Speeding up Genome-Wide Association Analyses Applying
Parallel Computing

Unitsa Sangket

A Thesis Submitted in Fulfillment of the Requirements
for the Degree of Doctor of Philosophy in
Molecular Biology and Bioinformatics
Prince of Songkla University
2011
Copyright of Prince of Songkla University

Thesis Title Speeding up Genome-Wide Association Analyses Applying
Parallel Computing
Author Miss Unitsa Sangket

Major Program Molecular Biology and Bioinformatics

Major Advisor Examining Committee:
... Chairperson
(Asst. Prof. Dr. Pichaya Tandayya) (Prof. Dr. Amornrat Phongdara)
Co-advisors (Prof. Dr. Yutaka Yasui)

(Assoc. Prof. Dr. Wasun Chantratita) (Assoc. Prof. Dr. Wasun Chantratita)
(Dr. Surakameth Mahasirimongkol) (Asst. Prof. Dr. Pichaya Tandayya)

(Dr. Surakameth Mahasirimongkol)

The Graduate School, Prince of Songkla University, has approved this
thesis as fulfillment of the requirements for the Doctor of Philosophy Degree in

Molecular Biology and Bioinformatics.

(Prof. Dr. Amornrat Phongdara)
Dean of Graduate School

i

9y
a a

A d A < a ¢ v o YU @A
FOINNUNUD ﬂﬁL‘WMﬂ’ﬂmi311!?!15’3&?]51314ﬂ’JnJﬁ'iJWH‘ﬁTI’WNi]THiJTﬂEJﬂﬁ

Uszgnd ldmstszunananuuyuiu

a o J
Alley UNANYHUAYT FUNG
a A a =
VNI e TuranatazFensme
Umsanmn 2554
w \l
UNAALD

v o

MIANHIANVTUNUTNINGD IUN (Genome-Wide Association Study: GWAS)

o]

I ax A Aa A o o A Aa = 9 o =
AudsmsnNlsganimmdmiussydumivessunlaunerveanunslasunasves
1Y [y d' [9 d! = o Y a a 4 d‘ 1 AaAa o [
ANAUSNNAUFAITUNTVFoU Feo1almai lmnalsn NsasiziimemimanadInsy
= Y 1w [1 o % Vi =)
msfne1 GWA Tagldnguaiediuaznguaiuguaimnsnitldlaeldlaus1s GenABEL uag
= . £ g AA o 1 9 1 <3 a d
121513 LogicReg Fuilulavsinmauegnielaldsunsu R edrglsnamlumsingizn
A [aa = Y Aa ' Y Y
MeMIMada luMsany1 GWA andeyanivinalngazasdldszeznarlunmsilszuiana
o 2 9 3 @ o S A A
U Moz 1Fnaudlusi Tue e vsemeu
I a 1 A A A
msvszaaravuvvinuduisnmsnle ldnan lumsmudssansninlums
° 76 9 o A = ' > v
dszunana wazaunsminnlszgnd lgnumsiszuianamodny GWA Tundazaduaould
A o "o A 9 Aa [e = . [
osnnduaemaiuinslszuianadoyanodszaniu uenainiilausis Rmpi 1iu
{ o < Jd v [o [
Tausisniaumeldllsunsu R - 1dnususuiladFuaragdmsunsdssuiananyy
9y . o3| [A J A (IR
v 1aeld MPI (Message-Passing Interface) (Hudanannlumsdoansserinunioumiaig

=) 1 1

o § vq ¥ o . 7q ¥ a ¢ v 0
AUIATeIgNN 1Y e 1901911 Taus13 Rmpi ulszgnd g lumsnsizi gwa lasingiuin

U

A Vg Yo & Y~)) a o A "
!u'ﬂ\'ﬁ]'lﬂWGI,G]ﬁ]'lL‘]JuG]’f]\°|3Jﬂ'J']llgVI'Nﬂ'luﬂ'lilellﬂuiﬂillﬂiilllﬂﬂ"llu'luellu’(,:,fﬂ LW@LLUQ"U@H'@

ﬂizmﬂsﬁjaga AIVANY HaZdUNANMIANUIZHANHUBUTZNIaHANA KT DADUNUADS
HAZEATOTIVTINNAGNT
a a o'da' Y o ~ ~

Tudneninusii 1 naue lausis ParallABEL tiaz'laus13 ParallLogicReg
A A a a a 4 Iq ¥
mamnlszansnmlumsiniiz GWA Tasmsdszgnaldnisdssuranaunuayuiu ms
a I'd an =~ =~ . 9 Y]
ANT12HN19a0AVU laust3 ParallABEL uaz 1ausi3 ParallLogicReg Iagnaauilasuiain

o w I3 a 4

la1513 GenABEL uazlausi3 LogicReg a1md19y a9ddsznoulumsdngiz GWA vod

= [I~ [1 Y Y ogj z;‘dg’ Y] 9 9
Ula‘lJi']ﬁ ParallABEL mmmgmmuﬂumuﬂaaq mmullﬂ 1/1qumu@gﬂuﬂizmmawagam

il

[4

(@MW SNP 1AZAINIIOYAND) LAZANEUZHAANTAIADANADINT YnzNYoyaldve s
T g 1 v o { o a J
ParallLogicReg 91l uaIgosnud 1 uauminin e
Y Y o a A Y o o I
doyaninauianlsnlvdedniduowinuviiolsznouaiesuIual0819
2,062 AU HAZUAAZAID819H31UIU SNP 545,080 A TagnibunldieTalszansnm
= i = 9 FUR < dgl
403121515 ParallABEL wa1l51n97911aus13 ParallABEL szunawadoyalasdiesiasau
¥1n enAa9d15U 1ans73 ParallABEL dansnanszezinanlunmsdszuiranadoyaiion,
v v 9]
identity-by-state 11N 1Fa1sza 8 Frluavdoiostsyans 1 Tuanniuiie s
1 @ Y o Yo £ Y
Wielszutananan 8 @1 yadeyalsad Idon@uninauiay WTcce Failsznouaie
FIUIUAIDE 4,680 AIDELAZUAAAIDENTTIUIY SNP Uszanm 2,000 A7 9ANININAADI
A o a a = . ' =
iedadseansininveslavusis ParallLogicReg Hansnaaoulsingilauss
ParallLogicReg 3N30anszozan lumstlseuianatu 200 alemsFeadunlasy 20 sou
naduldnanszina 7.3 Sumaeiieaszana 0.9 Ju e ldmiielseutananais 8 @2
Qa: dy v J ~ =) . = 9 1 = ['
natiwaaws91nlaus13 ParallABEL tag'lausi3 ParallLogicReg HinugnAvusufenua
o J = ~ . A 9 A o a s A =
HAaW591n 1aus13 GenABEL 1oz 1ani13 LogicReg tilo991ndoyaminmnimiiziiiofdny
= I a @
GWA Hanuiludaszainiu
msdszuranadoyaniesdu GWA Taeldlaust3 ParallABEL uaz lansis
. A a J o J A A a s 1
ParallLogicReg UUIATOIADNNAADIAGALADTHTOIATOIADNNAADT NUN B TZUaNana1
A L~ an A a A A A]
natgunurIenatednduIsnmsnllseansnin iesnndsamuamsa1luns
Uszmanauazd ldawsaldaiulade Taedelai1laus 3 ParallABEL wazlausi3
. | = ~ . s A o
ParallLogicReg 1Tu'laws13 GenABEL waz'lavsis LogicReg O5TUNTOITUMIUszurana
{2 a o A 1 09/’ a’/‘ o 4
puvvuuidudiasdudld seldnininlevsdneaesdsannsodszuanadoyalulsndus
Yy vy 2 Ao A v A Aa A Y o a o £
lasnaae 1wy Joyalsnuzisaidine meduriduntduneIdostumsna Tsniug dalu

9

A A d Ao <3| 9
ﬂUﬂ@IiﬂmgliﬂﬂaTﬂﬂ Wuau

v

Thesis Title Speeding up Genome-Wide Association Analyses Applying
Parallel Computing

Author Miss Unitsa Sangket

Major Program Molecular Biology and Bioinformatics

Academic Year 2011

ABSTRACT

Genome-Wide Association Study (GWAS) is a powerful method for
identifying loci associated with variations of complex genetic traits such as common
diseases. Statistical analyses for GWAS with both case and control participants can be
processed by GenABEL and LogicReg libraries implemented in R. Nevertheless,
statistical analysis of very large data sets is computationally challenging and may take
hours, weeks or months to complete.

Parallel computing is an intuitive and effective method for increasing
computational throughput. Most tasks solved in GWA analysis are suitable for
parallelization, due to their computational independency and with parallelization
achieved at the data level. In addition, Rmpi [14] is an R library which provides
various functions to parallelize tasks in R using MPI. However, it is very difficult and
complicated for users to apply a parallel computing library such as Rmpi to conduct
statistical analyses of GWA studies because they need advanced programming skills
to correctly partition and distribute data, control and monitor tasks across the
computers and finally merge outputs.

In this thesis, ParallABEL and ParallLogicReg, the novel R libraries,
were presented to boost performance of GWA analyses applying parallel computing
based on Rmpi. Statistical analyses of the ParallABEL and ParallLogicReg are
adapted based on GenABEL and LogicReg, respectively. In ParallABEL, most
components of GWA analysis can be equally divided into subsets depend on the types
of input data (SNPs and individuals) and statistical outputs, while the input data of
ParallLogicReg is partitioned into G subsets (where G is the number of genes to be

analyzed).

The data set from the North American Rheumatoid Arthritis
Consortium (NARAC) includes 2,062 individuals with 545,080, SNPs' genotyping,
was used to measure the ParallABEL performance. Almost perfect speed-up was
achieved for many types of analyses. For example, the computing time for the
identity-by-state matrix was linearly reduced from approximately eight hours to one
hour when ParallABEL employed eight processors. The Crohn’s disease GWA study
dataset from the Wellcome Trust Case Control Consortium (WTCCC) that includes
4,680 individuals with 2,000 SNPs’ genotypes was analyzed using logic regression on
a computer cluster to evaluate the ParallLogicReg performance. The ParallLogicReg
library also accelerated the logic regression analysis perfectly. For instance, with two
hundred genes and twenty permutation rounds, the computing time was continuously
decreased from 7.3 days to only 0.9 day when ParallLogicReg applied eight CPUs.
The statistical outputs from ParallABEL and ParallLogicReg with any number of
CPUs are as valid as those from GenABEL and LogicReg with one CPU because of
their computational independency of GWA analyses at the data level.

Executing genome-wide association analysis using the ParallABEL
and ParallLogicReg library on a computer cluster or a computer with multi-core CPUs
is effective way to boost the performance and to simplify the parallelization of GWA
studies. ParallABEL and ParallLogicReg are the user-friendly parallelization versions
of GenABEL and LogicReg respectively. Moreover, ParallABEL and ParallLogicReg
also can process other disease data sets such as a neck cancer data set to find genes

associated the diseases such as the neck cancer.

Vi

ACKNOWLEDGEMENTS

This thesis would not complete without helps of many people, whom I
would like to thank.

I would like to express my sincere gratitude and deep appreciation to
my advisors Asst. Prof. Dr. Pichaya Tandayya, Assoc. Prof. Dr. Wasun Chantratita
and Dr. Surakameth Mahasirimongkol for their guidance, unmeasurable advice,
understanding and supports throughout this work.

I am very grateful to Prof. Dr. Yutaka Yasui for giving me a chance to
learn and create a part of my research at the Department of Public Health Sciences,
School of Public Health, University of Alberta, Canada.

I am thankful to Prof. Dr. Amornrat Phongdara and Assoc. Prof. Dr.
Wilaiwan Chotigeat for establishing the PSU research group in Bioinformatics and
supporting my research.

Many thanks go to Dr. Yurii S Aulchenko, Department of
Epidemiology, Erasmus MC Rotterdam, The Netherlands and Qi Liu, Department of
Public Health Sciences, School of Public Health, University of Alberta, Canada for
their collaborating and helps in this research.

I am indebted to the program for Strategic Scholarships for Frontier
Research Network for the Joint Ph.D. Program Thai Doctoral degree from the Office
of the Higher Education Commission and the lecturer scholarship from Prince of
Songkla University.

I would like to thank examination committee of this thesis for their
invaluable advice and for taking time to review my thesis. I also thank the Thai
National Grid Center and Prince of Songkla University Grid Center for providing the
computer clusters used in this research.

Special thanks to all members of Thai Students Association at the
University of Alberta (TSA) and all loving friends in Canada and Thailand for their

kind helps, encouragement and friendship.

vii

Finally, I dedicate this work to my beloved father and mother for
giving me their love and help me overcome difficulties and pains. Without their
encouragement and supports, it would not have been possible for me to come up to

this stage.

Unitsa Sangket

viii

CONTENTS

Contents

List of Tables

List of Figures
Abbreviations and Symbols

Chapter 1 General Introduction
1.1 Background and rationale
1.2 Objectives
1.3 Scopes
1.4 Benefits
1.5 Summary

Chapter 2 Parallel Computing
2.1 Overview
2.2 Types of parallel computing
2.3 Parallel computer memory architectures
2.4 Parallel programming models
2.5 Parallel program design
2.6 Summary

Chapter 3 Speeding up SNP Association Analyses Applying
Parallel Computing for GWA Studies
3.1 Introduction
3.2 Methods
3.3 Results

3.4 Discussion and summary

Page
X
X1
Xii

Xiv

N L

11
14
18
21

22
28
37
42

iX

Chapter 4 Speeding up SNP Interaction Analyses Based on Logic
Regression Applying Parallel Computing for GWA Studies

4.1 Introduction 45
4.2 Methods 47
4.3 Results 53
4.4 Discussion and summary 55

Chapter 5 Conclusions and Furture Work

5.1 Conclusions 60

5.2 Furture work 62
References 63
Appendices

Appendix A Publication 68

Appendix B ParallABEL manual 80

Appendix C ParallLogicReg manual 91

Appendix D Typel parall by SNPs source code 97
Vitae 110

LIST OF TABLES

Tables

3.1 The name and descriptions of GenABEL functions in each group

3.2 The example of genotype data executed in GenABEL and ParallABEL
3.3 The example of phenotype data executed in GenABEL and ParallABEL
3.4 The least number of subsets of each chromosome partitioned by

the number of SNPs

Page
29
33
34

40

xi

LIST OF FIGURES

Figure
2.1 The concept and the example of sequential computing
2.2 The concept and the example of parallel computing
2.3 The von Neumann architecture
2.4 Flynn’s Taxonomy matrix
2.5 Uniform shared memory architecture (UMA)
2.6 Non-uniform shared memory architecture (NUMA)
2.7 Distributed memory architecture
2.8 Hybrid distributed-shared memory architecture
2.9 An example of message passing programming model
2.10 An example of data parallel model
2.11 An example of hybrid programming model
2.12 An example of SPMD
2.13 An example of MPMD
2.14 An example of domain decomposition
2.15 An example of domain decomposition using block and cyclic
partitioning techniques
2.16 An example of functional decomposition
3.1 Associations in the IL23R gene region identified by a GWAS
of inflammatory bowel disease
3.2 A general architecture for parallel computing
3.3 Data partitioning for Typel parall by SNPs
Type2 parall by individuals when M =800 and P =4
3.4 The first and second data partitioning for
Type3_parall by pairs of individuals when
the number of individuals = N.
3.5 Sequential GWA computing workflow and
parallel GWA computing workflow

Page

10
10
12
12
13
14
15
16
17
17
18
20

20
21

24
26

30

32

33

Xii

LIST OF FIGURES (Continued)

Figure Page
3.6 The executable command of the m/reg.p function and #ypel.p function 36
3.7 The example of executing of the mlreg.p function and

typel.p function 37
3.8 Trace results from Typel parall by SNPs,

Type2 parall by individuals,

Type3 parall by pairs of individual

and Type4 parall by pairs_of SNPs for NARAC data 39
3.9 The computing time on a large cluster for

Typel parall by SNPs, Type3 parall by pairs of individuals

and Type4 parall by pairs of SNPs 42
4.1 SNP interaction associations between SNP; and SNP, 48
4.2 The example of data partitioning and distribution of ParallLogicReg 50

4.3 Sequential logic regression computing workflow

and parallel logic regression computing workflow 52
4.4 The example of ParallLogicReg command 53
4.5 Results from logic regression using ParallLogicReg function for

the Crohn’s disease data 54
4.6 The speedups of Crohn’s disease analyses using ParallLogicReg 55
4.7 The computing time on a large computer cluster 57

4.8 The speedups of ParallLogicReg on a large computer cluster 58

Xiii

ABBREVIATIONS AND SYMBOLS

GWA = Genome-wide association

GWAS = Genome-wide association studies

WGA = Whole genome association

WGAS = Whole genome association studies

SNPs = Single-nucleotide polymorphisms

DNA = Deoxyribonucleic acid

CPUs = Central Processing Units

MPI = Message-passing interface

WTCCC = Wellcome Trust Case Control Consortium
NARAC = The Rheumatoid dataset form the North American

Rheumatoid Arthritis Consortium

SISD = Single instruction, single data
SIMD = Single instruction, multiple data
MISD = Multilple instruction, single data
MIMD = Multilple instruction, multiple data
PCs = Personal Computers

UMA = Uniform memory access

NUMA = Non-uniform memory access
CC-UMA = Cache coherent UMA

SMP = Symmetric multiprocessor

GPUs = Graphics processing units

SPMD = Single program multiple data
MPMD = Multiple program multiple data
API = Application programming interface
BLAST = Basic local alignment search tool
HWE = Hardy-weinberg equilibrium
LAM/MPI = Local area multicomputer/message passing interface
CART = Classification and regression trees
SVMs = Support Vector Machines

X1v

500K

ABBREVIATIONS AND SYMBOLS (Continued)

A logic expression
= Gene

500,000

XV

CHAPTER 1

General Introduction

This chapter presents an overview of this thesis. It starts with the
background and rationale of genome-wide association (GWA) studies using parallel
computing. It also introduces the purposes, the scopes, the benefits and the summaries

of this project.

1.1 Background and rationale

In genetic epidemiology, genome-wide association studies (GWA
studies, or GWAS), also called as whole genome association studies (WGA studies,
or WGAS) are comparisons of the genomes of distinct individuals in a particular
species to find variations of genes among individuals. Different variations can be
associated with different traits, such as diseases. Researchers can use the information
to develop better strategies to detect, treat and prevent the diseases. In addition, in the
near future, if there are low cost and high efficiency genome-wide scans and other
novel technologies, health experts can apply the tools to determine from
individualized patients information whether there are possible hazards of causing
certain diseases. Also, when a patient becomes sick, the information can be used to
find the most effecient treatments with the least like probably to develop adverse
reactions for that particular patient [1].

GWA analyses succeed to conduct the research discovery of
associations of specific genes with diseases such as coronary heart disease, diabetes,
rheumatoid, Chrohn’s disease, biolara disorder and hypertension [2-3]. The genomic
discoveries of complex and non-Mendelian diseases are growing, and more than one
hundread loci for as many as fourty common diseases are powerfully determined and
replicated by GWA studies. The hundreds of thousands of the common forms of
genetic variants or single-nucleotide polymorphisms (SNPs) are assayed by high

throughput genotyping technologies and refered to diseases or health-related traits [4].

