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CHAPTER 1

Introduction

Methamphetamine (N,a-dimethylphenethylamine) is a component
of the phenethylamine family, which includes a range of substances that may be
stimulants, entactogens or hallucinogens. The molecular weight of MA is 149.24

g/mol while the molecular formula is CjoHsN [6].

NH_CH 3

CH,

Figure 1.1: The molecular structure of methamphetamine.

Meth, speed, ice, chalk, crank, glass, go, hydro, pervitin, rock candy,
crystal meth, whiz (East Europe), yaba, shabu (Southeast Asia), these are all
names for methamphetamine (MA) [12]. MA is highly addictive stimulant that
affects the central nervous system. MA also speeds up many functions in the
body. MA can cause lots of harmful things, including inability to sleep, aggres-
siveness, hallucinations, paranoia and psychosis [13]. MA can also cause a type of
cardiovascular problems, increased blood pressure, including rapid heart rate and
irregular heartbeat. Hyperthermia (elevated body temperature) and MA overdose

may occur convulsions and, if not treated instantly, can result in death [15].



P

L ] 1
- e

A.'
uS (u+d1)1 u+8)T

Figure 1.2: A compartmental representation of the epidemic of heroin use.

Recently, two drug models have been proposed. The first research
is proposed by White and Comiskey [19]. They have constructed and analyzed
a model for heroin users. Later, Mulone and Straughan [11] have investigated
the steady-states of White and Comiskey’s model. Another is the research about
MA problems, proposed by Nyabadza and Hove-Musekwa [16]. In fact, these
two models are very similar. Nevertheless, the model of White and Comiskey, as
shown in Figure 1.1 divides the population into three classes, namely susceptible
individuals (.5), heroin users not on treatment (I) and heroin users under treatment
(T'). While the model of Nyabadza and Hove-Musekwa, as shown in Figure 1.2
classifies the population into five categories, which are susceptible individuals (5),
light drug users (I;) who can still easily stop and recover from drug use, hard drug
users (Iy) who are addicted. Moreover, they allow for the recovery of those under

treatment (7) into a class of the recovered (R).
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Figure 1.3: A compartmental representation of the epidemic of methamphetamine

use.

1.1 Objectives of the Study

The purpose of this thesis is to obtain fundamental mathematical
model representing the MA epidemics and analyze the model by studying the sta-
ble case in order to obtain condition on the system parameters, which differentiate

various dynamic behavior exhibited by the model.

1.2 Expected Benefits

This study is expected to give us a better understanding of the MA
epidemics. The resulting model can be used to predict and control the epidemic

of MA.



1.3 Organization of the Study

This work will be organized in 5 chapters. An introduction about
MA will be given in chapter 1. In chapter 2, we summarize the preliminaries that
is necessary for our analysis. Our model will be analyzed in chapter 3 while the
numerical simulation of the effects of parameters will be presented in chapter 4.

Finally, our conclusions and suggestions for future research are made in chapter 5.



CHAPTER 2

Preliminaries

The mathematical formulation of biological or physical problems re-
sults in a set of differential equations, which may be nonlinear. In many cases it
is possible to replace the nonlinear equations, by a set of related linear equations
that appropriates the actual nonlinear equation closely enough to give useful ef-
fects. Such a “linearization”may not always be reasonable. When it is not, the
original nonlinear equations must be considered. The study of nonlinear is gener-
ally confined to a variety of rather special cases, and one must resort to various
method of approximation. In this chapter we shall give an introduction to some
of these method [17].

After defining the problem and formulating a consistent set of equa-
tions, we turn to the analysis of solutions. The only solutions that can be found
and analyzed are the steady state ones. Their stability properties are of particular
importance [2]. A steady state is one in which the system does not appear to

undergo any further changes.

Definition 2.1. A point X, € R" is called an equilibrium point of

X' = f(t, X) (2.1)

if f(t, X.) =0 for all t > t*.

Other names for the equilibrium point are critical point, singular point, rest point



and stationary point. If X, is an equilibrium point of (2.1) at ¢*, then it is an

equilibrium point at all 7 > ¢* [9].

Now if we have 2 steady state solutions (in case of 2 differential
equations), it would like to know whether a deviation from steady state will lead

to drastic changes or will be damped out.

