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ABSTRACT

Let X be a real Banach space and let C be a nonempty closed subset

of X. For i = 1, 2, let Ti : C → C be a quasi-nonexpansive mapping such that

F (T1) ∩ F (T2) 6= ∅ in C. Let {αn} and {βn} be sequences in [0, 1) and {un} and

{vn} be sequences in C. For x1 ∈ C and n ≥ 1, define the sequences {xn} and

{yn} by

yn = βnT2xn + (1− βn)xn + vn

xn+1 = αnT1yn + (1− αn)yn + un.

We give sufficient and necessary conditions so that the sequence

{xn} defined above converges to some common fixed point of T1 and T2.
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CHAPTER 1

Introduction

Let X be a real Banach space, C a closed subset of X and T a

mapping of C into X such that T has a nonempty set of fixed point F (T ) ⊂ C

and

‖Tx− p‖ ≤ ‖x− p‖,

for all x ∈ C, p ∈ F (T ). We shall refer to T satisfying the above conditions as

quasi-nonexpansive. It is introduced by Tricomi for real functions and further

studied by Diaz and Metcalf and Dotson for mapping in Banach spaces.

In 1972, Petryshyn and Williamson [7] presented two new theorems

which provided necessary and sufficient conditions for the convergence of the suc-

cessive approximation method and of the convex combination iteration method

for quasi-nonexpansive mapping defined on suitable subsets of Banach spaces and

with nonempty sets of fixed points as follows.

Theorem 1.1. Let X be a real Banach space, C a closed subset of X, and T

a quasi-nonexpansive mapping of C into C with nonempty fixed point set F (T ).

Suppose there exists a point x0 in C such that the sequence {xn} of iterates lies in

C, where xn is given by

(S1) xn = Txn−1, n = 1, 2, ...

1
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Then {xn} converges to a fixed point of T in C if and only if lim
n→∞

d(xn, F (T )) = 0.

Theorem 1.2. Let X be a Banach space, C a closed convex subset of X, and T

a quasi-nonexpansive map of C into C. Suppose there exists a point x0 in C such

that, for some λ in (0, 1), the sequence {xn} = {T n
λ (x0)} given by (S2) lies in C,

where

(S2) xn = Tλ(xn−1), x0 ∈ C, Tλ = λT + (1− λ)I, λ ∈ (0, 1).

Then {xn} converges to a fixed point of T in C if and only if

lim
n→∞

d(xn, F (T )) = 0.

They also indicated briefly how these theorems were used to deduce a number

of known, as well as some new, convergence results for various special classes of

mappings of nonexpansive, P-compact, and 1-set-contractive type which recently

have been extensively studied by a number of authors.

In this thesis, inspired by the previous theorem we construct a new

iterative procedure to approximate a common fixed point of two quasi-nonexpansive

mappings and prove some convergence theorems as follows.

Theorem 1.3. Let X be a real Banach space and let C be a nonempty closed

subset of X. For i = 1, 2, let Ti : C → C be a quasi-nonexpansive mapping such

that F (T1) ∩ F (T2) 6= ∅ in C. Let {αn} and {βn} be sequences in [0, 1) and {un}

and {vn} be sequences in C. Let x1 ∈ C be such that the iterative sequences {xn}
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and {yn} are in C, where define the sequences {xn} and {yn} by

yn = βnT2xn + (1− βn)xn + vn

xn+1 = αnT1yn + (1− αn)yn + un. (1.1)

Assume that

(i) un = u′n +u′′n for n ≥ 1,
∞∑

n=1

‖vn‖ < ∞,
∞∑

n=1

‖u′n‖ < ∞ and ‖u′′n‖ = o(1−αn);

(ii)
∞∑

n=1

(1− αn) < ∞.

Then the iterative sequence {xn} converges strongly to a common fixed point of T1

and T2 if and only if

lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = 0.

Theorem 1.4. Let X, C, Ti(i = 1, 2) and the iterative sequence {xn} be as in

Theorem 1.3. Assume further that the mapping Ti(i = 1, 2) is asymptotically

regular in xn and there exists an increasing function f : R+ → R+ with f(r) > 0

for all r > 0 such that for i = 1, 2, we have

‖xn − Tixn‖ ≥ f(d(xn, F (T1) ∩ F (T2))) for all n ≥ 1.

Then the sequence {xn} converges strongly to a common fixed point of T1 and T2.



CHAPTER 2

Preliminaries

In this chapter, we first collect, in section 2.1, some basic knowl-

edge from mathematical analysis (Definition 2.2-Definition 2.10) and elementary

functional analysis (Definition 2.11-Definition 2.20). Then we give, in section 2.2,

detail on classical Banach Contraction theorem and in section 2.3, fixed point

theorems for quasi-nonexpansive mapping.

2.1 Basic knowledge without proof

In this section, we give some well-known definitions and theorems

without proof. Definitions 2.2 − 2.9 and Theorems 2.1 − 2.13 are from [8], Defi-

nitions 2.10 is from [2] and Definitions 2.11− 2.20 and Theorems 2.14− 2.15 are

from [6].

Definition 2.1. Let S be a nonempty subset of R.

(a) If a real number M satisfies s ≤ M for all s ∈ S, then M is called an upper

bound of S and the set S is said to be bounded above.

(b) If a real number m satisfies m ≤ s for all s ∈ S, then m is called a lower

bound of S and the set S is said to be bounded below.

(c) The set S is said to be bounded if it is bounded above and bounded below.

Thus S is bounded if there exist real numbers m and M such that S ⊆

[m, M ].

Definition 2.2. (Supremum and infimum). Let S be a nonempty subset of

R.

4
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(a) If S is bounded above and S has a least upper bound, then we will call it

the supremum of S and denote it by sup S.

(b) If S is bounded below and S has a greatest lower bound, then we will call it

the infimum of S and denote it by inf S.

Definition 2.3. (Convergent sequence). A sequence {sn} of real numbers is

said to converge to the real number s provided that

for each ε > 0 there exists a number N such that

n > N implies |sn − s| < ε.

If {sn} converges to s, then we will write lim
n→∞

sn = s, lim sn = s, or sn → s.

The number s is call the limit of the sequence of {sn}. A sequence that dose not

converge to some real number is said to diverge.

Definition 2.4. (Bounded sequence). A sequence {sn} of real numbers is said

to be bounded if there exists a constant M such that |sn| ≤ M for all n.

Theorem 2.1. Convergent sequences are bounded.

Definition 2.5. (Monotone sequence). A sequence {sn} of real numbers

is call a nondecreasing sequence if sn ≤ sn+1 for all n and {sn} is called a

nonincreasing sequence if sn ≥ sn+1 for all n. Note that if {sn} is nondecreasing

then sn ≤ sm whenever n < m. A sequence that is nondecreasing or nonincreasing

will be called a monotone sequence or a monotonic sequence.

Theorem 2.2. (Monotone Convergence Theorem). All bounded monotone

sequences converge.

Theorem 2.3.

(1) If {sn} is an unbounded nondecreasing sequence, then lim sn = +∞.

(2) If {sn} is an unbounded nonincreasing sequence, then lim sn = −∞.
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Corollary 2.4. If {sn} is a monotone sequence, then the sequence either con-

verges, diverges to +∞, or diverges to −∞. Thus lim sn is always meaningful for

monotone sequences.

Definition 2.6. Let {sn} be a sequence in R. We define

lim sup
n→∞

sn = lim
N→∞

sup{sn : n > N}

and

lim inf
n→∞

sn = lim
N→∞

inf{sn : n > N}.

Theorem 2.5. Let {sn} be a sequence in R.

(1) If lim
n→∞

sn is defined [as a real number, +∞ or −∞], then

lim inf
n→∞

sn = lim
n→∞

sn = lim sup
n→∞

sn.

