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ABSTRACT 

 

Investigation of the crude acetone extract of the stem of  Ellipanthus 

tomentosus Kurz var. tomentosus yielded three known compounds; triterpenoid: 

lupeol (TA1), biflavonoid: lophirone C (TA2) and isoflavone: gerontoisoflavone 

(TA3). 

Investigation of the crude methylene chloride extract of the roots of  

Ellipanthus tomentosus Kurz var. tomentosus yielded thirteen known compounds; one 

chalcone: flavokawain A (RD1), four flavones: 4,5,6,7,8-pentamethoxyflavone 

(RD2), 3,4,5,6,7,8-hexamethoxyflavone (RD3), 5-demethylnobiletin (RD4) and 

5,7,8,3,4-pentamethoxyflavone (RD5), one ferulic acid ester: (E)-ferulic acid 

tetracosyl ester (RD6), two isoflavones: 5,3,4-trimethoxy-6,7-

methylenedioxyisoflavone (RD7) and 5,4-dimethoxy-6,7-methylenedioxyisoflavone 

(RD8), a mixture of two steroids: -sitosterol (RD9) and stigmasterol (RD10), two 

benzoic acid derivatives: 4-hydroxybenzaldehyde (RD11) and vanillin (RD12). 

Investigation of the crude acetone extract of the roots of  Ellipanthus tomentosus Kurz 

var. tomentosus yielded five known compounds; four biflavonoids: lophirone A 

(RA1), calodenone (RA2), 6-hydroxylophirone B (RA3) and calodenin B (RA4) 

and one flavones: (2R,3R)-2,3-trans-4´,5,7-trimethoxydihydroflavonol (RA5). Their 

structures were determined on the basis of spectroscopic data and comparison with 

those reported.   
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THE RELEVANCE OF THE RESEARCH WORK TO THAILAND 

 

  The purpose of this research is to investigate the chemical constituents 

from the stem and the roots of Ellipanthus tomentosus Kurz var. tomentosus. They are 

a part of the basic research on the Thai medicinal plants. Twenty known compounds 

have been isolated from the stem and the roots of Ellipanthus tomentosus Kurz var. 

tomentosus. 
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CHAPTER 1 

 

INTRODOCTION 

 

 

 

1.1 Introtroduction 

 Ellipanthus tomentosus Kurz var. tomentosus, locally known as 

“Tanokkod (ตานกกด)”, belongs to the family Connaraceae and is widely grown 

in West Africa, Ghana and Thailand. E. tomentosus is the only one species 

found in Thailand. 

 E. tomentosus may be a shrub of 3-4 m in height. Its branches are 

densely rusty brown pubescent. Leaves are indeciduous, 4-16-jugate with 

petiole 2-10 cm, rachis 12-27 cm long and densely rusty brown pubescent. 

Lateral leaflets are more or less alternate or sometime opposite, ovate to 

narrowly oblong, slightly or not unequal at base, and terminal leaflet is elliptic 

or narrowly ovate, cuneate at base. All leaflets acuminate or obtuse are 

densely pilose beneath; petiolules 1.5-3 mm long are also densely brown 

pilose (Berhaut, 1954; Jongkind and Lemmens, 1989). Inflorescences panicles 

are 1-10 per leaf axil, 5-20 cm long, up to 100-flowered by little white flowers 

almost homostylous. Often the supporting leaves are reduced resulting in a 

compound pseudoterminal inflorescence. Follicles are 1-5 in fruit, often united 

at base, ovoid, more or less oblique (2-4.5) x (1-2.5) cm with abeak blunt and 

broad often indistinctly separated. Pericarp has short red hairs outside and long 

brownish hairs inside. Each follicle contains one seed ovoid (12-20) x (5-10) 

mm, surrounded by a sarcotesta 3-7 mm long. 
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Figure 1 Parts of Ellipanthus tomentosus Kurz var.tomentosus  
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According to Smitinand (2001), there are six genus of family Connaraceae found in 

Thailand as follows. 

1. Agelaea 

2. Byrsocarpus 

3. Connarus 

4. Cnestic 

5. Ellipanthus 

6. Rourea 

 

1.2 Review of literatures 

  Chemical constituents isolated from family Connaraceae were 

summarized in Table 1. Information obtained from SciFinder Scholar copyright in 

2010 will be presented and classified into groups: acids, flavonoids and glycoside 

(Ramiah et al., 1976; Jiang et al., 1990). 

 

Table 1 Compounds from plants of Connaraceae family 

a : Acids 

b : Flavonoids 

c : Glycoside  

 

 

 

 

 

 

 

 

 



4 

 

Scientific name Part Compounds Bibliography 

Rorrea minor  

 

 

Stem 

 

 

Rourinoside, c1 

Rouremin, c2 

1-(26-Hydroxyhexacosanoyl)-

glycerol, c3 

1-O--D-glucopyranosyl-(2S, 

3R, 4E-8Z)-2-N-(2-

hydroxypalmitoyl)-

octadecasphinga-4,8-dienine, 

c4                                          

9S, 12S, 13S-Trihydroxy-10E-

octadecenoic acid, a1 

Dihydrovomifoliol-9--D-

glucopyranoside, c5 

He et al., 2006 

 

 

 

Byrsocarpus 

coccineu 

Leaves Quercetin 3-o--arabinoside, 

b1 

Quercetin, b2 

Quercetin 3--D-glucoside, b3 

Ahmadu et al., 

2007 
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Structures 

 

a:     acids 

 

OH

OH

OH

OH O

 

9S, 12S, 13S-trihydroxy-10E-octadecenoic acid, a1 

 

b:     flavonoids 

 

O

OH

OH

OR

HO

OH O  

 

R = α–arabinose; quercetin 3-o--arabinoside, b1 

R = H; quercetin, b2 

R = -D–glucose; quercetin 3--D–glucoside, b3 

 

c:     glycoside  

HO

MeO

OH

OGlc

O

MeO

OH

OMe

 

Rourinoside, c1 
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O
HO

O
NH2

OH

OH

OCO(CH2)18Me

OH

 

Rouremin, c2 

 

OH

OCO(CH2)24CH2OH

OH  

1-(26-Hydroxyhexacosanoyl)-glycerol, c3 

 

O
HO

O
NH2

OH

OH

OCO(CH2)18Me

OH

 

1-O--D-glucopyranosyl-(2S, 3R, 4E-8Z)-2-N-(2-hydroxypalmitoyl)-

octadecasphinga-4,8-dienine, c4 

 

O
HO

HO

OH

OH

O

O 

Dihydrovomifoliol-9--D-glucopyranoside, c5 
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1.3 Objective 

 

  The purpose of this research work is to investigate the chemical 

constituents from the stem and roots of Ellipanthus tomentosus Kurz var.tomentosus. 

It involves isolation, purification and structure elucidation.  
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CHAPTER 2 

EXPERIMENTAL 

 

 

2.1  Instruments and Chemicals 

 

Melting point was recorded in 
o
C on a digital Electrothermal 9100 Melting 

Point Apparatus. Ultraviolet spectra were measured with a UV-160A 

spectrophotometer (SHIMADZU) and principle bands (Omax) were recorded as 

wavelengths (nm) and log H in methanol solution. The optical rotation []D was 

measured in chloroform and methanol solution with Sodium D line (590 nm) on a 

JASCO P-1020 digital polarimeter. The IR spectra were measured with a Perkin-

Elmer 783 FTS165 FT-IR spectrophotometer.
 1

H and 
13

C – Nuclear magnetic 

resonance spectra were recorded on a FT-NMR Bruker Ultra Shield
TM

 300 and 500 

MHz spectrometer. Spectra were recorded in deuterochloroform, dimethylsulfoxide-

d6 and acetone-d6 as į value in ppm downfield from TMS (internal standard į 0.00) 

and coupling constant (J) are expressed in hertz. EI mass spectra was measured on 

MAT 95 XL Mass spectrometer. Quick column chromatography (QCC) and  column 

chromatography (cc) was performed by using silica gel 60 H (Merck) and silica gel 

100 (70-230 Mesh ASTM, Merck), respectively. For thin-layer chromatography 

(TLC), aluminum sheets of silica gel 60 F254 (20×20 cm, layer thickness 0.2 mm, 

Merck) were used for analytical purposes and the compounds were visualized under 

ultraviolet light. Solvents for extraction and chromatography were distilled at their 

boiling ranges prior to use except chloroform was analytical grade reagent. 
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2.2  Plant Material 

 

Stem and roots of Ellipanthus tomentosus Kurs var. tomentosus were collected 

from Khon Kaen in the Northeast region of Thailand, in September 2009. The plant 

was identified by Associate Professor Dr. Kittichate Sridith and a voucher specimen 

(No. S. Jarinthon) has been deposited in the herbarium of Department of Biology, 

Faculty of Science, Prince of Songkla University. 

 

2.3  Extraction and Isolation 

 

The small pieces of air-dried stem (2.5 Kg) of E. tomentosus were extracted 

with methylene chloride and acetone successively (each 2 x 10.5 L, for 5 days) at 

room temperature. The crude extracts were evaporated under reduced pressure to 

afford brownish methylene chloride (20.0 g) and acetone extracts (23.0 g), 

respectively. The process of extraction was shown in Scheme 1. 

 

 

 

 

 

 

 

 

 

 

*Not further investigated 

 

Scheme 1 Extraction of the stem of E. tomentosus. 

 

 

 

Air-dried stem of E. tomentosus (2.5 Kg)  

Crude CH2Cl2 extract* 

(20.0 g) 

Crude acetone extract 

(23.0 g) 
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The air-dried roots (3.5 Kg) of E. tomentosus were extracted with methylene 

chloride and acetone successively (each 2 x 21 L, for 5 days) at room temperature. 

The crude extracts were evaporated under reduced pressure to afford brownish 

methylene chloride (23.5 g) and acetone extracts (150.0 g), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2 Extraction of the roots of E. tomentosus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Crude CH2Cl2 extract 

(23.5 g) 

Crude acetone extract 

(150.0 g) 

Air-dried roots of E. tomentosus (3.5 Kg)  
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2.4 Isolation and Chemical Investigation 

 

2.4.1 Investigation of the crude acetone extract from the stem of E. tomentosus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Not further investigated 

 

 Scheme 3 Isolation of compounds TA1-TA3 from the stem of E. tomentosus. 

 

 

  The crude acetone extract (23.0 g) was further purified by QCC using 

hexane as eluent and increasing polarity with acetone to give ten fractions (T1-T9, 

Scheme 3). 

  Fraction T2 (400.5 mg) was further purified by CC with CH2Cl2- 

hexane (2:8, v/v) to give TA3 (30.0 mg, Rf = 0.29 (7:3, CH2Cl2 – hexane). 

  Fraction T4 (300.0 mg) was further purified by CC with acetone- 

hexane (3:7, v/v) to give TA1 (4.0 mg, Rf = 0.27 (7:3, acetone – hexane). 

  Fraction T6 (250.0 mg) was further purified by CC with acetone- 

hexane (5:5, v/v) to afford nine subfractions (T6a-T6i). Subfraction T6d (190.0 mg) 

was recrystallized from acetone-hexane (5:5, acetone – hexane) to give TA2 (15.0 

mg, Rf = 0.27 (5:5, acetone – hexane). 

 

Crude acetone extract  

(23.0 g) 

T1* T2 T3* T4 T5* T6 T7-8* T9* 

(400.5 mg) (300.0 mg) (250.0 mg) 

TA3 TA1 TA2 

CC CC CC 
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  Compound TA1, 3-lupeol: White solid; mp: 193 RC; [Į]
24

D: +21 (c 

0.20, CHCl3); IR (neat) ȣmax (cm
-1

) : 3245 and 1636; 
1
H (CDCl3, 300 MHz), see Table 

2; 
13

C NMR (CDCl3, 75 MHz), see Table 2. 

  Compound TA2, lophirone C: Yellow solid; mp: 191-192 RC; [Į]
24

D: -

10 (c 0.50, MeOH); UV (MeOH) Ȝmax (log İ): 285 (3.05) and 305 (3.26) nm; IR (neat) 

ȣmax (cm
-1

): 3245, 1698 and 1630; 
1
H (Acetone-d6, 300 MHz), see Table 3; 

13
C NMR 

(Acetone-d6, 75 MHz), see Table 3. 

  Compound TA3, gerontoisoflavone: white solid; mp: 283-284 RC; UV 

(MeOH) Ȝmax (log İ): 259 (3.05) and 375 (2.50) nm; IR (neat) ȣmax (cm
-1

): 3551 and 

1683; 
1
H (Acetone-d6, 500 MHz), see Table 5; 

13
C NMR (Acetone-d6, 125 MHz), see 

Table 5. 
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2.4.2 Investigation of the crude methylene chloride extract from the roots of E. 

tomentosus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Not further investigated 

 

Scheme 4 Isolation of compounds RD1-RD12 from the roots of E.tomentosus. 

   

                         The crude methylene chloride extract (23.5 g) was further purified by 

QCC using hexane as eluent and increasing polarity with acetone to give nine 

fractions (D1-D9, Scheme 4). 

  Fraction D2 (500.0 mg) was separated by CC with acetone-hexane 

(1:9, v/v) to afford twelve subfractions (D2a-D2l). Subfraction D2c (280.0 mg) was 

recrystallized from CH2Cl2 to give RD5 (40.0 mg, Rf = 0.44 (CH2Cl2)) and RD8 (4.0 

mg, Rf = 0.67 (CH2Cl2)). 

  Fraction D4 (3.5 g) was purified by QCC with acetone- hexane (1:9, 

v/v) as eluent to afford thirteen subfractions (D4a-D4m). Subfraction D4e was 

recrystallized from CH2Cl2 to give RD1 (30.0 mg, Rf = 0.42 (CH2Cl2)) and mother 

liquor (2.6 g) was further subjected to QCC with acetone-hexane (3:7, v/v) to afford 

Crude methylene chloride extract 

(23.5 g) 

D1* D2 D3* D4 D5* D6 D7* D8 D9* 

(500.0 mg) (3.5 g) (5.0 g) (150.0 mg) 

RD5 

RD8 

 
RD1 

RD3 

RD12 

RD2 

RD4 

RD9+10 

 

RD6 

RD7 

RD11 

1. CC 

2. prep TLC 

1. QCC 

2. CC 

3. prep TLC 

1. QCC 

2. recryst. 

3. CC 

 

1. CC 

2. recryst. 
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eight subfractions (D4a1-D4a8). Subfraction D4a7 (350.0 mg) was purified by CC 

with acetone-hexane (3:7, v/v) to give RD3 (5.0 mg, Rf = 0.47 (4:6, acetone – 

hexane)) and RD12 (3.0 mg, Rf = 0.62 (4:6, acetone – hexane)). 

  Fraction D6 (5.0 g) was purified by QCC with acetone- hexane (2:8, 

v/v) as eluent to afford fourteen subfractions (D6a-D6n). Subfraction D6f (900.0 mg) 

was purified by CC with acetone-hexane (3:7, v/v) to give RD2 (20.0 mg, Rf = 0.44 

(4:6, acetone-hexane)). Subfraction D6h (300.0 mg) was purified by CC with CH2Cl2 

-hexane (8:2, v/v) and followed by prep TLC with acetone-hexane (3:7, v/v) to give 

RD4 (11.0 mg, Rf = 0.29 (CH2Cl2)) and RD (9+10). 

  Fraction D8 (150.0 mg) was separated by CC with acetone-hexane 

(3:7, v/v) to afford seven subfractions (D8a-D8g). Subfraction D8c (50.0 mg) was 

recrystallized from CH2Cl2 to give RD6 (15.0 mg, Rf = 0.37 (2:8, acetone-hexane)). 

Subfraction D8e (60.0 mg) was purified by CC with acetone-hexane (3:7, v/v) and 

followed by prep TLC with acetone-hexane (4:6, v/v) to give RD7 (5.0 mg, Rf = 0.44 

(4:7, acetone-hexane)). Subfraction D8f (22.0 mg) was purified by prep TLC with 

acetone-hexane (5:5, v/v) to give RD11 (2.0 mg, Rf = 0.34 (6:4, acetone-hexane)). 

