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ABSTRACT

Overlapping nuclei segmentation employs image information to extract
boundaries or pixel group of individual nucleus. Shape, edge and intensity of nuclei are applied to
image preprocessing to prepare required conditions for segmentation algorithms. Direction is the
information that can yield the segmented objects when it holds the smoothing and contrasting
direction abilities before direction-based segmentation. This work proposes technique consisting
of two steps, direction generation and direction segmentation. The preprocessing named direction
generator operates to construct direction from nuclei shape based on the desired direction
abilities. Three direction segmentation techniques are proposed to determine the boundaries or
pixel group. Direction-based splitting and merging technique (DSMT) exploits grouping and re-
grouping the direction field based on smoothing direction ability. In contrast, direction-based
classification technique (DBCT) uses the contrasting direction ability to locate the boundaries
between overlapping nuclei. Finally, direction-based flow tracking technique (DBFT) moves
pixels using path from direction information to the same area or nearby in each individual
nucleus. The recovery of these pixels to the original position after label process results the
individual nucleus. The performance to these techniques are compared to the tradition watershed
(TWS) and marker-controlled watershed (MCWS) on overlapping nuclei images. On the classifier
performance measurement, DBFT provides the highest number of ACC and F',-measure. This
shows that the direction-based techniques can achieve the segmentation task. Also, the proposed
segmentation techniques operate on relation, difference, and path of direction field. They are the

essential characteristics of these segmentation approaches.
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Chapter 1

Introduction

1.1 Image Characteristics

Immunohistochemistry is a technique used for detecting in situ a tissue antigen by a specific
antibody. An antigen-antibody reaction is visualized by the color development of specific dye and
can be seen by light microscope. The tissue antigen is presented at any part of the cell, i.e., cell
membrane, cytoplasm or nucleus. Therefore, it is a useful technique to demonstrate the protein
markers including cancer cell. Estrogen receptor (ER) and progesterone receptor (PR) are
prognostic markers for breast cancer detected by this method. Evaluation of ER and PR positive

cells are useful for hormonal therapy.

Figure 1.1 shows an example of stained cancer cell image from microscope with a magnification
of 40x. This staining procedure is utilized to demonstrate the existing of estrogen or progesterone
receptors in the breast cancer cells. In other words, stained cancer cells are classified into two

categories according to their nucleus color contents, i.e. brown and blue. The brown color indi-

Fig. 1.1: An example of a stained cancer cell image. The brown and blue nuclei with the added
labels are representative samples of positive and negative staining of estrogen receptor of breast

cancer cells, respectively.



cates a positive (P) staining while the blue one demonstrates a negative (N) result. The brown and
blue cells with the added labels shown in Figure 1.1 are representative samples of positive and
negative staining of estrogen receptor of cancer cells, respectively. The ratio of the total number
of positive cancer cells to the total number of cancer cells in the whole image is used by a doctor

for medical planning and treatment.

Traditionally, the percentage of positive cells of those markers is semi-quantitatively counted.
However, it is time consuming, costly, subjective and tedious. To overcome these problems, an
automation of image analysis that previously requires manual operations is performed on the
basis of the developments in computer capabilities and image processing algorithms [1]-[3].
There are a number of benefits that result from an automated analysis. These include an
acceleration of the process, a reduction in cost for image analysis, as well as a decrement in a
false inspection due to fatigue. Additionally, the automated analysis provides a quantitative
description. Based on this quantitative measurement, the analysis result is objective. Further-
more, the correlation of the quantitative categorization with patient symptoms may allow for an
automated diagnostic system [4]. However, it is not expected that automated image analysis will
replace pathologist’s experience. It is only an aid to the pathologist for the repeated routine work
and yields quantitative results that complement and enhance interpretations by pathologists.
Visual examination by the pathologist is still required where the objects that the method is not

trained to deal with are encountered.

1.2 Review of Literature

Literatures relating the overlapping nuclei segmentation can be categorized into intensity-based
and direction-based algorithms. Based on intensity determination, the watershed algorithm is
popular technique by its simple adaptation to various nuclei in hand. Such combination with the
other components, these further improvements answer their requirement as well. To organize their
proposed approaches clearly, pre-processing and post-processing can be used to represent the
similarity among them. On the one hand, the pre-processing is the preparation of catchment basin

that is before provided to flooding process of watershed algorithm. Under utilizing the binary



image nuclei from image preprocessing, the accurate catchment basin can be produced by
marking function [5]. Based on the distance transformation applied to catchment basin
preparation, its improvement by marking function [6] generates the contrast distance among
overlapping nuclei. In addition, novel distance transformation is proposed as the reverse fuzzy
distance transform [7] and radial symmetry decomposition technique [8]. These techniques
alternatively propose distance transformation in more complexity process. In case of irregular
nuclei surface, the harmonic cut and regularized centroid transform [9] reconstructs the nuclei
surface yielding more smoothing catchment basin. Moreover, marker-controlled watershed which
builds catchment basin by marker [6], [10]-[12] achieves the over segmentation reduction. Based
on initial marker identification, this technique attempts to guarantee an extracted marker to
represent an individual nucleus. Then, the obtained marker will be used to build the catchment
basin provided to watershed algorithm later. On the other hand, the post-processing of watershed
algorithm is subsequently action to handle the obtained undesired results as over-and-under
segmentation. The decision function applied by selected features of segmented nuclei [12]-[14]
determines merging decision among connected objects. In addition, the modified application of

hole-filling, basically morphology operator, is proposed to support this task.

On the other side of intensity-based technique, there are the deformable contour methods which
are classified into the direction-based technique. The combination of edge-and-region-based
operations preferably makes precise segmentation line. Two families of medical application of
this technique are snakes and level set methods [15]. They are firstly introduced by Kass et al.
[16] and Malladi et al. [17] respectively. On overlapping nuclei segmentation, the implement-
tations can be entirely adapted to all steps in process. In pre-processing step, preparing of external
force field is the popular strategy, for instance, contrasting external force field among individual
nucleus simply approaches the accurate contour [18]-[20]. Furthermore, the exact contour can be
otherwise derived by the initial contour identification similar to marker in the watershed
algorithm [21]. Next, in-processing of the deformable contour methods is also opened to
accommodate to desired application. The modified process and parameterization are the example
of this agreement to the specific case of overlapping nuclei [22]-[24]. For post-processing, in

some deformable contour methods, their functions do not involve to overlapping object segmen-



Fig. 1.2: The elliptic-like shape (approximated by red line) of breast cancer nuclei.

tation. The extra operation is required to support this task such determination of knot’s contour

[25].

In spite of the mentioned techniques, other alternative approaches have been proposed
continuously in various significant objectives. Adaptation, improvement, and modification are
selected applying to achieve their goal. Such the neuron network theorem, it can be fully applied
to overlapping nuclei segmentation [26]. Also, basically nuclei structure, the morphology
calculation succeeds the segmentation task when the concave shape of overlapping nuclei is
obviously observed [27]. Moreover, curve fitting technique, and gradient flow tracking also
involve the various theorem on the overlapping nuclei segmentation [28]-[29]. Even though there
are the continuous developments, the segmentation issue of overlapping nuclei is still opened.
This absolutely indicates the significance of this topic impacting to knowledge application of
digital image processing to biomedical engineering. Reversely, knowledge from this application

might be also extended to the others.

1.3 Image Information from Overlapping Nuclei Image

Before the image analysis process, the consideration of image information is usually determined
initially since it is essential value which influences to segmentation scheme. Similar to this work,
overlapping nuclei segmentation, the individual nucleus will be initially analyzed and then

selected the property and/or characteristic to prepare input to the direction application. This



TABLE 1.1: The conclusion of image information applied on overlapping nuclei

segmentation.
No. Image information Segmentation approaches References
1 Nuclei shape Watershed [5]-[8], [10]-
[14], [30]-[31]
2 Nuclei shape Deformable contour methods [21]
3 Nuclei edge Deformable contour methods [18]-[19], [20],
[22], [25]
4 Nuclei intensity Watershed [9]
5 Nuclei intensity Gradient flow tracking [29]

requirement is called “image information”. From the fact that the nuclei are usually elliptic-like
shape [28], for instance, breast cancer nuclei as shown in Fig. 1.2. Most researchers in this filed
give the priority to nuclei shape as the summary of the approaches shown in Table 2.1. This
shows the majority in nuclei shape information applied to segmentation approach while following
by nuclei intensity and nuclei edge is less employment. Clearly, the mentioned items are further

described as following:

Nuclei shape: Since the nuclei can be described as elliptic-like shape, its description prefers the
morphological image operator. For instance, the distance transformation is performed to prepare
the nuclei intensity for watershed algorithm as shown in Fig. 1.3. It shows that the transformation

generates the separated minimum of overlapping nuclei using the concave shape.

Nuclei edge: There is the image edge application which corresponds to the segmentation
algorithm. As deformable contour methods, this manner generally exploits this information but

the complex solution of overlapping nuclei problem is also required extremely.

Nuclei intensity: Because it is primary image information, the image noise from nuclei image

acquisition and nucleus type usually reduce image quality, for example, the breast cancer nuclei
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Fig. 1.3: The example of the application of image information on the overlapping nuclei

image.

illustrated as surface plot in Fig. 1.3. To hold its employment, the image preprocessing must be

performed hardly when the image noise disturbs strongly.

From the image information implementation, the nuclei shape is mostly employed, especially
applying to the distance transformation. The concave shape strongly yields advantage by more
smoothed nuclei surface, maintaining the separated minimum, adaptation, and simple implemen-
tation. Thus, on the overlapping nuclei task, the most application on it in the initial information is

represented obviously.

1.4 Original Contribution

From the literatures, the segmentation approaches require image information to build prepared
information before segmentation. For instance, the specific pre-processing of watershed algorithm
and deformable contour methods build catchment basin and external force field respectively.

Also, the in-processing of deformable contour methods can be made parameter adjustments to



achieve this task. Moreover, the post-processing of them also determines the segmented nuclei to
more correct result. However, these schemes have a trade-off on complexity, cost, and processing
time. Thus, this work attempts to employ the alternative image information to maintain accuracy

with less complexity, cost, and processing time.

1.5 Objective

(1) To propose novel algorithm of overlapping nuclei segmentation for breast cancer
nuclei.

(2) To study and assess the proposed algorithm comparing to the existed algorithm in
overlapping nuclei segmentation.

(3) To study factors affecting to overlapping nuclei segmentation for breast cancer nuclei.



Chapter 2
Overview of Direction-based Application

on Overlapping Nuclei Segmentation

2.1 Introduction

In this chapter, the contents present the introduction of principle in direction-based application on
overlapping nuclei segmentation. First, the Section 2.2 carries out the description of direction
information in the traditional physics involved mathematics and the characteristics when it is on
the 2D space. Furthermore, this section will also illustrate its possibility on segmentation task in
2D space. Consequently, in Section 2.3, the segmentation approach based on direction application
will be deal with the image information from nuclei. This yields the general scheme in Section 2.4
which is based to other proposed approaches in this dissertation. Finally, the discussion to all

obtained outcome will be expressed in Section 2.5 involved the relationship to next Chapter.

2.2 Direction Information

In applied mathematics and physics, the direction information is usually included to quantities
formed as vector. Velocity, force, movement, and acceleration, for instance, are some examples
which can be described its characteristic by a vector [32]. Based on its principle, the arrow
direction of a vector represents its action where its length indicates the magnitude in selected
scale. Let AB showed in Fig. 2.1(a) represents the vector, where the line from point A to point
B is the line of action, and the point B is the terminus of the vector. To accommodate the vector
format, this dissertation uses the notation to denote a vector as @ showed in Fig. 2.1(a).

Furthermore, where a is only represented to direction information, the normalized vector is used

to transform by



(a)

Fig. 2.1: Vector (a) and unit vector in 2D space (b)-(c).

. a
a=—

) 2.1
Jef
where ||a|| is norm of @. @ is the unit vector that set the magnitude to one. In other words, the

direction of & is transformed to the rectangular coordinate that can be estimated the direction

difference.

In 2D space, the existed & can describe the segmented area by the definition of decision function
(D( )) which inputs the direction information of a . For instance, the & in Fig. 2.1(b) can be

extracted the decision line for segmented area by

D(a)={+ Q, Z(APa)<¢ 02

-0, /(APa)>¢

where £ Q) is the segmented area, P is a point in 2D space, and ¢ is the reference angle that
classifies the angle difference from L(ﬁ, é.) to = Q. In the example, identifying ¢ to 90° sets
the segmented area represented by the red and blue area for + €2 and— €2, respectively. In
addition, the decision line can be varied by the difference @ . Here, it is the result from a vector
only which can make more information in 2D space. Definitely, increasing unit vector to 2D
space yields more complete segmented area. As showing in Fig. 2.1(c), £ are restricted over

only one vector. The cooperation of a, b, C, and d is based on the intersection of +Q of

them. This shows direction information advantage to segmentation in 2D space. The operation of
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Fig. 2.2: Direction behaviors on overlapping nuclei.

direction and D( ) as the simple demonstration in Fig. 2.1(c) indicates to possibility of
segmentation estimation in 2D space. In this dissertation, its application to overlapping nuclei
segmentation is used to make value in practice. The correspondence of direction information and
image segmentation is represented latter section which image information meets direction

information.

2.3 Proposed Direction Form on Overlapping Nuclei Segmentation

In previous works, there are deformable contour methods and gradient flow tracking which
utilized the direction application. They apply the direction to extract the segmentation line to
separate the overlapping nuclei. Similar to intensity-based segmentation, the characteristic of
application can be observed. Let synthesized-separated-nuclei image in Fig. 2.2 is determined the
direction using V[f (i, j)] where f (i, ) is its distance transformation. This shows direction
behavior when the red mark is put on. Obviously, all direction in the individual nucleus tries to
direct to the same area or same red mark. This behavior can be analyzed to ability of direction

when the direction among them is considered.

Smoothing direction ability: This ability indicates that all direction in the individual nucleus

tries to direct to the same area or nearby. This factor plays as the unity indication to all pixels in
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Image information

at + Q) V + Qn
— | Direction generator > D( ) >
P (i.j)

Fig. 2.3: Basic concept of direction application on image segmentation.

the individual nucleus. In other words, smoothing direction is the movement guideline that

gathers them together.

Contrasting direction ability: From the smoothing direction ability, the further behavior occurs
when the direction among the connected nuclei areas are determined. It is contrasting direction

ability which separates the overlapping nuclei on the direction environment.

Segmentation decision: Co-operation of the smoothing and contrasting direction abilities
originate the boundaries which prevent the connected nuclei, namely segmentation decision. This

is the result of the decision function (D( )) which is respectively judged + Q.

From the above description, the direction application on overlapping nuclei segmentation should
be earned the smoothing and contrasting direction abilities for direction generator. These abilities
make the direction field responding to decision function as well because its behavior has the unity
in the individual nuclei. In addition, the decision function determining the segmentation boundary

must perform based on two abilities employment.

2.4 General Scheme of Direction Application on Overlapping Nuclei

Segmentation

This section describes the implementation of image information to overlapping nuclei

segmentation based on direction determination. This basic process uses the nuclei shape as the
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(a) (b) (©)

Fig. 2.4: (a) Correct segmentation. (b) Over segmentation. (¢) Under segmentation.

image information, which is used to provide to direction application process. Therefore, the

general scheme in this section will be the master process that is based to other chapters.

On the image information, discrete signal is formed by spatial coordinate. Let P(i, j) represents
pixel position which contains the image information such as intensity, color space value, etc.
Assuming, at a P(i, j), the image information at + €2 is inputted initially to the workflow as
shown in Fig. 2.3 to perform the direction generator, where + €2 is foreground that includes the
overlapping objects. At the output of direction generator, the image information is transformed to
the vector matrix V' where the magnitude of V' at P (i, j) illustrates its direction by vertical and
horizontal values. In this concept, the direction generator is required to build some characteristic
that can reveal its unity in the individual object. For example, all direction in it totally directs to
the same area or nearby. Next, the direction in V is classified to + €2, where + Q) is the
individual object area at object number N. This manner is called decision function (D( ))
because of its operation on classifier. From this, the target object is extracted its pixels in the
image and also n". Thus, +€2, is an extracted object which is visualized by labeling
number N on the image. Finally, the + € will be compared to the expert marker to determine
the segmentation accuracy as shown in Fig. 2.4. From the example, the correct segmentation is

+ €, labeled with one marker (red dot). The over segmentation is + € which does not have

the marker. The under segmentation is + € which contains more than one marker.
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2.5 Discussion

This chapter proposes the overview of direction-based segmentation approach applied to
overlapping nuclei segmentation problem. The contents flow subsequently from the basic theory
to application. They consist of direction mathematics, applying the direction to segmentation
approach in 2D space, the image information from overlapping nuclei image, and the overlapping
nuclei segmentation using direction information. However, because this is only the overview and
basic concept, the description does not illustrate the scheme, experiment, and result. These will be
responded by later chapters which are a part of the basic workflow in Fig. 2.3. Hence, the
proposed computations in this dissertation are in the two steps as direction generator and decision

function(D( )) Also, the obtained results will be V' and + € respectively.
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Chapter 3

Direction Generator

3.1 Introduction

The primary step to direction application on overlapping nuclei segmentation is the direction
preparing as the direction generator shown in general workflow in Chapter 2. The provided
information to this approach is required based on the selected image information from the
overlapping nuclei image. From Chapter 2, when it responds by the nuclei shape, this is further
calculated to obtain this information. The image pre-processing in Section 3.2 is set to achieve
this task. It contains the minor steps formed as workflow which extracts the nuclei shape from
nuclei color image. Subsequently, the obtained nuclei shape will be provided to the direction
generator in Section 3.3. Now, the nuclei shape information is transformed to the direction field.
The derived results from the experiment are reported in Section 3.4. These show the characteristic
of the obtained direction field and parameter response, which are discussed in this section.

Finally, the conclusions are given in Section 3.5.
3.2 Image Pre-processing on Overlapping Nuclei Segmentation

The image pre-processing step consists of image transformation and background elimination. This
scheme prepares the image information extracted from the overlapping nuclei image. In
overlapping nuclei segmentation, the image information is set to nuclei shape which is
outstanding among the other image information as described in Section 2.2. Fig. 3.1 shows the
workflow of all steps that takes initially the original source as color image to the end of process

by the determined binary image. In each step, the operation is detailed as following:

Color space transformation: Because the various image data can be transformed among color

image type, the application can select one that approaches the objective best. In this case, the
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Fig. 3.1: Image pre-processing workflow.

intensity image is selected because it yields the contrasting between foreground referred to + €2

and background referred to —€2 as the example in Fig. 3.2(a).