(2) If lim inf
n→∞

sn = lim sup
n→∞

sn, then lim
n→∞

sn is defined and

lim
n→∞

sn = lim inf
n→∞

sn = lim sup
n→∞

sn.

Definition 2.7. (Cauchy sequence). A sequence {sn} of real numbers is called

a Cauchy sequence if

for each ε > 0 there exists a number N such that

m, n > N implies |sn − sm| < ε.

Theorem 2.6. (Cauchy Completeness Theorem). A sequence in R is con-

vergent if and only if it is a Cauchy sequence.

Theorem 2.7. (Sandwich Theorem). Let {an}, {bn} and {cn} be sequences

and an ≤ bn ≤ cn for all n ∈ N. If lim
n→∞

an = L = lim
n→∞

cn, then lim
n→∞

bn = L.
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Definition 2.8. (Subsequence). Suppose that {sn} is a sequence. A subsequence

of this sequence is a sequence of the form {tk} where for each k there is a positive

integer nk such that

n1 < n2 < · · · < nk < nk+1 < · · · (2.1)

and

tk = snk
. (2.2)

Thus {tk} is just a selection of some [possibly all] of the sn’s, taken in order.

Theorem 2.8. If the sequence {sn} converges, then every subsequence converges

to the same limit.

Theorem 2.9. Every sequence has a monotonic subsequence.

Corollary 2.10. Let {sn} be any sequence. There exists a monotonic subsequence

whose limit is lim sup
n→∞

sn and there exists a monotonic subsequence whose limit is

lim inf
n→∞

sn.

Definition 2.9. (The Cauchy Criterion for Series). We say that a series
∞∑

n=1

an satisfies the Cauchy criterion if its sequence {sn} of partial sum is a

Cauchy sequence:

for each ε > 0 there exists a number N such that

m, n > N implies |sn − sm| < ε. (2.3)

Nothing is lost in this definition if we impose the restriction n > m. Moreover,

it is only a natural matter to work with m − 1 where m ≤ n instead of m where

m < n. Therefore (2.3) is equivalent to

for each ε > 0 there exists a number N such that

n ≥ m > N implies |sn − sm−1| < ε. (2.4)

Since sn − sm−1 =
n∑

k=m

ak, condition (2.4) can be written
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for each ε > 0 there exists a number N such that

n ≥ m > N implies

∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ < ε. (2.5)

Theorem 2.11. A series converges if and only if it satisfies the Cauchy criterion.

Theorem 2.12. Let {an} be a sequence such that
∞∑

n=0

an < ∞. Then lim
n→∞

an = 0.

Theorem 2.13. (Mean Value Theorem). Let f be a continuous function on

[a, b] that is differentiable on (a, b). Then there exists [at least one] x in (a, b) such

that

f ′(x) =
f(b)− f(a)

b− a
.

Definition 2.10. (Little-o notation). Given two functions f and g, the state-

ment f = o(g) is equivalent to the statement

lim
x→∞

f(x)

g(x)
= 0.

This statement is voiced f is little− o of g or simply f is little− o g.

The following are some basic knowledge about metric spaces and

normed spaces.

Definition 2.11. (Metric space, metric). Let X be a nonempty set. A function

d defined on X × X is called a metric on X (or distance function on X) if it

satisfies the following properties :

(M1) d is a real-valued, finite and nonnegative.

(M2) d(x, y) = 0 if and only if x = y.

(M3) d(x, y) = d(y, x). (Symmetry)

(M4) d(x, z) ≤ d(x, y) + d(y, z). (Triangle inequality)

In this case, a pair (X, d) is called a metric space.

Definition 2.12. (Ball and Sphere). Given a point x0 ∈ X and real number

r > 0, we define three types of sets:
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(1) B(x0; r) = {x ∈ X|d(x, x0) < r}. (Open ball)

(2) B̃(x0; r) = {x ∈ X|d(x, x0) ≤ r}. (Close ball)

(3) S(x0; r) = {x ∈ X|d(x, x0) = r}. (Sphere)

In all three cases, x0 is called the center and r is called the radius.

Definition 2.13. (Open set, Closed set). A subset M of a metric space X is

said to be open if it contains a ball about each of its points. A subset K of X is

said to be closed if its complement (in X) is open, that is, Kc = X −K is open.

Definition 2.14. (Convergence of a sequence, limit). A sequence {xn} is a

metric space X = (X, d) is said to converge or to be convergent if there is an

x ∈ X such that

lim
n→∞

d(xn, x) = 0.

x is called the limit of {xn} and we write

lim
n→∞

xn = x

or, simply,

xn → x.

We say that {xn} converges to x or has the limit x. If {xn} is not convergent, it

is said to be divergent.

Definition 2.15. (Cauchy sequence, Completeness). A sequence {xn} in a

metric space X = (X, d) is said to be Cauchy (or fundamental) if for every ε > 0

there is an N such that

d(xm, xn) < ε for every m, n > N.

The space X is said to be complete if every Cauchy sequence in X converges (that

is, has a limit which is an element of X).

Theorem 2.14. (Closed set). Let M be a nonempty subset of a metric space

X = (X, d). M is closed if and only if the situation xn ∈ M, xn → x implies that

x ∈ M.
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Definition 2.16. (Distance). The distance d(x, A) from a point x to a nonempty

subset A of a metric space (X, d) is defined to be

d(x, A) = inf
a∈A

d(x, a).

This infimum certainly exists in R and is nonnegative. If x is already in A, then,

of course, d(x, A) = 0.

Definition 2.17. (Normed space, Banach space). Let X be a vector space. A

norm ‖·‖ defined on X is called a norm on X if it satisfies the following properties

:

(N1) ‖x‖ ≥ 0

(N2) ‖x‖ = 0 ⇔ x = 0

(N3) ‖αx‖ = |α|‖x‖ (Absolute homogeneity)

(N4) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality);

here x and y are arbitrary vectors in X and α is any scalar. In this case, a pair

(X, ‖ · ‖) is called a normed space. Note that a complete normed space is called

a Banach space.

Theorem 2.15. (Subspace of a Banach space). A subspace Y of a Banach

space X is complete if and only if the set Y is closed in X.

Definition 2.18. (Linear operator). A linear operator T is an operator such

that

(i) the domain D(T ) of T is a vector space and the range R(T ) lies in the vector

space over the same field,

(ii) for all x, y ∈ D(T ) and scalars α,

T (x + y) = Tx + Ty

T (αx) = αTx.

Definition 2.19. (Strong convergence). A sequence {xn} in a normed space

X is said to be strongly convergent (or convergent in the norm) if there is an
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x ∈ X such that

lim
n→∞

‖xn − x‖ = 0.

That is written

lim
n→∞

xn = x

or simply

xn → x.

x is called the strong limit of {xn}, and we say that {xn} converges strongly to

x.

Definition 2.20. (Fixed point). Let X be a set and T : X → X be a self

mapping. A fixed point of T is an x ∈ X such that Tx = x. The set of all fixed

points of T is denoted by F (T ), that is,

F (T ) = {x ∈ X|x = Tx}.

Example 2.1. Let X = R. Define T : R → R by Tx = x2− 3x+4. We show that

T has a fixed point. By definition, x is a fixed point of T if and only if Tx = x.

So

x2 − 3x + 4 = x

x2 − 4x + 4 = 0

(x− 2)2 = 0

x = 2

Therefore T has exactly one fixed point and F (T ) = {2}.

Example 2.2. Let X = R. Define T : R → R by Tx = x2 − 2x − 4. We show

that T have two fixed points. By definition, x is a fixed point of T if and only if
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Tx = x. So

x2 − 2x− 4 = x

x2 − 3x− 4 = 0

(x− 4)(x + 1) = 0

x = −1, 4

Therefore −1 and 4 are fixed point of T , i.e., F (T ) = {−1, 4}.