1

In the National Center for Biotechnology Information’s dbSNP database, closely
twelve million unique human SNPs have been coded a reference SNP (rs) number [5]
and marked as specific alleles (an alternate form of the SNPs). Also, summary allele
frequencies and other genomic information can be calculated from the human SNPs
[6]. In 118 articles, 56,411 significant SNPs related to diseases are found [7]. The
GWA method allows inquiry of the entire human genome at levels of solving
previously unachievable, in thousands of unrelated individuals, unconstrained by prior
hypotheses regarding genetic associations with diseases [8].

The conventional GWA study has 4 processes: (1) selection of a huge
number of individuals with the disorder or trait of interest and an eligible comparison
category; (2) Deoxyribonucleic acid (DNA) isolation, genotyping, and data checking;
(3) statistical analyses for associations between the SNPs passing suitable thresholds
and the disorder or trait; and (4) replication of identified associations [9]. In the
processes, case-control design has been often used to create GWA studies. In this
method, allele frequencies in patients with the disorder of interest are compared to
those in participants with disorder-free of interest. Case-control studies are frequently
easier and less expensive to create than studies applying other designs such as cohort
and trio designs [9]. Statistical analyses for GWA studies with both case and control
participants can be processed by Bioinformatic tools including GenABEL and
LogicReg. GenABEL is a specialized library package for GWA analysis of
quantitative, binary and time-till-event traits to find associations between the SNPs
[10]. GenABEL has been implemented in R, an open source statistics programming
language and environment [11-12]. LogicReg is a famous R library for logic
regression analyses [13] and can be applied to various regression/classification
problems, one of which is the analysis of SNP interactions with each gene related to
diseases. Nevertheless, statistical analysis of very large data sets is computationally
challenging and may take hours, weeks or months to complete. Examples include the
utilization of sophisticated adjustments for population stratification and relationship
structures, the estimation of linkage disequilibriums and the calculation of genome-
wide identity-by-state, haplotypic tests, permutation analyses and deviance of logic

regression analyses.

Parallel computing is an intuitive and powerful method for increasing
computational throughput. A task is separated into smaller tasks, and each is
processed independently, in parallel, using multiple Central Processing Units (CPUs)
or a cluster of computers. The outputs from each task must later be merged [14]. Most
tasks solved in GWA analysis are suitable for parallelization, due to their
computational independency, with parallelization achieved at the data level. For
example, association tests can usually be done separately for each SNP and/or a small
group of SNPs. Consequently, parallelization is a beneficial way to reduce the
computing time, with few overheads incurved in large-scale GWA analyses. In
addition, Rmpi [15] is an R library which provides various functions to parallelize
tasks in R using the message-passing interface (MPI) [16]. Rmpi employs various
functions to manage flow analysis in parallel environment, and is applicable for
employing not only multi-core CPUs on a single computer but also multi-core CPUs
distributed across many computers. However, it is very difficult and complicated for
users to apply a parallel computing library such an Rmpi to statistical analyses of
GWA studies because they need advanced programming skills to correctly partition
and distribute data, control and monitor tasks across the computers, and merge
outputs. For example, the analyses will be failed, if the users mistakenly partition the
large data. Another example is that the outputs from the computers are usually messy

and their order may be hard to follow.

1.2 Objectives

1.2.1 To propose the design of novel methods to speed up the computation of
large-scale GWA analyses with valid statistical outputs.

1.2.2 To present development of novel R libraries, which are as easy-to-use as the
more conventional GenABEL and LogicReg, based on the novel methods to
accelerate the computation of large-scale GWA analyses with effective statistical

outputs.

1.3 Scopes

1.3.1 Parallel computing is applied to the novel libraries to accelerate the
computing time of large-scale GWA.

1.3.2 Statistical analyses of the novel libraries are adapted based on GenABEL
and LogicReg

1.3.3 Rmpi is applied to parallelize statistical functions of novel libraries.

1.3.4 The novel libraries require Rmpi, GenABEL and LogicReg for data
analyses.

1.3.5 The Crohn’s disease GWAS dataset from the Wellcome Trust Case Control
Consortium (WTCCC) [17] and The Rheumatoid dataset form the North American
Rheumatoid Arthritis Consortium (NARAC) [18] are used to measure the

performance of the novel libraries.

1.4 Benefits

1.4.1 The novel methods implemented in the novel libraries can speed up GWAS
computing using parallel computing.

1.4.2 The novel libraries can be used to boost the performance of GWA analyses
and are user-friendly libraries like the other famous R libraries.

1.4.3 The user can use statistical outputs from the novel libraries to quickly find

genes associated to various diseases

1.5 Summary

This thesis presents ParallABEL and ParallLogicReg to boost
performance of GWA analyses applying parallel computing. Both novel libraries can
be executed on not only multi-core CPUs on a single computer but also multi-core
CPUs or single-core CPU distributed across many computers (a computer cluster).
ParallABEL is a user-friendly parallelization of GenABEL whereas ParallLogicReg is
a user-friendly parallelization of LogicReg. With ParallABEL and ParallLogicReg

libraries, the users can immensely accelerate the computing time of GWA analyses.

Nonetheless, they can easily execute ParallABEL and ParallLogicReg, since they do
not need to be programming experts in parallel computing which concerns
partitioning and distributing data, controling and monitoring tasks, and merging
output files. Moreover, the statistical outputs from ParallABEL and ParallLogicReg
with any number of CPUs are as valid as those from GenABEL and LogicReg due to

their computational independency of GWA analyses at the data level.

CHAPTER 2

Parallel Computing

This chapter presents overview of parallel computing. There are five
sections including overview, types of parallel computing, parallel computer memory

architectures, parallel programming models and parallel program design [19].

2.1 Overview

2.1.1 What is parallel computing?

Basically, a computer program is coded for sequential computing to be
executed on a single computer having a single central processing unit (CPU). A
problem or a job is divided into a discrete series of commands. Then, the commands
will be running one after another. Figure 2.1 shows the concept and an example of
sequential computing [19].

Nowadays, many programs need more computational power than
conventional sequential computing can offer. Consequently, parallel computing has
been developed to speed up the computational power by growing the number of CPUs
in a computer or a computer cluster. Parallel computing is a useful methodology,
enabling the concurrent handling of multiple computing resources to gain
computational throughput. In parallel computing, a problem or a job will be divided
into unassociated smaller tasks including series of commands. Each task will then be
executed freely using multiple or multi-core CPUs on a computer or a computer
cluster; after that, one of these CPUs will combine the outputs from all tasks. Figure

2.2 shows the concept and an example of parallel computing [19].

problem

instructions

a) The concept of sequential computing [19]

do_payroll()

instructions

b) The example of sequential computing [19]

Figure 2.1: The concept and the example of sequential computing. The CPU

sequentially executes N commands [19]

instructions

=Wl -2
=~ -E
~ il | -0
-l -E

a) The concept of parallel computing [19]

instructions

= - T -

— ETTRRET

-] | -5

— R TREETS
N t3 12 t

b) The example of parallel computing [19]

Figure 2.2: The concept and the example of parallel computing [19]. The problem is
divided into four unassociated tasks containing series of commands. Each task will be

executed on each CPU [19]

Parallel computing can be used to solve arduous problems not only in
Bioinformatics but also other fields of Science and Engineering such as Atmosphere,
Physics, Chemistry, Biology, Geology, Mechanical Engineering and Computer
Science [19].

2.1.2 Why apply parallel computing?

When parallel computing is applied to any computer program, there
are many benefits, which are saving of computing time and/or cost, carrying out of
bigger problems, supporting of concurrency, and applying of non-local resources [19].

First of all, parallel computing will save computing time and/or cost
since it can exploit more resources such as computers or CPUs than sequential
computing, with possible cost reduction. A cluster computer for executing parallel
computing can be set up from cheap and profitable components; in contrast, it is
expensive to build a single CPU providing the same or better performance [19].

The second benefit is that parallel computing can figure out larger or
complicated problems, which can be solved by sequential computing slowly and
arduously. For instance, web search engines or databases perform millions of
transactions per second as parallel computing can help reducing their computing time
[19].

In addition to save computing time or cost and carry out bigger
problems, supporting concurrency is another advantage of parallel computing.
Sequential computing can only execute one job at a time, while parallel computing
can be run many tasks concurrently. For example, users from anywhere can see and
do work “virtually” using the Access Grid (www.accessgrid.org) supporting a
worldwide cooperation network [19].

Finally, parallel computing can access compute resources on a wide
area network or the Internet while local computer resources are unavailable. For
instance, SETI@home (setiathome.berkeley.edu) works with million computers in
253 countries, whereas Folding@home (folding.stanford.edu) consumes more than

450,000 CPUs universally [19].

2.2 Types of parallel computing

Parallel computing includes many parts of von Neumann architecture.

The von Neumann architecture consists of four main components, which are memory,

control unit, arithemetic logic unit, input and output as shown in Figure 2.3 [19].

10

Control Arithmetic

Unit : Logic
Unit

Figure 2.3: The von Neumann architecture [19]

The program commands and data are stored in read/write random
access memory. The computers process data using the program commands. The
control unit conveys commands and data from memory, translates and sequentially
performs the commands to fulfil the programmed job. The aritmetic unit works on
arithmetic operations. Input/output is the interface to the human operator [19].

Parallel computing can be grouped in various ways. The famous
grouping is called Flynn’s Taxonomy. It groupeds parallel computing using two
independent dimensions of instructions and data. Only one of two possible states,
single or multiple, can be included in each of dimensions. According to Flynn’s
Taxonomy, The four possible groupings can be shown in the matrix in Figure 2.4

[19].

SISD SIMD
Single instruction, single data Single instruction, multiple data
MISD MIMD

Multiple instruction, single data | Multiple instruction, multiple data

Figure 2.4: Flynn’s Taxonomy matrix [19]

First of all, SISD is the only sequential computing that only one

instruction stream and one data stream are executed by the CPU at any clock cycle. It

11

is the most common type of computing performed on older generation mainframes,
minicomputers and workstations, and most modern day Personal Computers (PCs).
SIMD is next type of parallel computing that parallel CPUs process the same set of
instructions but with different data sets on each at any supplied clock cycle. This type
is famous for operatingto operate on most modern computers. Another type of parallel
computing is MISD. Parallel CPUs perform different instruction streams with the
same data set. The example of applications for MISD is that multiple cryptography
algorithm tries to crack a single coded message. The last parallel computing type is
MIMD. Different instruction streams with various data sets may be executed on each
CPU. MIMD is commonly applied to supercomputers, networked parallel computer
clusters and “grids”, multi-CPUs computers, and multi-core PCs. Basically, SIMD

execution elements are contained in many MIMD [19].

2.3 Parallel computer memory architectures

There are three kinds of parallel computer memory architectures
including shared memory, distributed memory and hybrid distributed-shared memory

[19].

2.3.1 Shared memory architecture

Shared memory architecture allows all CPUs to fetch any memory as
they appear in the global address space. Although each CPU shares the same memory
resource, it processes a task simultaneously and independently. The main
characteristic of shared memory architecture is cache coherent of which concept is
that the CPU can modify any memory location also seen by other CPUs. Based on
memory access times, shared memory architecture can be divided into two groups,
which are uniform memory access (UMA) and non-uniform memory access
(NUMA). UMA architecture called cache coherent UMA (CC-UMA) or symmetric
multiprocessor (SMP) computer is shown in Figure 2.5. Each CPU can equally access
the global memory and also take equal duration to do as well. Access and access time

for each CPU to memory is equally. NUMA architecture or CC-NUMA is shown in

12

Figure 2.6. NUMA is frequently contains two or more physically linked SMPs. The
memory of a SMP can directly be accessed by another SMP. However, access and
access time for each CPU to all memories are not equal. Memory access in a SMP is
faster than between SMPs. The benefit of this architecture is that global address space
supports a user-friendly programming viewing to memory. Also, data sharing between
tasks is speedy and uniform because of the adjacency of memory to CPUs.
Nevertheless, there are three disadvantages of the architecture. First, the lack of
scalability between memory and CPUs, increasing more CPUs can relatively gain
traffic on the shared memory-CPU path and for cache coherent systems. Another
disadvantage is that programmers need a special skill to synchronize constructs
accessing to global memory correctly. The last disadvantage is that it is difficult and

expensive to add new CPUs on a shared memory computer [19].

Figure 2.5: Uniform shared memory architecture (UMA) [19]

Bus Interconnect

Figure 2.6: Non-uniform shared memory architecture (NUMA) [19]

13

2.3.2 Distributed memory architecture

Distributed memory architecture is another type of parallel computer
memory architectures as shown in Figure 2.7. Each CPU has its own memory.
Memory addresses in a CPU are not mapped for another CPU. Therefore, distributed
memory architecture does not support global address space across all CPUs and cache
coherence. The programmers must write a program to define how and when data is
communicated via Ethernet when a CPU requires an access to data located in control
of another CPU. The benefit of distributed memory architecture is that memory can be
increased easily with the number of CPUs. Each CPU can quickly fetch its own
memory without conflict or without overhead. Nonetheless, the programmers need a

special skill to manage data communication between CPUs [19].

Figure 2.7: Distributed memory architecture [19]

2.3.3 Hybrid distributed-shared memory architecture

The last architecture is hybrid distributed-shared memory as shown in
Figure 2.8. It is applied to the recent largest and fastest computers in the world. A
cache coherent SMP machine and/or graphics processing units (GPUs) can be shared
memory components, whereas the network of multiple SMP/GPU machines can be
the distributed memory components. Each machine can only access its own memory.
Hence, network communication is needed to transfer data from a SMP/GPU to
another SMP/GPU. The hybrid distributed-shared memory is widespread today and

tends to grow at the high end of computing in the future. Advantages and

14

disadvantages of hybrid distributed-shared memory can be inferred from both shared

and distributed memory architectures [19].

SRR chEE joem e

Figure 2.8: Hybrid distributed-shared memory architecture [19]

2.4 Parallel programming models

There are seven programming models in common use including share
memory (without threads), threads, distributed memory/message passing, data
parallel, hybrid, single program multiple data (SPMD) and multiple program multiple
data (MPMD) [19].

2.4.1 Shared memory model (without threads)

In shared memory programming model, a common address space is
shared by tasks, and it can be read and written asynchronously. The shared memory
can be controlled by several mechanisms such as locks and semaphores. The
advantage of this model is that programmers do not have to explicitly specify the
communication of data between tasks. The downside of shared memory programming
model is that it is difficult to understand and to manage a data locality when multiple

CPUs use the same data [19].
2.4.2 Thread model
The thread model is a type of shared memory programming that a

single process can have multiple and concurrent execution paths. A thread’s work can

be explained like a subroutine within the main program. Each thread can execute any

15

subroutine at the same time as other threads. Threads communicate with each other
via global memory (updating address locations). Synchronization is needed to ensure
that only one thread can update the global address at a time. POSIX threads and

OpenMP are the implementations of thread programming model [19].

2.4.3 Distributed memory/message passing model

Message passing programming model is commonly applied in
distributed memory computers. Several tasks consume their own local memory while
processing. A set of tasks can be executed on the same physical machine or different
machines. Communication methods including sending and receiving messages are
used to exchange data between tasks as shown in Figure 2.9. Message passing
interface (MPI), an implementation of this model, is an application programming
interface (API) specification that allows processes to communicate with each other by

sending and receiving messages [19].

Machine A Machine B
task 0 task 1
send() recv()
network 1
task 2 I task 3
recv() send()
A— A—

Figure 2.9: An example of message passing programming model [19]

16

2.4.4 Data parallel model

In data parallel model, each task performs the same operation on a
different portion of the same data structure as shown in Figure 2.10. On shared
memory architecture, all tasks may fetch the data structure via global memory.
Whereas on distributed memory architecture the data structure is partitioned into

“chunks” in the local memory of each task [19].

task 1 task 2 task n

Figure 2.10: An example of data parallel model [19]

2.4.5 Hybrid model

A hybrid programming model contains more than one of the already
explained programming models. A combination of the message passing model (MPI)
with the thread model (OpenMP) is a general example of a hybrid programming
model as shown in Figure 2.11. Computationally intensive kernels using local or on-
node data are performed by thread, while communication between processes on other

nodes over the network are operated by MPI [19].

17

Figure 2.11: An example of hybrid programming model [19]

2.4.6 Single program multiple data (SPMD)

SPMD is an advanced level programming model combined the
previously described programming models. All tasks perform their copy of the same
program concurrently but may use different data as shown in Figure 2.12. The
program can be threads, message passing, data parallel or hybrid. The SPMD
programming model using message passing or hybrid programming is the most

basically applied for multi-node clusters [19].

task 1 task2 task3 .. taskn
Figure 2.12: An example of SPMD [19]

2.4.7 Mutilple Program Multiple Data (MPMD)

MPMD programming model is also an advanced level programming
model combined the previously described programming models. Each task performs a
different program at the same time, and may process different data as shown in Figure
2.13. Like SPMD, The program can be threads, message passing, data parallel or
hybrid [19].

18

task 1 task2 task3 .. taskn
Figure 2.13: An example of MPMD [19]

However, these programming models are not specific to a certain type
of computer or memory architecture. For instance, the shared memory programming
model can be employed to a distributed memory computer. Physical memory of the
computer is distributed but presented to the user as a single shared memory (global
address space) called “virtual shared memory.” Another instance, distributed memory
programming model (MPI) can be applied to a shared memory computer. Tasks
directly access to global address space of all computers. Nonetheless, MPI is used to

send and receive massages over shared memory [19].
2.5 Parallel program design
2.5.1 Automatic vs. manual parallelization

Generally, manual parallelization is applied to design and develop
parallelable programs more than automatic parallelization. However, manual
parallelization is a time consuming, complex, error-prone and iterative process. For
this reason, various tools for automatic parallelization have been released, for
example, a compiler or pre-processor used to convert sequential programs into
parallel programs. Nevertheless, automatic parallelization is limited to a subset
(mostly loops) of code and may produce incorrect outputs and give poor performance

[19].

19

2.5.2 Understand the problem and the program

Before develop the parallel program, we have to understand how the
problem to be solved in parallel. If we begin with a sequential program, we must
understand the existing code. Since not all problems can be solved by parallel
computing, we should check whether parallel computing can be applied before
starting to develop a parallel program. An example of a parallelizable problem is
sequence similarity finding using the basic local alignment search tool (BLAST). This
problem can be divided into a set of independent tasks. In contrast, an example of a
non-parallelizable problem is the Fibonacci sequence, which can not be divided to
independent tasks. Moreover, parallel computing should only be applied to the
program’s hotspots. Therefore, those sections of the program that consume little CPU

usage can be ignored [19].

2.5.3 Decomposition methods

Two simple methods to create parallel tasks which are domain
decomposition and functional decomposition [19].

In domain decomposition, the data related with the problem is to be
decomposed. After that, each parallel task will process only a portion of data as
shown in Figure 2.14. In addition, there are two data partitioning techniques which are
block and cyclic partitioning. Figure 2.15 shows the examples of one-dimension and
two-dimensions data decomposition using block and cyclic partitioning techniques

[19].

Problem Data Set

|
. . f . .
task 0 task 1 task 2 task 3

Figure 2.14: An example of domain decomposition

1D —_— R
BLOCK cycLic
BLOCK, * * BLOCK BLOCK, BLOCK

CYCLIC, * * CYCLIC CYCLIC, CYCLIC

Figure 2.15: An example of domain decomposition using block and cyclic

partitioning techniques [19]

20

Functional decomposition is another parallelization technique. In this

technique, the instruction set is decomposed into a set of tasks as shown in figure

2.16. Then, each task is processed on parallel machines [19].

21

Problem Instruction Set

-J
r

task 0
—

Figure 2.16: An example of functional decomposition [19]

2.5.4 Load Balancing

Load balancing is a method concerning task distribution to keep each
CPU busy working. Better load balancing can produce higher performance of parallel
computing. There are two approaches to achieve load balance. The first approach is
equal work partitioning that each task processes within need the same period of
computing time. Another approach is dynamic work assignment. An example of
dynamic work assignment is the task pool method. If a task is finished, the next task

in a queue will be executed [19].