Binarization: To prepare nuclei shape information, the binary image is the popular form in which
the overlapping-and-individual nuclei appear exactly as the concave shape and elliptic-like shape
respectively. The binarization is performed by the classification of a pixel to £€2. By the

threshold value (TH ), the binarization is calculated by

+Q L 1(i,j)<TH

B(i, )= L , 3.1

(i.J) {—Q (i, j)>TH G.1)
where 1(i,j) is the intensity value at P(i,j). From high contrasting of the nuclei image
intensity, it also yields the contrasting of the intensity histogram as shown in Fig 3.2(b). From
this, the Otsu’s thresholding performs well when the histogram acts as the two valleys. Moreover,
the simplification and cost are also derived from this approach. Its threshold value can be

calculated by
2 *\ _ 2
og(TH )= max oy (TH), (3.2)

where, the threshold value is TH giving the maximum-between-class variance (O'é ). In the
example, the obtained binary image still has some un-designed nuclei area. The morphology

operator is needed to manage it.
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Fig. 3.2: (a) Color space transformation. (b) Binarization. (c) Morphology operator.

Morphology operator: Fig. 3.2(c) illustrates respectively results of selected morphology
operator supporting each requirement. Firstly, the binary image (A) is determined the area (pixel
number) that excludes the tiny piece, showing in the binary image (B). Then, the un-completed
area by hole is filled as showed in the binary image (C). Finally, the un-completed area by

attaching the image window is also released as showed in the binary image (D).

Note that the binarization and the morphology operator are considered to be the component of the
background elimination from the foreground extraction. Here, the prepared image information by
nuclei shape through the binary image is achieved. Thus, desired image information and the

image in hand should be initially considered in the scheme construction.

3.3 Direction Generator

The direction generator is a step which builds the direction in the foreground (+€2) of the
overlapping nuclei image. It engages to response the requirement of direction application on
overlapping nuclei segmentation. The accomplishment on smoothing-and-contrasting direction

abilities is needed significantly when the image information on nuclei shape is selected. From
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Fig. 3.3: (a) Smoothed image surface of reconstructed intensity after distance transformation. (b)

The V of (a). (¢) The V of dilated nuclei image. (d) V,,, -
previous works, the nuclei shape generally applies to d (B), where d( ) is distance transforma-
tion function and Bis a binary image. It yields reconstructed intensity value which is more
smoothing surface by the nuclei shape information. The demonstration is illustrated in Fig. 3.3.
However, the irregular shape of overlapping nuclei makes roughly the reconstructed intensity. It

respectively makes the error such the over-segmentation in watershed application.

To solve this problem and hold direction requirement, let the primary step to generate the initial

direction by

WERACI()) 53)

T MaE))

where V is the image gradient estimation. The obtained direction field (V') is illustrated in Fig.
3.3(b). There is confusing direction generated from local minima intensity by distance

transformation of the irregular shape. Also, it misses the direction requirement and remains the
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Fig. 3.4: (a)-(i) illustrate the local direction field at iter =1, 5, 10, 15, 20, 25, 30, 35, 40, and
the final direction field (j).

problem. Thus, the direction field in hand is analyzed using observation of direction field

structure. It reveals two points concerning the solution.

First, the irregular shape should be reduced before distance transformation. Fig. 3.3(c) shows the
dilation operator, basic morphology operator, which sets the nuclei shape to more smoothness and
then V is computed. The smoothing direction ability is more over the first distinctly but the
contrasting direction ability is still lost. However, some potential remains for able observation.
This is shown by the red dash circles in Fig. 3.3(c). The contrasting direction is at the concave
shape of overlapping area. To utilize it, the second solution must take this direction along the

segmentation boundary. This task can be achieved by the local distance transformation.

From the designed solution above, the direction generator will be combined by the morphology
operator and the local distance transformation. By this, Eq. 3.3 for global estimation is

transformed to
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V(d(B®E,))

Vit " (d(BOE, )

‘B, (3.4)

V(d(B®E,))
[Vd(B@E, )

the initial direction

where E, is a structure element for dilation operator, and

field from dilation operator. From Eq. 3.4, the improved direction field is illustrated in Fig.
3.3(d). To take the contrasting direction covering the segmentation boundary, the shrinking

process by erosion operator is selected to perform in an iterated process, which is given by: [33]

Direction generator:

DefineE,, E

V=0
iter =0
While B is not empty

Find V'™

local

V= (V +Viter

local

)/2
B=BoE,

iter =iter +1
End while

End

where Vui)ts; is a local direction field at loop iter , and E,, is the structuring element of erosion

operator in the shrinking process. At a loop iter , the direction generator yields V, . as shown

local

in Fig. 3.4(a)-(i). The contrasting direction presented by the red dash circle attaches to the V

local

as possible. Finally, in Fig. 3.4(j), the average of all V,

local produces the desired direction field

which keeps the smoothing-and-contrasting direction abilities.
3.4 Experimental Results

This section shows the results from the experiment where the actual overlapping nuclei image is

applied to proposed direction generator. The obtained direction field (V) will be analyzed based
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Fig. 3.5: (a) Direction field from the proposed direction generator. (b) Direction field from

gradient direction of smoothed distance image.

on the direction requirement. Furthermore, its parameter setting will be also varied to present its

characteristic under this situation.

Direction Characteristic: = According to the direction requirement, the smoothing-and-
contrasting direction abilities are the keys that determine the segmentation boundary. In direction
environment, both abilities are obviously observed by direction field shown in Fig. 3.5. The
direction field from the proposed direction generator in Fig. 3.5(a) is compared to that from the
gradient direction of smoothed distance image in Fig. 3.5(b) on both abilities. The decision area
for the segmentation of overlapping objects is located in the rectangular box. In addition, it is

zoomed out and shown in the right image.

For smoothing direction ability, the direction field of the proposed direction generator seems to be
more confusing than the gradient direction of smoothed distance image. Nevertheless, it can be

still observed a pixel tracking to the area representing the individual nucleus. This means that the
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Fig. 3.6: The direction field from varying radius of disk-shaped structuring element in which

(a) r=10, (b) r=30, and (c) r=50.

direction smoothness from the proposed approach can maintain the tracking ability that guides all
pixels in an individual nucleus to the same area or nearby. This occurring behavior illustrates the
characteristics of direction field corresponding to the definition of proposed concept sufficiently.
On the other hand, the direction field from the gradient direction of smoothed distance image
cannot achieve the correct tracking because of the large of destination area that cannot judge the

individual nucleus.

In case of contrasting direction ability, it is important for segmentation process since the
segmentation decision is initially formed by this factor. From Fig. 3.5(a), our approach responds
to this requirement very well as can be seen by distinct divergent directions. Its contrast directions
are throughout on the segmentation decision continuously. This ensures that the initial
segmentation process can extract the segmentation line. In the other one, low contrasting direction

ability is odiously observed. It is risk to be the incomplete segmentation in decision function

(D( ).

Parameter Response: In this factor, the reaction of the direction generator is depended on two
parameters, E and E . Since the E is in shrinking process, the erosion to all pixel in B takes

it to set structure element to one in radius. The remained parameter, E,, can present the

d b

responsibility by variation of its radius. Let E, is defined to disk shape. The responsibility can be

revealed as the example in Fig. 3.6. Where I' is the radius value, I =10 is not enough to hold
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smoothing-and-contrasting direction abilities. In contrast, the over radius of E;in Fig. 3.6(c)
performs the missed contrasting direction ability in segmentation boundary. At final definition,
the obtained direction field covers completely on both direction abilities. These show the
application of proposed approach in practice, which the parameter definition by the user is

required.

3.5 Discussion

In this chapter, the direction field (V) accomplishes the direction field requirement as
contrasting-and-smoothing direction abilities. The outcome impacts certainly to segmentation
approach where the individual nucleus has only the smoothing direction and the overlapping
nuclei boundary has the contrasting direction between them. The proposed approach uses the
local calculation to maintain the contrasting direction ability and also exploits the average of these
local calculations to keep the smoothing direction ability. These abilities will support the decision
function (D( )) to make the segmentation boundary, which will be described in later chapters.
Hence, the success of overlapping nuclei segmentation begins when those direction abilities are in

the nuclei area correctly which is the ambition of direction generator.
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Chapter 4

Direction-based Spitting and Merging Technique

4.1 Introduction

In this chapter, the decision function as the basic concept in Fig. 2.3 will be proposed as a
segmentation technique which employs the observable direction characteristics. This is shown as
the principle in Section 4.2. Then, the numerical calculation will be initially described for the first
step as Direction-based splitting in Section 4.3. The final step named Direction-based merging is
performed to segment the overlapping nuclei as the description in Section 4.4. From the
mentioned manner, the actual overlapping nuclei images will be experimented on this approach as
the materials and methods in Section 4.5. The obtained results shown in Section 4.6 will be

discussed in Section 4.7.

4.2 Principle

According to the synthesized overlapping nuclei surface in Fig. 4.1(a), the observation on it
reveals the mountain range similarly. To separate it out, each side of mountain range can be
considered the relationship among them. By visualization, where the relationship of a side group
is extracted, the individual mountain will be discovered. The mentioned definition is clearly
illustrated as demonstration in Fig. 4.1(b) where each side of mountain range is cut into smaller
parts. Derived smaller pieces substitute for the each side of mountain range that will be
determined the relationship. In this step, when the direction of each piece is presented as the white
arrows as shown in Fig. 4.1(b), the relationship can be easily calculated by their direction
destinations. The decision can group the surface pieces to the separated mountain when their
directions are determined decision rule. It can be defined that the individual mountain consists of

the surface pieces having the direction trying to direct to the same area or nearby. Therefore, from
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(c)

Fig. 4.1: The principle of splitting and merging technique. (a) Surface plot of synthesized

overlapping nuclei. (b) Split surface. (¢c) Merged surface.

this ideal, the proposed strategy can be summarized to splitting and merging approaches in which

their demonstrations are illustrated in Fig. 4.1(b)-(c) respectively.

4.3 Direction-based Splitting

Let V is the direction field from direction generator, the measurement of direction in V can be
made the split direction field. According to this, angle measurement is well responsibility where
the reference line is set to initial measurement. Clearly, the example in Fig. 4.2 illustrates the

angle measurement in a direction in V. To calculate angle, arc tan of magnitude of V is used to

apply to
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abs| tan*(V (i, )} | IfQ(i, j)=1
abs| tan(V (i, j)) [+ 7/2, 1 Q(i,j)=2
abs| tan(V (i, j)) |+ 7, IfQ(i, j)=3
o) - abs[tan’l(v(i,j)ﬂ+37r/2 IfQ(i, j)=4 @)
3712, If sign (G (i, j)) =0 and sign (H (i, j)) < 0
712, If sign (G (i, j)) =0 and sign (H (i, j)) > 0
. I sign (G (i, j)) < 0 and sign (H (i, j)) =0
0, If sign (G (i, j)) > 0 and sign (H (i, j)) =0

where 6(i, j) is angle value at P(i, j), Q(i, j) is quadrant number addressed a direction, and the
magnitude of V(i, j) represented by G(i.j) and H(i, j). From Eq. 4.1, a derived 6(i, j) is in
range 0 to2z. This is employed to splitting function where splitting range is defined as split

region number (q). For instance, if q=4, the splitting function will divide & to 4 groups with

increasing range 27/4.

To illustrate the approach function, the example in Fig. 4.3 prepares € from V using Eq. 4.1,
and defines q to 2, 4, 6, and 8. The reference line is set to +x axis in 2D Cartesian coordination.
The derived split regions of V are represented using different color on labeled region. The
proposed approach achieves the object although, some cases, there is the interference of split
region and tiny region such as q= 6 from the unabsolute V. However, these concerns can be

compensated by the merging approach and morphology operator respectively.
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Fig. 4.3: Split region using (a) =2, (b) q=4, (c) g=6, and (d) q= 8.

4.4 Direction-based Merging

Introduction to Direction-based Merging: This step aims to extract +Q_ , which utilizes the
split region to be inputted information. Let p, is a split region at k" from Section 4.3. The
region p, must provide information in order to be used to extract the individual nuclei in decision
function of merging process. Certainly, the direction in p, is correspondingly proper to this
requirement. According to the smoothing direction ability provided by direction generator, this
ability is useful to find out the relationship for individual nucleus extraction. It is the behavior that
the directions in the individual nucleus try to direct to the same area or nearby. The application
just calculates the direction agent of each p, , and then groups them if these agents converge
together. It is similar to the example of ideal shown in Fig. 4.1(b) and the following presents the

computation of the direction agent of each p, .

For the first step, the direction agent of each p, can be calculated by

r_ (i'vj')EPk (i'vi')eﬂk

“ al(p)  all(p,)

(4.2)

2 G 2 H(iN) H
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Fig. 4.4: The illustration of V, and R/ inap, .

where all(p,) yields all pixel number in p, . Continuously, obtained V,’ is next estimated using
ro=[n rn n.r ]T and ¢, =[c, ¢, C;..C, ]T to find the position of V., where r, and c, keep

n

the position of V,' in Cartesian coordinate. From this, the calculation is given by
P = (r<median [size(r)D , c<median [size(c)]». (4.3)

From Eq. 4.3, B/ is set to hold the position of V, to be inside p, certainly. From those
estimations, the split region in Fig. 4.2 can be further calculated to V,' and R/ as illustrated in
Fig. 4.4. The vector shows the direction information from V, while its origin locates at P, .

Moreover, the direction agents on n =2, 4, 6, and 8 are shown in Fig. 4.5.

Secondly, the V,' and R/ from the first step will be investigated characteristic to individual object
extraction. Based on prior knowledge about vector on 2D space in Chapter 2, the relationship
between them can be illustrated as Fig. 4.6. Let V., V,', and V, are the direction agent of three
split region. The relationship among them is described to two cases by numerical computation.
First case, the convergent characteristic between V., and V,' can be estimated by perpendicular
lines of V. and V,' as shown in Fig. 4.6(a). There are boundaries between blue and red area.
Also, these areas present over-and-under perpendicular lines. The convergent characteristic
explicitly reveals through three operators as illustrated in Fig. 4.6(c). There are the cutting point

which is obtained from the linear equation of V, and V,' , and terminus points of V, and V, .
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Fig. 4.5: Direction agent of each split region where (a) q=2, (b) q=4, (¢c) q=6, and (d) q=3.

The action of them yields the convergence measurement of two vectors. It is true when they are in
the same area (blue area). On the other hand, the direction characteristic illustrating in Fig. 4.6(b)
is obviously opposite together of V,' and V.. Similar to convergent characteristic, the
perpendicular lines of the other case can be shown in Fig. 4.6(b). The cutting point and terminus
points of V, and V. is on the different area as illustrated in Fig. 4.6(d). This factor will be

measured to evaluate that it is divergent characteristic.

Here, there are two measurements for revealing V. characteristic. To implement them to
overlapping nuclei segmentation, it just estimates between connected split regions to convergent
or divergent characteristic. From decision making, where the characteristic decision is judged to
convergent result, the considered regions will be merged together. Thus, in the other side, the
decision marking will avoid merging process due to the divergent characteristic. This rule can
achieve the overlapping nuclei segmentation when all V,' in individual nucleus try to direct to the

same arcea or nearby.

Numerical Direction-based Merging: From convergent-and-divergent characteristic measure-
ment, the computation must initially provide the cutting point and the terminus point of a V,', and
then judges the direction characteristic to merge or not. To accomplish this task, in each V,’, the
scheme must be obtained two operators such as linear equation and perpendicular linear equation

of V. . There are respectively y=mx+b and y=-mx+b, where m and b are the slope constant
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(b)
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Fig. 4.6: Direction characteristics of two V, where (a) and (c) are the convergent characteristic,

(b) and (d) are divergent characteristic.

and the y-intercept. Let V, and V, be the V.| of connected region a and b. The cutting point
will be calculated from V, and V, linear equation as demonstrated in Fig. 4.6. In case of

terminus point of V, and V,’, they are obtained from the summary of B, and V, .

Here, the calculation already provides cutting point and terminus points. These positions will be
applied to decide the direction characteristic. By approving these points that they are in the same

area of both perpendicular line, it can judge their characteristic to convergent. Otherwise, the
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Fig. 4.7: Completely overlapping nuclei segmentation.

characteristic will be divergent. To implement this rule, the existed points will be placed to both

perpendicular linear equations by the following: [34]

) (4.4)

where (X.Y,), (X..Y,), and (X, ;) are positions of cutting point, terminus point of V', and
terminus point of V, respectively. The m, and b, are the slope constant and the y-intercept
of V., which are also in m, and b, of V,'. The results from s to s, will be applied to following

algorithm:

Direction-based splitting and merging:
Calculate split region
Find V, and P/
Loop all connected region
Calculate cutting point, terminus points
Find s, s,, S;,and s,
If s,=s, and s,=S5,
Merge these split regions
End

End loop
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Fig. 4.8: Workflow of the proposed scheme.

Fig. 4.7 shows the complete merging region which represents the segmented overlapping nuclei.

The process just re-labels the pixel number after judging to merge together.

4.5 Materials and Methods

From prepared direction field by direction generator in Chapter 3, the experiment will be set the

parameter for the split region number and area determination as the workflow in Fig. 4.8. For the

No. Split region Correct Over Under
number
1 2 190 112 8
2 4 196 25 15
3 6 199 8 12
4 8 201 9 12
250
L 200
-3
2
§ 150 B split region number =2
§ 100 M split region number = 4
= 50
split region number = 6
0
M split region number = 8
Correct Over Under
accuracy

Fig. 4.9: Segmentation results from varying split region number.
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Fig. 4.10: Segmentation results (red line) with expert markers (black dot).

first, varying the split region number is performed to present the performance response to the
merging process. The 2, 4, 6, 8 are the varied of q. The objects which are smaller than 50 are
released. The best one to the expert in correct-over-and-under segmentation results will be

selected to all experimented images.

Fig. 4.9 shows segmentation results from the varying split region number. Summary table and
graph distinctly indicates that eight split region is best. It gives the highest correct segmentation
and low on both over-and-under segmentations. Therefore, this value will be thoroughly used to

entire experimented images.

4.6 Results

The twenty nine images provided to the proposed approach are evaluated the performance using
comparison to the expert. The correct-over-and-under segmentation yields the algorithm

performance as shown in Table. 4.1 and the segmentation results in Fig. 4.10. Let all items in
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summary be formed in percent. The performance measurements are 92.08 %, 3.12 %, and 6.49 %
for correct, over, and under segmentation respectively. Over 90 % of correct segmentation is
achieved from the proposed approach. Less than 10 % of undersigned performance from over-
and-under segmentation is also succeeded. These are preliminary results and discussions.
However, the performance validation will be deeply argued in Chapter 7 in which the comparison

to other direction-based techniques and tradition overlapping nuclei algorithm is provided.

4.7 Discussion

In this chapter, D( ) is performed on the obvious direction characteristic based on group and re-
group direction strategy. It is called direction-based splitting and merging technique (DSMT)
which is respectively explained from basic concept to numerical implementation on the existed
direction field. The parameter setting is only required on g which controls the split region
number. The varied q yields the selected g to eight with best segmentation accuracy. The
provided q is applied to the experiment on the actual nuclei image. The segmentation results
shown in Table 4.1 are reported through the correct, over, and under segmentation in
quantification value. However, for performance validation in deeply, these results will be

compared with other direction-based techniques in Chapter 7.



