figure §9)
suggested that H-15 and the C-5 side chain were at /3 and a-position, respectively,
the same as PP9. The configuration of C-2 1_/C-22 double bond of the C-5 substituent
was found to be E since irradiation of the olefinic proton (H-21} (Figure 57) did not
show the NOE enhancement with the methyl protons (Me-23). Thus, PP10 had

cleavaged structure 8, a new degraded tetraprenylated xanthone.




Table 50 The NMR data of compound PP10
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Position & (mudt., Juz) & (C-type) HMBC correlation
1-OH | 12,69 (s) 162.94 (C) C-1,C-2,C-9a
2 106.44 (C)
3 167.95 (C)
4 112.66 (C)
4a 152.92 (C)
4b 90.62 (C)
5 93.81 (C)
6 171.31(C=0)
6-OCH; | 3.63(s) 52.29 (CHy) C-6
7 197.00 (C=0)
8 6.62 (5) 128.55(CH) | C-4b,C-9
8a 145.85 (C)
9 182.07 (C=0)
9a 102.83 (C)
10 3.22(4,7.5) 21.45 (CHy) C-1,C-2,C-3,C-11,C-12
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Table 50 (Continued)
Position &1 (mult., Juz) & (C-type) HMBC correlation

11 5.21 (i, 7.5) 121.32 (CH) C-13,C-14
12 132,37 (C)
13 1.69 (s) 25.78 (CH3) C-11,C-12,C-14
14 175 (s) 1774 (CHs) | C-11,C-12,C-13
15 437(g,6.5) 90.64 (CH) C-17,C-18
16 43.46 (C)
17 1.42 () 24.40 (CHs) C-4, C-4a, C-15, C-16, C-18
i8 1.27 (s) 21.06 (CH3) C-4, C-4a, C-15, C-16, C-17
19 1.41 {d, 6.5) 13.72 (CH;) C-4, C-15, C-16, C-18
20 H.: 2.79 (dd, 15.0 and 7.5) 35.89 (CHyp) C-5,C-21,C-22

Hy: 2.69 (dd, 15.0 and 7.5) C-5,C-6,C-21,C-22
21 6.67 (mt, 1.5) 137.11 (CH) C-23, C-24
22 130.32 (C)
23 1.67 (s) 1246 (CH;) | C-21,C-22,C-24
24 170.60 (C=0)
25 H,: 2.94 (dd, 16.5 and 13.0) 38.27 (CHy) C-1,C-26, C-27

Hy: 2.62 (dd, 16.5 and 7.0) C-4b, C-7, C-26
26 3.17 (dd, 13.0 and 7.0) 55.88 (CH) C-db, C-5, C-28

{27 85.12(C)

28 1.76 (5) 3121 (CHy) | C-26,C-27,C-29
29 1.45 (s) 2543 (CH3) C-26,C-27,C-28
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3.2.7 Compound PP2

Compound PP2 was obtained as a yellow solid, melting at 152.6-154.8°C. The
IR spectrum (Figure 63) exhibited absorption bands at 3454 (a hydroxyl group), 1745
(an unconjugated carbonyl group) and 1634 em’ (a chelated ortho-hydroxyl carbonyl
group), indicating that PP2 had two carbony! groups. Its UV spectrum (Figure 62)
showed an absorption band at Ama 362 nm due to a conjugated carbonyl
chromophore. Compound PP2 was identified as scortechinone A (1), which was
previously isolated from the twigs of G. scortechinii (Rukachaisirikul, 2000a), by
comparison of its 'H NMR data (Figure 64) (Table 51) and co-chromatography with

scortechinone A (1).




Table 51 The 'H NMR data of scortechinone A and PP2
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Position Scortechinone A (dy) PP2 {&y)
i-OH 13.15 (s, 1H) 13.19 (s, |H)

7-OCH; 3.62 (s, 3H) 3.63 (s, 3H)
H-8 7.49 (d, J=1.4 Hz, 1H) 7.51 (d, J=1.5 Hz, 1H)
H-10 3.22(d,J=7.2 Hz, 2H) 3.27-3.17 (m, 2H)
H-11 5.22 (i, J=7.2, 1.4 Hz, 1H) 5.22 (¢, /~10, 1.5 Hz, 1H)
Me-13 1.68 (brg, /=1.2 Hz, 3H) 1.68 (brs, 3H)

Me-14 1.75 {(brg, J=1.2 Hz, 3H) 1.75 (brs, 3H)
H-15 4.37 (g, J=6.4 Hz, 1H) 4.38 (¢, /=7.0 Hz, IH)
Me-17 116 (s, 3H) 1.16 (s, 3H)

Me-18 1.58 (s, 3H) 1.58 (s, 3H)

Me-19 1.41 (d, /=6.4 Hz, 3H) 1.41 (d, J=7.0 Hz, 3H)
H,-20 2.79 (ddh, J=14.4,4.5, 1.5 Hz, 1H) | 2.69 (md, J=14.5 Hz, IH)
Hy-20 2.55 (dd, J=14.4, 10.5 Hz, 1H) 2.56 (dd, J=14.5, 10.0 Hz, 1H)
H-21 4,41-4.37 (m, 1H) 4.41-4.36 (m, 1H)

Me-23 1.36 (brt, J=1.5 Hz, 3H) 1.36 (brs, 3H)

Me-24 1.07 (brt, J=1.4 Hz, 3H) 1.06 (brs, 3H)

H,-25 2.33 (dd, J=12.8, 1.4 Hz, 1H) 2.33 (brd, /~13.0 Hz, 1H)
H,-25 1.65 (dd, J=12.8,9.6 Hz, |H) 1.65 {dd, J=13.0, 9.5 Hz, |H)
H-26 2.55 (d,.7=9.6 Hz, 1H) 2.56 (d, J=9.5Hz, 1H)
Me-28 1.71 {s, 3H) 1.71 {s, 3H)

Me-29 1.29 (s, 3H) 1.29 (s, 3H)
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3.2.8 Compound PP1

Compound PP1, a yellow gum, was found to have a molecular formula of
C34Hp0; determined by EIMS spectrum (Figure 65) which showed a molecular ion
at m/z 534 for [M-28]". The IR spectrum (Figure 67) exhibited absorption bands at
3397 (a hydroxyl group), 1746 (an unconjugated carbonyl group) and 1634 e’ (a
chelated orfho-hydroxyl carbonyl group), indicating that PP1 had two carbonyl
groups, the same as scortechinone A. The presence of these carbony! functionalities

was confirmed by the signals at & 201.96 and 179.09 in the C NMR spectrum
(Figure 69) (Table 53). The UV absorption band at Amax 301 nm (Figure 66) was
similar to that of scortechinone A. These results suggested that PP1 had a caged-
polyprenylated xanthone moiety. Comparison of its 'H NMR spectrum (Figure 68)
(Table 52) with that of scortechinom_a A revealed the similar results (a caged-
polyprenylated xanthone with two isoprene groups) except for the absence of an
oxymethine proton and a secondary methyl group of a hydrofuran ring. Additional
signals were observed: a singlef signal at §7.70 of a hydroxyl group and characteristic
signals of a 1,1-dimethylallyl group [ 6.43 (dd, J=11.5, 10.5 Hz, 1H, H-11), 5.46 (d,
J=17.5 Hz, 1H, H,-12), 5.37 (dd, J=10.5, 1.0 Hz, 1H, Hy-12), 1.60 (s, 3H, Me-13) and
1.59 (s, 3H, Me-14)]. The additional hydroxyl group was assigned to be at C-3 (&
163.32) by its HMBC correlations (Figure 73) (Table 54) with C-2 (& 111.62), C-3,
C-4 (& 108.18) and C-4a (& 156.27). Both methyl-proton signals (Me-13 and Me-14)
of the 1,1-dimethylallyl group showed a HMBC cotrelation with C-2, suggesting the

attachment of this group at C-2. Irradiation of the olefinic proton (I1-11) of the 1,1-