  Compound RD1, flavokawain A: Yellow solid; mp: 113 RC; UV 

(MeOH) Ȝmax (log İ): 249 (2.75) and 363 (2.80) nm; IR (neat) ȣmax (cm
-1

): 3423 (O-H 

stretching) and 1622 (C=O stretching); 
1
H (CDCl3, 300 MHz), see Table 7; 

13
C NMR 

(CDCl3, 75 MHz), see Table 7. 

  Compound RD2, 4,5,6,7,8-pentamethoxyflavone: White solid; mp: 

155-156 RC; UV (MeOH) Ȝmax (log İ): 271 (2.87) and 323 (2.97) nm; IR (neat) ȣmax 

(cm
-1

): 2940, 1641 and 1273; 
1
H (CDCl3, 300 MHz), see Table 9.; 

13
C NMR (CDCl3, 

75 MHz), see Table 9. 

  Compound RD3, 3,4,5,6,7,8-hexamethoxyflavone: White solid; mp: 

136-137 RC; UV (MeOH) Ȝmax (log İ): 277 (2.86) and 325 (2.87) nm; IR (neat) ȣmax 

(cm
-1

): 2939, 1641 and 1272; 
1
H (CDCl3, 300 MHz), see Table 11; 

13
C NMR (CDCl3, 

75 MHz), see Table 11. 

  Compound RD4, 5-demethylnobiletin: White solid; mp: 137-139 RC;  

UV (MeOH) Ȝmax (log İ): 275 (2.56) and 329 (2.77) nm; IR (neat) ȣmax (cm
-1

):
 
3425 

and 1638; 
1
H (CDCl3, 300 MHz), see Table 13; 

13
C NMR (CDCl3, 75 MHz), see 

Table 13. 
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  Compound RD5, 5,7,8,3,4-pentamethoxyflavone: White solid; mp: 

138 RC; UV (MeOH) Ȝmax (log İ): 280 (2.87) and 320 (2.77) nm; IR (neat) ȣmax (cm
-1

): 

2939, 1641 and 1272; 
1
H (CDCl3, 300 MHz), see Table 15; 

13
C NMR (CDCl3, 75 

MHz), see Table 15. 

  Compound RD6, (E)-ferulic acid tetracosyl ester: White solid; mp: 64 

RC; UV (MeOH) Ȝmax (log İ): 234 (4.33), 291 (4.12) and 325 (4.42) nm; IR (neat) ȣmax 

(cm
-1

): 3551 and 1682; EIMS: m/z [M-1]
+
 530 (100) and 193.8 (60); 

1
H (CDCl3, 300 

MHz), see Table 17; 
13

C NMR (CDCl3, 75 MHz), see Table 17. 

  Compound RD7, 5,3,4-trimethoxy-6,7-methylenedioxyisoflavone: 

White solid; mp: 178 RC; [Į]
24

D: +12 (c 0.55 , MeOH); UV (MeOH) Ȝmax (log İ): 265 

(2.99) and 325 (2.46) nm; IR (neat) ȣmax (cm
-1

): 1643; 
1
H (CDCl3, 300 MHz), see 

Table 19; 
13

C NMR (CDCl3, 75 MHz), see Table 19. 

  Compound RD8, 5,4-dimethoxy-6,7-methylenedioxyisoflavone: 

White solid; mp: 175 RC; UV (MeOH) Ȝmax (log İ): 262 (2.98) and 328 (2.42) nm; IR 

(neat) ȣmax (cm
-1

): 1646
1
H (CDCl3, 300 MHz), see Table 21; 

13
C NMR (CDCl3, 75 

MHz), see Table 21. 

  Compound RD9, -sitosterol and RD10, stigmasterol: White solid; IR 

(neat) ȣmax (cm
-1

): 3425 and 1642. 

  Compound RD11, 4-hydroxybenzaldehyde: Colorless oil; UV 

(MeOH) Ȝmax (log İ): 237 (2.70), 293 (3.01) and 306 (3.05) nm; IR (neat) ȣmax (cm
-1

): 

3367 and 1684; 
1
H (CDCl3, 300 MHz), see Table 23; 

13
C NMR (CDCl3, 75 MHz), see 

Table 23. 

  Compound RD12, vanillin: Colorless oil; UV (MeOH) Ȝmax (log İ): 

233 (2.69), 291 (3.02) and 306 (3.03) nm; IR (neat) ȣmax (cm
-1

): 3384 and 1648; 
1
H 

(CDCl3, 300 MHz), see Table 24; 
13

C NMR (CDCl3, 75 MHz), see Table 24. 
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2.4.3 Investigation of the acetone extract from the roots of E. tomentosus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Not further investigated 

 

Scheme 5 Isolation of compounds RA1-RA5 from the roots of E. tomentosus. 

 

  The acetone extract (75.0 g) was further purified by QCC using 

CH2Cl2 as eluent and increasing polarity with MeOH to give eight fractions (A1-A8, 

Scheme 5). 

  Fraction A2 (350.0 mg) was further purified by CC with MeOH-

CH2Cl2 (1:9, v/v) to afford nine subfractions (A2a-A2i). Subfraction A2c (125.0 mg) 

was recrystallized from CH2Cl2 to give RA2 (20.0 mg, Rf = 0.47 (1:9, MeOH-

CH2Cl2)). Subfraction A2e (115.0 mg) was purified by CC with MeOH-CH2Cl2 (1:9, 

v/v) to give RA3 (8.0 mg, Rf = 0.37 (1:9, MeOH-CH2Cl2)). 

  Fraction A4 (5.6 g) was separated by QCC with MeOH-CH2Cl2 (1:9, 

v/v) to afford fourteen subfractions (A4a-A4n). Subfractions A4d (190.5 mg) was 

Crude acetone extract 

(75.0 g) 

A1* A2 A3* A4 A5* A6 A7 A8* 

(350.0 mg) (5.6 g) (600.0 mg) 

RA2 

RA3 

 

 

RA1 

RA5 

 

 RA4 

 

1. CC 

3. recryst. 

 

 

1. QCC 

2. CC 

3. recryst. 

1. CC 

2. recryst. 
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purified by CC with MeOH-CH2Cl2 (1:9, v/v) to give RA1 (30.0 mg, Rf = 0.24 (1:49, 

MeOH-CH2Cl2)) and RA5 (4.0 mg, Rf = 0.27 (1:49, MeOH-CH2Cl2)). 

  Fraction A7 (600.0 mg) was further purified by CC with MeOH-

CH2Cl2 (1:49, v/v) to afford eleventh subfractions (A7a-A7k). Subfraction A7d (230.0 

mg) was recrystallized from CH2Cl2 to give RA4 (15.0 mg, Rf = 0.44 (1:24, MeOH-

CH2Cl2)). 

  Compound RA1, lophirone A: White solid; mp: 189-190 RC; [Į]
24

D: 

+12 (c 0.55, MeOH); UV (MeOH) Ȝmax (log İ): 285 (2.96) and 367 (3.20) nm; IR 

(neat) ȣmax (cm
-1

): 3382, 1700 and 1632; 
1
H (Acetone-d6, 300 MHz), see Table 25; 

13
C 

NMR (Acetone-d6, 75 MHz), see Table 25. 

  Compound RA2, calodenone: White solid; mp: 192 RC; [Į]
23.8

D: +30 (c 

0.55, MeOH) ); UV (MeOH) Ȝmax (log İ): 286 (3.00) and 369 (3.10) nm; IR (neat) 

ȣmax (cm
-1

) : 3383, 1700 and 1630; 
1
H (Acetone-d6, 300 MHz), see Table 27; 

13
C 

NMR (Acetone-d6, 75 MHz), see Table 27. 

  Compound RA3, 6-hydroxylophirone B: Yellow solid; mp: 181-182 

RC; [Į]
23.8

D: -48.8 (c 0.34, MeOH); UV (MeOH) Ȝmax (log İ): 287 (2.81) and 374 

(2.76) nm; IR (neat) ȣmax (cm
-1

): 3407, 1629, 1229, 832; 
1
H (Acetone-d6, 300 MHz), 

see Table 29; 
13

C NMR (Acetone-d6, 75 MHz), see Table 29. 

  Compound RA4, calodenin B: Orange needles; mp: 249-250 RC; 

[Į]
23.8

D: -49.0 (c 0.36, MeOH); UV (MeOH) Ȝmax (log İ): 304 (3.00) and 361 (3.10) 

nm; IR (neat) ȣmax (cm
-1

): 3211, 1738 and 1611; 
1
H (Acetone-d6, 300 MHz), see Table 

31; 
13

C NMR (Acetone-d6, 75 MHz), see Table 31. 

  Compound RA5: (2R,3R)-2,3-trans-4´,5,7-trimethoxydihydroflavonol 

Viscous oil; [Į]
23.8

D: -7.5 (c 0.35, CHCl3); UV (MeOH) Ȝmax (log İ): 275 (3.05) and 

312 (2.99) nm; IR (neat) ȣmax (cm
-1

) : 3321 and 1682; 
1
H (CDCl3, 300 MHz), see 

Table 33; 
13

C NMR (CDCl3, 75 MHz), see Table 33. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

 

3.1 Structural elucidation of compounds from the stem of E. tomentosus 

  The crude acetone extract from the stem of Ellipanthus tomentosus was 

subjected to chromatography and/or crystallization to give three known compounds of 

lupeol (TA1), lophirone C (TA2) and gerontoisoflavone (TA3). 

  Their structures were elucidated mainly by 1D and 2D NMR 

spectroscopic data: 
1
H, 

13
C, DEPT 135

R
, DEPT 90

R
, HMQC, HMBC and COSY. The 

physical data of the known compounds were also compared with the reported values. 
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3.1.1 Compound TA1 

 

 

 

 Compound TA1 was isolated as a white solid, mp 193 
R
C, >Į@D

24
 +21 (c 0.20, 

CHCl3). The IR spectrum showed absorption bands of hydroxyl group (3245 cm
-1

) 

and double bond (1636 cm
-1

). 

The 
13

C NMR spectral data (Table 2, Figure 4) exhibited 30 signals, which 

comprised of seven methyl (į 14.6, 15.4, 16.0, 16.1, 18.0, 19.3 and 28.0), eleven 

methylene (į 18.3, 20.9, 25.2, 27.4, 27.5, 29.9, 34.3, 35.6, 38.7, 40.0 and 109.3), six 

methine (į 38.1, 48.0, 48.3, 50.5, 55.3 and 79.0) and six quaternary carbons (į 37.2, 

38.9, 40.8, 42.8, 43.0 and 151.0) . 

The 
1
H NMR spectrum of TA1, displayed signals for a characteristic of lupane 

triterpenoid as seven methyl singlet signals at G 0.76, 0.79, 0.83, 0.94, 0.97 and 1.03 

including one vinylic methyl at G 1.68, two protons of an isopropenyl moiety at G 4.69 

(1H, d, J = 2.4 Hz) and 4.56 (1H, m) and a typical lupane H-19 proton at G 2.38 (dt, J 

= 11.1, 5.7 Hz). An oxymethine proton was shown at G 3.19 (1H, dd, J = 10.8, 5.4 Hz, 

H-3). The doublet splitting pattern together with a large coupling constant of H-3 with 

Jax-ax = 10.8 Hz and Jax-eq = 5.4 Hz indicated an axial () orientation of H-3. The 

position of the hydroxyl group at C-3 was determined through an HMBC experiment 

(Table 2) in which the oxymethine proton at G 3.19 (H-3) showed correlations with C-

1 (G 38.7), C-4 (G 38.9), C-23 (G 28.0) and C-24 (G 15.4). The position of a methine 
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proton at C-19 was determined from HMBC correlation of H-19 (G 2.38) with C-18 (G 

48.3), C-20 (G 151.0), C-21 (G 29.9) and C-30 (G 19.3). Thus on the basis of its 

spectroscopic data and comparison with the previous report [Reyolds et al., 1986, 

[]
25

D : +23.0 (c 0.50, EtOH); Thongdeeying 2005],  therefore compound TA1 was 

identified as 3-lupeol. 

 

 

Selected HMBC correlations for compound TA1 

Table 2 
1
H, 

13
C NMR, DEPT and HMBC spectral data of TA1 (CDCl3) and 3-

lupeol (R, CDCl3) 

 

Position GH (mult, J, Hz) GC R DEPT HMBC 

1 0.19 38.7 38.7 CH2 - 

2 1.56 (m) 27.4 27.4 CH2 - 

3 3.19 (dd, J = 10.8, 5.4) 79.0 79.0 CH - 

4 - 38.9 38.8 C 1, 4, 23, 24 

5 0.68 (m) 55.3 55.3 CH - 

6 1.40 (m), 1.55 (m) 18.3 18.3 CH2 - 

7 1.40 (m) 34.3 34.2 CH2 - 

8 - 40.8 40.8 C - 

9 1.28 (m) 50.5 50.4 CH - 
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Table 2 (continued) 

 

Position GH (mult, J, Hz) GC R  DEPT HMBC 

10 - 37.2 37.1 C - 

11 1.22 (m), 1.45 (m) 20.9 20.9 CH2 - 

12 1.08 (m) 25.2 25.1 CH2 - 

13 1.67 (m) 38.1 38.0 CH - 

14 - 42.8 42.8 C - 

15 1.56 (m) 27.5 27.4 CH2 - 

16 1.51 (m) 35.6 35.5 CH2 - 

17 - 43.0 43.0 C - 

18 1.39 (m) 48.3 48.2 CH - 

19 2.38 (dt, J = 11.7, 5.7) 48.0 47.9 CH 13, 18, 20, 21, 29, 30 

20 - 151.0 150.9 C - 

21 1.92 (m) 29.9 29.8 CH2 - 

22 1.20 (m), 1.40 (m) 40.0 40.0 CH2 - 

23 0.97 (s) 28.0 28.0 CH3 3, 4, 5, 24 

24 0.76 (s) 15.4 15.4 CH3 3, 4, 5, 23 

25 0.83 (s) 16.1 16.1 CH3 1, 5, 9, 10 

26 1.03 (s) 16.0 16.0 CH3 7, 8, 9, 14 

27 0.94 (s) 14.6 14.5 CH3 8, 14, 15 

28 0.79 (s) 18.0 18.0 CH3 16, 17, 18, 22 

29 4.56 (m), 4.69 (d, J = 2.4) 109.3 109.3 CH2 19, 30 

30 1.68 19.3 19.3 CH3 19 
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3.1.2 Compound TA2 

 

 

 

 Compound TA2 was isolated as a yellow solid, mp 191-192
 R

C, >Į@D
24

 -10 (c 

0.50, MeOH)�� TKH� 89� VSHFWUXP� dLVSOa\Hd� aEVoUSWLonV� aW� Ȝmax 285 and 305 nm 

suggesting the presence of conjugation in the molecule. The IR spectrum showed 

absorption bands of hydroxyl group (3245 cm
-1

) and conjugated carbonyl (1630 cm
-1

). 

The 
13

C NMR spectral data (Table 3, Figure 14) exhibited 30 signals, which 

comprised of two carbonyls (į 191.8, 200.4), two aliphatic methines (į 56.4, 87.7) 

and 26 olefinic and aromatic carbons (į 102.9, 103.0, 107.9, 108.8, 110.1, 112.6, 

113.5, 115.5 (2C), 118.1, 126.1, 127.8 (3C), 128.8, 131.0, 131.1, 132.3, 133.8, 135.9, 

143.9, 158.0, 162.2, 164.9, 166.4, 166.7). 