TABLE 4.1: Quantification accuracy.
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No. Image name Expert Correct Over Under
1 T51-1549A1 215 201 9 12
2 T51-1549A2 243 228 9 11
3 T51-1549A3 269 243 1 21
4 T51-1549A4 250 226 2 22
5 T51-1549A5 192 177 11 14
6 T51-1549A9 265 251 5 13
7 T51-1549A12 229 219 2 7
8 T51-1549A17 230 219 3 9
9 T51-1549A21 207 186 5 19
10 T51-1549A23 294 268 7 22
11 T51-1549A36 204 194 4 7
12 T51-1549A37 242 221 8 15
13 T51-1549A39 205 185 6 17
14 T51-1549A40 233 218 6 14
15 T51-1549A41 167 140 7 23
16 T51-1549A42 210 191 9 14
17 T51-1549A44 268 252 3 13
18 T51-1549A53 283 237 9 35
19 T51-1549A54 259 238 7 15
20 T51-1549A59 176 162 17 10
21 T51-1549A60 225 210 10 12
22 T51-1549A73 168 151 3 14
23 T51-1549A78 201 185 6 14
24 T51-1549A92 173 162 10 9
25 T51-1549A97 140 126 4 12
26 T51-1549A-78 241 232 2 7
27 T51-1549A-134 252 239 12 12
28 T51-1549A-135 227 212 9 11
29 T51-1549A-149 107 97 13 10

Sum 6375 5870 199 414
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Chapter 5

Direction-based Classification Technique

5.1 Introduction

Outcome of direction-based application is not only in splitting and merging technique as the
previous chapter. In general, the newer strategy is usually discovered by the improvement or
solution of the older technique. Also in this chapter, the new one is proposed by the observation
of the direction characteristics in alternated idea to approach the object on nuclei segmentation. In
Fig. 5.1(a), the direction field illustrated visually the convergent behavior on the individual
nucleus area while the divergent behavior locates at the boundary of overlapping nuclei area. The
segmented line can be accomplished by classifying a pixel to boundary area or overlapping
nuclei. Then, segmented line will be extracted from the divergent area using morphology
operator. As shown in Fig 5.1(b), the example shows the divergent area (blue) which is applied

the morphology operator to build single pixel of segmented line.

Divergent

behavior

Convergent

behavior

(a)

Fig. 5.1: (a) The principle of divergent-and-convergent direction characteristics. (b) The

extraction of segmented line from divergent area.
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From the mentioned principle of this concept, the process can be mainly derived in two steps.
There are pixel classification and boundary extraction. The pixel classification is performed the
decision of a pixel into the convergent-and-divergent direction characteristics. The obtained
results are two classes that can be transformed to binary form. Subsequently, the boundary
extraction process containing the basic morphology operators will make the single pixel

construction on the divergent area [35].

The remainder of this chapter is as follows. In Section 5.2, the two main steps are described
simultaneously on their theory and the application direction field of overlapping nuclei. Then, the
implementation on actual overlapping nuclei is presented in Section 5.3 as materials and methods.
The parameter setting, workflow, and reinforce process are also contained in this section. The
results from segmentation evaluation are in Section 5.4 in which discussions of the results are

included finally.

5.2 Theory

Figure 5.1 shows the directions of two overlapping objects. One can see that the directions can be
divided into two groups: convergent and divergent characteristics. While the direction in the
object region is convergent, the direction in the boundary region is divergent. Based on this
observation, we propose a direction-based classification technique (DBCT) which is the method
aiming to divide a direction into two groups based on its direction characteristics. Subsequently,
the classification results can be employed on separating overlapping objects by boundary
extraction method. Therefore, this section will be expressed principle, numerical DBCT, and

boundary extraction which are represented based on V in Fig. 5.1.

Principle: The objective in extraction of direction behavior is based on utilization of neighbor
directions in a V(i, j). As the example in Fig. 5.2(a)-(b), a V(i, j) cannot perform this task
alone. It requires four neighbor directions to indicate the direction behaviors. Therefore, this

computation will use them through angle summation into " and 6~ as shown in Fig. 5.2(b)-(c).
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(d)

Fig. 5.2: (a)-(b) are the appearances of convergent-and-divergent characteristics indicating by

neighbor directions. (c)-(d) show the grouping of neighbor angles.

The 6" is on the right side and " is on the left side of reference line, which is indicated by the

dash line. Let @ be the angle difference. The measurement of direction behavior can be

w=0"-0". (5.1

To show its performance, let assuming the neighbor angles of V(i, j) be 60, 60, 45, and 45 degree
for north, west, south and east position to the V(i, j). The 6" will be 120 degree and the 8~ will
be 90. Therefore, the w equals to 30. In other case, the assumed neighbor angles are 30, 30, 80,
and 80. The results are 60 and 160 degree of 6" and & respectively. The @ of this case will
become to -100 degree. The 30 and -100 degrees can be used to classify a V(i, j) to divergent-or-

convergent behaviors using threshold method.
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Numerical DBCT: To illustrate the DBCT in numerical calculation, we employ the direction

field through the gradient to prepare 8° and 6 . First, we estimate @ which uses the reference

line v by

o(i, j,v)=

=0 and sign
=0 and sign
<0 and sign

> 0 and sign

(5.2)

where 4(i, j) is angle value at P(i, j), Q(i, j) is quadrant number addressed a direction, and the

magnitude of V(i, j) represented by G(i.j) and H (i, j).

B N N B N N
¢ E o
W44 / -E||W &If Wm\f
¢ ¢ ¢
S S S o S
(a) (b) (c) (d)
oW I N
W ....*+.... .....i S W--e ....i S W ..’.....i .
2 : -
S S S A S
(e) (® (g (h)

Fig. 5.3: The possible cases of sign operators are identified by V(i, j) or central direction,

where areas A are the positive side; areas B are the negative side.
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Consequently, the angle from neighborhood pixels at the north, east, south, and west in vector

form can be given by

p(|1 j,V) = [eNorth HEast 050uth 9West]' (53)

Then, the reference line as example shown in Fig. 5.2(c)-(d) will group those neighbor € into two
groups. There are " and ¢~ where 6 is on the right side and 6" is on the left side of reference
line as the possible cases in Fig. 5.3. Thus, the grouped 6 can be achieved by sign identification

as

-1 11 -1, G(i,j)>0andH(i,j)>0
11 -1 -1, G(i,j)<0andH (i, j)>0
[-1 11 -1, G(i,j)<0andH (i, j)<0
o |1 -1 1 1], G(i,j)>0andH(i, j)<0 (5:4)
s(i, j)= ; .
0 -1 0 1], G(i,j)=0andH(i, j)<O0
010 -1, G(i,j)=0andH(i,j)>0
10 -1 0, G(ij)<0andH (i, j)=0
-1 110, G(i,j)>0andH (i, j)=0
Based on pand S, the o can be expressed as
w(i, j,v)=p(i, j,v)xs(i, j). (5.5

Finally, the threshold method will be applied to classify the (i, j,v) to binary image, which is

given by

L. 0, a)(i,j,v)<TH
B 1 i = - H 5;6
(I J V) {1, Otherwise (5.6)

where TH is threshold value. In some cases, for example, if §"and 0™ consist of the neighbor &
from positive x-axis in the first or the fourth quadrant, the @ value is not in the range of

-7 <w< +x . This is the wrong angle difference causing the error in binary image from threshold
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Fig. 5.4: (a)-(b) The errors occurring from crossing quadrant. (¢) Corrected B .

method. To solve this problem, the twice calculated @ on v = +x and v = -x can be used for
compensation. Let consider the B obtained from v = +x and v = -x as illustrated in Fig. 5.4(a)-(b).

The errors show difference in location, which can be healed by

B=B(i, j,v=+x) or B(i, j,v=—x). (5.7)

Fig. 5.4(c) shows the corrected B which remains the area of boundary of overlapping nuclei. To
complete the single pixel boundary, this task will be forwarded to the next step called boundary

extraction.

Boundary Extraction: To extract single pixel boundary, this step provides the combination of

morphology operators that are performed respectively as following.

Erosion operator: Fig. 5.4(c) shows the obtained binary image comprising the local
minima (white line in black area). It is eliminated using morphological erosion operator

with a 3x 3 square structuring element as shown in Fig. 5.5(a).

Hole filling: Also, the local maxima (black dot in white area) is another characteristic
obtained from the DBCT as shown in Fig. 5.5(a). The solution employs the hole filling

algorithm to eliminate the hole as shown in Fig. 5.5(b).
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(a) (b) (c)
(e) ()

Fig. 5.5: (a) Obtained result from erosion operator. (b) The filled hole result. (c) Fragmental

(d)

elimination. (d) Single pixel boundary from thinning process. (e¢) The single pixel boundary

superimposed on binary image. (f) Branch pixels are released using de-branch operator.

Fragment elimination: In this stage, the small-size objects, considered as noises, are

removed as shown in Fig. 5.5(c).

Thinning: From the boundary requirement, the single pixel boundary must be extracted to
show the real boundary. This is conducted by the thinning operator, which operates under

the binary environment as shown in Fig. 5.5(d).

De-branch: In this stage, the provided binary image has the single pixel boundaries as
shown in Fig. 5.5(d). In some cases, the obtained boundaries have branches caused from

the thinning operator. To eliminate them, this scheme proposes an uncomplicated method
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to solve this problem. It is called the de-branch operator. Let B be the obtained binary
image, and W be 3x3 square matrix superimposed on the labeled B , with the center of
W located at any position of W , the decision function used to determine the existing

branch is:

B = : , (5.8)
1, Otherwise

where m is the average of W excluding W, ; =0. The result gives B which is replaced
with zero when that pixel is the branch component. From the example, the complete

boundary excluding branches in the final step is illustrated in Fig. 5.5(f).

5.3 Materials and Methods

The algorithm for overlapping object segmentation based on the DBCT consists of three steps:

direction preprocessing, direction-based classification technique (DBCT), and boundary

extraction. The additional step, direction preprocessing, applies filter to smooth V in magnitude,

and complete the reference direction. The threshold value is set to zero in DBCT process. The

provided V from the calculation in Chapter 2 are provided to the proposed process in Fig. 5.5.

Finally, the quantification evaluation is illustrated, where the gold standard by expert is compared

to.

5.4 Results

The experimented images are provided to the proposed algorithm by prepared V. The obtained

results are evaluated in correct, over, and under segmentation compared with marker from expert

as the example in Fig. 5.6. They are represented as the summarized results in Table 5.1. There are

96.83 %, 8.14 %, and 1.69 % for correct, over, and under segmentation in percent. For error

segmentation, over and under, they show the error lower than 10 % similar to the previous
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Fig. 5.6: Segmentation results (red line) with expert markers (black dot).

technique in Chapter 4. In addition, the correct segmentation shows the accuracy performance

that can achieve over 90 %.

5.5 Discussion

The direction-based classification technique (DBCT) is a pixel-based calculation utilizing
direction characteristics. It is simple when this technique depends on such fundamental
computation. The angle difference received from determination of direction characteristics yields
the classifying-able value using defined threshold. Where the individual nucleus is formed to one
of direction characteristics, the obtained result from this classification will locate the existed
individual nucleus in binary image. Finally, the boundary extraction is performed to achieve
single pixel boundary and complete individual nucleus area. The experiment on actual nuclei
images which are provided the direction field gives the segmented results on correct-over-and-
under segmentation in quantification value. However, this results and discussions only describe

its performance in general. It needs to compare with other techniques, and validated by other
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factors. This will be provided in Chapter 7. For direction-based segmentation in this dissertation,
next chapter will propose a alternated technique which the existing direction will be acted as the

moving pixel.



TABLE 5.1: Quantification accuracy.
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No. Image name Expert Correct Over Under
1 T51-1549A1 215 212 19 2
2 T51-1549A2 243 236 25 3
3 T51-1549A3 269 260 15 5
4 T51-1549A4 250 238 16 8
5 T51-1549A5 192 186 22 1
6 T51-1549A9 265 262 15 3
7 T51-1549A12 229 224 11 2
8 T51-1549A17 230 225 11 2
9 T51-1549A21 207 194 17 6
10 T51-1549A23 294 281 22 8
11 T51-1549A36 204 199 13 3
12 T51-1549A37 242 234 17 3
13 T51-1549A39 205 197 15 4
14 T51-1549A40 233 231 18 1
15 T51-1549A41 167 162 22 3
16 T51-1549A42 210 205 16 5
17 T51-1549A44 268 262 8 2
18 T51-1549A53 283 256 21 14
19 T51-1549A54 259 250 17 6
20 T51-1549A59 176 174 32 1
21 T51-1549A60 225 220 24 4
22 T51-1549A73 168 152 13 7
23 T51-1549A78 201 197 11 1
24 T51-1549A92 173 166 15 3
25 T51-1549A97 140 135 11 4
26 T51-1549A-78 241 238 11 1
27 T51-1549A-134 252 250 32 1
28 T51-1549A-135 227 223 20 2
29 T51-1549A-149 107 104 30 3

Sum 6375 6173 519 108
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Chapter 6

Direction-based Flow Tracking Technique

6.1 Introduction

According to characteristic of V in smoothing direction ability in Chapter 2, its behavior on all
directions in the individual nucleus trying to direct to the same area can be utilized on overlapping
nuclei segmentation. This concept is based on moving pixel. When a pixel is assigned to move
using the guidance by V, the result can yield the separation of pixel groups of individual nucleus
when they finish the movement. These pixel groups will be numbered and then extracted to the
original pixel position. There are the labeled pixels which are represented the segmented nuclei

later.

From above concept, the principle can be described basically as theory in Section 6.2. Based on
the existed scheme, it can support the movement to designed concept with its modification as
expressed in Section 6.3. The materials and methods in Section 6.4 show the implementation on
the actual overlapping nuclei image when the obtained results and discussion are illustrated in

Section 6.5 and 6.6 subsequently.

6.2 Principle

From the previous works, the moving pixel on V as the mentioned idea can be implemented

using the simple computation as the “gradient flow tracking” [29]. This scheme moves a pixel by
p’:p+round{K(p)}, 6.1)

where K(p) yields the direction through the normalized vector V at the position p. In practice,

the pixel position p is moved to next position by rounding of its direction and then summed to the
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v

()

Fig. 6.1: Pixel movement using gradient flow tracking in Eq. 6.1, where the iteration process is

sequentially computed from (a) to (c).

previous pto update the position to p’. For example, Fig. 6.1 illustrates the estimation of

position of pand p’. It shows the pixel movement using red box, which is taken the next move

!

by p’.

However, the designed concept requires the finished movement of moving pixel. This can be

achieved by adding the designed ability to Eq. 6.1. Therefore, the next section named “Direction-

Convergence of

neighborhood directions

Fig. 6.2: Convergent neighborhood area of directions.
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Fig. 6.3: The moving pixel finishes tracking process on V .

based flow tracking (DBFT)” [33] will describe the modified movement process supporting the

requirement.
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6.3 Direction-based Flow Tracking
Fig. 6.2 shows the convergence of neighborhood V at the destination as the red circle. It means

that a moving pixel must finish the movement at this area or nearby. By measuring the convergent

behavior of neighborhood V ata p, Eq. 6.1 will be modified as

p’=p+round {<K(pN )+ K(pe )+ K(ps)+ K(pw)>/4}, (6.2)

(d)

(2) (h)
(k) ®

Fig. 6.4: (a)-(1) show the captured scenes of pixel tracking at m,,,, i = 1, 10, 20, 30, 40, 50, 60,

(@) Q)

70, 80, 90, 100, and 107.
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where K(p[N’E,SYW])represents a direction of neighborhood pixel of p at North, East, South, and
West. From this way, the pixel pwill be held when it moves to the position that the round of
average K(p[N,E,S,W]) is less than one. Fig. 6.3 demonstrates how a moving pixel finishes its
tracking on V in three times. The calculation attached in this example yields p’ = p that hold this

pixel to stick on the target area. In some cases, K(p[NVE,S‘W])cannot hold pto finish movement
because the over round of average K(p[N’E'SYW]). Therefore, the loop process number m,, is
applied to terminate the repeated movement except the holding function from K(p[N,E,s,w])-

Thus, the additional step can be expressed as process as:

DBFT process:

Mgy =0

Define m,,,

While all(p#p’), N, <My
Find p’ to all pixels in nuclei
Update p
Moop = Mgy +1

End while

Label grouping pixel

Retrieve labeled pixel to original p

End

Fig. 6.4 shows the moving pixels on the overlapping nuclei where the nuclei are shown in the
white area. Based on implementation of DBFT process, the pixels flow to the destination in scene
by scene. It shows that when the number of iteration increases, grouped pixels are attracted to the
area where the directions are convergent. At last scene in Fig. 6.4(1), it indicates the finished

movement that the all pixels of an individual nucleus are grouped inside.

Subsequently, the final step of DBFT uses these pixel groups to extract the individual nuclei. By

labeling and then retrieving the grouped pixels, the labeled pixels in the white dash circles of Fig.
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(b)
Fig. 6.5: (a) Pixel groups after tracking process. (b) Separation of nuclei after retrieving pixel

position.

6.5(a) are retrieved to the original position. Thus, the final results of the proposed algorithm are
formed in the labeled image which indicates the individual nucleus by labeling number as the

example shown in Fig. 6.5(b).

(b)
Fig. 6.6: Incomplete tracking pixel solution using dilation operator where (a) is the result of
incomplete tracking pixels and (b) is the results from applying dilation process to eliminate this

defect.
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V Direction-based flow + Qn

tracking

Fig. 6.7: Workflow of the proposed scheme.

However, in some cases, the incomplete tracking pixels as showed in Fig. 6.6(a)-right causes the
over-segmentation. Because of unconnected pixels in the final moving step, the retrieving process
will label those pixels to the individual objects illustrated in Fig. 6.6(a)-left. This defect can be
simply eliminated using the basic morphology operator. It is dilation operator applying to the
unconnected pixels. The achievement on this task can be showed in Fig. 6.6(b) where the results
of dilation process are the left image and its retrieved pixels are the right image. Therefore, in
final step of the proposed approach, the identification of the dilation structure element must be

initially defined.

6.4 Materials and Methods

The DBFT implementation on the nuclei segmentation is only required one parameter, m,,, . It is
the loop process number which is identified by m,,, =1000. Fig. 6.7 shows the workflow of
DBFT implementation on overlapping nuclei segmentation. Simply, the process has alone

determination by DBFT, where the provided direction field, V , is inputted, and the +Q, yields

th
loop *

the segmented nuclei at a m, To validate the performance, the experimented images are set
from twenty nine nuclei images which are a variety of shapes on both individual and overlapping
nuclei, and have 3600 * 2880 pixels formed in JPEG color image format. By applying the images
to direction field generator as Chapter 3, the direction field, V , is provided. Finally, the obtained
+Q, will be compared to the gold standard from the expert. The evaluated values as corrected-

over-and-under segmentation are initial factor to validate the performance when it is compared to

other approaches.
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Fig. 6.8: Segmentation results (red line) with expert markers (black dot).