2.6 Summary

Since ParallABEL and ParallLogic analyze genotype and phenotype
data containing SNPs and individuals, the libraries are developed based on the SIMD
parallel computing and distributed memory/message passing programming model.
ParallABEL and ParallLogic also can be run on shared memory architecture and
distributed memory architecture. Manual parallelization is applied to design and

develop the libraries.

CHAPTER 3

Speeding up SNP Association Analyses Applying Parallel Computing
for GWA Studies

3.1 Introduction

GWA analysis [9] is a well established and powerful method for
identifying loci associated with variations of complex genetic traits such as common
diseases. For non-Mendlian consideration, GWA studies are more effective than
family-based linkage studies, which have arduously assembled results related to
several hundred markers throughout the genome. Eventhough family-based linkage
studies can identify genes of large effect in Mendelian diseases such as
neurofibromatosis, it limits to only common diseases like asthma [20]. The
disadvantages of linkage studies are low proficiency for complex disorders influenced
by multiple genes, and that it is hard to identify a causative gene due to the large size
of the chromosomal regions shared among family members. GWA studies are
developed based on the benefits of candidate genes, family linkage studies and the
expanding knowledge of the relationships among SNP variants created by the
International Hapmap Project [21-22]. GWA studies aim to acquire the important
differences among individuals and associate them to health and illness. Hundreds of
new genes have been implicated in human health and diseases during the last few
years in various GWA studies [23]. GWA analyses succeed to lead discovery of
associations of specific genes with diseases such as coronary heart disease, diabetes,
rheumatoid, Chrohn’s disease, biolara disorder and hypertension [2-3]. The case-
control design has often been used to create GWA studies. In this method, allele
frequencies in patients with the disorder of interest are compared to those in
participants with disorder-free of interest. Case-control studies are frequently easier
and less expensive to create than studies applying other designs [9]. In a typical study,
hundreds of thousands of the common form of genetic variants or SNPs are assayed

by high throughput genotyping technologies in order to detect genetic risk factors [4].

22

23

In the National Center for Biotechnology Information’s dbSNP database, closely
twelve million unique human SNPs have been coded a reference SNP (rs) number [5]
and marked as to specific alleles (alternate form of the SNPs). Also, summary allele
frequencies and other genomic information can be calculated from the human SNPs
[6]. There are 56,411 significant SNPs from 118 articles related to diseases [7].

Basically, the GWA study has 4 processes: (1) selection from a huge
number of individuals with the disorder or trait of interest and an eligible comparison
category; (2) DNA isolation, genotyping, and data checking; (3) statistical analyses
for associations between the SNPs passing suitable thresholds and the disorder or
trait; and (4) replication of identified associations [9].

Figure 3.1 shows the statistical output for genome-wide association
study of inflammatory bowel disease. The IL23R gene has two blocks of linkage
disequilibrium. The association signals are strongest in the centromeric block
containing exons 5 to 11, whereas markers in the block encompassing the IL12RB2

gene do not demonstrate significant association [24].

24

A B e e A e e R St B (St e e
67300000 67400000 67500000
—_—
Hypothetical protein, IL12RB2: interleukin 12
NM_001013674 receptor, beta-2
H——H—+—H—

< telomeric IL23R: interleukin 23 receptor centromeric—»

B 144
124 .
S 101 IR
> 8 . .
o
E 6 LI
'c? ;: . Lk .®
0- e " e % ee,
T
67500000
C &Il]& []]Iﬂl]@]l]l
AN i‘\\‘\\‘*\\\\ i \\
" V"-i 'r'-v-\" v
A
e " -‘%?\\\
\1-

Genome-wide association studies frequently identify associations with many highly correlated single-nucleotide poly-
morphisms (SNPs) in a chromosomal region, due in part to linkage disequilibrium, among the SNPs. This can make
it difficult to determine which SNP within a group is likely to be the causative or functional variant. A, Genomic lo-
cations of 2 genes, the interleukin 23 receptor (IL23R) and the interleukin 12 receptor, beta-2 (/L 12Rb2), and a hy-
pothetical protein, NM_001013674, between positions 62700000 and 67580000 of the short arm of chromosome
1 atregion 1p31, are shown. B, The —log,, P values for association with inflammatory bowel disease are plotted for
each SNP genotyped in the region; those reaching a prespecified value of —log, of 7 or greater are presumed to
show association with disease. Several strong associations, at —log;o P values or greater, are seen in the region just
telomeric of position approximately 67400000 and extending just centromeric of position approximate 67450000.
C, Pairwise linkage disequilibrium estimates between SNPs (measured as r?) are plotted for the region. Higherr? val-
ues are indicated by darker shading. The region contains 4 “triangles” or “blocks"” of linkage disequilibrium, 2 on
either side of position 67400000 in the IL23R gene, another in the hypothetical protein telomeric of [L23R, and a
fourth in the ILT2RB2 gene at the centromeric end of the region. The 2 IL23R linkage disequilibrium regions each
contain SNPs associated with inflammatory bowel disease, while the IL12RB2 region does not. Reproduced with
permission from Duerr et al.>

Figure 3.1: Associations in the IL23R gene region identified by a GWAS of

inflammatory bowel disease [9].

GenABEL is a specialized library package for GWA analysis [10]
implemented in R, an open source statistics programming language and environment
[11-12]. GenABEL enables GWA analysis to be done using a regular desktop
computer due to its efficient data storage and memory management. Nevertheless,

analysis of very large data sets is computationally challenging and may take hours or

25

weeks or months to complete. Examples include the utilization of sophisticated
adjustments for population stratification and relationship structures, the estimation of
linkage disequilibriums and the calculation of genome-wide identity-by-state,
haplotypic tests, and permutation analyses.

To increase the computational throughput, a user can partition their
data into sets, and perform the analysis of the sets across a network of computers; a
concept known as parallel and/or distributed computing. It is arduous acquiring the
necessary programming skills to correctly partition and distribute data, control and
monitor tasks on clustered computers, and merge output files. Occasionally, a data set
may fail to be processed, e.g. if the user did not partition the data into small enough
subsets to be processed on a particular machine. Also, the outputs from the computers
may be scattered and their order is hard to follow.

Parallel computing is an intuitive and powerful method for increasing
computational throughput. A task is separated into smaller tasks which are processed
simultaneously on multiple Central Processing Units (CPUs) or a cluster of
computers. The outputs from each task must later be merged [19]. A general

architecture for parallel computing is shown in Figure 3.2.

r
Computer Cluster Front-end node

CL

Internet

S)

User

|
|
|
1
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
| Ethernet
|
|
|
|
|
|
|
|
|
|

Compute node n

Figure 3.2: The user can submit tasks to the cluster of computers via the Internet.
Once the user submits a job to the computer cluster, the front-end node schedules and
distributes the smaller partitioned tasks to be processed on the compute nodes. The

output from each compute node will then be merged by the front-end node.

Most tasks solved in GWA analysis are suitable for parallelization due
to their computational independency so that parallelization can be achieved at the data
level. For example, association tests can usually be done separately for each SNP
and/or a small group of SNPs. Consequently, parallelization is a beneficial way to
reduce the computing time, with few overheads incurved in large-scale GWA
analyses.

Several attempts had been made to parallelize genetic association
analyses. Grid Engine, a cutting-edge parallel tool, can schedule parallel tasks
involving genetic association analysis programs [25] such as FBAT [26] and
UNPHASED [27]. The approach, first proposed by Mishima et al., is based on non-
parallel code combined through process-based parallelization. The downside is that
the user still needs to monitor when each task is finished, and when the outputs from
all the tasks can be merged. Moreover, each process may take a very long time to

finish, and load balance can be problematic. A granularity problem (a high

27

computation to communication ratio) may occur. However, using higher power
compute nodes or code parallelization are possible solutions. The R/parallel package
has been used to automate loop parallel execution, but the application must run on a
single computer with multi-core CPUs, and does not currently support cluster
computing [28]. Its inclusion of cluster computing would eliminate the computing
time limit of the package. Misawa and Kamatani [29] developed the ParaHaplo
package for haplotype-based whole-genome association studies using parallel
computing. It is aimed at correcting multiple comparisons in multiple SNP loci in
linkage disequilibrium. Also, Ma et al. [30] developed EPISNPmpi, a parallel system
for epistasis testing in large scale GWA analysis. However, there are other statistical
analyses requirements in GWA studies, such as obtaining statistics for a particular
SNP or a trait, association test, characterizing an individual in the study, and pair-wise
statistics between individuals.

Rmpi [15] 1is an R library which provides various functions to
parallelize tasks on R using the MPI (Message-Passing Interface) [16]. Rmpi employs
various functions to manage flow analysis in parallel environment, and is applicable
for employing multi-core CPUs distributed across many computers, not only multi-
core CPUs on a single computer. However, it is difficult, if not impossible, for a non-
programmer to write a parallel Rmpi program. Therefore, SPRINT [31] was
developed to implement parallel R functions. Although users can use SPRINT easily,
it does not specifically support GWA studies.

In this chapter, we present the development of our ParallABEL library,
a new R library for parallelization of GWA studies based on Rmpi and GenABEL.
ParallABEL aims to speed up the computation of GWA studies for various statistical
analysis requirements and also simplify analysis parallelization. With ParallABEL,
the users do not need to be experts in parallel programming, no need to know about
partitioning and distributing data, controling and monitoring tasks, and merging

output files.

28

3.2 Methods

3.2.1 GWA Function Grouping

Statistical analyses in GWA studies can be categorized into four
groups based on the nature of the statistics computed and types of data used. These
four groups can be parallelized in distinct ways. Table 3.1 shows the names and
descriptions of the GenABEL functions in each group. The first group contains
statistics computed for a particular SNP, or a trait, such as the SNP characterization
statistics (e.g. call rates, hardy-weinberg equilibrium (HWE) testing [10]), produced
by GenABEL’s summary.snp.data or association test statistics (the gtscore, mlreg and
mmscore GenABEL functions [10]). The second group holds statistics characterizing
an individual in the study, such as, summary statistics of genotype quality for each
sample (obtained with the GenABEL perid.summary and hom GenABEL functions
[10]). The third group consists of pair-wise statistics derived from analyses between
each pair of individuals in the study, including genome-wide identity-by-state and
genomic kinship analyses. This is one of the most computationally intensive analyses,
obtained through GenABEL’s ibs function [10]. The final group concerns pair-wise
statistics derived for pairs of SNPs, such as linkage disequilibrium characterisation
(the dprfast, rhofast and r2fast functions [10]). While the number of SNP pairs is
generally very large, analyses are usually limited by their pair-wise physical distance,
making them less demanding than pair-wise individual analyses, such as IBS

computations [10].

29

Table 3.1: The names and descriptions of GenABEL functions in each group

function name of GenABEL Description group

summary.snp.data Provides summary of observed genotypes,
allelic frequency, genotypic distribution, P-

value of the exact test for HWE and

chromosome 1
qtscore Fast score test for association between a trait

and genetic polymorphism 1
mlreg Linear and logistic regression and Cox

models for genome-wide SNP data 1
mmscore Score test for association between a trait and

genetic polymorphism, in samples of related

individuals 1
perid.summary Produces call rate and heterozygosity per

person 2
hom Computes average homozygosity (inbreeding)

for a set of people, across multiple markers.

Can be used for Quality Control (e.g.

contamination checks) 2
ibs Given a set of SNPs, computes a matrix of

average IBS for a group of people 3
dprfast Given a set of SNPs, computes a matrix of D' 4
rhofast Given a set of SNPs, computes a matrix of

rho 4
r2fast Given a set of SNPs, computes a matrix of r2 4

We have developed the ParallABEL library to parallelize the serial
functions of these groups using Rmpi library. The four implementation groups are
named Typel parall by SNPs for the first group, Type2 parall by individuals for
the second group, Type3 parall by pairs of individuals for the third group and
Type4 parall by pairs of SNPs for the fourth group.

30

3.2.2 Data Partitioning

An advantage of ParallABEL is usage simplicity, hiding otherwise
tedious scripts for file management monitoring tools. These functions not only
partition input data with automatic load balancing, but also gather output from each
CPU automatically. Load balancing is critical because an unbalanced work load will
result in higher loads for particular CPUs, which eventually undermines the overall
performance.

The input data of Typel parall by SNPs are SNPs equally partitioned
into P subsets (where P is the number of available CPUs). If the number of SNPs is
M, the number of SNPs in a subset is:

num_SNPs = floor(M/ P)

If there are M SNPs and 4 CPUs, the SNPs will be partitioned into 4

smaller subsets. Each contains M/4 SNPs as shown in Figure 3.3.

SNP

34 + 1
3W/4

M2 +1
M/2

M4 +1
M4

Figure 3.3: Data partitioning for Typel parall by SNPs
Type2 parall by individuals when M =800 and P = 4

31

However, the last subset to be generated may contain more SNPs than
others, caused by integer division. For example, if there are 801 SNPs and 4 CPUs,
Subset 1 to Subset 3 will contain 200 SNPs, but Subset 4 will have 201 SNPs. The
SNPs in each subset will be executed on separate CPUs.

The input data for Type2 parall by individuals are individuals,
partitioned like Typel parall by SNPs.

The input data for Type3 parall by pairs of individuals is a pair of
individuals, and performs a more complicated partitioning than
Typel parall by SNPs and Type2 parall by individuals. The data is divided until
the number of CPUs is equal to, or less than, the number of subsets for load balancing
on each CPU. If the number of CPUs is equal to the number of subsets, then each
CPU executes an individual pair of each subset. If the number of CPUs is less than the
number of subsets, then each CPU executes an equal number of individual pairs
(where it is possible). Figure 3.4 shows Type3 parall by pairs of individuals with N
individuals. The statistics is calculated from the cross operation of an individual in a
row with an individual in a column. The input data is partitioned into 4 subsets using
the data partitioning shown in Figure 3.4A. However, if the number of CPUs is more
than 4, the subsets will be partitioned again. Subset 1 and Subset 4 are split into 8
subsets during the first stage of the data partitioning, while Subset 2 and Subset 3 are
divided into 8 subsets by row, as shown in Figure 3.4B. There are 16 subsets

altogether in the second stage of the data partitioning.

32

Subset 1

N4 +1
N4

Subset 1 S
5N/8

Subset 2

Subset3 | Subset

N2 + 1 _ N2+ 1
N2 N2 Subset 5

mie Subset 6

Subset 2 Subset 7
Ni4+1 Subset 8
Ni4 Subset 9 B

Subset 14
Subset 4 Subset 10
Subset 3
Subset 11 Subset15 [Subset
Subset 12

1 1 \
1 N2 N2+ 1 N 1 Ni2 (Ni2)+ 1 N

ISubset 1

A) B)

Figure 3.4: A) The first data partitioning for Type3 parall by pairs of individuals
when the number of individuals = N. There are 4 equal subsets. B) The second data
partitioning for Type3 parall by pairs of individuals when the number of

individuals = N. There are 16 equal subsets.

The SNPs input of Type4 parall by pairs of SNPs will be partitioned

in a similar way to Type3 parall by pairs of individuals.

3.2.3 Implementation

The workflow for GWA analysis on a single CPU or computer is
presented in Figure 3.5A. This workflow runs properly. The genotype and phenotype
data (as shown in Table 3.2 and Table 3.3 respectively) is processed by the GenABEL
library that works under the R program. GenABEL sequentially processes the raw

data, producing statistical data as its outputs.

33

A) B)

Figure 3.5: A) Sequential GWA Computing Workflow, which runs on a single CPU
or computer. B) Parallel GWA Computing Workflow that runs on a multiprocessor or

a set of computers.

Table 3.2: The example of genotype data executed in GenABEL and ParallABEL

snpid chrom chromEnd strand id199 id287 id300
rs7435137 1 4259040 - CT CT CT
rs7725697 3 10806991 - CcC CG CC
rs664063 2 7288020 - GG GC GG
rs4670072 X 13387482 + AA - AA
rs546570 2 6120257 + AA AA AA
rs7908680 1 2311762 - cC CA CcC
rs166732 1 4716343 - TT TG TT
rs4257079 1 3455895 - AA AA AA

rs5150804 2 7178160 + AG AG GG

34

Table 3.3: The example of phenotype data executed in GenABEL and ParallABEL

id sex age disease height weight
1d199 1 59 1 164 80
1d287 0 43 1 169 139
1d300 1 42 1 177 81

This sequential workflow may take a very long time to produce some
demanding statistical analyses. Our novel parallel workflow for producing statistical
data in GWA studies shown in Figure 3.5B can save the computing time. The
genotype and phenotype data (as shown in Table 3.2 and Table 3.3 respectively) is
passed for distribution to the SUN Grid Engine [32], a job scheduler. It queues jobs
and assigns them to CPUs in a clusterr LAM/MPI (Local Area
Multicomputer/Message Passing Interface) [33] has various functions which can be
called by Rmpi to parallelize R operations. ParallABEL parallelizes GenABEL using
this Rmpi library. The statistical data from this workflow has been validated by
comparing it with the outputs from the non-parallel approach. ParallABEL runs not
only on Linux cluster, such as the Rocks Cluster Distribution, but also on any
Operating System that supports R and LAM/MPI or Open MPI, such as the Unix and
Solaris operating systems. It can also run on computer clusters not using the Sun Grid
Engine but it will fully occupy the CPUs until the end of the program, so that other
applications can not share the execution time of the occupied CPUs. However,
normally the administrator will not allow a user to run a parallel program without
utilizing a queuing process from the Sun Grid Engine or a scheduler.

ParallABEL is developed based on SIMD parallel computing and
distributed memory/message passing programming model. ParallABEL can also be
run on shared memory architecture and distributed memory architecture. Manual
parallelization is applied to design and develop ParallABEL for more flexibility in
programming.

To parallelize GWA studies, ParallABEL running on the front-end
node partitions input data into smaller subsets so that tasks can be fairly distributed

among the CPUs. It sends tasks to idle CPUs on compute nodes. When the

35

computation on a compute node has finished, the front-end node will send another
task to the idle CPU — a cycle that continues until all the tasks are completed, which is
known as the ‘task pull’ method [34]. When all the tasks are finished, the front-end
node automatically merges all the outputs.

The task pull template [35] has been adapted for all types of
ParallABEL. The example of Typel parall by SNPs is shown in the source code of
Appendix D. To parallelize Typel parall by SNPs, there are five steps: (1) task
separation (2) task distribution; (3) task computation in compute nodes; (4) result
storing; and (5) result combination. The detail of each step can be seen in 3.2.2 Data
Partitioning section, and the source code of Type2 parall by individuals,
Type3 parall by pairs of individuals and Type4 parall by pairs of SNPs has been
published at https://r-forge.r-project.org/R/?group id=505.

Users can use ParallABEL to parallelize GenABEL GWA functions as
easily as using GenABEL for sequential analyses. An example of the mireg.p
command sequentially run on a CPU is shown in Figures 3.6A and 3.7A. The
executable command that parallelizes mlreg.p to run on multiple CPUs using

Typel parall by SNPs is shown in Figures 3.6B and 3.7B.

