Brince of Sonakla Unitersity Brince of Sonakujan Battani

ภาคผนวก ก

ทฤษฎีที่เกี่ยวข้องกับงานวิจัย

- ก.1 สมดุลกัมมันตรังสี
- ก.2 การคำนวณปริมาณรังสีต่อปี
- ก.3 การเกิดและการสลายตัวของสารกัมมันตรังสี
- ก.4 การคำนวณปริมาณธาตุจากการวิเคราะห์โดยการอาบนิวตรอน
- n.5 รายละเอียดสเปกตรัมรังสีแกมมาของตัวอย่างซากหอยน้ำจืดและสิ่งแวดล้อม รอบซากหอยน้ำจืด
- ก.6 รายละเอียดโกลว์เคิร์ฟของตัวอย่างซากหอยน้ำจืดและตะกอนดิน
- n.7 น้ำหนักสารอ้างอิงมาตรฐาน NIST (NIST SRM 1633b) กับ Granodiorite, Silver Plume, Colorado (GSP-2) และตัวอย่าง สำหรับเทคนิคการวิเคราะห์ โดยการอาบนิวตรอนโดยการอาบนิวตรอน
- ก.8 โครงสร้างผลึกอราโกไนท์–แคลไซต์ ในตัวอย่างซากหอยน้ำจืด

การสลายตัวของธาตุกัมมันตรังสีนั้นจะเกิดการสลายตัวแบบต่อเนื่อง ในทางฟิสิกส์นิวเคลียร์ สมดุลแบบถาวร (Secular equilibrium) เป็นการสลายตัวอย่างต่อเนื่องของธาตุกัมมันตรังสี โดย สภาวะที่ธาตุกัมมันตรังสีของนิวไคลด์ลูกเท่ากับนิวไคลด์แม่ หลังจากผ่านการสลายตัวไประยะเวลา หนึ่งแสดงในรูปที่ ก.1.1

สมดุลกัมมันตรังสีแบบนี้เกิดขึ้นเมื่อ ครึ่งชีวิตของนิวไคลด์แม่มีค่ามากกว่าครึ่งชีวิตของ นิวไคลด์ลูกมาก ประมาณ 104 เท่าหรือมากกว่าคือ

$$T_{1/2(A)} >> T_{1/2(B)}$$

หรือ

$$\lambda_{A} << \lambda_{B}$$

โดย λ_{A} และ λ_{B} คือ ค่าคงที่การสลายตัวของธาตุกัมมันตรังสี A และ B ที่ความสัมพันธ์กับค่าครึ่ง
ชีวิต $T_{1/2(A)}$ และ $T_{1/2(B)}$ โดย $\lambda = \frac{\ln(2)}{T_{1/2}}$ ตามลำดับ และ N_{A} และ N_{B} คือ จำนวนอะตอมของธาตุ A

และ B ที่เวลา t ใด ๆ

พิจารณาการสลายของธาตุกัมมันตรังสีแบบอนุกรมของนิวไคลด์แม่อย่างเดียว แต่เมื่อเวลา ผ่านไปจะเกิดนิวไคลด์ลูก B เพิ่มขึ้นและในขณะเดียวกัน B ก็สลายต่อไปเป็น C และอื่นๆ จนในที่สุด เกิดสมดุล

เมื่อเวลาผ่านไปปริมาณของ B จะเพิ่มขึ้น ซึ่งจะทำให้อัตราการสลายของ B ไปเป็น C เพิ่มขึ้นด้วยในที่สุดจะถึงจุดที่อัตราการเกิดของ B เท่ากับอัตราการสลายของ B ไปเป็น C เรียก สถานะนี้ว่า "สมดุลกัมมันตรังสี" คือ สมการ (ก.1.1) เท่ากับ (ก.1.2)

 $\mathrm{N}^0_{\mathrm{A}}$ = จำนวนอะตอมของ A ที่เวลาเริ่มต้น $\mathrm{t}=0$

 $N_{\rm B}^{_0}$ = จำนวนอะตอมของ B ที่เวลาผ่านไป t

เมื่อธาตุกัมมันตรังสี A เป็นนิวไคลด์แม่เริ่มต้นสลายตัวด้วยจำนวนอะตอม N_A เป็นไปตาม สมการดังต่อไปนี้

$$N_{A} = N_{A}^{0} e^{-\lambda_{A} t}$$
(n.1.1)

สมการ (ก.1.1) เป็นสมการการสลายตัวของนิวไคลด์กัมมันตรังสีแม่และการเกิดนิวไคลด์ลูก B เพิ่มขึ้น

$$\begin{split} \frac{dN_{_{A}}}{dt} &= -\lambda_{_{A}}N_{_{A}} \\ \frac{dN_{_{B}}}{dt} &= \lambda_{_{A}}N_{_{A}} - \lambda_{_{B}}N_{_{B}} \\ \frac{dN_{_{B}}}{dt} &= \lambda_{_{A}}N_{_{A}}^{^{0}}e^{-\lambda_{_{A}}t} - \lambda_{_{B}}N_{_{B}} \\ \frac{dN_{_{B}}}{dt} &+ \lambda_{_{B}}N_{_{B}} = \lambda_{_{A}}N_{_{A}}^{^{0}}e^{-\lambda_{_{A}}t} \end{split}$$

$$e^{\lambda_B t} \, \frac{dN_B}{dt} + \lambda_B N_B e^{\lambda_B t} = \lambda_A N_A^0 e^{-\lambda_A t} e^{\lambda_B t}$$

คูณตลอดสมการด้วย dt

$$\begin{split} e^{\lambda_{B}t}dN_{B} + \lambda_{B}N_{B}e^{\lambda_{B}t}dt &= \lambda_{A}N_{A}^{0}e^{-\lambda_{A}t}e^{\lambda_{B}t}dt \\ d(N_{B}e^{\lambda_{B}t}) &= \lambda_{A}N_{A}^{0}e^{(\lambda_{B}-\lambda_{A})t}dt \\ \int d(N_{B}e^{\lambda_{B}t}) &= \int \lambda_{A}N_{A}^{0}e^{(\lambda_{B}-\lambda_{A})t}dt \\ N_{B}e^{\lambda_{B}t} &= \frac{\lambda_{A}N_{A}^{0}}{\lambda_{B}-\lambda_{A}}e^{(\lambda_{B}-\lambda_{A})t} + \text{constant} \end{split}$$
(1.1.2)

เมื่อ t = 0

$$N_{\rm B} = N_{\rm B}^{0}$$

$$N_{\rm B}^{0} = \frac{\lambda_{\rm A} N_{\rm A}^{0}}{\lambda_{\rm B} - \lambda_{\rm A}} + \text{cons tan t}$$

$$\text{an t} = N_{\rm B}^{0} - \frac{\lambda_{\rm A} N_{\rm A}^{0}}{\lambda_{\rm B} - \lambda_{\rm A}}$$

$$\cos \tan t = N_{\rm B}^0 - \frac{\lambda_{\rm A}^{-1} \Lambda_{\rm A}}{\lambda_{\rm B} - \lambda_{\rm A}}$$