The 
1
H NMR spectrum of TA2, displayed signals for a chalcone skeleton: the 

typical trans olefinic protons at į 7.70 (d, J = 15.3 Hz, H-α1) and 7.80 (d, J = 15.3 Hz, 

H-1) and two 1,2,4-trisubstituted benzene rings at į 7.00 (d, J = 8.4 Hz, H-5 (A1)), 

7.62 (br s, H-2 (A1)) and 7.81 (br d, J = 8.4 Hz, H-6 (A1)) and at į 6.36 (d, J = 2.1 

Hz, H-3), 6.44 (dd, J = 8.7, 2.1 Hz, H-5 (B1)) and 7.99 (d, J = 8.7 Hz, H-6 (B1)), 

including the chelated hydroxyl group at į 13.57. The signal of a p–disubstituted 

benzene ring were evident at G 6.87 (2H, d, J = 8.7 Hz, H-3, 5 (A2)) and 7.32 (2H, d, 

J = 8.4 Hz, H-2, 6 (A2)), together with those of a 1,2,4-trisubstituted benzene ring at į 

6.42 (d, J = 2.1 Hz, H-3 (B2)), 6.55 (dd, J = 8.7, 2.1 Hz, H-5 (B2)) and 7.97 (d, J = 

8.7 Hz, H-6 (B2)). Additional 
1
H NMR signal of a dihydrobenzofuran ring were 

suggested from the resonances of two aliphatic protons at į 5.49 (d, J = 6.9 Hz, H-α2) 

and 6.20 (d, J = 6.9 Hz, H-2). The HMBC correlations of the proton signals at G 5.49 
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with the carbons at G 87.7 (C-2), 126.1 (C-2 (A1)), 131.0 (C-1 (A2)), 162.2 (C-4 

(A1)) and 200.4 (C=O, (c2)) and the proton signal at G 6.20 (H-2) with the carbons at 

G 56.4 (C-Į2), 127.8 (C-3 (A1)), 131.0 (C-1 (A2)), 162.2 (C-4 (A1)) and 200.4 (c2), 

indicated that the dihydrofuran ring was fused to the chalcone nucleus at C-3 and C-4 

to form a dihydrobenzofuran ring. 

The structure of TA2 was confirmed by HMBC experiment. The proton signal 

at į 7.99 (H-6 (B1)) showed correlations with the carbons at į 103.0 (C-3 (B1)), 

113.5 (C-1 (B1)), 164.9 (C-4 (B1)), 166.7 (C-2 (B1)) and 191.8 (C=O, (c1)), 

suggesting the connection of a 1,2,4-trisubstituted benzene ring (B1) at C=O (c1). The 

FoUUHOaWLon�oI�SUoWon�VLJnaOV�aW�į�������+-1) with carbons at G 118.1 (C-α1), 126.1 (C-

2 (A1)) and 131.1 (C-6 (A1)) suggested that a 1,2,4-trisubstituted benzene ring (A1) 

was connected to C-1. The correlations of the proton signals at į 7.97 (H-6 (B2)) 

with the carbons at G 135.9 (C-4 (B2)), 166.4 (C-2 (B2)) and 200.4 (c2) suggested 

that a 1,2,4-trisubstituted benzene ring (B2) was connected to c2. In addition the 

proton signals at į 7.32 (H-2/6 (A2)) showed correlations with the carbons at į 87.7 

(C-2), 115.5 (C-3 (A2)) and 158.0 (C-4 (A2)), suggesting the connection of a p–

disubstituted benzene ring at C-2. From the spectral data and comparison with those 

of lophirone C, therefore compound TA2 was identified as lophirone C (Messanga et 

al., 1994). 
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Selected HMBC correlations for compound TA2 
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Table 3 
1
H, 

13
C NMR, DEPT and HMBC spectral data of TA2 (Acetone-d6) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

1-A1 - 128.8 C - 

2-A1 7.62 (br s) 126.1 CH 1, 5-A1, 4-A1 

3-A1 - 127.8 C - 

4-A1 - 162.2 C - 

5-A1 7.00 (d, J = 8.4) 110.1 CH 1-A1, 4-A1, 3-A1 

6-A1 7.81 (br d, J = 1.5) 131.1 CH 1, 2-A1, 4-A1 

1 7.80 (d, J = 15.3) 143.9 CH 2-A1, 6-A1, C1 

1 7.70 (d, J = 15.3) 118.1 CH C1, 1-A1, 4-B1 

C1 - 191.8 C=O - 

1-B1 - 113.5 C - 

2-B1 - 166.7 C - 

3-B1 6.36 (d, J = 2.1) 103.0 CH 2-B1, 4-B1 

4-B1 - 164.9 C - 

5-B1 6.44 (dd, J = 8.7, 2.1) 107.9 CH 1-B1, 3-B1 

6-B1 7.99 (d, J = 8.7) 132.3 CH 4-B1, 3-B1 
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Table 3 (continued) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

1-A2 - 131.0 C - 

2-A2 7.32 (d, J = 8.7) 127.8 CH 3-A2, 4-A2, 2 

3-A2 6.87 (d, J = 8.7) 115.5 CH 1-A2, 4-A2 

4-A2 - 158.0 C - 

5-A2 6.87 (d, J = 8.7) 115.5 CH 1-A2, 4-A2 

6-A2 7.32 (d, J = 8.7) 127.8 CH 2-A2, 4-A2, 2 

2 6.20 (d, J = 6.9) 87.7 CH - 

2 5.49 (d, J = 6.9) 56.4 CH - 

C2 - 200.4 C=O - 

1-B2 - 112.6 C -  

2-B2 - 166.4 C - 

3-B2 6.42 (d, J = 2.1) 102.9 CH 2-B2, 5-B2 

4-B2 - 135.9 C - 

5-B2 6.55 (dd, J = 8.7, 2.1) 108.8 CH 1-B2, 3-B2 

6-B2 7.97 (d, J = 8.7) 133.8 CH 2-B2, 4-2, C2 

2-B1(OH) 13.57 (s) - - 1-B1, 2-B1, 3-B1 
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Table 4 Comparison of 
1
H NMR and 

13
C NMR spectral data of TA2 (Acetone-d6) 

and lophirone C (R, Acetone-d6) 

 

Position GH (mult, J, Hz) R GC R 

1-A1 - - 128.8 129.3 

2-A1 7.62 (br s) 7.56 (d) 126.1 126.9 

3-A1 - - 127.8 132.1 

4-A1 - - 162.2 158.9 

5-A1 7.00 (d, J = 8.4) 6.99 (d, J = 8.4) 110.1 111.0 

6-A1 7.81 (br d, J = 1.5) 7.81 (dd, J = 8.7, 1.8) 131.1 132.1 

1 7.80 (d, J = 15.3) 7.79 (d, J = 15.4) 143.9 144.8 

1 7.70 (d, J = 15.3) 7.68 (d, J = 15.4) 118.1 119.3 

C1 - - 191.8 192.8 

1-B1 - - 113.5 114.7 

2-B1 - - 166.7 167.7 

3-B1 6.36 (d, J = 2.1) 6.35 (d, J = 2.4) 103.0 103.9 

4-B1 - - 164.9 166.7 

5-B1 6.44 (dd, J = 8.7, 2.1) 6.43 (dd, J = 9.0, 2.4) 107.9 108.8 

6-B1 7.99 (d, J = 8.7) 7.97 (d, J = 9.0) 132.3 133.2 

1-A2 - - 131.0 129.3 

2-A2 7.32 (d, J = 8.7) 7.31 (m) 127.8 128.7 

3-A2 6.87 (d, J = 8.7) 6.86 (m) 115.5 116.5 

4-A2 - - 158.0 158.9 

5-A2 6.87 (d, J = 8.7) 6.86 (m) 115.5 116.5 

6-A2 7.32 (d, J = 8.7) 7.31 (m) 127.8 128.7 

2 6.20 (d, J = 6.9) 6.20 (d, J = 6.8) 87.7 88.6 

2 5.49 (d, J = 6.9) 5.46 (d, J = 6.8) 56.4 57.6 

C2 - - 200.4 201.4 

1-B2 - - 112.6 113.8 

2-B2 - - 166.4 165.6 
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Table 4 (continued) 

 

Position GH (mult, J, Hz) R GC R 

3-B2 6.42 (d, J = 2.1) 6.41 (d, J = 2.4) 102.9 104.0 

4-B2 - - 135.9 163.2 

5-B2 6.55 (dd, J = 8.7, 2.1) 6.55 (dd, J = 9.0, 2.4)  108.8 109.7 

6-B2 7.97 (d, J = 8.7) 7.96 (d, J = 9.0) 133.8 134.7 

2B1(OH) 13.57 (s) 13.52 (s) - - 
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3.1.3 Compound TA3 

 

 

 

 Compound TA3 was isolated as a pale-yellow solid, mp 283-284 
R
C. The UV 

spectrum displayed maximum absorption bands at 259 and 375 nm suggesting an 

isoflavone skeleton. The IR spectrum showed absorption bands of hydroxyl group 

(3551 cm
-1

) and C=O stretching (1683 cm
-1

). 

The 
13

C NMR spectral data (Table 5, Figure 24) exhibited 19 carbons, of two 

methyl (į 55.4 (2C)), six methine (į�94.9, 96.3, 113.5, 114.6, 121.7, 150.3) and nine 

quaternary carbons (į 110.1, 127.0, 127.5, 146.0, 147.8, 148.5, 150.3, 162.6, 175.4). 

The 
1
H NMR spectral data (Table 5, Figure 23) displayed a characteristic 

isoflavone signals for H-2 as a singlet at į 7.98 together with a meta-coupled aromatic 

signals at G 6.46 (2H, s, H-6, 8), whose signal of the latter indicated a tetrasubstituted 

A-ring. The signals of a B-ring at G 6.85 (d, J = 8.0 Hz, H-5), 6.99 (dd, J = 8.0, 2.0 

Hz, H-6) and 7.23 (d, J = 2.0 Hz, H-2) indicated a 1,2,4-trisubstituted B ring. The 

spectrum also revealed the presence of two methoxyl groups (į 3.87 and 3.88) in the 

compound. 

The structure of TA3 was confirmed by HMBC correlation. The proton signal 

at į 7.98 (H-2) showed correlations with the carbons at į 127.0 (C-3), 127.5 (C-1), 

161.5 (C-9) and 175.4 (C-4), suggesting the connection of a 1,2,4-trisubstituted 

benzene ring at G 127.0 (C-3). The proton signal of H-8 at G 6.46 showed correlations 

with the carbons at G  96.3 (C-6), 110.1 (C-10), 146.0 (C-7) and 161.5 (C-9) and the 

proton signal of H-6 showed correlations with the carbons at G 94.9 (C-8), 146.0 (C-7) 

and 162.6 (C-5). The methoxyl groups at į 3.87 and 3.88 showed correlations with the 
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carbons at G 162.6 (C-5) and 147.8 (C-3), respectively, confirming their locations at 

C-5 and C-3, respectively. Therefore, compound TA3 was identified as 

gerontoisoflavone (Chang et al., 1995). 

 

 

Selected HMBC correlations for compound TA3 
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Table 5 
1
H, 

13
C NMR, DEPT and HMBC spectral data of TA3 (Acetone-d6) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

2 7.98 (s) 150.3 CH 3, 4, 9, 1 

3 - 127.0 C - 

4 - 175.4 C=O - 

5 - 162.6 C - 

6 6.46 (s) 96.3 CH 5, 7, 8 

7 - 146.0 C - 

8 6.46 (s) 94.9 CH 6, 7, 9, 10 

9 - 161.5 C - 

10 - 110.1 C - 

1 - 127.5 C - 

2 7.23 (d, J = 2.0) 113.5 CH 3, 4, 6 

3 - 147.8 C - 

4 - 148.5 C - 

5 6.85 (d, J = 8.0) 114.6 CH 1, 4 

6 6.99 (dd, J = 8.0, 2.0) 121.7 CH 2, 3 

5-OMe 3.87 (s) 55.4 CH3 5 

3-OMe 3.88 (s) 55.4 CH3 3 
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Table 6 Comparison of 
1
H NMR spectral data of TA3 (Acetone-d6) and 

gerontoisoflavone (R, DMSO-d6) 

 

Position GH (mult, J, Hz) R GC R 

2 7.98 (s) 8.07 (s) 150.3 150.7 

3 - - 127.0 124.8 

4 - - 175.4 173.9 

5 - - 162.6 161.4 

6 6.46 (s) 6.38 (s) 96.3 96.7 

7 - - 146.0 162.5 

8 6.46 (s) 6.38 (s) 94.9 94.9 

9 - - 161.5 159.2 

10 - - 110.1 108.1 

1 - - 127.5 123.5 

2 7.23 (d, J = 2.0) 7.08 (d, J = 2.0) 113.5 113.7 

3 - - 147.8 147.2 

4 - - 148.5 146.5 

5 6.85 (d, J = 8.0) 6.77 (d, J = 8.0) 114.6 115.2 

6 6.99 (dd, J = 8.0, 2.0) 6.88 (dd, J = 8.0, 2.0) 121.7 121.7 

5-OMe 3.87 (s) 3.73 (s) 55.4 56.0 

3-OMe 3.88 (s) 3.78 (s) 55.4 55.8 
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3.2 Structural elucidation of compounds from the roots of E. tomentosus 

  

The air-dried roots of E. tomentosus were extracted with  methylene chloride 

and acetone successively. The crude methylene chloride extract was subjected to 

chromatography and/or crystallization to give twelve known compounds of 

flavokawain A (RD1), 4,5,6,7,8-pentamethoxyflavone (RD2), 3,4,5,6,7,8-

hexamethoxyflavone (RD3), 5-demethylnobiletin (RD4), 5,7,8,3,4-

pentamethoxyflavone (RD5), (E)-ferulic acid tetracosyl ester (RD6), 5,3,4-

trimethoxy-6,7-methylenedioxyisoflavone (RD7), 5,4-dimethoxy-6,7- 

methylenedioxyisoflavone (RD8), -sitosterol (RD9) and stigmasterol (RD10), 4-

hydroxybenzaldehyde (RD11) and vanillin (RD12). The crude acetone extract was 

subjected to chromatography and/or crystallization to give five known compounds: 

lophirone A (RA1), calodenone (RA2), 6-hydroxylophirone B (RA3), calodenin B 

(RA4) and (2R,3R)-2,3-trans-4´,5,7-trimethoxydihydroflavonol (RA5). 

 Their structures were elucidated mainly by 1D and 2D NMR spectroscopic 

data: 
1
H, 

13
C, DEPT 135

R
, DEPT 90

R
, HMQC, HMBC and COSY. The physical data 

of the known compounds were also compared with the reported values. 

  

 

 

 

 

 

 

 

 

 

 

 



33 

 

3.2.1 Compound RD1 
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Compound RD1 was isolated as a yellow solid, mp 113-114 
R
C. The UV 

spectrum displayed maximum absorptions aW� Ȝmax 249 and 363 nm, suggesting the 

presence of conjugation in the molecule. The IR spectrum showed absorption bands 

of hydroxyl group (3423 cm
-1

) and C=O stretching (1622 cm
-1

). 

The 
13

C NMR spectral data (Table 7, Figure 34) exhibited 18 carbons, of three 

methyl (į 55.4, 55.6, 55.8), eight methines (į 91.2, 93.8, 114.4 (2C), 125.1, 130.1 

(2C), 142.5) and seven quaternary carbons (į 106.4, 128.3, 161.4, 162.5, 166.0, 168.4, 

192.6). 

The 
1
H NMR spectral data (Table 7, Figure 33) displayed the presence of p-

disubstituted benzene ring at į 6.85 and 7.48 (each 2H, d, J = 8.7 Hz), and 1,2,3,5-

tetrasubstituted benzene ring at į 5.88 and 6.02 (d, J = 2.1 Hz). The three singlet 

proton signals at į 3.75, 3.77 and 3.83 were assigned as methoxyl groups at C-4, C-4 

and C-6, respectively and the proton signals at į 7.68 and 7.74 (each 1H, d, J = 15.9 

Hz) were deduced as a trans double bond at C- and C-α, respectively. The chelated 

hydroxyl group was evident at į 14.35. These data indicated a chalcone skeleton. 

