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ABSTRACT

Let X be a real Banach space and let C' be a nonempty closed subset
of X. For 1 = 1,2, let T; : C' — C' be a quasi-nonexpansive mapping such that
F(T)NF(Tz) # @ in C. Let {a,} and {3,} be sequences in [0,1) and {u,} and
{v,} be sequences in C. For z; € C' and n > 1, define the sequences {z,} and

{yn} by

Yn = ﬁnT2$n + (1 - ﬂn)xn + vy,

Tpy1 = anlen + (1 - an)yn + Up.

We give sufficient and necessary conditions so that the sequence

{z,,} defined above converges to some common fixed point of 7} and T5.
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CHAPTER 1

Introduction

Let X be a real Banach space, C a closed subset of X and T a
mapping of C' into X such that 7" has a nonempty set of fixed point F(T) C C

and

[Tz = pll < = = pll,

for all z € C,p € F(T). We shall refer to T satisfying the above conditions as
quasi-nonexpansive. It is introduced by Tricomi for real functions and further
studied by Diaz and Metcalf and Dotson for mapping in Banach spaces.

In 1972, Petryshyn and Williamson [7] presented two new theorems
which provided necessary and sufficient conditions for the convergence of the suc-
cessive approximation method and of the convex combination iteration method
for quasi-nonexpansive mapping defined on suitable subsets of Banach spaces and

with nonempty sets of fixed points as follows.

Theorem 1.1. Let X be a real Banach space, C a closed subset of X, and T
a quasi-nonexpansive mapping of C' into C' with nonempty fized point set F(T).
Suppose there exists a point xo in C such that the sequence {x,} of iterates lies in

C, where x,, is given by

(S1) Ty =T, 1, n=12..



Then {x,} converges to a fixed point of T in C if and only if lim d(x,, F(T)) = 0.

Theorem 1.2. Let X be a Banach space, C a closed convex subset of X, and T
a quasi-nonexpansive map of C into C. Suppose there exists a point xy in C' such
that, for some X in (0,1), the sequence {x,} = {TIx(xo)} given by (S2) lies in C,

where
(52) T, :T)\(I'n_l), rg € C, Ty Z)\T—f-(l—/\)f, A€ (0,1)
Then {x,} converges to a fized point of T in C if and only if

lim d(z,, F(T)) = 0.

n—oo

They also indicated briefly how these theorems were used to deduce a number
of known, as well as some new, convergence results for various special classes of
mappings of nonexpansive, P-compact, and 1-set-contractive type which recently
have been extensively studied by a number of authors.

In this thesis, inspired by the previous theorem we construct a new
iterative procedure to approximate a common fixed point of two quasi-nonexpansive

mappings and prove some convergence theorems as follows.

Theorem 1.3. Let X be a real Banach space and let C' be a nonempty closed
subset of X. Fori = 1,2, let T; : C' — C be a quasi-nonexpansive mapping such
that F(T1) N F(Tz) # @ in C. Let {a,} and {5,} be sequences in [0,1) and {u,}

and {v,} be sequences in C. Let xy € C' be such that the iterative sequences {x,}



and {y,} are in C, where define the sequences {x,} and {y,} by

Tn+1 = o 11y, + (1 - Oén)yn + Up. (1'1)
Assume that

o0 o0
(i) wn = )+ u) forn =1, |lvall < 00, [Jup,|| < 0o and [Julf]| = o(1— a,);

n=1 n=1

(i1) Y (1 —ay) < oo,

n=1

Then the iterative sequence {x,} converges strongly to a common fized point of Ty

and Ty if and only if

liminf d(x,, F(T1) N F(13)) = 0.

n—oo

Theorem 1.4. Let X,C,T;(i = 1,2) and the iterative sequence {x,} be as in
Theorem 1.3. Assume further that the mapping T;(i = 1,2) is asymptotically
reqular in x, and there exists an increasing function f : RT — R* with f(r) > 0

for all r > 0 such that for i = 1,2, we have
|en — Tixn|| > f(d(zn, F(Th) N F(Ty)))  forall n>1.

Then the sequence {x,} converges strongly to a common fixed point of Ty and T;.



CHAPTER 2

Preliminaries

In this chapter, we first collect, in section 2.1, some basic knowl-
edge from mathematical analysis (Definition 2.2-Definition 2.10) and elementary
functional analysis (Definition 2.11-Definition 2.20). Then we give, in section 2.2,
detail on classical Banach Contraction theorem and in section 2.3, fixed point

theorems for quasi-nonexpansive mapping.

2.1 Basic knowledge without proof

In this section, we give some well-known definitions and theorems
without proof. Definitions 2.2 — 2.9 and Theorems 2.1 — 2.13 are from [8], Defi-
nitions 2.10 is from [2] and Definitions 2.11 — 2.20 and Theorems 2.14 — 2.15 are
from [6].

Definition 2.1. Let S be a nonempty subset of R.

(a) If a real number M satisfies s < M for all s € S, then M is called an upper
bound of S and the set S is said to be bounded above.

(b) If a real number m satisfies m < s for all s € S, then m is called a lower

bound of S and the set S is said to be bounded below.

(c) The set S is said to be bounded if it is bounded above and bounded below.
Thus S is bounded if there exist real numbers m and M such that S C
[m, M].

Definition 2.2. (Supremum and infimum). Let S be a nonempty subset of

R.



(a) If S is bounded above and S has a least upper bound, then we will call it
the supremum of S and denote it by sup S.

(b) If S is bounded below and S has a greatest lower bound, then we will call it
the infimum of S and denote it by inf S.

Definition 2.3. (Convergent sequence). A sequence {s,} of real numbers is

said to converge to the real number s provided that

for each € > 0 there exists a number N such that

n > N implies |s, — s| < €.

If {s,} converges to s, then we will write lim s, = s, lims, = s, or s, — s.
n—oo

The number s is call the limit of the sequence of {s,}. A sequence that dose not

converge to some real number is said to diverge.

Definition 2.4. (Bounded sequence). A sequence {s,} of real numbers is said

to be bounded if there exists a constant M such that |s,| < M for all n.
Theorem 2.1. Convergent sequences are bounded.

Definition 2.5. (Monotone sequence). A sequence {s,} of real numbers
is call a nondecreasing sequence if s, < s, for all n and {s,} is called a
nonincreasing sequence if s, > s, for all n. Note that if {s,} is nondecreasing
then s, < s, whenever n < m. A sequence that is nondecreasing or nonincreasing

will be called a monotone sequence or a monotonic sequence.

Theorem 2.2. (Monotone Convergence Theorem). All bounded monotone

Sequences converge.

Theorem 2.3.
(1) If {sn} is an unbounded nondecreasing sequence, then lim s, = +00.

(2) If {sn} is an unbounded nonincreasing sequence, then lims, = —oc.