Example 2.3. Let X = R. Define T : R → R by Tx = x − 1. We show that T

does not have any fixed point. Suppose x is a fixed point of T . Then Tx = x, i.e.,

x − 1 = x which implies that −1 = 0. This a contradiction. Therefore T has no

fixed point, i.e., F (T ) = ∅.

2.2 Basic knowledge with proof

In this section, we give some basic knowledge which is known, but

the proof cannot be easily found. Some are very old results while the other have

proof but we want to give more detail here so that those who are interested in this

area may study and understand more easily.

Lemma 2.16. Let {an} be a sequence of real numbers. Then

lim
m→∞

sup
n≥m

an+m = lim
m→∞

sup
n≥m

an.

Proof. Let L1 = lim
m→∞

sup
n≥m

an+m and L2 = lim
m→∞

sup
n≥m

an. We will prove that L1 =

L2. Since {an+m : n ≥ m} ⊆ {an : n ≥ m}, we see that

sup{an+m : n ≥ m} ≤ sup{an : n ≥ m}.

That is lim
m→∞

sup{an+m : n ≥ m} ≤ lim
m→∞

sup{an : n ≥ m}, i.e., L1 ≤ L2. Next, we

will show that L1 ≥ L2. We prove this by a contradiction. Suppose that L1 < L2.

Since lim
m→∞

sup
n≥m

an+m = L1, there exists N in N such that m > N implies

| sup{an+m : n ≥ m} − L1| < L2 − L1.
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Thus

an+m < L2, ∀n ≥ m > N,

which implies that

ar < L2, ∀r ≥ m > N,

sup{ar : r ≥ m} < L2, ∀m > N.

Taking m → ∞, we have lim sup
r→∞

ar < L2, i.e., L2 < L2, a contradiction. From

this, we get L1 ≥ L2, as desired.

Lemma 2.17. [1] Let {an}, {bn} and {δn} be sequences of nonnegative real num-

bers satisfying the inequality

an+1 ≤ (1 + δn)an + bn for all n.

If
∞∑

n=1

δn < ∞ and
∞∑

n=1

bn < ∞, then

(1) lim
n→∞

an < ∞ exists.

(2) If {an} has a subsequence converging to zero, then lim
n→∞

an = 0.

Proof. Let {an}, {bn} and {δn} be sequences of nonnegative real numbers satisfying

the inequality

an+1 ≤ (1 + δn)an + bn for all n,

where {bn} and {δn} converges. We will show that lim sup
n→∞

an = lim inf
n→∞

an which

implies lim
n→∞

an exists. Since we know that lim sup
n→∞

an ≥ lim inf
n→∞

an, we need only

prove that lim sup
n→∞

an ≤ lim inf
n→∞

an. Since an+1 ≤ (1 + δ)an + bn, we have

an+m ≤ (1 + δn+m−1)an+m−1 + bn+m−1

≤ (eδn+m−1)an+m−1 + bn+m−1

≤ eδn+m−1{(1 + δn+m−2)an+m−2 + bn+m−2}+ bn+m−1
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an+m ≤ eδn+m−1{eδn+m−2an+m−2 + bn+m−2}+ bn+m−1

= (eδn+m−1+δn+m−2)an+m−2 + eδn+m−1bn+m−2 + bn+m−1

...

≤ ane

0BB@
n+m−1∑

k=n

δk

1CCA
+

(
n+m−1∑

k=n

bk

)
e

0BB@
n+m−1∑

k=n

δk

1CCA
,∀n, m ∈ N. (2.6)

Let ε > 0. Since
∞∑

k=1

δk < ∞ and
∞∑

k=1

bk < ∞ converge, there exists N in N such

that
∞∑

k=1

δk < ε and
∞∑

k=1

bk < ε for all n > N. (2.7)

From (2.6) and (2.7), for all n,m ≥ N , we have

an+m ≤ ane
ε + εeε.

Thus

sup
n≥m

an+m ≤ eε inf
n≥m

an + εeε, ∀m ≥ N.

We see that

lim
m→∞

sup
n≥m

an+m ≤ eε lim
m→∞

inf
n≥m

an + εeε

= lim inf
n→∞

an + εeε.

By Lemma 2.16, we see that

lim sup
n→∞

an = lim
m→∞

sup
n≥m

an+m ≤ eε lim inf
n→∞

an + εeε.

Taking ε → 0, we have

lim sup
n→∞

an ≤ lim inf
n→∞

an.

Thus lim sup
n→∞

an = lim inf
n→∞

an. Hence lim
n→∞

an exists. If {an} has a subsequence

{ank
} converging to zero, by Theorem 2.8 we get lim

n→∞
an = 0.

Lemma 2.18. Let {xn} be a sequence in a normed space X. Assume that for any

ε > 0, there exists an N such that
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‖xn+N − xN‖ < ε for all n.

Then {xn} is a Cauchy sequence in X.

Proof. Let ε > 0. By definition, there exists N such that

‖xn+N − xN‖ <
ε

2
for all n. (2.8)

For m, n > N , we have

‖xn − xN‖ <
ε

2
and ‖xm − xN‖ <

ε

2
. (2.9)

Thus

‖xn − xm‖ ≤ ‖xn − xN‖+ ‖xm − xN‖

<
ε

2
+

ε

2
= ε.

Hence {xn} is a Cauchy sequence in X, as desired.

2.3 Banach Contraction Theorem

Here we study a classical theorem in fixed point theory. It is Banach

Contraction Theorem. We first give the definition of a contraction. Finally, we

give the proof which is from [6] with more detail.

Definition 2.21. (Contraction). Let X = (X, d) be a metric space. A mapping

T : X → X is called a contraction on X if there is a positive real number α < 1

such that for all x, y ∈ X

d(Tx, Ty) ≤ αd(x, y).

Geometrically this means that any point x and y have images that are closer

together than those points x and y; more precisely, the ratio d(Tx, Ty)/d(x, y)

does not exceed a constant α which is strictly less than 1.

Example 2.4. Let X = R. Define T : R → R by Tx =
x

4
. We claim that T is

contraction mapping. For x and y are in R, we see that



16

|Tx− Ty| =
∣∣∣x
4
− y

4

∣∣∣ =
1

4
|x− y|.

Hence T is a contraction mapping.

Example 2.5. Let X = R. Define f : [0, 1] → [0, 1] by f(x) = cos x. To show

that f is a contraction mapping on [0, 1], we use the mean value theorem. Since

the function cosine is continuous on [0, 1] and differentiable on (0, 1). By the mean

value theorem for x and y are in [0, 1], there exists t ∈ (x, y) such that

f ′(t) =
f(x)− f(y)

x− y

f(x)− f(y) = f ′(t)(x− y)

|f(x)− f(y)| = |f ′(t)||x− y|.

Since f(x) = cos x, f ′(t) = − sin t and

| cos x− cos y| = | sin t||x− y|.

Since the function sine is increasing on [0, 1], | sin t| = sin t ≤ sin 1 ≈ .8415 < 1.

Thus

| cos x− cos y| ≤ (sin 1)|x− y|.

Therefore f is a contraction mapping on [0, 1].

The following is the classical iterative process that helps us reach

the fixed point of a contraction.

Definition 2.22. (Picard iteration). Let X = (X, d) be a metric space and

T : X → X. Picard iteration of T is a recursive sequence x0, x1, x2, ... from a

relation of the form

xn+1 = Txn n = 0, 1, 2, ...

with arbitrary x0 ∈ X.
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Note that

x1 = Tx0

x2 = Tx1 = T (Tx0) = T 2x0

...

xn = T nx0.