6.5 Results

From Section 6.4, the resultants under correct, over, and under segmentation are illustrated in
Table 6.1 and the segmentation results in Fig. 6.8. By expert quantification, the percents of
segmentation performance are calculated as 97.29 %, 5.38 %, and 1.90 %. The correct
segmentation accuracy is over 90 %. The over segmentation accuracy is less than 10 %. The

under segmentation accuracy is less than 5 %.

6.6 Discussion

The segmentation approach described in this chapter attempts to utilize essential information from
direction. This is instruction that can be applied in movement of an object. As the provided
direction information, a pixel will be tracked on the direction field. This operation takes a pixel in

the individual nuclei to the same area or nearby. With labeling and retrieving the obtained pixel
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group, the segmented nuclei can be completed as shown in the example. To validate its perfor-
mance, the implementation applied to the actual nuclei images yields the results compared with
the segmentation marker from the expert. The correct-over-and-under segmentations are derived
from that validation. For deep analysis, the obtained results will be determined to other
performance validation techniques. Also, the comparison among direction-based segmentation
techniques and the traditional segmentation approaches gives more performance validation which

is presented in Chapter 7.



TABLE 6.1: Quantification accuracy.

55

No. Image name Expert Correct Over Under
1 T51-1549A1 215 212 13 3
2 T51-1549A2 243 236 16 4
3 T51-1549A3 269 261 10 5
4 T51-1549A4 250 240 10 9
5 T51-1549A5 192 188 13 3
6 T51-1549A9 265 262 11 2
7 T51-1549A12 229 224 4 2
8 T51-1549A17 230 225 7 3
9 T51-1549A21 207 196 10 6
10 T51-1549A23 294 284 15 8
11 T51-1549A36 204 198 8 2
12 T51-1549A37 242 237 12 3
13 T51-1549A39 205 196 13 5
14 T51-1549A40 233 231 11 2
15 T51-1549A41 167 162 12 4
16 T51-1549A42 210 204 13 6
17 T51-1549A44 268 263 4 2
18 T51-1549A53 283 260 10 15
19 T51-1549A54 259 250 11 7
20 T51-1549A59 176 175 25 1
21 T51-1549A60 225 219 16 6
22 T51-1549A73 168 158 4 7
23 T51-1549A78 201 200 7 1
24 T51-1549A92 173 168 12 3
25 T51-1549A97 140 134 9 5
26 T51-1549A-78 241 239 6 2
27 T51-1549A-134 252 251 19 1
28 T51-1549A-135 227 224 11 2
29 T51-1549A-149 107 105 31 2

Sum 6375 6202 343 121
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Chapter 7

Performance Comparisons

7.1 Introduction

According to nuclei segmentation task, the segmentation accuracy is usually represented as the
quantification value, correct, over, and under segmentation. In evaluation, the marker marked by
the expert is set to be the gold standard compared to the results from segmentation approach.
However, this assessments show the conclusion roughly and indistinctly under the basic
calculation. This may cause the lack of performance comparison with the traditional techniques.
To overcome this problem, some previous works [1], [36]-[39] propose deep analysis for
measuring of performance comparisons. From the fact that the segmentation approach performs
as the classifier in detecting the individual nucleus, the derived correct, over, and under values
can be applied to measure performance comparisons correspondingly as following descriptions in

this chapter.

The organization of this chapter is as follows. Section 7.2 describes the basic of performance
measurement for validating the segmentation accuracy. The experiment method in Section 7.3
explains the procedure to obtain the segmentation value from proposed segmentation algorithms
in Chapter 4-6 (DSMT, DBCT, and DBFT), tradition watershed (TWS), and marker-controlled
watershed (MCWS). The performance evaluations as sensitivity (SS), positive predictive value
(PPV), accuracy (ACC) and F -measure are calculated based on the basic segmentation
evaluations as correct, over, and under segmentation value. The results are shown in Section 7.4

where the discussion is also given.
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TABLE 7.1: A confusion matrix from two classifiers.

Predicted Class
Positive (+) Negative (-)
o True Positive | False Negative
2 Z (TP) (FN)
S ~
QO
=
2 0
:C) o False Positive True Negative
& (FP) (TN)
p4

7.2 Classifier Performance Measurement

Table 7.1 shows the possible cases of classifier results, where the predicted class is defined to
classifier results compared to the actual class which is the gold standard from the expert. The
table details the comparison results between two classifiers to four possible cases. First, when the
sample is decided to positive by expert (actual class) and also in the classifier (predicted class),
this same decision is called true positive (TP). If both operators decide a sample to be the
negative, it is called true negative (TN). If the expert and the classifier make the opposite, false

positive (FP) and false negative (FN) are applied in these situations.

Based on the descriptions of the basic measurements above, the correct, over, and under
segmentation are equivalent to TP, FP, and FN, respectively. However, the performance can be
measured distinctly to specific validation based on these items as shown in Table 7.2. The
specific validations give more description of classifier performance and can be explain to some

characteristic as following.
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TABLE 7.2: The description of classifier performance item.

or Predictive accuracy

Performance measurement Solution Description
True positive rate
The ratio of the corrected-
or Hit rate TP
— segmentation by classifier to
or Recall P
positive marker by expert
or Sensitivity or TP rate
False positive rate The ratio of the over -
FP
or False alarm rate N segmentation by classifier to
or FP rate negative marker by expert
The ratio of the under -
False negative rate EN
— segmentation by classifier to
or FN rate P
positive marker by expert
The probability that the
Precision TP
TTpacp) classifier yields really
or Positive predictive value (TP+FP)
positive
1 1 The combination of TP rate
F,-measure Zl(TP = ! Procisi j
rate Frecision and Precision
The probability that the
Accuracy TP+TN
TP+ TN+EPTEN classifier yields correctly

segmentation

The complete classifier: It describes the classifier that can similarly perform as the expert. The

errors are zero. It will subsequently yield TP =P and TN =N . The results calculated later are

found SS =1, FP Rate =0, PPV =1, F -measure =1, and ACC = 1.

The worst classifier: This case yields TP=0 and TN=0. The calculated performance

measurements are SS = 0, FP Rate = 1, PPV =0, F -measure does not exist, and ACC = 0.




TABLE 7.3: A confusion matrix from two classifiers.

Confusion matrix values
Case 1 Case 2 Case 3
TP = 8,000 TP = 80,000 TP = 8,000
FN =2,000 FN =20,000 FN =2,000
TN = 7,000 TN = 7,000 TN = 70,000
FP =3,000 FP =3,000 FP =30,000
Measurements
TP rate = 0.8 TP rate = 0.8 TP rate = 0.8
FN rate =0.2 FP rate = 0.2 FP rate =0.2
TN rate = 0.7 TN rate = 0.7 TN rate = 0.7
FP rate = 0.3 FN rate = 0.3 FN rate = 0.3
Acc=0.75 Acc=0.7909 Acc=0.7091
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The ultra-liberal classifier: This characteristic emerges when the classifier only yields the
positive class. This gives SS=1 and FP Rate = 1 in the same time. The subsequent results from

this characteristic are PPV = P/(P +N), F -measure = 2x P/(2>< P+N),and ACC = P/(P +N).

The ultra-conservative classifier: In case of the classifier that only the negative class is deter -
mined, this characteristic will result both FP =0 and TP =0. Moreover, other measurements are

SS=0, FPrate=0,PPV and F -measure do not exist, and ACC =N / (P+N).

Other interesting characteristic is the calculated measurement values that have their variation
based on samples. It is obviously concluded as following example shown in Table 7.3 where the
case 1 is the initial value from the confusion matrix. Case 2 increases ten times of TP and FN and,
also, case 3 for TN and FP. The variation of measurement values of these three cases are
demonstrated with the true and false positive rates, the true and false negative rates, and the

accuracy. Results show that the TP and FP rates and the TN and FN rates do not change in second
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Fig. 7.1: Experimental work flow.

and third cases. In other words, the rates on TP, FP, TN and FN are independent from the number

of samples. This is different from the accuracy when it varies from 0.7091 to 0.75.

7.3 Experiments

Materials: To validate the performance of the proposed algorithms, this experiment applied the
DSMT, DBCT, and DBFT to the nuclei images and evaluated the quantification accuracy
compared to the TWS and MCWS. Their appearances obviously present a variety of shapes on
both individual and overlapping nuclei. The twenty nine images applied to this task have size

3600 x 2880 pixels formed in JPEG color image format.

Methods: The experimental methodology is set as the workflow shown in Fig. 7.1. The
background elimination in the initial step is assigned to prepare the binary image to extract the
nuclei area. This step uses the Otsu thresholding [40] which is performed on the intensity image
from color space transformation. The tiny pieces in the obtained binary image are removed. Then,
the resulting objects are performed with a fill hole operation to complete nuclei area. To avoid the

segmentation error from the background elimination, the binary images provided to segmentation
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algorithms will not consider the binary nuclei which are not marked by the expert. This terminates

the error of the incorrect foreground from the background elimination step.

For assessment, we choose the TWS [41] for comparing with our algorithm. Even its over-
segmentation problem mainly reduces the segmentation accuracy; it is usually implemented due
to its simple adaptation. By preparing the catchment basin accurately, the over-segmentation can
be reduced. In this experiment, the Euclidean distance transformation is initially performed to
build the catchment basin. Certainly, the local minima from the irregular shape of nuclei are the
source of over-segmentation. To alleviate this problem, the intensity image filter is assigned to
wipe out local minima before its operation. Moreover, the MCWS [42] is another selection to be
compared to our approach from its advantage in over-segmentation controlling. Its marker
identification is performed based on the cooperation of morphology operators. It yields the

markers, which are adopted to build the catchment basins for watershed process.

The final step of this experiment is the quantification evaluation. This assessment yields the
correct, over, and under segmentation resulting from the comparisons with the markers from an
expert. In addition to the general assessment, we validate the performance of DSMT, DBCT,
DBFT, TWS, and MCWS using sensitivity (SS) [1], [36]-[39] positive predictive value (PPV) [1],
[36]-[39], accuracy (ACC) [43], and F,-measure [1]. These values are used to describe the
performance outcome in detection system. The SS indicates the possibility that the system can

correctly detect nuclei compared with the gold standard. The SS calculation is given by

SS=TP/(TP+FN) (7.1)

where TP is number of correct segmentation by the algorithm, and FN is the number of nuclei,
which are not marked by an algorithm but marked by the gold standard. On the other hand, the
PPV is the probability that the detection of a nucleus is actually associated with a nucleus marked

by the expert, which is given by

PPV = TP/(TP+FP) (7.2)
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where FP is the number of nuclei which are not marked by the gold standard but are detected in
the segmented nuclei from the algorithm. Furthermore, the combination of SS and PPV yields the
summarized performance evaluation where the accuracy and F -measure are determined in the

following forms:

—__ TP+TN (7.3)
TP+TN+FP+FN '
and
1 .1
F=2/| ==+ | 7.4
' / (PPV ssj 7.4)

Note that the TN is set to zero when ACC is determined.

7.4 Results and Discussion

In this section, we firstly describe the characteristics of derived direction field resulting from the
direction generator. The description on smoothing-and-contrasting direction abilities is observed
from the direction fields compared with the gradient direction of smoothed distance image.
Moreover, the segmented nuclei are extracted from these direction fields using DBFT. Secondly,
the segmentation accuracy is presented to validate the performance of the direction-based

approaches (DSMT, DBCT, and DBFT) compared to other techniques, i.e., the TWS and MCWS.

Direction Characteristics: According to the direction requirement, the smoothing-and-
contrasting direction abilities are the keys that determine the segmentation boundary. In direction
environment, both abilities are obviously observed by direction field shown in Fig. 7.2. The
direction field from the direction generator in Fig. 7.2(a) is compared to that from the gradient
direction of smoothed distance image in Fig. 7.2(b) on both abilities. The decision area for the
segmentation of overlapping objects is located in the rectangular box. In addition, it is zoomed

out and shown in the right image.
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Fig. 7.2: Comparisons of direction field characteristics from the direction-based approaches
(DSMT, DBCT, and DBFT) with those of the gradient direction of smoothed distance image.
(a) Direction field from the direction generator. (b) Direction field from gradient direction of
smoothed distance image. (¢) Pixel groups using direction field in (a) from DBFT approach.
(d) Pixel groups using direction field in (b) from DBFT approach. (¢) Segmentation boundary

from DBFT approach of (a). (f) Segmentation boundary from DBFT approach of (b).

For smoothing direction ability, the direction field of the direction generator seems to be more
confusing than the gradient direction of smoothed distance image. Nevertheless, it can be still
tracked by a pixel to the area representing the individual nucleus as shown in Fig. 7.2(c). This
means that the direction smoothness from the direction-based approaches can maintain the
tracking ability that guides all pixels in an individual nucleus to the same area or nearby. This
occurring behavior illustrates the characteristics of direction field corresponding to the definition
of proposed concept sufficiently. On the other hand, the direction field from the gradient direction

of smoothed distance image cannot achieve the correct tracking as illustrated in Fig. 7.2(d).

In case of contrasting direction ability, it is important for tracking process since the segmentation

decision is initially formed by this factor. From Fig. 7.2(a), our approach responds to this
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requirement very well as can be seen by distinct divergent directions. Its contrast directions are
throughout on the segmentation decision continuously. This ensures that the initial tracking
process can extract the segmentation line. Fig. 7.2(¢) shows the boundary pixels after completing
segmentation on the direction field. The segmentation boundary throughout appears at the
contrasting direction. Fig. 7.2(f) shows the segmentation boundary resulting from the direction
field of the gradient direction of smoothed distance image. Although it looks similar to the result
from direction generator, some are yield local-convergent-and-divergent direction field as shown

in the black dash circle of Fig. 7.2(f). This may cause wrong tracking pixels.

Quantitative evaluation: Table 7.4 shows the comparison of quantification accuracy among the
experimented segmentation algorithms. Twenty nine images consisting of 6,375 nuclei were
tested. The nuclei number of TP, FP, and FN are shown and summarized to the total number and
the percent in each column. The ideal numbers for TP, FP, and FN percents are 100, 0, and 0,
respectively. The percent of correct segmentation from the DSMT, DBCT, DBFT, TWS, and
MCWS are 92.08, 96.83, 97.29, 98.89, and 95.97, respectively. The TWS give the highest percent
of TP at an expense of significant loss in FP number. In other words, the percent of FP given by
the TWS is 20.09, which is worse than the others. The result from the MCWS, which is the
watershed improvement for over segmentation problem, is 9.52%. However, the DSMT provides
the best FP percent at 3.12. The TWS gives the best FN percent at 0.97 due to it’s over
segmentation characteristics. The FN percent from the DBFT is 1.90, which is better than that

from the MCWS at 3.34%.



TABLE 7.4: Comparison of segmentation accuracy.

Image DSMT DBCT DBFT TWS MCWS
No. TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN
1 201 9 12 212 19 2 212 13 3 214 57 1 206 24 7
2 228 9 11 236 25 3 236 16 4 240 55 3 236 23 6
3 243 1 21 260 15 5 261 10 5 268 38 1 261 24 7
4 226 2 22 238 16 8 240 10 9 243 67 6 232 17 17
5 177 11 14 186 22 1 188 13 3 190 39 0 183 15 7
6 251 5 13 262 15 3 262 11 2 263 32 2 258 12 6
7 219 2 7 224 11 2 224 4 2 228 17 1 224 9 2
8 219 3 9 225 11 2 225 7 3 228 33 2 225 12 4
9 186 5 19 194 17 6 196 10 6 202 47 4 198 19 8
10 268 7 22 281 22 8 284 15 8 288 50 5 280 22 13
11 194 4 7 199 13 3 198 8 2 203 35 1 200 21 3
12 221 8 15 234 17 3 237 12 3 240 33 2 235 20 6
13 185 6 17 197 15 4 196 13 5 201 34 2 191 21 13
14 218 6 14 231 18 1 231 11 2 232 44 1 229 20 4
15 140 7 23 162 22 3 162 12 4 165 43 2 149 17 17
16 191 9 14 205 16 5 204 13 6 207 45 3 196 25 11

S9



TABLE 7.4: Comparison of segmentation accuracy (Cont.).

Image DSMT DBCT DBFT TWS MCWS
No. TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN
17 252 3 13 262 8 2 263 4 2 264 55 3 258 31 9
18 237 9 35 256 21 14 260 10 15 280 64 3 267 27 12
19 238 7 15 250 17 6 250 11 7 258 50 1 246 26 8
20 162 17 10 174 32 1 175 25 1 174 59 1 170 26 6
21 210 10 12 220 24 4 219 16 6 221 67 4 213 31 11
22 151 3 14 152 13 7 158 4 7 162 20 6 154 12 9
23 185 6 14 197 11 1 200 7 1 201 32 0 196 20 2
24 162 10 9 166 15 3 168 12 3 173 21 0 166 17 5
25 126 4 12 135 11 4 134 9 5 137 17 3 135 16 4
26 232 2 7 238 11 1 239 6 2 239 38 2 240 9 1
27 239 12 12 250 32 1 251 19 1 251 53 1 248 24 4
28 212 9 11 223 20 2 224 11 2 226 66 1 223 26 3
29 97 13 10 104 30 3 105 31 2 106 70 1 99 41 8

Sum 5870 199 414 6173 519 108 6202 343 121 6304 1281 62 6118 607 213

Percent 92.08 312 649 96.83 8.14  1.69 97.29 538  1.90 98.89  20.09  0.97 95.97 952 334

99



67

TABLE 7.5: Comparison of segmentation accuracy with respect to SS (sensitivity), PPV

(positive predictive value), ACC (accuracy), and F, ( F,-measure).

DSMT DBCT DBFT TWS MCWS
SS 0.934 0.983 0.981 0.990 0.966
PPV 0.967 0.922 0.948 0.831 0.910
ACC 0.905 0.908 0.930 0.824 0.882
F, 0.950 0.952 0.964 0.904 0.937

Table 7.5 shows more quantitative comparisons on SS, PPV, ACC, and F, values resulting from
all algorithms. The DBFT has high detection performances on both SS and PPV values at 0.981
and 0.948, respectively. These values are better than those from the MCWS, which are 0.966 and
0.910, respectively. These values are better than those from the TWS and MCWS, which are over
0.960 and 0.830, respectively. For the TWS, it gives very good SS value at 0.990 with the
tradeoff in low PPV value at 0.831. By combination of SS and PPV, the ACC of DBFT is highest
at 0.930 while the ACC of DSMT, DBCT, TWS and MCWS are 0.905, 0.908, 0.824, and 0.882
respectively. Similarly, the F, value of DBFT is also highest at 0.964 compared to those from the

DSMT, DBCT, TWS and MCWS at 0.950, 0.952, 0.904 and 0.937, respectively.

Table 7.6 shows the segmentation characteristics of all algorithms using the labeled objects
compared to the square dots, which are marked by the expert. Image set No. 1 shows the
incomplete segmentation from the MCWS. This under segmentation is the effect of over
segmentation controlling under failed marker identification. Image set No. 2 illustrates the over
segmentation of the TWS, which is generally caused by the imperfect catchment basin generation.
In addition, the segmentation results of irregular shape nuclei in the image set No. 3 represent the

disturbance to both the TWS and MCWS.