Corollary 2.4. If {s,} is a monotone sequence, then the sequence either con-
verges, diverges to +00, or diverges to —oo. Thus lim s, is always meaningful for

monotone sequences.
Definition 2.6. Let {s,} be a sequence in R. We define

limsup s, = A}im sup{s, : n > N}

n—oo

and

liminf s, = A}im inf{s, : n > N}.

n—oo

Theorem 2.5. Let {s,} be a sequence in R.

(1) If lim s, is defined [as a real number,+oc or — o, then

liminfs, = lim s, = limsup s,.

n—00 n—00 n—00

(2) Ifliminfs, = limsups,, then lim s, is defined and

n—oo n—oo n—oo

lim s, = liminf s, = limsup s,,.

n—00 n—00 n—00

Definition 2.7. (Cauchy sequence). A sequence {s,} of real numbers is called

a Clauchy sequence if

for each € > 0 there exists a number N such that
m, n > N implies |s,, — s,| < €.

Theorem 2.6. (Cauchy Completeness Theorem). A sequence in R is con-

vergent if and only if it is a Cauchy sequence.

Theorem 2.7. (Sandwich Theorem). Let {a,},{b,} and {c,} be sequences

and a, < b, <c¢, foralln € N. If lim a, = L = lim ¢,, then lim b, = L.

n—oo n—oo n—oo



Definition 2.8. (Subsequence). Suppose that {s,} is a sequence. A subsequence
of this sequence is a sequence of the form {¢;} where for each k there is a positive

integer ny such that
Ny <ng < -+ <N <Ny <+ (21)

and

Thus {tx} is just a selection of some [possibly all] of the s,,’s, taken in order.

Theorem 2.8. If the sequence {s,} converges, then every subsequence converges

to the same limit.
Theorem 2.9. Fvery sequence has a monotonic subsequence.

Corollary 2.10. Let {s,} be any sequence. There ezists a monotonic subsequence
whose limit 1s limsup s,, and there exists a monotonic subsequence whose limit is
n—oo
liminf s,,.
n—oo

Definition 2.9. (The Cauchy Criterion for Series). We say that a series

Zan satisfies the Cauchy criterion if its sequence {s,} of partial sum is a
n=1
Cauchy sequence:

for each € > 0 there exists a number N such that
m,n > N implies |s,, — sn| < e. (2.3)

Nothing is lost in this definition if we impose the restriction n > m. Moreover,
it is only a natural matter to work with m — 1 where m < n instead of m where

m < n. Therefore (2.3) is equivalent to
for each € > 0 there exists a number N such that

n>m > N implies |s, — s,_1| <e. (2.4)
n
Since s, — Sp_1 = Z a, condition (2.4) can be written

k=m



for each € > 0 there exists a number N such that

n
D

k=m

n>m > N implies < e. (2.5)

Theorem 2.11. A series converges if and only if it satisfies the Cauchy criterion.

Theorem 2.12. Let {a,} be a sequence such that Z a, < oo. Then lim a, = 0.

n—oo
n=0

Theorem 2.13. (Mean Value Theorem). Let f be a continuous function on
la, b] that is differentiable on (a,b). Then there exists [at least one] x in (a,b) such
that

f(b) — f(a)
1) —
Definition 2.10. (Little-o notation). Given two functions f and g, the state-
ment f = o(g) is equivalent to the statement
lim —= = 0.
e C)

This statement is voiced f is little — o of g or simply f is little — o g.

The following are some basic knowledge about metric spaces and

normed spaces.

Definition 2.11. (Metric space, metric). Let X be a nonempty set. A function
d defined on X x X is called a metric on X (or distance function on X) if it
satisfies the following properties :

(M1)
(M2) d(z,y)
(M3) d(z,y) = d(y,x).  (Symmetry)
(M4) d(z,z) < d(x,y) + d(y, 2). (Triangle inequality)

d is a real-valued, finite and nonnegative.

0 if and only if x = y.

In this case, a pair (X, d) is called a metric space.

Definition 2.12. (Ball and Sphere). Given a point xy € X and real number

r > 0, we define three types of sets:



1) B(zo;r) = {z € X|d(x,x0) < r}. (Open ball)
2) B(zo;r) = {z € X|d(x,x0) < r}. (Close ball)
(3) S(xo;r) = {z € X|d(x,x9) =r}. (Sphere)

(
(
In all three cases, xg is called the center and r is called the radius.

Definition 2.13. (Open set, Closed set). A subset M of a metric space X is
said to be open if it contains a ball about each of its points. A subset K of X is

said to be closed if its complement (in X) is open, that is, K¢ = X — K is open.

Definition 2.14. (Convergence of a sequence, limit). A sequence {z,} is a
metric space X = (X,d) is said to converge or to be convergent if there is an

x € X such that

lim d(z,,z) =0.

n—oo

x is called the limit of {x,} and we write

lim z, =«

n—oo

or, simply,
Tp — T.

We say that {z,} converges to x or has the limit z. If {x,} is not convergent, it

is said to be divergent.

Definition 2.15. (Cauchy sequence, Completeness). A sequence {z,} in a
metric space X = (X, d) is said to be Cauchy (or fundamental) if for every € > 0
there is an N such that

d(xp, z,) < e for every m,n > N.

The space X is said to be complete if every Cauchy sequence in X converges (that

is, has a limit which is an element of X).

Theorem 2.14. (Closed set). Let M be a nonempty subset of a metric space
X = (X,d). M is closed if and only if the situation z,, € M, x, — x implies that
x e M.
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Definition 2.16. (Distance). The distance d(x, A) from a point  to a nonempty
subset A of a metric space (X, d) is defined to be

d(xz,A) = inf d(z, a).

a€A

This infimum certainly exists in R and is nonnegative. If x is already in A, then,

of course, d(z, A) = 0.

Definition 2.17. (Normed space, Banach space). Let X be a vector space. A

norm ||-|| defined on X is called a norm on X if it satisfies the following properties

(N1) [lal] > 0
(N2) ||z]| =0 2=0
(N3) [|ax| = |af||=]| (Absolute homogeneity)
(N4) [z +y[| < [lz| + lyll  (Triangle inequality);
here x and y are arbitrary vectors in X and « is any scalar. In this case, a pair
(X, || - ||) is called a normed space. Note that a complete normed space is called

a Banach space.

Theorem 2.15. (Subspace of a Banach space). A subspace Y of a Banach
space X s complete if and only if the set 'Y 1is closed in X.

Definition 2.18. (Linear operator). A linear operator T is an operator such
that

(1) the domain D(T') of T' is a vector space and the range R(T) lies in the vector
space over the same field,

(i7) for all z,y € D(T') and scalars «,

Tx+y)=Tex+Ty
T(azx) = aTz.