dimethylallyl group (Figure 71) caused an NOE enhancement of the olefinic proton at
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85.37 (Hy-12), indicating that H-11 was cis to Hy-12. One of two isoprenyl groups [dn
5.14 (mt, J=6.5 Hz, 1H, H-16), 3.30 (d, J=6.5 Hz, 2H, H-15), 1.70 (s, 3H, Me-19) and
1.66 (d, J=1.0 Hz, 3H, Me-18)] was assigned to be at C-4 by the HMBC correlations
of its methylene proton (H-15) with C-3, C-4 and C-4a. Furthermore, the HMBC data
established the identical attachment of remaining substituents (the C-5 isoprenyl
group and 7-OCHjs) to that of scortechinone A. Thus, PP1 had the structure 9, a new

caged-tetraprenylated xanthone with the uncyclized isoprenyl unit at C-4,

Table 52 The {1 NMR data of scortechinone A and PP1

Position Scortechinone A (&y) PP1 (&)
t-OH 13.15(s, I1H) 13.62 (s, {H)
3-0H - 7.70 (s, 1H)
7-OCH;4 3.62 (s, 3H) 3.63 (s, 3H)
H-8 7.49 (d, J=1.4 Hz, 1H) 7.48 (d, J=1.0 Hz, 1H)
H-10 322 (d, J~7.2 Hz, 2H) -
H-11 522 {(ht, ;512,14 Hz, 1H) 6.43 (dd, /=175, 10.5 Hz, 1H)




Table 52 (Continued)
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Position Scortechinone A () PPL (&)
H,-12 - 5.46 (d, J=17.5 Hz, 1H)
Hy-12 - 5.37 (dd, J=10.5, 1.0 Hz, 1H)
Me-13 1.68 (brg, J=1.2 Hz, 3H) 1.60 (s, 3H)
Me-14 1.75 (brg, /=1.2 Hz, 3H) 1.59 (s, 3H)
H-15 4.37 (g, J=6.4 Hz, 1H) 3.30 (d, J=6.5 Hz, 2H)
H-16 - 5.14 (mt, J=6.5 Hz, 1H)
Me-17 1.16 (s, 3H) -
Me-18 1.58 (s, 3H) 1.66 (d, J=1.0 Hz, 3H}
Me-19 1.41 (d, J/=6.4 Hz, 3H) 1.70 (s, 3H)
H,-20 2.79 (ddh, J=14.4, 4.5, 1.5 Hz, 1H) 2.62-2.56 (m, 1H)
Hy-20 2.55 (dd, J=14.4, 10.5 Hz, 1H) 2.54 (d, J~10.0 Hz, 1H)
H-21 4.41-4,37 (m, 1H) 4.43 (mdd, J=10.0, 5.5 Hz, 1H)
Me-23 1.36 (brf, J=1.5 Hz, 3H) 1.37 (5, 3H)
Me-24 1.07 (brt, J=1.4 Hz, 3H) 1.01 (s, 3H)
H,25 2.33 (dd, J=12.8, 1.4 Hz, 1H) 2.33 (4, J=13.0 Hz, 1H)
Hy-25 1.65 (dd, J=12.8, 9.6 Hz, |H) 1.61 (dd, J/=13.0, 10.0 Hz, 1H)
H-26 2.55 (d, J=9.6 Hz, 1H) 2.50 (d, /=10.0 Hz, 1H)
Me-28 1.71 (s, 3H) 1.65 {s, 3H)
Me-29 | 1.29(s, 3H) 1.28 (s, 3H)




Table 53 The *C NMR data of scortechinone A and PP1

Position C-type Scartechinone A (&) PPI (&)
I-OH C 163.26 162.86
2 C 105.77 11162
3 C 166.87 163.32
4 C 113.03 108.18
4a C 153.82 156.27
4b C 89.30 38.68
5 C 84.19 84.20
6 =0 202.26 201.96
7 C 84.90 §4.81
7-OCH; CH; 54.94 53.95
8 CH 133.96 134.02
8a C 132,38 132.35
9 C=0 178.23 179.09
9a C 101.39 100.95
10 Ci, 21.42 -
C - 40.96
11 CH 12175 149.53
12 C 131.98 -
CH; - 113.69
13 CH,4 25.70 27.16%
14 CH; 17.73 26.90%
15 CH 90.61 -
CH; - 22.16
16 C 43.47 -
CcH - 122.36

137




Table 53 (Continued)

Position C-type Scortechinone A (&) PPl (&)
17 CH; 21.07 -
C - 132.31
18 CH; 24.06 25.66
19 CH, 13.57 18.07
20 CH, 28.93 28.82
21 CH 117.17 117.54
22 C 135.59 135.27
23 CH, 25.47 25.54
24 CH; 16.87 16.69
25 CH, 30.85 30.24
26 CH 49.94 49.71
27 C 83.23 83.53
28 CH; 30.78 30.07
29 CH; 28.97 29.01

* interchangeable

Table 54 The HMBC correlations of scortechinone A and PP1
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Proton Scortechinone A (Carbon) PPi (Carbon)
1-OH C-1,C-2,C-3,C-9,C-9 C-1,C-2,C9a
3-CH - C-2,C-3,C4,CHa
7-OCH; -7 c-7
H-8 C-4b, C-6, C-7, C-8a, C-9, C-25 C-4b, C-6, C-8a, C-9
H-10 C-1,C-2,C-3,C-11,C-12 -




139

Table 54 (Continued)
Proton Scortechinone A (Carbon) PP1 (Carbon)
H-11 C-10, C-13,C-14 C-10,C-14
H.-12 - C-10, C-11
Hy-12 - C-10
Me-13 C-11,C-12,C-14 C-2,C-10,C-14
Me-14 C-11, C-12,C-13 C-2,C-10
H-15 C-3, C-4, C-16, C-17, C-18, C-19 C-3, C-4, C-4a, C-16, C-17
H-16 - C-15,C-18,C-19
Me-17 C-4, C-15,C-16,C-18 -
Me-18 C-4, C-15, C-16, C-17 C-16,C-17,C-19
Me-19 C-15,C-16 C-16,C-17,C-18
H,-20 C-4b, C-5, C-6, C-21, C-22 C-4b, C-5, C-6, C-22
H,-20 C-4b, C-5, C-6,C-21, C-22 C-4b, C-5, C-6,C-22
H-21 C-22, C-23,C-24 -
Me-23 C-21,C-22,C-24 C-21,C-22,C-24
Me-24 C-21,C-22,C-23 C-21,C-22,C-23
H,-25 C-4b, C-6, C-7, C-8, C-26, C-27 C-4b, C-7, C-8, C-26, C-27
Hy-25 C-6,C-7, C-8, C-27 C-7,C-26
H-26 C-4b, C-5,C-7,C-28 C-4b, C-28
Me-28 C-26, C-27, C-29 C-26, C-29
Me-29 C-26,C-27,C-28 C-26,C-27
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3.2.9 Compound PP3

Compound PP3 with a molecular formula of CaoH3407 by FABMS (m/z 495,
[M+H]+) (Figure 74), was isolated as a yellow solid, melting at 176.8-177.9°C. The
IR spectrum (Figure 76) showed the absorption bands at 1744 (an unconjugated
carbonyl group) and 1640 em’! (a chelated ortho-hydroxyl carbonyl group). Carbon
signals at & 202.07 and 17825 in the B¢ NMR spectram (Figure 78) (Table 55)
supported IR spectral data. An absorption band of a hydroxyl group was also observed
at 3461 em!. Tis UV spectrum (Figure 75) showed two absorption bands at Amax 333
and 360 nm. The caged structure was evident by characteristic signals of -OC(Me);-
CHCH,-C- unit [& 2.59 (d, /=9.5 Hz, 1H, H-21), 2.36 (d, J=13.0 Hz, 1H, Hp-20),
1.72 (s, 3H, Me-23), 1.66 (dd, J=13.0, 9.5 Hz, 1H, Hy-20) and 1.30 (s, 3H, Me-24)] in
the '"H NMR spectrum (Figure 77) (Table 55). Furthermore, the 'H NMR spectrum
showed signals of one chelated hydroxy proton (& 13.03, s, 1-OH), two olefinic
protons [&4 7.52 (d, J=1.5 Hz, 1H, H-8) and 6.04 (s, 11, H-2)], one methoxyl group
(& 3.64, 5, 7-OCHy), one unit of a 3-methylbut-2-enyl group [S4 4.38 (md, J=10.5
Hz, 11, H-16), 2.71 (md, J=14.5 Hz, 1H, 1,-15), 2.58 (dd, J=14.5, 10.5 Hz, 1H, H-
15), 1.38 (brs, 3H, Me-18) and 1.09 (brs, 3H, Me-19)] and one unit of a 2,3,3-
trimethylhydrofuran ring [y 4.40 (g, J=6.5 Hz, 1H, H-10), 1.59 (s, 3H, Me-1.3), 1.41
(d, J=6.5 Hz, 3H, Me-14) and 1.17 (s, 3H, Me-12)]. The C NMR, DEPT (Figure
79) and HMQC (Figure 81) spectra showed resonances for 14 quaternary carbons, 5
methine carbons, 2 methylene carbons and 8 methyl carbons. In the HMBC spectrum