Definition 2.2. The equilibrium X = 0 of (2.1) is stable if for every ¢ > 0 and
any to € R there exists a 0(¢,tp) > 0 such that
lu(t, to,&)| < e for all t > ¢

whenever |£| < 0(e, to) where u(t, ) is solution of (2.1) [9].

Definition 2.3. The equilibrium X = 0 of (2.1) is is asymptomatically stable if
i) it is stable and
ii) for every to > 0 there exists an n(tg) > 0 such that

tlim u(t, to, &) = 0 whenever [¢| < n [9].
— 00

Definition 2.4. The equilibrium X=0 of (2.1) is unstable if it is not stable. In
this case, there exists a to > 0 and a sequence &, — 0 of initial points and a

sequence t,, such that |u(to + tm,to,Em)| = € for all m,t,, > 0 [9].

Let us look at a more general setting and take the system of ordinary

differential equation to be

dx

= (XY (2.2)
dY
o= R(X.Y) (2.3)

where f; and f5 are nonlinear functions. We assume that z and g are the steady



state solution, then

Now we set the solution at any time to be in the form

X(t) =7+ 2(t) (2.5)

and
Y(t) =5+ y(b) (2.6)
This method is called a perturbation about the equilibrium point. Substituting

(2.5) and (2.6) into (2.2) and(2.3), we get

%(9‘0+x):f1(9_c+x,§+y) (2.7)
LG4y =pE o5t 2.5)

On the left-hand side, we expand the derivatives and notice that

by definition acli_atc and % On the right-hand side, we expand f; and f; in a

Taylor series about the equilibrium point. Moreover, we consider only linear term,

obtaining
dz
T flw('f7 g).’f + fly("f; g)y
dt
d
= foul@,9)3 + foy (7. D)y
dt
ofi Of
air G2 a9, 9,
We get J (o, yo) = —| 9z Oy that is called the Jacobian of
o dr Oy (z0,90)

the system of equation. Setting

a=trace(J(Z, §))=a11 + ag



b=det(.J(Z,y))=a11a2 — aiza21
and
¢ = discriminant = a? - 4b,

the characteristic equation becomes A\? + a\ + b =0 [5].

Theorem 2.1. The equilibrium X = 0 of (2.1) is stable if all eigenvalues of J
have non-positive real parts and every eigenvalues of J which has a zero real part
is a simple zero of the characteristic polynomial of J

A line system can have at most one steady state (0, 0) if det(J) # 0.

The behavior of the steady state solution depends on the eigenvalue of J;
i) Distinct real roots
ii) Repeated real roots

iii) Conjugate complex roots [5].

Case i The eigenvalues of J are real and distinct. There are 3 possible behav-
ior.

a) If both eigenvalues of J are negative, the steady state will be a stable two
tangent node.

b) If both eigenvalues of J are positive, the critical point will be an unstable
two-tangent node.

c) If there are opposite signs of eigenvalues of J, the equilibrium point will be

a saddle point.

Case ii The eigenvalues of J are real and repeated roots. There are 2 possible



Figure 2.1: A stable two-tangent node [7].

-

P

Figure 2.2: An unstable two-tangent node [7].
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Figure 2.3: A saddle point [7].

cases

A0
a) If is diagonal and J is similar to matrix as J = , then the critical

0 A
point is called a stellar node which is stable if A\ < 0 and unstable if A > 0.

(a) (b)
Figure 2.4: A stellar node. (a) a stable node. (b) an unstable node [7].
b) If J is not diagonal, then it is not similar to a diagonal matrix. The critical

point is called a stable one-tangent node if A < 0 and an unstable one-tangent

node if A > 0
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|
(a) (b

Figure 2.5: The one-tangent node. (a) a stable node. (b) an unstable node [7].

Case iii The eigenvalues of J are conjugate complex.

It is necessary and sufficient that the discriminate term is negative and then

a % iv4b — a?

Ao = 5

There are three possible behaviors described as follow.

a) If a®> < 4b and a > 0, then the critical point will be an unstable spiral node.
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-

L~

Figure 2.6: An unstable spiral node [7].

b) If a® < 4b and a < 0, the critical point will be a stable spiral node.

y

Figure 2.7: A stable spiral node [7].
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c) If a> < 4b and a = 0, which is the eigenvalues of J are purely imaginary,

then the critical point will be a center.