แทนค่า constant ในสมการ (ก.1.2) จะได้

$$\begin{split} \mathbf{N}_{\mathrm{B}} \mathbf{e}^{\lambda_{\mathrm{B}} t} &= \frac{\lambda_{\mathrm{A}} \mathbf{N}_{\mathrm{A}}^{0}}{\lambda_{\mathrm{B}} - \lambda_{\mathrm{A}}} \, \mathbf{e}^{(\lambda_{\mathrm{B}} - \lambda_{\mathrm{A}}) t} - \frac{\lambda_{\mathrm{A}} \mathbf{N}_{\mathrm{A}}^{0}}{\lambda_{\mathrm{B}} - \lambda_{\mathrm{A}}} + \mathbf{N}_{\mathrm{E}}^{0} \\ \mathbf{N}_{\mathrm{B}} \mathbf{e}^{\lambda_{\mathrm{B}} t} &= \frac{\lambda_{\mathrm{A}} \mathbf{N}_{\mathrm{A}}^{0}}{\lambda_{\mathrm{B}} - \lambda_{\mathrm{A}}} \left(\mathbf{e}^{(\lambda_{\mathrm{B}} - \lambda_{\mathrm{A}}) t} - 1 \right) + \mathbf{N}_{\mathrm{B}}^{0} \end{split}$$

น้ำ e^{-^,} คูณตลอดสมการจะได้

$$\begin{split} \mathbf{N}_{\mathrm{B}} \mathbf{e}^{\lambda_{\mathrm{B}} \mathrm{t}} \mathbf{e}^{-\lambda_{\mathrm{B}} \mathrm{t}} &= \frac{\lambda_{\mathrm{A}} \mathbf{N}_{\mathrm{A}}^{0}}{\lambda_{\mathrm{B}} - \lambda_{\mathrm{A}}} \big(\mathbf{e}^{(\lambda_{\mathrm{B}} - \lambda_{\mathrm{A}})^{\mathrm{t}}} \mathbf{e}^{-\lambda_{\mathrm{B}} \mathrm{t}} - 1 \mathbf{e}^{-\lambda_{\mathrm{B}} \mathrm{t}} \big) + \mathbf{N}_{\mathrm{B}}^{0} \mathbf{e}^{-\lambda_{\mathrm{B}} \mathrm{t}} \\ \mathbf{N}_{\mathrm{B}} \mathbf{e}^{\lambda_{\mathrm{B}} \mathrm{t}} \mathbf{e}^{-\lambda_{\mathrm{B}} \mathrm{t}} &= \frac{\lambda_{\mathrm{A}} \mathbf{N}_{\mathrm{A}}^{0}}{\lambda_{\mathrm{B}} - \lambda_{\mathrm{A}}} \big(\mathbf{e}^{\lambda_{\mathrm{B}} \mathrm{t}} \mathbf{e}^{-\lambda_{\mathrm{A}} \mathrm{t}} \mathbf{e}^{-\lambda_{\mathrm{B}} \mathrm{t}} - \mathbf{e}^{-\lambda_{\mathrm{B}} \mathrm{t}} \big) + \mathbf{N}_{\mathrm{B}}^{0} \mathbf{e}^{-\lambda_{\mathrm{B}} \mathrm{t}} \\ \mathbf{N}_{\mathrm{B}} &= \frac{\lambda_{\mathrm{A}} \mathbf{N}_{\mathrm{A}}^{0}}{\lambda_{\mathrm{B}} - \lambda_{\mathrm{A}}} \big(\mathbf{e}^{-\lambda_{\mathrm{A}} \mathrm{t}} - \mathbf{e}^{-\lambda_{\mathrm{B}} \mathrm{t}} \big) + \mathbf{N}_{\mathrm{B}}^{0} \mathbf{e}^{-\lambda_{\mathrm{B}} \mathrm{t}} \end{split}$$

ถ้าที่เวลา t=0 คือ ก่อนที่ A จะสลายตัว จำนวนนิวไคลด์ของ B เท่ากับศูนย์ คือ $N^{_0}_{_B}=0$ จะได้

$$\begin{split} \mathbf{N}_{\mathrm{B}} &= \frac{\lambda_{\mathrm{A}} \mathbf{N}_{\mathrm{A}}^{0}}{\lambda_{\mathrm{B}} - \lambda_{\mathrm{A}}} \big(\mathrm{e}^{-\lambda_{\mathrm{A}} \mathrm{t}} - \mathrm{e}^{-\lambda_{\mathrm{B}} \mathrm{t}} \big) + (0) \mathrm{e}^{-\lambda_{\mathrm{B}} \mathrm{t}} \\ \mathbf{N}_{\mathrm{B}} &= \frac{\lambda_{\mathrm{A}} \mathbf{N}_{\mathrm{A}}^{0}}{\lambda_{\mathrm{B}} - \lambda_{\mathrm{A}}} \big(\mathrm{e}^{-\lambda_{\mathrm{A}} \mathrm{t}} - \mathrm{e}^{-\lambda_{\mathrm{B}} \mathrm{t}} \big) \end{split}$$

และเนื่องจากค่าครึ่งชีวิตของ A มากกว่าครึ่งชีวิต B มาก ดังนั้น λ_{A} มีค่าน้อยมากเมื่อเทียบกับ λ_{B} นั่นคือ $\lambda_{A} \ll \lambda_{B}$ ดังนั้น $\lambda_{B} - \lambda_{A} \approx \lambda_{B}$ และ $e^{-\lambda_{B}t} \rightarrow 0$, จะได้

$$N_{_{\rm B}} = \frac{\lambda_{_{\rm A}}}{\lambda_{_{\rm B}}} N_{_{\rm A}}^0 e^{-\lambda_{_{\rm A}}}$$

$$N_{_{\rm B}} = \frac{\lambda_{_{\rm A}}}{\lambda_{_{\rm B}}} N_{_{\rm A}}$$

เพราะฉะนั้น

$$\lambda_{B}N_{B} = \lambda_{A}N_{A}$$

รูปที่ ก.1.1 เป็นกราฟแสดงการสมดุลกัมมันตรังสีแบบถาวร จะเห็นได้ว่า กัมมันตภาพรังสีรวมหลังจาก เกิดสมดุลกัมมันตรังสีแล้วเท่ากับผลบวกของกัมมันตภาพรังสีของ A และ B ซึ่งกัมมันตภาพรังสีของ A จะเท่ากับ B

ภาคผนวก ก.2 การวิเคราะห์ปริมาณรังสีต่อปี (Annual doe or Dose rate)

ปริมาณรังสีต่อปีของผลึกตัวอย่างคำนวณได้จากพลังงานรังสีที่ได้จากการสลายของธาตุ (E_i) ในหน่วย MeV อัตราการสลายตัวของธาตุ (λ_i) ในหน่วย a^{-1} และจำนวนอะตอมของธาตุ (N_i) ใน หน่วย kg^{-1} ดังนี้

$$D = \sum \lambda_i N_i E_i \frac{MeV}{kg.a}$$
(1.2.1)

$$= \sum \lambda_{i} N_{i} E_{i} \times 1.60218 \times 10^{-19} \frac{J}{eV} \times 10^{-6} \frac{eV}{kg.a}$$
(f).2.2)

$$= 1.60218 \times 10^{-13} (\sum \lambda_{i} N_{i} E_{i}) \frac{Gy}{a}$$

= 1.60218 × 10⁻¹⁰ (\sum \lambda_{i} N_{i} E_{i}) [mGy/a] (\text{n}.2.3)

เมื่อ $\lambda_{i}^{}\,\mathrm{N}_{i}^{}$ คือ จำนวนการสลายตัวต่อปีสามารถคำนวณได้จากค่าครึ่งชีวิต $\,\mathrm{T}_{_{1/2}}^{}$ ได้ดังนี้

$$\lambda_{i} N_{i} = (\ln \frac{2}{T_{1/2i}}) N_{i} = \left(\frac{0.69315}{T_{1/2i}}\right) N_{i}$$
(1.2.4)