(Figure 82) (Table 55), the chelated hydroxy proton (du 13.03, 1-OH) showed a




141

correlation with a methine aromatic carbon at 8 92.75 (C-2) which correlated to the
aromatic proton (& 6.04, H-2) in the HMQC spectrum. In addition, H-2 showed cross
peaks with C-1 (& 166.22), C-3 (&c 168.68) and C-4 (&c 113.68). Two methyl-proton
signals (Me-12 and Me-13) of the 2,3,3-trimethylhydrofuran ring showed the HMBC
correlation with C-4, suggesting the attachment of this group at C-3 and C-4. The
chemical-shift values of C-3 and C-4 confirmed that the hydrofuran ring was fused to
the aromatic ring by linkage of its gem-dimethyl carbon and ring oxygen atom with C-
4 and C-3, respectively. The olefinic proton at 6 7.52, which correlated to an olefinic
carbon at §134.37 in the HMQC spectrum, showed the HMBC correlations with C-4b
(& 89.54), C-6 (& 202.08) and C-9 (& 178.25). These data established its location at
C-8. The methoxyl group (& 3.64) was placed at C-7 (& 84.92) according to a
correlation between its protons with C-7. The HMBC correlations of the methylene
protons [& 2.71 (Ha-15) and 2.58 (Hy-15)] of the 3-methylbut-2-enyl group with C-
4b, C-5 (& 84.23) and C-6 established the attachment of this prenyl group at C-3. The
relative stereochemistry of PP3 was established by NOEDIFF results. The methyl
protons (Me-13) of the hydrofuran ring gave NOE enhéncement with the methine
proton (H-10), the methylene proton (Hy-15) and the methyl protons (Me-19) (Figure
80). These results indicated that the C-5 prenyl group was located on the same side,
the o side of the molecule, as Me-13 and H-10. Thus, PP3 had the structure 10, a new

caged-triprenylated xanthone without a C-2 isoprenyl substituent.
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Table 55 The NMR data of compound PP3

HMBC correlation

Position Su (mut., Jz) & (C-type)
100 | 13.03 () 16623 (C) | C-1, C-2, C-3, C-9a
2 | 6.04(s) 9275 (CH) | C-1,C-3, C-4,C-9a
3 168.68 (C)
4 113.68 (C)
4a 155,82 (C)
4b 89.54 (C)
5 84.23 (C)
6 202.08 (C=0)
7 84.92 (C)
7-OCH; | 3:64 (5) 53.99 (CH;) | C-7
8 7.52(d, 1.5) 13437 (CH) | C-4b, C-5, C-6, C-8a, C-9, C-21
8 132.02 (C)
9 178.25 (C=0)
9a 101.42 (C)
10 | 4.40(q6.5) 91.05(CH) |C-11,C-12,C-13
i 43.16 (C)
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Table 55 (Continued)

Position Sq (mudt., Jiz) & (C-type) HMBC correlation
12 117 (s) 21.04 (CHy) | C-4,C-10, C-11,C-13,C-14
13 1.59 (s) 23.87 (CH;) | C-4,C-10,C-11,C-12
14 1.41(d, 6.5) 13.48 (CHy) | C-10, C-11
15 H,: 2,71 (md, 14.5) 28.99 (CH,) | C-4b, C-5,C-16, C-17

Hy: 2.58 (dd, 14.5 and 10.5) C-4b, C-5, C-6, C-16, C-17
16 4.38 (md, 10.5) 117.31 (CI)
17 135.69 (C)
18 1.38 (brs) 25.55(CH;) | C-16,C-17,C-19
19 1.09 (brs) 16.90 (CH;) | C-16,C-17,C-18
20 H,: 2.36 (d, 13.0) 30.80 (CH,) | C-4b, C-7,C-8, C-21,C-22
Hy: 1.66 {(dd, 13.0 and 9.5) c-6,C-7,C-8,C-21,C-22
21 2.59 (d,9.5) 49.93 (CH) | C-4b, C-5,C-6, C-20, C-23
22 $3.29 (C)
23 L.72(s) 30.79 (CH;) | C-21,C-22
24 1.30 () 29.01 (CHy) | C-20,C-21, C-22,C-23

3.2.10 Compound PP4

Compound PP4 was obtained as a yellow solid, melting at 188.9-190.0°C. It

showed the same molecular formula as PP3. In addition, its IR (Figure 85) and UV

(Figure 84) spectra were almost identical to those of PP3. Surprisingly, 'H NMR and

3C NMR signals observed in the NMR spectra of PP3 (Figures 86 and 87) (Table

56) and PP4 were alike except for chemical-shift values of 'H and "°C signals of a
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2,3,3-trimethylhydrofuran unit. The attachment of all substituents was found to be
identical to- PP3 according to the HMBC data (Figure 92) (Table 56). The NOE
enhancement observed between the methine proton (& 4.55, H-10) and the methyl
protons (& 1.42, Me-12) (Figure 89) and between the methyl protons (& 1.49, Me-
13) and the methylene proton (éu 2.55, Hy-15) of the C-5 prenyl group (Figure 90)
suggested that HI-10 was at f-position, which was opposite to that of PP3. Therefore,
PP4 had the structure 11, a new naturally occurring caged-triprenylated xanthone of

which the structure differed from PP3 in the stereochemistry of C-10.

Table 56 The NMR data of compound PP4

Position & (mult., Juz) & (C-type) HMBC correlation
1-OH 13.09 (s) 166.37 (C) C-1,C-2,C-3,C-9a
2 6.03 (s) 92,80 (CH) {C-1,C-3,C-4,C-9
3 168.47 (C)
4 112.58 (C)
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Table 56 (Continued)
Position S (mult., Juz) & (C-type) HMBC correlation
4a 156.34 (C)
4b 89.60 (C)
5 84.42 (C)
6 202.07 (C=0)
7 84.91(C)
7-OCH; | 3.64 (s) 53.95(CH;) | C-7
8 7.52 (d,1.0) 134.36 (CH) | C-4b, C-5,C-6, C-8a,C-9, C-20,C-21
8a 132.07 (C)
9 178.12 (C=0)
% 101.39 (C)
10 4.55 (g, 6.5) 91.69 (CH) | C-3,C-4,C-12,C-13
11 43.39(C)
12 1.42 (s) 28.16 (CH;) | C-4,C-10,C-11,C-13,C-14
13 1.49 (5) 20.04 (CH;) | C-4,C-10,C-11,C-12
14 1.30 (4, 6.5) 16.30 (CH;) | C-10,C-11
15 H,: 2.68 (md, 14.5) 28.98 (CH;) | C-5,C-16,C-17
H,: 2.55 (dd, 14.5 and 11.0) C-5, C-6, C-16, C-17
16 4.36 (md, 11.0) 117.32 (CH)
17 135.56 (C)
18 1.38 (brs) 25.52 (CH3) { C-16,C-17,C-19
19 1.07 (brs) 16.76 (CHy) | C-16,C-17,C-18
20 H,: 2.36 (dd, 13.0 and 1.0) 30.69 (CIL) | C-4b, C-7,C-8,C-21,C-22
Hy: 1.67 (dd, 13.0 and 9.5) C-6, C-1, C-8,C-21, C-22
21 2.61 (d, 9.5) 49.99 (CH) | C-4b, C-7,C-20
22 83.22 (C)
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. Table 56 (Continued)
Position Sy (mult., Juz) & (C-type) HMBC correlation
23 1.72 (s) 30.99 (CH;) | C-21,C-22, C-24
24 1.29 () 29.01 (CH;) | C-22,C-23