36

output.s <- mireg.p(formula, data)

where
formula = formula for the function
data = genotype and phenotype data

A)

output.p <- typel.p(npro, fun, data, formula)

where
npro = the number of processors of all compute nodes
Jun = “mireg.p”

data = genotype and phenotype data
formula = formula for the function

B)

Figure 3.6: A) Executing the mlreg.p function sequentially on a CPU B) Parallelizing
the mlreg.p function on more than one CPU. The user supplies the function name and
number of available CPUs to the parallel function. However, if the user does not
specify the number of CPUs, ParallABEL will automatically get it from Sun Grid

Engine or from the default value (2).

37

library(GenABEL)

data <- ge03d2.clean/,]
Jormula <- dm2~sex+age

output.s <- mireg p(formula=formula, data=data)
A)

library(ParallABEL)
library(GenABEL)

data <- ge03d2.clean/,]
formula <- dm2~sex+age

output.p <- typel.pmpro=2, fun=mireg.p, data=data, formula=formula)

B)

Figure 3.7: A) Execute the mlreg.p function sequentially on a CPU B) Parallelize the

mlreg.p function on more than one CPU.

3.3 Results

Our computer cluster, Hanuman, runs Rocks Cluster Distribution
version 4.3 which includes the SUN Grid Engine version 4.3 [36]. The cluster consists
of 5 IBM servers xSeries 336s, comprising of a front-end node and four compute
nodes. All servers have 2 SINGLE-CORE Intel Xeon (2.8 GHz) CPUs and 4 GB
RAM. The front-end node and all the compute nodes are connected through an
Ethernet switch, and the user can connect to the system via the Internet. The cluster
provides LAM/MPI version 7.1.2, R program version 2.8.1, Rmpi library version 0.5-
6, and GenABEL version 1.4-2, which are utilized as components by our ParallABEL
library.

38

The North American Rheumatoid Arthritis Consortium (NARAC) data
is part of a dataset employed to observe associations between disease and variants in
the major-histocompatibility-complex locus [17]. The NARAC genotype data
contains 545,080 SNPs from 2,062 individuals. The data was used to measure the
performance of ParallABEL by employing 868 individuals for cases, and 1,194
individuals as controls.

Trace results from Typel parall by SNPs,
Type2 parall by individuals, Type3 parall by pairs of individuals, and
Type4 parall by pairs of SNPs for the NARAC data are shown in Figure 3.8.
Typel parall by SNPs was executed by the GenABEL mlireg function,
Type2 parall by individuals was executed by the GenABEL hom function,
Type3 parall by pairs of individuals was executed by the GenABEL ibs function,
and Type4 parall by pairs_of SNPs was executed by the GenABEL r2fast function.
Parall ABEL reduced the computing time for Type3 parall by pairs of individuals,
especially with 8 CPUs. The Type3 parall by pairs of individuals executing speed
on eight CPUs was approximately seven times faster than on one CPU. On a single
CPU, the complete analysis took 8.1 hours, but only 1.1 hours with 8 CPUs. The
computing time for Typel parall by SNPs also tends to be like that for
Type3 parall by pairs of individuals.

39

computing time (log secs) —4—Type1_parall_by_SNPs
== Type2_parall_by_individuals
~f=Type3_parall_by_pairs_of_individuals

1000000 A —&—Typed_parall_by_pairs_of_SNPs
._
32 days 23?-\
100000 T
1 day 1.4 days

8.1 hours
10000 A 4.2 hours

1 hour =
55.3 mins

¢ 1.1 hours
34.5 mins

L 19.6 mins g
13.7/ mins

_" 6.1 mi
5.3 mins 6.3 mins S
100 4

1 min /

10 20 secs

1 2 4 8
number of processors

Figure 3.8: Trace results from Typel parall by SNPs, Type2 parall by individuals,
Type3 parall by pairs of individuals, and Type4 parall by pairs of SNPs for
NARAC data. When Typel parall by SNPs is executed by the GenABEL mlreg
function, Type2 parall by individuals is executed by the GenABEL hom function,
Type3 parall by pairs of individuals is executed by the GenABEL ibs function, and
Type4 parall by pairs of SNPs is executed by the GenABEL r2fast function. If
there is only one CPU, then the data will be analysed using GenABEL. If there are
more than one CPU, the data will be analysed using ParallABEL package.

40

The computing time for the sequential version of
Type2 parall by individuals can be very short (e.g. 20 seconds). While the parallel
version took longer (5.3 minutes for 2 CPUs), due to the overhead of data
partitioning, data distribution, and data merging. Data distribution can be time
consuming because the data must be saved on the front-end node before the compute
nodes can load it, and the front-end node must also spend time communicating with
the compute nodes. In addition, ParallABEL is tailored to quickly retrieve subsets of
SNPs, as this is a typical GWA scanning procedure, but is much less efficient in
retrieving subsets of individuals, which is less typical. Thus, the overhead of data
partitioning in subsets of individuals prevailed over the gain achieved by parallel
processing. These results highlighted a place where ParallABEL data storage and
processing is ineffective. It is a waste of time to speed up Type2 parall by individual
because the computation of Type2 parall by individuals on a CPU is fast.

Typed parall by pairs of SNPs was executed by the GenABEL
r2fast function. A single CPU can not pass all the SNPs in the NARAC data to »2fast
due to CPU memory limitations so the analysis was done separately for each
chromosome. Even then, a single CPU can not call »2fast with a chromosome with
more than 10,000 SNPs, which affects 20 chromosomes in the data. However,
ParallABEL can run r2fast with a chromosome with more than 10,000 SNPs by
employing a set of CPUs. The chromosome data is automatically partitioned based on

the number of SNPs as shown in Table 3.4.

Table 3.4: The least number of subsets of each chromosome partitioned by the

number of SNPs

Chromosome name Number of SNPs Number of subsets
19,20,21,22,X,Y 11-14,000 4
9,11,12,13,14,15,16,17,18 14,001-28,000 16
1,2,3,4,5,6,7,8,10 28,001-56,000 64

If the number of SNPs for a chromosome is between 11 and 14,000,
then the data will be partitioned into at least 4 balanced subsets. If the number of the

SNPs is between 14,001 and 28,000, then the data wil be divided into at least 16

41

balanced subsets. If the number of SNPs is between 28,001 and 65,000, then the data
will be split into at least 64 balanced subsets. The data will be automatically
partitioned until the number of CPUs is equal to, or less than, the number of subsets
for load balancing on each CPU. The trace example results for
Type4 parall by pairs of SNPs of NARAC data are shown in Figure 3.8.

Type4 parall by pairs of SNPs took only 1.4 days to execute on
eight CPUs, indicating that time-saving with ParallABEL is linearly correlated to the
number of nodes. This suggests that with more SNPs, more computing time will be
saved by ParallABEL.

If the number of available CPUs is P, the parallel computing time for P
CPUs is time P cpus, and the serial computing time for a CPU is time _a cpu; the

overhead for P CPUs will be:

overhead = time P_cpus — time_a_cpu/P

Different numbers of CPUs produce different overheads depending on
data partitioning, network communication, and data merging. However, the overheads
can be predicted based on the overhead of eight CPUs shown in Figure 3.8. The
computing time on a large cluster for Typel parall by SNPs,
Type3 parall by pairs of individuals and Type4 parall by pairs of SNPs
extrapolated from Figure 3.8 applying the above overhead equation are shown in
Figure 3.9. It is clear that ParallABEL also saves the computing time on a large
cluster. In addition, the time-saving rates for these types will be much increased when
the number of CPUs is in between 2 and 50. Nevertheless, the time-saving rates will
be slowly increased when the number of CPUs is greater than 50. This applies to the
particularly and relatively small data set analyzed here. With bigger data sets, the
time-saving rates can be larger. However, the user should optimize the number of

CPUs according to the gain in computational throughput.

42

computing time (log secs)

—t=—Type1_parall_by_SNPs
32 days ~——Type3_parall_by_pairs_of_individuals
==—Typed_parall_by_pairs_of_SNPs
100000 A
16.0 hours 15.2 hours 14.9 hours
17.5 hours I . " -
15.5 hours 15.0 hours
4.2 hours
10000 A
34 .5 mins
12.1 mins
1000 - 10.5 mins ; .
9.7 mins 9.2 mins 8.9 mins
=} il
') % & ¢
6.9mins 63mins 6.1 mins 6.0 mins 6.0 mins 5.9 mins
100 Y T T T T T 1

2 50 100 150 200 250 300
number of processors

Figure 3.9: The computing time on a large cluster for Typel parall by SNPs,
Type3 parall by pairs of individuals and Type4 parall by pairs of SNPs

extrapolated from Figure 3.8 applying the overhead equation.

3.4 Discussion and summary

We have presented the ParallABEL library which employs parallel
computing to reduce computing time for data intensive tasks. ParallABEL can run on
clustered computers that support LAM/MPI and R. With clustered computers, CPUs
or even personal computers can be easily added as new compute nodes. Parall ABEL
runs on both distributed and shared memory architectures as it was developed with
MPIL. For a distributed memory architecture, MPI usually uses a computer network for

task communications. For a shared memory architecture, MPI employs shared

43

variables instead of the network for task communications. This means that a
distributed memory architecture may exhibit more overhead than a shared memory
architecture (for example, eight single-core CPUs versus a single eight-core CPU). In
our experiments, Typel parall by SNPs took only 6 minutes to execute on a shared
memory architecture but 14 minutes on a distributed memory architecture. The
overhead of the shared memory architecture was tested on a server, which has 2
QUAD-CORE Intel Xeon(R) (2.8 GHz) CPUs and 8 GB. The server runs on CentOS
version 5.4, and provides Open MPI version 1.4.1. Whereas, the overhead of the
distributed memory architecture was measured on the computer cluster comprising of
a front-end node and four compute nodes. Each node has 2 SINGLE-CORE Intel
Xeon (2.8 GHz) CPUs and 4 GB RAM. Although the specification of the shared
memory server is lower than the specification of the distributed memory cluster, its
performance is still better than the performance of the distributed memory cluster.
Parall ABEL allows the user to specify the number of CPUs employed
for data execution. We expect the computational performance to increase linearly with
the number of CPUs when using Typel parall by SNPs,
Type3 parall by pairs of individuals, and Type4 parall by pairs of SNPs. In
addition, ParallABEL using multiple CPUs is faster than GenABEL using only one
CPU. Computing times for Type3 parall by pairs of individuals and
Type4 parall by pairs of SNPs are longer than those for Typel parall by SNPs
because the input data are pairs of individuals and SNPs respectively, which are much
larger than the SNPs input for Typel parall by SNPs. In addition, if the number of
SNPs is n, then the number of inputs for Typel parall by SNPs will be n but the
number of inputs data for Type4 parall by pairs of SNPs will be n*n. ParallABEL
can save much more computational time when utilizing
Type3 parall by pairs of individuals and Type4 parall by pairs of SNPs than
when using Typel parall by SNPs. Therefore, as the amount of input data increases,
the time saved by ParallABEL also increases. ParallABEL does not only reduce the
computing time but also is as easy-to-use as the more conventional GenABEL.
ParallABEL can not reduce the computing time when the data size is
too small, such as the result shown when employing the hom function of

Type2 parall by individuals, because the computing time is too short. In that case,

44

the overheads of data partitioning and output merging overwhelm the computational

performance.

CHAPTER 4

Speeding up SNP Interaction Analyses Based on Logic Regression
Applying Parallel Computing for GWA Studies

4.1 Introduction

Logic regression, developed by Ruczinski et al., is a flexible method of
regression with Boolean combinations of binary covariates as explanatory variables
[37]. It has certain advantages over other analyses, such as Classification and
Regression Trees (CART) [38] and random forests [39], which relate only the main
effects and simple (two to three-way at most) interactions between predictors. The
strength of logic regression is its capacity for finding complex interactions between
predictors. Logic regression can be applied to various regression/classification
problems, one of which is the analysis of Single Nucleotide Polymorphism (SNP)
interactions.

SNPs refer to genetic variations at the single nucleotide level. There
are more than one million SNPs in the human genome. From a large set of SNP
measurements, finding SNPs whose variations are associated with a disorder is an
important analytic goal of bioinformatics. Such analyses can help researchers discover
genes that predispose individuals to a higher risk of the disorder. In addition, SNP
analyses may assist researchers to explain possible heterogeneity in individuals'
responses to a certain medicine [40].

Schwender and Ickstadt suggested that it is usually not an individual
SNP that plays an imperative role in the risk of a complex disorder. Rather, it is SNP
interactions that strongly influence the risk of a complex disorder [41]. This suggests
that SNP interactions may identify high risk groups [42], to whom an intervention
strategy for decreasing the risk or detecting the disorder early for treatment may be
considered. Logic regression can be employed to search for multi-way SNP
interactions, e.g., 4-way interactions: such an analysis is often difficult with other

methods including random forests, CART, and Support Vector Machines (SVMs) [41,

45

46

43]. For this reasons, logic regression is a powerful methodology for identifying SNPs
interactions associated with risks of complex disorders.

LogicReg is an R library for logic regression analyses [13]
implemented in R [11], a well-known open source statistics programming language
and environment. To allow a large number of permutation rounds for a large dataset
such as ones from GWAS, it is advantageous to create an R-library that allows
parallel computation of logic regression. For instance, for the gene-level SNP analysis
of Crohn’s disease dataset from the Wellcome Trust Case Control Consortium
(WTCCC) including approximately 13,500 genes, we need more than 400,000 runs of
logic regressions when SNP interactions within each gene must be analyzed with
thirty permutations. Moreover, to the size of the dataset is large: for example, the
WTCCC Crohn’s disease dataset includes 4,680 individuals. Accordingly, without
parallel computing, the logic regression analysis requires massive computing time,
hours to months, depending on the size of the dataset being analyzed and the
computer capacities.

Possible ways to speed up the computing time of any program include
editing of the algorithm and using parallel computing. Since it is not simple to alter
the logic regression algorithm, the best way to speed up the logic regression analysis
is to employ parallel computing. Parallel computing is a useful methodology, enabling
concurrent handling of multiple computing resources to gain computational
throughput. In parallelization, a problem or a job is partitioned into unassociated
smaller tasks including series of commands. Each task will then be executed freely
using multiple Central Processing Units (CPUs) on compute nodes of a cluster; after
that, one of these CPUs on the front-end node will combine the outputs from all tasks
[44].

Rmpi [15], an R library, supports many functions to parallelize broken
tasks on R using the MPI (Message Passing Interface) [16]. Besides, Rmpi can be
applied to control the flow of computation in a parallel environment with both single-
core CPUs and multi-core CPUs, and on a single computer or on a computer cluster.
Nonetheless, it is arduous for general users to write a parallel Rmpi program including
partitioning and distributing data, controlling and monitoring tasks, and merging

output files.

47

In this chapter, we propose a development of ParallLogicReg, a new R
library for parallelization of logic regression analyses using Rmpi. ParallLogicReg
aims not only to accelerate the computation of logic regression analyses, but also
simplify analysis parallelization. Moreover, using ParallLogicReg, users do not need
to be proficient with parallel programming because it will automatically partition and
distribute data, control and monitor tasks across the computers, and merge output

files.
4.2 Methods
4.2.1 Logic regression analyses

Logic regression aims to find Boolean combinations of the predictors.
We consider that all predictors are binary (0 or 1, yes or no), for identification of SNP
associations. Specifically, the predictor X; = 1 if the i™ SNP has a certain genotype,
and X; = 0 otherwise. Each Boolean combination of SNPs could use three operators,
"1 (AND), [J (OR), and ¢ (NOT) to form a logic expression, L;, j = 1,..., ¢ such as:

Lj = (X]] Xz)] X3C
This example of Boolean logic expression means:

L= (SNP; (1 SNP,) [SNP5

Figure 4.1 shows the example of SNP interaction associations between

SNP; and SNP; that both SNP; and SNP high risk; or either SNP; or SNP; high risks.

48

Population

Population

SNP;
High Risk

SNP,
High Risk

: |
Population Population
Either SNP; ORSNP,

Both SNP; AND SNP, High Risk
High Risk

Figure 4.1: SNP interaction associations between SNP; and SNP; [45].

Logic regression uses L s instead of X’s in its linear predictor and takes

the form:
REL) = o+ 2 L

where Y is a response variable, f'is a link function, and parameters S, j
=0,..., t are concurrently estimated with the search for the Boolean expressions L;’s
in the above equation that minimizes the scoring function related with this model type

[37].
4.2.2 Data partitioning and distribution

The computation of logic regression is demanding as it explores a large
space for an optimal set of logics and needs a large number of permutation tests to
assess signals in the data. Hence, parallel computing is very important as it decreases

the computing time. To parallelize a logic regression analysis, ParallLogicReg

49

running on the front-end node automatically partitions the input dataset into G
subsets, where G is the number of genes to be analyzed. The ‘task full” approach [34]
is used to keep load balancing when ParallLogic is being executed. Also, this
approach is not sensitive to the number of CPUs or compute nodes .The front-end
node sends these subsets to idle CPUs on compute nodes. The example of data
partitioning and distribution are shown in Figure 4.2. If there are four compute nodes,
and each compute node has only one CPU, SNPs of G; - G4 (Gene; - Geney) will
separately be executed on these compute nodes as shown in Figure 4.2A. When the
execution of the second compute node has finished, the front-end node will send the
SNPs of the next gene (Gs) to it — a cycle that proceeds until all the genes are sent as
shown in Figure 4.2B. After all the compute nodes has finished their tasks, the front-

end node will combine all the outputs automatically.

50

J Compute node

Compute node;

Front-end node

Compute node;

Compute node,

A)

J Compute node;
“ — @

Compute node;

Compute nodes

Compute node,

B)

Figure 4.2: A) The data is partitioned into fifteen subsets, and each subset contains
SNPs of a gene. G - G4 subsets will then be executed on different compute nodes. B)
The Gs is sent to be executed on the second compute node after the execution of G;

has finished.

51

4.2.3 Implementation

The sequential workflow for a logic regression analysis on a single
CPU/computer is shown in Figure 4.3A. The genotype and phenotype data are
analyzed by the LogicReg library, working under the R program. LogicReg
sequentially analyzes the raw data, and produces statistical data (e.g., deviance) as
outputs.

Since this sequential workflow generally takes great computing time to
conduct statistical analyses, we have developed a novel parallel workflow for
ParallLogicReg to save the computing time. The novel parallel workflow in a logic
regression analysis is shown in Figure 4.3B. A job scheduler such as the SUN Grid
Engine [32] distributes the genotype and phenotype data to each compute node on a
cluster to queue jobs and reserve a set of CPUs required by the employed MPI
(Message Passing Interface) library such as LAM/MPI (Local Area
Multicomputer/Message Passing Interface) [33] and Open MPI [46]. The MPI library
has various functions called by Rmpi to parallelize R functions. ParallLogicReg uses
this Rmpi library to parallelize LogicReg. In addition, ParallLogicReg partitions a job
into several smaller tasks on a front-end node using basic R commands and distributes
them with genotype and phenotype data to the reserved CPUs using Rmpi. These
CPUs execute the tasks on compute nodes and call the LogicReg. Later, the outputs
will return to Rmpi and be combined by ParallLogicReg on the front-end node. The
statistical data from the parallel workflow can be approved by comparison with the
statistical data from the sequential workflow. ParallLogicReg can run on any
Operating System supporting components for the parallel workflow such as Linux and

Solaris.

52

A)

Figure 4.3: A) Sequential logic regression computing workflow runs on a single CPU
or a computer. B) Parallel logic regression computing workflow runs on a multiple

CPUs or a set of computers.

ParallLogic is designed based on SIMD parallel computing and
distributed memory/message passing programming model and can be executed on
shared memory architecture and distributed memory architecture. Manual
parallelization is applied to design and develop ParallLogic.