ซึ่งค่า $\mathbf{T}_{\!_{1/2}}$ ของแต่ละนิวไคลด์แสดงในตารางที่ 2.1 และ 2.2

สำหรับสมการสมดุลกัมมันตรังสีของ ²³⁸U เขียนได้เป็น

$$\boldsymbol{\lambda}_{i} \; \boldsymbol{N}_{i} \; = \boldsymbol{\lambda}_{i+1} \; \boldsymbol{N}_{i+1} = \ldots = \boldsymbol{\lambda}_{238} \boldsymbol{N}_{i \, (238)}$$

เมื่อ λ₂₃₈ คือ อัตราการสลายตัวของธาตุ ²³⁸U และ N₂₃₈ คือ จำนวนอะตอมของธาตุ ²³⁸U ในผลึก (kg⁻¹) สมการดังกล่าวเป็นสมการ "สมดุลกัมมันตรังสีแบบถาวร" ได้มาจากภาคผนวก ก.1 ดังนั้น ปริมาณรังสีต่อปีของธาตุยูเรเนียม สามารถเขียนได้เป็น

$$\begin{split} & \mathsf{D}_{\mathrm{U}} = 1.60218 \times 10^{-10} \, (\lambda_{238} \, \mathsf{N}_{238} \, \mathsf{\Sigma} \, \mathsf{E}_{1(238)}) & [\mathrm{mGy/a}] \quad (f.2.5) \\ & \mathsf{n}'1 \, \mathsf{T}_{1/2} \, \mathfrak{versim} \, \mathfrak{ss} \, \mathsf{U} \quad \tilde{\mathsf{Ro}} \, \mathbf{0} \, 4.468 \times 10^9 \, \mathrm{a} \\ & \lambda_{238} = \frac{0.69315}{\mathsf{T}_{1/2(238)}} = \frac{0.69135}{4.468 \times 10^{9} \, \mathrm{a}} = 1.55136 \times 10^{-10} & [1/\mathfrak{a}] \\ & \mathsf{N}_{238} = 6.02218 \times 10^{23} \, \mathrm{atom} \, / \, \mathrm{mole} \times \frac{1}{238.05 \, \mathrm{g} \, / \, \mathrm{mole}} \times 1 \, \mathrm{mg} \times 10^{-30} \, \mathrm{g} \, / \, \mathrm{mg} \\ & = 2.5300 \times 10^{13} & \\ & \mathsf{N}_{238} = (0.062879) \, \mathsf{\Sigma} \, \mathsf{E}_{1(238)} & [\mathrm{mGy} \, / \, \mathrm{a}] \\ & \mathfrak{stud} \, \mathcal{D}_0 = (0.062879) \, \mathsf{\Sigma} \, \mathsf{E}_{1(238)} & [\mathrm{mGy} \, / \, \mathrm{a}] \\ & \mathfrak{stud} \, \mathsf{a}_1 \, \mathsf{N}_2 \, \mathsf{stud} \, \mathsf{a}_1 \, \mathsf{stud} \,$$

ปริมาณรังสีต่อปีของธาตุ $\,^{40}\mathrm{K}\,$ จำนวน $1~\mathrm{ppm}\,$ สามารถเขียนได้ดังนี้

 $D_{\rm K} = 1.60218 \times 10^{-10} \left(\lambda_{40} \, N_{40} \, \Sigma \, E_{40} \right) \qquad \qquad [{\rm mGy}/\, {\rm a}] \qquad ({\rm h.2.7})$

ค่า $\mathrm{T}_{\!\!1/2}$ ของธาตุ $^{40}\mathrm{K}$ คือ $1.277{ imes}10^9~\mathrm{a}$

$$\begin{split} \lambda_{40} &= \frac{0.69315}{T_{1/2\,(40)}} = \frac{0.69135}{1.277 \times 10^9} = 0.542796 \times 10^{-10} & [1 \, / \, a] \\ N_{40} &= 6.02218 \times 10^{23} \text{ atom } / \text{ mole} \times \frac{1}{39.0983 \, \text{g} \, / \, \text{mole}} \times 1 \, \text{mg} \times 10^{-30} \, \text{ g} \, / \, \text{mg} \\ &= 2.56532 \times 10^{18} \end{split}$$

ดังนั้น

$$D_{K} = (0.02514) \sum E_{i(40)}$$
 [mGy / a]

ปริมาณรังสีต่อปีสำหรับธาตุ ²³⁸U, ²³²Th และ ⁴⁰K จำนวน 1 ppm สำหรับแต่ละรังสีอัลฟา เบต้า และ แกมมา เขียนได้เป็น

$$\begin{split} D_{\rm U} &= (0.062879) \sum E_{i(238),(\alpha,\beta,\gamma)} & [{\rm mGy}\ / \ {\rm a}] & ({\rm \widehat{n}}.2.8) \\ D_{\rm Th} &= (0.02514) \sum E_{i(238),(\alpha,\beta,\gamma)} & [{\rm mGy}\ / \ {\rm a}] & ({\rm \widehat{n}}.2.9) \\ D_{\rm K} &= (0.02514) \sum E_{i(40),(\alpha,\beta,\gamma)} & [{\rm mGy}\ / \ {\rm a}] & ({\rm \widehat{n}}.2.10) \end{split}$$

ตารางที่ ก.2.1 พลังงานรวมของรังสีแอลฟา เบต้าและแกมมา ของอนุกรมการสลายตัวของ ยูเรเนียม ทอเรียมและธาตุโพแทสเซียมตามธรรมชาติ

ri	mC ^e of	0.	พลังงาน (MeV)		
	อนุกรม	E _{total, a}	Ε _{total, β}	$E_{total,\gamma}$	
	²³⁸ U	42.806	2.270	1.753	
	232 Th	35.932	1.346	2.482	
	40 K	_	0.506	0.152	

ตัวอย่างการคำนวณปริมาณธาตุยูเรเนียมจำนวน 1 ppm จากพลังงานของรังสีแอลฟา 42.81 MeV ตามสมการ (ก.2.8) ได้ดังนี้

$$D_{U} = (0.062879) \sum E_{\alpha}$$

= 0.062879 × 42.806
= 2.6916

[mGy / a]

ข้อมูลตามตารางที่ ก.2.1 เป็นพลังงานทั้งหมดของรังสีแอลฟา เบต้า และแกมมาของอนุกรมการ สลายตัว ²³⁸U, ²³²Th และ ⁴⁰K ตามธรรมชาติ ปริมาณรังสีต่อปีที่ 1 ppm ของธาตุกัมมันตรังสีจะถูก คำนวณอยู่บนพื้นฐานของพลังงานดังกล่าวได้ค่าตามตารางต่อไปนี้ ตารางที่ ก.2.2 ปริมาณรังสีต่อปีของรังสีแอลฟา เบต้าและแกมมา ที่คำนวณได้จากสมการ สมดุลกัมมันตรังสีของอนุกรมการสลายตัวของธาตุยูเรเนียม (²³⁸U) ทอเรียม (²³²Th) และโพแทสเซียม (⁴⁰K) ตามธรรมชาติ

การสลายตัว	$D_{\alpha} \ (mGy/a)$	$D_{eta} \; (mGy/a)$	$\mathrm{D}_{\gamma}~(\mathrm{mGy/a})$
238 U (1 ppm)	2.692	0.143	0.110
$^{232}\mathrm{Th}~(1~\mathrm{ppm})$	0.737	0.028	0.051
$^{40}{ m K}~(\%)$	_	0.678	0.203