3.3 Structural determination of compounds isolated from the stem bark of G.

scortechinii

3.3.1 Compound PP13

Compound PP13 was obtained as a yellow gum. Its IR (Figure 94) and UV
(Figure 93) spectral data were similar to those of scortechinone A. Its 'H NMR
spectrum (Figure 95) (Table 57) indicated that PP13 contained identical substituents
to scortechinone A: one chelated hydroxyl group, one methoxyl group, two units of a
3-methylbut-2-enyl group and one unit of a 2,3,3-trimethylhydrofuran ring. The minor
differences were signals of the methine proton (H-15) and the methyl proton (Me-17)
of the 2,3,3-trimethylhydrofuran ring which were shifted to lower field whereas the
methyl protons (Me-18 and Me-19) were shifted to higher field. Comparison of its 'H
NMR data with those of GF3 (12) (Table 57) isolated from the fruits of G
scortechinii (Sukpondma, 2002) suggested that PP13 had the same structure as GF3
(12) of which the structure differed from scortechinone A only in the stereochemistry

at C-15.




Table 57 The '"HNMR data of PP13 and GF3

12
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Position PP13 (&) GF3 (&)
1-OH 13.24 (s, I1H) 13.24 (s, 1H)
7-OCH; 3.64 (s, 3H) 3.64 (s, 3H)
H-8 7.51 (d, J=1.0 Hz, 1H) 7.51 {d, /=1.5 Hz, 1H)
H-i0 3.22 (d, J=1.0 Hz, 2H) 3.22 (d, J~1.0 Hz, 2H)
H-11 5.22 (mt, J=1.0 Hz, 1H) 5.23 (mi, /=7.0 Hz, 1H)
Me-13 1.68 (brs, 3H) 1.68 (d, J=1.0 Hz, 3H)
Me-14 1.75 (s, 3H) 1,76 (s, 3H)

H-15 4,54 (g, J=1.0 Hz, 1H) 4,55 {(g,J=6.5 Hz, 1H)
Me-17 1.41 (s, 3H) 1.42 (s, 3H)
Me-18 1.49 (s, 3H) 1.49 (s, 3H)
Me-19 1.30 (d, J/=7.0 Hz, 3H) 1.30 (d, J=6.5 Hz, 3H)
H.-20 2.67 (nd, J=14.5 Hz, [H) 2.67 (imd, J=14.5 Hz, 1H)
H,-20 2.54 (dd, J~14.5, 10.5 Hz, 1H) 2.54 (dd, J=14.5, 10.5 Hz, 1H)
H-21 4.36 (md, J=10.5 Hz, 1H) 4.36 (md, J=10.5 Hz, 1H)
Me-23 1.36 (brs, 3H) 1.36 (s, 3H)

Me-24 1.02 (s, 3H) 1.02 (s, 3H)
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Table 57 (Continued)
Position PP13 (&) GF3 (&)
H,-25 2.34 (d, /~13.0 Hz, 1H) 2.34 (d, J=13.5 Hz, 1H)
H,-25 1.66 (dd, J=13.0, 9.5 Hz, 1H) 1.67 (dd, J=13.5,9.5 Hz, 1H)
H-26 2.58 (d, J=9.5 Hz, 1H) 2.57 (d, J=9.5 Hz, 1H)
Me-28 1.72 (s, 3H) 1.72 (s, 3H)
Me-29 1.29 (s, 3H) 1.29 (s, 3H)

3.3.2 Compound PP14

Compound PP14 was isolated as a yellow gum. The EIMS at m/z 608 (Figure
96) established a molecular formula of CisHsoO10. Its IR absorption bands (Figure
98) at 3600-2500 (a hydroxyl group of a carboxylic acid), 1745 (an unconjugated
carbonyl group), 1694 (an o, f-unsaturated carboxyl group) and 1634 cm”' (a chelated
ortho-hydroxyl carbonyl group) indicated that PP14 had three carbonyl
functionalities. The presence of a ketone carbonyl group, an a,F-unsaturated carboxyl
group and a chelated ortho-hydroxyl carbonyl group was confirmed by carbon signals
at §203.08, 167.90 and 177.82, respectively, in the *C NMR spectrum (Figure 100)
(Table 59). Its UV spectrum (Figure 97) showed an absorption band due to a
conjugated chromophote at Amw 366 nm. The caged structure was evident by the
signals of -OC(Me),-CHCH,-C- unit [ 2.63 (d, J=9.5 Hz, 1H, H-26), 2.32 (d,
J=13.6 Hz, 1H, H;-25), 1.72 (dd, J=13.6, 9.5 Hz, 1H, Hy-25), 1.72 (s, 3H, Me-28) and
1.28 (s, 3H, Me-29)] in the 'H NMR spectrum (Figure 99) (Table 58). In addition, it

contained one olefinic proton (& 7.52, 4, J=1.3 Hz, H-8), one methoxyl group (M
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3.63, 5, 7-OCHj), characteristic signals of a 2-hydroxy-3-methylbut—3-enyl group [
5.03 (brs, 1H, Ha-13), 4.88 (brs, 1H, Hy-13), 4.50 (dd, J=10.8, 3.0 Hz, 1H, H-11),
2.92 (dd, J=14.3, 10.8 Hz, 1H, Ha-10), 2.68 (dd, J=14.3, 3.0 Hz, 1H, Hy-10) and 1.84
(s, 3H, Me-14)], one unit of a 3-carboxybut-2-enyl group [ 5.43 (md, J=10.4 Hz,
1H, H-21), 3.51 (dd, J=15.6, 10.4 Hz, 1H, H,-20), 2.75 (md, J=15.6 Hz, 11, Hp-20)
and 1.67 (brs, 3H, Me-23)] and one unit of a 2,3,3-trimethylhydrofuran ring (6 4.55
(¢, J=6.6 Hz, 1H, H-15), 1.46 (s, 3H, Me-18), 1.39 (s, 3H, Me-17) and 1.37 (d, J=6.6
Hz, 3H, Me-19)]. These data were similar to those of scortechinone C
(Rukachaisirikul, 2000a). Its HMBC data (Figure 107) (Table 60) revealed that all
substituents were located at the same positions as scortechinone C. Irradiation of the
methyl protons (Me-14) of the 2-hydoxy-3-methylbut-3-enyl unit (Figure 104)
enhanced the signal of the olefinic proton (Hy-13), suggesting that Me-14 was cis to
Hp-13. The configuration at C-21/C-22 double bond was assigned to be Z as
itradiation of the olefinic proton (H-21) (Figure 102) enhanced the signal of Me-23.
The relative stereochemistry at C-15 was established to be identical to that of
scortechinone C by the NOEDIFF experiments. Irradiation of the oxymethine proton
(H-15) (Figure 103) enhanced the singlet signal of the methyl protons (Me-17) and
the doublet signal of the methyl protons (Me-19) while irradiation of the methyl
protons (Me-18) (Figure 105) enhanced the signals of Me-19 and the methylene
proton (Hz-20) of an a,B-unsaturated carboxylic acid unit. These results suggested the
jocation of H-15 at S-position. Comparison of its 1D and 2D NMR data with those of
scortechinone C (Tables 58, 59 and 60) revealed almost identical results. The minor
difference was found in the 2-hydroxy-3-methylbut-3-enyl group which its

oxymethine proton (H-11) was shifted to lower field than that of scortechinone C.
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Furthermore, TLC chromatograms of PP14 and scortechinone C, using 2%
MeOH/CHCI; as mobile phase, indicated that they had different Re values (Rr 0.28
and 0.38 for PP14 and scortechinone C, respectively). Thus, PP14 was assigned to

have the structure 13 which differed from scortechinone C only in the stereochemistry

of C-11.