= <

A

/1)
S

Figure 2.8: A neutral center [7].

In this section we apply some of the above ideas to systems of n(> 2) equations.
dX; : .
Consider e fi( Xy, X, ..., X3) where (i = 1,2,....k) or, better still, the

vector notation

X
= = F(X) (2.9)

for X = (X1,X2,...,Xy); F = (f1, fa, .-, fx) where each of the function f; may

depend on all or some Xi, Xo, ..., Xz. The equilibrium state, X, is obtained by

solving F(X) = 0. The next step is to determine stability properties of this

steady solution;
In linearizing equation (2.9) we find the Jacobian of F(X), obtaining

0
J = = F(X) (2.10)

where J is now a k£ x k£ matrix. The eigenvalues A of the matrix now satisfy
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det(J — AI) = 0 [5]. We obtain a characteristic equation in the form
Mo ag N = 0. (2.11)

Theorem 2.2. (Routh-Hurwitz criteria for local asymptotic stability)
Given the characteristic equation (2.11), where the coefficients a; are real con-
stants, i=1, 2, 3, ..., k, define the n Hurwitz matrices using the coefficients a; of

the characteristic equation:

aq 1 0
aq 1
le(al)>H2: , Hz = as G aq )
as das
as Q4 asg
az 1 0 O 0
as as ai 1 -0
Hk: as a4 a3z ag - 0 )
0 0 0 0 - ag

where a; = 0 if j > k. Then all eigenvalues have negative real part: that is, the
steady state N is stable if and only if the determinant of all H are positive [2]:
det H; > 0,7 =1,2,.. k.

When k = 2, Routh-Hurwitz criteria simplify to det H; = a; > 0 and

aq 1
det Hy = det = ajas >0

0 a9

or a; > 0 and ay > 0. For polynomials of degree k£ = 2,3,4 and 5, the Routh-
Hurwitz criteria are summarized.

Routh-Hurwitz criteria for k£ = 2, 3,4 and 5,
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k=2:a; >0 and ay > 0.
k=3:a1>0,a3 >0 and ajas > as.
k=4:a;>0,a3 > 0,a4 >0 and ayasaz > a2 + alay.
k=5:a;>0,i=1,23,4,5 aiasas > a2 + a?ay and

(aray — as)(aragas — a2 — a2ay) > a5(aras — as)? + aa? [2].

In the next chapter, the theorem discussed in this chapter will be
applied to our model in order to derive explicit conditions on the system of pa-

rameter, which identify different dynamical behavior exhibited by the system.



CHAPTER 3

Model Analysis

16

In this chapter, we construct the MA model by developing the work

therapy can relapse to the class of light drug users or hard drug users.

of White and Comiskey, Nyabadza and Hove-Musekwa. We begin the formulation
of the model by dividing the host population (N) into 4 compartments [3], [16]
that contain susceptible individuals (5), light drug users (/;), hard drug users (/5)
and users under treatment (7"). We assume that individuals who are released from
treatment centers can be susceptible individuals. Also, light drug users can relapse
to the class of susceptible individuals, because the people in I; stage can easily
stop and recover form drug use without treatment. Since the treatment for drug

users is not currently restricted to treatment centers, we assume that users under

The possible changes in the life of MA users can be tracked by the

schematic representation in Figure 3.1

A

S ;7 4 T
pTr ]cﬂz

ﬁs([l+12) al. ol
N 1
[

kil (u=8)1>

I

Figure 3.1: A model of methamphetamine epidemics.
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Based on Figure 3.1, the time rate of change of any state is equal to
the number entering into the state minus the number leaving the state [5]. The

model is mathematically described by the following set of equations;

dS BS(I + 1)

— =A I T———2 S 3.1
7 +al, +v N i (3.1)
dly BS(I + 1)

pr N +wl —(a+p+k) (3.2)
dI,

dT

where all parameters in the model are assumed to be positive;

A is the rate of individuals entering the susceptible population.