For the direction-based approaches (DSMT, DBCT, and DBFT) on overlapping nuclei segmenta-
tion, the proposed approach requires the direction characteristics that are the smoothing direction

ability on individual nucleus area and the contrasting direction ability on overlapping nuclei area.
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TABLE 7.6: Comparison of segmented overlapping nuclei.

No. Direction-based approach MCWS

e & A
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. - > »

\

The quantitative results show that the percent of correct, over, and under segmentation from the
direction-based approaches are better than those from the MCWS. Based on ACC and F, values,
the DBFT can be considered as the best among five methods because it provides the highest

numbers. Moreover, the DBFT is more robust when applied to the irregular shape nuclei.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis has proposed the technique based on direction of image data applying to overlapping
nuclei segmentation. The advantages of direction are determined thorough in almost aspect.
Relation, difference, and path as shown in Fig. 8.1 are keywords of direction utilization in this
research. Reasonably, these concepts can perform the connection between direction information

and segmentation task as the following definitions:

Relation: if the considered directions of any pixels of overlapping nuclei image can be
decomposed to a direction group based on any characteristics, these pixels can be possibly

merged into the individual nucleus.

Difference: if any pixels of overlapping nuclei image have the angle differences over the

thresholding value, the segmented boundaries can be extracted from them.

Figure 8.1: Basic concepts of direction-based application to overlapping nuclei segmentation.
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Path: if any considered directions of overlapping nuclei segmentation guide any pixels to same

area or nearby, these directions can be extracted to the individual nucleus.

Fig. 8.1 shows explicitly how the proposed concepts perform on direction information. However,
the original image does not prepare the direction information. Hence, similarly to general data
signal processing, the pre-processing scheme is set to generate the direction information from
overlapping nuclei image. The characteristics of direction are required especially to the perfect
direction field in order to handle segmentation accuracy. Thus, this work firstly introduces the

pre-processing step, as follows.

Direction generator: Two goals of this scheme are how to generate the direction field and how
to hold the desirable properties of direction field as much as possible. Before performing to
achieve these tasks, the direction generator requires the image pre-processing to prepare binary
image yielding nuclei shape. The tradition image processing techniques consisting of color space
transformation, binarizations, and morphology operator, are selected due to their effective
performance, flexibility, and cost. Then, direction generator will construct the direction field
using the gradient calculation from distance transformation. For the second goal, the direction
smoothing ability and contrasting direction ability are desirable and significant properties. Hence,
in process, the direction generator adapts the distance transformation in global to the distance
transformation in local. Using iterative process that shrinks the binary image and then calculates
the distance image, the local direction field can be generated and carried out both significant
direction abilities from all of this process. The direction field from this process can be
subsequently used in segmentation approaches that employ the basic concepts, relation,
difference, and path, to succeed overlapping nuclei segmentation. Three segmentation approaches

based on the generated direction field are proposed in this thesis. Their details are as follows.

Direction-based splitting and merging technique (DSMT): This technique interprets the
relation to the direction in the individual nuclei attempting to direct to the same area or nearby in
the individual nuclei area. There are two step of this technique as splitting and merging steps. The

splitting step separates whole pixels in direction field into tiny pieces using angle range. The
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relation among these tiny pieces is calculated. The merging condition can be found using the
algorithm based on angle measurement. After merging process, the individual nucleus will be

obtained. In other words, the overlapping nuclei are separated into individual nucleus.

Direction-based classification technique (DBCT): Difference in direction field is explicitly at
the boundaries between the overlapping nuclei under divergent characteristic. It can be estimated
using difference angle value of four neighbor directions around a considered direction. The
obtained value will be classified to prove that it has divergent characteristic or not. If it is true,
whole pixels having this characteristic will be extracted to the single boundaries. By

superimposing it on the overlapping nuclei image, the segmented nuclei will be succeeded finally.

Direction-based flow tracking technique (DBFT): Path is basically characteristic in direction
field. Tracking based on the path can group any pixels in the individual nucleus under direction
characteristic produced by direction generator. The derived pixel group will be labeled and then
recovered to the original position before tracking. Hence, finally, the separation of overlapping

nuclei into the individual nucleus can be achieved.

Segmentation accuracy: The results of this research are derived from the experiment on real
overlapping nuclei image. The proposed approaches and the tradition segmentation approaches
(TWS and MCWS) are tested to yield correct, over, and under segmentation value. This
quantification is not sufficient until the deep validations as SS, PPV, ACC and F, are determined.
The high SS and PPV of direction-based algorithms, over 0.9, indicate the significant
performance under actual operation. Especially the ACC and F, show that DBFT is the best

among compared approaches.

8.2 Future work

In summary, this work gives more viewpoint of direction application on overlapping nuclei
segmentation. There are three strategies proposed on segmentation approaches. However, more

efficiency on this task can be developed in future until two ideals as following are fulfilled.
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Direction preparing: The direction generator proposed in this work can be added more
individual nucleus information in addition to nuclei shape. Color, texture, and edge are the
examples of this. However, problems of this application are how to transform this information to
direction field and how to arrange the obtained direction to have the designed characteristic. The
solution may be resulted from N-dimension space calculation similar to the direction generator

using binary image in direction field estimation.

Segmentation approach: The segmentation approaches in this thesis are based on the general
computation in a direction. In each step, the computation only uses some ability of direction that
is local characteristic of a direction such as relation, difference, and path. Question is that can the
computation estimate globally to extract group of direction having same characteristic similar to
the frequency domain done in image filter process. If this is succeeded, accuracy, robustness, and

cost may be improved.

Direction-based classification technique (DBCT): This approach can be improved to achieve
better performance by removing correction process of @ . In this case, the @ determination may

use trigonometric function to avoid overflow problem of @ calculation.

Direction-based flow tracking technique (DBFT): The dilation after finished tracking process
is employed to connect moving pixel groups together. This step may use marker to indicate area

to connect moving pixel groups before finished tracking process.

Cooperation of DSMT and DBFT: To reduce processing time of DBFT, the tracking process
can use splitting process of DSMT to move only direction agent of each split direction field.
Subsequently, DBFT will decide to group split direction field and then extract the individual

nucleus using DSMT.
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Preliminary Results of Cell Image Segmentation
using Dynamic Force Estimation on a Static Vane

Y. Surut and P. Phukpattaranont
Department of Electrical Engineering, Prince of Songkla University, Thailand

Abstract- This paper presents a novel method for cell image
segmentation. The approach is based on the application of
dynamic force estimation on a static vane (DFESV) to medical
image processing problems. The other processes in the approach
include smoothing filter using anisotropic diffusion, thresholding
using Otisu’s algorithm, morphology operation, marking
boundary segment, angle image operator, and angle relation
merging. Microscopic images from breast cancer tissue are used
for evaluation of the approach. Preliminary results show that cell
image segmentation based on the DFESV can successfully
separate multiple attach cells into distinet single cells.

[. INTRODUCTION

Pathologists carry out cell image analysis by wvisual
inspection on cell appearances such as sizes, shapes, textures,
and colors. However, the task is time consuming, costly, and
tedious. In addition, visual inspection yields only subjective
results. Recently, a computer-aided image analysis gains more
interest due to the developments in computer capabilities and
the advancement in image processing algorithms. Benefits
resulting from a computer-aided analysis include an
acceleration of time, a reduction in cost, and a decrement in a
false inspection due to fatigue. Additionally, it provides a
quantitative description of each particular cell in the image.
Consequently, variations in image analysis resulting from
human can be reduced.

An important step in cell image analysis is cell segmen-
tation, the process of separating cell from background. There
have been many algorithms aiming to improve performance of
automatic cell image segmentation process. Based on
geometric point of view, features of cell images are extracted
to segment homogenous cell boundary [1]-{6]. Elliptical shape
and texture of cell images are utilized to find boundary [1]-[3].
Besides, geometry of cell images is used in segmentation
based on active contour and watershed [4]-[6]. Benefit and
performance of each algorithm depend on various factors such
as cell type, cell image acquisition, cell compactness, and cell
image quality.

This paper presents a novel idea on cell image segmentation,
which is able to inherently separate overlapping cells. As a
result, accurate number of cells and accurate cell boundary in
the image can be obtained. The approach is based on the
application of dynamic force estimation on a static vane
(DFESYV) to medical image processing problems.

978-1-4244-3388-9/09/525.00 ©2009 IEEE

II. THEORY

A Dynamic Force Estimation on a Static Vane (DFESV)
Dynamic force estimation on a static vane, i.e. a momentum
force of fluid flow on the static vane, can be expressed as [8]

> F=pOAV, (n

where F is result of all the forces acting on the fluid, p is fluid
mass density, Q is fluid volume flow rate, and AV is the
difference in fluid velocity. Fig. 1 shows a diagram of forces
on the fluid applied to the static vane. Assuming that the flow
is in a horizontal and vertical planes, we can rewrite (1) as

F, = pQV, cos(8, )— pOV, cos(8, ), )
F, = pQV; sin(8,)— pQV; sin(6;), (3)

where F,is fluid force on horizontal plane, F| is fluid force
on vertical plane, V| is fluid velocity at inlet vane, V5 is fluid
velocity at outlet vane, #, is inlet vane angle, and £, is outlet
vane angle.

B, Implementation of the DFESV

For the implementation of dynamic force estimation on
image processing, we define inlet (8, ) and outlet (&, ) vane
angles based on intensity gradient as shown in Fig. 2(a). The
direction of fluid flow in each pixel can be calculated in eight
pairs by determining inlet and outlet vane angles from
intensity pradient angles of neighborhood intensity pixels.
Example of one in eight pairs of the implementation is shown
in Fig. 2(b). We define O, p, ¥, and V5 to be one and define a
variable o as a varying angle of inlet vane. Thus, we can
rewrite force equations into

F,(6,,0,)=cos(#,)—cos(af, ),
F,(6,,6,)=sin(6, )—sin(af, ). (4)

Results of force estimation at each pixel consist of eight
force values from eight pairs of fluid flow directions. We
normalize force in each direction to the range between 0 and
255 and keep only the minimum value.



Figure 1. Force on the fluid in a static vane.
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Figure 2. (a) Angle from intensity gradient. (b) Fluid flow direction in force
estimation.

C.  Application of the DFESV to Image Segmentation

Fig. 3 shows a flow chart of cell image segmentation based
on the DFESV. The algorithm is composed of two main parts:
Image preprocessing and image segmentation. In image
preprocessing part, RGB image is converted to gray-level
image. Subsequently, anisotropic diffusion is applied to

81

smooth region of object in the image while still preserve
object edge and sharp intensity gradient [7].

In image segmentation part, we apply the DFESV algorithm
and binary thresholding with the threshold value from Otsu’s
algorithm to the gray-level image after smoothing. While
binary thresholding separates the cells from background as an
object in the form of multiple attached cells, the DFESV
algorithm divide the cells into many smaller parts of a larger
whole cell. However, after we perform morphology operator,
marking boundary segment, angle image operator, and
merging with angle relation, we can separate multiple attached
cells to single distinct cells. Details of the stated algorithms
are given below.

D.  Morphology Operator

Morphology operator is a processing of the spatial form or
structure. We apply erosion and dilation operators to eliminate
noise in the binary image [10]. In addition, we apply thinning
operation [11] and boundary finding to extract boundary of a
binary cluster.

E. Marking Boundary Segment

The DFESV algorithm gives many disconnected smaller
parts of a larger whole cell. Thus, we have to build the process
to make the smaller parts of the whole cell connect together.
This process is called Marking boundary segment. Input
images in this process are gray-level image after smoothing
filter, binary image from morphology operator, and binary
image from Otsu’s thresholding.

F. Angle Image Operator

Angle image operator is a processing to measure direction
of image surface. Input of this process is the image from
marking boundary segment. We calculate angle in each pixel
with respect to the x axis and the y axis to obtain the direction
of image surface. Angle values in both axes are calculated
from inverse tangent of intensity image gradient.

G.  Merging with angle relation

This process determines the relationship of angles and
regions. Direction angle and center co-ordinate data of each
region are employed. We apply inverse cosine of dot product
to find relation angles between connected regions. Each region
locates in difference co-ordinate thereby we use the reference
vector in this calculation. For example, relation angle between
main region A and connected region B can be calculated by
finding vector B4 from center co-ordinate of region A and
region B and then use this vector as a reference to compute
angle direction of region B, which can be expressed as

2 ©)

Bd' = cos | [
R

where B is direction vector of connected region and BA is
vector of center co-ordinate from connected region to main
region.
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Figure 3. Flow diagram of cell image segmentation based on the DFESV.

We compute angle relations of all regions and keep the set
of angle relations. Then, we select the angle value to threshold
connected region member. If angle member in each set has
value more than specified angle threshold, this connected
region member is cut off. In case of all members are removed
on a selected threshold, the connected region member which
has minimum angle is chosen. Then, we apply union operator
to find relation of all set. At this time sets of connected region
member represent region of the same object. We can merge
each region by using set to identify label and then
use 3x 3 mask to delete boundary of region in the same object.

ITI. MATERIALS AND METHODS

A Acquisition of the Images

The cell images used in this research were obtained from
breast cancer cell tissue. The tissue slices were scanned by
microscope (Eclipse 80i Advanced Research Microscope,
Nikon Instech Co., Ltd., Japan) with a magnifying factor of
200. Contrast and brightness were adjusted by a specialist. The
obtained color images were 2560x3200 JPEG format [12].
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(c) (d)

Figure 4. (a) Original image. (b) Force estimation on cell image. (c) Partition
image. (d) Segmented image superimposed on the original image.

E3

Figure 5. Direction of surface in gray-level image after averaging angle in
each region and expand angle within boundary.

B, Cell Image Segmentation Method

We apply cell segmentation algorithm based on the DFESV
as described in Section II to breast cancer images. Parameters
used in the algorithm are as follows. Parameter x and iteration
number in anisotropic filter process were defined as 15 and 20,
respectively. Parameter « in force estimation process was
defined as 3 to adjust angle of inlet vane. The defined
threshold angle value used in merging with angle relation
process was 36 degree. Two images are tested to demonstrate
performance of our proposed algorithm. The first image
consists of two overlapping cell. This image was used to
explain results in all details of the algorithm. The second
image is composed of many multiple attached cells. Result of
this image was used to demonstrate the performance of
algorithm in a more realistic situation.



(a)

(b}

Figure &. (a) Segmented images from the DFESV superimposed on the
original image. (b) Perspective intensity plot.

IV. RESULTS AND DISCUSSION

Fig. 4(a) shows an original RGB image consisting of a pair
of overlapping cells. After RGB to gray-level conversion and
the application of anisotropic diffusion, the DFESV algorithm
was performed and its output was shown in Fig. 4(b). One can
see that the cell image was divided into many disconnected
smaller parts of a larger whole picture. In order to connect all
smaller parts in the larger whole image, morphology operator
and marking boundary segment are operated. Connected
image result is shown in Fig. 4(c).

Fig. 5 shows direction of surface in gray-level image after
averaging angle in each region and expands the angle within
boundary. Finally, we utilized the merging with angle relation
process to combine all related regions. The merging result
superimposed on the original image is shown in Fig. 4(d). It is
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shown that the two overlapping cells are successfully
separated into two distinct single cells by the DFESV
approach. Fig. 6 shows the segmented image superimposed on
the original image consisting of many attached cells and the
perspective intensity plot of segmented image. The result
confirms performance of cell image segmentation algorithm
based on the DFESV.

V. CONCLUSION

We introduce an algorithm for segmenting multiple attached
cells using dynamic force estimation on a static vane (DFESV).
Preliminary results of investigation show that overlapping
cells are segmented with satisfactory boundary. In order to
develop a more complete system, we will improve algorithm
to automatically adjust parameters, ie. « in force estimation
process and the threshold angle value used in merging. Then,
we will apply the approach to more images for validation and
also apply to other ecategorized cell images such as
neuroblastoma images. Results will be reported in the near
future.
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ABSTRACT

The objective of this article is to separate cell boundaries
out of the background in the neuroblastoma microscopic
images using the unsupervised operation. Two
algorithms i.e., the Intensity thresholding and the K-
means clustering, are applied in the RGB color space.
The grouping of the RGB color space is also utilized to
evaluate result comparison. The images in this paper
contain the various properties such as cell compactness,
multilevel color distribution and entire cell texture. The
results were validated using sensitivity and average
operation time. The appropriate approach agrees on the
one hand, the intensity thresholding (Otsu’s algorithm)
on the R channel images from the sensitivity and the
average operation time are 96.49% and 7.60 sec per
image. On the other hand, the K-means clustering on the
R channel images from the sensitivity and the average
operation time are 96.53% and 8.89 sec per image. The
appearance boundaries of the obtained images are also
considered. The resultants of appropriate approach show
that the cell boundaries satisfy constraint.

1. INTRODUCTION

Neuroblastoma is a nerve cancer which is commonly
found in embryo, infant and children [1]. The treatment
planning of this disease obtains from histology diagnosis
of cancer cell invasion. Pathologists investigate cancer
invasion under tissue strained with haematoxylin and
eosin (H&E) and capture image with microscope.
However, disadvantage of human inspection system such
as time consumption, cost and tedious may occur. So,
computer-aid analyzer is become more and more
significance to gain diagnosis performance and reduce
time consumption.

According to computer-aid analyzer of neuroblastoma
research, outcome is still sparse. The existed analysis
system for the neuroblastoma images aim to grade
neuroblastoma histology to stroma-rich and stroma-poor
with an offline feature selection and K-nearest neighbor
classifier (KNN) [1]. Besides the mention approach,
multi resolution and existed classify approach such as
KNN, LDA, Bayesian and SVM are applied to extract
feature and classify the neuroblastoma microscopic
images [2]. The above-mentioned researches almost
utilize supervised classification. The goal of this research

is the application of color image in each spectrum
component to extract object information which is cell
boundaries. In addition, the proposed classifier in this
research is the existed unsupervised approach such as
intensity thresholding (Otsu’s algorithm) and K-means
clustering.

2. THEORY

2.1  Intensity thresholding

The classical of prevalent global thresholding is Otsu’s
algorithm [3]. Based on the statistical theory, the
intensity histogram shows the separate intensity cluster of
object and background. The level of histogram which
gives the maximum of class mean is the finest point to
threshold objects in the image. The maximum of class
mean can be formulated as

where g7 is the total mean intensity level of the image,
w(k) is the zero™-order cumulative moments up to the &
histogram level and wu(k) is the first-order cumulative
moments up to the ¥ histogram level.