Definition 2.19. (Strong convergence). A sequence {z,} in a normed space

X is said to be strongly convergent (or convergent in the norm) if there is an



11

z € X such that

lim ||z, —z|| = 0.
n—oo
That is written
lim z,, =z
n—oo
or simply
T, — T.

x is called the strong limit of {x,}, and we say that {x,} converges strongly to

x.

Definition 2.20. (Fixed point). Let X be a set and 7' : X — X be a self
mapping. A fixed point of T is an x € X such that Tx = x. The set of all fixed
points of T" is denoted by F(T'), that is,

F(T)={z € X|z =Tx}.

Example 2.1. Let X = R. Define T : R — R by Tz = 22 — 32+ 4. We show that
T has a fixed point. By definition, = is a fixed point of T" if and only if Tz = .
So

> —3r+4 = 2
2 —dr+4 = 0
(-2 =0

r = 2
Therefore T" has exactly one fixed point and F/(7') = {2}.

Example 2.2. Let X = R. Define T : R — R by Tz = 2? — 22 — 4. We show
that T" have two fixed points. By definition, x is a fixed point of T if and only if
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Tx=2xz. So

2 —3r—4 = 0
(x—4)(z+1) = 0

x = —14
Therefore —1 and 4 are fixed point of T, i.e., F(T) = {—1,4}.

Example 2.3. Let X = R. Define T : R — R by Tz = x — 1. We show that T
does not have any fixed point. Suppose z is a fixed point of T'. Then Tz = z, i.e.,
x — 1 = x which implies that —1 = 0. This a contradiction. Therefore 7" has no

fixed point, i.e., F(T) = @.

2.2 Basic knowledge with proof

In this section, we give some basic knowledge which is known, but
the proof cannot be easily found. Some are very old results while the other have
proof but we want to give more detail here so that those who are interested in this

area may study and understand more easily.
Lemma 2.16. Let {a,} be a sequence of real numbers. Then

lim sup a0 = lim sup a,.
Mm—=0 n>m Mm—0 n>m

Proof. Let Ly = lim sup a,.,, and Ly = lim sup a,. We will prove that L, =
M—00 >, M—00 >,

Lo. Since {a,1m :n>m} C {a, :n > m}, we see that
sup{anim : n > m} <sup{a, : n > m}.

That is lim sup{a,im : n > m} < lim sup{a, : n > m}, ie., L1 < Ly. Next, we
m— 00 m—0o0
will show that L; > Ly. We prove this by a contradiction. Suppose that L; < L.

Since lim sup a4, = Li, there exists N in N such that m > N implies
M—00 5>,

|sup{anim :n >m} — Ly| < Ly — L.
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Thus

Gpim < Lo, Yn>m > N,

which implies that

a, < Lo, ¥r>m >N,
sup{a, : ¥ >m} < Lg, Vm > N.

Taking m — oo, we have limsupa, < Lo, i.e., Ly < Lo, a contradiction. From

this, we get Ly > Lo, as desired. O
Lemma 2.17. [1] Let {a,},{b.} and {0,} be sequences of nonnegative real num-

bers satisfying the inequality

ani1 < (14 6,)a, + b, forall n.

[fidn < o0 and ibn < 00, then
n=1 n=1

(1) lim a, < oo exists.

n—oo

(2) If {a,} has a subsequence converging to zero, then lim a, = 0.

n—oo

Proof. Let {a,},{b,} and {4, } be sequences of nonnegative real numbers satisfying
the inequality
a1 < (14+6,)a, +0b, forall n,

where {b,} and {d,} converges. We will show that limsup a, = liminf a,, which

n—oo n—0oo

implies lim a, exists. Since we know that limsupa,, > liminf a,, we need only

n—00 N—00 n—o00

prove that limsup a,, < liminf a,. Since a, 11 < (1 + d)a, + b,, we have

n—o00 n—00

IA

Qp4m (1 + 6n+m—1>an+m—1 + bn+m—1

IN

(€5n+m_1)@n+mfl + anrmfl

< €5n+m_1{(1 + 5n+m—2)an+m—2 + bn+m—2} + bn+m_1
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Ontm— 1) _
Ap+m S et 1{6 nkm 2an+m72 + bn+m72} + bn+m71

— 677, m— +6n m— (S’ﬂ m—
- (6 et * 2)an+m—2 + et 1bn+m—2 + bn+m—1

n+m—1

‘ n+m—1
< ape\ b + ( Z bk) e\ F=n ,Yn,meN.  (2.6)
k=n

[o.¢] o
Let € > 0. Since Z5k < oo and Zbk < oo converge, there exists N in N such

k=1 k=1
that
Zék <e and Zbk <e foral n>N. (2.7)
k=1 k=1

From (2.6) and (2.7), for all n,m > N, we have
pam < ape + €.

Thus

SUp Gpim < € inf a, +ee®, Vm > N.
n>m n>m

We see that

lim supa,i,m < € lim inf a, + ce’
M—00 >y, m—oo n>m

= liminfa, + e€°.

n—oo

By Lemma 2.16, we see that

limsupa, = lim sup a, 1, < e liminfa, + ce°.

n—oo m—00 nzm n—oo

Taking ¢ — 0, we have

limsup a,, < liminf a,,.

n—oo n—oo

Thus limsupa, = liminfa,. Hence lim a, exists. If {a,} has a subsequence

n—00 n—00 n—o0

{an, } converging to zero, by Theorem 2.8 we get lim a,, = 0. O

n—oo

Lemma 2.18. Let {z,} be a sequence in a normed space X . Assume that for any

€ > 0, there exists an N such that
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|Znsn — 2n| < € for all n.
Then {x,} is a Cauchy sequence in X .

Proof. Let € > 0. By definition, there exists N such that

£
|Tnin — N < 5 for all n. (2.8)
For m,n > N, we have
£ £
|zn — zn]| < 5 and ||z, —on|| < 3" (2.9)
Thus
[#n =2l < lzn = 2n]| + [Jam — 2x]]
2 2
Hence {z,} is a Cauchy sequence in X, as desired. O

2.3 Banach Contraction Theorem

Here we study a classical theorem in fixed point theory. It is Banach
Contraction Theorem. We first give the definition of a contraction. Finally, we

give the proof which is from [6] with more detail.

Definition 2.21. (Contraction). Let X = (X, d) be a metric space. A mapping
T :X — X is called a contraction on X if there is a positive real number o < 1

such that for all x,y € X
d(Tz,Ty) < ad(z,y).

Geometrically this means that any point x and y have images that are closer
together than those points x and y; more precisely, the ratio d(Tz, Ty)/d(z,y)

does not exceed a constant a which is strictly less than 1.

Example 2.4. Let X = R. Define T : R — R by Tx = % We claim that T is

contraction mapping. For z and y are in R, we see that
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r vy 1
Te—T :‘———’:— —yl.
Tz =Tyl = |3 = 5| = zle vl
Hence T' is a contraction mapping.