Users can easily use ParallLogicReg to parallelize logic regression
function. The executable command that parallelizes logic regression on multiple
CPUs is shown in Figure 4.4. To run the function, the number of CPUs can be
specified in the Sun Grid Engine.

53

library(ParallLogicReg)

resp=c(rep(0,2935),rep(1,1745)) # number of controls = 2,935, number of cases = 1,745
nperm=20 # number of permutations

niter=20 # number of iterations

begin=1 # the first gene id that will be run

end=10 # the last gene id that will be run

infile=("A01Chro1.txt") # data will be run

output = ParallLogicReg(infile=infile,resp=resp,begin=begin,end=end,nperm=nperm,niter=niter)

Figure 4.4: The example of parallel execution used to analyze Crohn’s disease data
when gene ids were between one and ten, and the numbers of permutations and
iterations were twenty. The data contained 1,745 cases and 2,935 controls. Besides,
the user could set the number of CPUs in a job scheduler such as the SUN Grid

Engine.

4.3 Results

A computer cluster, Hanuman, has been used to evaluate the
performance of ParallLogicReg. This cluster includes five IBM servers XSeries 3362,
which are comprised by a front-end node and four compute nodes, with two SINGLE-
CORE Intel Xeon (2.8 GHz) CPUs and four GB RAM, respectively. The front-end
node of the cluster can be connected via the Internet, and can control the compute
nodes of the cluster through an Ethernet switch. Also, this cluster provides Rocks
Cluster Distribution version 4.3 [36] including the SUN Grid Engine version 4.3 [32],
LAM/MPI version 7.1.2, R program version 2.8.1, Rmpi library version 0.5-6,
LogicReg version 1.4.9 and ParallLogicReg 1.0. Crohn’s disease data set, a chronic
inflammatory disease data set of the intestines [18] which contains 1,745 controls and
2,935 cases with approximately 2,000 SNPs, was used to measure the performance of
ParallLogicReg.

Results from logic regression using ParallLogicReg function for the
Crohn’s disease data are shown in Figure 4.5 with twenty permutations and iterations.

ParallLogicReg saved the computing time, especially with eight CPUs. For example,

54

on a single CPU, the two hundreds gene analyses on the first chromosome took 7.3

days, but took only 0.9 day with eight CPUs.

Computingtime (hours)
7.3 days ==ncne 1 - gene 10
=@=qcne 1 - gene 100
=#=gene 1 - gene 200
150 ~
100 ~
3.5 days
50 1
0.9 day
9 hours 4 6 hours 2 0 hours gk
o . * . N hours

2
Numberof CPUs

Figure 4.5: Ten, one hundred and two hundred genes of Crohn’s disease data were
executed with ParallLogicReg. Also, these genes were running on one, two, four and
eight CPUs. The results showed that the more CPUs, the more computing times were

saved by ParallLogicReg.

If the number of available CPUs is P, the computing time for P CPUs
is timep, and the sequential computing time for a CPU is time,, thus, the speedup for P

CPUs will be:
speedupp = time; / timep
The speedups of analyzing Crohn’s disease data using ParallLogicReg

function applying the above equation are shown in Figure 4.6. It shows that the saved

time by ParallLogicReg is linearly correlated to the number of CPUs. For instance,

55

the executing speed of the two hundreds gene analyses on eight CPUs was

approximately eight times faster than that on only one CPU.

Speedup =+—gene 1 - gene 10
=B=ccne 1 - gene 100
=8=qcne 1 - gene 200

1 2 4 8
Numberof CPUs
Figure 4.6: The speedups were extrapolated from Figure 4.5 applying the speedup

equation. The speedups showed that the more CPUs, the more speedup were increased

by ParallLogicReg.

4.4 Discussion and summary

We have developed a novel R-library called ParallLogicReg to speed
up logic regression analyses using parallel computing components which consist of a
job scheduler, a MPI library, an Rmpi library and a LogicReg library. ParallLogicReg
has been designed to be a user-friendly library. Identification of SNPs associated with
Crohn’s disease is used to measure the performance of the ParallLogicReg function.
The results showed that ParallLogicReg using parallel computing can save the
computing time for analyzing massive data. The statistical data from ParallLogicReg

with the number of CPUs is the same as the statistical data from non-parallel method

56

because ParallLogicReg partitions data into small subsets which have no effect for

logic regression analyses.

According to speedup equation, the overhead for P CPUs is

overheadp = time,-(time; / P)

Since ParallLogicReg is not sensitive to the number of CPUs, it can be
run on a large cluster. The overhead of analyses with various numbers of CPUs on a
large computer cluster can be predicted based on the overhead of eight CPUs as

shown in Figure 4.7.

57

Computingtime (log secs)

73d =e=cicnie 1 - gene 10
=@=gene 1 - gene 100
400,000 A =8=qene 1 - gene 200

40,000 -

4 000 . —

1 5 10 25 50 100 150 200 250
Numberof CPUs

Figure 4.7: The computing time on a large cluster for ten, one hundred and two
hundred genes analyses were extrapolated from Figure 4.5 applying the overhead

equation.

The computing time on a large cluster for ten, one hundred and two
hundred analyses extrapolated from Figure 4.5 applying the above overhead equation

are shown in Figure 4.8.

58

Speedup

=+=gene 1 - gene 10
120 =@=qene 1 - gene 100
=#=qgene 1 - gene 200

100 o’

: v
GO /

40

20

+ >

1 5 10 25 50 100 1
Numberof CPUs

[S R I

0 200 250

Figure 4.8: The speedups on a large cluster for ten, one hundred and two hundred
genes analyses were extrapolated from Figure 4 applying the overhead equation and

speedup equation.

The time-saving rates are grown when the numbers of CPUs are
increased until the numbers of CPUs are greater than number of genes. Thus, with
bigger data, the time-saving rates will be larger in a large computer cluster. Users can
set the number of CPUs in ParallLogicReg to execute data, which will reduce the
computing time that growingly correlates to the number of CPUs. Also, if the user
applies more CPUs, more computing time will be saved by ParallLogicReg.
Nonetheless, the user should optimize the number of CPUs suitable for the
computational throughput. In particular, the number of CPUs assigned should be less
than, or equal to, the number of genes to avoid idling CPUs. Due to the benefit of
MPI, ParallLogicReg can be run not only on a distributed memory architecture like

the architecture of Hanuman but also on a shared memory architecture. Nevertheless,

59

a distributed memory architecture produces more overhead than a shared memory

architecture.

CHAPTER 5

Conclusions and Furture Work

5.1 Conclusions

Genome-Wide Association (GWA) analysis 1s a powerful method for
identifying loci associated with complex genetic traits such as Crohn’s disease, Type I
Diabetes Mellitus (DM) and Type II DM. Parts of GWA analyses, especially those
involving interactions or pair-wise analysis of thousands individuals or millions
genetic markers consuming hours to months of computation time, will benefit from
parallel computation. However, it is arduous acquiring the necessary programming
skills to correctly partition and distribute data, control and monitor tasks on multiple
CPUs, and merge output files.

ParallABEL and ParallLogicReg have been presented to improve the
performance of GWA analyses by applying parallel computing. With ParallABEL and
ParallLogicReg libraries, users can immensely accelerate the computing time of
GWA analyses. For example, the computing time of the Rheumatoid Arthritis data set
for the identity-by-state matrix was theoretical reduced from approximately eight
hours to one hour when ParallABEL employed eight processors. Another instance,
with two hundred genes and twenty permutation rounds, the computing time of the
Crohn’s disease data set was decreased from about seven days to only one day when
ParallLogicReg applied eight CPUs.

The users can execute ParallABEL and ParallLogicReg to parallelize
GWA analyses without having the advanced programming skills including
partitioning and distributing data, controling and monitoring tasks, and merging
output files. Moreover, expert users have no waste of time to develop the libraries.
ParallABEL is a user-friendly parallelization of GenABEL whereas ParallLogicReg is
a user-friendly parallelization of LogicReg for GWAS analyses. The statistical
outputs from both libraries with any number of CPUs are valid as the statistical data

from non-parallel approach (GenABEL and LogicReg). Both novel libraries can be

60

61

executed not only on multi-core CPUs on a single computer but also on multi-core
CPUs or single-core CPU distributed across many computers (a computer cluster).
Nevertheless, the computers must support Rmpi running under a MPI library such as
LAM/MPI and Open MPI.

Since ParallABEL and ParallLogicReg can produce statistical outputs
of GWA analyses faster than the conventional approach, users can save time to find
genes referred to diseases. Besides, the more CPUs, the more finding times were
saved by ParallABEL and ParallLogicReg. Researchers can use the information to
develop better strategies to detect, treat and prevent the diseases more quickly than
before.

The user can specify the number of processors employed for data
execution in ParallABEL and ParallLogicReg. With ParallABEL, users could expect
the computational performance of GWA analyses to linearly increase with the number
of processors when using the functions of ParallABEL to compute the SNP
characterization statistics, the pair-wise individuals statistics and the pair-wise SNPs
statistics. In addition, ParallABEL using multiple CPUs is faster than GenABEL
using only one processor. Computing times for the pair-wise individuals statistics and
the pair-wise SNPs statistics are longer than those for the the SNP characterization
statistics because the input data is pairs of individuals and SNPs respectively, which
are much larger than the SNPs input for the SNP characterization statistics. Also, if
the number of SNPs is n, then the number of inputs for computation of the SNP
characterization statistics will be n but the number of input data for computation of
the pair-wise SNPs statistics will be n*n. ParallABEL can save much more
computational time when producing the pair-wise individuals statistics and the pair-
wise SNPs statistics than when producing the SNP characterization statistics.
Therefore, as the amount of input data increases, the time saved by ParallABEL also
increases. However, ParallABEL can not reduce the computing time when the data
size is too small, such as the result shown when employing the hom function (an
individual characterization statistic) because the computing time is too short. In that
case, the overheads of data partitioning and output merging overwhelm the
computational performance. With ParallLogicReg, the time-saving rate grows when

the number of CPUs increases until the number of CPUs is greater than the number of

62

genes. Therefore, the number of CPUs should be less than, or equal to, the number of
genes in order to avoid idling CPUs. Nonetheless, the user should optimize the
number of CPUs suitable for the gained computational throughput.

ParallABEL and ParallLogicReg can process not only the Rheumatoid
Arthritis data set and Crohn's disease data set but also other disease data sets such as a
neck cancer data set. In addition, the user can use statistical outputs from ParallABEL
and ParallLogicReg to find genes associated the other diseases such as the neck

cancer.

5.2 Furture work

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that
provides resizable computability in the cloud. It supports users with complete control
of their requiring resources (a large computer cluster) and lets the users run on
Amazon’s proven computing environment. Amazon EC2 reduces the time required to
obtain and boot new server instances to minutes. It also allows the users to quickly
scale capacity both up and down when their computing requirements change. Amazon
EC2 changes the economics of computing by allowing the users to pay only for
capacity that the users actually use [47]. If ParallABEL and ParallLogicReg can run
on Amazon EC2, the computing time of GWA analyses will be much saved.
Nevertheless, a trouble of executing of ParallABEL and ParallLogicReg on Amazon
EC2 may occur since we still do not exactly know about infrastructure of Amazon
EC2. Therefore, we will intensively check the infrastructure before running of

ParallABEL and ParallLogicReg on Amazon EC2.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

Genome-Wide Association Studies. Available:

http://www.genome.2ov/20019523

Largest ever study of genetics of common diseases published today. Available:

http://www.wtcce.org.uk/info/070606.shtml

"Genome-wide association study of 14,000 cases of seven common diseases
and 3,000 shared controls," Nature, vol. 447, pp. 661-78, Jun 7, 2007.

K. Christensen and J. Murray, "What genome-wide association studies can do
for medicine," N Engl J Med, vol. 356, 2007.

Database of Single Nucleotide Polymorphisms. Available:

http://www.ncbi.nlm.nih.gov/snp

D. L. Wheeler, et al., "Database resources of the National Center for
Biotechnology Information," Nucleic Acids Res, vol. 36, pp. D13-21, Jan
2008.

A. D. Johnson and C. J. O'Donnell, "An open access database of genome-wide
association results," BMC Med Genet, vol. 10, p. 6, 2009.

J. N. Hirschhorn and M. J. Daly, "Genome-wide association studies for
common diseases and complex traits," Nat Rev Genet, vol. 6, pp. 95-108, Feb
2005.

T. A. Pearson and T. A. Manolio, "How to Interpret a Genome-wide
Association Study," The Journal of the American Medical Association, vol.
299, pp. 1335-1344, 2008.

Y. S. Aulchenko, et al., "GenABEL: an R library for genome-wide association
analysis," Bioinformatics, vol. 23, pp. 1294-6, May 15, 2007.

The Comprehensive R Archive Network (CRAN). Available: http://www.r-
project.org/

R. Thaka and R. Gentleman, "R: A language for data analysis and graphics,"
Journal of Computational and Graphical Statistics, vol. 5, pp. 299-314, 1996.
C. Kooperberg and 1. Ruczinski. Mar 23, 2011). LogicReg: Logic Regression.
Available: http://cran.r-project.org/web/packages/LogicReg/index.html

63

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

64

Introduction to Parallel Computing. Available:
https://computing.llnl.gov/tutorials/parallel _comp/
Rmpi: Interface (Wrapper) to MPI (Message-Passing Interface). Available:

http://www.stats.uwo.ca/faculty/yu/Rmpi/

Message-Passing Interface Forum (MPI). Available: http://www.mpi-

forum.org/
R. M. Plenge, et al., "TRAFI1-C5 as a risk locus for rheumatoid arthritis--a

genomewide study," N Engl J Med, vol. 357, pp. 1199-209, Sep 20, 2007.

M. Parkes, et al., "Sequence variants in the autophagy gene IRGM and
multiple other replicating loci contribute to Crohn's disease susceptibility,"
Nat Genet, vol. 39, pp. 830-2, Jul 2007.

B. Barney. (2009, Apr 21,2009). Introduction to Parallel Computing.
Retrieved on Apr 21, 2009. Available:
https://computing.llnl.gov/tutorials/parallel _comp/

J. Altmiiller, et al., "Genomewide Scans of Complex Human Diseases: True
Linkage Is Hard to Find," Am J Hum Genet, vol. 69, p. 1413, 2001.

"A haplotype map of the human genome," Nature, vol. 437, pp. 1299-320, Oct
27, 2005.

K. A. Frazer, et al., "A second generation human haplotype map of over 3.1
million SNPs," Nature, vol. 449, pp. 851-61, Oct 18, 2007.

L. A. Hindorff, et al., "Potential etiologic and functional implications of
genome-wide association loci for human diseases and traits," Proc Natl Acad
Sci US A, vol. 106, pp. 9362-7, Jun 9, 2009.

R. H. Duerr, et al., "A genome-wide association study identifies IL23R as an
inflammatory bowel disease gene," Science, vol. 314, pp. 1461-3, Dec 1, 2006.
H. Mishima, et al., "Application of the Linux cluster for exhaustive window
haplotype analysis using the FBAT and Unphased programs," BMC
Bioinformatics, vol. 9 Suppl 6, p. S10, 2008.

N. M. Laird, ef al. (2000, Implementing a unified approach to family-based
tests of association. Genet Epidemiol 19 Suppl 1, S36-42
[http://biosun].harvard.edu/~fbat/fbat.htm]. Available:
http://biosun1.harvard.edu/~fbat/fbat.htm

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

65

F. Dudbridge, "Pedigree disequilibrium tests for multilocus haplotypes,"
Genet Epidemiol, vol. 25, pp. 115-21
[http://portal.litbio.org/Registered/Help/unphased/], Sep 2003.

G. Vera, et al., "R/parallel--speeding up bioinformatics analysis with R," BMC
Bioinformatics, vol. 9, p. 390, 2008.

K. Misawa and N. Kamatani, "ParaHaplo: A program package for haplotype-
based whole-genome association study using parallel computing," Source
Code Biol Med, vol. 4, p. 7, 2009.

L. Ma, et al., "Parallel and serial computing tools for testing single-locus and
epistatic SNP effects of quantitative traits in genome-wide association
studies," BMC Bioinformatics, vol. 9, p. 315, 2008.

J. Hill, et al, "SPRINT: a new parallel framework for R," BMC
Bioinformatics, vol. 9, p. 558, 2008.

Sun Grid Engine. Available: http://www.rocksclusters.org/roll-

documentation/sge/5.4/using-sge.html

Local Area Multicomputer/Message Passing Interface. Available:

http://www.lam-mpi.org/

Rmpi Program Structure. Available:

http://math.acadiau.ca/ ACMMaC/Rmpi/structure.html

"Task pull method."
Rocks Cluster Distribution. Available:

http://www.rocksclusters.org/wordpress/

"

I. Ruczinski, et al, "Logic regression," Journal of Computational and
Graphical Statistics, vol. 12, pp. 475-511, Sep 2003.

L. Breiman, Classification and regression trees. Belmont, Calif.: Wadsworth
International Group, 1984.

L. Breiman, "Random forests," Machine Learning, vol. 45, pp. 5-32, Oct
2001.

Mar 9,2011). Genetics Home Reference. Available:

http://ghr.nlm.nih.gov/handbook/genomicresearch/snp

H. Schwender and K. Ickstadt, "Identification of SNP interactions using logic
regression," Biostatistics, vol. 9, pp. 187-98, Jan 2008.

[42]

[43]

[44]

[45]

[46]
[47]

66

S. Garte, "Metabolic susceptibility genes as cancer risk factors: time for a
reassessment?," Cancer Epidemiol Biomarkers Prev, vol. 10, pp. 1233-7, Dec
2001.

I. Guyon, et al., "Gene selection for cancer classification using support vector
machines," Machine Learning, vol. 46, pp. 389-422, 2002.

U. Sangket, et al., "ParallABEL: an R library for generalized parallelization of
genome-wide association studies," BMC Bioinformatics, vol. 11, p. 217, 2010.

Y. Yutaka, "Crohn’s Disease GWAS Gene-level logic regression analysis,"
2011.

Open MPI. Available: http://www.open-mpi.org/

October 24 th, 2011). Amazon Elastic Compute Cloud (Amazon EC2).