This shows that xn = Txn−1 = T nxo.

We now ready to prove the very first fixed point theorem in the

history of functional analysis.

Theorem 2.19. (Banach Fixed Point Theorem or Contraction Theorem).

Consider a metric space X = (X, d), where X 6= ∅. Suppose that X is complete

and let T : X → X be a contraction on X. Then T has precisely one fixed point.

Proof. We will show that a sequence {xn} of Picard iteration of T is Cauchy, so

that it converges in the complete space X, and then we prove that its limit x is

a fixed point of T and T has no further fixed points. Let x0 ∈ X and define the

{xn} to be a sequence of Picard iteration that is xn+1 = Txn for n = 0, 1, 2, ... Let

ε > 0 and m, n ∈ N ∪ {0}. By definition of Picard iteration and the assumption

on contraction of T , we obtain that

d(xm+1, xm) = d(Txm, Txm−1)

≤ αd(xm, xm−1)

= αd(Txm−1, Txm−2)

≤ α2d(xm−1)

...

≤ αmd(x1, x0). (2.10)

Assume that n > m. By the triangle inequality, the formula for the sum of a
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geometric progression and (2.10), we have

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2) + ... + d(xn−1, xn)

≤ αmd(x1, x0) + αm+1d(x1, x0) + ... + αn−1d(x1, x0)

= (αm + αm+1 + ... + αn−1)d(x1, x0)

≤ αm(1 + α + α2 + ...)d(x1, x0)

=
αm

1− α
d(x1, x0). (2.11)

Since 0 < α < 1, we have lim
n→∞

αm = 0. Since
ε(1− α)

d(x0, x1) + 1
> 0, by definition of

limit, there exists N1 such that

αm <
ε(1− α)

d(x0, x1) + 1
for all m > N1.

By the inequality (2.11), we get

d(xn, xm) ≤ αm 1

1− α
d(x0, x1)

<
ε(1− α)

d(x0, x1) + 1
· 1

1− α
d(x0, x1)

=
εd(x0, x1)

d(x0, x1) + 1
< ε for all m, n > N1.

Thus {xn} is a Cauchy sequence. Since X is complete, {xn} converges, say xn →

x ∈ X. That is, lim
n→∞

d(xn, x) = 0.

We next show that this limit x is a fixed point of the mapping T .

By the triangle inequality and definition of contraction mapping we have

d(x, Tx) ≤ d(x, xn) + d(xn, Tx)

= d(x, xn) + d(Txn−1, Tx)

≤ d(x, xn) + αd(xn−1, x).

Taking n →∞, we have

d(x, Tx) ≤ 0.
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By property (M1) of the metric d, we obtain that d(x, Tx) ≥ 0 and so d(x, Tx) = 0.

By property (M2) of metric d, we get Tx = x. This show that x is a fixed point

of T

Finally we show that x is the only fixed point of T. Let x and y be

fixed points of T. Thus Tx = x and Ty = y. Then

d(x, y) = d(Tx, Ty) ≤ αd(x, y)

and so

d(x, y)− αd(x, y) ≤ 0

(1− α)d(x, y) ≤ 0.

Since 1 − α > 0, we have d(x, y) = 0. By property (M2) of the metric d, we get

x = y and the theorem is proved.

2.4 Fixed Point Theorems for Quasi-nonexpansive Map-

ping

Here three classical theorems about fixed point of a quasi-nonexpansive

mapping are studied. We first give the definition of a quasi-nonexpansive mapping

which is from [7].

Definition 2.23. (Quasi-nonexpansive mapping). Let X be a real Banach

space, C a closed subset of X and T a mapping of C into X such that T has

a nonempty set of fixed points F (T ) in C. T is called a quasi − nonexpansive

mapping, if

‖Tx− p‖ ≤ ‖x− p‖,

for all x in C and p in F (T ). If the range of T is C, i.e., T : C → C, we called T

a self mapping.
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Example 2.6. Let X = R and C = [0, 1]. Define T : C → C by

Tx =
x

2
for all x ∈ [0, 1].

Since T0 = 0, 0 is a fixed point of T . We see that

|Tx− 0| = |x− 0| = |x
2
| ≤ |x| = |x− 0|.

Hence T is a quasi-nonexpansive mapping.

Example 2.7. Let X = R and C = [0, 1]. Define T : C → C by

Tx = x2 − x + 1.

Find fixed point of T.

x2 − x + 1 = x

x2 − 2x + 1 = 0

(x− 1)2 = 0

x = 1.

Since T1 = 1, 1 is a fixed point of T . We see that

|Tx− 1| = |x2 − x + 1− 1| = |x2 − x| = |x(x− 1)| = |x||x− 1| ≤ |x− 1|,

since x ∈ [0, 1]. Hence T is a quasi-nonexpansive mapping.

Definition 2.24. [5](Asymptotically regular). Let X be a real Banach space,

C a closed subset of X, and T a quasi-nonexpansive mapping of C into C with

nonempty fixed point set F (T ). T is said to be

(1) asymptotically regular at x0 if lim
n→∞

‖T nx0 − T n+1x0‖ = 0,

(2) asymptotically regular in xn if lim inf
n→∞

‖xn − Txn‖ = 0.

The following are useful lemmas we will use to obtain the theorems.

They are well known. Lemma 2.20 is exercise in some text book. For Lemma 2.21

is special for our mappings and sets in the main theorem and Lemma 2.22, the

proof are very hard to be found. We give proof in detail here for those who want

to study them.
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Lemma 2.20. If C is a nonempty closed subset of a normed space X, x ∈ X and

d(x, C) = 0, then x ∈ C.

Proof. Let C be a nonempty closed subset of a normed space X, x ∈ X and

d(x, C) = 0, i.e., inf
y∈C

d(x, y) = 0. Using Theorem 2.14, we will show that x ∈ C.

That is we construct a sequence yn ∈ C such that yn → x as n → ∞. For n ∈ N

we get that

inf
y∈C

d(x, y) < inf
y∈C

d(x, y) +
1

n
.

Thus by definition of infimum we obtain that for each n ∈ N, there exists yn ∈ C

such that

0 = inf
y∈C

d(x, y) < d(x, yn) < inf
y∈C

d(x, y) +
1

n
.

By the sandwich theorem we have

lim
n→∞

d(x, yn) = 0.

This means that yn → x. Since C is closed yn ∈ C and yn → x, by Theorem 2.14

we have x ∈ C.

Lemma 2.21. Let X be a real Banach space, C a closed subset of X and T a

quasi-nonexpansive mapping of C into C such that F (T ) 6= ∅ in C. Then F (T )

is a closed subset of C.

Proof. We will prove that F (T ) is closed. To apply Theorem 2.14, we let {xn}

in F (T ) and xn → x, then we will show x ∈ F (T ) i.e., Tx = x. By the triangle

inequality and since T is a quasi-nonexpansive mapping, we have

0 ≤ ‖Tx− x‖ = ‖Tx− xn + xn − x‖

≤ ‖Tx− xn‖+ ‖xn − x‖

≤ ‖x− xn‖+ ‖xn − x‖

= 2‖xn − x‖. (2.12)
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Since xn → x, lim
n→∞

‖xn − x‖ = 0. From this, (2.12) and by the sandwich theorem

we get

‖Tx− x‖ = 0.

By the property (N2) of norm we have Tx = x. Hence by Theorem 2.14 we

conclude that F (T ) is closed.

Note that for a quasi-nonexpansive mapping Ti : C → C (i = 1, 2)

with the common fixed point set F (T1) ∩ F (T2) 6= ∅, we have that F (T1) 6= ∅

and F (T2) 6= ∅. From Lemma 2.21 we get that F (T1) and F (T2) are closed. Thus

F (T1) ∩ F (T2) is closed.