Example 2.5. Let X = R. Define f : [0,1] — [0,1] by f(z) = cosz. To show
that f is a contraction mapping on [0, 1], we use the mean value theorem. Since
the function cosine is continuous on [0, 1] and differentiable on (0, 1). By the mean

value theorem for x and y are in [0, 1], there exists ¢ € (z,y) such that

f(z) = fy)
T -y
flx)=fly) = fO)x—y)

[f(@) = fWl = [FOllz =yl
Since f(x) =cosz, f'(t) = —sint and
|cosxz —cosy| = |sint||lz —yl.

Since the function sine is increasing on [0, 1], |sin?| = sint < sin1 ~ .8415 < 1.

Thus
|cosx —cosy| < (sinl)|z —yl.
Therefore f is a contraction mapping on [0, 1].

The following is the classical iterative process that helps us reach

the fixed point of a contraction.

Definition 2.22. (Picard iteration). Let X = (X, d) be a metric space and
T : X — X. Picard iteration of T is a recursive sequence xg, 1, Z3,... from a

relation of the form
Tpi1 = Tz, n=20,1,2, ..

with arbitrary g € X.
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Note that

ry = TQZ'O

To = TZL‘l = T(T{L’()) = T2[L‘0

r, = T"xg.
This shows that z,, = Tz,_1 = T"z,.

We now ready to prove the very first fixed point theorem in the

history of functional analysis.

Theorem 2.19. (Banach Fized Point Theorem or Contraction Theorem).
Consider a metric space X = (X,d), where X # @&. Suppose that X is complete
and let T : X — X be a contraction on X. Then T has precisely one fixed point.

Proof. We will show that a sequence {z,} of Picard iteration of T is Cauchy, so
that it converges in the complete space X, and then we prove that its limit x is
a fixed point of T" and T has no further fixed points. Let o € X and define the
{z,} to be a sequence of Picard iteration that is z,,,1 = Tz, forn =0,1,2, ... Let
e > 0 and m,n € NU{0}. By definition of Picard iteration and the assumption

on contraction of T', we obtain that

d(xm+17 mm) = d(Twmy Tl’m,1)

IN

ad(Tpy, Tm_1)

= ad(Txym—1,TTm_2)

IN

d(xp_1)

< a™d(xy, ). (2.10)

Assume that n > m. By the triangle inequality, the formula for the sum of a
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geometric progression and (2.10), we have

d(Tpm, )

IN

AT, Ting1) + A(Tms1s Tima2) + oo + d(Tp_1, Tp)

VAN

a™d(z1, z0) + ™ (2, 20) + ... + (2, 20)

(@™ + o™ 4+ a" N d(xy, 20)

IN

a™(14+a+a? +..)d(xy, x0)

a™
= 1 _ad(ﬂfl,xo). (211)

1—
Since 0 < a < 1, we have lim o™ = 0. Since cd—a)
n—00 d(l,’o,l'l) —|— 1

limit, there exists N; such that

> 0, by definition of

- e(l—a)
d(xg,z1) + 1
By the inequality (2.11), we get

for all m > Nj.

1

d(zp, xm) < o/”l — d(xo, 1)
e(l—a) 1
. d
< d(xo,xl) 1 1-a (x07x1)
ed(zo, 1)
= —————————<¢e forall m,n> N;.
d(,To,ZEl) +1

Thus {z,} is a Cauchy sequence. Since X is complete, {z,,} converges, say x,, —
x € X. That is, lim d(z,,z) = 0.
We next show that this limit z is a fixed point of the mapping T

By the triangle inequality and definition of contraction mapping we have

d(z, Tx) < d(z,zn)+ d(zn, T)
= d(x,z,) +d(Txn—1,Tx)

< d(z,z,) + ad(zy-1, ).

Taking n — oo, we have

d(z,Tx) < 0.
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By property (M1) of the metric d, we obtain that d(z, Tx) > 0 and so d(x, T'z) = 0.
By property (M2) of metric d, we get Tx = z. This show that z is a fixed point
of T

Finally we show that x is the only fixed point of T'. Let x and y be
fixed points of T. Thus Tz = x and Ty = y. Then

d(z,y) =d(Tz,Ty) < ad(z,y)

and so

IA
o

d(ZL’, y) - Ozd(:t, y)
(1 —a)d(z,y)

IA
o

Since 1 — a > 0, we have d(x,y) = 0. By property (M2) of the metric d, we get

x =y and the theorem is proved. O

2.4 Fixed Point Theorems for Quasi-nonexpansive Map-
ping

Here three classical theorems about fixed point of a quasi-nonexpansive
mapping are studied. We first give the definition of a quasi-nonexpansive mapping

which is from [7].

Definition 2.23. (Quasi-nonexpansive mapping). Let X be a real Banach
space, C' a closed subset of X and T a mapping of C' into X such that 7" has
a nonempty set of fixed points F(T') in C. T is called a quasi — nonexpansive

mapping, if
[T = pl| < [l = pl],

for all z in C' and p in F(T). If the range of T'is C, i.e., T : C — C, we called T

a self mapping.
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Example 2.6. Let X =R and C = [0,1]. Define T': C' — C by
Tx = g for all z € [0, 1].
Since T'0 = 0, 0 is a fixed point of T". We see that
Te 0] = o — 0] = |5] < Jo| = [+ - 0]
Hence T' is a quasi-nonexpansive mapping.
Example 2.7. Let X =R and C' = [0,1]. Define T': C' — C' by
Te=a>—x+1.
Find fixed point of 7'
P’ —z+1 = 2z
2 —2r+1 = 0
(r—1)2% = 0
r = 1
Since T'1 =1, 1 is a fixed point of T'. We see that
Tx—1|=|2*—2+1-1|= |2 — 2| = |z(z - 1)| = |z|jlz — 1| < |z — 1],
since z € [0, 1]. Hence T is a quasi-nonexpansive mapping,.

Definition 2.24. [5](Asymptotically regular). Let X be a real Banach space,
C a closed subset of X, and T a quasi-nonexpansive mapping of C' into C' with
nonempty fixed point set F(T'). T is said to be

(1) asymptotically regular at xq if 7}1_}1210 | Tz — T 2|l = 0,

(2) asymptotically regular in z, if iminf ||z, — Tz,|| = 0.

The following are useful lemmas we will use to obtain the theorems.
They are well known. Lemma 2.20 is exercise in some text book. For Lemma 2.21
is special for our mappings and sets in the main theorem and Lemma 2.22, the
proof are very hard to be found. We give proof in detail here for those who want

to study them.
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Lemma 2.20. If C' is a nonempty closed subset of a normed space X, v € X and

d(xz,C) =0, then x € C.