13

Table 58 The 'H NMR data of scortechinone C and PP14

Position Scortechinone C (&) PP14 (&)
[OH | 13.15 (s, 1H) -

7-OCH, | 3.65(s, 3H) 3.63 (s, 3H)
H-8 7.51 (d, /=1.4 Hz, I1H) 7.52 (d, /=1.3 Hz, 1H)

H,-10 2.98 (dd, J=14.0, 3.4 Hz, 1H) 2.92 (dd, /=143, 10.8 Hz, 1H)
Hy-10 2.64 {dd, J=14.0,11.1 Hz, 1H) 2.68 (dd, J/~143,3.0 Hz, 1H)
H-11 432 (brdd, /=11.1, 3.4 Hz, 1H) 4.50 (dd, J=10.8, 3.0 Hz, 1H)
H,-13 5.07 {m, 1H) 5.03 (brs, 1H)

Hy-13 4.92 (m, 1H) 4.88 (brs, 1H)

Me-14 1.87 (s, 3H) 1.84 (s, 3H)
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Table 58 (Continued)

Position Scortechinone C (&y) PP14 (&)
H-15 4.56 (¢, J=6.6 Hz, 1H) 4.55 (g, J=6.6 Hz, 1H)
Me-17 1.37 (s, 3H) 1.39 (s, 3H)

Me-18 1.56 (s, 3H) 1.46 (s, 3H)

Me-19 1.45 {d, /=6.6 Hz, 3H) 1.37 (d, /=6.6 Hz, 3H)
H,-20 3.81 (dd, J~15.2, 11.8 Hz, 1H) 3.51 (dd, /~15.6, 104 Hz, 1H)
Hy-20 2.73 (ddg, J=15.2,3.4,2.5 Hz, 1H) | 275 (ind, J=15.6 Hz, 1H)
H-21 5.20 (ddg, J=11.4,3.4,14 Hz, 1H) | 543 {md, J=10.4 Hz, 1H)
Me-23 1.65 (dd, J=2.5, 1.4 Hz, 3H) 1.67 (brs, 3H)

H.-25 2.35 (dd, J=13.0, 1.4 Hz, 1H) 2.32 (d, J~13.6 Hz, 1H)
Hy-25 1.70 {(dd, J=13.0, 9.3 Hz, 1H) 1.72 (dd, J=13.6, 9.5 Hz, 1H)
H-26 2.64 (d, J=9.3 Hz, 1H) 2.63 (d, J/=9.5 Hz, 1H)
Me-28 1.71 (s, 3H) 1.72 (s, 3H)

Me-29 1.29 (s, 3H) 1.28 (s, 3H)

Table 539 The 130 NMR data of scortechinone C and PP14

Position C-type Scortechinone C (&) PP14 (&)
1-OH C 163.83 164.12
2 C 161.66 102.36
3 C 167.71 167.68
4 C 112.50 112.72
4a C 155.78 155.00
4b C §9.20 89.18
5 C 84,35 84.08




Table 59 (Continued)

Position C-type Scortechinone C {&) PP14 (&)
6 =0 203.20 203.08
7 C 85.15 85.10

7-OCH, CH;,4 53.82 53.84
8 CH 134.79 134.80
8a C 132.54 132,50
9 C= 178.18 177.82
9a C 101.38 101.32
10 CH, 28.80 28.50
11 CH 73.72 74.88
12 C 146.84 147.13
13 CH, 11031 110.58
14 CH; 18.66 18.25
15 CH 92.43 92.07
16 C 43.94 43.49
17 CH;, 28.66 27.98
18 CHj, 19.28 19.68
19 CH;, 16.77 16.19

20 CH, 29.07 29.00
21 CH 135.65 135.81
22 C 129.58 129.45
23 CH, 21.11 21.09
24 Cc=0 166.63 167.90
25 CH, 30.42 30.44
26 CH 49.74 49.69
27 C 83.46 83.56
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Table 59 (Continued)
Position C-type Scortechinone C (&) PP14 (&)
28 CH; 30.81 3091
29 CH; 28.88 28.69

Table 60 The HMBC correlations of scortechinone C and PP14
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Proton Scortechinone C (Carbon) PP14 (Carbon)
1-OH C-1,C-2,C-3,C-9a -
7-OCH;, C-7 C-7
H-8 C-4b, C-6, C-7, C-8a, C-9, C-25 C-4b, C-5, C-6, C-7, C-8a, C-9,
C-25, C-26
H,-10 C-1,C-2,C-3,C-11,C-12 C-1,C-2,C-3,C-11,C-12
Hy-10 Cc-1,C-2,C-3,C-11,C-12 C-1,C-2,C-3,C-11,C-12
H-11 C-10, C-12,C-13, C-14 C-2, C-10,C-12, C-13,C-14
H,-13 C-11, C-12, C-14 C-11,C-12,C-14
Hy-13 C-11,C-12,C-14 C-11,C-12,C-14
Me-14 C-11,C-12,C-13 C-11,C-12, C-13
H-15 C-3, C-4,C-16, C-17, C-18, C-19 C-3,C-4,C-17,C-18
Me-17 C-4,C-15,C-16,C-18 C-4, C-15,C-16,C-18
Me-18 C-4, C-15, C-16, C-17 C-4, C-15, C-16, C-17
Me-19 C-15,C-16 C-15,C-16
H,-20 C-4b, C-5, C-6, C-21, C-22 C-4b, C-5,C-6,C-21,C-22
H-20 C-4b, C-5, C-6, C-21, C-22 C-5,C-6,C-21,C-22
H-21 C-22,C-23 C-5,C-23
Me-23 C-21,C-22,C24 C-21,C-22,C-24
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Table 60 (Continued)

Proton Scortechinone C (Carben) PP14 (Carbon)

H,-25 C-4b, C-6, C-1, C-8, C-26, C-27 C-4b, C-7, C-8, C-26

Hy-25 C-6, C-7,C-8,C-27 C-6,C-7, C-8, C-26, C-27
H-26 C-4b, C-5, C-7, C-27, C-28 C-4b, C-5, C-7, C-28
Me-28 C-26, C-27,C-29 C-26, C-27, C-29

Me-29 C-26, C-27,C-28 C-26,C-27, C-28

3.3.3 Compound PP15

Compound PP15 was obtained as a yellow gum. The molecular ion at m/z 610
in the EIMS spectrum (Figure 108) corresponded to a molecular formula of
C34H4>010. The IR spectrum (Figure 110) exhibited absorption bands at 3600-2500 (a
hydroxyl group of a carboxylic acid), 1745 (an unconjugated carbonyl group), 1690
(an o,f-unsaturated carboxyl group) and 1634 em’ (a chelated ortho-hydroxyl
carbonyl group). The UV absorption band at Amsx 367 nm (Figure 109) suggested that
PP15 had the same chromophore as PP14. Its 'H (Figure 111) (Table 61) and Be
NMR data (Figure 112} (Table 61) werc similar to those of PP14 except that PP15
- contained none of signals for a 2-hydroxy-3—methylbut-3-enyl substituent. These
signals were replaced by signals which could be ascribed to a 3-hydroxy-3-
methylbutyl group [ 2.72 (ddd, J/=14.7, 7.2, 3.2 Hz, 1H, H,-10), 2.61 (dd, J=14.7,
3.2 Hz, 1H, Hy-10), 2.05 (ddd, J=13.5, 7.2, 3.2 Hz, 1H, Hy-11), 1.73-1.66 (m, 1H, Hy-
11), 1.40 (5, 3H, Me-13), 1.24 (s, 311, Me-14); & 17.27 (C-10), 39.42 (C-11), 73.18

(C-12), 27.60 (C-13) and 30.04 (C-14)]. This substituent was assigned to be at C-2 (&
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105.98) by HMBC correlations (Figure 118) (Table 61) of its methylene protons (Hy-
10 and Hy,-10) with C-1 (§163.73), C-2 and C-3 (& 165.86). The attachment of other
substituents was identcal to PP14 by the HMBC data, Irradiation of the methyl
protons (& 1.42, Me-19) of the 2,33-trimethythydrofuran ring (Figure 116)
enhanced the signals of the methine proton (Su 4.60, H-15) and the methyl protons
(& 1.52, Me-18). When Me-18 was irradiated (Figure 115), the signals of the
methylene proton (&u 3.79, He-20) of the C-5 3-carboxybut-2-enyl substituent and
Me-19 were enhanced. These results indicated that Me-18 and Me-19 were located on
the same side as the o,f-unsaturated carboxylic acid unit at C-5. Thus, the methine
proton (H-15) was on the same face (S-face) as PP14. The configuration at C-21/C-22
double bond was determined as Z by the NOE enhancement observed between the
olefinic proton. (84 5.20, H-21) and the methyl protons (& 1.63, Me-23) (Figure

114). Therefore, PP15 had the structure 14, a new caged-tetraprenylated xanthone.