นำข้อมูลตามตารางที่ ก.2.2 มาคำนวณปริมาณรังสีต่อปีโดยอาศัยปริมาณความเข้มข้นของ ธาตุกัมมันตรังสีตามธรรมชาติ ได้ตามสมการ (ก.2.11 – ก.2.12)

$\boldsymbol{D}_{\alpha} = \boldsymbol{C}_{\boldsymbol{U}}\boldsymbol{D}_{\boldsymbol{U}-\alpha} + \boldsymbol{C}_{\boldsymbol{T}\boldsymbol{h}}\boldsymbol{D}_{\boldsymbol{T}\boldsymbol{h}-\alpha}$	(ก2.11)
$\boldsymbol{D}_{\beta} = \boldsymbol{C}_{_{\boldsymbol{U}}}\boldsymbol{D}_{_{\boldsymbol{U}-\beta}} + \boldsymbol{C}_{_{Th}}\boldsymbol{D}_{_{Th-\beta}} + \boldsymbol{C}_{_{\boldsymbol{K}}}\boldsymbol{D}_{_{\boldsymbol{K}-\beta}}$	(ก2.12)
$\mathbf{D}_{\gamma} = \mathbf{C}_{\mathbf{U}} \mathbf{D}_{\mathbf{U}-\gamma} + \mathbf{C}_{\mathbf{T}\mathbf{h}} \mathbf{D}_{\mathbf{T}\mathbf{h}-\gamma} + \mathbf{C}_{\mathbf{K}} \mathbf{D}_{\mathbf{K}-\gamma}$	(ก2.13)

เมื่อ _C คือ ปริมาณความเข้มข้นของธาตุกัมมันตรังสีตามธรรมชาติ D คือ ปริมาณรังสีต่อปีของรังสีชนิดต่าง ๆ

้ค่าตามตารางที่ ก.2.2 นอกจากจะใช้สมการ (ก.2.11 – ก.2.12) ในการคำนวณค่าดังกล่าวแล้ว สามารถ ใช้สมการต่อไปนี้ในการคำนวณ

$$D_{a} = C_{U}(2.692) + C_{Th}(0.737)$$
(1.2.14)

$$D_{\beta} = C_{\rm U}(0.143) + C_{\rm Th}(0.028) + C_{\rm K}(0.678) \tag{n.2.15}$$

$$D_{\gamma} = C_{\rm U}(0.110) + C_{\rm Th}(0.051) + C_{\rm K}(0.203)$$
(n.2.16)

เมื่อ C_U, C_{TH} และ C_K เป็นปริมาณความเข้มข้นของธาตุยูเรเนียมและทอเรียมในหน่วย ppm และโพแทสเซียมในหน่วย % ที่ได้จากเทคนิค NAA

ตารางที่ ก.2.3 ปริมาณความเข้มข้นของธาตุยูเรเนียม ทอเรียมและโพแทสเซียม ในตัวอย่าง ซากหอยน้ำจืดและดินเผาไฟ จากแหล่งโบราณคดีถ้ำเขาหาน จังหวัดสตูล

ตัวอย่าง	⁴⁰ K (%)	²³² Th (ppm)	²³⁸ U (ppm)	ปริมาณน้ำ, W
SH1	0.220	3.265	1.700	0.00
SD1	1.400	15.716	3.114	0.00
F1	ND	15.600	5.612	0.05

ก.2.3.1 การคำนวณปริมาณรังสีต่อปีของตัวอย่างซากหอยน้ำจืด

ปริมาณรังสีต่อปีของตัวอย่างซากหอยน้ำจืดคำนวณจากปริมาณรังสีต่อปีภายในและ ภายนอก โดยปริมาณรังสีต่อปีภายใน (D_{in}) เป็นผลมาจากรังสีที่มีอยู่ตามธรรมชาติ ได้แก่ ²³⁸U, ²³²Th และ ⁴⁰K ที่มีอยู่ในผลึกตัวอย่างซากหอยน้ำจืดเองและปริมาณรังสีต่อปีภายนอก (D_{ex}) เกิดจากรังสี ที่มาจากองค์ประกอบที่มีอยู่ในสิ่งแวดล้อมรอบ ๆ ตัวอย่าง

ค่าที่ได้ตามตารางที่ ก.2.3 นำไปแทนค่าในสมการ (ก.2.14 – ก.2.16) สามารถ คำนวณหาค่าปริมาณรังสีต่อปีของตัวอย่างซากหอยน้ำจืดได้ดังนี้

<u>ปริมาณรังสีต่อปีภายใน</u>

ตารางที่ ก.2.4 ปริมาณรังสีต่อปีภายใน (D_{in}) และปริมาณรังสีต่อปีภายนอก (D_{ex})

ปริมาณรังสีต่อปีภายใน (mGy/a)		ปริมาณรังสีต่อปีภายนอก $({ m mGy/a})$	
$D_{in, \alpha}$	$\mathrm{D}_{\mathrm{in},eta}$	$D_{\mathrm{ex},\beta}$	$D_{ex,\gamma}$
6.983	0.482	1.828	1.428

ปริมาณรังสีต่อปีของรังสีแอลฟา เบต้า และแกมมาในตารางที่ ก.2.6 เป็นค่าทางอุดมคติหรือเป็นค่าที่ ได้ 100 % โดยที่ไม่ได้รับผลกระทบจากความชื้นหรือปริมาณของน้ำในตัวอย่าง แต่ในทางปฏิบัติ ปริมาณรังสีต่อปีจะถูกการลดทอนด้วยปริมาณน้ำหรือความชื้น ซึ่งสามารถคำนวณปริมาณรังสีต่อปีที่ มีปริมาณน้ำได้จากสมการ (ก.2.17 – ก.2.19) ได้ดังนี้

$$D'_{\alpha} = D_{\alpha} / [(1 + 1.49W) / (100 - W)]$$
 (n.2.17)

$$D'_{\beta} = D_{\beta} / [(1 + 1.25W) / (100 - W)]$$
 (n.2.18)

$$D'_{\gamma} = D_{\gamma} / [(1 + 1.14W) / (100 - W)]$$
 (1.2.19)

ปริมาณรังสีต่อปีภายในที่มีปริมาณน้ำ

ตารางที่ ก.2.5 ปริมาณรังสีต่อปีภายในที่มีปริมาณน้ำ (D่,) และปริมาณรังสีต่อปีภายนอกที่มี ปริมาณน้ำ $(D_{ex}^{'})$

ปริมาณรังสีต่อปีภายใ	นที่มีปริมาณน้ำ $(\mathrm{D}_{\mathrm{in}}^{'})$	ปริมาณรังสีต่อปีภายนะ	อกที่มีปริมาณน้ำ (D _{ex})
$\mathrm{D}'_{\mathrm{in},lpha}$	$D_{\mathrm{in},\beta}'$	$D'_{\mathrm{ex},\beta}$	$D'_{\mathrm{ex},\gamma}$
0.070	0.482	1.828	1.428

การคำนวณปริมาณรังสีต่อปีสิ่งที่ต้องคำนึงถึง คือ อัตราการลดทอนความสามารถการกระตุ้น ้ของขนาดตะกอน ความชื้นหรือปริมาณของน้ำในตัวอย่างตามธรรมชาติ รวมถึงการพิจารณา ประสิทธิภาพของจุดบกพร่องในผลึกตัวอย่างที่เกิดจาก อนุภาคแอลฟา เบต้า และรังสีแกมมา นั่นคือ