Proof. Let C be a nonempty closed subset of a normed space X, z € X and

d(z,C) =0, ie., iné d(xz,y) = 0. Using Theorem 2.14, we will show that x € C.
ye

That is we construct a sequence y,, € C' such that y, — z asn — oo. Forn € N

we get that

. . 1
inf d(z,y) < Inf d(z,y) + .

Thus by definition of infimum we obtain that for each n € N there exists y, € C
such that

1
= inf d d(z, yn inf d(z, —.
0= inf d(z,y) < d(z,y) < inf d(z,y) + ~
By the sandwich theorem we have

lim d(z,y,) = 0.

n—oo

This means that y,, — 2. Since C' is closed y,, € C' and y,, — =z, by Theorem 2.14

we have ¢ € C. O]

Lemma 2.21. Let X be a real Banach space, C a closed subset of X and T a
quasi-nonezpansive mapping of C into C' such that F(T) # @ in C. Then F(T)

s a closed subset of C.

Proof. We will prove that F(T') is closed. To apply Theorem 2.14, we let {z,}
in F(T) and x,, — x, then we will show = € F(T) i.e., Tx = x. By the triangle

inequality and since T is a quasi-nonexpansive mapping, we have

0<||[Tz—z|| = ||Tx—x,+x, — 2|

IN

[Tz = @l + [l2n — 2]

A\

[ =zl + [l — 2|

2Nz — |- (2.12)
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Since x, — z, lim ||z,, — z|| = 0. From this, (2.12) and by the sandwich theorem

we get
|Tx — x| = 0.

By the property (N2) of norm we have Tx = z. Hence by Theorem 2.14 we
conclude that F(T) is closed. O

Note that for a quasi-nonexpansive mapping T; : C' — C (i = 1,2)
with the common fixed point set F(T}) N F(1T3) # &, we have that F(1T1) # @
and F(T,) # @. From Lemma 2.21 we get that F'(77) and F(T3) are closed. Thus
F(Ty) N F(Ty) is closed.

Lemma 2.22. Let X be a metric space and C a nonempty subset of X. If {x,}

is a sequence in X such that x,, — z, then lim d(z,,C) = d(z,C).

n—oo

Proof. Let x, — x. We will prove that lim d(z,,C) = d(z,C). By the triangle

n—oo

inequality, for each n € N, we obtain

d(x,,C) <d(z,C) + d(z,, ).
From this, for each n € N, we get

d(x,,C) —d(z,C) < d(zp, ). (2.13)
Similarly, for each n € N, we can obtain that

d(z,C) < d(x,,C) + d(z,, ),
so, for each n € N, we get

—d(zp,z) < d(z,,C) —d(z,C). (2.14)
From (2.13) and (2.14), we get

|d(x,,, C) — d(z,C)| < d(zp, ). (2.15)
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Since x,, — x, lim d(x,,z) = 0. From this, (2.15) and the sandwich theorem we

get
lim |d(z,,C) — d(z,C)| = 0.
Hence lim d(z,,C) = d(z,C), as desired. O

Note that, for a quasi-nonexpansive mapping 7; : C' — C (i =
1,2) with the common fixed point set F'(T}) N F(T,) # @ and {x,} is a sequence

in X such that z,, — z. From Lemma 2.22 we get that

lim d(z,,, F(T}) N F(Ty)) = d(z, F(T1) N F(T3)).

Theorem 2.23, Proposition 2.24 and Theorem 2.25 are mentioned in

[7] with no proof. We give the proof here for the same purpose as before.

Theorem 2.23. Let X be a real Banach space, C a closed subset of X, and T
a quasi-nonexpansive mapping of C into C with nonempty fized point set F(T).
Suppose there exists a point xo in C such that the sequence {x,} of iterates lies in

C, where x, is given by
(S1) Xy =T, 1, n=12,..
Then {x,} converges to a fixed point of T in C if and only if lim d(x,, F(T)) = 0.

Proof. We first assume that {z,,} converges to a fixed point of 7" in C. Let x be
a fixed point such that =, — x. We know that

0<d(z,,F(T)) = inf d(z,,vy) <d(z,,z), forallneN.
yeF(T)

Since z,, — x, we have lim d(x,,x) = 0. From this and by the sandwich theorem,

we get

lim d(z,, F(T)) = 0.

n—oo

Conversely, we assume that lim d(z,, F(T)) = 0, We will show that {x,} is a

Cauchy sequence so that it converges to a point in C.
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Let € > 0. Since lim d(z,, F(T)) = 0, there exists N such that for

n—oo

all n > N we have
€
d(z,, F(T)) = inf d(z,,y) = inf |z, —y| < <.
(0, F(T)) = Inf d(an,y) = f lon =yl <3
From this and definition of infimum we see that for n > N, there exists y,, € F(T')

such that

£

5

That is, for m,n > N where n = m + k there exists y,,+x € F(T') such that

|xn — ynll < (2.16)

€
|Zmik — Ymarll < 9 (2.17)
Since T is quasi-nonexpansive, vy, € F(T), x, = Tx,_1 and by (2.16),
considering ||Zm,+x — Ym|| We get
[Zmie = ymll = [T Tmik—1 — Yl
S ‘|‘rm+k—1 - ym”
= |Tomir—2 — Ynll
S ||$m+k’—2 - ymH
< lam = ymll < 3
— m ym 2'
Thus
€
|mn = ymll < 5 (2.18)

Hence for n =m +k >m > N, by (2.16) and (2.18) we have

[Zmin = 2mll = [ Tmik = Ym + Ym — Tu
< Nzmere = Ymll + 12m — Ymll
g €

54‘5:8.

We conclude that, for € > 0 there exists /N such that,

|zn —xm| <e forall n>m>N.
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This shows that {x,,} is a Cauchy sequence in C. Since X is complete and C' C X is
closed, by Theorem 2.15 C'is complete. Thus there exists z € C such that z,, — .
Next we show that x is a fixed point of T'. Since x,, — x and 1}1320 d(z,, F(T)) =0,
by Lemma 2.22 we obtain that

0= lim d(z,, F(T)) = d(z, F(T)).

n—oo

That is d(z, F(T)) = 0. By Lemma 2.21, F(T) is closed and by Lemma 2.20, we
conclude that x € F(T)). O

The following is a sufficient condition for a quasi-nonexpansive

mapping to have a fixed point.

Proposition 2.24. Suppose X,C,T and xy satisfy the conditions of Theorem
2.23. Suppose further that

(a) T is asymptotically reqular at xg.

(b) If {yn} is any sequence in C such that ||(I — T)y,|| — 0 as n — oo, then
lim inf d(y,, F'(T)) = 0.

Then {x,} determined by the process (S1) of Theorem 2.23 converges to a fized
point of T in C.