Lemma 2.22. Let X be a metric space and C a nonempty subset of X. If {xn}

is a sequence in X such that xn → x, then lim
n→∞

d(xn, C) = d(x, C).

Proof. Let xn → x. We will prove that lim
n→∞

d(xn, C) = d(x, C). By the triangle

inequality, for each n ∈ N, we obtain

d(xn, C) ≤ d(x, C) + d(xn, x).

From this, for each n ∈ N, we get

d(xn, C)− d(x, C) ≤ d(xn, x). (2.13)

Similarly, for each n ∈ N, we can obtain that

d(x, C) ≤ d(xn, C) + d(xn, x),

so, for each n ∈ N, we get

−d(xn, x) ≤ d(xn, C)− d(x, C). (2.14)

From (2.13) and (2.14), we get

|d(xn, C)− d(x, C)| ≤ d(xn, x). (2.15)
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Since xn → x, lim
n→∞

d(xn, x) = 0. From this, (2.15) and the sandwich theorem we

get

lim
n→∞

|d(xn, C)− d(x, C)| = 0.

Hence lim
n→∞

d(xn, C) = d(x, C), as desired.

Note that, for a quasi-nonexpansive mapping Ti : C → C (i =

1, 2) with the common fixed point set F (T1) ∩ F (T2) 6= ∅ and {xn} is a sequence

in X such that xn → x. From Lemma 2.22 we get that

lim
n→∞

d(xn, F (T1) ∩ F (T2)) = d(x, F (T1) ∩ F (T2)).

Theorem 2.23, Proposition 2.24 and Theorem 2.25 are mentioned in

[7] with no proof. We give the proof here for the same purpose as before.

Theorem 2.23. Let X be a real Banach space, C a closed subset of X, and T

a quasi-nonexpansive mapping of C into C with nonempty fixed point set F (T ).

Suppose there exists a point x0 in C such that the sequence {xn} of iterates lies in

C, where xn is given by

(S1) xn = Txn−1, n = 1, 2, ...

Then {xn} converges to a fixed point of T in C if and only if lim
n→∞

d(xn, F (T )) = 0.

Proof. We first assume that {xn} converges to a fixed point of T in C. Let x be

a fixed point such that xn → x. We know that

0 ≤ d(xn, F (T )) = inf
y∈F (T )

d(xn, y) ≤ d(xn, x), for all n ∈ N.

Since xn → x, we have lim
n→∞

d(xn, x) = 0. From this and by the sandwich theorem,

we get

lim
n→∞

d(xn, F (T )) = 0.

Conversely, we assume that lim
n→∞

d(xn, F (T )) = 0, We will show that {xn} is a

Cauchy sequence so that it converges to a point in C.
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Let ε > 0. Since lim
n→∞

d(xn, F (T )) = 0, there exists N such that for

all n > N we have

d(xn, F (T )) = inf
y∈F (T )

d(xn, y) = inf
y∈F (T )

‖xn − y‖ <
ε

2
.

From this and definition of infimum we see that for n > N, there exists yn ∈ F (T )

such that

‖xn − yn‖ <
ε

2
. (2.16)

That is, for m, n > N where n = m + k there exists ym+k ∈ F (T ) such that

‖xm+k − ym+k‖ <
ε

2
. (2.17)

Since T is quasi-nonexpansive, ym ∈ F (T ), xn = Txn−1 and by (2.16),

considering ‖xm+k − ym‖ we get

‖xm+k − ym‖ = ‖Txm+k−1 − ym‖

≤ ‖xm+k−1 − ym‖

= ‖Txm+k−2 − ym‖

≤ ‖xm+k−2 − ym‖
...

≤ ‖xm − ym‖ <
ε

2
.

Thus

‖xm+k − ym‖ <
ε

2
(2.18)

Hence for n = m + k > m > N , by (2.16) and (2.18) we have

‖xm+k − xm‖ = ‖xm+k − ym + ym − xm‖

≤ ‖xm+k − ym‖+ ‖xm − ym‖

<
ε

2
+

ε

2
= ε.

We conclude that, for ε > 0 there exists N such that,

‖xn − xm‖ < ε for all n > m > N.
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This shows that {xn} is a Cauchy sequence in C. Since X is complete and C ⊆ X is

closed, by Theorem 2.15 C is complete. Thus there exists x ∈ C such that xn → x.

Next we show that x is a fixed point of T . Since xn → x and lim
n→∞

d(xn, F (T )) = 0,

by Lemma 2.22 we obtain that

0 = lim
n→∞

d(xn, F (T )) = d(x, F (T )).

That is d(x, F (T )) = 0. By Lemma 2.21, F (T ) is closed and by Lemma 2.20, we

conclude that x ∈ F (T ).

The following is a sufficient condition for a quasi-nonexpansive

mapping to have a fixed point.

Proposition 2.24. Suppose X, C, T and x0 satisfy the conditions of Theorem

2.23. Suppose further that

(a) T is asymptotically regular at x0.

(b) If {yn} is any sequence in C such that ‖(I − T )yn‖ → 0 as n → ∞, then

lim inf
n→∞

d(yn, F (T )) = 0.

Then {xn} determined by the process (S1) of Theorem 2.23 converges to a fixed

point of T in C.

Proof. Let p ∈ F (T ). Since T is quasi-nonexpansive,

‖xn+1 − p‖ = ‖T n+1x0 − p‖

≤ ‖T nx0 − p‖

= ‖xn − p‖,

for all n. From this we can say that

d(xn+1, F (T )) ≤ d(xn, F (T )) for all n,

which means the sequence {d(xn, F (T ))} is nonincreasing. Note that {d(xn, F (T ))}

is bounded below by 0. By Monotone convergence theorem (Theorem 2.2) we get
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lim
n→∞

d(xn, F (T )) exists. Since T is asymptotically regular at x0, i.e., ‖T nx0 −

T n+1x0‖ → 0 as n →∞, by definition of xn, we obtain that

‖T nx0 − T n+1x0‖ = ‖xn − Txn‖

= ‖(I − T )xn‖.

We get ‖(I − T )xn‖ → 0 as n →∞. By condition (b),

lim inf
n→∞

d(xn, F (T )) = 0.

Thus by (1) of Theorem 2.5, lim
n→∞

d(xn, F (T )) = lim inf
n→∞

d(xn, F (T )) = 0.

Hence Theorem 2.23 tell us that {xn} converges to a fixed point of T in C.

Let X be a Banach space, C a closed convex subset of X, and T a

quasi-nonexpansive map of C into C. Suppose there exists a point x0 in C such

that, for some λ in (0, 1), the sequence {xn} given by (S2) lies in C.

(S2) xn = Tλ(xn−1), x0 ∈ C, Tλ = λT + (1− λ)I, λ ∈ (0, 1).

We see that

x1 = Tλ(x0)

x2 = Tλ(x1) = Tλ(Tλx0) = T 2
λ (x0)

...

xn = T n
λ (x0)

Thus we conclude that xn = Tλ(xn−1) = T n
λ (xo). We also see that, since T

is quasi-nonexpansive , by the triangle inequality and absolute homogeneity, we

obtain

‖Tλ(x)− p‖ = ‖λTx + (1− λ)Ix− p‖

= ‖λTx + (1− λ)x− (1− λ)p− λp‖

= ‖λ(Tx− p) + (1− λ)(x− p)‖

≤ λ‖Tx− p‖+ (1− λ)‖x− p‖

≤ λ‖x− p‖+ (1− λ)‖x− p‖

= ‖x− p‖.
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Hence ‖Tλ(x) − p‖ ≤ ‖x − p‖ for x ∈ C and p ∈ F (T ). Therefore Tλ is quasi-

nonexpansive.