(1t is the natural death rate of the general population.

o is the rate of light drug user relapsing to the class of susceptible individ-
uals.

k is progression rate to addiction.

0 is the death rate caused by drug use.

o is the uptake rate into treatment programs.

p is the rate of drug users in treatment relapsing to hard MA users.

v is the rate of drug users in treatment relapsing to susceptible individuals.

w is the rate of drug users in treatment relapsing to light MA users.

S(I + I
M is the rate which susceptible in-

Furthermore, the transmission rate,
dividuals become addicted by the inducement from light MA users or hard MA
users, where 3 = np [5] and % is a probability that I; and I, encounter S and S

become [; with the rate .
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In this study, the following assumptions were made to simplify the

development of the model:

1. The population is assumed to be of constant size within the modeling time
period, that is N =S+ 1 + L+ T.

Since%:é—f+%+%+i—z:A—/L(S+11+IQ+T)—5IQ:O.

Then A= pu(S+ 1L+ L+ T)+ 0.

2. A hard MA user must have previously been a light MA user [16].

3. The treatment for drug users is not currently restricted to treatment centers.

4. Users under treatment can relapse to the class of light drug users or hard
drug users.

5. All members of the population are assumed to be equally susceptible to

drug addiction.

3.1 The Steady State Solutions

A steady state is a situation in which the system does not appear
to undergo any change. Since N = S + I1 + I, + T is constant, we introduce the

fractions of S, Iy, Iy and T"

. L - L - T
S=— l1=— [=-—=T=—.
Na 1 N7 2 N, N
The domain of solutions is
Q={(S,,L,T0<S<1,0<[<1,0<L<1,0<T<1}

Therefore S = 1 — I, — I, — T, and hence a5 _ _ <d[1 + dly + d_>

%:
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dynamic equations is reduced from four equations to three equations

dl

o —BU=L=L=T)(L+D)+wT = (a+p+kh (3.5)
dly, - - _
dr - _
E:UIQ—QH-CLH—”H-M)T. (3.7)

Let E* = (I}, I;,T*) be an equilibrium point of the system (3.5) — (3.7). Then

setting the left hand side of the equations to zero

Bl-—0—-L =TI+ L) +wl —(a+p+ k)7 =0 (3.8)
kI{ + pT* — (u+0+0)l; =0 (3.9)
ol; —(p+w+vy+p)T =0, (3.10)
we obtain
I (HNJH)T*'

For I}, we have

[(u+do+o)p+wt+y+p) —opT
ko '

I =

Letm=pu+o+on=p+w+~y+pand ¢g=a+ pu+k.

T™ is calculated by

-] e e

(3.11)

(mn — op)

In order to simplify (3.11), we let v = 7
o
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One of the solutions from equation (3.11) is 7* = 0. This solution yields the

drug free state (0, 0, 0) which is labeled as Ej. If T* # 0, we have

[B(vo+n)—(qu—w)o]|o

= (vo+n)(vo—n—0)B

pvo+n)—(qu—w)o
(vo+n)(vo—n—0)8

For our convenience, we set x =

Thus, we have

., (prwH+y+p)T* nT*
12: == :TLJJ,
g g
[(p+d+o)p+wt+y+p) —opT

I = = =T = ovx.

Hence, there are two equilibrium points for this system, namely:
1) Drug Free Equilibrium: E§ = (I3, I5,T7*) = (0,0,0).

2) Endemic Equilibrium: E} = (I}, I3, T*) = (ovx, nx, ox).

3.2 Stability of the Drug Free Equilibrium

For the linearized system of (3.5) — (3.7), we obtain the following

Jacobian matrix at an equilibrium point

Bl —=2IF =25 —T*)—q B(1=2IF =21 —T*) —p(I;+1)+w

J(IT’I;’T*): k —m

At the drug free state E§ = (0,0,0), we obtian
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B—q B w
0 o —-n

The characteristic equation is A\* + a1 A\? + as\ + a3 = 0, where

a; = —trace(J(0,0,0)) = q¢— S+ m+n,

11 A12 11 A13 Q22 A23
as = + + =qg(m+n)+mn—pm+n+k)—op,

az1 Q22 a3 ass asz (33

az = —det(J(0,0,0)) = B(op — mn — kn) + mnq — kow — opq.
From Routh-Hurwitz criteria, see [2], for k& = 3: we need a; > 0,a3 > 0 and
ajas > as, SO

ap>0; g—B+m+n>0,

az > 0; B(op —mn —kn) +mng — kow — opg > 0 and

arag > ag; (¢—p+m~+n)g(m+n)—B(m+n+k)+mn—op] > (op—mn—Fkn)+

mnq — kow — gpq.