Proof. Let p € F(T). Since T is quasi-nonexpansive,

[nss —pll = 17" o —p

IN

[T" 20 — p

= |lzn —pll,
for all n. From this we can say that
d(xpi1, F(T)) < d(x,, F(T)) for all n,

which means the sequence {d(z,, F'(T))} is nonincreasing. Note that {d(z,, F(T))}

is bounded below by 0. By Monotone convergence theorem (Theorem 2.2) we get
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lim d(x,, F(T)) exists. Since T is asymptotically regular at zg, i.e., ||[T"zq —

T z0]| — 0 as n — oo, by definition of x,, we obtain that
1720 = T" ol = lwn — Tanll
= N =Tzl
We get ||({ — T)x,|| — 0 as n — oco. By condition (b),

liminf d(z,, F(T)) = 0.
Thus by (1) of Theorem 2.5, lim d(z,, F(T)) = liminfd(x,, F(T)) = 0.
Hence Theorem 2.23 tell us that {x,} converges to a fixed point of T in C. [
Let X be a Banach space, C' a closed convex subset of X, and T a

quasi-nonexpansive map of C' into C. Suppose there exists a point zy in C' such

that, for some A in (0, 1), the sequence {z,} given by (52) lies in C.
(52) Tp=Tr(xp1), o€ C, Th=AXT+(1-XNI, Xe(0,1).
We see that

ry = Th(zo)

Ty = T,\(ilfl) = T)\(T)\Qjo) = Tf(l’o)

x, = Ty (xo)

Thus we conclude that x, = Th\(z,-1) = TV (z,). We also see that, since T'
is quasi-nonexpansive , by the triangle inequality and absolute homogeneity, we

obtain
|Tx(x) —pll = [[\NTz+ (1 - ANz —pl
= |[Nz+(1—=Nx—(1—=XNp—Ap|
= [[AMTz —p)+ (1= N)(z—p)
M Tz —pl| + (1 = A)||z — p]

IN

IN

Allz = pll + (1 =Mz —pl

|l = plI
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Hence ||Th(z) — p|| < ||z — p|| for z € C and p € F(T). Therefore T) is quasi-

nonexpansive.

Theorem 2.25. Let X be a Banach space, C' a closed convex subset of X, and T
a quasi-nonexpansive map of C' into C. Suppose there exists a point x¢ in C such
that, for some X in (0,1), the sequence {z,} = {Tx(x0)} given by (S2) lies in C.

Then {x,} converges to a fized point of T in C if and only if

lim d(z,, F(T)) = 0.

Proof. We first assume that {z,} = {TV(zo)} converges to a fixed point of T" in
C. Let = be a fixed point of T" such that x,, — x. Since z, — =, lim d(x,,z) = 0.
We know that

0 <d(z,, F(T)) = yg;(fﬂ d(xp,y) < d(z,, ).

By the sandwich theorem, we get

lim d(z,, F(T)) = 0.

n—oo

Conversely, we assume that F(T) # @ and lim d(z,, F(T)) = 0. We
will show that {z,} is a Cauchy sequence so that it converges to a point in C. Let

e > 0, since lim d(z,, F(T)) = 0, there exists N such that

n>N = d(z,, F(T)) < (2.19)

DO ™

By definition of d(x,, F(T)) as an infimum, for n > N there exists y, € F(T)
such that

£
I =9l < 5. (2:20)

For all n = m+ k > m > N, since T) is a quasi-nonexpansive mapping and by

(2.20), we have
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20 = Ymll = [Zmir = yml - = [ Ta(@mir-1) = yml

A

~ ||Im+k—1 _ymH

- ||T)\(xm+k—2) - ym”

€
5

IN

[Zm — Y|l <
Hence for n,m > N we have
120 = Tl < M|2n = Y| + |20 — ymll <e.

This shows that {z,,} = {TV(z0)} is Cauchy in C. Since X is complete and C' C X
is closed, by Theorem 2.15, C' is complete. Thus there exists x € C' such that

r, — x. Next we will show that x is a fixed point of T. By Lemma 2.22, we have

0= lim d(z,, F(T)) = d(z, F(T)),

n—oo

Since F(T) is closed and d(x, F(T)) = 0, x € F(T') by Lemma 2.20. O



CHAPTER 3

Main Results

Let X be a real Banach space and let C' be a nonempty closed subset
of X. For i = 1,2, let T; : C' — C' be a quasi-nonexpansive mapping such that
F(T)NF(T3) # @ in C. Let {a,} and {3,} be sequences in [0,1) and {u,} and
{vn} be sequences in C'. We are interested in sequences in the following process.

For z; € C and n > 1, define the sequences {z,} and {y,} by

Toi1 = T1Yn + (1 — a)yn + Un. (3.1)

If Tl = T2 = T, then

Tp+1 = anTyn + (]- - an)yn + Uy, - (32)

3.1 Main Theorems

We have the following which is the main theorem of this thesis.

Theorem 3.1. Let X be a real Banach space and let C' be a nonempty closed
subset of X. Fori = 1,2, let T; : C'— C' be a quasi-nonexpansive mapping such
that F(Ty) N F(Ty) # @ in C. Let {a,,} and {B,} be sequences in [0,1) and {u,}
and {v,} be sequences in C. Let x1 € C' be such that the iterative sequences {z,}

and {y,} defined by (3.1) are in C. Assume that

o0 oo
(i) up =u,+u, forn>1, Z |lvn]l < oo,z lu, |l < oo and ||ult|| = o(1—aw,);

n=1 n=1

(i) Y (1—ay) < oo.

n=1

29
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Then the iterative sequence {z,} converges strongly to a common fized point of T}

and Ty if and only if

lim inf d(,, F(T1) N F(T3)) = 0. (3.3)

n—oo

Proof. For the necessity, we assume that {z,,} converges strongly to a common

fixed point of T} and Ty, i.e., there exists p € F/(T1) N F(T3) such that

lim ||z, —p|| = 0.
From this, we have
lim inf ||z, — p|| = 0.
We see that
d(zn, F(T1) N F(T)) = inf  [lzn — gl < [lzn —pl],

qeF (T1)NF(T2)
for all n. Taking limit infimum as n — oo and using the sandwich theorem, we

obtain that
liminf d(z,, F(T1) N F (1)) =0,

as desired. For the sufficiency, we let p € F(T) N F(T3). Since T; : C — C'is a

quasi-nonexpansive mapping for ¢ = 1,2 and by the triangle inequality, we get

lyn —pll = BuTowy + (1 = Bn)zn + va — |
= HﬁnTan + (1 - ﬁn)xn + Un — P — BnTZP + ﬁan
= Hﬁn(T2xn - T2p) + (1 - ﬁn)(xn - p) + Un”

18n(Ton, — p) + (1 = Ba)(zn — p) + v

< BullTown = pll + (1= Bu)llzn — pll + [lva
< Bullen = pll + lzn = pll = Bullzn — pll + llvnl
=z =l + llvall, (3-4)
for all n. By assumption, we have ||u!’ || = o(1 — ), so by definition of the little-o
notation, we get
lim M =0.