Theorem 2.25. Let X be a Banach space, C a closed convex subset of X, and T

a quasi-nonexpansive map of C into C. Suppose there exists a point x0 in C such

that, for some λ in (0, 1), the sequence {xn} = {T n
λ (x0)} given by (S2) lies in C.

Then {xn} converges to a fixed point of T in C if and only if

lim
n→∞

d(xn, F (T )) = 0.

Proof. We first assume that {xn} = {T n
λ (x0)} converges to a fixed point of T in

C. Let x be a fixed point of T such that xn → x. Since xn → x, lim
n→∞

d(xn, x) = 0.

We know that

0 ≤ d(xn, F (T )) = inf
y∈F (T )

d(xn, y) ≤ d(xn, x).

By the sandwich theorem, we get

lim
n→∞

d(xn, F (T )) = 0.

Conversely, we assume that F (T ) 6= ∅ and lim
n→∞

d(xn, F (T )) = 0. We

will show that {xn} is a Cauchy sequence so that it converges to a point in C. Let

ε > 0, since lim
n→∞

d(xn, F (T )) = 0, there exists N such that

n > N =⇒ d(xn, F (T )) <
ε

2
. (2.19)

By definition of d(xn, F (T )) as an infimum, for n > N there exists yn ∈ F (T )

such that

‖xn − yn‖ <
ε

2
. (2.20)

For all n = m + k > m > N, since Tλ is a quasi-nonexpansive mapping and by

(2.20), we have
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‖xn − ym‖ = ‖xm+k − ym‖ = ‖Tλ(xm+k−1)− ym‖

≤ ‖xm+k−1 − ym‖

= ‖Tλ(xm+k−2)− ym‖
...

≤ ‖xm − ym‖ <
ε

2
.

Hence for n, m > N we have

‖xn − xm‖ ≤ ‖xn − ym|+ ‖xm − ym‖ < ε.

This shows that {xn} = {T n
λ (x0)} is Cauchy in C. Since X is complete and C ⊆ X

is closed, by Theorem 2.15, C is complete. Thus there exists x ∈ C such that

xn → x. Next we will show that x is a fixed point of T . By Lemma 2.22, we have

0 = lim
n→∞

d(xn, F (T )) = d(x, F (T )),

Since F (T ) is closed and d(x, F (T )) = 0, x ∈ F (T ) by Lemma 2.20.



CHAPTER 3

Main Results

Let X be a real Banach space and let C be a nonempty closed subset

of X. For i = 1, 2, let Ti : C → C be a quasi-nonexpansive mapping such that

F (T1) ∩ F (T2) 6= ∅ in C. Let {αn} and {βn} be sequences in [0, 1) and {un} and

{vn} be sequences in C. We are interested in sequences in the following process.

For x1 ∈ C and n ≥ 1, define the sequences {xn} and {yn} by

yn = βnT2xn + (1− βn)xn + vn

xn+1 = αnT1yn + (1− αn)yn + un. (3.1)

If T1 = T2 = T , then

yn = βnTxn + (1− βn)xn + vn

xn+1 = αnTyn + (1− αn)yn + un. (3.2)

3.1 Main Theorems

We have the following which is the main theorem of this thesis.

Theorem 3.1. Let X be a real Banach space and let C be a nonempty closed

subset of X. For i = 1, 2, let Ti : C → C be a quasi-nonexpansive mapping such

that F (T1) ∩ F (T2) 6= ∅ in C. Let {αn} and {βn} be sequences in [0, 1) and {un}

and {vn} be sequences in C. Let x1 ∈ C be such that the iterative sequences {xn}

and {yn} defined by (3.1) are in C. Assume that

(i) un = u′n +u′′n for n ≥ 1,
∞∑

n=1

‖vn‖ < ∞,
∞∑

n=1

‖u′n‖ < ∞ and ‖u′′n‖ = o(1−αn);

(ii)
∞∑

n=1

(1− αn) < ∞.

29
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Then the iterative sequence {xn} converges strongly to a common fixed point of T1

and T2 if and only if

lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = 0. (3.3)

Proof. For the necessity, we assume that {xn} converges strongly to a common

fixed point of T1 and T2, i.e., there exists p ∈ F (T1) ∩ F (T2) such that

lim
n→∞

‖xn − p‖ = 0.

From this, we have

lim inf
n→∞

‖xn − p‖ = 0.

We see that

d(xn, F (T1) ∩ F (T2)) = inf
q∈F (T1)∩F (T2)

‖xn − q‖ ≤ ‖xn − p‖,

for all n. Taking limit infimum as n → ∞ and using the sandwich theorem, we

obtain that

lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = 0,

as desired. For the sufficiency, we let p ∈ F (T1) ∩ F (T2). Since Ti : C → C is a

quasi-nonexpansive mapping for i = 1, 2 and by the triangle inequality, we get

‖yn − p‖ = ‖βnT2xn + (1− βn)xn + vn − p‖

= ‖βnT2xn + (1− βn)xn + vn − p− βnT2p + βnp‖

= ‖βn(T2xn − T2p) + (1− βn)(xn − p) + vn‖

= ‖βn(T2xn − p) + (1− βn)(xn − p) + vn‖

≤ βn‖T2xn − p‖+ (1− βn)‖xn − p‖+ ‖vn‖

≤ βn‖xn − p‖+ ‖xn − p‖ − βn‖xn − p‖+ ‖vn‖

= ‖xn − p‖+ ‖vn‖, (3.4)

for all n. By assumption, we have ‖u′′n‖ = o(1−αn), so by definition of the little-o

notation, we get

lim
n→∞

‖u′′n‖
1− αn

= 0.
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We let εn =
‖u′′n‖

1− αn

, so εn ≥ 0 and εn → 0 as n →∞. From this we get

‖u′′n‖ = εn(1− αn). (3.5)

Since T1 is a quasi-nonexpansive mapping, by the triangle inequality, condition

(i), (3.4) and (3.5) we obtain that

‖xn+1 − p‖ = ‖αnT1yn + (1− αn)yn + un − p‖

= ‖αnT1yn + (1− αn)yn + un − p− αnT1p + αnp‖

= ‖αn(T1yn − T1p) + (1− αn)(yn − p) + un‖

≤ αn‖T1yn − p‖+ (1− αn)‖yn − p‖+ ‖un‖

≤ αn‖yn − p‖+ (1− αn)‖yn − p‖+ ‖un‖

= ‖yn − p‖+ ‖un‖

≤ ‖xn − p‖+ ‖vn‖+ ‖u′n‖+ ‖u′′n‖

= ‖xn − p‖+ ‖vn‖+ ‖u′n‖+ εn(1− αn). (3.6)

Let bn = ‖vn‖+ ‖u′n‖+ εn(1− αn). Therefore

‖xn+1 − p‖ ≤ ‖xn − p‖+ bn (3.7)

By assumptions that
∞∑

n=1

‖vn‖ < ∞,
∞∑

n=1

‖u′n‖ < ∞,
∞∑

n=1

(1 − αn) < ∞ and {εn} is

bounded, thus
∞∑

n=1

bn < ∞. Hence by Lemma 2.17 lim
n→∞

‖xn − p‖ exists. By (3.7)

and induction, we obtain, for m,n ≥ 1 and p ∈ F (T1) ∩ F (T2) that

‖xn+m − p‖ ≤ ‖xn − p‖+
n+m−1∑

i=n

bi. (3.8)

By (3.7) and taking infimum over p ∈ F (T1) ∩ F (T2), we obtain

d(xn+1, F (T1) ∩ F (T2)) ≤ d(xn, F (T1) ∩ F (T2)) + bn.