The structure of RD1 was confirmed by HMBC correlation. The proton signal 

at į 7.48 (H-2/H-6) showed correlations with the carbons at į 114.4 (C-3/C-5), 

125.1(C-α), 142.5 (C-) and 161.4 (C-4), suggesting the connection of a p-
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disubstituted benzene ring at C-. The correlation of the proton signals at į 14.35 (2-

OH) with the carbons at į 93.8 (C-3), 106.4 (C-1), 168.4 (C-2) and 192.6 (C=O), 

suggested that a tetrasubstituted benzene ring was connected to C=O. The methoxyl 

groups at į 3.75, 3.77 and 3.83 showed correlations with the carbons at G 166.0 (C-

4), 161.4 (C-4) and 162.5 (C-6), respectively confirming the locations of the 

methoxyl group at C-4, C-4 and C-6, respectively. Therefore, compound RD1 was 

identified as flavokawain A (Seidel et al., 2000). 
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Table 7 
1
H, 

13
C NMR, DEPT and HMBC spectral data of RD1 (CDCl3) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

1 - 128.3 C - 

2, 6 7.48 (d, J = 8.7) 130.1 CH 3, 4, 5, ,  

3, 5 6.85 (d, J = 8.7) 114.4 CH 1, 2, 4 

4 - 161.4 C - 

1 - 106.4 C - 

2 - 168.4 C - 

3 6.02 (d, J = 2.1) 93.8 CH 1, 2, 4, 5 

4 - 166.0 C - 

5 5.88 (d, J = 2.1) 91.2 CH 1, 3, 4, 6 

6 - 162.5 C - 

 7.74 (d, J = 15.9) 125.1 CH 1, C=O, , 1 

 7.68 (d, J = 15.9) 142.5 CH 1, 2, C=O,  

4-OMe 3.77 (s) 55.4 CH3 4 

4-OMe 3.75 (s) 55.6 CH3 4 

6-OMe 3.83 (s) 55.8 CH3 6 

C=O - 192.6 C=O - 

2-OH 14.35 (s) - - 1, 2, 3, C=O 
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Table 8 Comparison of 
1
H NMR and 

13
C spectral data of RD1 (CDCl3) and 

flavokawain A (R, CDCl3) 

 

Position GH (mult, J, Hz) R GC R 

1 - - 128.3 128.6 

2, 6 7.48 (d, J = 8.7) 7.57 (d, J = 8.8) 130.1 130.3 

3, 5 6.85 (d, J = 8.7) 6.94 (d, J = 8.8) 114.4 114.6 

4 - - 161.4 161.6 

1 - - 106.4 106.6 

2 - - 168.4 168.6 

3 6.02 (d, J = 2.1) 6.12 (d, J = 2.4) 93.8 94.0 

4 - - 166.0 166.2 

5 5.88 (d, J = 2.1) 5.97 (d, J = 2.4) 91.2 91.5 

6 - - 162.5 162.7 

 7.74 (d, J = 15.9) 7.82 (d, J = 15.6) 125.1 125.3 

 7.68 (d, J = 15.9) 7.78 (d, J = 15.6) 142.5 142.7 

4-OMe 3.77 (s) 3.86 (s) 55.4 55.6 

4-OMe 3.75 (s) 3.84 (s) 55.6 55.8 

6-OMe 3.83 (s) 3.92 (s) 55.8 56.0 

C=O - - 192.6 192.8 

2-OH 14.35 (s) 14.40 (s) - - 
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3.2.2 Compound RD2 
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Compound RD2 was isolated as a pale-yellow solid, mp 155-156 
R
C. The UV 

spectrum displayed absorptions aW� Ȝmax 271 and 323 nm, suggesting the presence of 

conjugation in the molecule. The IR spectrum showed absorption bands of C=O 

stretching (1641 cm
-1

). 

The 
13

C NMR spectral data (Table 9, Figure 43) exhibited 18 carbons, of five 

methyl (į 55.0, 61.7, 61.8, 62.0, 62.3), five methines (į 106.6, 114.5 (2C), 127.7 

(2C)) and ten quaternary carbons (į 115.0, 123.8, 138.1, 144.1, 147.7, 148.4, 151.4, 

161.2, 162.3, 177.4). 

The 
1
H NMR spectrum (Table 9, Figure 42) indicated a flavone nucleus by the 

appearance of a singlet of a methine proton (H-3) at į 6.01. The signals for p-

disubstituted benzene ring were shown at į 7.03 (2H, d, J = 9.0 Hz, H-3, 5) and 7.88 

(2H, d, J = 9.0 Hz, H-2, 6). The signals for five singlet methoxyl groups at į 3.89, 

3.96 and 3.96, 4.00 and 4.10 were assigned  at C-4, C-5, C-6, C-7 and C-8 due to 

their HMBC correlations to the carbons at į 162.3, 148.4, 138.1, 151.4 and 144.1, 

respectively.  

The structure of RD2 was confirmed by HMBC correlation. The proton signal 

at į 6.01 (H-3) showed correlations with the carbons at į 115.0 (C-4a), 123.8 (C-1), 

161.2 (C-2) and 177.4 (C-4), in turn the proton signals at į 7.88 (H-2, 6) correlated  
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with the carbons at į 114.5 (C-3, 5), 161.2 (C-2) and 162.3 (C-4) suggesting the 

connection of p-disubstituted benzene ring at į 161.2 (C-2). Therefore, compound 

RD2 was identified as 4,5,6,7,8-pentamethoxyflavone (Machida et al., 1989). 
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Table 9 
1
H, 

13
C NMR, DEPT and HMBC spectral data of RD2 (CDCl3) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

2 - 161.2 C - 

3 6.01 (s) 106.6 CH 2, 4, 1, 4a 

4 - 177.4 C=O - 

4a - 115.0 C - 

5 - 148.4 C - 

6 - 138.1 C - 

7 - 151.4 C - 

8 - 144.1 C - 

8a - 147.7 C - 

1 - 123.8 C - 

2, 6 7.88 (d, J = 9.0) 127.7 CH 2, 4, 5 

3, 5 7.03 (d, J = 9.0) 114.5 CH 1, 4 

4 - 162.3 C - 

5-OMe 3.96 (s) 61.7 CH3 5 

6-OMe 3.96 (s) 61.8 CH3 6 

7-OMe 4.00 (s) 62.0 CH3 7 

8-OMe 4.10 (s) 62.3 CH3 8 

4-OMe 3.89 (s) 55.0 CH3 4 
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Table 10 Comparison of 
1
H NMR spectral data of RD2 (CDCl3) and 4,5,6,7,8- 

pentamethoxyflavone (R, CDCl3) 

 

Position GH (mult, J, Hz) R GC R 

2 - - 161.2 162.4 

3 6.01 (s) 6.59 (s) 106.6 106.7 

4 - - 177.4 177.3 

4a - - 115.0 144.0 

5 - - 148.4 138.1 

6 - - 138.1 151.4 

7 - - 151.4 138.1 

8 - - 144.1 147.7 

8a - - 147.7 114.7 

1 - - 123.8 123.9 

2, 6 7.88 (d, J = 9.0) 7.88 (d, J = 9.0) 127.7 127.8 

3, 5 7.03 (d, J = 9.0) 7.02 (d, J = 9.0) 114.5 114.3 

4 - - 162.3 161.2 

5-OMe 3.96 (s) 3.94 (s) 61.7 61.7 

6-OMe 3.96 (s) 3.94 (s) 61.8 61.9 

7-OMe 4.00 (s) 4.02 (s) 62.0 62.0 

8-OMe 4.10 (s) 4.10 (s) 62.3 62.3 

4-OMe 3.89 (s) 3.89 (s) 55.0 55.5 
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3.2.3 Compound RD3 
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Compound RD3 was isolated as a pale-yellow solid, mp 136-137 
R
C. The UV 

and IR spectra closely resembled those of compound RD2. 

The 
1
H NMR and 

13
C NMR spectral data (Table 11, Figure 51 and 52) of RD3 

were comparable with those of RD2. The difference was shown as the disappearance 

of the signals of a p-disubstituted benzene ring in RD2 and the appearance of a 1,2,4–

trisubstituted benzene ring at į 7.00 (d, J = 8.4 Hz, H-5), 7.42 (d, J = 2.1 Hz, H-2) 

and 7.58 (dd, J = 8.4, 2.1 Hz, H-6). Additional 
1
H NMR signals of a methoxyl group 

was displayed at į 3.98 (s): įc 56.1 in RD3, whose position was assigned at C-3 from 

HMBC correlation with the carbon at į 149.3 (C-3). The HMBC spectrum showed 

correlations of the proton at į 6.23 (H-3) with the carbons at į 114.8 (C-4a), 124.0 (C-

1), 161.0 (C-2) and 177.3 (C-4) and the proton at į 7.58 (H-6) showed correlations 

with the carbons at į 108.6 (C-2), 151.9 (C-4) and 161.0 (C-2) confirming the 

location of a 1,2, 4–trisubstituted benzene ring at C-2. Therefore, compound RD3 was 

identified as 3,4,5,6,7,8-hexamethoxyflavone (Machida et al., 1989). 
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Table 11 
1
H, 

13
C NMR, DEPT and HMBC spectral data of RD3 (CDCl3) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

2 - 161.0 C - 

3 6.63 (s) 106.8 CH 2, 4, 4a, 1 

4 - 177.3 C=O - 

4a - 114.8 C - 

5 - 148.4 C - 

6 - 138.0 C - 

7 - 151.4 C - 

8 - 144.1 C - 

8a - 147.7 C - 

1 - 124.0 C - 

2 7.42 (d, J = 2.1) 108.6 CH 2, 1, 6, 4, 3 

3 - 149.3 C - 

4 - 151.9 C - 

5 7.00 (d, J = 8.4) 111.2 CH 1, 4, 3 

6 7.58 (dd, J = 8.4, 2.1) 119.6 CH 2, 4, 2 

5-OMe 3.96 (s) 61.6 CH3 5 

6-OMe 3.96 (s) 62.2 CH3 6 

7-OMe 4.04 (s) 61.8 CH3 7 

8-OMe 4.12 (s) 61.9 CH3 8 

3-OMe 3.98 (s)  56.1 CH3 3 

4-OMe 3.97 (s) 55.9 CH3 4 
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Table 12 Comparison of 
1
H NMR and 

13
C spectral data of RD3 (CDCl3) and 

3,4,5,6,7,8-hexamethoxyflavone (R, CDCl3) 

 

Position GH (mult, J, Hz) R GC R 

2 - - 161.0 160.0 

3 6.63 (s) 6.73 (s) 106.8 106.7 

4 - - 177.3 177.4 

4a - - 114.8 144.0 

5 - - 148.4 138.0 

6 - - 138.0 151.4 

7 - - 151.4 138.0 

8 - - 144.1 147.7 

8a - - 147.7 114.8 

1 - - 124.0 124.0 

2 7.42 (d, J = 2.1) 7.42 (d, J = 1.8) 108.6 108.7 

3 - - 149.3 149.3 

4 - - 151.9 151.9 

5 7.00 (d, J = 8.4) 7.00 (d, J = 8.7) 111.2 111.0 

6 7.58 (dd, J = 8.4, 2.1) 7.59 (dd, J = 8.7, 1.8) 119.6 119.6 

5-OMe 3.96 (s) 3.96 (s) 61.6 55.6 

6-OMe 3.96 (s) 3.97 (s) 61.8 55.7 

7-OMe 4.04 (s) 4.03 (s) 61.9 61.8 

8-OMe 4.12 (s) 4.11 (s) 62.2 61.9 

3-OMe 3.98 (s) 4.00 (s)  56.1 61.5 

4-OMe 3.97 (s) 3.98 (s) 55.9 61.4 

 

 

 

 

 

 



45 

 

3.2.4 Compound RD4 
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Compound RD4 was isolated as a pale-yellow solid, mp 137-138 
R
C. The UV 

spectra closely resembled those of compound RD3. The IR spectrum showed 

absorption bands of hydroxyl group (3452 cm
-1

) and C=O stretching (1638 cm
-1

). 

The 
1
H NMR and 

13
C NMR spectral data (Table 13, Figure 61 and 62) of RD4 

were comparable with those of RD3. The difference was shown as the disappearance 

of the signal of one methoxyl group in RD3 and the appearance of a chelated 

hydroxyl group at į 12.57 (s) in RD4. The chelated hydroxyl group was assigned at 

C-5 from the HMBC correlation with the carbons at į 107.1 (C-4a) and 149.6 (C-5). 

Therefore, compound RD4 was identified as 5-demethylnobiletin (Li et al., 2006). 
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Table 13 
1
H, 

13
C NMR, DEPT and HMBC spectral data of RD4 (CDCl3) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

2 - 164.0 C - 

3 6.64 (s) 104.1 CH 2, 4, 1 

4 - 183.0 C=O - 

4a - 107.1 C - 

5 - 149.6 C - 

6 - 153.1 C - 

7 - 152.6 C - 

8 - 133.0 C - 

8a - 145.8 C - 

1 - 123.8 C - 

2 7.62 (dd, J = 8.7, 2.1) 120.2 CH 2, 4 

3 - 149.5 C - 

4 - 152.6 C - 

5 7.03 (d, J = 8.7) 111.3 CH 1, 4, 3 

6 7.45 (d, J = 2.1) 108.8 CH 2, 4, 3 

6-OMe 3.96 (s) 61.8 CH3 6 

7-OMe 3.96 (s) 62.0 CH3 7 

8-OMe 4.10 (s) 62.3 CH3 8 

3-OMe 4.01 (s) 56.0 CH3 3 

4-OMe 3.89 (s) 61.1 CH3 4 

5-OH 12.57 (s) - - 4a, 5 
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Table 14 Comparison of 
1
H NMR spectral data of RD4 (CDCl3) and 5-

demethylnobiletin (R, DMSO-d6) 

 

Position GH (mult, J, Hz) R GC R 

2 - - 164.0 163.5 

3 6.64 (s) 6.99 (s) 104.1 103.5 

4 - - 183.0 182.5 

4a - - 107.1 106.2 

5 - - 149.6 148.5 

6 - - 153.1 135.8 

7 - - 152.6 152.4 

8 - - 133.0 132.5 

8a - - 145.8 145.2 

1 - - 123.8 122.6 

2 7.62 (dd, J = 8.7, 2.1) 7.63 (dd, J = 9.0, 2.0) 120.2 111.7 

3 - - 149.5 148.9 

4 - - 152.6 152.3 

5 7.03 (d, J = 8.7) 7.11 (d, J = 9.0) 111.3 109.0 

6 7.45 (d, J = 2.1) 7.51 (d, J = 2.0) 108.8 119.9 

6-OMe 3.96 (s) 3.82 (s) 62.0 60.5 

7-OMe 4.10 (s) 3.92 (s) 61.8 61.7 

8-OMe 3.96 (s) 3.86 (s) 62.3 61.4 

3-OMe 4.01 (s) 4.02 (s) 56.0 55.7 

4-OMe 3.89 (s) 3.85 (s) 61.1 55.6 

5-OH 12.57 (s) 12.72 (s) - - 
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3.2.5 Compound RD5 

 

 

Compound RD5 was isolated as a pale-yellow solid, mp 138-139 
R
C. The UV 

and IR spectra closely resembled those of compound RD3. 

The 
1
H NMR and 

13
C NMR spectral data (Table 15, Figure 71 and 72) of RD5 

were comparable with those of RD4. The difference was shown as the disappearance 

of the signal of a chelated hydroxyl group in RD4 and the appearance of a methine 

proton at į 6.44 (s). The methine proton was assigned at C-6 from its HMBC 

correlation with the carbons at į 109.1 (C-4a) and 156.4 (C-7). Therefore, compound 

RD5 was identified as 5,7,8,3,4-pentamethoxyflavone (Chen et al., 1997). 