n—oo 1 — oy,
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U”
We let ¢, = 1” ul ,80 &, > 0and g, — 0 as n — oo. From this we get

lun | = en(l — o). (3.5)
Since T} is a quasi-nonexpansive mapping, by the triangle inequality, condition
(1), (3.4) and (3.5) we obtain that
Hanrl - pH = ”anlen + (1 - an)yn + Up — p”
= |lanTiyn + (1 = an)yn + up — p — @, Tip + anp)|

= ”O‘n(len - TIp) + (1 - O‘n)(yn —p) + un”

< anl|Tiyn — pll + (1 — an)llyn — pll + [l
< anllyn — 2l + (1 = )y — pll + [Jun
= [lyn — pll + ||ual]

< lwn = pll + o]l + [Jun ]l + [lugl

= llen = pll + lloall + [lunll + €n(1 — aw). (3.6)
Let b, = ||vn|| + [Ju)]| + €,(1 — @,). Therefore
[2nt1 = Pl < llwn = pll + bn (3.7)

o (o9} o
By assumptions that Z lonll < oo,z |u || < oo,Z(l —ay,) < oo and {g,} is

n=1 n=1 n=1

bounded, thus Z b, < co. Hence by Lemma 2.17 lim ||z, — p|| exists. By (3.7)
n=1

and induction, we obtain, for m,n > 1 and p € F(T}) N F(T3) that

n+m—1

|znim = pll < llzn —pl+ Y be (3.8)

By (3.7) and taking infimum over p € F(1}) N F(T3), we obtain

The assumption lim inf d(z,, F/(T1) N F(13)) = 0 implies that there exists a sub-
sequence of {d(z,, F(T1) N F(T,))} converging to zero, Lemma 2.17 tells us that

lim d(z,, F(T1) N F(Ty)) = 0. (3.9)

n—oo
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We will show that {z,} is a Cauchy sequence in X. Let ¢ > 0. From (3.9) and
Z b, < oo, there exists k such that, for n > k, we have

n=1

d(z,, F(Ty) N F(T3)) < . (3.10)

o
N ™

and j;ibi<
i=k

By the first inequality in (3.10) and the definition of infimum, there exists ¢ €
F(Ty) N F(T3) such that

5
47
for n > k. We combine (3.8), (3.10), (3.11) and use the triangle inequality to get

lzn — gl < (3.11)

that, for n > k,

[k =zl < ll@ngk = gll + 2 = gll

n+k—1

< <||$k—q||7L > bi) + ||z — 4l
n+;;1

= Sl + Y b

< 2 (Z) + % =g,
which means that {x,} is a Cauchy sequence in X by Lemma 2.18. But X is a
Banach space, so there exists z € X such that z,, — 2. Since C'is closed and {z,,}
is a sequence in C' converging to z, we have z € C. Since @ # F(T))NF(1T3) C C

and x, — x, by Lemma 2.22, we have

0= lim d(z,, F(T)) N F(T)) = d(z, F(T}) N F(T3)).

n—oo

Thus d(x, F(T1) N F(T3)) = 0. From this and since F'(T1) N F(T3) is closed, then
by Lemma 2.20 and x € F(T1) N F(T3). Therefore {z,} converges strongly to a

common fixed point of 77 and 75 in C, as desired. O
The following corollary comes directly from the Theorem.

Corollary 3.2. Let X,C,T;(i = 1,2) and the iterative sequence {x,} be as in

Theorem 3.1. Suppose that



33

(1) The mapping T;(i = 1,2) is asymptotically reqular in x,, and

(77) liminf ||z, — T;x,| = 0 implies that liminf d(z,, F(T1) N F(13)) = 0.

n—oo

Then the sequence {x,} converges strongly to a common fized point of Ty and T;.
The following theorem gives some other sufficient conditions.

Theorem 3.3. Let X,C,T;(i = 1,2) and the iterative sequence {x,} be as in
Theorem 3.1. Assume further that the mapping T;(i = 1,2) is asymptotically
reqular in x, and there exists an increasing function f : RT — RT with f(r) > 0

for all r > 0 such that for i = 1,2, we have
ey — Tixyn|| > f(d(zn, F(Th) N F(Ty))) forall n>1.

Then the sequence {x,} converges strongly to a common fized point of T and T.

Proof. By assumption that ||z, — Tyx,| > f(d(x,, F(1T1) N F(Ty))) for all n > 1
and since T;(i = 1,2) is asymptotically regular in {x,}, we conclude that

0 > liminf f(d(x,, F(T1) N F(13))).

n—oo

Since f : RT — R*, we have

lim inf f(d(an, F(T1) N F(Ty))) = 0. (3.12)

n—0o0

We claim that liminf d(x,,, F'(T1) N F(T3)) = 0. Suppose not, i.e.,

n—oo

liminf d(z,, F(T1) N F(1y)) # 0.

n—oo

From this and f: RT — R*, we get

liminf d(x,, F(T1) N F(1z)) = L > 0.

n—oo

From this we see that

n— o0 N—oon>N
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Thus for all e = L > 0, there exists N; € N such that N > N; implies

inf d(z,, F(T) N F(Ty) — L] < £.

n>N 2

From this we get

L L
5 < in]f;/d(:vn,F(Tl) NF(Ty)) < 37 forall N > Nj.

nz
That is
L
5 < d(x,, F(T1) N F(Ty)) forall n>N > Nj.

By the assumption, f is increasing, so

L

f(E) < f(d(zn, F(TY) N F(Ty))) forall n>N > Nj.

Taking infimum over n, we get

f(g)

IN

inf {f(d(z,, F(T1) N F(Ty)));n > N} ,VN > ny
< A}ilnooinf{f(d(xn,F(Tl)OF(TQ)));nZN}
= liminf f(d(z,, F(T1) N F(T3))).

Since f(r) > 0if r > 0, we get

n—~oo

L
0< f(E) < liminf f(d(z,, F(T1) N F(13))),
contradiction with (3.12). We obtain that

liminf d(z,, F(T1) N F(T3)) = 0.

By Theorem 3.1, we conclude that {z,} converges strongly to a common fixed

point of 77 and 75, as desired. O
If Ty =T, =T, we have the following result.

Corollary 3.4. Let X be a real Banach space, and let C' be a nonempty closed
subset of X. Let T : C — C be a quasi-nonexpansive mapping such that the fixed
point set F(T) # @ in C. Let {a,} and {B,} be sequence in [0,1) and {u,} and
{v,} be sequences in C. Suppose there exists an element x1 € C for which the

iterative sequences {x,} and {y,} defined in (3.2) are in C. Assume that
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o oo
(1) tn =ty 1t forn =1, 3 |loall < 00,3 i || < 00 and il = o(1 —a,);

n=1 n=1

(i) Y (1 —ay) < oo,

n=1

Then the iterative {x,} converges strongly to a fized point of T if and only if

liminf d(x,, F(T)) = 0.

n—oo

Corollary 3.5. Let X, C,T and the iterative sequence {x,} be as in Corollary
3.4. Suppose that

(1) The mapping T is asymptotically reqular in x, and

(#7) liminf ||z, — Tx,|| = 0 implies that liminf d(z,,, F(T)) = 0.