If a1, as and as satisfy the Routh-Hurwitz criteria, the steady state will be stable.

3.3 The Basic Reproduction Number for the Model

A value for Ry, the basic reproduction number, is then proposed for

this system. This number tells us how many secondary infections will result from
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the introduction of one infected individual into a susceptible population. Usually, if
Ry < 1, then each infected individual in its entire period of infectivity will produce
less than one infected individual on average. The drug free equilibrium is locally
asymptotically stable, thus an epidemic will not result from the introduction of
one infected individual in this case. On the other hand Ry > 1 implies that each
infected individual, who has contact with susceptible individuals, in its entire
infective period will produce more than one infected individual on average, thus
epidemic will occur. The final case, Ry = 1 means that each infected person will
infect one susceptible person [18].
We use the fact that Ry < 1 is equivalent to the condition that the
real parts of all eigenvalues of the Jacobian at the drug-free equilibrium (0, 0, 0)
must be negative, and that Ry > 1 is equivalent to the condition that the real part
of at least one eigenvalue is positive.
The relationship with the characteristic polynomial p(\) = det(AI — .J(0,0,0)) is
that
PA) = (A= A)(A = A)(A = As).

Expanding out, we found that

1. trace(J) = A\ + Ay + A3 and therefore stability requires trace(.J) < 0. Since
trace(J) is the sum of diagonal elements of J, this gives the condition 5 < g+m+mn,
which is the first Routh-Hurwitz condition for asymptotic stability.

2. det(J) = MAA3 = B(op — mn — kn) + mnqg — kow — opq > 0. This is

equivalent to the second Routh Hurwitz condition for local stability.
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This last condition can then be rewritten in the form

Bop +mnqg > Bn(k +m) + opq + kow

pn(k +m)+opg + kow

1>
Bop + mng
pn(k +m)+ opq + kow
Ry =
Bop + mng

and the determinant is

det(J) = (Bop+ gmn)(Ry — 1).

3.4 Endemic Equilibrium

At the endemic state Ef = (ovw, nw,ox)

B(1 —20vx — 2nx —ox) —q B(1 —20vx —2nx —ox) —p(ove +nx) + w

J(ovz,nx,ox) = k —m p

The characteristic equation is A\* + a1 A2 + as A + a3 = 0, where

a1 = —trace(J(ovz,nx,ox)) = ¢+ m+n — (1 — 20vr — 2nx — ox),
a11 Aa12 a1; Aa13 Q22 A23

g = + +
21 Q22 a31 @33 a3z A33

=q(m+n)— (1 —20vx —2nx —ox)(m+n+k)+mn—op,
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az = —det(J(ovz,nx,ox)) = B (1 — 20vx — 2nx — ox) (op — mn — kn) +
mnq — kow — opq.
From Routh-Hurwitz criteria, for k = 3: we need a; > 0,a3 > 0 and ajay > a3, so
a; > 0; ¢g—B(1—20vx —2nx —ox) +m+n >0,
az > 0; B (1 —20vx —2nx — ox) (0p —mn — kn) + mng — kow — opg > 0 and
ajas > as; [q— B (1 —20vr — 2nx — ox) +m+ n|
l[q(m +n) — B (1 —20vx — 2nx — ox) (m+n+k) +mn—op| >
Blop —mn —kn) (1 — 20vx — 2nx — ox) + mnq — kow — opq.
Since Ry is a unique threshold parameter, which use to determine the behaviors
of the system. Therefore, if Ry < 1; it means that the drug free equilibrium point
is stable. On the other hand, if Ry > 1; the endemic equilibrium point occurs and

is stable.
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CHAPTER 4

Numerical Results and Discussion

In this chapter, we present the numerical results from solving equa-
tion (3.5) to (3.7) for some sets of the parameter values in order to verify the
theorems presented in the previous chapters. We use MATLAB program to deter-
mine the behavior of the solutions. Moreover, the Runge-Kutta 4th order is used
in order to obtain the solutions.