 

 

 

Selective HMBC correlations of RD5 
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Table 15 
1
H, 

13
C NMR, DEPT and HMBC spectral data of RD5 (CDCl3) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

2 - 160.6 C - 

3 6.62 (s) 107.2 CH 2, 4, 4a, 1 

4 - 177.9 C=O - 

4a - 109.1 C - 

5 - 152.0 C - 

6 6.44 (s) 92.7 CH 4a, 6, 7 

7 - 156.4 C - 

8 - 156.6 C - 

8a - 130.9 C - 

1 - 124.1 C - 

2 7.43 (d, J = 3.0) 108.7 CH 2, 1, 6, 3 

3 - 149.4 C - 

4 - 151.9 - - 

5 6.99 (d, J = 9.0) 111.3 CH 1, 3 

6 7.59 (dd, J = 9.0, 3.0) 119.6 CH 2, 2 

5-OMe 3.96 (s) 61.5 CH3 5 

7-OMe 3.99 (s) 56.1 CH3 7 

8-OMe 4.02 (s) 56.4 CH3 8 

3-OMe 3.98 (s) 56.6 CH3 3 

4-OMe 3.96 (s) 56.0 CH3 4 

 

 

 

 

 

 

 

 



50 

 

Table 16 Comparison of 
1
H NMR and 

13
C spectral data of RD5 (CDCl3) and 

5,7,8,3,4-pentamethoxyflavone (R, CDCl3) 

 

Position GH (mult, J, Hz) R GC R 

2 - - 160.6 160.5 

3 6.62 (s) 6.61 (s) 107.2 107.2 

4 - - 177.9 177.9 

4a - - 109.1 109.1 

5 - - 152.0 152.0 

6 6.44 (s) 6.44 (s) 92.7 92.6 

7 - - 156.4 156.3 

8 - - 156.6 156.3 

8a - - 130.9 130.7 

1 - - 124.1 124.1 

2 7.43 (d, J = 3.0) 7.42 (d, J = 2.4) 108.7 108.7 

3 - - 149.4 149.2 

4 - - 151.9 151.5 

5 6.99 (d, J = 9.0) 6.98 (d, J = 8.4) 111.3 111.0 

6 7.59 (dd, J = 9.0, 3.0) 7.58 (dd, J = 8.4, 2.4) 119.6 119.6 

5-OMe 3.96 (s) 3.96 (s) 61.5 61.5 

7-OMe 3.99 (s) 3.99 (s) 56.1 56.1 

8-OMe 4.02 (s) 4.01 (s) 56.4 56.5 

3-OMe 3.98 (s)  3.97 (s)  56.6 56.0 

4-OMe 3.96 (s) 3.96 (s) 56.0 56.0 
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3.2.6 Compound RD6 

 

 

O

O

MeO

HO

1

3

5

1'

2' 2' '

1''

21
24' '

 

 

Compound RD6 was isolated as a white solid, mp 64-65 
R
C. The UV spectrum 

displayed maximum absorptions at 234, 291 and 325 nm, suggesting the presence of 

conjugation in the molecule. The IR spectrum showed absorption bands of hydroxyl 

group (3551 cm
-1

) and C=O stretching (1682 cm
-1

). 

The 
1
H NMR spectral data (Table 17, Figure 78) of RD6, showed the presence 

of a trans double bond as evidenced by two doublet signals at į 6.30 and 7.62 ppm 

with a coupling constant of 15.9 Hz. The 
1
H NMR signals at į 6.92 (d, J = 8.1 Hz, H-

3), į 7.07 (dd, J = 8.1, 1.8 Hz, H-2) and į 7.03 (d, J = 1.8 Hz, H-6) established the 

presence of three aromatic protons with ortho, ortho/meta and meta coupling, 

respectively. The presence of one methoxyl group was also shown by a three-proton 

singlet at į 3.92 ppm. Furthermore, the calculated MW of 529.6 was in agreement 

with the molecular formula, C33H56O4 as deduced by EI mass spectrum. The 
1
H NMR 

spectrum showed signals of methylene protons at į 4.20 (t, J = 6.6 Hz, H-1), a triplet 

at į 0.89 (H-24), and a broad signal at į 1.15-1.39 which could be deduced from 

molecular formula to be those of 42H. Therefore, compound RD6 should be a long 

chain ester of ferulic acid. The 
13

C NMR spectral data of RD6 showed signals at į 

167.4 (C-3) due to the carbonyl group of an ester function and į 144.7 (C-1) and į 

115.6 (C-2) due to a side chain C-C double bond. Further confirmation of this 

skeleton came from the mass spectrum of RD6 which showed, besides the molecular 

ion, significant fragment peak at m/z ion 530.0, both being characteristic of a methoxy 

and hydroxyl substituted cinnamic moiety. HMBC correlations were summarized in 
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Table 17. Therefore, compound RD6 was identified as (E)-ferulic acid tetracosyl ester 

(Mensah et al., 1992). 
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Table 17 
1
H, 

13
C NMR, DEPT and HMBC spectral data of RD6 (CDCl3) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

1 - 127.0 C - 

2 7.07 (dd, J = 8.1, 1.8) 123.0 CH 4, 6, 1 

3 6.92 (d, J = 8.1) 114.8 CH 1, 2, 4, 5 

4 - 148.0 C - 

5 - 146.8 C - 

6 7.03 (d, J = 1.8) 109.4 CH 2, 4, 5, 1 

1 7.62 (d, J = 15.9) 144.7 CH 1, 2, 6, 2, 3 

2 6.30 (d, J = 15.9) 115.6 CH 1, 3 

3 - 167.4 C=O - 

1 4.20 (t, J = 6.6) 64.6 CH2 2 

2 1.71 (m) 28.8 CH2 1 

3-23 1.15-1.39 (m) - - - 

24 0.89 (t, J = 6.3) 14.1 CH3 - 

5-OMe 3.92 (s) 55.9 CH3 5 
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Table 18 Comparison of 
1
H NMR and 

13
C spectral data of RD6 (CDCl3) and (E)-

ferulic acid tetracosyl ester (R, CDCl3) 

 

Position GH (mult, J, Hz) R 

1 -  

2 7.07 (dd, J = 8.1, 1.8) 7.07 (dd, J = 8.5, 2.0) 

3 6.92 (d, J = 8.1) 6.91 (d, J = 8.5) 

4 - - 

5 - - 

6 7.03 (d, J = 1.8) 7.04 (d, J = 2.0) 

1 7.62 (d, J = 15.9) 7.62 (d, J = 16.5) 

2 6.30 (d, J = 15.9) 6.28 (d, J = 16.5) 

3 - - 

1 4.20 (t, J = 6.6) 4.18 (t, J = 7.0) 

2 1.71 (m) 1.69 (m) 

3-23 1.15-1.39 (m) 1.25 (m) 

24 0.89 (t, J = 6.3) 0.89 (t, J = 7.0) 

5-OMe 3.92 (s) 3.93 (s) 
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3.2.7 Compound RD7 

 

 

 

 

Compound RD7 was isolated as a pale-yellow solid, mp 178-179 
R
C, >Į@D

24
 

+12 (c 0.55, MeOH). The UV spectrum displayed maximum absorption bands at 265, 

325 nm suggesting an isoflavone skeleton. The IR spectrum showed absorption bands 

for a carbonyl group (1643 cm
-1

). 

The 
13

C NMR spectral data (Table 19, figure 90) exhibited 19 carbons, of 

three methyl (į 55.9, 56.0, 62.2), one methylene (į 102.1) five methines (į� 93.1, 

111.1, 112.9, 121.3, 150.4) and ten quaternary carbons (į 113.8, 124.6, 125.4, 135.5, 

141.7, 148.7, 149.1, 152.8, 154.7, 175.4). 

The 
1
H NMR spectral data (Table 19, Figure 89) displayed a characteristic 

isoflavone signals for H-2 as a singlet at į 7.79 together with a singlet of an aromatic 

proton signal at į 6.64 (H-8), whose signal of the latter indicated a pentasubstituted 

A-ring. The signals of a B-ring at G 6.70 (d, J = 8.4 Hz), 7.00 (dd, J = 8.4, 2.1 Hz) and 

7.19 (d, J = 2.1 Hz) indicated a 1,2,4-trisubstituted B ring. The spectrum also revealed 

the presence of three methoxyl groups (į 3.90, 3.92, and 4.09) and a methylenedioxy 

(į 6.07) in the compound. 

The structure of RD7 was confirmed by HMBC correlation. The proton signal 

at į 7.79 (H-2) showed correlations with the carbons at į 124.6 (C-1), 125.4 (C-3), 

154.7 (C-9) and 175.4 (C-4), suggesting the connection of a 1,2,4-trisubstituted 

benzene ring at G 125.4 (C-3). The proton signal of H-8 at G 6.64 showed correlations 

with the carbons at G 113.8 (C-10), 135.5 (C-6), 141.7 (C-5), 152.8 (C-7) and 154.7 
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(C-9). The correlation of the proton signal at į 6.07 (CH2O2) with the carbons at G 

135.5 (C-6) and 152.8 (C-7) suggested that the methylenedioxy group must be located 

between  C-6 and C-7 of ring A. The methoxyl group at į 3.90, 3.92 and 4.09 showed 

correlations with the carbons at G 148.7 (C-4), 149.1 (C-3) and 141.7 (C-5), 

respectively confirming their locations at C-4, C-3 and C-5, respectively. Therefore, 

compound RD7 was identified as 5,3,4-trimethoxy-6,7-methylenedioxyisoflavone 

(Veitch et al., 2002). 
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Table 19 
1
H, 

13
C NMR, DEPT and HMBC spectral data of RD7 (CDCl3)   

 

Position GH (mult, J, Hz) GC DEPT HMBC 

2 7.79 (s) 150.4 CH 3, 4, 9, 1 

3 - 125.4 C - 

4 - 175.4 C=O - 

5 - 141.7 C - 

6 
 

135.5 C - 

7 - 152.8 C - 

8 6.64 (s) 93.1 CH 5, 6, 7, 9, 10 

9 - 154.7 C - 

10 - 113.8 C - 

1 - 124.6 C - 

2 7.19 (d, J = 2.1) 112.9 CH 3, 1, 3, 6 

3 - 149.1 C - 

4 - 148.7 C - 

5 6.70 (d, J = 8.4) 111.1 CH 1, 3, 4, 6 

6 7.00 (dd, J = 8.4, 2.1) 121.3 CH 3, 5 

CH2O2 6.07 (s) 102.1 CH2 6, 7 

5-OMe 4.09 (s) 62.2 CH3 5 

3-OMe 3.92 (s) 56.0 CH3 3 

4-OMe 3.90 (s) 55.9 CH3 4 

 

 

 

 

 

 

 



58 

 

Table 20 Comparison of 
1
H NMR spectral data of RD7 (CDCl3) and 5,3,4-

trimethoxy-6,7-methylenedioxyisoflavone (R, CDCl3) 

 

Position GH (mult, J, Hz) R GC R 

2 7.79 (s) 7.78 (s) 150.4 150.4 

3 - - 125.4 125.4 

4 - - 175.4 175.4 

5 - - 141.7 141.8 

6  - 135.5 135.5 

7 - - 152.8 152.8 

8 6.64 (s) 6.62 (s) 93.1 93.2 

9 - - 154.7 154.7 

10 - - 113.8 113.9 

1 - - 124.6 124.7 

2 7.19 (d, J = 2.1) 7.18 (d, J = 2.0) 112.9 113.0 

3 - - 149.1 148.8 

4 - - 148.7 149.1 

5 6.70 (d, J = 8.4) 6.89 (d, J = 8.3) 111.1 111.2 

6 7.00 (dd, J = 8.4, 2.1) 7.00 (dd, J = 8.3, 2.0) 121.3 121.4 

CH2O2 6.07 (s) 6.05 (s) 102.1 102.2 

5-OMe 4.09 (s) 4.08 (s) 62.2 61.2 

3-OMe 3.92 (s) 3.91 (s) 56.0 56.1 

4-OMe 3.90 (s) 3.89 (s) 55.9 56.0 
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3.2.8 Compound RD8 

 

 

 

 

Compound RD8 was isolated as a pale-yellow solid, mp 175-176 
R
C. The UV 

and IR spectra were closely resembled those of compound RD7. 

The 
1
H NMR and 

13
C NMR spectral data (Table 21, Figure 98 and 99) of RD8 

were comparable with those of RD7. The difference was shown in the signals of the B 

ring, of which those of RD7 was a 1,2,4-trisubstituted whereas those of RD8 was a 

1,4-disubstituted B ring which appeared as signals at į�6.95 (d, J = 8.7 Hz, H-3, 5) 

and 7.47 (d, J = 8.7 Hz, H-2, 6). In the NOESY spectrum, the methoxyl protons at G 

3.83 (4-OMe) displayed a cross-peak with the protons at G 6.95 (H-3, 5), indicating 

their substitution on B-ring. Therefore compound RD8 was identified as 5,4-

dimethoxy-6,7-methylenedioxyisoflavone (Veitch et al., 2002). 

 

 

 

Selected NOESY cross-peak for compound RD8 



60 

 

Table 21 
1
H, 

13
C NMR, DEPT and NOSEY spectral data of RD8 (CDCl3) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

2 7.78 (s) 150.3 CH - 

3 - 125.4 C - 

4 - 175.3 C=O - 

5 - 141.6 C - 

6 
 

134.3 C - 

7 - 152.5 C - 

8 6.64 (s) 93.2 CH - 

9 - 154.8 C - 

10 - 113.9 C - 

1 - 124.1 C - 

2, 6 7.47 (2H, d, J = 8.7) 130.4 CH 3, 5 

3, 5 6.95 (2H, d, J = 8.7) 113.9 CH 2, 6, 4 

4 - 159.5 C - 

CH2O2 6.07 (2H, s) 102.3 CH2 - 

5-OMe 4.09 (s) 61.2 CH3 - 

4-OMe 3.83 (s) 55.3 CH3 3��� 
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Table 22 Comparison of 
1
H NMR spectral data of RD8 (CDCl3) and 5,4-dimethoxy-

6,7-methylenedioxyisoflavone (R, CDCl3) 

 

Position GH (mult, J, Hz) R GC R 

2 7.78 (s) 7.77 (s) 150.3 150.2 

3 - - 125.4 125.4 

4 - - 175.3 175.4 

5 - - 141.6 141.8 

6  - 134.3 135.6 

7 - - 152.5 152.8 

8 6.64 (s) 6.63 (s) 93.2 93.3 

9 - - 154.8 154.8 

10 - - 113.9 114.0 

1 - - 124.1 124.2 

2, 6 7.47 (2H, d, J = 8.7) 7.47 (2H, d, J = 8.8) 130.4 130.4 

3, 5 6.95 (2H, d, J = 8.7) 6.94 (2H, d, J = 8.8) 113.9 113.9 

4 - - 159.5 159.6 

CH2O2 6.07 (2H, s) 6.06 (2H, s) 102.3 102.2 

5-OMe 4.09 (s) 4.08 (s) 61.2 61.3 

4-OMe 3.83 (s) 3.83 (s) 55.3 55.4 
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3.2.9 Compound RD9 and RD10 

 

 

 

 

 

 

 

 

The mixture of RD9 and RD10 was isolated as a white solid. Its IR spectrum 

showed absorption bands at 3425 (hydroxyl) and 1642 cm
-1

 (double bond). The 
1
H 

NMR spectral data contained an oxymethine protons at G 5.36 (d, J = 5.1 Hz), 5.16 

(dd, J = 15.1, 8.4 Hz). The 
1
H NMR (Cheenpracha, 2004) data was corresponded to a 

previous reported data of -sitosterol and stigmasterol. Thus, this mixture was 

identified as -sitosterol (RD9) and stigmasterol (RD10). 
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3.2.10 Compound RD11 

 

 

 

 

            Compound RD11 was obtained as colorless oil. The UV spectrum showed 

absorption bands at Omax 237, 293 and 306 nm, indicating the presence of a benzene 

chromophore. The IR spectrum exhibited absorption bands at 3367 and 1684 cm
-1

 for 

hydroxyl and carbonyl groups, respectively. 

The 
1
H NMR spectrum displayed characteristic signals of a 1,4-disubstituted 

benzene at G 7.80 (2H, d, J = 9.0 Hz) and 6.87 (2H, d, J = 9.0 Hz) and appearance of a 

singlet of an aldehydic group at į  9.89 (1H, s, CHO). The presence of a carbonyl 

carbon at G 190.6 in the 
13

C NMR spectrum was in agreement with the IR data. The 

complete HMBC data were summarized in Table 23. Accordingly, the structure of 

RD11 was assigned as 4-hydroxybenzaldehyde. 