Available: http://aws.amazon.com/ec2/

APPENDICES

67

Appendix A

Publication

68

Sangket et al BMC Bioinformatics 2010,11:217
hup:/fwww.biomedcentral.com/1471-2105/11/217

SOFTWARE

69

BMC
Bioinformatics
Open Access

ParallABEL: an R library for generalized
parallelization of genome-wide association studies

Unitsa Sangket*!, Surakameth Mahasirimongkol?, Wasun Chantratita®, Pichaya Tandayya® and Yurii S Aulchenko5#

Abstract

merge output files

when ParallABEL employed eight processors.

parallelization of GenABEL

8

Background: Genome-Wide Association (GWA) analysis is a powerful method for identifying loci associated with
complex traits and drug response, Parts of GWA analyses, especially those involving thousands of individuals and
consuming hours to months, will benefit from parallel computation. Itis arduous acquiring the necessary
programming skills to correctly partition and distribute data, control and monitor tasks on clustered computers, and

Results: Most components of GWA analysis can be divided into four groups based on the types of input data and
statistical outputs. The first group contains statistics computed for a particular Single Nucleotide Polymorphism (SNP),
or trait, such as SNP characterization statistics or asscciation test statistics. The input data of this group includes the
SNPs/traits, The second group concerns statistics characterizing an individual in a study, for example, the summary
statistics of genotype quality for each sample. The input data of this group includes individuals. The third group
consists of pair-wise statistics derived from analyses between each pair of individuals in the study, for example
genome-wide identity-by-state or genomic kinship analyses. The input data of this group includes pairs of SNPs/traits.
The final group concerns pair-wise statistics derived for pairs of SNPs, such as the linkage disequilibrium
characterisation. The input data of this group includes pairs of individuals. We developed the Parall ABEL library, which
utilizes the Rmipi library, to parallelize these four types of computations. Parall ABEL library is not only aimed at GenABEL,
but may also be employed to parallelize various GWA packages in R. The data set from the North American
Rheumatoid Arthritis Consartium (NARAC) includes 2,062 individuals with 545,080, SNPs' genotyping, was used to
measure Parall ABEL performance. Almost perfect speed-up was achieved for many types of analyses For example, the
computing time for the identity-by-state matrix was linearly reduced from approximately eight hours to one hour

Conclusions: Executing genome-wide association analysis using the ParallABEL library on a computer cluster is an
effective way 1o boost performance, and simplify the parallelization of GWA studies. Parall ABEL is a user-friendly

J

Background

GWA analysis [1] is a well established and powerful
method for identifying loci associated with variations of
complex genetic traits such as common diseases. Hun-
dreds of new genes have been implicated in human health
and disease during the last few years in various GWA
studies[2]. In a typical study, hundreds of thousands, or
millions, of single-nucleatide polymorphisms (SNPs} are

" Correspondence usangket@yahoo.com

1 Center for Genomics and Bivinformatics Research, Faculty of Science, Prince
of Songkla University, Songkhla, 90112, Thailand

Fuill list of author information s available at the end of the article

typed in thousands of individuals in order to detect
genetic risk factors.

GenABEL is a specialized library package for GWA
analysis [3] implemented in R, an open source statistics
programming language and environment [4,5]. GenABEL
enables GWA analysis to be done using a regular desktop
computer due to its efficient data storage and memory
management. Nevertheless, analysis of very large data
sats are computationally challenging and may take hours
or weeks to complete. Examples include the utilization of
sophisticated adjustments for population stratification
and relationship structures, the estimation of linkage dis-

£ 2010 Sangket et ak; licenses Bloled Central Ltd, This is an Open Access article distributed under the terms of the Greative Commaons.

by/2.0), which pesmits unrestricted use, distibution, and reproduction in

() BioNMied Central Atribution Licensa thtip://aeativecommons.

any medium, provided membglnalwrtklsprm;ﬂy dtad.

Sangket etal. BMC Bioinformatics 2010, 11:217
http/Avwny biomedcentral.com/1471-2105/11/217

equilibriums and the calculation of genome-wide iden-
tity-by-state, haplotypic tests, and permutation analyses.

To increase the computational throughput, a user can
partition their data into sets, and perform the analysis of
the sets across a network of computers; a concept known
as parallel and/or distributed computing. However, per-
forming such analysis requires high levels of computer
expertise. The user needs sufficient programming skills
to partition and distribute data, control and meonitor
tasks across the computers, and merge output files. Occa-
sionally, a data set may fail to be processed, e.g. if the user
did not partition the data into small enough subsets to be
processed on a particular machine. Also, the outputs
from the computers may be scattered and their order
hard to follow.

Parallel computing is an intuitive, and powerful,
method for increasing computational throughput. A task
is separated into smaller tasks, and each is processed
independently, in parallel, using multiple Central Pro-
cessing Units (CPUs) or a cluster of computers. The out-
puts from each task must later be merged [6]. A general
architecture for parallel computing is shown at Figure 1.
Most tasks solved in GWA analysis are suitable for paral-
lelization, due to their computational independency, with
parallelization achieved at the data level. For example,

70

Page 2 0f 11

association tests can usually be done separately for each
SNP and/or a small group of SNPs. Consequently, paral-
lelization is a beneficial way to reduce the computing
time, with few overheads incurved in large-scale GWA
analyses.

Several attempts had been made to parallelize genetic
association analyses. Grid Engine, a cutting-edge parallel
tool, can sched ule parallel tasks involving genetic associa-
tion analysis programs [7] such as FBAT [8] and
UNPHASED [9]. The approach, first proposed by
Mishima et al,, is based on non-parallel code combined
through process-based parallelization. The downside is
that the user still needs to monitor when each task is fin-
ished, and when the outputs from all the tasks can be
merged. Moreover, each process may take a very long
time to finish, and load balance can be problematic. A
granularity problem (a high computation to communica-
tion ratio) may occur, but higher power compute-nodes
or code parallelization are possible solutions. The R/par-
allel package has been used to automate loop parallel exe-
cution, but the application must run on a single computer
with multi-core processors, and does not currently sup-
port cluster computing [10]. Its inclusion would allow the
computing time limit of the package to be eliminated.
Misawa and Kamatani [11] developed the ParaHaplo

-
Computer Cluster Frontend-node

> Internet

Ethernet

9,

node is merged by the frantend-node.
L

Compute-node 1 Compute-node 2 Compute-node 3

Figure 1 Computer Cluster Architecture. The user can submit tasks to the duster of computers via the Intemet, Once the user submits ajob to the
computer duster, the frontend-node schedules and distributes the smaller partitioned tasks to the compute-nodes, The output from each compute-

s

User

I
I
I
}
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I

Compute-node n_I

A

Sangket et al BMC Bioinformatics 2010,11:217
httpu/fwww. biomedcentral com/1471-2105/11/217

package for haplotype-based whole-genome association
studies using parallel computing. It is aimed at correcting
multiple comparisons in multiple SNP loci in linkage dis-
equilibrium. There are other statistical analyses require-
ments in GWA studies, such as obtaining statistics for a
particular SNP or a trait, association test, characterizing
an individual in the study, and pair-wise statistics
between individuals. Furthermore, Ma et al. [12] devel-
oped EPISNPmpi, a parallel system for epistasis testing in
large scale GWA analysis.

Rmpi [13] is an R library which provides various func-
tions to parallelize tasks on R using the MPI (Message-
Passing Interface) [14]. Rmpi employs various functions
to manage flow analysis in parallel environment, and is
applicable for employing multi-core CPUs distributed
across many computers, not only multi-core CPUs on a
single computer. However, it is difficult, if not impossible,
for a non-programmer to write a parallel Rmpi program.
Therefore, SPRINT [15] was developed to implement
parallel R functions. Although users can use SPRINT eas-
ily, it does not specifically support GWA studies.

In this article, we present the development of our Paral-
IABEL library, a new R library for parallelization of GWA
studies based on Rmpi. ParallABEL aims to speed up the
computation of GWA studies for various statistical analy-
sis requirements and also simplify analysis parallelization.
With ParallABEL, the users do not need to be experts
programming on partitioning and distributing data, con-
troling and monitoring tasks, and merging output files.

Implementation

GWA Function Grouping

Statistical analyses in GWA studies can be categorized
into four groups based on the nature of the statistics com-
puted and type of data used. These four groups can be
parallelized in distinct ways. Table 1 shows the name and
description of the GenABEL function in each group. The
first group contains statistics computed for a particular
SNP, or a trait, such as the SNP characterization statistics
(e.g. call rates, HWE testing), produced by GenABEL's
summary.sup.data or association test statistics (the
qtscore, milreg and mmscore GenABEL functions). The
second group holds statistics characterizing an individual
in the study, such as, summary statistics of genotype
quality for each sample (obtained with the GenABEL
perid.sunmnary and hom GenABEL functions). The third
group consists of pair-wise statistics derived from analy-
ses between each pair of individuals in the study, includ-
ing genome-wide identity-by-state and genomic kinship
analyses, This is one of the most computationally inten-
sive analyses, obtained through GenABEL's ibs function.
The final group concerns pair-wise statistics derived for
pairs of SNPs, such as linkage disequilibrium characteri-
sation (the dprfast, rhofast and r2fast functions). While

71

Page 3 0f 11

the number of SNP pairs is generally very large, analyses
are usually limited by their pair-wise physical distance,
making them less demanding than pair-wise individual
analyses, such as IBS computations.

We have developed the ParallABEL library to parallel-
ize the serial functions of these groups using Rmpi
library. The four implementation groups are named
Typel_parall_ by SNPs for the first group, Type2_
parall_by_individuals for the second group, Type3_
parall by pairs of individuals for the third group and
Typed parall by pairs of SNPs for the fourth group.

Data Partitioning

An advantage of ParallABEL is usage simplicity, hiding
otherwise tedious scripts for file management monitoring
tools. These functions not only partition input data with
automatic load balancing, but also gather output from
each processor automatically. Load balancing is critical
because an unbalanced work load will result in higher
loads for particular processors, which eventually under-
mines the overall performance.

The input data of Typel_parall by SNPs contains
SNPs equally partitioned into P subsets (where P is the
number of available processors). If the number of SNPs is
M, the number of SNPs in a subset is:

num _SNPs = floor (M [P)

If there are M SNPs and 4 processors, the SNPs will be
partitioned into 4 smaller subsets. Each containing M/4
SNPs as shown in Figure 2. However, the last subset to be
generated may contain more SNPs than others, caused by
integer division. For example, if there are 801 SNPs and 4
processors, Subset 1 to Subset 3 will contain 200 SNPs,
but Subset 4 will have 201. The SNPs in each subset will
execute on separate processors.

The input data for Type2_parall_by_individuals con-
sists of individuals, partitioned like Typel parall by

SNPs

The input data for ‘Type3 parall by pairs of
_individuals is a pair of individuals, and performs a more
complicated partitioning than Typel_parall_by_SNPs
and Type2_parall by individuals. The data is divided
until the number of processors is equal to, or less than,
the number of subsets for load balancing on each proces-
sor. If the number of processors is equal to the number of
subsets, then each processor executes an individual pair
of each subset, If the number of processors is less than
the number of subsets, then each processor executes an
equal number of individual pairs (where possible). Figure
3 shows Type3_parall by pairs_of individuals with N
individuals, The statistics is calculated from the cross
operation of an individual in a row with an individual in a
column. The input data is partitioned into 4 subsets using

72

Sangket et al. BMC Bioinformatics 2010, 11:217 Page 4 of 11
http:/fwww.biomedcentral.com/1471-2105/11/217
Table 1: GWA analyses grouping

function name of GenABEL Description group

summary.snp.data

qtscore

mireg

mmscore

Provides summary of observed genotypes, allelic frequency,
genotypic distribution, P-value of the exact test for HWE and
chromosome

Fast score test for association between a trait and genetic
polymorphism

Linear and logistic regression and Cox models for genome-wide SNP
data

Score test for association between a trait and genetic polymorphism,
in samples of related individuals

perid.summary

Produces call rate and heterozygosity per person 2

hom Computes average homozygosity (inbreeding) for a set of people, 2
across multiple markers. Can be used for Quality Control (eg.

contamination checks)

ibs Given a set of SNPs, computes a matrix of average IBS for a group of 3
people

dprfast Given a set of SNPs, computes a matrix of D' 4

rhofast Given a set of SNPs, computes a matrix of rho 4

r2fast Given a set of SNPs, computes a matrix of r2 4

The name and description of function of GenABEL in each group

the data partitioning shown in Figure 3A. However, if the
number of processors is more than 4, the subsets are par-
titioned again. Subset 1 and Subset 4 are split into 8 sub-
sets during the first stage of the data partitioning, while
Subset 2 and Subset 3 are divided into 8 subsets by row, as
shown in Figure 3B. There are 16 subsets altogether in the
second stage of the data partitioning.

SNP

34 +1
34

M2 +1
M2

M4 + 1
M4

Figure 2 Data partitioning for Type1_parall_by_SNPs. Data parti-
tioning for Type1_parall_by_SNPs Type2_parall_by_individuals when
M=800and P=4.

The SNPs input of Type4_parall_by_pairs_of SNPs will
be partitioned in a similar way to Type3_parall_by
_pairs_of_individuals.

Implementation

The workflow for GWA analysis on a single processor or
computer is presented in Figure 4A. This workflow runs.
The genotype and phenotype data is processed by the
GenABEL library, which works under the R program.
GenABEL sequentially processes the raw data, producing
statistical data as its outputs.

This sequential workflow may take a very long time to
produce some demanding statistical analyses. Our novel
parallel workflow for producing statistical data in GWA
studies is shown in Figure 4B, and can save computing
time. The genotype and phenotype data is passed for dis-
tribution to the SUN Grid Engine, a job scheduler. It
queues jobs and assigns them to processors in a cluster.
LAM/MPI (Local Area Multicomputer/Message Passing
Interface) [16] has various functions which can be called
by Rmpi to parallelize R. ParallABEL parallelizes GenA-
BEL using this Rmpi library. The statistical data from this
workflow has been validated by comparing it with the
outputs from the non-parallel approach. ParallABEL runs
not only on Linux cluster, such as the Rocks Cluster Dis-
tribution, but also on any Operating System that supports
R and LAM/MPI or Open MPI, such as the Unix and
Solaris Operating Systems. It can also run on computer
clusters lacking the Sun Grid Engine by executing imme-
diately. However, the administrator will normally not

73

Sangket et al. BMC Bioinformatics 2010, 11:217 Page 5of 11
http://www.biomedcentral. com/1471-2105/11/217

' Y
[v] o
N N
Sul
N/ +1
N4
i Subsel 2
Subset G+
5N/B
Subset 3
N2 +1 Wz+1
N2 N2 Subset 5
TNIME Subset 6
Subset 2
Subset 7 bset 1°
N4+ 1 Subsel 8
N4 Subset 9
Subset 14
Subset4 Subset 10 i
Subset 3 S
Subset 15 [Subsel
1 1 Subset 12 7
1 N2 NZ+1 N 1 Ni2 (Ni2) + 1 N
A) B)
Figure 3 Data partitioning for Type3_parall_by_pairs_of_individuals. A} The first data partitioning for Type3_parall_by_pairs_of_individuals
when the number of individuals = N. There are 4 equal subsets. B} The second data partitioning for Type3_parall_by_pairs_of_individuals when the
number of individuals = M. There are 16 equal subsets,

%, S

B)

Figure 4 GWA Computing Workflow. A} Sequential GWA Computing Warkflow, which runs on a single processor or computer. B) Parallel GWA

Computing Workflow which runs on a multiprocessor or a set of computers.
\u A

Sangket et al. BMC Bioinformatics 2010,11:217
hup:/fwww.biomedcentral.com/1471-2105/11/217

allow a user to run a parallel program without utilizing a
quening process from the Sun Grid Engine.

To parallelize GWA studies, Parall ABEL running on the
frontend-node partitions input data into smaller subsets
so that tasks can be fairly distributed among the proces-
sors. It sends tasks to idle processors on compute-nodes.
When the computation on a compute-node has finished,
the frontend-node will send another task to the idle pro-
cessor - a cycle that continues until all the tasks are com-
pleted, which is known as the 'task pull method [17].
When all the tasks are finished, the frontend-node auto-
matically merges all the outputs.

Users can use ParallABEL to parallelize GenABEL
GWA functions as easily as using GenABEL for sequen-
tial analyses. An example of the smlregp command
sequentially on a processor is shown in Figures 5A and
6A. The executing command that parallelizes milregp to
run on multiple processors using Typel _parall by SNPs
is shown in Figures 5B and 6B.

Results

Our computer cluster, Hanuman, runs Rocks Cluster Dis-
tribution version 4.3, which includes the SUN Grid
Engine version 4.3 [18]. The cluster consists of 5 [BM
servers xSeries 336s, comprising of a frontend-node and
four compute-nodes. All servers have 2 SINGLE-CORE
Intel Xeon (2.8 GHz) processors and 4 GB RAM. The
frontend-node and all the compute-nodes are connected
through an Ethernet switch, and the user can connect via
the Internet. The cluster provides LAM/MPI version
7.1.2, R program version 2.8.1, Rmpi library version 0.5-6,
and GenABEL version 1.4-2, which are utilized as com-
ponents by our ParallABEL library.

The North American Rheumatoid Arthritis Consor-
tium (NARAC) data is part of a dataset emploved to
observe associations between disease and variants in the
major-histocompatibility-complex locus [19]. The
NARAC genotype data contains 545,080 SNPs from
2,062 individuals. The data was used to measure the per-
formance of ParallABEL by employing 868 individuals for
cases, and 1,194 individuals as controls.

Trace results from Typel parall_by SNPs, Type2_
parall_by_individuals, Type3_parall_by_pairs_
of individuals, and Type4 parall by_pairs of SNPs for
the NARAC data are shown in Figure 7. Typel parall_
by_SNPs was executed by the GenABEL smfreg function,
Type2_parall_by_individuals was executed by the GenA-
BEL hom function, Type3_parall by pairs of individu-
als was executed by the GenABEL ibs function, and
Typed_parall_by_pairs _of SNPs was executed by the
GenABEL r2fast function.

ParallABEL reduced the computing time for
Type3_parall_by_pairs_of_individuals, especially with 8
processors. The ‘Type3 parall by pairs of individuals

74

Page 6of 11

executing speed on eight processors was approximately
seven times faster than on one processor. On a single pro-
cessor, the complete analysis took 8.1 hours, but only 1.1
hours with 8 processors. The computing time for
Typel_parall_by_SNPs also tends to be like that for
Type3_parall_by_pairs_of_individuals.

The computing time for the sequential version of
Type2_parall by _individuals can be very short (e.g. 20
seconds). While the parallel version took longer (5.3 min-
utes for 2 processors), due to the overhead of data parti-
tioning, data distribution, and data merging. Data
distribution can be time consuming because the data
must be saved on the frontend-node before the compute-
nodes can load it, and the frontend-node must also speed
time communicating with the compute-nodes. In addi-
tion, GenABEL is tailored to quickly retrieve subset of
SNPs, as this is a typical GWA scan procedure, but is
much less efficient in retrieving subsets of individuals,
which is less typical. Thus the overhead of data partition-
ing in subsets of individuals prevailed over the gain
achieved by parallel processing. These results highlighted
a place where GenABEL data storage and processing is
ineffective, and we are currently working on better algo-
rithms to do by-individual analyses.

Typed parall by pairs of SNPs was executed by the
GenABEL r2fast function. A single processor can not
pass all the SNPs in the NARAC data to r2fast due to
CPU memory limitations so, the analysis was done sepa-
rately for each chromosome. Even then, a single proces-
sor can not call ¥2fast with a chromosome with more
than 10,000 SNPs, which affects 20 chromosomes in the
data. However, ParallABEL can run r2fast with a chromo-
some with more than 10,000 SNPs by employing a set of
processors. The chromosome data is automatically parti-
tioned based on the number of SNPs, as shown in Table 2,
If the number of SNPs for a chromosome is between 11
and 14,000, then the data is partitioned into at least 4 bal-
anced subsets. If the number of the SNPs is between
14,001 and 28,000, then the data is divided into at least 16
balanced subsets. If the number of SNPs is between
28,001 and 65,000, then the data is split into at least 64
balanced subsets. The data is automatically partitioned
until the number of processors is equal to, or less than,
the number of subsets for load balancing on each proces-
sor. The trace example results for Type4. parall_by_pairs
_of SNPs of NARAC data are shown in Figure 7.

Typed_parall by pairs_of SNPs took only 1.4 days to
execute on eight processors, indicating that time-saving
with ParallABEL is linearly correlated to the number of
nodes. This suggests that with more SNPs, more comput-
ing time will be saved by ParallABEL.