Then the sequence {x,} converges strongly to a fixed point of T in C.

Corollary 3.6. Let X,C,T and the iterative sequence {x,} be as in Corollary
3.4. Assume further that the mapping T is asymptotically regular in x, and there

exists an increasing function f: RT — R with f(r) > 0 for all v > 0 such that
|xn — Tyl > fld(x,, F(T))) forall n>1.

Then the sequence {x,} converges strongly to a fixed point of T in C.

3.2 Example

Let X = R and C' = [0,1]. Then X is a Banach space with C' as a
closed subset. For i = 1,2, define T; : [0, 1] — [0, 1] by
T x
Tix = 0 and Tox = 3
Then

Twer=x<=x=0and Thx =2xr <= x=0.
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Thus 0 is the only common fixed point of T} and T5. That is F/(T1) N F(T3) = {0}.

Consider, for all x € [0, 1], we get

Tz — 0 = %_O‘ — \f—o‘ <|z|=|zr—0| and
x x
Ty — 0| = )g—o] — \3) <|z| =z —0].
v
Hence T) and Ty are quasi-nonexpansive mapping on [0,1]. Let wu, = e’( 2+1)”,
1 1
Un = g an = 1= o, Brn = R Consider the condition (i),
Uy = = (ﬁjL 1) 6_(\/5;1)”
" 2
2
y VE+1 (B+1)
u, = e 2
" 2
u, +ul = _\/§_1+5+2\/5_|_1 ~ LA,
(\/5+1)n
= (& 2
= Upy.

o0
Hence u,, = v, + u” for n > 1. Consider u’ |, we have
n n n nl

[eS)
n=1

n=1

[

Ju |

VB4 1
9

V541
)e_( S ) n

;_
V5 +

o0

1 1
[e.9] oo
Thus Z |luy,| < oo. Consider Z |vn|, we have
n=1 n=1
= (1

1 oo
This is a geometric series with |r| = 5 < 1. Hence Z |vn| < oco. Therefore the

condition (7) holds. Next, we consider the condition (7).

n=1
1
Since a =1 — —,
3n



37

1 1
l—ap=1—-(1-=—)=—.
(1-5) -5

o0 e} 1 n
From this, we get Z(l — ) = Z (5) . This is a geometric series with |r| =

n=1 n=1

1 oo

3< 1. So Z(l — ;) < 00. Therefore the condition (ii) holds. Choose x; = 0.5.
n=1

Then the iteration in (3.1) becomes

1 /1 1 1
Yn = E(g)zn+(1—4—n)xn+5—n
1 1 1 _ (D,
Tpt1 = (1—3—”> <1—0)yn+3—nyn+€ 2

We show that with x; = 0.5,{z,,} and {y,} are sequence in [0, 1] by calculation
using Microsoft office Excel. See Appendix A.
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APPENDIX A
Let l/tn=€[ ’ j ’ vn:i’ anzl_i’ ﬂn:L’ zx:i and
5" 3" 4" 10

Ix= g Choose x, =0.5, then {xn} and {yn} are as follows.

We use Microsoft office Excel to obtain the following table for the iterative process

above.
Table 3.1: Value of «,, f,, u, and v,

n a, l-a, u, B, 1-5, Vi

1 | 0.666666667 | 0.333333333 | 0.198288153 0.25 0.75 0.2

2 | 0.888888889 | 0.111111111 | 0.039318192 0.0625 0.9375 0.04

3 1 0.962962963 | 0.037037037 | 0.007796332 0.015625 0.984375 0.008

4 | 0.987654321 | 0.012345679 | 0.00154592 | 0.00390625 | 0.99609375 0.0016

5 1 0.995884774 | 0.004115226 | 0.000306538 | 0.000976563 | 0.999023438 0.00032

6 | 0.998628258 | 0.001371742 | 6.07828E-05 | 0.000244141 | 0.999755859 0.000064
7 | 0.999542753 | 0.000457247 | 1.20525E-05 | 6.10352E-05 | 0.999938965 | 0.0000128
& 1 0.999847584 | 0.000152416 | 2.38987E-06 | 1.52588E-05 | 0.999984741 | 0.00000256
9 | 0.999949195 | 5.08053E-05 | 4.73883E-07 | 3.8147E-06 | 0.999996185 | 0.000000512
10 | 0.999983065 | 1.69351E-05 | 9.39653E-08 | 9.53674E-07 | 0.999999046 | 1.024E-07




Table 3.2: Value of y, and x,,,

n Y Xt

1 0.975 0.58828815
2 0.598873745 0.15909294
3 0.165104279 0.02981024
4 0.031317078 0.0050256
5 0.005341669 0.00086049
6 0.00092432 0.00015436
7 0.000167148 2.8836E-05
8 3.13958E-05 5.5338E-06
9 6.04574E-06 1.0787E-06
10 1.18113E-06 2.121E-07

0.7 +
1 2 4 ;3 7 é

Figure 3.1: Graph of {xn} in our iteration
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Next, we will compare sequence {xn} between using Picard iteration

. . 1 1
and our iteration, where T\ x=T,x=Tx= g, a, = 1—3—n, B, = 2 and
5
u,=e * /. Choose x, = 0.5, then sequence {xn} and { yn} of our iteration are as
follows

v, =8Tx, +(1—,Bn )xn +u,

xn+1 :anTyn +(1_an)yn +un'

Picard iteration is
x,,=Tx +u,.

Use Microsoft office Excel, we obtain the following table.

Table 3.3: The comparison {xnﬂ} of our iteration and Picard iteration

Our iteration Picard iteration

" Y Xl KXl

1 0.973288153 0.652489291 0.298288153
2 0.659183018 0.229748841 0.098975822
3 0.234673312 0.061684277 0.027591496
4 0.063037434 0.014775999 0.007064219
5 0.015070993 0.003370353 0.001719382
6 0.003430477 0.000750643 0.000404659
7 0.000762659 0.000164863 9.29843E-05
8 0.000167251 3.58605E-05 2.09867E-05
9 3.63343E-05 7.74221E-06 4.67123E-06
10 7.83617E-06 1.66131E-06 1.02821E-06
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Our iteration

Picard iteration

Figure 3.2: The comparison of our iteration and Picard iteration

This shows that our iteration is as good as Picard iteration. Thus, our
iteration is an alternative iteration for approximation a fixed point of quasi-

nonexpansive mapping.
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