2.2  K-means clustering

The K-means clustering is the useful classification
method where the data is normal distribution [4].
Definition of the centroids and grouping with the nearest
distance between data points and centroid coordinate are
the major notion of this approach. The convenient
formalization can be expressed as

K

§= iZm

j=1 k=1

L

|2

x, —

where r, is the set of cluster indicator, represented as
binary value 0 or 1, x,, is the selected feature data and g,
is the data points which is represented as cluster. To find
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Figure 1. The various cell characteristics of the
neuroblastoma microscopic images.

the minimization of S, the iterative procedure is utilized.
The first stage, the initial value of u; is defined. Then, the
minimization of S is determined which is that consider
and fix g;. Afterward, the minimization of § is also deter-
mined which is that consider #; and fix r,;. The approach
is then repeated until set of group is stabilized. In the
consideration of r,, binary number is assigned to
determine group label by set value r,; to 1 in group & if
summation of distance is minimum. The formalization of
rqx assignment can be expressed as

|1 iszargmiﬂjuxn—ﬂ'k”z

Fak ’
0 otherwise

From the quadratic function in § evaluation, the
optimization of u; can be easily solved as

_ Zn Tk Xn
e ==
,,rnk

where n is the number of the selected feature data and £ is
number of cluster indicator.

2.3  Morphology operator

The mathematical morphology is the function of set
theory. Morphology operator is applied in object
description such as edge detection, shape identification,

image rotation, etc [5]. The basic morphology operators
such as erosion and dilation, are subsequently defined as

40E={2|(E), C 4}

and

A%'E={2|

(fé)z ﬂA} = A}
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RGB—» }
R——» K-means clustering |
RG(2™)-»
RGB color | Morphology
space | operator
RG(2™)» Intensity
R—» thresholding

Figure 2. The flow diagram of unsupervised background
elimination approach.

Figure 3. The segmented image from the K-means
clustering on the RGB group.

where E is the structuring element. In this research, we
apply erosion and dilation in the closing and opening
operators to eliminate the undesirable objects and
connect the fragmented object in the binary image from
unsupervised background elimination. The formalization
of closing and opening operators can be subsequently
expressed as

A*E=(ADE)SE
and

A°E=(A CE)®E.
3. MATERIALS AND METHODS

3.1  Acquisition of the images

The neuroblastoma images in this research were obtained
from tissue strained with haematoxylin and eosin (H&E).
The neuroblastoma images were acquired using the
Eclipse 80i advanced research microscope (Nikon Instech
Co., Ltd., Japan) with 40x magnifying factor. The
contrast and intensity of the images were adjusted by a
specialist. The storage images from microscope were
cropped with 944X 742 pixels. The 152 cropped images
were compressed as JPEG files. The neuroblastoma cells
in obtained images were marked by pathologist. The total
26003 cells from the five image sets were used in the
approach evaluation. The structures of the tissue-stained
images consist of the different characteristic, such as
blue-purple color of nuclei and cytoplasm, neuropil and
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Figure 4. The segmented image from the approach. (a) The 2™ Otsu’s algorithm on the RG group. (b) The Otsu’s
algorithm on the R group. (c) The 2™ K-means clustering on the RG group. (d) The K-means clustering on the R group.

red blood cells. The different characteristic of the cell
images are illustrated in the Fig. 1.

3.2 Unsupervised background elimination

The approach of unsupervised background elimination
based on the color space understanding extraction. The
RGB color space is prepared to provide to unsupervised
classification method in the name of Otsu’s algorithm and
K-means clustering. The observation of each image plane
in RGB color space exposes the contrasting ability to
separate cells out of background. The input image data
were prepared in different group such as RGB group, RG
group and G group for propose of image understanding
extraction.

In this research we proposed five methods which are
grouped with color space data as flow diagram in Fig. 2.
First we prepared the groups of color space data such as
RGB group, RG group and R group. Then we used K-
means clustering and Otsu’s algorithm to classify cells
out of background. Especially the approach for RG
group, in the name of the 2™ approach, were first
classified the image on R channel image and then
estimated the mean intensity of each group. The lowest
mean intensity of any group was selected and the pixels
of G channel in the same positions were classified again.
The final clusters for all proposed methods were also
selected same as the mentioned approach.

Almost the segmented images from the clustering
approach have the fragmented area. The morphology
operator is used to connect successfully the fragmented
area and remove tiny pieces. We first connected
fragmented area with the closing operator and then fill
hole. Finally the opening operator was utilized to remove
tiny piece. In the morphology operator, the structure
element object was a flat disk shape where the radius
equals six.

3.3  Evaluation of system performance

Sensitivity (SS) and average time operation are used as
the measurement of performance evaluation. Sensitivity
is the probability of the system detection on cells which is
marked by the experts. The sensitivity evaluation is
expressed as

g__ 1P
" TP+FN’

where TP (true positive) are the number of cell nuclei
which are identical to the expert marker and FN (false
negative) are the number of cell nuclei which are
identified by the expert but the system can not detect.
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Table 1. The resultants of the evaluation on the sensitivity estimation and the average operating times.

Set Cell K-means(RGB) K-means(R) 2" K-means(RG) Otsu(R) 2" Otsu(RG)

No. Number TP FN TP FN TP FN TP FN TP FN
1 1772 1746 26 1656 116 1597 175 1653 119 1596 176
2 5893 5816 77 5746 147 5480 413 5745 148 5475 418
3 3967 3809 158 3706 261 3377 590 3702 265 3373 594
4 12128 11993 135 11895 233 11320 808 11894 234 11314 814
5 2243 2191 52 2098 145 2078 165 2096 147 2078 165

Sum 26003 25555 448 25101 902 23852 2151 25090 913 23836 2167
Sensitivity (%) 98.28 96.53 91.73 96.49 91.67
Avg. Times (s) 10.85 8.89 12.10 7.60 10.29

Due to the fact that the approach could not completely
segments the overlapping and touching cells, the
evaluation to measurement accuracy was based on
background sensitivity and visual investigation. In
addition, the time consumption of operation was
considered to also determine the approach performance
case for the approach yielded the close resultant.

4. RESULTS AND DISCUSSION

In the table 1, the proposed approaches were applied and
evaluated with background sensitivity. The maximum
sensitivity from the RGB group on the K-means
clustering was not optimized yield because the cells and
background data from RGB color data produce more
indistinct objects. Thus we can see the disadvantage of
this approach shown in Fig. 3 which the red blood cells
were assembled in the cell boundaries. In case of the K-
means clustering and Otsu’s algorithm on R group, the
sensitivities were 96.53% and 96.49%, respectively and
the average operating times were 8.89 sec and 7.60 sec,
respectively. In the remaining approach, the 2™
segmentation on both K-means and Otsu’s algorithm, the
sensitivities were 91.73% and 91.67%, respectively and
the average operating times were 12.10 sec and 10.29
sec, respectively. When we compared the mentioned
approaches, we found that performance of the first
segmentation algorithm prevailed over the second
segmentation algorithm in the meaning of the background
sensitivity and the average operating times. From the Fig.
4, the obtained images from the second segmentation
algorithm reveal the predomination over the first
segmentation algorithm when the microscopic images
were the compact cell distribution. Thus we selected the
first segmentation algorithm, the K-means clustering and
Otsu’s algorithm on R group, to consider in the next
comparison.

Finally, we considered the performance of the
selected approaches, the K-means clustering and the
Otsu’s algorithm on R channel, found that the approaches
were close performance. The Otsu’s algorithm operated
faster but less sensitivity than the K-means clustering.

5. CONCLUSION

In this research, we introduce the unsupervised back-
ground elimination for the neuroblastoma microscopic

images. The approach proposes the Otsu’s algorithm and
the K-means clustering on the multi group of RGB color
space. The morphology operator is applied to fulfill the
boundary extraction. The results of performance
evaluation show the significant outcome. On the one
hand, the Otsu’s algorithm on the R channel images is
selected if precedence to time consumption is required.
On the other hand, the K-means clustering on the R
channel images is chosen if priority to the sensitivity is
needed.
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Abstract— This paper presents a novel method for
overlapping cell image segmentation. The approach is based on
surface splitting and surface merging algorithm applied to
medical image processing problems. While the surface splitting
algorithm divides the overlapping cell image into pieces of
different shapes, the surface merging algorithm correctly joins
them together to form the separating cell image. The surface
splitting approach operates based on clustering of gradient
directions of split surface angles. Then, surface merging is
applied to combine each fragment with a specific condition in
order to find individual cells. Microscopic images from breast
cancer tissue are used for evaluation of the approach. Results
show that cell image segmentation based on surface splitting and
surface merging algorithms can successfully separate multiple
attached cells into distinct single cells.

L INTRODUCTION

Pathologists carry out cell image analysis by visual
inspection on cell appearances such as sizes, shapes, textures,
and colors. However, the task is time consuming, costly, and
tedious. In addition, visual inspection yields only subjective
results. Recently, a computer-aided image analysis gains more
interest due to the developments in computer capabilities and
the advancement in image processing algorithms. Benefits
resulting from a computer-aided analysis include an
acceleration of time, a reduction in cost, and a decrement in a
false inspection due to fatigue. Additionally, it provides a
quantitative description of each particular cell in the image.
Consequently, variations in image analysis resulting from
human can be reduced.

An important step in cell image analysis is cell
segmentation, the process of separating cell from background.
There have been many algorithms aiming to improve
performance of automatic cell image segmentation process.
Based on geometric point of view, features of cell images are
extracted to segment homogenous cell boundary [1]-[6].
Elliptical shape and texture of cell images are utilized to find
boundary [1]-[3]. Besides, geometry of cell images is used in
segmentation based on active contour and watershed [4]-[6].
Benefit and performance of each algorithm depend on various
factors such as cell type, cell image acquisition, cell
compactness, and cell image quality.

In this paper, we present a novel idea on cell image
segmentation, which is able to inherently separate overlapping
cells. As a result, accurate number of cells and accurate cell
boundary in the image can be obtained. Based on image
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Fig.1 Principle of overlapping cell segmentation based on splitting and
merging algorithms.

surface consideration, we apply two main approaches to split
cell surface and then merge them with specific condition
called surface splitting and surface merging algorithm,
respectively.

The organization of this paper is as follows. Section II
presents the methodology of proposed algorithm, its
implementation, and its applications to cell segmentation
problem. Section III describes materials used in experiment.
Section IV provides the preliminary results and discussion.
Finally, the conclusion is drawn in Section V.

II. MEDTHODOLOGY

Fig. 1 shows a principle of overlapping cell segmentation
based on splitting and merging algorithms. Overlapping cell
surfaces in Fig. 1(Top panel) are divided into pieces of
different shapes according to their gradient directions as
shown in Fig. 1(Middle panel) by the splitting algorithm.
Subsequently, they are joined together to form the two
separating single cells as shown in Fig. 1(Bottom panel) by
the merging algorithm. Details of the algorithm are as follows.
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A, Surface Splitting

Because the overlapping cell surface can be viewed like a
mountain range, this behavior reveals some significance in the
gradient direction. That is, for the individual cell, its gradient
direction tends to direct to the same region, i.e., the top of the
mountain. Thus, we use this behavior to split cell surface by
clustering the gradient direction of each point into the angle
range. So, we first calculate gradient direction of each point.
Let [, , is the intensity in spatial coordinates of the intensity

image. We calculate image gradient (V! (x, v)) with
approximation function &I, ,/ax= (I, —

5L, ,)i2
ol, Jey =({,,,—1,,,)/2. The magnitude in y-direction is
reversed because the angle calculation employs gradient
direction in Cartesian coordinates. Then, we exploit gradient
of intensity image (gr Ly
compared with the x-axis using an inverse tangent operator.
However, the derived angle values are only range0—m/2.

and

) to calculate the angle value

We have to correct them to cover all angle range 0 —2x . Thus,

the quadrant examination is applied in this task as following:

abs(i?u) Kg , =1
abs(g,)+x/2 19y =2
g, =3
abs(i?u)+)r lfQJJ -4 )
a,, ='3b5(9u)+37”2 lfsign(g“r] Dandmgn(b )(0,
3x/2 lfsign(g”] 03nds1gn[hJ)}0
:{2 lfsign(gu]<ﬂands1gn ] 0
0 lfsign(g“r]:d)andmgn[b } 0

where (), ,is the function of quadrant identification from
gradient magnitude, and 6 is the angle from the inverse

tangent operator. Then, the @, can be used to cluster pixel

into splitting surfaces by defining the number of cluster. Fig.
2(b) shows an example of splitting surface image where the
defined clustering number is 8. Subsequently, the background
is eliminated by the image from thresholding algorithm [7],
The small pieces of splitting surface image, which are
considered as noises, are removed using a morphology
operator. Then, the single pixel boundary is obtained with a
thinning operator [8]. The result of the approach in this step is
shown in Fig, 2(c).

However, in some cases, the branch of splitting surface
boundary occurs as illustrated in Fig. 2(c). Thus, De-branch

algorithm is applied to eliminate them before surface merging.

This approach determines member of labeled split surface in
3x3 mask, and then remove pixel which is judged to be

branch. Let b, | is the splitting surface image, /b, , is the label

image of b, . We use average of /b ; by 3x3 mask

W,

;.- In order to

(W,. j) as m, to detect different members in

identify the threshold value (T;;) , the equation is given by
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Fig.2 (a) The overlapping cell image. (b) The splitting image from
clustering by angles. (c) The splitting surface image of overlapping
cell. (d) The splitting surface image after de-branch approach.

Wb

Xy

((wn

x.¥

)

and Wb, is

—m, - )
where Wib,
binary valuc of W  from Ib .
when7, , =0. The example of the obtained splitting surface
image is illustrated in Fig. 2(d).

15 label value of W from b

iLj?

Finally, we set b ;=1

B.  Surface Merging

After surface splitting, we obtain the splitting surface,
which can be used to merge with a specific condition. That is,
their gradient directions are convergent to same region. Fig.
3(a) shows the gradient direction of each split surface
represented with a vector. The convergence and divergence
between neighborhood vectors indicate that they are from the
same individual cell surface or not. On the one hand, if the
vector relationship have convergent characteristic, the
surfaces are from the same individual cell. On the other hand,
if the vector relationship have divergent characteristic, the
surfaces are not from the same individual cell. In numerical
calculation, the convergent and divergent characteristics are
determined based on a linear equation y =mx+5 .

From Fig. 3(a), let aand b are the gradient vectors,
which are from two connected splitting surface. The linear
equation can be determined using their representing vectors.
Thus, we can obtain y =mx+b and y=mx+b,,



< N

Fig.3 (a) Splitting surface image and their gradient vectors. (b)
Convergent behavior. () Divergent behavior.

which represent the linear equations of a and b, respectively.
Then, the cutting point of both lines is calculated. We use the
obtained cutting point to classify the convergent characteristic
from divergent characteristic. The rule is declared that if
cutting point, direction of a and b are in the both areas of
perpendicular linear equation of a and b as illustrates in Fig.
3(b), both vectors are judged to the convergent characteristic.
Otherwise, they are judged to the divergent characteristic as
illustrates in Fig. 3(c). To use this rule, we first calculate
perpendicular linear equation of a and b . We obtain
y=—mx+b and y=-m,x+b, , which the
perpendicular linear equations of a and b, respectively. The
implementation can be expressed by the following:

represent
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(2) (b)

(©)

(d)

Fig.4 (a) Splitting surface image. (b) Splitting surface image after
surface merging algorithm. (¢) The obtained binary image after de-
branch algorithm is applied. (d) Segmented image superimposed on

the original image.

s, = sign(bl —(y] —mXx, )),

(3)

where point {x],y]), point {xz,yl), and point {xs,ys) are
direction of a and b, and cutting point. Finally, if s, =, and

5, =5,, we judge to the convergent characteristic. Otherwise,
we classify it to the divergent characteristic. For
implementation, we first find the property of each splitting
surface as centroid, splitting surface neighbor, and average
gradient. The algorithm can be expressed as following:

Algorithm surface merging
Calculate split surface property
Loop all split surface neighbor
Find cutting point
Find perpendicular linear equation
Calculate s,, s,, 55,and s,
If 5, =s,ands, =s,,
Merge both split surfaces

End
End loop



Fig. 3(b) shows the splitting surfaces, which are merged
from detecting condition. The splitting surfaces that are not
merged are shown in Fig. 3(c). When entire splitting surface
neighbors in Fig. 4(a) are determined, the result can be
illustrated as Fig. 4(b). We apply de-branch algorithm for this
task. The result can be shown in Fig. 4(c). Finally, the
extracted boundary is superimposed on the original image as
illustrated in Fig. 4(d).

IMI. MATERIALS AND METHODS

A.  Acquisition of the Images

The cell images used in this research were obtained from
breast cancer cell tissue. The tissue slices were scanned by a
microscope (Eclipse 80i Advanced Research Microscope,
Nikon Instech Co., Ltd., Japan) with a magnifying factor of
200. Contrast and brightness were adjusted by a specialist.
The obtained color images were 2560x3200 JPEG format.

B.  Cell Image Segmentation Method

We apply cell segmentation algorithm based on surface
splitting and surface merging to breast cancer images. The
organization of the method is illustrated in Fig. 5. It consists

of image preprocessing, surface splitting, and surface merging.

For image preprocessing, we exploit anisotropic diffusion
filter [9] to smooth image surface. Parameter « and iteration
number were defined as 50 and 40, respectively. The number
of clustering angle and the area considered to be an object in
surface splitting were defined as 8 and 50, respectively.

IV. RESULTS AND DISCUSSION

Fig. 6 shows the experimental results of the segmented
boundary obtained from surface splitting and surface merging.
The splitting surface images are shown in the top row and the
segmented images superimposed on the original images
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Fig 5 Flow diagram of cell segmentation algorithm based on surface
splitting and surface merging.

are shown in the bottom row. For the splitting surface image,
each individual cell consists of less than eight pieces of
fragments because the number of cluster angle is defined as 8.
It affects to the accuracy of merging if overlapping and
individual cell surfaces are not split sufficiently.

Fig. 6(a)-(b) show the complete segmented boundary. One
can see that the cell image was divided into many
disconnected smaller parts of a larger whole picture using the
surface splitting as illustrated in the top row. In order to
connect all smaller parts in the larger whole image, surface
merging was applied as illustrated in the bottom row.

Fig. 6(c)-(d) show the case of insufficient surface splitting.
It affected to accuracy of the surface merging with over
segmentation. This effect occurred to the individual cell,

Fig. 6 The top row illustrates split surface image from surface splitting approach. The second row illustrates segmented image superimpose on the
original image from surface merging approach. (a)-(b) The results from complete cell segmentation. (¢)-(d) ) The results from incomplete cell
segmentation.
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which was small area, or attached to the rim of image. The
over-segmentation can be alleviated by increasing the number
of clustering angle, or allowing the larger split surface area in
the surface splitting approach.

V. CONCLUSIONS

We introduce an algorithm for segmenting multiple
attached cells using surface splitting and surface merging
algorithms. Preliminary results of investigation show that
overlapping cells are segmented with satisfactory boundary.
In order to develop a more complete system, we will improve
algorithm to eliminate over-segmentation and improve the
surface merging approach for increasing in performance and
accuracy. Then, we will apply the approach to more images
for validation and also apply to other categorized cell images
such as neuroblastoma images. Results will be reported in the
near future.
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Preliminary Results of Connected Object
Segmentation using Gradient Direction
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Abstract—This paper presents a novel algerithm based on the
gradient direction to separate the multiple attaching and
overlapping objects. The idea is based om the fact that the
gradient directions of north, east, south, and west neichbourheod
pixels are divergent when the gradient direction of the pixel
located in the boundary region is used as a reference line. The
proposed algorithm is composed of three steps: image denoising,
pixel classification, and boundary extraction. The performance of
the proposed approach is evaloated using the correctness of
connected object counting and boundary accuracy measurement.
Both evaluation resulis are compared with those from the
traditional watershed algorithm. The evaluation results show that
the proposed method provide better performance compared to
the traditional watershed algorithm.