If the number of available processors is P, the parallel
computing time for P processors is time_P_cpus, and the

Sangket et al. BMC Bioinformatics 2010, 11:217
http/Avww biomedcentral.com/1471-2105/11/217

75

Page 7 of 11

where

output.s <- mlreg.p(formula, data)

formula = formula for the function
data = genotype and phenotype data

A)

where

Jun = “miregp”

output.p <- typel.p(mpro, fun, data, formula)

npro = the number of processors of all compute nodes

data = genotype and phenotype data
formula = formula for the function

w

B)

Figure 5 A comparison of using a sequential and parallel function, &) Executing the mireg.2 function sequentially on a processor B) Parallelizing
the mireg.pfunction on more than one processar. The user supplies the function name and number of processars ta the parallel function,

4

serial computing time for a processor is time a cpis; the
overhead for P processors is:

overhiead = time _P_cpus—time _a_cpu/ P

Different numbers of processors produce different
overheads depending on data partitioning, network com-
municating, and data merging. However, the overheads
can be predicted based on the overhead of eight proces-
sors shown in Figure 7. The computing time on a large
cluster for Typel_parall_by_SNPs,
Type3_parall_by_pairs_of_individuals and
Typed parall by pairs of SNPs extrapolated from Fig-
ure 7 applying the above overhead equation are shown in
Figure 8, It is clear that ParallABEL also saves the com-
puting time on a large cluster. In addition, the time-saving
rates for these types are much increased when the num-
ber of processors is between 2 and 50. Nevertheless, the

time-saving rates are slowly increased when the number
of processors is greater than 100. This applies to the par-
ticularly and relatively small data set analyzed here. With
bigger data sets, the time-saving rates can be larger. How-
ever, the user should optimize the number of processors
according to the gain in computational throughput.

Discussion and conclusions

We have presented the ParallABEL library which employs
parallel computing to reduce computing time for data
intensive tasks. ParallABEL can run on clustered comput-
ers that support LAM/MPI and R. With clustered com-
puters, processors or even personal computers can be
easily added as new compute-nodes. ParallABEL runs on
both distributed and shared memory architectures as it
was developed with MPL For a distributed memory
architecture, MPI usually uses a computer network for

Sangket eral. BMC Bloinformatics 2010,11:217
http:/fwww . biomedcentral.com/1471-2105/11/217

76

Pagegof 11

library(GendBEL)

data <- ge03d2.clean(,]
Jormula <- dm2~sex+age

output.s <- mlreg p(formula=formula, data=data)

A)

library(ParallABEL)
library(GenABEL)

data <- ge03d2.clean/,]
formula <- dm2~sex+age

output.p <- typel.pmpro=2, fun=mlreg.p, data=data, formula=formula)

B)

Figure 6 A comparison execute sequential and parallel function, A) Execute the mireg 2 function sequentially on a processor B) Parallelize the

e o function on more than one processar,
W

S

task communications. For a shared memory architecture,
MTI does not employ the network for task communica-
tions. This means that a distributed memory architecture
may exhibit more overhead than a shared memory archi-
tecture (for example, eight single-core processors versus a
single eight-core processor). In our experiments,
Typel_parall_by_SNPs took only 6 minutes to execute on
a shared memory architecture but 14 minutes on a dis-
tributed memory architecture. The overhead of a shared
memory architecture was tested on a server, which has 2
QUAD-CORE Intel Xeon(R) (2.8 GHz) processors and 8
GB. The server runs on CentOS version 5.4, and provides
Open MPI version 1.4.1.

ParallABEL allows the user to specify the number of
processors employed for data execution. We expect com-
putational performance to increase linearly with the
number of processors when using Typel_parall by_
SNPs, Type3_parall by_pairs_of_individuals, and Typed._
parall_by_pairs of SNPs. In addition, ParallABEL is
faster than GenABEL on one processor. Computing times
for Type3_parall_by_pairs_of individuals and Typed._
parall_by_pairs_of SNPs are longer than those for Typel

_parall by SNPs because the input data consists of pairs
of individuals and SNPs respectively, which are much
larger than the SNPs input for Typel parall by SNPs. In
addition, if the number of SNPs is n, then the number of
inputs for Typel_parall_by_SNPs is n but the number of
inputs data for Typed_parall by_pairs of SNPs is n*n.
ParallABEL can save much more computational time
when utilizing Type3 parall by pairs of individuals and
Typed_parall by_pairs_of SNPs than when using Typel_
parall_by_SNPs. Therefore, as the amount of input data
increases, the time saved by ParallABEL also increases.
ParallABEL does not only reduce the computing time but
also is as easy-to-use as the more conventional GenA-
BEL.

ParallABEL can not reduce the computing time when
the data size is too small, such as the result shown when
employing the hom function of Type2_parall_by_ indi-
viduals, because the computing time is too short. In that
case, the overheads of data partitioning and output merg-
ing overwhelm the computational performance.

77

Sangket etal. BMC Bloinformatics 2010, 11:217 Pageoof 11
httpzAvway biomedcentral.com/1471-2105/11/217

computing time (log secs) —4—Type1_parall_by_SNPs
=== Type2_parall_by_individuals
== Type3_parall_by_pairs_of_individuals

1000000 - —#—Type4_parall_by_pairs_of SNPs
.._
i Y
100000 i
1 day 1.4 days

8.1 hours
10000 - 4.2 hours

2.2 hours
1h
o -p m“—ins 11 hours
1 3E%W3\F
= 19.6 mins 13 ¥ mins
_" 6.1 -
5.3 mins 6.3 mins R
100 -
1 min /
10 A 20 secs
1 T T T 1
1 2 4 8

number of processors

Figure 7 Trace resultsfrom ParallABEL for NARAC data, Trace results from Typel_parall_kby_SNPs, Type2_parall_by_individuals,
Type3_parall_by_pairs_of_individuals, and Typed_parall_by_pairs_of_SMPs for NARAC data, When Typel_parall _by_SMNPs is executed by the GenA-
BEL mireg function, Type2_parall _by_individuals is executed by the GenABEL homfunction, Type3_parall _by_pairs_of_individualsis executed by the
GenABEL ibs function, and Typed_parall_by_pairs_of SHPs is executed by the Gen ABEL r2fast function, If there is only one processor, then the datals
analysed using GenABEL If there is more than one processor, the data is analysed using Parall ABEL package,

5,

Availability and requirements « Other requirements: LAM/MPI or Open MPI,

+ Project home page: Rmpi, GenABEL
http:/fwww.sci.psuac.thfunits/genome/CGBR/Paral- « License: GPL for non-profit organizations

IABET findex.html + Any restrictions to use by non-academics: license
http://parallabel.r-forge.r- project.org/ needed

+ Operating system(s): Platform independent
+ Programming langunage: R

78

Sangket et al. BMC Bioinformetics 2010, 11:217 Page 10 of 11
httpAvisay biomedcentral.com/1471-2105/11/217
Table 2: Data partitioning for each chromosome
Chromosome name Number of SNPs Number of subsats
19,2021,22, X, Y 11-14,000 4
9.11,12,13,14,15,16,17,18 14,001-28000 16
1.2,3,456,7.810 28,001-56,000 o4
The least number of subsets of each chromosome partitioned by the number of SMP:
' Rt
computing time (log secs)
—t—Type1_parall_by_SNPs
3.2 days ~—Type3_parall_by_pairs_of_individuals
=#=—=Typed_parall_by_pairs_of_SNPs
100000 4
S 15.2 hours 14.9 hours
17.5 hours 155h » % G &
s 15.0 hours
4.2 hours
10000 4
34.5 mins
1000 4 12.1 mins ‘
10.5 mins 9.7 mi :
/A MINS 9.2 mins 2.9 mins
=0 il
: ; 4 ¢ * *
69mins 63mins 61mins 60mins 60mins 59 mins
100 T T T T T T 1
2 50 100 150 200 250 300
number of processors
Figure & The computing time on a large cluster, The computing time on alarge cluster for Type1_parall_oy_SNPs,
Type3_parall_by_pairs_of_individuals and Typed_parall_by_pairs_of SMPs extrapolated from Figure 7 applving the overhead equation.

Sangket el al BMC Bioinforratics 2010, 11:217
hitp:/fwww.biomedcentral.com/1471-210511/217

Authors’ contributions

All authors conceived and designed the project. PT provided the Hanuman
Cluster. US, SM and YSA implemented the software, US conducted computa-
tional performance evaluation, All authors drafted, read, revised, and approved
the manuscript

Acknowledgements

This research was supported by a grant from the program for Strategic Scholar-
ships for Frontier Research Network for the Joirt Ph.D, Program Thai Doctoral
degree from the Office of the Higher Education Commission, Thailand; the
Thailand Center of Excellence for Life Sciences (TCELS); and Prince of Songkla
University, Thailand, The work of YSA was supported by grants from the Neth-
erlands Scientific Foundation (NWO), the Russian Foundation for Basic
Research (RFBR), Netherlands Genomics Initiative (NGI) and Centre for Medical
Systemns Biclogy (CMSE). We are grateful to Prof. Dr. Amernrat Phongdara and
Assoc. Prof. Dr. Wilaiwan Chotigeat for establishing the PSU research group in
Bicinformatics. The NARAC data was supperted by the GAW grant (RO1
GMO31575) and the NIH grant that supports a collection of RA data (AR44422).
We would like to thank Dr. Jean W. MacCluer and Vanessa Olmo for the permis-
sion to use the data, and Dr. Andrew Davison for polishing the written English
of the manuscript, We alse thank the Thai National Grid Center and Prince of
Songkla University Grid Center for supporting the compurter clusters used in
this research.

Author Details

1Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of
Songkla University, Songkhla, 90112, Thailand, IMedical Genetic Section,
National Institute of Health, Department of Medical Sciences, Ministry of Public
Health, Nanthaburi, 11000, Thailand, *Department of Pathalogy, Faculty of
Medicine, Ramathibodhi Hospital, Mahidol University, Bangkok, 10400,
Thailand, “Department of Computer Engineering, Faculty of Enginesring,
Prince of Songkla University, Songkhla, 90112, Thailand, *Department of
Epidemiclagy, Erasmus MC Rotterdam, Pastbus 2040, 3000 CA Rotterdam, the
Netherlands and "Quantitative Integrative Genomics Group, Institute of
Cytology & Genetics SD RAS, Novosibirsk 630090, Russia

Received: 21 October 2009 Accepted: 29 April 2010
Published: 29 April 2010

References

1. Pearsan TA, Manalio TA: How to Interpret a Genome -wide Assodation
Study. Thelournalof the American Medical Assodiation 2008,
299(11):1335-1344.

2. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS,
Manalic TA: Potential eticlagic and functional implications of genome-
wide assodation loci for human diseases and traits, Procesdings of the
National Academy of Saiences of the United States of Amenca 2009,
106(23).9362-9367.

3. Aulchenka YS, Ripke S, Isaacs A, van Duijn CM: GenABEL: an R library for
genome-wide assodation analysis. Eioinformarics (Cxford England)
2007, 23(10%:1294-1296,

4. The Comprehensive R Archive Network (CRAN) [hrtp//weenr-

poiecton/
5. lhaka R Gentlernan R R A language for data analysis and graphics.
Journal of Cormputational and Graphical Statistics 1996, 5(3):299-314,
6. Introduction to Parallel Computing [hitps/computinglinl gov/’
tutorals/parallel_comp/]

7. Mishirna H, Lidral AC, Ni) Application of the Linux duster for exhaustive
window haplotype analysis using the FBAT and Unphased programs.
BMC bioinformatics 2008, 9(Suppl 6):510.

8. Laird NM, Horvath S, Xu X: Implerenting a unified approach to family-
based tests of assodation. Genetic epidemiology 2000, 19(Suppl 1536-42

[horpebiosun] harvard eds- fharfhar hrm].

4. Dudbridge F: Pedigree disequilibrium tests for multilocus haplotypes.
Genetic epidemiclogy 2003, 25(2115-121 [http//portal lithio arg/
Eegitered/Help/unphased/.

10, Vera G, Jansen RC, Suppi RL: Riparallel-speeding up bioinf ics
analysis with R, B‘MCbnmnformarrcs 2008, 9390,

11, Misawa K, kamatani M. ParaHaplo: A program package for haplotype-
based whole-genome assodiation study using parallel computing.
Source code for biology and medicine 2009, 4:7.

79

Page 11011

12. Ma L, Runesha HB, Dvorkin D, Garbe JR, Da Y: Parallel and serial
computing tools for testing single-locus and epistatic SNP effects of
quantitative traits in genome-wide association studies. BMC
bivinformatics 2008, 2315

13 Rmpi: Inter face (Wrapper) to MPI (Message-Passing Interface) (oo

14 Message-Passing Inm face Farum (MPI)

15, Hill J, Hambley M, Forster T, Mewissen M, Sloan TM, SchanngerF Trew A,
Ghazal P: SPRINT: a new parallel framework for R. BMC bisinfomatics
2008, 9:558.

16, Local Area Multicomputer/Message Passing Interface [hiip//

wwwlam-rmpiorg/]
17. Rmpi Program Structure [httpo/math acadiau ca/ ACMMaC/Rmpi/
structyre htrmll

18, Racks Cluster Distribution (btto//www rockscluste s org/wordpress/]

19. Plenge RM, Seielstad M, Padyukev L, Lee AT, Rernmers EF, Ding B, Liew A,
Khalili H, Chandrasekaran A, Davies LR, et al: TRAF1-C5 as arisk locus for
rheurnatoid arthritis—a genomewide study. The New England journal of
medicine 2007, 357(12)%1199-1209.

doi: 10.1186/1471-2105-11-217

Cite thisarticle as: Sangket et al, ParallABEL an R library for generalized par-
allelization of genome-wide association studies BMC Blolnformatics 2010,
1217

Submit your next manuscript to BioMed Central
and take full advantage of:

« Convenlent online submissl
» Thorough peer review

= No space constraints or color figure charges

i di L, bli i on L

* Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which Is freely avallable for redistribution

iy e (O mtomed centra

Appendix B

ParallABEL manual

80

81

Package ‘ParallABEL’

February 22, 2010
Title Parallel of Genome-Wide Assaciation function
Version 0.1-0
Author Unitsa Sangket
Description Support for parallel GenABEL package in R.
Maintainer Unitsa Sangket <usangket@yahoo.com>
License GPL
Depends R (>= 2.8), utils

R topics documented:

YRRl o e e e 1
EVPEZD o o o e e e e e e 3
L4 135 5
WP s cmams an swms ma sws v wmE BA BEE B4 REE RS WET WS B8 T 7
Index 10
typel.p Parallel for the analyses of statistics of each SNP
Description

Parallel for the analyses of statistics of each SNP, such as SNP characterization statistics or associ-

ation test statistics

Usage

typel.p (npro, fun,data,data_£,...)

Arguments
npro number of processors on compute nodes
fun function name will be pracess such as mlreg.p
data object of snp.data-class
data_f£ file name that was saved the input ohject of snp.data-class, the object must be

named "data”
further arguments passed to function of fun argument

82

Author(s)

Examples

typel.p

Unitsa Sangket, Yurii S, Aulchenko and Surakameth Mahasirimongkol

Example 1 (summit job on R)
HAHABHERHRRHBRHEHARRHARHARHARHERERHERHA AR HAES
#clear working spacs

rm(list = 1s{())

library (GenABEL)

library (Paral 1ABEL)

formula=dm2~sgex+age

data(ge03d2.clean)

data <- ge03d2.cleanl,]

npro=2 # npro = numbsr of processors on the compute-nodes
fun=mlreg.p

output.p = typel.p(npro,fun,data, formula=formula)

output.pll:5,]

mpi.quit (save="no")

HAHHBHERRA R AR R RN AR R EHEHH R

Example 2 (summit job on Sun Grid Engine)

You have to create 2 files if you want to summit a job on Sun Grid Engine.
(http://math.acadiau.ca/ACMMaC/Rmpi/submitting. html)

File 1 (R_script.sh):

R R RN R R RS R R R R R R S S R R R R R R
#!/bin/bash

Run in the current directory
#5 -cwd

#$ -j vy
#5 -V

Run using bash
#5 -8 /bin/bash

The number of processors required - 1 for frontend-node, plus whatever
number for compute-nodes.

This example runs with a processor on frontend-node, plus 2 processors on compute-nodes
#5 -pe lam 3

Run the job. Replace with whatever R script should run
lamrun -np 1 B --alave CMD BATCH R_script.R R_script_sh.Rout
HHEHBHERH R AR e

File 2 (R_script.R):
HEHSHEESHRHRUEH SRR R HHE R SR AR BN S HEH AR E U RS R R R R R R R R B R R
#clear working space

&3

type2.p 3

rm(list = 1s())

library (GendBEL)

library(Paral lABEL)

formula=dm2~sex+age

data(ge03d2.clean)

data <- gel3d2.cleanl|,]

npro=2 # npro = number of processgors on the computs-nodes
fun=mlreg.p

output.p = typel.pl(npro,fun,data,formula=formula)

output Rdata ="output typel mlreg c3.Rdata"

save (output.p,file=ocutput Rdata)

You can load the output from ocutput typel mlreg <3 .Rdata
SR [45y]

mpi.quit (save="no")

B s S S S S s e S S S S S R A R i R

For summit the job please use command:
gsub R script.sh

You can see the progress on R script sh.Rout.

type2.p Parallel for the analyses of statistics of each individual

Description

Parallel for the analyses of statistics of each individual, for example, summary statistics of genotype
quality for each sample

Usage
type2.p (npro, fun,data,data_£,...)
Arguments
npro number of processors on compute nodes
fun function name will be processed such as hom
data object of snp.data-class
data_f file name that was saved the input object of snp.data-class, the object must be
named "data”
further arguments passed to function of fun argument
Author (s)

Unitsa Sangket, Yurii S. Aulchenko and Surakameth Mahasirimongkol

84

Examples

type2.p

Example 1 (summit job on R)
HEHHALEREBERRHEHHR USSR SR SRR R B R B B R R R
#clear working space

#clear working space

rm(list = 1la())

library (GenABEL)

library(Paral1ABEL)

data(ge03d2.clean)

data <- ge03d2.clean|,]

npro=2 # npro = number of processors
fun=hom

ocutput.p = typel.p(npro,fun,data)

cutput.pll:5,]

mpi.quit (gave="no")

HHEHHHERREHE AR RN R R R

Example 2 (summit job on Sun Grid Engine)

Tou have to create 2 files 1f you want to summit a job on Sun Grid Engine.
(http://math.acadiau.ca/ACHMMaC/Rmpi/esubmitting. . html)

File 1 (R_script.sh):

HEEHAEEREE RS HHR RS B SR S S R A B B R S i B R R e

#!/bin/bazh

Fun in the current directory

#5 -cwd
#5 -1 v
#5 -V

Run using bash
#% -8 /bin/bash

The number of processors required - 1 for frontend-node, plus whatever
number for compute-nodes.