ค่าคงที่ k เนื่องจากอนุภาคแอลฟามีพิสัยแค่ช่วงสั้น ๆ ประมาณ 20 μm ส่วนใหญ่เราละจะเว้นค่า k สำหรับอนุภาคแอลฟา จะพิจารณาเฉพาะค่า k อนุภาคเบต้าและรังสีแกมมามีค่าเท่ากับ 1 (k_β = k_γ = 1) ดังนั้น ปริมาณรังสีต่อปีหาได้จากสมการต่อไปนี้

$$\begin{split} \mathbf{D}_{\mathrm{In}} &= \mathbf{k} \mathbf{D}_{\mathrm{In},\,\alpha}^{'} + \mathbf{D}_{\mathrm{In},\,\beta}^{'} \\ \mathbf{D}_{\mathrm{Ex}} &= \mathbf{D}_{\mathrm{Ex},\,\beta}^{'} + \mathbf{D}_{\mathrm{Ex},\,\gamma}^{'} + \mathbf{D}_{\mathrm{cos}} \\ & \mathbf{k}_{\alpha}^{'} = \frac{\mathbf{A} \mathbf{D}_{\gamma}}{\mathbf{A} \mathbf{D}_{\alpha}} = 0.05 \\ & \mathbf{k}_{\beta} = \mathbf{k}_{\gamma} = 1 \end{split}$$

เนื่องจากตัวอย่างซากหอยน้ำจืดที่นำมาหาอายุ เก็บรวมรวมมาจากสิ่งแวดล้อม ดังนั้น ปริมาณรังสีต่อปี (D) ของตัวอย่างซากหอยน้ำจืด นอกจากวิเคราะห์ได้จากไอโซโทปรังสีที่มีอยู่ใน ธรรมชาติและไอโซโทปรังสีที่มีกำเนิดมาพร้อมกับโลก ได้แก่ ยูเรเนียม (²³⁸ U) ทอเรียม (²³² Th) และโพแทสเซียม (⁴⁰ K) ยังวิเคราะห์รังสีคอสมิก ซึ่งมาจากนอกโลกมีแหล่งกำเนิดมาจากดวงอาทิตย์ และกาแลกซี โดยรังสีคอสมิกจะถูกควบคุมโดยเส้นละติจูด ลองติจูด ระดับความสูงและระดับความลึก ของตัวอย่าง เขียนสมการได้ใหม่ดังนี้

ก.2.3.2 การคำนวณปริมาณรังสีต่อปีของตัวอย่างดินเผาไฟ

ปริมาณรังสีต่อปีของตัวอย่างดินเผาไฟคำนวณได้จากปริมาณรังสีต่อปีภายในและ ภายนอกเช่นเดียวกับตัวอย่างซากหอยน้ำจืด สำหรับตัวอย่างดินเผาไฟเราจะถือว่า ธาตุกัมมันตรังสี ที่มีอยู่สม่ำเสมอในทุก ๆ ตัวอย่าง พลังงานที่รังสีปลดปล่อยออกมาจากตัวอย่างมีค่าเท่ากับ ปริมาณรังสีดูดกลืนโดยตัวอย่าง ดังนั้น เราอาจจะพิจารณาว่าขนาดของตัวอย่างไม่มีที่สิ้นสุด เรา สามารถมองข้ามไม่นำปริมาณรังสีต่อปีภายนอก (D_{ex}) มาพิจารณาเพื่อคำนวณค่าปริมาณรังสีต่อปีของ ตัวอย่างดินเผาไฟ ปริมาณรังสีต่อปีภายใน (D_{in}) พิจารณาได้จากปริมาณความเข้มข้นของธาตุ กัมมันตรังสีจากการสลายตัวของอนุกรม ²³⁸U และ ²³⁸Th และรังสีแอลฟา เบต้าและแกมมาจากการ แผ่รังสีตามธรรมชาติของธาตุ ⁴⁰K

ความเข้มข้นของธาตุยูเรเนียม ทอเรียม และโพแทสเซียม ในตารางที่ ก.2.3 นำไป แทนค่าในสมการ (ก.2.14 – ก.2.16) เพื่อหาปริมาณรังสีต่อปีได้ดังนี้

$$\begin{array}{ll} D_{\alpha} = (5.61)(2.692) + (15.60)(0.737) \\ = 26.604 & mGy \ / \ a \\ D_{\beta} = (5.61)(0.143) + (15.60)(0.028) + (0)(0.678) \\ = 1.232 & mGy \ / \ a \\ D_{\gamma} = (5.61)(0.110) + (15.60)(0.051) + (0)(0.203) \\ = 1.413 & mGy \ / \ a \end{array}$$

ตารางที่ ก.2.6 ปริมาณรังสีต่อปีของรังสีแอลฟา เบต้า และแกมมา

* costos	ปริเ	มาณรังสีต่อปี (mGy/a)	5U 0
M.1951.14	ปริม แอลฟา 26.604	เบต้า	แกมมา
F1	26.604	1.232	1.413

ปริมาณรังสีต่อปีของรังสีแอลฟา เบต้า และแกมมาในตารางที่ ก.2.6 เป็นค่าทางอุดมคติหรือเป็นค่าที่ ได้ 100 % โดยที่ไม่ได้รับผลกระทบจากความชื้นหรือปริมาณของน้ำในตัวอย่าง แต่ในทางปฏิบัติ ปริมาณรังสีต่อปีจะถูกการลดทอนด้วยปริมาณน้ำหรือความชื้น ซึ่งสามารถคำนวณปริมาณรังสีต่อปีที่ มีปริมาณน้ำได้จากสมการ (ก.2.17 – ก.2.19) ได้ดังนี้

$$\begin{split} D'_{\alpha} &= D_{\alpha} / \left[(1 + 1.49 W / (100 - W)) \right] \\ &= 26.604 / \left[1 + 1.49 (0.05) / (100 - 0.05) \right] \\ &= 0.247 & mGy / a \\ D'_{\beta} &= D_{\beta} / \left[(1 + 1.25 W / (100 - W)) \right] \\ D'_{\beta} &= 1.232 / \left[1 + 1.25 (0.05) / (100 - 0.05) \right] \\ &= 1.231 & mGy / a \\ D'_{\gamma} &= D_{\gamma} / \left[(1 + 1.14 W / (100 - W)) \right] \\ &= 1.413 / \left[1 + 1.14 (0.05) / (100 - 0.05) \right] \\ &= 1.412 & mGy / a \end{split}$$

ปริมาณรังสีต่อปีของตัวอย่างดินเผาไฟคำนวณโดยใช้สมการต่อไปนี้

$$\begin{split} \mathbf{D} &= \mathbf{D}_{\mathrm{in}} + \mathbf{D}_{\mathrm{cos}} & (\text{fr}.2.20) \\ &= \mathbf{k} \mathbf{D}_{\alpha}^{'} + \mathbf{D}_{\beta}^{'} + \mathbf{D}_{\gamma}^{'} + \mathbf{D}_{\mathrm{cos}} & (\text{fr}.2.21) \\ & \text{tild} \quad \mathbf{k} = \frac{\mathbf{A} \mathbf{D}_{\gamma}}{\mathbf{A} \mathbf{D}_{\alpha}} \end{split}$$