Keywords-image segmentation; gradient direction; pixel classi
[fication; boundary extraction

L INTRODUCTION

Image segmentation is an important step in image analysis
for object classification or recognition. Its categorization based
on image intensity operation can be classified into edge-based
and region-based approaches [1]. On the one hand, the edge-
based approach employs the discontinuities in the image
intensity between an object and a background for identifying
an object boundary. On the other hand, the region-based
approach divides the image area using the defined condition.

In the region-based approach, watershed method is one of
the most popular algorithms. Its operation can be carried out by
flooding method into the intensity image surface to extract
segmented boundaries. The reinforced method for the object
feature can be included as either pre-processing of post-
processing procedures. In the case of pre-processing procedure,
the image surface can be reconstructed based on image
information such as the distance transformation of binary
image [2], the smoothing image surface [3], and the image
surface from size and shape information [4]. Another approach
in pre-processing watershed is to identify initial markers. The
markers can be identified using the prior knowledge related to
the target objects. There are many technigues to achieve this
task. Based on morphology analysis, the region minima of
distance transformed image can be used to indicate the
individual object [5]. For more complex analysis when the
object image surface is rough, the wrong marker needs to be
suppressed using a pattern classification approach [6].
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(b)
Figure 1. The divergent and convergent behaviors.

After watershed segmentation with pre-processing
procedure, over-segmentation and under-segmentation
problems are still existed. Thus, the post-processing procedure
is employed in order to solve the problems. For example, the
morphology operator is a simple choice to operate so that the
over-segmented object can be combined using the hole-filling
operator [7]. In [8], the feature of segmented object is extracted
and used as an input to a pattern classifier in order to
reconstruct the segmented boundary from the desirable object
only. In addition, the co-operation between man and machine
can increase accuracy of the object segmentation [9].

In this paper, we propose an alternative choice for
separating multiple attached objects. From the previous
research, all approaches exploit image intensity information.
Nevertheless, there are some features, which can be used to
separate overlapping or attaching object. We propose a novel
algorithm, which extracts the object boundary based on the
behaviour of gradient direction. The rest of this paper is
organized as follows. We present the details of the proposed
methodology in Section II. The experiments and results are
given in Section III and Section IV, respectively. Finally, we
conclude all obtained results in Section V.

978-1-4244-7941-2/10/$26.00 ©2010 IEEE
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Figure 2. The possible cases of sign operators are identified by gradient
direction reference, where areas A are the positive side; areas B are the
negative side.

II. METHODOLOGY

In this section, we propose the method to identify the pixel
located at the boundary for separating the connected objects.
Motivation of the proposed algorithm is from the employment
of image gradient as shown in Fig. 1. Fig. 1(a) shows the image
surface of attached objects, whose the boundary region is
obviously observed. Another form of image, i.e, a gradient
direction, is used for detecting boundary region. In Fig. 1(b),
we can see that if the direction of central point gradient is used
as a referent line, the directions of neighborhood gradient are
divergent from this line. On the other hand, if a pixel does not
locate in the boundary region, the directions of neighborhood
gradient are convergent to the reference line. Based on this
observation, we have developed an algorithm to classify the
pixel in boundary region from the pixel in other areas of the
image. Subsequently, the results from pixel classification are
used for identifying the boundary of connected objects. Details
of our proposed algorithm are as follows.

A. Pixel Classification

1) Angle estimation: This step is used to estimate the angle
of gradient direction in the Cartesian coordination. Let
1 (x,y)be the intensity image in spatial coordination. The
gradient magnitude of / (x,y) is given by

G, =%(J[I+l,y)—

I(J:—l,y:l],

G =12(;(x,y_1}_1(x,y+1}). )

¥

Then, the gradient magnitude is used to estimate an angle
w(x,y,v)where vis a reference axis. v=x and v=—x are

used in this paper. The angle of gradient where §(x, y)
= arctan(Gy /G, ) can be expressed as
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Figure 3.

(a) The original image. (b) The binary image from the
binarization of Aw(x, y,v = x). (¢) The binary image from the

binanization of ﬂ.w{:x,y,'.’ = —.r). (d) The corrected binary image.

0(x,»), G,(x,»)>0and G, (x,y)>0
O(x,y)+7/2, G(x,y)<0andG,(x,y)>0
0(x,y)+m, G.(x,y)<0and G, (x,y) <0
8(x,y)+37/2, G.(x,y)>0and G, (x,y)<0
w(6y,v)= /2, G.(x,y)=04and G, (x,y) <0’
wl2, G.(x,y)=0and G, (x,y) >0
T, G.(x,y)<0and G (x,y)=0
0, G,(x,y)>0and G, (x,y)=0
(2)

2) Sign identification: The objective of this step is to
divide four neighbourhood pixels into two groups separated by
the reference line. Subsequently, the positive and negative
signs are assigned to two members of each group. The sign
identification in a vector form can be expressed as

1 11 —1], G(x»)>0adG,(x,y)>0

11 -1 -1, G(x,»)<0andG,(x,y)>0
111 -1f, G(x,y)<0andG,(x,y)<0

1 =1 1 1], G(x»)>0and G, (xy)<0
(ny)= [0 -1 0 1], G.(x,))=0andG,(x,y)<0
010 -1, G(x,»)=0andG,(x,y)>0

10 -1 0, G(x»)<0andG,(x,y)=0
111 0, G(x»>0andG,(x,y)=0

3)

3) Angle differential measurement: An angle differential
measurement gives the difference in angle between pixels
from different sides of the reference line. The sign of the angle
differential measurement can be used as an indicator to
classify that the gradient directions of four neighborhood
pixels are divergent or convergent. The angle differential
measurement can be expressed as
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Figure 4. (a) The binary image from the pixel classification. (b)The
image after erosion with 3x3 square-shaped structuring element. (c) The
image after holes filling and fragmented object elimination.

Figure 5.  (a) The obtained boundary from thinning operator. (b) The
boundary after de-branching. (c) The resulting boundary superimposed
on the RGB image.

Aw(x,y,v)= Z(s* (x, )" (x, 2, v)), “@

k=l

where k is the index number 1, 2, 3, and 4, which is
corresponding to the neighborhood pixel in north, east, south,
and west directions, respectively. The obtained differential
angle measurement is classified into the binary image as shown
in Fig. 3. However, the error in binary image occurs
when v =X is used as a reference axis as shown in Fig. 3(b).
The cause of this error is from the separating angle that is in the
first quadrant and the fourth quadrant. When v = —Xx is used
as a reference axis, the error still occurs as shown in Fig. 3(c).
This error can be corrected by adding of decision condition.
The decision condition employs the different angle of both
v=xand v=—x, and then correct the out of range of

v = xwith v = —X. The function can be expressed as

ﬂw(x,y,v:x:], —fn'(u.:{):,y,mf:r](:lr

ﬂ. =
uJ(I,}’] .&w(x, Y= __x), Otherwise

(5)

4) Binarization: The final step of pixel classification is the
transformation of the obtained angle into the binary image.
The threshold value needs to be defined to separate any pixel
based on its angle. In this task, we can easily define the
threshold value as zeros, which is formulated as

0, Aw(x,y)<0

B =
(x, y) 1, Otherwise
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Figure 6. The workflow of the proposed algorithm.

From the example, the obtained binary image is shown in Fig.
3(d).

B.  Boundary Extraction

Components in the binary image resulting from the
behavior of gradient direction consist of connected area, local
minima region, local maxima region, and fragmented objects.
These are considered to be noise in binary form, and must be
eliminated before extracting the single pixel boundaries. The
basic operator of morphology can handle this task with the
selection of the proper operator for each case.

Let B is the binary image from the pixel classification as
shown in Fig. 4(a). We first apply an erosion operator with 3x3
square-shaped structuring element to separate the connected
area. The obtained binary image shown in Fig. 4(b) illustrates
the resulting individual objects and eliminated local minima
area. Next, holes from local maxima region are removed with
filling algorithm in binary image. Finally, the elimination of
fragmented objects is operated on identifying removed area in
pixel number. The obtained binary image with holes filling and
fragmented object elimination is illustrated in Fig. 4(c).

Next step, the single pixel boundary can be extracted using
thinning algorithm. However, in some cases, the branch
boundary appears as shown in Fig. 5(a). To eliminate them, we
use the trimming operator in loop operation with defined
condition as procedure in [10]. The complete boundary from
de-branch algorithm is shown in Fig. 5(b), and then it is
superimposed on the original image to show resulting boundary
in Fig. 5(c).

III. EXPERIMENTS

A.  Materials and Methods

Fig. 6 shows the workflow of our proposed method
consisting of image denoising, pixel classification, and
boundary extraction. In image denoising, we utilized the
anisotropic diffusion filter to hold the contrast of object
boundary. Parameter X and iteration number in anisotropic
filter process were defined as 80 and 30, respectively. The
experimental image used in this paper was captured from the
green beans to demonstrate the connected objects. It was used
in the evaluation of method compared with the tradition
algorithm, i.e. watershed. The boundary of the experimental
image containing 587 green beans was manually marked for
quantitative evaluation and boundary accuracy evaluation.
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Figure 7. The resulting boundary from (a) manual marking, (b)
proposed algorithm, and (c) watershed algorithm.

B.  Evaluation

In the paper, we evaluated the algorithm efficiency using
the value of correct, over and under segmentation to describe
quantitative performance. Another evaluation presented in this
paper is boundary accuracy, which can be expressed as the
difference between boundary from algorithm and manual
marking. Thus, we applied the relative distance error (RDE)
[10] to find distance between them. The RDE evaluation was
calculated by

IS ey e 7
RDE = nzd,_,ﬁ nZd,._, M

e =l r i=l

where d . is the minimum Euclidean distance from a boundary

pixel i of the resulting boundary to the target boundary of the
manual marking boundary, and d, is the minimum Euclidean

distance from a target boundary pixel i of the manual marking
boundary to the resulting boundary. The RDE evaluation in this
paper gave value for only one object. Thus, in the final stage,
we calculated the average RDE for all objects, which have the
same number of objects as the manual marking boundary, the
boundary from proposed algorithm, and the boundary from
watershed algorithm.

IV. RESULTS

Table 1 shows segmentation performance of the proposed
algorithm compared to the watershed algorithm. The numbers
shown in the table are the number of correct segmentation,
over-segmentation, and under-segmentation. With the same
image from dencising method, the quantitative evaluation
indicates that the proposed algorithm has the better
performance in correct segmentation, and under-segmentation.
However, it has less performance in over-segmentation.

Fig. 7 shows the boundary superimposed on the original
image which is cropped from the large image. It illustrates the
boundary from the manual marking, the proposed algorithm,
and the watershed algorithm as shown in Fig. 7(a)-(c),
respectively. It is shown that the boundary from the proposed
algorithm is closer to the boundary from manual mark
compared to that from the watershed. This observation is
guaranteed by the RDE evaluation. In other words, the average
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TABLE L COMPARISON ON ACCURACY OF SEGMENTATION
Methods Correct Owver Under
Proposed algorithm 531 31 54
Watershed 526 27 58

RDE from the proposed algorithm and the watershed algorithm
are 22.82 and 24.13, respectively.

V. CONCLUSIONS

We introduce an algorithm for segmenting multiple
connected objects using the behavior gradient direction.
Preliminary results of investigation show that overlapping
objects are segmented with satisfactory boundary. The
resulting evaluation shows the better performance of the
proposed algorithm compared to the tradition algorithm.
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Overlapping Nuclei Segmentation Using Direction-Based Flow Tracking

Yunyong Surut®, Non-member
Pornchai Phukpattaranont, Non-member

In medical image processing, the segmentation of overlapping nuclei is one of the challenging topics, which relates to its
application in diagnostic pathology. To achieve the quantification accuracy (ACC) of the diagnosis, we propose an overlapping
nuclei segmentation algorithm using the principle of direction-based flow tracking (DBFT). The DBFT, which consists of direction
field preparation and direction field tracking, is performed to provide the direction field and the labeled distinct single nucleus.
Its performance is validated with 6375 nuclei from 29 images and compared with two popular overlapping objects segmentation
methods, i.e., traditional watershed (TWS) and marker-controlled watershed (MCWS). While the sensitivity (55) of the DBFT,
TWS, and MCWS is 0.981, 0.990, and 0.966, respectively, and the corresponding positive predictive value (PPV) is 0.948, 0.831,
and 0.910. The ACC values and F; measures obtained from the combination of 8§ and PPV are used as the total performance
measures. While the ACC values from DBFT, TWS, and MCWS are 0.930, 0.824, and 0.882, respectively, the corresponding
F1 measures are 0.964, 0.904, and 0.937. The results clearly show that the DBFT is the best among three methods because it
provides the maximum numbers on both ACC and F; values. © 2013 Institute of Electrical Engineers of Japan. Published by

John Wiley & Sons, Inc.

Keywords: image segmentation, overlapping nuclel, watershed algorithm, marker-controlled watershed, quantification accuracy
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1. Introduction

Nuclei image analysis in quantification is a key step in diag-
nostic pathology. By manual operation, lacking performance often
makes it more time consuming, costly, and infeasible [1-3]. To
alleviate these disadvantages, image analysis algorithms are intro-
duced to handle the segmentation accuracy (ACC) for quantitative
evaluation. For this task, performance of overlapping nuclei seg-
mentation 1s very important because it directly affects to quantifi-
cation ACC. Most of overlapping nuclei segmentation algorithms
can be categorized into direction-based and intensity-based con-
sidering the provided input.

From the literature of overlapping nuclei image segmentation
based on intensity application, the traditional watershed (TWS)
algorithm 1s widely implemented for several classes of nuclei
[1,2,4—12]. This traditional scheme has been developed to be
used with various nuclear characteristics and alleviate over and
undersegmentation that usually result from its application. Their
additional improvements can be grouped into preprocessing and
postprocessing by the proposed strategies. On one hand, the
preprocessing attempts to prepare an accurate catchment basin
provided to the flooding step of the watershed algorithm. To extract
the accurate catchment basin from nuclear binary image, a marking
function [2] is introduced to construct the precise dam among the
catchment basins, except the distance transformation, in general
[5]. Also, the direct development of distance transformation
[11] and the radial symmetry decomposition technique [12] are
investigated to fulfill this watershed requirement. In case the
applied nuclear surface that is determined is disturbed by noise,
surface reconstruction by harmonic cut and regularized centroid
transform [4] also are endeavored to achieve an accurate catchment
basin.

* Correspondence to: Yunyong Surut. E-mail: yunyongsurut@yahoo.com

Department of Electrical Engineering, Faculty of Engineering, Prince of
Songkla University, 15, Karnjanavanit Road, Hat Yai, Songkhla 90110,
Thailand

Another technique is marker-controlled watershed (MCWS)
working under initial marker identification before the flooding step.
This technique can restrict the oversegmentation if the marker can
represent the individual nuclei. So, the next consideration is how
to mark only one marker per one nucleus. Under this requirement,
the minima utilizations of nuclei shape [2,5.8] are proposed as the
marker generator. Also, the modified morphology procedure [7]
can respond to the mentioned marker requirement. On the other
hand, postprocessing deals with the over- and undersegmentation
problem resulting from the watershed algorithm. The selected
features of segmented nuclei are provided to the merging algorithm
which determines merging decision among connected regions
[6,7,10]. Moreover, hole-filling is applied to remove imperfect
segmented nuclei [9].

Besides the watershed algorithm, active contour methods are
also employed for carrying out overlapping nuclei segmentation
[13—18]. According to its concept, based on region-based and
edge-based manner [19], the segmented boundary approaches the
expectation accurately. The contour deformation process is begun
by the initial contour, and then the deformation is controlled by
the minimization process based on internal and external forces.
The modified external force field by repulsion [13,18] generates
a split contour for close nuclei segmentation. Also, the coupled
parametric active contour [15] solves the overlapping contours in
multiple overlapping nuclel. In addition, the determination of knot
of the contour [17] and the cooperation between watershed and
active contour [14] are also available strategies. On the accurate
segmented boundary and the uncomplicated operation from the
active contour method and the watershed algorithm, we attempt to
combine their advantages together for improving the segmentation
ACC. To achieve this goal, our observation on the active contour
method reveals that the external force field can be sufficient
information to extract the individual nucleus by its direction, in
which the moving contours become the movement of all nuclei
pixels.

In the concept of overlapping nuclei segmentation, the pixels
from an individual nucleus, which are tracked on the direction

© 2013 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons. Inc.
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Fig. 1. Characteristics of the overlapping nuclei image. Note that all direction field images are shown using a down sampling rate of 0.2.
(a) Intensity image. (b) Binary image from background elimination. (c) Complement of distance image. (d) Intensity surface plot of (c).
{e) Direction field from gradient estimation

field, try to direct to the same area or nearby. Then, the individual
nucleus is extracted by these grouped pixels. Based on this concept,
two steps of algorithms are developed. These are the approach of
direction arrangement to meet the direction field requirement, and
the method of pixel tracking on the direction field. Consequently,
we separate the proposed algorithms into two steps: ‘direction
field preparation’ and ‘direction field tracking’. The proposed
algorithm is thoroughly described in Section 2, and its application
to overlapping nuclei image is demonstrated in Section 3. With
comparison to the TWS and MCWS algorithms, the interesting
evaluation results are discussed in Section 4. Finally, we give
conclusions in Section 5.

2. Direction-Based Flow Tracking Method

As mentioned earlier, our proposed algorithm for segmenting
overlapping cells, which is based on the direction-based flow
tracking (DBFT) method, consists of two steps, i.e., direction field
preparation and direction field tracking. First, the direction field
of an individual nucleus is constrained to direct to the same area
or nearby. It is an important factor in the direction environment
for ACC segmentation, which is similar to the preprocessing step
in other segmentation algorithms. Second, the provided direction
field is employed to guide a pixel moving to the destination.
Therefore, the gathering of pixels is able to be labeled as the same
group number, and then be extracted as the segmented boundary
finally.

2.1. Direction field preparation  According to concave
shape of overlapping nuclei, the segmentation algorithm can
employ it to provide segmentation information using image
transformation. As shown in the examples in Fig. 1(a){(c), the
reconstructed image intensities are sequentially extracted from
the intensity image to the distance image. These distance values
from the distance transformation give the minima region in
each individual nucleus, and continually yield the direction field
from their gradient estimation as illustrated in Fig. 1(d) and (e),
respectively. This information can be provided to the watershed
algorithm and active contour methods. However, in practice,
based on concave shape application, the irregular nuclei shape
usually makes the local minima region and continually yields
confusing direction field as shown in the examples in Fig. 1(d)
and (e). Certainly, the oversegmentation from its application to
segmentation algorithm cannot be avoided.