14




Table 61 The NMR data of compound PP13
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Position S (mult., Juz) &: (C-type) HMBC correlation
1-OH 163.73 (C)
2 105.98 (C)
3 165.86 (C)
4 112.24 (C)
4a 154.31 (C)
4b 89.09 (C)
5 84.32(C)
6 202.90 (C=0)
7 85.09(C)
7-OCH; | 3.64(s) 53.79 (CHy) C-7
8 7.52(d, 24) 134.68 (CH) | C-db, C-5, C-6, C-8a, C-9,
C-25, C-26
8a 132.48 (C)
9 178.09 (C=0)
%a 101.46 (C)
10 H,:2.72 (ddd, 147,72 and 3.2) | 17.27(CHy) C-1, C-2, C-3, C-11, C-i2
Hy: 2.61 (dd, 14.7 and 3.2) C-1,C-2, C-3,C-11,C-12
11 H,: 2.05 (ddd, 13.5,7.2 and 3.2) | 39.42 (CHy) C-2, C-10, C-12, C-13,C-14
Hy: 1.73-1.66 (m) C-2,C-10, C-12
12-OH 73.18 (C-) ‘
13 1.40 (s) 27.60 (CH,) C-11,C-12,C-14
i4 1.24 () 30.04 (CH3) C-11,C-12, C-13
15 4.60 (g, 6.8) 92.19 (CH) C-3, C-4, C-16, C-17, C-18
16 43.74 (C)
17 1.38 (s) 28.77 (CH3) C-4,C-15,C-16,C-18
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Table 61 (Continued)
Paosition S (mult., Juz) & (C-type) HMBC correlation

18 1.52(s) 19.38 (CH3) C-4, C-15,C-16,C-19

19 1.42 (d, 6.8) 16.83 (CH3) C-15, C-16,C-18

20 H,: 3.79 (dd, 16.2 and 12.0) 29.10 (CH») C-4b, C-5, C-6, C-21, C-22
Hy: 2.71 (nd, 16.2) C-4b, C-5,C-21,C-22,C-23

21 5.20 (nd, 12.0) 135.38 (CH) C-23

22 126.88 (C)

23 1.63 (dd, 2.3 and 1.4) 21.01 (CH3) C-5,C-21,C-22,C-24

24 167.67 {C=0)

25 H.:2.35(d, 13.5) 30.35 (CHy) C-4b, C-6, C-7, C-8, C-26, C-27
Hy: 1.69 (dd, 13.5 and 9.6) C-6,C-7, C-8, C-26, C-27

26 2.62 (d,9.6) 49.78 (CH) C-4b, C-5, C-7, C-25, C-28

27 83.41(C)

28 1.70 (s) 30.83 (CHy) C-26, C-27,C-29

29 1.28 (5) 28.89 (CHjy) C-26,C-27, C-28

3.3.4 Compound PP16

Compound PP16 was obtained as a pale yellow gum. The IR spectrum
(Figure 120) exhibited absorption bands at 3690-2350 (a hydroxyl group of a
carboxylic acid), 1751 (an unconjugated carbonyl group), 1692 (an a,f-unsaturated
carboxyl group) and 1633 cm’! (a chelated ortho-hydroxyl carbonyl group). Its uv
absorption band at Amex 304 nm (Figure 119) was similar to that of PP8, indicating

that PP16 had the same chromophore as PP8. Its 'H NMR (Figure 121) (Table 62)
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and *C NMR (Figure 122) (Table 62) spectral data were also similar to those of PP8
except for the fact that signals for a 3-methylbut-2-enyl group were replaced by
signals for a 3-hydroxy-3-methylbutyl group [64 2.63-2.59 (m, 2H, H-10), 1.72-1.68
(m, 2H, H-11), 1.29 (s, 3H), 1.28 (s, 3H); & 17.18 (C-10), 42.18 (C-11), 71.03 (C-12),
29.09 (C-13) and 29.06 (C-14)}. This group was assigned to be at C-2 (&¢ 106.10) by
the HMBC correlations (Figure 129) (Table 62) between its methylene protons (H-
10) with C-1 (& 161.50), C-2 and C-3 (& 166.64). The attachment of other
substituents was identical to PP8 based on the HMBC data. Irradiation of the
oxymethine proton (& 4.40, H-15) (Figure 125) enhanced a singlet signal of the
methyl protons (& 1.44, Me-17) and a doublef signal of the methyl protons (&4 1.35,
Me-19), indicating that H-15 was cis to Me-17. When the methy! protons (éy 1.11,
Me-18) were irradiated (Figure 127), signals of Me-17, Me-19, the methylene protons
[S1 3.21 (H,-20) and 3.12 (Hy-20)], the olefinic proton (8u 6.60, H-21) and the methyl
protons (én 1.97, Me-23) of a C-5 a,f-unsaturated carboxylic acid unit were
enhanced. These results indicated that Me-18, Me-19 and the C-5 o, f-unsaturated
carboxylic acid unit were located on the same side of the molecule, the a-side, and H-
15 was on B-side. The configuration of C-21/C-22 double bond was assigned to be Z
since irradiation of H-21 (Figure 124) enhanced a signal of Me-23. The relative
stereochemistry at C-8 and C-8a was found to be the-same as PP8 according to the
following NOEDIFF results. Trradiation of H-21 of the C-5 substituent enhanced a
signal of the methine proton (3 3.18, H-8a), suggesting that H-8a was on a-side.
Irradiation of the methylene proton (du 1.65, Hy-25) (Figure 126) caused NOE

enhancement with the methylene proton (& 2.02, He-25), the methine proton (S
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2.70, H-26) and the oxymethine proton (& 4.47, H-8) but did not affect signals of the
methoxy protons (& 3.38, 8-OCHz) and H-8a. These results indicated that H-8 was
trans to H-8a. Therefore, PP16 had the structure 15, a new caged-tetraprenylated

xanthone.