Figures 4.1 — 4.5 illustrate the typical behavior of the susceptible
individuals, light drug users, hard drug users and users under treatment when
Ry < 1. As we see, the drug free state occurs when the rate which susceptible
individuals become addicted by the inducement from light MA users or hard MA
users (5 = 0.00005) is small. We observe in this case that light drug users, hard
drug users and users under treatment proportions decline exponentially to zero.

Figures 4.8 — 4.12 illustrate the typical behavior of the susceptible
individuals, light drug users, hard drug users and users under treatment when
Ry < 1. The endemic state occurs when the rate which susceptible individuals
become addicted by the inducement from light MA users or hard MA users (5 =
0.05) is high. We approach the endemic equilibrium point I7 = 0.256, I; = 0.307

and T™* = 0.304.
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Figure 4.1: Numerical solution of model (3.5) — (3.7) demonstrates the time series
of S where the parameters are: 8 = 0.00005, o = 0.005, ;1 = 0.00023, k = 0.0095,
0 = 0.0006, o = 0.0153, p = 0.0083, v = 0.00425, w = 0.00011. The proportion of

susceptible individuals approach to drug free state.
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Figure 4.2: Numerical solution of model (3.5) — (3.7) demonstrates the time series
of I, I, and T where the parameters are: 3 = 0.00005, a = 0.005, p = 0.00023,
k = 0.0095, 9 = 0.0006, o = 0.0153, p = 0.0083, v = 0.00425, w = 0.00011.
The proportion of light drug users, hard drug users and users under treatment

approach to drug free state.
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Figure 4.3: Numerical solution of model (3.5) — (3.7) demonstrates the solution
trajectory, projected onto the (I, S) — plane where the parameters are: 3 =
0.00005, o = 0.005, p = 0.00023, k = 0.0095, o = 0.0006, o = 0.0153, p = 0.0083,

v = 0.00425, w = 0.00011.

From this figure, we consider the phase plane plot of susceptible
individuals and light MA users proportions. We found that susceptible individu-
als proportion is increase to one. Conversely, light MA users proportion decline

exponentially to zero, since the drug free state occur.
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Figure 4.4: Numerical solution of model (3.5) — (3.7) demonstrates the solution
trajectory, projected onto the (I;, I;) — plane where the parameters are: 3 =
0.00005, a = 0.005, p = 0.00023, k = 0.0095, ¢ = 0.0006, o = 0.0153, p = 0.0083,

v = 0.00425, w = 0.00011.

From this figure, we consider the phase plane plot of light MA users
and hard MA users proportions. We observe that the light MA users and hard

MA users proportions tend toward to zero, since the drug free state occur.
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Figure 4.5: Numerical solution of model (3.5) — (3.7) demonstrates the solution
trajectory, projected onto the (I, T) — plane where the parameters are: 3 =
0.00005, a = 0.005, p = 0.00023, k = 0.0095, 6 = 0.0006, o = 0.0153, p = 0.0083,

v = 0.00425, w = 0.00011.

From this figure, we consider the phase plane plot of hard MA users
and users under treatment proportions. We observe that the hard MA users and
users under treatment proportions decline exponentially to zero, since the drug

free state occur.
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Figure 4.6: Computer simulation of model system (3.5) — (3.7) with parametric

values as Figure (4.1) — (4.5). The solution trajectory, projected onto the (S, Iy,

I5) — plane.
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Figure 4.7: Computer simulation of model system (3.5) — (3.7) with parametric

values as Figure (4.1) — (4.5). The solution trajectory, projected onto the (I, I,