In this paper, we employ the nuclei shape information to
segment overlapping cells. Therefore, direction field preparation
must be sufficient to handle the shape defect and maintain the
direction field requirement. To achieve these goals, we propose
the integration of the distance transformation, gradient direction
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estimation, and basic morphology operators in an iterated process.
Let A be a binary image consisting of overlapping nuclei. The
initial direction field is obtained by

V(d (A))
IV (d (Al

(N
where o (.) is the distance transformation function, and the operator
IW¥ (.}l is the normalization of gradient that yields the direction
field by normalized vector in matrix V. Therefore, (1) represents
the direction estimation from the obtained distance. However, it
still provides the confusing direction from the irregular shape
of overlapping nuclei as shown in the example in Fig. l(e). To
constrain ¥ to support the direction requirement, two factors are
needed to the direction field. These are the contrasting direction
and the smoothing direction abilities. On one hand, the smoothing
direction ability is the ability of direction field in the individual
nuclei that can be tracked to the same area. On the other hand,
the contrasting direction ability is the difference direction at the
boundaries among the individual nuclei. By constraining these
factors, the perfect direction field can be obtained as the example
shown in Fig. 2(a).

To gain these factors, initially the smoothing direction ability
can be controlled by the nuclei shape input to the distance

Smoothing direction ability

N

[
Y
Y| Segmentation decision

e
ST
S fff‘;/
s e J] Contrasting direction ability
e N
A HI

(a)

(b}

Fig. 2. Direction field preparation concept. (a) Direction field
characteristics. (b) Direction field from dilation operator. (c) Local
direction field from the DBFT
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(2

Fig. 3. (a)}i) Nlustration of the local direction field at i =

transformation function in (1). It means that, if the irregularity of
nuclei shape is reduced, the derived direction field is smoother.
The simple solution as the dilation operator and the obtained
direction field are used to achieve this task as shown in Fig. 2(b).
By smoothing the irregular shape directly, however, the obtained
direction field flows smoothly but the contrasting direction ability
gets lost. To solve this problem, we modify (1), which is the global
operation to local process. The concept can be seen in Fig. 2(b),
in which the black dashed circles mark the remaining contrasting
direction after the dilation process. This local process aims to keep
both the remaining contrasting and existing smoothing directions.
To succeed in this task, the co-operation of the dilation operator
and the complement of A is performed to produce the local
direction field as shown in Fig. 2(c). Now, (1) is transformed to

oeal = VidABEY)

IV (d (A @ Eahl
where Ey is a structuring element for the dilation operator,
V{d(a@Ey))

[V(d(aze))|| . o
operator. Because it involves a local calculation, extending it to all

pixels is necessary for completing the contrasting direction among
individual nuclei. The shrinking process by the erosion operator is
selected to this task as an added procedure in the iterated process,
which is given by the following:

(2)

and is the initial direction field from the dilation

Direction field preparation:

Define Ed.9 qu

V=0

i=0

While A is not empty
Find VI |
V=(V+Vi_)/2
A=ASEy
i=i+1

End while

End

where \-’{‘nl is a local direction field at loop i, and E is the
structuring element of the erosion operator for the shirking process.
At a loop i, the direction field preparation produces the local
direction field, as the examples shown in Fig. 3(a)(1). It is clearly
observed that the local contrasting and smoothing directions are
obtained for all results. Thus, the average of all V{Dm illustrated
in Fig. 3(j) gives the desired direction field, which keeps both the
smoothing and contrasting direction abilities. The example shows
the extended contrasting and smoothing directions among nuclei

(h)
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(i)

1, 5,10, 15,20, 25, 30, 35, 40. (j) The final direction field

that are able to guide a pixel to the same area for each individual
nucleus.

2.2. Direction field tracking The segmentation algo-
rithm is further processed by tracking a pixel based on the direction
field from the direction field preparation step. The segmentation
results are obtained when the movement of a pixel tracking on
an individual nucleus finishes and the group number is labeled. A
tracking operator like gradient flow tracking [20] is able to assign
a pixel tracking on the gradient direction while the segmented
boundary is produced simultaneously. It is similar to our tracking
strategy but different in the objective. In other words, our proposed
direction field cannot be tracked because of contrasting direction
behavior. However, based on this scheme, the modification can be
done by assigning all pixels in the nuclei to be tracked. Let p be
the position (x, v) of a pixel in nuclei. The gradient flow tracking
[20] is formed as

p’ = p + round {V (p}} (3)

where V (p) yields the direction through the normalized vector
V at the position p. In practice, the pixel position p is moved
to the next position by rounding off its direction. This model
moves p continuously if the direction field is available to track.
However, from the existing direction field, the end of movement
can be achieved by measuring the convergence behavior of the
neighboring directions of p. This is established by modifying
(3) to the neighbor direction determination. The modification is
formulated as

p/=p+ round {{V (py) + V(pe) +V (ps) +V (pw)} /4) (4)

where V (px e s.w)) represents the direction of a neighboring pixel
of p at North, East, South, and West. In this way, the pixel
p will be held when it moves the position that the round of
average V (ppneswi) is less than 1. In some cases, V (P esw)
cannot hold p to finish movement due to the over round of
average V{P|N.E,S_w1)- The loop process number n is applied to
terminate the repeated movement except the holding function from
V (pves,wi). Thus, this step can be processed as follows:

Direction field tracking:
i=0
Define n
While all (ps#p/.i <n
Find pr to all pixel in nuclei

IEE]J Trans 8: 387-394 (2013)
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Fig. 4. (a)j) Captured scenes of pixel tracking at i = 1, 10,20, 30,40, 50, 60, 70, 80, 90, 100, and 107

Fig. 5. Individual nuclei extraction. (a) Pixel groups after the
tracking process. (b) Separation of nuclei after retrieving pixel
position

Update p
i=i+1
End while
Label grouping pixel
Retrieve labeled pixel to original p
End

Figure 4 shows the movement of pixels in the overlapping
nuclei. In each iteration, the pixels flow to the destination by
tracking on the direction field in Fig. 3(j). We can see that, when
the number of iteration increases, grouped pixels are attracted to
the area where the directions are convergent. The final scene in
Fig. 4()) indicates the finished movement where the pixels of an
individual nucleus are grouped inside. Subsequently, the final step
of DBFT uses these pixel groups to extract the individual nuclei.
By labeling and then retrieving the grouped pixels, the labeled
pixels in the white dashed circles of Fig. 5(a) are retrieved to the
original position. Thus, the final results of the proposed algorithm
are formed in the labeled image, which indicates the individual
nucleus by the labeling number as the example shown in Fig. 5(b).

3. Experiments

3.1. Materials To validate the performance of the pro-
posed algorithm, we applied the DBFT to the nuclei images
and evaluated the quantification ACC compared to the TWS and
MCWS. Their appearances obviously present a variety of shapes
on both individual and overlapping nuclei. The twenty-nine images
applied to this task have size 3600 x 2880 pixels formed in JPEG
color image format.

390
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Traditional wiershed
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Quantificotion evaluation

Proposed algorithm

Fig. 6. Experimental workflow

3.2. Methods The experimental methodology is set as the
workflow shown in Fig. 6. The background elimination in the
initial step is assigned to prepare the binary image to extract the
nuclei area. This step uses the Otsu thresholding [21], which is
performed on the intensity image from color space transformation.
The tiny pieces in the obtained binary image are removed. Then,
the resulting objects are performed with a hole-filling operation
to complete the nuclei area. To avoid the segmentation error
from the background elimination, the binary images provided to
segmentation algorithms will not consider the binary nuclei which
are not marked by the expert. This prevents the error of the
incorrect foreground from the background elimination step.

In segmentation step, our approach initially prepares the direc-
tion field by the direction field preparation step. The operation
range of the V;'xal is defined by the structuring element Ey, which
has a disk shape. When identifying the radius parameter of the
selected Ej, it will be a significant factor in smoothing the irreg-
ular shape and maintaining the concave shape. In this test, we
approximate this parameter by varying its radius to the desired
overlapping nuclel. As shown in Fig. 7, the derived direction fields
are formed variously, but the smoothing and contrasting direction
abilities can be observed obviously. Let r be a radius parame-
ter of the selected E4, and r = 30 grants the direction abilities
for the segmentation boundary. Thus, this obtained value will be
employed throughout this experiment. In some cases, the incom-
plete tracking of pixels causes oversegmentation, as shown in Fig.
8(a). This error can be eliminated by the dilation operator which
is applied before the labeling process. In this test, this additional
operator is assigned by the structuring element of disk shape with
r = 10. Figure 8(b) illustrates the connected tracking pixels from
dilation operator, which finally yields the correctly labeled pixel.

For assessment, we choose the TWS [22] for comparing
with our algorithm. Even though its oversegmentation problem
mainly reduces the segmentation ACC, it is usually implemented

TEEJ Trans 8: 387-394 (2013)
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Fig. 7. Direction field from varying the radius of the disk-shaped
structuring element. (a) r = 10. (b) r = 30. (c) r =50

HoEe

Fig. 8. Incomplete tracking pixel solution using dilation operator.
(a) Incomplete tracking pixels. (b) Results from applying the
dilation process

because of its simple adaptation. By preparing the catchment basin
accurately, oversegmentation can be reduced. In this experiment,
the Euclidean distance transformation is initially performed to
build the catchment basin. Certainly, the local minima from the
irregular shape of nuclei are a source of oversegmentation. To
alleviate this problem, an intensity image filter is assigned to wipe
out local minima before its operation. Moreover, the MCWS [23]
is another selection to be compared with our approach from its
advantage in oversegmentation control. Its marker identification
is performed on the basis of the co-operation of morphology
operators. It yields the markers, which are adopted to build the
catchment basins for the watershed process.

The final step of this experiment is the quantification evaluation.
This assessment yields the correct and over and undersegmentation
resulting from the comparisons with the markers by an expert. In
addition to the general assessment, we validate the performance of
DBFT, TWS, and MCWS using sensitivity (55) [24-28], positive
predictive value (PPV) [24-28], ACC [29], and Fj-measure (F})
[26]. These values are used to describe the performance outcome
in the detection system. SS indicates the possibility that the system
can correctly detect nuclei compared with the gold standard. S8
calculation is given by

SS = TP/ (TP + FN) (5)

where TP is the number of correct segmentations by the algorithm,
and FN is the number of nuclei that are not marked by the
algorithm but marked by the gold standard. On the other hand,
PPV is the probability that the detection of a nucleus is actually
associated with a nucleus marked by the expert, which is given by

PPV = TP/ (TP + FP) (6)

where FP is the number of nuclei that are not marked by the
gold standard but are detected in the segmented nuclei from the
algorithm. Furthermore, the combination of SS and PPV yields
the summarized performance evaluation where the ACC [29] and
F1-measure [26] are determined in the following forms:

TP + TN

ACC =
TP+ TN 4 FP + FN

(7
and

1 1
F.=2;‘(ﬁ+§), (8)
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Fig. 9. Comparisons of direction field characteristics from the
DBFT with those of the gradient direction of smoothed distance
image. (a) Direction field from the DBFT technique. (b) Direction
field from gradient direction of smoothed distance image. (c) Pixel
groups using direction field in (a). (d) Pixel groups using direction
field in (b). (e) Segmentation boundary from the tracking process
of (a). (f) Segmentation boundary from the tracking process of (b)

Note that the TN is set to zero when ACC is determined.

4. Results and Discussion

In this section, we first describe the characteristics of the
derived direction field resulting from the DBFT. The description
on smoothing and contrasting direction abilities is observed from
the direction fields of both the DBFT and the gradient direction
of smoothed distance image. Second, the guantification ACC is
presented to validate the performance of the DBFT compared to
other techniques, i.e. TWS and MCWS.

4.1. Direction characteristics  According to the direc-
tion requirement, the smoothing and contrasting direction abilities
are the keys that determine the segmentation boundary. In the
direction environment, both abilities are obvicusly observed by the
direction field shown in Fig. 9. The direction field from the DBFT
in Fig. 9(a) is compared with the gradient direction of smoothed

IEEJ Trans 8: 387-394 (2013)



106

Y. SURUT AND P. PHUKPATTARANONT

Table 1. Comparison of quantification accuracy

Image DBFT TWS MCWS

no. Correct Over Under Correct Owver Under Correct Over Under
1 212 13 3 214 57 1 206 24 7
2 236 16 4 240 55 3 236 23 6
3 261 10 5 268 38 1 261 24 7
4 240 10 9 243 67 6 232 17 17
5 188 13 3 190 39 0 183 15 7
6 262 11 2 263 32 2 258 12 6
7 224 4 2 228 17 1 224 9 2
8 225 7 3 228 33 2 225 12 -
9 196 10 6 202 47 - 198 19 8
10 284 15 8 288 50 5 280 22 13
11 198 8 2 203 35 1 200 21 3
12 237 12 3 240 33 2 235 20 6
13 196 13 5 201 34 2 191 21 13
14 231 11 2 232 EE) 1 229 20 -
15 162 12 4 165 43 2 149 17 17
16 204 13 6 207 45 3 196 25 11
17 263 4 2 264 55 3 258 31 9
18 260 10 15 280 64 3 267 27 12
19 250 11 7 258 50 1 246 26 8
20 175 25 1 174 59 1 170 26 6
21 219 16 6 221 67 - 213 31 11
22 158 4 7 162 20 6 154 12 9
23 200 7 1 201 32 0 196 20 2
24 168 12 3 173 21 0 166 17 5
25 134 9 5 137 17 3 135 16 -
26 239 6 2 239 38 2 240 9 1
27 251 19 1 251 53 1 248 24 -
28 224 11 2 226 66 1 223 26 3
29 105 31 2 106 70 1 99 41 8
Sum 6202 343 121 6304 1281 62 6118 607 213
Percent 97.29 5.38 1.90 08.89 20.09 0.97 95.97 9.52 3.34

distance image in Fig. 9(b) on both abilities. The decision area for
the segmentation of overlapping objects is located in the rectangu-
lar box. In addition, it is zoomed out and shown in the right image.

For the smoothing direction ability, the direction field of the
DBFT seems to be more confusing than the gradient direction of
smoothed distance image. Nevertheless, it can be still tracked by
a pixel to the area representing the individual nucleus as shown
in Fig. 9(c). This means that the direction smoothness from the
DBFT can maintain the tracking ability that guides all pixels in
an individual nucleus to the same area or nearby. This behavior
illustrates the characteristics of direction field corresponding to
the definition of the proposed concept sufficiently. On the other
hand, the direction field from the gradient direction of smoothed
distance image cannot achieve the correct tracking as illustrated
in Fig. 9(d).

In the case of the contrasting direction ability, it is important
for the tracking process since the segmentation decision is initially
formed by this factor. From Fig. 9(a), our approach responds to
this requirement very well as can be seen by distinct divergent
directions. Its contrast directions are throughout on the segmen-
tation decision continuously. This ensures that the initial tracking
process can extract the segmentation line. Figure %e) shows the
boundary pixels after completing the segmentation on the direction
field. The segmentation boundary throughout appears at the con-
trasting direction. Figure 9(f) shows the segmentation boundary
resulting from the direction field of the gradient direction of the
smoothed distance image. Although it looks similar to the DBFT,
some areas yield locally convergent and divergent direction fields
as shown in the black dashed circle of Fig. 9(f). This may cause
the wrong tracking of pixels.
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Table II. Comparison of segmentation accuracy with respect to
S5 (sensitivity), PPV (positive predictive value), ACC
(accuracy), and F; (F,-measure)

DBFT TWS MCWS
S8 0.981 0.990 0.966
PPV 0.948 0.831 0.910
ACC 0.930 0.8324 0.882
F 0.964 0.904 0.937

4.2. Quantitative evaluation Table I shows the com-
parison of quantification ACC among the experimented
segmentation algorithms. Twenty-nine images consisting of 6375
nuclei were tested. The nuclei number of correct, over, and under-
segmentation are shown and summarized as the total number and
the percent in each column. The ideal numbers for correct, over,
and undersegmentation percent are 100, 0, and 0, respectively.
The correct segmentation from the DBFT, TWS, and MCWS are
97.29%, 98.89%, and 95.97%, respectively. The TWS give the
highest percent of correct segmentation at the expense of sig-
nificant loss in oversegmentation number. In other words, the
oversegmentation given by TWS is 20.09%, which is worse than
the others. The result from the MCWS, which is the watershed
improvement for oversegmentation problem, is 9.52%. However,
the DBFT provides the best oversegmentation of 5.38%. The TWS
gives the best undersegmentation at 0.97% due to its oversegmen-
tation characteristics. The undersegmentation from the DBFT is
1.90%, which is better than that from the MCWS at 3.34%.

Table II shows more quantitative comparisons on S5, PPV,
ACC, and F; values resulting from all algorithms. The DBFT has

IEEJ Trans 8: 387=394 (2013)
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Table HI. Comparison of segmented overlapping nuclei

References

No.

A !/ A
. WS WS We
- 4 W

high detection performances on both S5 and PPV values at 0.981
and 0.948, respectively. These values are better than those from
the MCWS, which are (0.966 and 0.910, respectively. For TWS,
it gives a very good S5 value at 0.990 with the trade-off in low
PPV value at 0.831. By the combination of 8§ and PPV, the ACC
of DBFT is the highest at 0.930 while the ACC of MCWS and
TWS are 0.882 and 0.824, respectively. Similarly, the F, value of
DBFT is also highest at (0.964 compared to those from the MCWS
and TWS at 0.937 and 0.904, respectively.

Table III shows the segmentation characteristics of all algorithms
using the labeled objects compared to the square dots, which are
marked by the expert. Image set No. 1 shows the incomplete seg-
mentation from the MCWS. This undersegmentation is the effect
of oversegmentation controlling under failed marker identification.
Image set No. 2 illustrates the oversegmentation of the TWS,
which is generally caused by the imperfect catchment basin gen-
eration. In addition, the segmentation results of irregular shape
nuclei in the image set No. 3 represent the disturbance to both the
TWS and MCWS.

For the direction application on overlapping nuclei segmenta-
tion, the proposed approach requires the direction characteristics,
which are the smoothing direction ability on individual nucleus
area and the contrasting direction ability on overlapping nuclei
area. The quantitative results show that the percent of correct,
over, and undersegmentation from the DBFT are better than those
from the MCWS. Based on the ACC and F; values, the DBFT can
be considered as the best among three methods because it provides
the highest numbers. Moreover, the DBFT is more robust when
applied to the irregularly shaped nuclei.

DBFT TWS MCWS

5. Conclusions

In this paper, we have proposed the utilization of direction infor-
mation for segmenting overlapping nuclei. Our method provides
the direction field by the direction field preparation algorithm and
segments those overlapping nuclei using the direction field tracking
algorithm. The performance of the proposed method is validated
and compared with those of the TWS and MCWS algorithms.
Results show that our approach provides very good quantifica-
tion ACC. Uncomplicated implementation also is its advantage
while maintaining a high ACC. By direction-based calculation,
further implementation of our approach can be applied on any
two-dimensional object segmentation in which the direction field
is provided correspondingly.
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