 

 

 

 

Figure   Selected HMBC correlations of RD11 
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Table 23
 1

H, 
13

C NMR and HMBC spectral data of RD11 (CDCl3) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

1 - 130.0 C - 

2/6 7.80 (d, J = 9.0) 132.5 CH 3, 4, 7 

3/5 6.87 (d, J = 9.0) 116.1 CH 1, 2 

4 - 161.0 C - 

7 9.89 (s) 190.6 C=O - 

4-OH - - - - 
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3.2.11 Compound RD12 

 

 

 

 

Compound RD12 was obtained as colorless oil. The UV spectrum showed 

absorption bands at Omax 233, 291 and 306 nm, indicating the presence of a benzene 

chromophore. The IR spectrum exhibited absorption bands at 3384 and 1648 cm
-1

 for 

hydroxyl and carbonyl groups, respectively.  

The 
1
H NMR spectral data (Table 24), displayed characteristic signals of a 

1,2,4-trisubstituted benzene at G  7.43 (dd, J = 9.0, 3.0 Hz, H-6), 7.42 (d, J = 3.0 Hz, 

H-2) and 7.04 (d, J = 9.0 Hz, H-5) and appearance of a singlet of an aldehydic group 

at į 9.80 (s, CHO). A singlet signal of a methoxyl group was evident at į�3.91 (3H, s, 

3-OMe). The location of a methoxyl group at C-3 was confirmed by HMBC 

correlation of OMe-3 (G 3.91) with GC 147.4 (C-3).  

The structure of RD12 was confirmed by HMBC correlation. The proton 

signal at į 9.80 (H-7) showed correlations with the carbons at į 109.1 (C-2), 127.6 

(C-6), 129.6 (C-1) and 147.4 (C-3), suggesting the connection of an aldehylic group at 

C-1. The proton signals at į 7.43 (H-6) showed correlations with the carbons at į 

109.1 (C-2), 114.7 (C-5), 129.6 (C-1), 152.1 (C-4) and 191.3 (C=O). The complete 

HMBC data were summarized in Table 24. Therefore, compound RD12 was 

identified as vanillin. 
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Selective HMBC correlations of RD12 

Table 24 
1
H, 

13
C NMR, DEPT and HMBC spectral data of RD12 (CDCl3) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

1 - 129.6 C - 

2 7.42 (d, J = 3.0) 109.1 CH 1, 3, 4, 5, 6 

3 - 148.5 C - 

4 - 152.1 C - 

5 7.04 (d, J = 9.0) 114.7 CH 1, 3, 4 

6 7.43 (dd, J = 9.0, 3.0) 127.6 CH 1, 2, 4, 5, 7 

7 9.80 (s) 191.3 C=O 1, 2, 3, 6 

3-OMe 3.91 (s) 56.0 CH3 3 

4-OH 7.15 (s) - - 2, 6 
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3.2.12 Compound RA1 

  

 

O

O

O
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O
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H

H

H
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 Compound RA1 was isolated as a white solid, mp 189-190 
R
C, >Į@D

24
 +12 (c 

0.55, MeOH). The UV spectrum displayed maximum absorptions aW�Ȝmax 285 and 367 

nm supporting the presence of conjugated chromophore in the structure. The IR 

spectrum showed absorption bands of hydroxyl group (3382 cm
-1

) and C=O stretching 

(1700 and 1632 cm
-1

). 

The 
13

C NMR and DEPT spectra data (Tables 25, Figure 123) exhibited 30 

carbons of seventeen methines (į 43.1, 52.7, 102.4, 102.6, 108.2, 115.0 (2C), 115.2 

(3C), 127.4, 128.6 (2C), 129.2 (2C), 133.6, 155.5 and thirteen quaternary carbons (į 

113.3, 116.4, 121.4, 133.8, 134.8, 155.6, 155.7, 157.7, 162.7, 165.4, 166.0, 174.6, 

203.8). 

The 
1
H NMR spectral data (Tables 25, Figure 122), assigned by COSY 

spectrum, enabled the assignment of two 1,4-disubstituted benzene rings at į 6.66 

(4H, m, H-21, 23 / 27, 29) and 7.28 (4H, m, H-20, 24 / 26, 30) assigned on ring B and 

B and two 1,2,4-trisubstituted benzene rings at į 6.79 (d, J = 3.0 Hz, H-8), 6.93 (dd, J 

= 9.0, 3.0 Hz, H-6) and 7.96 (d, J = 9.0 Hz, H-5) assigned on ring A and at G 6.24 (d, 

J = 3.0 Hz, H-14), 6.47 (dd, J = 9.0, 3.0 Hz, H-16) and 8.37 (d, J = 9.0 Hz, H-17) 
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assigned on ring A. Two doublets were displayed at į 4.82 (C-18) and 6.18 (H-10) 

(each 1H, J = 12.0 Hz) whose large coupling constants indicated trans conformation. 

In addition two singlets of an aromatic methine proton (H-1) and a chelated hydroxyl 

group (13-OH) were evident at į 8.31 and 12.70, respectively. 

The structure of RA1 was confirmed by HMBC correlations. The proton 

signal at į 4.82 (H-18) showed correlations with the carbons at į 43.1 (C-10), 121.4 

(C-2), 133.8 (C-19) and 134.8 (C-25), suggesting the connection of two p-

disubstituted benzene rings at C-18. The correlations of the proton signal at į 6.12 (H-

10) with the carbons at į 52.7 (C-18), 121.4 (C-2), 174.6 (C-3) and 203.8 (C-11), 

suggested that a methine carbon (C-10) was connected to C-2. The proton signal at į 

7.96 (H-5) showed correlations with the carbons at į 116.4 (C-4), 162.7 (C-7) and 

174.6 (C-3), in turn the proton signal at G 8.31 (H-1) correlated with the carbons at G 

43.1 (C-10), 121.4 (C-2), 157.7 (C-9) and 174.6 (C-3), suggesting the connection of 

ring A with the ring C. The correlation of the proton signals at į 12.70 (13-OH) with 

the carbons at į 102.6 (C-14), 113.3 (C-12) and 166.0 (C-13), in turn the proton signal 

at G 8.37 (H-17) correlated with the carbons at G 113.3 (C-12), 165.4 (C-15), 166.0 

(C-13) and 203.8 (C-11), suggesting the connection of a 1,2,4-trisubstituted benzene 

ring (ring A) at C-11. Therefore, compound RA1 was identified as lophirone A 

(Ghogomu et al., 1987). 
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Selected HMBC correlations for compound RA1  
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Table 25
 1

H, 
13

C NMR, DEPT and HMBC spectral data of RA1 (Acetone-d6) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

1 8.31 (s) 155.5 CH 2, 3, 9, 10 

2 - 121.4 C - 

3 - 174.6 C=O - 

4 - 116.4 C - 

5 7.96 (d, J = 9.0) 127.4 CH 3, 6, 7, 9 

6 6.93 (dd, J = 9.0, 3.0) 115.2 CH 4, 7, 8 

7 - 162.7 C - 

8 6.79 (d, J = 3.0) 102.4 CH 3, 4, 6, 7, 9 

9 - 157.7 C - 

10 6.12 (d, J = 12.0) 43.1 CH 1, 2, 3, 18, 19, 25 

11 - 203.8 C - 

12 - 113.3 C - 

13 - 166.0 C - 

14 6.24 (d, J = 3.0) 102.6 CH 12, 13, 16 

15 - 165.4 C - 

16 6.47 (dd, J = 9.0, 3.0) 108.2 CH 14, 15 

17 8.37 (d, J = 9.0) 133.6 CH 12, 13, 15 

18 4.82 (d, J = 12.0) 52.7 CH 2, 10, 20, 24, 25 

19 - 133.8 C - 

20 7.28 (m) 129.2 CH 18, 21, 22, 24 

21 6.66 (m) 115.0 CH 19, 22, 23 

22 - 155.6 C - 

23 6.66 (m) 115.0 CH 19, 22, 27, 29 

24 7.28 (m) 129.2 CH 18, 21, 22 

25 - 134.8 C - 

26 7.28 (m) 128.6 CH 18, 28, 30 

27 6.66 (m) 115.2 CH 25, 28, 30 

28 - 155.7 C - 
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Table 25 (continued) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

29 6.66 (m) 115.2 CH 25, 28, 30 

30 7.28 (m) 128.6 CH 18, 28, 29 

13-OH 12.70 (s) - - 12, 13, 14 

 

Table 26 Comparison of 
1
H NMR and 

13
C spectral data of RA1 (Acetone-d6) and 

lophirone A (R, Acetone-d6) 

 

Position GH (mult, J, Hz) R GC R 

1 8.31 (s) 8.27 (s) 155.5 156.4 

2 - - 121.4 122.1 

3 - - 174.6 175.4 

4 - - 116.4 117.2 

5 7.96 (d, J = 9.0) 7.94 (d, J = 8.8) 127.4 128.2 

6 6.93 ( dd, J = 9.0, 3.0) 6.91 (dd, J = 8.8, 2.3) 115.2 115.9 

7 - - 162.7 163.4 

8 6.79 (d, J = 3.0) 6.77 (d, J = 2.3) 102.4 103.2 

9 - - 157.7 158.5 

10 6.18 (d, J = 12.0) 6.14 (d, J = 12.3) 43.1 43.9 

11 - - 203.8 204.5 

12 - - 113.3 114.1 

13 - - 166.0 166.8 

14 6.24 (d, J = 3.0) 6.20 (d, J = 2.4) 102.6 103.3 

15 - - 165.4 166.1 

16 6.47 (dd, J = 9.0, 3.0) 6.44 (dd, J = 9.0, 2.4) 108.2 109.0 

17 8.37 (d, J = 9.0) 8.34 (d, J = 9.0) 133.6 134.4 

18 4.82 (d, J = 12.0) 4.79 (d, J = 12.3) 52.7 53.4 

19 - - 133.8 134.6 

20 7.28 (m) 7.26 (m) 129.2 130.0 
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Table 26 (continued) 

 

Position GH (mult, J, Hz) R GC R 

21 6.66 (m) 6.61 (m) 115.0 115.8 

22 - - 155.6 156.4 

23 6.66 (m) 6.61 (m) 115.0 115.8 

24 7.28 (m) 7.26 (m) 129.2 130.0 

25 - - 134.8 135.6 

26 7.28 (m) 7.26 (m) 128.6 129.4 

27 6.66 (m) 6.61 (m) 115.2 115.9 

28 - - 155.7 156.5 

29 6.66 (m) 6.61 (m) 115.2 115.9 

30 7.28 (m) 7.26 (m) 128.6 129.4 

13-OH 12.70 (s) 12.60 (s) - - 
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3.2.13 Compound RA2 
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Compound RA2 was isolated as a white solid, mp 191-192 
R
C, >Į@D

24
 +30 (c 

0.55, MeOH). The UV and IR spectra were closely resembled those of compound 

RA1. 

The 
1
H and 

13
C NMR spectral data (Table 27, Figures 132 and 133) of RA2 

were similar to those of RA1, except that RA2 had an additional singlet signal of 

methoxyl protons at G 3.79 (3H, s) (įC 55.2). The position of the methoxyl group at C-

15 was determined through HMBC correlation of įH 3.79 (15-OMe) with the signal at 

įC 166.7 (C-15). Therefore, compound RA2 was identified as calodenone (Messanga 

et al., 1992). 
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Selected HMBC correlations for compound RA2  
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Table 27 
1
H, 

13
C NMR, DEPT and HMBC spectral data of RA2 (Acetone-d6) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

1 8.31 (s) 155.5 CH 2, 3 

2 - 121.2 C - 

3 - 174.4 C=O - 

4 - 116.3 C - 

5 7.95 (d, J = 8.7) 127.4 CH 3, 6, 7 

6 6.93 (d, J = 8.7, 2.1) 115.1 CH 4,7, 8 

7 - 162.7 C - 

8 6.79 (d, J = 2.1) 102.3 CH 7, 9 

9 - 157.7 C - 

10 6.19 (d, J = 12.3) 43.3 CH 2, 3, 18 

11 - 204.1 C - 

12 - 113.7 C - 

13 - 165.9 C - 

14 6.30 (d, J = 2.1) 100.6 CH 12, 13, 16 

15 - 166.7 C - 

16 6.50 (d, J = 9.0, 2.1) 107.4 CH 12, 14, 15 

17 8.42 (d, J = 9.0) 133.1 CH 12, 13, 15 

18 4.83 (d, J = 12.3) 52.6 CH 10, 19, 24, 25 

19 - 133.7 C - 

20 7.30 (m) 129.2 CH 18, 21, 22, 24 

21 6.66 (m) 115.0 CH 19, 22, 23 

22 - 155.6 C - 

23 6.66 (m) 115.0 CH 19, 22 

24 7.30 (m) 129.2 CH 18, 21, 22, 24 

25 - 134.8 C - 

26 7.30 (m) 128.6 CH 18, 28, 30 

27 6.66 (m) 115.1 CH 25, 28, 30 

28 - 155.7 C - 
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Table 27 (continued) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

29 6.66 (m) 115.1 CH 25, 28, 30 

30 7.30 (m) 128.6 CH 18, 28, 29 

15-OMe 3.79 (s) 55.2 CH3 15 

13-OH 12.73 (s) - - 12, 13, 14 

 

Table 28 Comparison of 
1
H NMR spectral data of RA2 (Acetone-d6) and calodenone 

(R, Acetone-d6) 

 

Position GH (mult, J, Hz) R 

1 8.31 (s) 8.26 (s) 

2 - - 

3 - - 

4 - - 

5 7.95 (d, J = 8.7) 7.91 (d, J = 8.8) 

6 6.93 (dd, J = 8.7, 2.1) 6.89 (dd, J = 8.8, 2.3) 

7 - - 

8 6.79 (d, J = 2.1) 6.75 (d, J = 2.3) 

9 - - 

10 6.19 (d, J = 12.3) 6.15 (d, J = 12.3) 

11 - - 

12 - - 

13 - - 

14 6.30 (d, J = 2.1) 6.29 (d, J = 2.4) 

15 - - 

16 6.50 (dd, J = 9.0, 2.1) 6.49 (dd, J = 8.1, 2.4) 

17 8.42 (d, J = 9.0) 8.37 (d, J = 8.1) 

18 4.83 (d, J = 12.3) 4.79 (d, J = 12.3) 

19 - - 
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Table 28 (continued) 

 

Position GH (mult, J, Hz) R 

20 7.30 (m) 7.25 (m) 

21 6.66 (m) 6.60 (m) 

22 - - 

23 6.66 (m) 6.60 (m) 

24 7.30 (m) 7.25 (m) 

25 - - 

26 7.30 (m) 7.25 (m) 

27 6.66 (m) 6.60 (m) 

28 - - 

29 6.66 (m) 6.60 (m) 

30 7.30 (m) 7.25 (m) 

15-OMe 3.79 (s) 3.78 (s) 

13-OH 12.73 (s) 12.69 (s) 
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3.2.14 Compound RA3 
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 Compound RA3 was isolated as a yellow solid, mp 181-182
 R

C, The UV 

spectrum displayed maximum absorptions at 287 and 374 nm suggesting the presence 

of conjugation in the molecule. The IR spectrum showed absorption bands of 

hydroxyl group (3407 cm
-1

) and carbonyl (1629 cm
-1

). 

The 
13

C NMR spectral data (Table 29, Figure 143) exhibited 30 signals, which 

were comprised by two carbonyls (į 191.8, 196.9), two aliphatic methines (G 54.3, 

82.5) and 26 olefinic and aromatic carbons (į 94.9, 96.1, 102.1, 102.9, 107.8, 113.6, 

114.9 (2C), 115.8, 117.6, 123.0, 126.7, 129.0 (2C), 129.7, 132.2 (2C), 133.2, 144.1, 

157.7, 157.9, 163.4, 164.6, 164.7, 166.4, 166.7). 