T') — plane.
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Figure 4.8: Numerical solution of model (3.5) — (3.7) demonstrates the time series
of S where the parameters are: 3 = 0.05, a = 0.005, 1 = 0.00023, k = 0.0095,
0 = 0.0006, o = 0.0153, p = 0.0083, v = 0.00425, w = 0.00011. The proportion of

susceptible individuals approach to endemic state.
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Figure 4.9: Numerical solution of model (3.5) — (3.7) demonstrates the time series
of I, I, and T where the parameters are: 3 = 0.05, a = 0.005, u = 0.00023,
k = 0.0095, 9 = 0.0006, o = 0.0153, p = 0.0083, v = 0.00425, w = 0.00011.
The proportion of light drug users, hard drug users and users under treatment

approach to endemic state.
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Figure 4.10: Numerical solution of model (3.5) — (3.7) demonstrates the solution
trajectory, projected onto the (I, S) — plane where the parameters are: 3 = 0.05,
a = 0.005, p = 0.00023, k£ = 0.0095, 6 = 0.0006, ¢ = 0.0153, p = 0.0083,

v = 0.00425, w = 0.00011.

From this figure, we consider the phase plane plot of susceptible
individuals and light MA users proportions in endemic state. We found that
susceptible individuals proportion is decrease since they become addiction and
reach to I state. While the light MA users proportion is increase in first interval
of time, and decrease in next interval of time because the light MA users progress
addiction and become to I state. Finally, we can see that both proportions tend

toward the equilibrium point S = 0.133 and I; = 0.256.
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Figure 4.11: Numerical solution of model (3.5) — (3.7) demonstrates the solution
trajectory, projected onto the (17, I5) — plane where the parameters are: 3 = 0.05,
a = 0.005, ¢ = 0.00023, k£ = 0.0095, 6 = 0.0006, ¢ = 0.0153, p = 0.0083,

v = 0.00425, w = 0.00011.

From this figure, we consider the phase plane plot of light MA users
and hard MA users proportions in endemic state. We observe that in this case the
light drug users proportion is increase in first interval of time, and decrease in next
interval of time since light MA users progress addiction and become to I, state.
As the hard drug users proportion is increase because I entering I, state and the
users under therapy relapse to I state. Finally, we can see that both proportions

tend toward the equilibrium point I; = 0.256 and I, = 0.307.
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Figure 4.12: Numerical solution of model (3.5) — (3.7) demonstrates the solution
trajectory, projected onto the (I, T) — plane where the parameters are: 3 = 0.05,
a = 0.005, ¢ = 0.00023, k£ = 0.0095, 6 = 0.0006, ¢ = 0.0153, p = 0.0083,

v = 0.00425, w = 0.00011.

From this figure, we consider the phase plane plot of hard MA users
and users under treatment proportions in endemic state. We observe that in
this case both proportions is increase since the endemic state occur. Finally, I is
decrease since the death caused by drug use and the uptake of them into treatment
programs. Similarly, T is decrease because the individuals who are released from
treatment center can be the susceptible individuals and the users under therapy
relapse to I, state. We can see that both proportions tend toward the equilibrium

point I, = 0.307 and T = 0.304.
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0.35

Figure 4.13: Computer simulation of model system (3.5) — (3.7) with parametric

values as Figure (4.8) — (4.12). The solution trajectory, projected onto the (S, Iy,

I5) — plane.
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Figure 4.14: Computer simulation of model system (3.5) — (3.7) with parametric

values as Figure (4.8) — (4.12). The solution trajectory, projected onto the (I, I,

T') — plane.
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CHAPTER 5

Conclusion

We have developed the MA model which is more realistic than the
previously studied models. Unlike the work of Nyabadza and Hove-Musekwa, in
our model, the light MA users (I;) can relapse to be susceptible (S) or become
hard MA users (I3). Moreover, the population under therapy (7)) can relapse to
be in I, I or S stages.

We examined the existence of the equilibrium state in the model.
There exists a threshold parameter, the basic reproductive number (Ry), for which
the drug free will persevere if and only if Ry exceeds one. The drug free state exists
and is locally stable if Ry is less than one and becomes unstable when Ry > 1.
We demonstrate that the drug free state is locally stable when Ry < 1 through
the use of numerical simulation. As we see, the drug free state occurs when the
rate which susceptible individuals become addicted by the inducement from light
MA users or hard MA users (/5 = 0.00005) is small. We observe in this case that
light drug users, hard drug users and users under treatment proportions decline
exponentially to zero. For Ry > 1, the endemic state occurs when the rate which
susceptible individuals become addicted by the inducement from light MA users
or hard MA users (3 = 0.05) is high. We approach the endemic equilibrium point
I7 = 0.256, I; = 0.307 and 7% = 0.304. We find that there is endemic stable state

which is locally and asymptotically stable. Numerical simulation confirmed this
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result.