This example runes with a processor on frontend-node, plus 2 processors on compute-noded
#$ -pe lam 3

Run ths job. Replace with whatever R script should run
lamrun -np 1 R --slave CMD BATCH R_script.R R_script_sh.Rout
HAEHARBERPHAHARRHAARERHRHRHERHEHRHPHAAREEHARRHHRH IR R R HE AR aEES

File 2 (R_script.R):

HEHHHSUHE B R BRI S S S S R B L B R R R B R R R M SR B S R
#clear working space

rm(list = 1ls()

library (GenABEL)

library(ParallABEL)

85

type3.p 5

data(ge03d2.clean)
data =<- ge03d2.cleanl,]

npro=2 # npro = number of processors
fun=hom

output.p = type2.p(npro,fun,data)

cutput Rdata = "output type2 hom c3.Rdata"

save (cutput.p,file=cutput Rdata)

You can load the cutput from cutput type2 hom c3.Rdata
(30 o o i il ol 1 2

mpi.quit (save="no")

AHuHHaa AR R AR A R AR A R R R R A R R A R R R R R

For summit the job please use command:
gaub B seript.sh

You can see the progress on R _script sh.Rout.

type3.p Paralilel for the pairwise statistics derived from analyses between each
individual

Description

Parallel for pairwise statistics derived from analyses between each individual, for example genome-
wide identity-by-state or genomic kinship analyses

Usage
type3.p (npro, fun,data,data £, ...)
Arguments
npro number of processors on the compute-nodes
fun function name will be processed such as ibs
data object of snp.data-class
data_f file name that was saved the input object of snp.data-class, the object must be
named "data”
further arguments passed to function of fun argument
Author (s)

Unitsa Sangket, Yurii S. Aulchenko and Surakameth Mahasirimongkol

86

type3.p

Examples

Example 1 (summit job on R)
HEHHHRRARREHAAR R R R AR BN R AR AR RN
#iclear working spacs

rm{list = 1s{)

library (GenABEL)

library(ParallABEL)

data(srdta)

data <- srdtal,]

npro=2 # npro = number of processcrs on ths compute-nodes
fun=ibs

cutput.p = typel.pi(npro,fun,data)

output.pll:5,1:5]

mpi.quit (save="no")

HAHAHRHAREAEATHRARARRAHAAREARHARIRRERARGHBRARRRRRH

Example 2 (summit job on Sun Grid Engins)

You have to create 2 files if you want to summit a job on Sun Grid Engine.
(http://math.acadiau. ca/AMMaC/Rmpi/submitting.html)

File 1 (R_script.sh):

GEEEEE RS R R R R S R R B R R R R R R R N R R R R R R
#!/bin/bash

Run in the current directory

#8 -cwd
#3 -7 v
#3 -V

Run using bash
#3 -2 /bin/bash

The number of processors reguired - 1 for frontend-node, plus whatever

number for compute-nodes.

This example runs with a processor on frontend-node, plus 2 processors on compute-noded
#3 -pe lam 3

Run the job. Replace with whatever R script should run
lamrun -np 1 R --slave CMD BATCH R_script.R R_script_sh.Rout
HESHA SRS EHH AR R R S SR S R R R R R R e e

File 2 (R_script.R):

EEEEE TS S R R R R SR R R R R R R R R R SRR R R R S R R
#clear working space

rm({list = 1a())

library (GenABEL)
library (Paral1ABEL)

87

typed.p 7

data(srdta)

data <- srdtal,]

npro=2 # npro = number of processors on the compute-nodes
fun=ibs

output.p = typeld.p(npro,fun,data)

ocutput Rdata ="output type3 ibs c3.Rdata"

save (cutput.p,file=ocutput Rdata)

You can locad the output from ocutput type3 ibs c3.Rdata
output.p [125,1 :5]

mpi.quit (gave="no")

EEEE s S e s S S S L S b g i B g i ki e Sk R B b

For summit the job please use command:
gsub R script.sh

You can see the progress on R script sh.Rout.

typed.p Parallel for the pairwise statistics derived from each pair of SNP

Description
Parallel for pairwise statistics derived from each pair of SNP, e.g. linkage disequilibrium character-
isation

Usage

typed.p{npro, fun,data,data_f,output_£f,...)

Arguments
npro number of processars on compute nodes
fun function name will be processed such as r2fast
data object of snp.data-class
data_f file name that was saved the input object of snp.data-class, the object must be
named "data”
output f a file will be saved the outputs
further arguments passed to function of fun argument
Author (s)

Unitsa Sangket, Yurii S. Aulchenko and Surakameth Mahasirimongkol

88

Examples

typed.p

Example 1 (summit job on R)

EHEHHHHHEHU RSN BB R BB LR B B B S B B e
#clear working spacs

rm{list = 1s())

library (GenABEL)

library (Parall1ABEL)

data(srdta)

data <- srdtal,]

npro=2 # npro = number of processors
output_f="output_typed_ri2fast_c2"
fun=ra2fast

output.p = typed4.p(npro,fun,data,output_f=output_f)

You can load the cutput from output typed r2fast c¢3.Rdata
mpi.quit (save="no")

RHAFAAARFAGARRRARHRNBHARAREAARARARARARARARARARARS

Example 2 (summit job on Sun Grid Engine)
You have to create 2 files if you want to summit a job on Sun Grid Engine.
(http://math, acadiau.ca/ACMMaC/Rmpi/submitting. html)

File 1 (R_script.sh):
LR R R R R
#!/bin/bash

Run in the current directory
#5 -cwd

#9 -3y
Hs -v

Run using bash
#3 -2 /bin/bash

The number of processors required - 1 for frontend-node, plus whatever

number for compute-nodes.

This example runs with a processor on frontend-node, plus 2 processors on compute-nodes
#5 -pe lam 3

Run ths job. Replace with whatever R script should run
lamrun -np 1 R --glave CMD BATCH R_script.R R_script sh.Rout
EER RS R S R R R R R SR R R R RN S SR R R R

File 2: R _script.R:

EREEHER RSN E R R SRR E R HHH R H R B R R R R R SR n SRR e s R R R R R
#clear working space

rm(list = ls())

library(GenABEL)
library(ParallABEL)

89

typed.p 9

data({ardta)

data <- srdtal,]

npro=2 # npro = number of processors
ocutput_f="output_ typed r2fast 3"
fun=r2fast

output.p = type4.p(npro,fun,data,output f=output f)

You can load the output from output typed4 r2fast c¢3.Rdata
mpi.gquit (gave="no")

HEH R R R R R R e R n n d a L R R R R R R R R L R R

For summit the job please usge command:
gsub R_script.sh

You can see the progress on R_script sh.Rout.

90

Index

typel.p, 1
type2.p, 3
type3.p, 5
typed.p, T

Appendix C

ParallLogicReg manual

91

92

Package ‘ParallLogicReg’

May 7, 2011
Title Logic regression using parallel computing
Version 1.0-0
Author Unitsa Sangket
Description Support for parallel LogicReg package on R.
Maintainer Unitsa Sangket <usangket@yahoo.com:>
License GPL
Depends R (>= 2.8), utils

R topics documented:

ParallLogleREE: « wiw o5 was o s v e § wave s s w0 § 85 view &5 rale B ¢

Index

ParallLogicReg Logic regression analyses using parallel computing

Description

This function can be used in many situations, especially identification of SNP interactions

Usage

output = ParallLogicReg{infile, resp,begin,end, nperm, niter)
Arguments

infile A file name that contains data, which will be analyzed.

resp vector with the response variables. See more detail in LogicReg manual.

begin The first gene id will be run.

end The last gene 1d will be run.

nperm number of permutations

niter number of iterations

93

Details

An example of infile:

ParalllogicReg

94

ParallLogicReg 3
snp chr pos gene-symhol gene-id V1 V2 V3 V4 V5
rsl 1 12691937 AADACL3 1 1 1 1 1 1
rsl 1 12691937 AADACL3 |1 1 1 1 1 1
rs3l 1 12717433 AADACL3 |1 L0 1 1 1
rs3l 1 12717433 AADACL3 1 1 1 1 1 1
rs2 1 12668821 AADACL4 2 0 1 1 1 1
rs2 1 12668821 AADACLA 2 1 1 1 1 1
rsh8 1 12633603 AADACL4 2 0o 0 o0 0 0
rs58 1 12633603 AADACL4 2 0 0 1 0 0
1sd9 1 12651828 AADACL4 2 1 1 1 1 1

where,

snp = snp id

chr = chromosome number

pos = position of the snp on chromosome
gene-symbol = gene symbol or gene name
gene-id = gene id

V1,.V2V3 V4, V5,... = snp of control or case

Note: One snp has two data rows, and each field must be separated by tab,

Author(s)
Unitsa Sangket and Qi Liu

#An example run on Sun Grid Engine.

#¥You have to create two files, which are a ".sh" file, and a ".R" file.

#for more information please visit http://math.acadiau.ca/ACMMaC/Empi/submitting.html
e e i i N R i P i i L L i P i s A Al L S e

#File 1 (R_script.sh):

g s n s R R R S R R R R R R R
#!/bin/bash

Run in the current dirsctory

#5 -cwd
#%5 -3 v
#3 -V

Run uszing bash
#$ -8 /bin/bash

Set the number of processors

For example, 2 means one processor is master and slavel,
and the rest of processors are slaves.

#$ -pe lam 2

Run the job.
lamrun -np 1 R --slave CMD BATCH R_script.R R_script_sh.Rout

95

ParallLogicReg

GEEREERS AR RN R R R R R A R R R R R R S R SR i
#!!! remove "#" out from "lamrun" command when run the file

#File 2 (R_script.R):
sRsdsdsnganaissisnidsnaiani s s aa R Ll R R R sR R R R H R R L SR E R R R Y
library(ParallLogicReg)

resp=c(rep(0,2935) ,rep(1,1745)) # number of controls = 2,935; number of cases = 1,745

nperm=20 # number of permutations

niter=20 # number of iterations
bagin=1 # the first gene id that will be run
end=10 # the last gene id that will be run
in=("input.txt") # data will be run

output = ParallLogicReg(infile=in,resp=resp, begin=begin,end=end, nperm=nperm, niter=niter)
mpi.quit (save="no")

HESBLUERREREH MM EL SRR RSB N SR B BB B R R R B R R R R R R R R R R

#You can summit the job using this command:

#gsub R_script.sh

#You can see the progress on R_script sh.Rout and progress files.

96

Index

ParallLogicReq, 1
ParallLogiReg (ParallLogicReg), 1

Appendix D

Typel parall_by SNPs source code

97

98

LR e L R L e S R L e R L R e L AL R e
#Function: parallel typel function

#Programer: Unitsa Sangket

#Date: 2010

#Objective: to parallel typel functions of GenABEL

#Note: an example of typel.p function is mlreg.p

HHHHEHHHHH

"typel.p" <- function(npro,fun,data,data f="no",...){
#Initialize MPI
library("Rmpi")

Notice we just say "give us all the slaves you've got."

mpi.spawn.Rslaves()

if (mpi.comm.size() < 2) {
print("More slave processes are required.")
mpi.quit()
}

.Last <- function(){
if (is.loaded("mpi_initialize")){

if (mpi.comm.size(1) > 0){
print("Please use mpi.close.Rslaves() to close slaves.")
mpi.close.Rslaves()

H

print("Please use mpi.quit() to quit R")

.Call("mpi_finalize")

99

HiHHH#HA#HA the slaves will call to perform a validation on the
fold equal to their slave number.
Assumes: fold,foldNumber
foldslave <- function(){
Note the use of the tag for sent messages:
l=ready for task, 2=done task, 3=exiting
Note the use of the tag for received messages:
1=task, 2=done tasks
junk <- 0

done <- 0

while (done !=1) {
Signal being ready to receive a new task

mpi.send.Robj(junk,0,1)

Receive a task
task <- mpi.recv.Robj(mpi.any.source(),mpi.any.tag())
task info <- mpi.get.sourcetag()

tag <- task info[2]

if (tag==1) {

grkkxdk® 3, task computation in compute nodes *****
load GenABEL library
library(GenABEL)

snpsubset = task$snpsubset
foldNumber = task$foldNumber
source(temp fun_typel f)

100

load(data_f)

edit fro test eigth core
start = task$start

stop = taskS$stop

data <- data[,start:stop]
Hitt

args_oth$data = data

args _oth$snpsubset = snpsubset
args oth$fun = fun
formals(temp fun) = args oth

output=temp_fun()
results <- list(foldNumber=foldNumber,output=output)
rm(data)

grkkrkkid® end of task computation *¥*F**w**

mpi.send.Robj(results,0,2)

}
else if (tag == 2) {
done <- 1
}
We'll just ignore any unknown messages

mpi.send.Robj(junk,0,3)

101

HiHtHHH#H We're in the parent.

#************ 1. taSk Separatation ER R R R R R
load GenABEL library
library(GenABEL)

if (missing(npro))
stop("Missing number of processors")
if (missing(fun))

stop("Missing function name")

if (missing(data) && missing(data f))
stop("Missing data")

generate subscript file
t_subscript <- 1:99999999

subscript = sample(t_subscript,1)

if(data_f=="no"){ # there are no data file
data_f= paste("data ",subscript,".Rdata",sep ="")
save(data,file=data_f)

data f n=1
}
else{

data f n=0

load(data_f)
}

#H#### check number of snps
number of snps = data@gtdata@nsnps

102

if (number of snps <11)

stop("The data is too small.")

#iHH#H# check arguments
snpsubset <- data@gtdata@snpnames[1:10]

a = fun(data=data,snpsubset=snpsubset,...)

HitHt# separate data
nsnps = length(data@gtdata@snpnames)
nsnps_p = floor(nsnps/npro)

pointer = 0

#create data@gtdata@snpnames = data@gtdata@snpnames|start:stop]
#Create task list
tasks <- vector('list")
for (iin 1:(npro-1)) {
tasks[[i]] <- list(foldNumber=i,snpsubset=data@gtdata@snpnames|(pointer
+ 1):(pointer + nsnps_p)], start = (pointer + 1), stop = (pointer + nsnps_p))
pointer = pointer + nsnps_p
}
#last process
i=i+1
tasks[[1]] <- list(foldNumber=i, snpsubset=data@gtdata@snpnames[(pointer +
1):(nsnps)], start = (pointer + 1), stop = nsnps)

initial results
results <- vector('list")
for (i in L:npro) {
results[[i]] <- list(output=i)

}

#********************* end Of task qenaration ER AR R R R R R R R o o

103

Now, send the data to the slaves

Send the function to the slaves

mpi.bcast.Robj2slave(foldslave)

#******************* 2. task distribution LR R R S R R

Call the function in all the slaves to get them ready to

undertake tasks

##Ht prepairing args

"temp" <- function(data,...){
argument must add later
rm(data)

rm(snpsubset)
check this argument before remove
if (missing(idsubset))

rm(idsubset)

args=Is()

old formals = formals(temp)

n_old formals = names(old formals)

match_args = match(args, n_old formals)

temp = old_formals

104

#update arguments of new_formals
for(i in 1:length(args)){
if(!is.na(match_args[i])){
if (temp[[match_args[i]]] == get(args[i])) # default arg
value
temp[[match_args[i]]] =""
else temp[[match_args[i]]] = get(args[i])

delete empty value arguments
i=1
n_temp = names(temp)
while (1 <= length(n_temp)){
if (temp[i] =="")
temp[i] <- NULL
else

1=1+1

return(temp) # return all arguments except data, snpsubset and the

argument which have default value

}

formals(temp) = formals(fun)

args oth = temp(data=data,...)

peparing call fun

n_args oth = names(args oth)

105

call fun = paste("temp_fun <- function(fun){", "\n", sep="")

call fun = paste(call_fun, "output <- fun(data=data, snpsubset=snpsubset",sep

="

if (length(n_args oth) >0){
for(i in 1:length(n_args_oth)){
call fun = paste(call fun,",",n args oth[i], "=args oth$",
n_args oth[i],sep="")

}

insert) and }

call fun = paste(call fun,")","\n", "return(output)", "\n", "}",sep="")
temp fun typel f=paste("temp fun typel ",subscript,".R",sep="")
write(call fun, temp fun typel f)

send argument

mpi.bcast.Robj2slave(temp fun typel f)
mpi.bcast.Robj2slave(data f)

mpi.bcast.Robj2slave(args oth)

mpi.bcast.Robj2slave(fun)

mpi.bcast.cmd(foldslave())

rm(data)

#**************end Of taSk distribution LR R R R R R L

106

junk <- 0
closed_slaves <- 0

n_slaves <- mpi.comm.size()-1

while (closed slaves <n_slaves) {
Receive a message from a slave
message <- mpi.recv.Robj(mpi.any.source(),mpi.any.tag())
message info <- mpi.get.sourcetag()
slave id <- message info[1]

tag <- message info[2]

if (tag==1) {
slave is ready for a task. Give it the next task, or tell it tasks
are done if there are none.
if (length(tasks) > 0) {
Send a task, and then remove it from the task list
mpi.send.Robj(tasks[[1]], slave id, 1);
tasks[[1]] <- NULL
}
else{
mpi.send.Robj(junk, slave id, 2)
b

}
else if (tag ==2) {

#************** 4. result storing kkddhhhdtnx

The message contains results. Do something with the results.
Store them in the data structure
results[[message$foldNumber]] = message$output

#*************** end Of result Storing Khddhd ek hdt

107

}
else if (tag == 3) {
A slave has closed down.

closed_slaves <- closed slaves + 1

mpi.close.Rslaves()

#****************** 5. result Combining Khddkd o hdb otk

combine order by snpnames because may be slave2 finish before slavel

#return(results)

#stop("pause")

results_list = results

results = results_list[[1]]

##tcheck structure of result

if data.frame use rbind

if (is.data.frame(results)) {
for (i in 2:npro) {

results = rbind(results,results list[[i]])

telse if (is.list(results)){
create flag_do array

flag = 1 -> will combine, flag = 0 -> not combine

108

n_results = names(results_list[[1]])
flag_do =n_results
for(i in 1:length(flag_do)){
if ((length(results_list[[1]][[n_results[i]]]) ==
length(results_list[[1]][["snpnames"]])) && (n_results[i] != "idnames"))
flag do[i] =1
else flag _do[i] =0

combine results
results = results_list[[1]]
for (i in 2:npro) {
for (j in 1:length(n_results)){
if (flag_do[j]==1)
results[[n_results[j]]] = c(results[[n_results[j]]],
results list[[1]][[n_results[j]]])

}

jelse {
message_error = paste("Error: structure of result from ", fun, " doesn't a
list or a data.frame", sep ="")

stop(message_error)

remove data f, temp fun typel f

if (data_f n==1){ # if data is loaded from a file, then

file.remove(data f)

}

109

file.remove(temp_fun_typel f)

#************* end Of result combining Khkddhb ekt dt

return(results)

} # End of function

110

VITAE

Name Miss Unitsa Sangket
Student ID 5110230013
Education Attainment

Degree Name of Institute Year of Graduation
Bachelor of Science Prince of Songkla University 2002
(Computer Science)
Master of Science Prince of Songkla University 2006

(Computer Science)

Scholarship Awards during Enrolment

1. The program for Strategic Scholarships for Frontier Research
Network for the Joint Ph.D. Program Thai Doctoral degree from the Office of the
Higher Education Commission, Thailand.

2. The lecturer scholarship from Prince of Songkla University,

Thailand.

Work — Position and Address
I am a lecturer at Center for Genomics and Bioinformatics, Faculty of

Science, Prince of Songkla University, Kanchanawanish Rd., Hat-Yai, Songkhla,
Thailand, 90112.

List of Publications and Proceedings
Publication

U. Sangket, S. Mahasirimongkol, W. Chantratita, P. Tandayya and
Y.S. Aulchenko, "ParallABEL: an R library for generalized parallelization of

genome-wide association studies," BMC Bioinformatics, vol. 11, p. 217, 2010.

111

Presentation
Poster presentation

U. Sangket, S. Mahasirimongkol, W. Chantratita, P. Tandayya and
Y.S. Aulchenko, " ParallABEL: an R library for speedup of GWAS applying parallel
computing," The International Conference on Bioinformatics/International Society for
Computational Biology-Asia (InCoB/ISCB-Asia) Joint Conference 2011, Kuala
Lumpur, Malaysia, November 30", 2011.