The 
1
H NMR spectrum of RA3, displayed the typical trans olefinic protons of 

a chalcone structure at į 7.67 (d, J = 15.3 Hz, H-α) and 7.73 (d, J = 15.3 Hz, H-) and 

two 1,2,4-trisubstituted benzene rings at į 6.36 (d, J = 2.4 Hz, H-3), 6.46 (dd, J = 9.0, 

2.4 Hz, H-5) and 8.01 (d, J = 9.0 Hz, H-6) and at į 6.88 (d, J = 8.7 Hz, H-5), 7.56 

(m, H-2) and 7.57 (m, H-6). The chelated hydroxyl group was evident at į 13.61. 

Additional 
1
H NMR signal of characteristic aliphatic protons of a flavanone skeleton 

was displayed at į 4.67 (d, J = 12.3 Hz, H-α) and 5.90 (d, J = 12.3 Hz, H-). The 

following signals were shown: a p–disubstituted benzene ring at 6.74 (2H, d, J = 8.4 

Hz, H-3, 5) and 7.30 (2H, d, J = 8.4 Hz, H-2, 6), a 1,2,3,5-tetrasubstituted 
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benzene ring at į 6.00 (d, J = 2.1 Hz, H-3) and 6.01 (d, J = 2.1 Hz, H-5). The 

chelated hydroxyl group was evident at į� 12.28. These spectral data indicated a 

chalcone-flavanone type for RA3. 

The structure of RA3 was confirmed by HMBC experiment. For a chalcone 

skeleton, the proton signal at į 7.67 (H-α) showed correlations with the carbons at į�

113.6 (C-1), 144.1(C-) and 191.8 (C=O), suggesting the connection of a 1,2,4-

trisubstituted benzene ring at C=O. The correlation of the proton signals at į 7.71 (H-

) with the carbons at G 117.6 (C-α), 126.7 (C-1), 129.7 (C-2), 133.2 (C-6) and 191.8 

(C=O) suggested a connection of another 1,2,4-trisubstituted benzene ring to C-. For 

a flavanone skeleton, the proton signal at G 4.67 (H-α) showed correlations with the 

carbons at G 82.5 (C-), 123.0 (C-3), 129.0 (C-2/C-6), 129.7 (C-2), 132.2 (C-1) 

and 157.9 (C-4), suggesting the connection of the 1,2,4-trisubstituted benzene ring to 

C-3. The correlation of the proton signals at į 5.90 (H-) with the carbons at G 129.0 

(C-2/C-6) and 132.2 (C-1) suggested that a p-disubstituted benzene ring was 

connected to C-. In addition the chelated proton signals at į 12.28 (OH-6) showed 

correlations with the carbons at į 102.1 (C-1), 166.4 (C-6) and 196.9 (C-c). With 

regard to the sterreochemistry of H-α and H-on the pyrone ring of the flavanone 

unit, the large vicinal coupling constant (J = 12.3 Hz) suggested a trans relative 

configuration. By comparison of the spectral data of RA3 with those of 6-

hydroxylophirone B, therefore compound RA3 was identified as 6-

hydroxylophirone B (Kaewamatawong et al., 2002). 
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Selective HMBC correlations of RA3 

 

Table 29 
1
H, 

13
C NMR, DEPT and HMBC spectral data of RA3 (Acetone-d6) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

1 - 113.6 C - 

2 - 166.7 C  - 

3 6.36 (d, J = 2.4)  102.9 CH 1, 2, 4, 5  

4 - 164.7 C - 

5 6.46 (dd, J = 9.0, 2.4) 107.8 CH 1, 3 

6 8.01 (d, J = 9.0) 132.2 CH 2, 4, c 

CO (c) - 191.8 C=O - 

 7.67 (d, J = 15.3)  117.6 CH 1, c,  

 7.73 (d, J = 15.3)  144.1 CH 1, 2, 6, , c 

1 - 126.7 C - 

2 7.56 (m) 129.7 CH 4, 6,  

3 - 123.0 C - 

4 - 157.9 C - 

5 6.88 (d, J = 8.7) 115.8 CH 1, 3 

6 7.57 (m) 133.2 CH  2, 6 
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Table 29 (continued) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

 4.67 (d, J = 12.3) 54.3 CH 2, 3, 4, 1, 2, 6 

 5.90 (d, J = 12.3)  82.5 CH 1, 2, 6 

CO (c) - 196.9 C=O - 

1 - 132.2 C - 

2, 6 7.30 (d, J = 8.4) 129.0 CH 1, 4,  

3, 5 6.74 (d, J = 8.4) 114.9 CH 1, 2, 4, 5, 6 

4 - 157.7 C - 

1 - 102.1 C - 

2 - 163.4 C - 

3 6.00 (d, J = 2.1) 94.9 CH 2, 4  

4 - 164.6 C 
 

5 6.01 (d, J = 2.1) 96.1 CH 4, 6 

6 - 166.4 C - 

2-OH 13.61 (s) - - 1, 2, 3 

6-OH 12.28 (s) - - 4, 5, 6 
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Table 30 Comparison of 
1
H NMR and 

13
C NMR spectral data of RA3 (Acetone-d6) 

and 6-hydroxylophirone B (R, Acetone-d6) 

 

Position GH (mult, J, Hz) R GC R 

1 - - 113.6 113.7 

2 - - 166.7 166.8 

3 6.36 (d, J = 2.4)  6.36 (d, J = 2.3) 102.9 103.0 

4 - - 164.7 164.8 

5 6.46 (dd, J = 9.0, 2.4) 6.45 (dd, J = 8.9, 2.3) 107.8 107.9 

6 8.01(d, J = 9.0) 8.01(d, J = 8.9) 132.2 132.4 

CO (c) - - 191.8 191.9 

 7.67 (d, J = 15.3) 7.67 (d, J = 15.2) 117.6 117.6 

 7.73 (d, J = 15.3) 7.72 (d, J = 15.2) 144.1 144.2 

1 - - 126.7 126.8 

2 7.56 (br s) 7.55 (br s) 133.2 133.4 

3 - - 123.0 123.1 

4 - - 157.9 157.9 

5 6.88 (d, J = 8.7) 6.86 (d, J = 8.9) 115.8 115.8 

6 7.57 (m) 7.56 (m) 129.7 129.8 

 4.67 (d, J = 12.3) 4.66 (d, J = 12.0) 54.3 54.3 
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Table 30 (continued) 

 

Position GH (mult, J, Hz) R GC R 

 5.90 (d, J = 12.3) 5.90 (d, J = 12.0) 82.5 82.5 

CO (c) - - 196.9 197.0 

1 - - 132.2 132.2 

2, 6 7.30 (d, J = 8.4) 7.29 (dd, J = 6.6, 2.0) 129.0 129.2 

3, 5 6.74 (d, J = 8.4) 6.74 (dd, J = 6.6, 2.0) 114.9 115.0 

4 - - 157.7 157.7 

1 - - 102.1 102.1 

2 - - 163.4 163.5 

3 6.00 (d, J = 2.1) 6.00 (d, J = 2.0) 94.9 95.0 

4 - - 164.6 166.4 

5 6.01 (d, J = 2.1) 6.01 (d, J = 2.0) 96.1 96.2 

6 - - 166.4 166.8 

2-OH 13.61 (s) 13.60 (s) - - 

6OH 12.28 (s) 12.27 (s) - - 
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3.2.15 Compound RA4 
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Compound RA4 was isolated as orange needles, mp: 249-250 
R
C. The UV and 

IR spectra were closely resembled those of compound TA2. 

The 
1
H NMR and 

13
C NMR spectral data (Table 31, Figure 152 and 153) of 

RA4 were comparable with those of TA2. The difference was shown in the part of a 

chalcone skeleton as the disappearance of the signals of two 1,2,4–trisubstituted 

benzene ring in TA2 and the appearance of a p-disubstituted benzene ring at į 7.01 

(2H, d, J = 9.0 Hz, H-3, 5 (A1)) and 7.75 (2H, d, J = 9.0 Hz, H-2, 6 (A1)) and 

pentasubstituted benzene ring at G 6.29 (s, H-5 (B1). Additional difference was 

shown as the disappearance of the signal of dihydrobenzofuran ring in TA2 and the 

appearance of a benzofuran ring in RA4. The HMBC spectrum showed correlations 

of the proton at G 7.75 (H-2, 6 (A1)) with the carbons at G 144.2 (C-1) and 160.5 (C-

4 (A1)), suggesting the connection of a p-disubstituted benzene ring (A1) at C-1. 

The correlations of the proton signals at G 8.29 (H-α1) with the carbons at G 126.8 (C-

1 (A1)) and 189.7 (C-c1), in turn the chelated proton signal at G 14.30 correlated with 

the carbons at G 98.8 (H-5 (B1)) and 166.7 (H-4 (B1)), suggested the connection of a 

pentasubstituted benzene ring (ring B1) at C-c1. Furthermore an aromatic methine 

proton at G  7.64 (H-6 (A-2)) showed correlations with the carbons at G 158.8 (C-4 
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(A2)) and 154.1 (C-2). By comparison of the spectral data of RA4 with those of 

calodenin B, therefore compound RA4 was identified as calodenin B (Messanga et 

al., 1994). 
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Selective HMBC correlations of RA4 

Table 31 
1
H and 

13
C, DEPT and HMBC spectral data of RA4 (Acetone-d6) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

1-A1 - 126.8 C - 

2-A1 7.75 (d, J = 9.0) 130.7 CH 1, 4A1, 4A6 

3-A1 7.01 (d, J = 9.0) 116.2 CH 1A1, 4A1, 5A1 

4-A1 - 160.5 C - 

5-A1 7.01 (d, J = 9.0) 116.2 CH 1A1, 4A1, 3A1 

6-A1 7.75 (d, J = 9.0) 130.7 CH 1, 4A1 

1 7.94 (d, J = 15.3) 144.2 CH 2A1, 6A1, C1 

1 8.29 (d, J = 15.3) 122.0 CH C1, 1A1 

C1 - 189.7 C - 

1-B1 - 101.6 C - 

2-B1 - 152.2 C - 

3-B1 - 111.0 C - 
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Table 31 (continued) 

 

Position GH (mult, J, Hz) GC DEPT HMBC 

4-B1 - 166.7 C - 

5-B1 6.29 (s) 98.8 CH 1B1, 3B1,4B1  

6-B1 - 166.7 C - 

1-A2 - 120.8 C - 

2-A2 7.64 (dd, J = 9.0, 3.0) 128.2 CH 6A2, 4A2, 2 

3-A2 6.94 (m) 115.9 CH 1A2, 4A2, 5A2 

4-A2 - 158.8 C - 

5-A2 6.94 (m) 115.9 CH 1A2, 4A2 

6-A2 7.64 (dd, J = 9.0, 3.0) 128.2 CH 2A2, 4A2, 2 

2 - 154.1 C - 

2 - 114.5 C - 

C2 - 195.9 C - 

1-B2 - 102.6 C -  

2-B2 - 165.7 C - 

3-B2 6.39 (d, J = 3.0) 102.6 CH 2B2, 5B2 

4-B2 - 158.3 C - 

5-B2 6.25 (dd, J = 9.0, 3.0) 108.4 CH 1B2 

6-B2 7.45 (d, J = 9.0) 135.8 CH 2B2, C2 

2-B1(OH) 14.30 (s) - - 1B1, 5B1, 6B1 

 

 

 

 

 

 

 

 

 



85 

 

Table 32 Comparison of 
1
H NMR and 

13
C spectral data of RA4 (Acetone-d6) and 

calodenin B (Acetone-d6) 

 

Position GH (mult, J, Hz) R GC R 

1-A1 - - 126.8 127.7 

2-A1 7.75 (d, J = 9.0) 7.74 (m) 130.7 131.6 

3-A1 7.01 (d, J = 9.0) 7.00 (m)  116.2 116.9 

4-A1 - - 160.5 161.1 

5-A1 7.01 (d, J = 9.0) 7.00 (m) 116.2 116.9 

6-A1 7.75 (d, J = 9.0) 7.74 (m) 130.7 131.6 

1 7.94 (d, J = 15.3) 7.95 (d, J = 15.4) 144.2 145.1 

1 8.29 (d, J = 15.3) 8.29 (d, J = 15.4) 122.0 123.0 

C1 - - 189.7 190.6 

1-B1 - - 101.6 102.5 

2-B1 - - 152.2 155.0 

3-B1 - - 111.0 115.4 

4-B1 - - 166.7 167.1 

5-B1 6.29 (s) 6.28 (s) 98.8 99.7 

6-B1 - - 166.7 158.6 

1-A2 - - 120.8 121.7 

2-A2 7.64 (dd, J = 9.0, 3.0) 7.64 (m) 128.2 129.3 

3-A2 6.94 (m) 6.94 (m) 115.9 116.7 

4-A2 - - 158.8 159.5 

5-A2 6.94 (m) 6.94 (m) 115.9 116.7 

6-A2 7.64 (dd, J = 9.0, 3.0) 7.64 (m) 128.2 129.3 

2 - - 154.1 153.5 

2 - - 114.5 113.7 

C2 - - 195.9 196.7 

1-B2 - - 102.6 115.4 

2-B2 - - 165.7 166.2 
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Table 32 (continued) 

 

Position GH (mult, J, Hz) R GC R 

3-B2 6.39 (d, J = 3.0) 6.39 (d, J = 2.2) 102.6 103.3 

4-B2 - - 158.3 166.3 

5-B2 6.25 (dd, J = 9.0, 3.0)  6.24 (dd, J = 8.9, 2.2)  108.4 109.1 

6-B2 7.45 (d, J = 9.0) 7.46 (d, J = 8.9) 135.8 136.8 

2-B1(OH) 14.30 (s) 13.30 (s) - - 
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3.2.16 Compound RA5 

 

 

 

 Compound RA5 was isolated as a viscous oil, >Į@D
23

 -7.5 (c 0.35, CDCl3). The 

UV spectrum displayed maximum absorption bands at 275 and 312 nm suggesting a 

flavone skeleton. The IR spectrum showed absorption bands of hydroxyl group (3321 

cm
-1

) and C=O stretching (1682 cm
-1

). 

 The 
1
H NMR and 

13
C NMR spectral data (Table 33, Figure 162 and 163) of 

RA5 were comparable with those of RD2. The difference was shown as the 

disappearance of the signals of two methoxyl groups in RD2 and the appearance of 

meta-coupled aromatic signals at G 6.12 (2H, d, J = 1.8, H-6, 8) in RA5. The 

oxymethine protons were displayed at G 4.45 (d, J = 12.0, H-3) and 4.99 (d, J = 12.0, 

H-2) whose large vicinal coupling constant suggested a trans relative configuration. 