The assumption lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = 0 implies that there exists a sub-

sequence of {d(xn, F (T1) ∩ F (T2))} converging to zero, Lemma 2.17 tells us that

lim
n→∞

d(xn, F (T1) ∩ F (T2)) = 0. (3.9)



32

We will show that {xn} is a Cauchy sequence in X. Let ε > 0. From (3.9) and
∞∑

n=1

bn < ∞, there exists k such that, for n ≥ k, we have

d(xn, F (T1) ∩ F (T2)) <
ε

4
and

∞∑
i=k

bi <
ε

2
. (3.10)

By the first inequality in (3.10) and the definition of infimum, there exists q ∈

F (T1) ∩ F (T2) such that

‖xn − q‖ <
ε

4
, (3.11)

for n ≥ k. We combine (3.8), (3.10), (3.11) and use the triangle inequality to get

that, for n ≥ k,

‖xn+k − xk‖ ≤ ‖xn+k − q‖+ ‖xk − q‖

≤

(
‖xk − q‖+

n+k−1∑
i=n

bi

)
+ ‖xk − q‖

= 2‖xk − q‖+
n+k−1∑

i=n

bi

< 2
(ε

4

)
+

ε

2
= ε,

which means that {xn} is a Cauchy sequence in X by Lemma 2.18. But X is a

Banach space, so there exists x ∈ X such that xn → x. Since C is closed and {xn}

is a sequence in C converging to x, we have x ∈ C. Since ∅ 6= F (T1)∩F (T2) ⊆ C

and xn → x, by Lemma 2.22, we have

0 = lim
n→∞

d(xn, F (T1) ∩ F (T2)) = d(x, F (T1) ∩ F (T2)).

Thus d(x, F (T1) ∩ F (T2)) = 0. From this and since F (T1) ∩ F (T2) is closed, then

by Lemma 2.20 and x ∈ F (T1) ∩ F (T2). Therefore {xn} converges strongly to a

common fixed point of T1 and T2 in C, as desired.

The following corollary comes directly from the Theorem.

Corollary 3.2. Let X, C, Ti(i = 1, 2) and the iterative sequence {xn} be as in

Theorem 3.1. Suppose that
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(i) The mapping Ti(i = 1, 2) is asymptotically regular in xn and

(ii) lim inf
n→∞

‖xn − Tixn‖ = 0 implies that lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = 0.

Then the sequence {xn} converges strongly to a common fixed point of T1 and T2.

The following theorem gives some other sufficient conditions.

Theorem 3.3. Let X, C, Ti(i = 1, 2) and the iterative sequence {xn} be as in

Theorem 3.1. Assume further that the mapping Ti(i = 1, 2) is asymptotically

regular in xn and there exists an increasing function f : R+ → R+ with f(r) > 0

for all r > 0 such that for i = 1, 2, we have

‖xn − Tixn‖ ≥ f(d(xn, F (T1) ∩ F (T2))) for all n ≥ 1.

Then the sequence {xn} converges strongly to a common fixed point of T1 and T2.

Proof. By assumption that ‖xn − Tixn‖ ≥ f(d(xn, F (T1) ∩ F (T2))) for all n ≥ 1

and since Ti(i = 1, 2) is asymptotically regular in {xn}, we conclude that

0 ≥ lim inf
n→∞

f(d(xn, F (T1) ∩ F (T2))).

Since f : R+ → R+, we have

lim inf
n→∞

f(d(xn, F (T1) ∩ F (T2))) = 0. (3.12)

We claim that lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = 0. Suppose not, i.e.,

lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) 6= 0.

From this and f : R+ → R+, we get

lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = L > 0.

From this we see that

lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = lim
N→∞

inf
n>N

d(xn, F (T1) ∩ F (T2)) = L > 0.
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Thus for all ε = L > 0, there exists N1 ∈ N such that N > N1 implies∣∣∣∣ inf
n≥N

d(xn, F (T1) ∩ F (T2))− L

∣∣∣∣ < L

2
.

From this we get

L

2
< inf

n≥N
d(xn, F (T1) ∩ F (T2)) <

3L

2
for all N > N1.

That is
L

2
< d(xn, F (T1) ∩ F (T2)) for all n ≥ N > N1.

By the assumption, f is increasing, so

f(
L

2
) < f(d(xn, F (T1) ∩ F (T2))) for all n ≥ N > N1.

Taking infimum over n, we get

f(
L

2
) ≤ inf {f(d(xn, F (T1) ∩ F (T2))); n ≥ N} ,∀N > n1

≤ lim
N→∞

inf {f(d(xn, F (T1) ∩ F (T2))); n ≥ N}

= lim inf
n→∞

f(d(xn, F (T1) ∩ F (T2))).

Since f(r) > 0 if r > 0, we get

0 < f(
L

2
) ≤ lim inf

n→∞
f(d(xn, F (T1) ∩ F (T2))),

contradiction with (3.12). We obtain that

lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = 0.

By Theorem 3.1, we conclude that {xn} converges strongly to a common fixed

point of T1 and T2, as desired.

If T1 = T2 = T, we have the following result.

Corollary 3.4. Let X be a real Banach space, and let C be a nonempty closed

subset of X. Let T : C → C be a quasi-nonexpansive mapping such that the fixed

point set F (T ) 6= ∅ in C. Let {αn} and {βn} be sequence in [0, 1) and {un} and

{vn} be sequences in C. Suppose there exists an element x1 ∈ C for which the

iterative sequences {xn} and {yn} defined in (3.2) are in C. Assume that
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(i) un = u′n +u′′n for n ≥ 1,
∞∑

n=1

‖vn‖ < ∞,
∞∑

n=1

‖u′n‖ < ∞ and ‖u′′n‖ = o(1−αn);

(ii)
∞∑

n=1

(1− αn) < ∞.

Then the iterative {xn} converges strongly to a fixed point of T if and only if

lim inf
n→∞

d(xn, F (T )) = 0.

Corollary 3.5. Let X, C, T and the iterative sequence {xn} be as in Corollary

3.4. Suppose that

(i) The mapping T is asymptotically regular in xn and

(ii) lim inf
n→∞

‖xn − Txn‖ = 0 implies that lim inf
n→∞

d(xn, F (T )) = 0.

Then the sequence {xn} converges strongly to a fixed point of T in C.

Corollary 3.6. Let X, C, T and the iterative sequence {xn} be as in Corollary

3.4. Assume further that the mapping T is asymptotically regular in xn and there

exists an increasing function f : R+ → R+ with f(r) > 0 for all r > 0 such that

‖xn − Txn‖ ≥ f(d(xn, F (T ))) for all n ≥ 1.

Then the sequence {xn} converges strongly to a fixed point of T in C.

3.2 Example

Let X = R and C = [0, 1]. Then X is a Banach space with C as a

closed subset. For i = 1, 2, define Ti : [0, 1] → [0, 1] by

T1x =
x

10
and T2x =

x

5
.

Then

T1x = x ⇐⇒ x = 0 and T2x = x ⇐⇒ x = 0.
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Thus 0 is the only common fixed point of T1 and T2. That is F (T1)∩F (T2) = {0}.

Consider, for all x ∈ [0, 1], we get

|T1x− 0| =
∣∣∣ x

10
− 0
∣∣∣ =

∣∣∣ x

10

∣∣∣ ≤ |x| = |x− 0| and

|T2x− 0| =
∣∣∣x
5
− 0
∣∣∣ =

∣∣∣x
5

∣∣∣ ≤ |x| = |x− 0|.