The latter behavior can also be explained in terms of Rq. If this
number is less than or equal to one, so that an addiction replace itself with less
than one new addiction, the MA users die out. Furthermore, the susceptible
individuals proportion approaches one since everyone is susceptible when the MA
users has vanished [11]. On the other hand, if Ry > 1, the susceptible population
decreases. The normalized MA users and population under treatment however first
increase to a peak and then decreases. This subsequent behavior occurs because
there are not sufficient enough susceptible population to be addictive and for the
MA users to move into the treatment state.

In this research, we assume that the people in a recovery stage are
still in a treatment stage, since it is easier to analyze the steady state. In the
future work, the recovery stage should be separated from the treatment stage in

order to make our to be more accurate.
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APPENDIX

A. Numerical Solution of Differential Equations

Mathematical models have been applied in many fields such as in
biology, physics and engineering. They would like to know the relationships that
illustrate how both the variables and their rates of change for example derivatives,
affect each other.

For an ordinary differential equation involving one or more physical
quantities, the problem of interest is to find the relationship it imposes upon the
variables themselves for instance to find its solution. Many techniques are available
for the approximate solutions of the ordinary differential equation.

Numerical methods for differential equation are of vast importance
to many fields of study including physics, chemistry, biology, medicine and eco-
nomics since practical problems often lead to differential equations that can not
be solved by direct method to get analytic solution.

In this thesis we use Runge - Kutta 4% order method which is one of
the most popular methods, and is particularly suitable in case when the computa-
tion of higher derivatives is complicated. It can be used for equations of arbitrary
order by meant for a transformation to a system of first - order equations. We will
discuss the solution of a system of 3 first - order equations.

Let this system be

I :f(a?,y,t)

o g(%%t)
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dz

— = h(z,y,t
o = @y 1)
with initial values (o, yo, 20, to) and interval h.

Runge - Kutta 4™ order method for finding approximate values of x, v and z

at each step is

<k:1 + 2ky + 2k3 + k4>
Tnt1l = Tn

6
I+ 2l + 213+ 1y
Yn+1 = YUn + 6
<m1 + ng + 2m3 + m4)
Znt1 = Zp t+ 6

where

ki = hf(Zn, Yn, Zn, tn)
kq i mq h

kJQ:hf($n+5,yn+E,Zn+7,tn+§)
- ko ly msa h
k3*hf(wn+?7yn+§72n+77tn+§)

k4 = hf(l’n + kg, Yn + l3, Zn + ms, tn + h)

Runge - Kutta 4" order method can be applied directly to a system of n first

order differential equations.
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B. Computer Program

function dudt = equ(u,t)
Alpha=0.005;
Gamma=0.00425;
Beta=—; use 0.00005 for Drug free state/use 0.05 for Endemic state
Mu=0.00023;
Omega=0.00011;
k=0.0095:
Rho=0.0083;
Delta=0.0006;
Sigma=0.0153;
dudt = [(Beta*(1-u(1)-u(2)-u(3))*(u(1)4u(2)) + Omega*u(3) - (Alpha+Mu+k)*u(1));
(k*u(1) + Rho*u(3) - (Mu+Delta+Sigma)*u(2));

(Sigma*u(1) - (Rho+Omega+Gamma+Mu)*u(3))];

function rkorders4
dt = 0.2;
t = 0:dt:800;
u = zeros(3,numel(t));
u(1,1) = 0.25;

u(2,1) = 0.25;



u(3,1) = 0.2;

for j = 2:umel(t)

u-=u(:,j = 1);

to=1t(j —1);

fa = equ(u_,t_);

fb=equ(u_+ dt/2. % fa,t_+ dt/2);
fe=equ(u_+dt/2. % fb,t_+ dt/2);

fd = equ(u_+dt. x fe,t_+ dt);

u(s,j) = uls,j— 1)+ dt/6 % (fa+ 2% fo+ 2% fe+ fd);

end

48
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