Additionnal 
1
H NMR signal of hydroxyl proton was displayed at G 4.05 (s) in RA5, 

whose position was assigned at C-3 from HMBC correlations with the carbons at į 

72.7 (C-3), 83.0 (C-2) and 190.9 (C-4). The HMBC spectrum showed correlations of 

the proton at G 4.45 (H-3) with the carbons at G 83.0 (C-2) and 190.9 (C-4) and the 

proton at G 4.99 (H-2) showed correlations with the carbons at G 72.7 (C-3), 128.9 (C-

2, 6), 165.0 (C-8a) and 190.9 (C-4) confirming the location of oxymethine protons at 

C-3 and C-2, respectively. Therefore, compound RA5 was identified as (2R,3R)-2,3-

trans-4´,5,7-trimethoxydihydroflavonol (Rensburg et al., 1997). 
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Selected HMBC correlations for compound RA5 
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Table 33 
1
H, 

13
C NMR, DEPT and HMBC spectral data of RA5 (CDCl3)  

 

Position GH (mult, J, Hz) GC DEPT HMBC 

2 4.99 (d, J = 12.0) 83.0 CH 3, 4, 8a, 2, 6 

3 4.45 (d, J = 12.0) 72.7 CH 2, 4a 

4 - 190.9 C=O - 

4a - 102.9 C - 

5 - 162.2 C - 

6 6.12 (d, J = 1.8) 93.3 CH 5, 8, 4a 

7 - 167.0 C - 

8 6.12 (d, J = 1.8) 93.3 CH 6, 4a, 8a 

8a - 165.0 C - 

1 - 128.6 C - 

2, 6 7.49 (d, J = 8.7) 128.9 CH 2, 3, 5 

3, 5 6.99 (d, J = 8.7) 114.2 CH 2, 6 

4 - 160.3 C - 

5-OMe 3.93 (s) 56.2 CH3 5 

7-OMe 3.82 (s) 62.4 CH3 7 

4-OMe 3.84 (s) 55.7 CH3 4 

3-OH 4.05 (s) - - - 
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Table 34 Comparison of 
1
H NMR spectral data of RA5 (CDCl3) and (2R,3R)-2,3-

trans-4´,5,7-trimethoxydihydroflavonol (R, CDCl3) 

 

Position GH (mult, J, Hz) R 

2 4.99 (d, J = 12.0) 5.67 (d, J = 12.0) 

3 4.45 (d, J = 12.0) 5.28 (d, J = 12.0) 

4 - - 

4a - - 

5 - - 

6 6.12 (d, J = 1.8) 6.11 (d, J = 2.0) 

7 - - 

8 6.12 (d, J = 1.8) 6.09 (d, J = 2.0) 

8a - - 

1 - - 

2, 6 7.49 (d, J = 8.7) 7.38 (d, J = 8.8) 

3, 5 6.99 (d, J = 8.7) 6.93 (d, J = 8.8) 

4 - - 

5-OMe 3.93 (s) 3.93 (s) 

7-OMe 3.82 (s) 3.82 (s) 

4-OMe 3.84 (s) 3.84 (s) 

3-OH 4.05 (s) 2.01 (s) 
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CHAPTER 4 

CONCLUSION 

 

 

Three known compounds of lupeol (TA1), lophirone C (TA2) and 

gerontoisoflavone (TA3) were isolated from the stem of Ellipanthus tomentosus. 

Their structures were elucidated by spectroscopic methods. Compound TA2 was a 

major component. 

  Twelve known compounds were isolated from the methylene chloride extract 

of the roots of Ellipanthus tomentosus: flavokawain A (RD1), 4,5,6,7,8-

pentamethoxyflavone (RD2), 3,4,5,6,7,8-hexamethoxyflavone (RD3), 5-demethyl 

nobiletin (RD4), 5,7,8,3,4-pentamethoxyflavone (RD5), (E)-ferulic acid tetracosyl 

ester (RD6), 5,3,4-trimethoxy-6,7-methylenedioxyisoflavone (RD7), 5,4-

dimethoxy-6,7-methylenedioxyisoflavone (RD8), a mixture of -sitosterol (RD9) and 

stigmasterol (RD10), 4-hydroxybenzaldehyde (RD11) and vanillin (RD12). The 

crude acetone extract was subjected to chromatography and/or crystallization to give 

five known compounds of lophirone A (RA1), calodenone (RA2), 6-

hydroxylophirone B (RA3), calodenin B (RA4) and (2R,3R)-2,3-trans-4´,5,7-

trimethoxydihydroflavonol (RA5). Their structures were elucidated by spectroscopic 

methods. Compounds RD1, RD5, RA1 and RA2 were major components. 
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Figure 2   IR (neat) spectrum of compound TA1 

 

 
 

Figure 3 1H NMR (300 MHz) (CDCl3) of compound TA1 
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Figure 4  13C NMR (75 MHz) (CDCl3) of compound TA1 

 

 

 

Figure 5 DEPT 135  (CDCl3) of compound TA1 
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Figure 6 DEPT 90  (CDCl3) of compound TA1 

 

 

Figure 7 2D HMQC (CDCl3) of compound TA1 
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Figure 8 2D HMBC (CDCl3) of compound TA1 

 

 

Figure 9 2D COSY (CDCl3) of compound TA1 
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Figure 10 2D NOESY (CDCl3) of compound TA1 
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Figure 11   UV (MeOH) spectrum of compound TA2 
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Figure 12   IR (neat) spectrum of compound TA2 

 

 

 
 

Figure 13 1H NMR (300 MHz) (Acetone-d6) of compound TA2 
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Figure 14  13C NMR (75 MHz) (Acetone-d6) of compound TA2 

 

 

 

Figure 15 DEPT 135  (Acetone-d6) of compound TA2 
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Figure 16 DEPT 90  (Acetone-d6) of compound TA2 

 

 

Figure 17 2D HMQC (Acetone-d6) of compound TA2 
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Figure 18 2D HMBC (Acetone-d6) of compound TA2 

 

 

Figure 19 2D COSY (Acetone-d6) of compound TA2 
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Figure 20 2D NOESY (Acetone-d6) of compound TA2 
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Figure 21   UV (MeOH) spectrum of compound TA3 

 



105 
 

 

 

Figure 22   IR (neat) spectrum of compound TA3 

 

 
 

Figure 23 1H NMR (500 MHz) (Acetone-d6) of compound TA3 
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Figure 24  13C NMR (125 MHz) (Acetone-d6) of compound TA3 

 

 

 

 

Figure 25 DEPT 135  (Acetone-d6) of compound TA3 
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Figure 26 DEPT 90  (Acetone-d6) of compound TA3 

 

 

Figure 27 2D HMQC (Acetone-d6) of compound TA3 
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Figure 28 2D HMBC (Acetone-d6) of compound TA3 

 

 

Figure 29 2D COSY (Acetone-d6) of compound TA3 
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Figure 30 2D NOESY (Acetone-d6) of compound TA3 
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Figure 31   UV (MeOH) spectrum of compound RD1 
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Figure 32   IR (neat) spectrum of compound RD1 

 

 

 

Figure 33 1H NMR (300 MHz) (CDCl3) of compound RD1 
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Figure 34 13C NMR (75 MHz) (CDCl3) of compound RD1 

 

 

Figure 35 DEPT 135  (CDCl3) of compound RD1 
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Figure 36 DEPT 90  (CDCl3) of compound RD1 

 

 

Figure 37 2D HMQC (CDCl3) of compound RD1 
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Figure 38 2D HMBC (CDCl3) of compound RD1 

 

 

Figure 39 2D COSY (CDCl3) of compound RD1 
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Figure 40   UV (MeOH) spectrum of compound RD2 

 

 

 

Figure 41   IR (neat) spectrum of compound RD2 
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Figure 42 1H NMR (300 MHz) (CDCl3) of compound RD2 

 

 

 

Figure 43  13C NMR (75 MHz) (CDCl3) of compound RD2 
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Figure 44 DEPT 135  (CDCl3) of compound RD2 

 

 

Figure 45 2D HMQC (CDCl3) of compound RD2 
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Figure 46 2D HMBC (CDCl3) of compound RD2 

 

 

Figure 47 2D COSY (CDCl3) of compound RD2 
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Figure 48 2D NOESY (CDCl3) of compound RD2 
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Figure 49   UV (MeOH) spectrum of compound RD3 

 



119 
 

 

 

Figure 50   IR (neat) spectrum of compound RD3 

 
 

 

Figure 51 1H NMR (300 MHz) (CDCl3) of compound RD3 
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Figure 52  13C NMR (75 MHz) (CDCl3) of compound RD3 

 

 

 

Figure 53 DEPT 135  (CDCl3) of compound RD3 
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Figure 54 DEPT 90  (CDCl3) of compound RD3 

 

 

Figure 55 2D HMQC (CDCl3) of compound RD3 
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Figure 56 2D HMBC (CDCl3) of compound RD3 

 

 

Figure 57 2D COSY (CDCl3) of compound RD3 
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Figure 58 2D NOESY (CDCl3) of compound RD3 
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Figure 59   UV (MeOH) spectrum of compound RD4 
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Figure 60   IR (neat) spectrum of compound RD4 
 

 
 

Figure 61 1H NMR (300 MHz) (CDCl3) of compound RD4 
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Figure 62  13C NMR (75 MHz) (CDCl3) of compound RD4 

 

 

Figure 63 DEPT 135  (CDCl3) of compound RD4 
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Figure 64 DEPT 90  (CDCl3) of compound RD4 

 

 

Figure 65 2D HMQC (CDCl3) of compound RD4 
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Figure 66 2D HMBC (CDCl3) of compound RD4 

 

 

Figure 67 2D COSY (CDCl3) of compound RD4 
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Figure 68 2D NOESY (CDCl3) of compound RD4 
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Figure 69   UV (MeOH) spectrum of compound RD5 
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Figure 70   IR (neat) spectrum of compound RD5 

 

 
 

Figure 71 1H NMR (300 MHz) (CDCl3) of compound RD5 
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Figure 72  13C NMR (75 MHz) (CDCl3) of compound RD5 

 

 

 

Figure 73 2D HMQC (CDCl3) of compound RD5 
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Figure 74 2D HMBC (CDCl3) of compound RD5 

 

 

Figure 75 2D NOESY (CDCl3) of compound RD5 
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Figure 76   UV (MeOH) spectrum of compound RD6 

 

 

 

Figure 77   IR (neat) spectrum of compound RD6 
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Figure 78 1H NMR (300 MHz) (CDCl3) of compound RD6 

 

 

 

Figure 79  13C NMR (75 MHz) (CDCl3) of compound RD6 
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Figure 80 DEPT 135  (CDCl3) of compound RD6 

 

 

Figure 81 DEPT 90  (CDCl3) of compound RD6 
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Figure 82 2D HMQC (CDCl3) of compound RD6 

 

 

Figure 83 2D HMBC (CDCl3) of compound RD6 
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Figure 84 2D COSY (CDCl3) of compound RD6 

 

 

Figure 85 2D NOESY (CDCl3) of compound RD6 
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Figure 86 EI-MS  of compound RD6 
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Figure 87   UV (MeOH) spectrum of compound RD7 
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Figure 88   IR (neat) spectrum of compound RD7 

 

 
 

Figure 89 1H NMR (300 MHz) (CDCl3) of compound RD7 
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Figure 90  13C NMR (75 MHz) (CDCl3) of compound RD7 

 

 

 

Figure 91 DEPT 135  (CDCl3) of compound RD7 
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Figure 92 DEPT 90  (CDCl3) of compound RD7 

 

 

Figure 93 2D HMQC (CDCl3) of compound RD7 
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Figure 94 2D HMBC (CDCl3) of compound RD7 

 

 

Figure 95 2D COSY (CDCl3) of compound RD7 
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Figure 96   UV (MeOH) spectrum of compound RD8 

 

 

 

Figure 97   IR (neat) spectrum of compound RD8 
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Figure 98 1H NMR (300 MHz) (CDCl3) of compound RD8 

 

 

 

Figure 99  13C NMR (75 MHz) (CDCl3) of compound RD8 
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Figure 100 DEPT 135  (CDCl3) of compound RD8 

 

 

Figure 101 DEPT 90  (CDCl3) of compound RD8 



145 
 

 

 

Figure 103 2D HMQC (CDCl3) of compound RD8 

 

 

 

Figure 104 2D NOESY (CDCl3) of compound RD8 
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Figure 105 1H NMR (300 MHz) (CDCl3) of compound RD9 and RD10 

0

0.1

0.2

0.3

0.4

0.5

0.6

208 228 248 268 288 308 328 348 368 388

A
b

so
rb

an
ce

 (A
U

)

Wavelenght (nm)

 

Figure 106   UV (MeOH) spectrum of compound RD11 
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Figure 107   IR (neat) spectrum of compound RD11 

 

 
 

Figure 108 1H NMR (300 MHz) (CDCl3) of compound RD11 
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Figure 109  13C NMR (75 MHz) (CDCl3) of compound RD11 

 

 

Figure 110   UV (MeOH) spectrum of compound RD12 
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Figure 111   IR (neat) spectrum of compound RD12 

 

Figure 112 1H NMR (300 MHz) (CDCl3) of compound RD12 
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Figure 113  13C NMR (75 MHz) (CDCl3) of compound RD12 

 

 

 

 

Figure 114 DEPT 135  (CDCl3) of compound RD12 
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Figure 115 DEPT 90  (CDCl3) of compound RD12 

 

 

Figure 116 2D HMQC (CDCl3) of compound RD12 
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Figure 117 2D HMBC (CDCl3) of compound RD12 

 

 

Figure 118 2D COSY (CDCl3) of compound RD12 
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Figure 119 2D NOESY (CDCl3) of compound RD12 
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Figure 120   UV (MeOH) spectrum of compound RA1 
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Figure 121   IR (neat) spectrum of compound RA1 

 

 
 

Figure 122 1H NMR (300 MHz) (Acetone-d6) of compound RA1 
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Figure 123  13C NMR (75 MHz) (Acetone-d6) of compound RA1 

 

 

 

Figure 124 DEPT 135  (Acetone-d6) of compound RA1 
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Figure 125 DEPT 90  (Acetone-d6) of compound RA1 

 

 

Figure 126 2D HMQC (Acetone-d6) of compound RA1 
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Figure 127 2D HMBC (Acetone-d6) of compound RA1 

 

 

Figure 128 2D COSY (Acetone-d6) of compound RA1 
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Figure 129 2D NOESY (Acetone-d6) of compound RA1 
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Figure 130   UV (MeOH) spectrum of compound RA2 
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Figure 131   IR (neat) spectrum of compound RA2 

 

 
 

Figure 132 1H NMR (300 MHz) (Acetone-d6) of compound RA2 

 



160 
 

 

 

Figure 133  13C NMR (75 MHz) (Acetone-d6) of compound RA2 

 

 

 

Figure 134 DEPT 135  (Acetone-d6) of compound RA2 
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Figure 135 DEPT 90  (Acetone-d6) of compound RA2 

 

 

Figure 136 2D HMQC (Acetone-d6) of compound RA2 
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Figure 137 2D HMBC (Acetone-d6) of compound RA2 

 

 

Figure 138 2D COSY (Acetone-d6) of compound RA2 
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Figure 139 2D NOESY (Acetone-d6) of compound RA2 
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Figure 140   UV (MeOH) spectrum of compound RA3 
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Figure 141   IR (neat) spectrum of compound RA3 

 

 
 

Figure 142 1H NMR (300 MHz) (Acetone-d6) of compound RA3 
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Figure 143  13C NMR (75 MHz) (Acetone-d6) of compound RA3 

 

 

 

Figure 144 DEPT 135  (Acetone-d6) of compound RA3 
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Figure 145 DEPT 90  (Acetone-d6) of compound RA3 

 

 

 

Figure 146 2D HMQC (Acetone-d6) of compound RA3 
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Figure 147 2D HMBC (Acetone-d6) of compound RA3 

 

 

Figure 148 2D COSY (Acetone-d6) of compound RA3 
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Figure 149 2D NOESY (Acetone-d6) of compound RA3 
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Figure 150   UV (MeOH) spectrum of compound RA4 
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Figure 151   IR (neat) spectrum of compound RA4 

 

 

 
 

Figure 152 1H NMR (300 MHz) (Acetone-d6) of compound RA4 
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Figure 153  13C NMR (75 MHz) (Acetone-d6) of compound RA4 

 

 

 

 

Figure 154 DEPT 135  (Acetone-d6) of compound RA4 
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Figure 155 DEPT 90  (Acetone-d6) of compound RA4 

 

 

 

Figure 156 2D HMQC (Acetone-d6) of compound RA4 
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Figure 157 2D HMBC (Acetone-d6) of compound RA4 

 

 

 

Figure 158 2D COSY (Acetone-d6) of compound RA4 
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Figure 159 2D NOESY (Acetone-d6) of compound RA4 
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Figure 160   UV (MeOH) spectrum of compound RA5 
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Figure 161   IR (neat) spectrum of compound RA5 

 

 

 
 

Figure 162 1H NMR (300 MHz) (CDCl3) of compound RA5 
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Figure 163  13C NMR (75 MHz) (CDCl3) of compound RA5 

 

 

 

Figure 164 2D HMQC (CDCl3) of compound RA5 
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Figure 165 2D HMBC (CDCl3) of compound RA5 

 

 

 

Figure 166 2D NOESY (CDCl3) of compound RA5 
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