ค่าคงที่ k หาได้จากอัตราส่วนระหว่างปริมาณรังสีสะสมจากการฉายรังสีแอลฟา (AD_{γ}) และรังสีแกมมา (AD_{γ}) ในงานวิจัยนี้เหลือใช้ค่า ใช้ค่าคงที่ k เท่ากับ 0.15 ตามงานวิจัยของ Voinchet *et al.* (2004) สมการ (ก.2.21) เขียนใหม่ได้เป็น

$$\begin{split} D &= 0.15(0.247) + 1.231 + 1.412 + 0.161 \\ &= 2.841 \end{split}$$

mGy / a

ภาคผนวก ก.3. การเกิดและการสลายตัวของสารกัมมันตรังสี

สำหรับการเกิดไอโซโทปกัมมันตรังสี เมื่อนิวตรอนเข้าทำปฏิกิริยากับนิวเคลียสของไอโซโทป เสถียร จะมีไอโซโทปกัมมันตรังสีเกิดขึ้น โดยมีอัตราการเกิดดังสมการ

 $\mathrm{P}=\mathrm{N}\sigma\phi$

(ก.3.1)

เมื่อ P คือ อัตราการเกิดของไอโซโทปกัมมันตรังสี

N คือ จำนวนอะตอมของไอโซโทปเสถียร

- σ คือ ภาคตัดขวางของนิวตรอน $(\rm barm)$ โดย 1 $\rm barn$ เท่ากับ $10^{-24}~\rm cm^2$
- $f \phi$ คือ ฟลักซ์ของนิวตรอน มีหน่วยเป็น $n/cm^2/s$

สำหรับจำนวนอะตอมไอโซโทปเสถียรมีค่าดังนี้

$$N = \frac{N_A W f}{M} \tag{1.3.2}$$

- เมื่อ N_A คือ จำนวนของอาโวกาโดร (Avogardro's number) มีค่าเท่ากับ $6.02 X 10^{23}$ atom/mol
 - $_{
 m W}$ คือ มวลของธาตุ $({
 m g})$
 - $_{
 m f}$ คือ สัดส่วนของไอโซโทปเสถียรที่มีอยู่ในธรรมชาติ (Isotopic abundance)

M คือ มวลอะตอมของธาตุนั้น ๆ

เมื่อมีไอโซโทปกัมมันตรังสีเกิดขึ้น ไอโซโทปกัมมันตรังสีนั้นจะมีอัตราการสลายตัวดังนี้

อัตราการสลายตัว = λN^*

คือ ค่าคงที่ของการสลายตัว (Decay constant) ของไอโซโทปกัมมันตรังสีที่ เมื่อ λ เกิดขึ้น มีค่าเท่ากับ $0.693\,/\,\mathrm{T_{1/2}}~(\mathrm{s}^{\text{-1}})$ ้คือ ค่าครึ่งชีวิต (Half-life) ของไอโซโทปกัมมันตรังสีที่เกิดขึ้น (s) $T_{1/2}$ คือ จำนวนอะตอมของไอโซโทปกัมมันตรังสี N^* ดังนั้น ปริมาณที่เหลืออยู่ของไอโซโทปกัมมันตรังสี เมื่อเวลาใด ๆ หาได้จากสมการ 🔊 🗌 $(\overline{P - \lambda N^*}) = dt$ อินทิเกรตสมการ (ก.3.4) จะได้ $\int_0^{N^*} \frac{dN^*}{(P - \lambda N^*)} = \int_0^t dt$ $-\frac{1}{\lambda} \int_0^{N^*} \frac{(P - \lambda N^*)}{(P - \lambda N^*)} = \int dt$ $-\frac{1}{\lambda} [\ln/P$ (ก.3.3) (ก.3.4) $-\frac{1}{\lambda}[\ln(P-\lambda N^*) - \ln P] = t$ $\ln \frac{(P - \lambda N^*)}{P} = \lambda t$ $\frac{\left(P-\lambda N^{^{\ast }}\right) }{P}=e^{\lambda t}$ $(P - \lambda N^*) = Pe^{\lambda t}$ $P - P e^{\lambda t} = \lambda N^*$ $\lambda N^* = P(1 - e^{\lambda t})$ (ก.3.5)

แทนค่า P จากสมการ (ก.3.1) ลงในสมการ (ก.3.5) จะได้

$$\lambda N^* = N\sigma \phi \left(1 - e^{\lambda t} \right) \tag{1.3.6}$$

ถ้ากำหนดให้ A₀ คือ กัมมันตภาพเริ่มต้นของการอาบนิวตรอนมีค่าเท่ากับ λN* มีหน่วยเป็น อะตอมต่อวินาที (atom/s) จากสมการ (n.3.6) สามารถเขียนได้ในรูป

$$\mathbf{A}_{0} = \mathbf{N}\boldsymbol{\sigma}\boldsymbol{\phi} \left(1 - \mathbf{e}^{-\lambda t}\right) \tag{1.3.7}$$

ถ้า A_t คือ กัมมันตภาพที่เวลา T ใด ๆ ภายหลังสิ้นสุดการอาบนิวตรอน ซึ่งมีค่าเท่ากับ $A_0 e^{-\lambda t}$ นั่นคือ

$$\begin{split} \mathbf{A}_{\mathrm{t}} &= \mathbf{A}_{\mathrm{0}} \mathrm{e}^{-\lambda \mathrm{t}} \\ \mathbf{A}_{\mathrm{0}} &= \frac{\mathbf{A}_{\mathrm{t}}}{\mathrm{e}^{-\lambda \mathrm{t}}} \end{split}$$

จากสมการ (ก.3.7) แทนค่า จะได้ $A_{_0}$ จะได้

$$\mathbf{A}_{t} = \mathbf{N}\boldsymbol{\sigma}\phi \left(1 - \mathbf{e}^{-\lambda t}\right)\mathbf{e}^{-\lambda t} \tag{1.3.8}$$

เมื่อ t คือ เวลาที่ใช้ในการสลายตัว มีหน่วยเป็น s แทนค่า N จากสมการ (ก.3.2) ลงใน สมการ (ก.3.8) จะได้

$$A_{t} = \frac{N_{A}Wf\sigma\phi (1 - e^{-\lambda t})e^{-\lambda t}}{M}$$
(1.3.9)

ในตัวอย่างสารมาตรฐาน

$$\begin{split} \mathbf{A}_{\mathrm{std}} &= \frac{\mathbf{N}_{\mathrm{A}} \mathbf{W}_{\mathrm{std}} \mathbf{f} \boldsymbol{\sigma} \boldsymbol{\phi} \left(1 - \mathrm{e}^{-\lambda t}\right) \mathrm{e}^{-\lambda t}}{\mathbf{M}} \end{split} \tag{(1.3.10)} \\ \mathbf{A}_{\mathrm{sam}} &= \frac{\mathbf{N}_{\mathrm{A}} \mathbf{W}_{\mathrm{sam}} \mathbf{f} \boldsymbol{\sigma} \boldsymbol{\phi} \left(1 - \mathrm{e}^{-\lambda t}\right) \mathrm{e}^{-\lambda t}}{\mathbf{M}} \end{split}$$

ภาคผนวก ก.4. การคำนวณปริมาณธาตุจากการวิเคราะห์โดยการอาบนิวตรอน

เมื่อนำสารตัวอย่างและสารมาตรฐานเข้าอาบรังสีนิวตรอนพร้อม ๆ กันในตำแหน่งและเวลา เดียวกัน ความแรงรังสีที่เวลาเริ่มต้นของไอโซโทปรังสีจะเป็นไปตามสมการดังต่อไปนี้

$$A_{_0} = \frac{WN_{_A} f \sigma \phi}{M} (1 - e^{-\lambda t_i}) \tag{f.4.1}$$

$$i \vec{\lambda} = \frac{0.693}{T_{_{1/2}}}$$

- เมื่อ A_0 คือ เมื่อความแรงรังสีที่เวลาเริ่มต้นที่ t=0 (s)
 - W คือ น้ำหนักของธาตุตัวอย่าง (g)
 - $\rm N_{\scriptscriptstyle A}$ คือ เลขอาโวกาโดรเท่ากับ $6.02{\times}10^{23}~(\rm atom/mol)$
 - f คือ สัดส่วนร้อยละของไอโซโทปเสถียรของธาตุนั้นๆ ในธรรมชาติ (% abundance)