15

Table 62 The NMR data of compound PP16

Position Su (mull., Juz) & (C-type) HMBC correlation
1-OH | 12.11 () 161.50 (C) C-1,C-2,C9a

2 106.10 (C)

3 166.64 (C)

4 ' 113.75(C)

4a 152.17(C)

4b 87.03(C)

5 86.42 (C)

6 205.50 {(C=0)

7 81.40(C)
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Table 62 (Continued)
Position &y (mult., Juz) & (C-type) HMBC correlation
7-OCH; | 3.51(s) 52.39 (CH;) C-1
8 447 (d, 1.0) 75.10 (CH) C-4b, C-6, C-7, 8-OCH;, C-8a, C-9,
C-25
8-OCH, | 3.38(s) 57.41 (CH3) Cc-8
8a 3.18 (brs) 48.90 (CH) C-4b, C-7, C-8, C-9, C-26
9 192.09 (C=0)
%a 102.37 (C)
10 2.63-2.59 (m) 17.18 (CH3) C-1,C-2,C-3,C-11,C-12

11

12-OH

13

14

15

16

17

18

19

20

21
22
23
24

25

1.72-1.68 (1)

1.29 (s)
1.28 ()

4.40 (g, 6.5)

1.44 (s)
111 (s)

1.35(d, 6.5)

H,: 3.21 (mdd, 17.0 and 7.0)

H: 3.12 (mdd, 17.0 and 7.0)

6.60 (mt, 7.0)

1.97(d, 1.0)

H,: 2.02 (d, 14.0)

H,: 1.65 (dd, 14.0 and 8.5)

42.18 (CHyp)
71.03 (C)
29.09* (CH)
29.06* (CH;)
90.31 (CH)
43.93 (C)
26,08 (CH;)
22.11 (CHy)
13.87 (CHs)

28.42 (CHy)

137.77 (CH)
128.14 (C)
20.88 (CH)
170.87 (C=0)

23.92 (CHy)

C-2, C-10,C-12, C-13,C-14

C-11,C-12,C-14
C-11,C-12,C-13

C-17,C-18

C-4,C-15,C-16,C-18
C-4, C-15, C-16,C-17
C-15,C-16
C-5,C-6,C-21,C-22
C-5, C-6,C-21,C-22

C-5,C-23,C-24

C-21,C-22,C-24

C-4b, C-7, C-8, C-26, C-27

C-6, C-7, C-8, C-26, C-27
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Table 62 (Continued)
Position S (mult., Juz) &c (C-type) HMBC correlation
26 2.70 (d, 8.5) 45.24 (CH) C-4b, C-5, C-7, C-25, C-28
27 82.68 (C)
28 1.43 (s) 30.46 (CH3) C-26, C-27, C-29
29 1.21 (s) 27.19 (CHs) C-26, C-27, C-28

* interchangeable

3,.3.5 Compound PP17

Compound PP17 was isolated as a pale yellow gum. Its IR (Figure 131) and
UV spectra (Figure 130) were almost identical to those of PP8. Its 'H NMR spectrum
(Figure 132) (Table 63) was also similar to that of PP8 except for the fact that PP17
contained only one methoxyl group (& 3.48) which was assigned to be located at C-7
(& 81.97) by its HMBC correlation (Kigure 140) (Table 63) with C-7. In addition,
the signal of the methine proton (&4 4.82, H-8) was shifted to lower field than that
found in PP8. These results indicated that the substituent at C-8 in PP17 was a
hydroxyl group, not a methoxyl group. Furthermore, the attachment of other
substituents were found to be identical to those of PP8 by IIMBC data. Irradiation of
the methyl protons (& 1.34, Me-19) of a 2,3,3-trimethylhydrofuran ring (Figure 137)
enhanced the signals of the methine proton (& 4.40, H-15) and the methyl protons (&
u 1.10, Me-18), indicating that Me-19 was ¢is to Me-18. When Me-18 was irradiated

(Figure 138), signals of Me-17, Me-19, the methylene protons (& 3.24-3.17, H-20),
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the olefinic proton (& 6.64, H-21) and the methyl protons (x 1.97, Me-23) of a C-5
a,f-unsaturated carboxylic acid unit were enhanced. These suggested that Me-18 and
Me-19 were located on the same side, the a-side, as the C-5 o, Funsaturated
carboxylic acid unit. Thus, H-15 was located on the [-side. Irradiation of H-21
(Figure 135) caused a NOE enhancement of Me-23, suggesting that the configuration
at C-21/C-22 double bond was Z. Irradiation of the methylene proton  (du 1.57, Hy-
25) (Figure 136) enhanced the signal of H-8 but did not affect the signal of H-8a,
indicating that H-8 was on the f-side and frans to H-8a. Therefore, PP17 was

assigned to have the structure 16 which differed from PP8 only in the C-8 substituent.

16




Table 63 The NMR data of compound PP17
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Position S (mudt., Juz) & (C-type) HMBC correlation
1-OH [ 12.08 () 161.65 (C) C-1,C-2,C-3,C-9a

2 105.34 (C)
3 166.85 (C)
4 113.62 (C)
4a 152,10 (C)
4b 86.97 (C)
5 86.35(C)
6 206.43 (C=0)
7 81.97(C)

7-OCH; { 3.48(s) 52.05 (CH3) C-7
8 4,82 (d, 1.0) 67.24 (CH) C-4b, C-6, C-7, C-8a, C-9, C-25
8a 3.19(s) 49.70 (CH) C-4b, C-7, C-8, C-9, C-26
9 191.72 (C=0)
9a 102.41 (C)
10 3.26-3.13 (m) 21.43 (CHy) C-1,C-2,C-3,C-11,C-i2
1 5.23 (mt, 7.0) 121.59(CH) | C-2,C-10,C-13,C-14
12 132.16 (C)
13 1.69 (5) 25.79 (CHy) C-11,C-12,C-14
14 1,76 (5) 17.74 (CH3) C-11,C-i2,C-13
15 4.40 (g, 6.5) 90.18 (CH) C-17,C-18
16 43.94 (C)
17 1.43 (s) 26.09 (CH,) C-4,C-15,C-16, C-18
18 1.10 (s) 22.12 (CHs) C-4, C-15, C-16, C-17
19 1.34 (d, 6.5) 13.83 (CHy) C-15,C-16
20 3.24-3.17 (m) 28.33 (CHy) C-5,C-6,C-21,C-22




Table 63 (Continued)
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Position S (mult., Juz) &: (C-type) HMBC correlation

21 6.64 (mt, 7.0) 138.66 (CH) | C-5,C-23,C-24

22 127.65 (C)

23 1.97 (d, 1.0) 20.76 (CHs) C-21,C-22,C-24

24 17177 (C=0)

25 H,: 2.08 (d, 14.0) 22.59 (CH,) | C-4b, C-7, C-8,C-26
Hy: 1.57 (dd, 14.0 and 8.5) C-6, C-8 C-26, C-27

26 2,72 (d, 8.5) 4.5.44 (CH) C-4b, C-7,C-25,C-28

27 $2.54 (C)

28 1.42 (s) 30.47 (CH;) C-26,C-27,C-29

29 1.22(s) 2731 (CH;) C-26,C-27,C-28

3.3.6 Compound PP11

Compound PP11 was obtained as a yellow solid, melting at 173.2-174.9°C.

The xanthone chromophore was evident by its UV absorption bands (Figure 141) at

273, 331 and 373 nm while the pyrone carbonyl stretching frequency was found in the

region of 1639 em’! in the IR spectrum (Figure 142). Its 'H NMR spcetrum (Figure

143) (Table 64) showed signals of one chelated hydroxy proton (Ju 13:28, s, 1-OH),

one broad single signal for a hydroxyl group (& 5.49), two olefinic protons [& 7.49

(s, 1H) and 6.24 (s, 1H)], one unit of a dimethylchromene ring [y 6.45 (d, /~=10.5 Hz,

1H, H-16), 5.73 (d, J=10.5 Hz, 1H, H-17), 1.53 (s, 3H, Me-19) and 1.52 (s, 3H, Me-