Hence T1 and T2 are quasi-nonexpansive mapping on [0, 1]. Let un = e−
(
√

5+1)
2

n,

vn =
1

5n
, αn = 1− 1

3n
, βn =

1

4n
. Consider the condition (i),

u′n = −

(√
5 + 1

2

)
e−

(
√

5+1)
2

n

u′′n =

(√
5 + 1

2

)2

e−
(
√

5+1)
2

n

u′n + u′′n =

[
−
√

5− 1

2
+

5 + 2
√

5 + 1

4

]
e−

(
√

5+1)
2

n

= e−
(
√

5+1)
2

n

= un.

Hence un = u′n + u′′n for n ≥ 1. Consider
∞∑

n=1

|u′n|, we have

∞∑
n=1

|u′n| =
∞∑

n=1

∣∣∣∣∣−
(√

5 + 1

2

)
e−

(
√

5+1)
2

n

∣∣∣∣∣
=

∣∣∣∣∣
√

5 + 1

2

∣∣∣∣∣
∞∑

n=1

∣∣∣∣ 1

e
(
√

5+1)
2

n

∣∣∣∣ .
Thus

∞∑
n=1

|u′n| < ∞. Consider
∞∑

n=1

|vn|, we have

∞∑
n=1

|vn| =
∞∑

n=1

1

5n
=

∞∑
n=1

(
1

5

)n

.

This is a geometric series with |r| =
1

5
< 1. Hence

∞∑
n=1

|vn| < ∞. Therefore the

condition (i) holds. Next, we consider the condition (ii). Since α = 1− 1

3n
,
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1− αn = 1−
(

1− 1

3n

)
=

1

3n
.

From this, we get
∞∑

n=1

(1− αn) =
∞∑

n=1

(
1

3

)n

. This is a geometric series with |r| =

1

3
< 1. So

∞∑
n=1

(1− αn) < ∞. Therefore the condition (ii) holds. Choose x1 = 0.5.

Then the iteration in (3.1) becomes

yn =
1

4n

(
1

5

)
xn +

(
1− 1

4n

)
xn +

1

5n

xn+1 =

(
1− 1

3n

)(
1

10

)
yn +

1

3n
yn + e−

(
√

5+1)
2

n

We show that with x1 = 0.5, {xn} and {yn} are sequence in [0, 1] by calculation

using Microsoft office Excel. See Appendix A.



Bibliography

[1] Ayaragarnchanakul, J. 2008. A commom Fixed-Point Iterative Process with

Errors for Quasi-Nonexpansive Nonselft-Mappings in Banach Spaces. Thai J.

Math 6(2) : 323–330.

[2] Binmore, K.G. 2008. Mathematical Analysis : A Straightforward Ap-

proach, Cambridge University. http://www.proofwiki.org/wiki/Definition:O-

Notation (accessed October 7, 2009).

[3] Douglass, S.A. 1996. Introduction to Mathematical Analysis. Addison-Wesley

Publishing Company : New York.

[4] Ghosh, M.K. and Debnath, L. 1997. Convergence of Ishikawa Iterates of

Quasi-Nonexpansive Mappings. J. Math. Anal. Appl. 207 : 96–103.

[5] Kaczor, W. 2003. Fixed Point of Assymptotically Regular Nonexpansive Map-

pings on Nonconvex sets. Abstr. Appl. Anal. 2 : 83–91.

[6] Kreyszig, E. 1978. Introductory Functional Analysis with Applications. Wiley,

J. and Sons : New York.

[7] Petryshyn, W.V. and Williamson, T.E. 1972. A Necessary and Sufficient Con-

dition for the Convergence of a sequence of Iterates for Quasi-Nonexpansive

Mapping. Amer. Math. Soc. 78(2) : 1027–1031.

[8] Ross, K.A. 1991. Elementary Analysis:The The Theory of Calculus. Springer-

Verlag:New York.

38



39

 
 
 
 
 
 
 
 
 
 
 

 
 

APPENDIX  

 
 
 
 
 
 
 
 
 
 
 

 



40

APPENDIX  A 
 
 

 Let  
5 1

2
,

n

n
u e

 +
−  
 =  1

,
5

n n
v =

1
1 ,

3
n n

α = −
1

,
4

n n
β = 1

10

x
T x =  and 

2
5

x
T x = .  Choose 1 0.5x = , then { }n

x  and  { }n
y  are as follows. 

1 1 1 1
1

4 5 4 5
n n nn n n

y x x
   = + − +   
   

       

5 1

2

1

1 1 1
1

3 10 3

n

n n nn n
x x x e

 +
−  
 

+
  = − + +  
  

 

We use Microsoft office Excel to obtain the following table for the iterative process 

above. 

 
Table 3.1: Value of nα , nβ , nu  and nv   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

n  nα nα−1 nu nβ nβ−1 nv

1 0.666666667 0.333333333 0.198288153 0.25 0.75 0.2 
2 0.888888889 0.111111111 0.039318192 0.0625 0.9375 0.04 
3 0.962962963 0.037037037 0.007796332 0.015625 0.984375 0.008 
4 0.987654321 0.012345679 0.00154592 0.00390625 0.99609375 0.0016 
5 0.995884774 0.004115226 0.000306538 0.000976563 0.999023438 0.00032 
6 0.998628258 0.001371742 6.07828E-05 0.000244141 0.999755859 0.000064 
7 0.999542753 0.000457247 1.20525E-05 6.10352E-05 0.999938965 0.0000128 
8 0.999847584 0.000152416 2.38987E-06 1.52588E-05 0.999984741 0.00000256 
9 0.999949195 5.08053E-05 4.73883E-07 3.8147E-06 0.999996185 0.000000512 

10 0.999983065 1.69351E-05 9.39653E-08 9.53674E-07 0.999999046 1.024E-07 
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n ny 1+nx

1 0.975 0.58828815 
2 0.598873745 0.15909294 
3 0.165104279 0.02981024 
4 0.031317078 0.0050256 
5 0.005341669 0.00086049 
6 0.00092432 0.00015436 
7 0.000167148 2.8836E-05 
8 3.13958E-05 5.5338E-06 
9 6.04574E-06 1.0787E-06 

10 1.18113E-06 2.121E-07 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

 
 

Table 3.2: Value of ny  and 1+nx

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: Graph of { }n
x in our iteration  
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 Next, we will compare sequence { }nx  between using Picard iteration 

and our iteration, where ,
5

21

x
TxxTxT ===  1

1 ,
3

n n
α = −

nn
4

1
=β  and 

.
2

15
n

n eu









 +
−

=   Choose 5.01 =x , then sequence { }nx  and  { }n
y  of our iteration are as 

follows 

( ) nnnnnn uxTxy +−+= ββ 1  

( ) nnnnnn uyTyx +−+=+ αα 11 . 
 

Picard iteration is  

nnn uTxx +=+1 . 

Use Microsoft office Excel, we obtain the following table.

Table 3.3: The comparison { }1+nx  of our iteration and Picard iteration   

n  
Our iteration Picard iteration 

n
y 1+nx 1+nx

1 0.973288153 0.652489291 0.298288153 
2 0.659183018 0.229748841 0.098975822 
3 0.234673312 0.061684277 0.027591496 
4 0.063037434 0.014775999 0.007064219 
5 0.015070993 0.003370353 0.001719382 
6 0.003430477 0.000750643 0.000404659 
7 0.000762659 0.000164863 9.29843E-05 
8 0.000167251 3.58605E-05 2.09867E-05 
9 3.63343E-05 7.74221E-06 4.67123E-06 

10 7.83617E-06 1.66131E-06 1.02821E-06 
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Figure 3.2: The comparison of our iteration and Picard iteration 

 
 This shows that our iteration is as good as Picard iteration.  Thus, our 

iteration is an alternative iteration for approximation a fixed point of quasi-

nonexpansive mapping.  

 
 
 
 
 
 
 
 
 
 

Picard iteration 

Our iteration 
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