- σ คือ ค่าความสามารถในการจับนิวตรอนของธาตุ (Neutron cross section, barn)
- ϕ คือ ความเข้มของนิวตรอน (Neutron flux) (n.cm²s⁻¹)
- M คือ น้ำหนักอะตอมของธาตุ
- λ คือ ค่าคงที่ของการสลายตัวของไอโซโทปกัมมันตรังสี
- $\mathbf{T}_{\!_{1/2}}$ คือ ค่าครึ่งชีวิต
- t, คือ เวลาที่ใช้ในการอาบรังสีนิวตรอน (s)

เมื่อปล่อยให้ไอโซโทปรังสีสลายตัวระยะเวลาหนึ่ง หลังหยุดการอาบนิวตรอนความแรงรังสี A(t) ของไอโซโทปรังสีจะลดลง ตามเวลาในการสลายตัว (Cooling time, t_c) แบบเอ็กโปเนนเชียล เป็นไปตามสมการดังต่อไปนี้

$$A = A_{0} e^{-\lambda t_{c}}$$
(n.4.2)
$$A = \frac{W N_{A} f \sigma \phi}{M} (1 - e^{-\frac{0.693}{T_{1/2}} t_{i}}) e^{-\lambda t_{c}}$$
(n.4.3)

ไอโซโทปรังสีจะมีความแรงรังสีสูงขึ้นแบบเอ็กโปเนนเชียลตามเวลาที่ใช้ในการอาบนิวตรอน ไอโซโทปรังสีจะสลายตัวทำให้ความแรงรังสีลดลงแบบเอ็กโปเนนเชียล เมื่อหยุดการอาบนิวตรอน ไอโซโทปรังสีที่มีครึ่งชีวิตสั้นจะมีความแรงรังสีเพิ่มขึ้นเร็วกว่าและสลายตัวลดลงเร็วกว่าไอโซโทปรังสีที่ มีครึ่งชีวิตยาว

ร**ูปที่ ก.4.1** ไอโซโทปรังสีจะมีความแรงรังสีสูงขึ้นแบบเอ๊กโปเนนเชียลและลดลงแบบเอ๊กโปเนนเชียล

ตามที่ได้กล่าวไปแล้วงานวิจัยนี้เลือกศึกษาปริมาณยูเรเนียม ทอเรียมและโพเทสเซียม โดยการอาบนิวตรอนแบบไม่ทำลายตัวอย่าง ทำโดยใช้หลักการเปรียบเทียบตัวอย่างกับ สารอ้างอิงมาตรฐานเข้าอาบรังสีพร้อมกันดังรูป

รูปที่ **ก.4.2** การวิเคราะห์โดยการอาบนิวตรอนทดลองโดยเปรียบเทียบกับสารมาตรฐาน

ความแรงรังสีของสารตัวอย่าง

$$A_{sam} = \frac{W_{sam} N_A f_{sam} \sigma_{sam} \phi_{sam}}{M_{sam}} (1 - e^{-\frac{0.693}{T_{1/2}} t_{sam}}) e^{-\lambda t_{sam}}$$
(1.4.4)

ความแรงรังสีของสารอ้างอิงมาตรฐาน

$$A_{std} = \frac{W_{std}N_{A}f_{std}\boldsymbol{\sigma}_{std}\boldsymbol{\phi}_{std}}{M_{std}} (1 - e^{-\frac{0.693}{T_{1/2}}t_{std}})e^{-\lambda t_{std}}$$
(1.4.5)

เมื่อเปรียบเทียบระหว่างสารตัวอย่างกับสารอ้างอิงมาตรฐานพบว่ามีตัวแปรต่าง ๆ เช่น f, N_A, σ, t และ M เท่ากัน นำสมการก่อนอาบนิวตรอน (ก.4.4) และหลังอาบนิวตรอน (ก.4.5) มา หารกัน ได้สมการดังต่อไปนี้

$$\begin{split} \frac{A_{sam}}{A_{std}} = & \frac{\frac{W_{sam}N_{A}f_{sam}\sigma_{sam}\phi_{sam}}{M_{sam}}(1-e^{-\frac{0.693}{T_{1/2}}t_{sam}})e^{-\lambda t_{sam}}}{\frac{W_{std}N_{A}f_{std}\sigma_{std}\phi_{std}}{M_{std}}(1-e^{-\frac{0.693}{T_{1/2}}t_{std}})e^{-\lambda t_{std}}} \\ \frac{A_{sam}}{A_{std}} = & \frac{W_{sam}N_{A}f_{sam}\sigma_{sam}\phi_{sam}(1-e^{-\frac{0.693}{T_{1/2}}t_{sam}})e^{-\lambda t_{std}}}{M_{sam}} \times \frac{M_{std}}{W_{std}N_{A}f_{std}\sigma_{std}\phi_{std}(1-e^{-\frac{0.693}{T_{1/2}}t_{std}})e^{-\lambda t_{std}}}{W_{std}N_{A}f_{std}\sigma_{std}\phi_{std}(1-e^{-\frac{0.693}{T_{1/2}}t_{std}})e^{-\lambda t_{std}}} \end{split}$$

เมื่อ $f_{_{sam}} = f_{_{std}}$, $\sigma_{_{sam}} = \sigma_{_{std}}$, $\phi_{_{sam}} = \phi_{_{std}}$ และ $M_{_{sam}} = M_{_{std}}$ จะได้สมการ

$$\frac{A_{sam}}{A_{std}} = \frac{W_{sam}N_{A}f\sigma\phi(1-e^{-\frac{0.693}{T_{1/2}}t_{sam}})e^{-\lambda t_{sam}}}{M_{sam}} \times \frac{M_{std}}{W_{std}N_{A}f\sigma\phi(1-e^{-\frac{0.693}{T_{1/2}}t_{std}})e^{-\lambda t_{std}}}$$

$$\frac{A_{sam}}{A_{std}} = \frac{W_{sam}e^{-\lambda t_{sam}}}{W_{std}e^{-\lambda t_{std}}}$$
(1.4.6)

ปริมาณความเข้มข้นของยูเรเนียม (U) ทอเรียม (Th) และโพแทสเซียม (K) โดย การอาบนิวตรอนของตัวอย่างซากหอยน้ำจืด ได้จากการวิเคราะห์ความแรงรังสีแกมมาที่สลายตัวของ ไอโซโทปกัมมันตรังสี ²³⁹Np, ²³³Pa และ ⁴²K ที่พลังงาน 277.60, 312.01 และ 1524.58 keV ตามลำดับ ความแรงรังสีดังกล่าวสามารถวัดโดยใช้ระบบวัดรังสีแกมมา ผลการวัดจะได้แถบของค่านับวัดพลังงาน ของรังสี เรียกว่า "สเปกตรัมรังสีแกมมา" รังสีแกมมาแต่ละพลังงานที่วัดได้ เรียกว่า โฟโตพีค (Photo peak) จำนวนนับวัดบนพื้นที่ของโฟโตพีคมีค่าแปรผันตามความแรงรังสี