20)] and cne unit of a 2,3,3-trimethylhydrofuran ring [& 4.55 (¢, /=1.0 Hz, 1H, H-
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12), 1.60 (s, 3H, Me-14), 1.42 (d, J=7.0 Hz, 3H, Me-15) and 1.32 (s, 3H, Me-13)].
The *C NMR spectral data (Figure 144) (Table 64) deduced from DEPT (Figure
145) and HMQC (Figure 148) spectra showed 22 signals for 23 carbon atoms: 13
quaternary carbons, 5 methine carbons and 5 methyl carbons. In the HMBC spectrum
(Figure 149) (Table 64), the chelated hydroxy proton (1-OH) showed a correlation
with a methine aromatic carbon at & 93.81 (C-2) which correlated to the aromatic
proton at § 6.24 (H-2) in the HMQC spectrum. In addition, H-2 showed cross peaks
with C-1 (& 164.16), C-3 (& 165.89) and C-4 (& 113.00). Two methyl-proton
signals (Me-13 and Me-14) of the 2.3, 3-trimethylhydrofuran ring showed a HMBC
correlation with C-4, suggesting the attachment of this group at C-3 and C-4, The
chemical-shift values of C-3 and C-4 showed that the hydrofuran ring was fused to the
aromatic ring by linkage of its gem-dimethyl carbon and ring oxygen atom with C-4
and C-3, respectively. Irradiation of the methine proton (H-12) (Figure 147)
enhanced the singlet signal of the methyl protons (Me-14) and the doublef signal of
the methy! protons (Me-15), suggesting that H-12 was cis to Me-14. The lowest-field
aromatic proton (& 7.49) gave HMBC correlations with a carbony! carbon (&
180.10, C-9) and two O-linked carbons at S 144.53 (C-6) and 132.30 (C-10a),
indicating that this aromatic proton was located at a peri-position (C-8) to the
carbonyl group. The olefinic proton (H-16) of the chromene unit showed the
correlations with carbons at & 144.53 (C-6), 117.52 (C-7) and 113.45 (C-8) in the
HMBC spectrum, suggesting that the dimethylchromene ring was fused to C-6 and C-
7 with an ether linkage at C-6. This was confirmed by irradiation of the olefinic
proton (H-16) (Figure 146) which enhanced the signals of the olefinic proton (H-17)

and the aromatic proton (H-8). The remaining hydroxyl group (&4 5.49) was assigned
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to be at the remaining catbon signal, C-5 (& 144.82). PP11 was then assigned as
4" 5"-dihydro-1,5-dihydroxy-6 ' 6-dimethylpyrano(2',3":6,7)-4",4",5 "-tri methylfurano
(2",3™3,4)xanthone (17) which was previously isolated from Rheedia blasiliensis

(Delle Monache, 1984).

20

Table 64 The NMR data of PP11 and 4" 5".dihydro-1,5-dihydroxy-6',6 -dimethyl-

pyrano(2',3"6,7)-4",4",5 “trimethylfurano(2",3 "3 4)xanthone

Position PPI1 HMBC PPIT |
(reported data)
S {mult, Juz) ¢ (C-Type) correlation Sy (rmult, Jii)*
1-OH 13.28 (s) 164.16 (C) C-1, C-2,C9a 12.10 (s)
2 6.24 (5) 93.81 (CH) C-1, C-3, C-4, C-9a 6.20 (s5)
3 165.89 (C)
4 113.00 (C)
4a 152.61 (C)
5-0H | 5.49 (brs) 144.82 (C) 5.10 (brs)
6 144.53 (C)
7 117.52 (C)
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Table 64 (Continued)
Position PP11 HMBC PPI11
(reported data)

S (mult, Jyz) & (C-Type) correlation St (muddt, Jy)*

8 7.49 (3) 113.45 (CH) C-6, C-9, C-10a, C-16 7.42 (5)

8a 11475 (C)

9 180.10 (C=0)

9a 103.36 (C)

10a 132.30 (C)

11 43.75(C)

12 4.55(q,7.0) 90.88 (CH) C-11, C-13,C-14 4.53 (q,7.0)

13 132 () 2125(CHy) | C-4,C-11,C-12,C-14 | 1.32(s)

14 1.60 (5) 25.55 (CHs) C-4, C-11,C-12,C-13 1.59 (5)

15 1.42 (d, 7.0) 14.28 (CH;) C-11,C-12 1.41(d,7.0)

16 6.45 (d, 10.5) 121.44 (CH) Cc-6,C-7,C-8,C-18 6.40 (d, 10.0)

17 5.73 (d,10.5) 130.77 (CH) C-7, C-18, C-19,C-20 5.70 (d, 10.0)

18 78.87 (C)

19 1,53 (5) 2846 (CHy) | C-16,C-17,C-18,C-20 | 1.50(s)

20 152 (s) 2846 (CH) | C-16,C-17,C-18,C-19 | 1.50(5)

*+ TH NMR data of 4”,5"-dihydro-l,S-dihydroxy-é’,6’-climethylpyrano(Z‘,B':6,7)-4”,4",5”-trimethyl-

furano(2",3"3,4)xanthone in CDCl;.

3.3.7 Compound PP12

Compound PP12 was obtained as a white solid, melting at 154.3-156.1°C. Its

IR spectrum (Figure 150) showed the absorption bands at 3341 (a hydroxyl group),
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2958, 2936 and 2868 em” (C-H bond). PP12 was identified as stigmasterol (18) by
direct comparison of its 'H NMR spectrum (Figure 151) and TLC chromatogram
with authentic sample that was obtained from the twigs of G scortechinii

(Rukachaisirikul, 2000a).

18
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Figure 55 3C NMR (125 MHz) (CDC;) spectrum of PP10
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Figure 86 'H NMR (500 MHz) (CDCls) spectrum of PP4

eve




Al oo iy b bbb o bl bt s o Jiel Ly iy ey g, L e, 24 PR An e Iny e PHLRIRIG] 16 1YY kb dle bl ot
atta L. o b g bl gttt b okt At I nt ) 4 find e "l Aagi w i i VIRTIN R RAT D bt
o L T o o o o o T L o e e B i e o B e o

220 200 181 1560 140 120 100 &0 60 40 20 ppm

vve

Figure 87 *C NMR (125 MHz) (CDCl;) spectrum of PP4




CH3 carbons

L L A o b T T L iyl YIRS R ATRERAT T St [ SR Uherei LYy LR K, 'I i |
! b y L ) hyie il ottt it 18 I el kibie iy
AL ¢ } iy i b X 4 ekl " ~<...l'n o b SIHLAT L Ay ¥ g1t g s fh e o tars g el AR L rrda g ieade s lll;‘tl‘l:y'u

CHZ carbons

a1l protonated carbons

Figure 88 DEPT spectrum of PP4

Ske




— I —
1 T T T T T T T T ] T T r_
11 1¢ 8 -1 7 6 5 4

L LA L L A R B A S Ay T ; ;

1.6¢ 1.5 1.50 1.45 1.40 .35 1.30 lpl:)m

Figure 89 NOEDIFF spectrum of PP4 after irradiation at oy 4.55

avre




13 12 11 10 9 & 7 5 s 4 3 2 ppm

AT b Ll L B L e G L G i i e b AR IR RERRE ERARERREEESENARUARAN At aunand
4.55 oppm 2.62 2.58 2.54 ppn 1.74 ppm 1.35 1.25 1.1% ppm

¥e

Figure 90 NOEDIFF spectrum of PP4 after irradiation at oy 1.49




F1 3
(ppm},
29

30+

~ o ut =
o =) [=3 o

Ca
=

s by s by e el ow oo len e by pr b

-
(=] w
= E—]

PURTI I A

fuy

[y

o
|

F2 (ppm)

Figure 91 2D HMQC spectrum of PP4

8¥e




F1 ]
(ppm%

ra
L=
|

AT T NSRRI SN NS S A RARN1 FEURN SERTN AN}

41

1004

N SRERE

120

140

160

18t

P IVEYS NI TRTRY SVETU IVRNE STRRE ITARS I

i~

=

o
|

gusTesTa

Figure 92 2D HMBC spectrum of PP4

°, %
i 2ol
] 0 Qoo 090$€.q
’
= o fH
o 0 .
o e . &
& ‘ ¢ U o s :ggq @ ¢
¢ 0
L] ° ol
. g® %9
°°° . !wé aeg
Ui i 0
o ) -n"...
4 wi@ e (-
T T L A R U L B SR A 1 T L T T T T
13 12 11 10 9 3 7 & 5 4 1
F2 (ppm)

B¥c




%T

Abs

250

T |
240 280 320

Figure 93 UV (MeOH) spectrum of PP13

80.0

360

75
70

65

s | ’N\
u |

40

35

.o

40000 3000 2000 1500 1060
. cm-|

Figure 94 FT-IR (neat) spectrum of PP13

C 4000




Figure 95 'H NMR (500 MHz) (CDCl) spectrum of PP13
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Figure 99 'H NMR (400 MHz) (CDCL) spectrum of PP14
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Figure 118 2D HMBC spectrum of PP15
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Figure 144 *C NMR (125 MHz) (CDCls) spectrum of PP11
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