รูปที่ ก.4.4 สเปกตรัมรังสีแกมมาของธาตุโพแทสเซียมในตะกอนดินที่พลังงาน 1524.58 keV

ค่าประสิทธิภาพสัมบูรณ์ (ε) ของหัววัดรังสีหาได้จากสมการ (ก.4.7) เมื่อ R คือ จำนวนนับ วัดหรือพื้นที่สุทธิใต้โฟโตพีคที่พลังงานของรังสีแกมมาของธาตุที่ต้องการวิเคราะห์

$$\begin{split} \epsilon = & \frac{R}{A \times I \times t_{c}} \end{split} \tag{f.4.7} \\ R = & \epsilon \times A \times I \times t_{c} \\ & \frac{R_{sam}}{R_{std}} = \frac{\epsilon \times A_{sam} \times I \times t_{c}}{\epsilon \times A_{std} \times I \times t_{c}} \end{split}$$

ดังนั้น

เมื่อ

$$\frac{A_{sam}}{A_{std}} = \frac{R_{sam}}{R_{std}}$$
(1.4.8)

แทนสมการ (ก.4.8) ในสมการ (ก.4.6) จะได้

$$\begin{split} \frac{R_{sam}}{R_{std}} &= \frac{W_{sam} e^{-\lambda t_{sam}}}{W_{std} e^{-\lambda t_{std}}} \end{split} \tag{(1.4.9)} \\ W_{sam} &= \frac{W_{std} R_{sam} e^{-\lambda (t_{std} - t_{sam})}}{R_{std}} \end{split}$$

ในกรณีที่ใช้ไอโซโทปรังสีที่วัดมีอายุครึ่งชีวิตยาว e^{-ג(t_{std}-t_{sun})} จะมีค่าประมาณ 1 ดังนั้น สมการ (ก.4.10) เขียนใหม่ได้เป็น

$$W_{sam} = \frac{W_{std}R_{sam}}{R_{std}}$$
 (1.4.11)
 $\frac{W_{sam}}{W_{std}} = \frac{R_{sam}}{R_{std}}$ (1.4.12)

ปริมาณรังสีหรือพื้นที่ใต้พีคของสารสารตัวอย่าง คือ

ปริมาณรังสีหรือพื้นที่ใต้พีคของสารอ้างอิงมาตรฐาน $\mathrm{R}_{\mathrm{std}}$ คือ

รูปที่ ก.5.1 สเปกตรัมรังสีแกมมาของซากหอยน้ำจืดหอย SH1 (a) ธาตุยูเรเนียมและทอเรียม (b) โพแทสเซียม

รูปที่ ก.5.2 สเปกตรัมรังสีแกมมาของซากหอยน้ำจืดหอย SH2 (a) ธาตุยูเรเนียมและทอเรียม (b) โพแทสเซียม

รูปที่ ก.5.3 สเปกตรัมรังสีแกมมาของซากหอยน้ำจืดหอย SH3 (a) ธาตุยูเรเนียมและทอเรียม (b) โพแทสเซียม

รูปที่ ก.5.4 สเปกตรัมรังสีแกมมาของซากหอยน้ำจืดหอย SH4 (a) ธาตุยูเรเนียมและทอเรียม (b) โพแทสเซียม

รูปที่ ก.5.5 สเปกตรัมรังสีแกมมาของซากหอยน้ำจืดหอย SH5 (a) ธาตุยูเรเนียมและทอเรียม (b) โพแทสเซียม

รูปที่ ก.5.6 สเปกตรัมรังสีแกมมาของซากหอยน้ำจืดหอย SH6 (a) ธาตุยูเรเนียมและทอเรียม (b) โพแทสเซียม

รูปที่ ก.5.7 สเปกตรัมรังสีแกมมาของซากหอยน้ำจืดหอย SH7 (a) ธาตุยูเรเนียมและทอเรียม (b) โพแทสเซียม

รูปที่ ก.5.8 สเปกตรัมรังสีแกมมาของตัวอย่างสิ่งแวดล้อมรอบหอย SD1 (a) ธาตุยูเรเนียมและ ทอเรียม (b) โพแทสเซียม

รูปที่ ก.5.9 สเปกตรัมรังสีแกมมาของตัวอย่างสิ่งแวดล้อมรอบหอย SD2 ของ (a) ธาตุยูเรเนียม และทอเรียม (b) โพแทสเซียม

รูปที่ ก.5.10 สเปกตรัมรังสีแกมมาของตัวอย่างสิ่งแวดล้อมรอบหอย SD3 ของ (a) ธาตุยูเรเนียม และทอเรียม (b) โพแทสเซียม

รูปที่ ก.5.11 สเปกตรัมรังสีแกมมาของตัวอย่างสิ่งแวดล้อมรอบหอย SD4 ของ (a) ธาตุยูเรเนียม และทอเรียม (b) โพแทสเซียม

รูปที่ ก.5.12 สเปกตรัมรังสีแกมมาของตัวอย่างสิ่งแวดล้อมรอบหอย SD5 ของ (a) ธาตุยูเรเนียม และทอเรียม (b) โพแทสเซียม

รูปที่ ก.5.13 สเปกตรัมรังสีแกมมาของตัวอย่างสิ่งแวดล้อมรอบหอย SD6 ของ (a) ธาตุยูเรเนียม และทอเรียม (b) โพแทสเซียม

รูปที่ ก.5.14 สเปกตรัมรังสีแกมมาของตัวอย่างสิ่งแวดล้อมรอบหอย SD7 ของ (a) ธาตุยูเรเนียม และทอเรียม (b) โพแทสเซียม

ภาคผนวก ก.6. รายละเอียดโกลว์เคิร์ฟของตัวอย่างซากหอยน้ำจืดและดินเผาไฟ

รูปที่ ก.6.2 สเปกตรัมที่ปรากฏในส่วนแสดงผลของ GlowFit ซึ่งมีสเปคตรัมที่แต่ละอุณหภูมิเป็น ส่วนประกอบของตัวอย่าง SH2

รูปที่ ก.6.3 สเปกตรัมที่ปรากฏในส่วนแสดงผลของ GlowFit ซึ่งมีสเปคตรัมที่แต่ละอุณหภูมิเป็น ส่วนประกอบของตัวอย่าง SH3

รูปที่ ก.6.4 สเปกตรัมที่ปรากฏในส่วนแสดงผลของ GlowFit ซึ่งมีสเปคตรัมที่แต่ละอุณหภูมิเป็น ส่วนประกอบของตัวอย่าง SH4

ร**ูปที่ ก.6.5** สเปกตรัมที่ปรากฏในส่วนแสดงผลของ GlowFit ซึ่งมีสเปคตรัมที่แต่ละอุณหภูมิเป็น ส่วนประกอบของตัวอย่าง SH5

รูปที่ ก.6.6 สเปกตรัมที่ปรากฏในส่วนแสดงผลของ GlowFit ซึ่งมีสเปคตรัมที่แต่ละอุณหภูมิเป็น ส่วนประกอบของตัวอย่าง SH6

ร**ูปที่ ก.6.7** สเปกตรัมที่ปรากฏในส่วนแสดงผลของ GlowFit ซึ่งมีสเปคตรัมที่แต่ละอุณหภูมิเป็น ส่วนประกอบของตัวอย่าง SH7

รูปที่ ก.6.8 สเปกตรัมที่ปรากฏในส่วนแสดงผลของ GlowFit ซึ่งมีสเปคตรัมที่แต่ละอุณหภูมิเป็น ส่วนประกอบของตัวอย่าง S1

JWFit ซึ่งมีส

- น้ำหนักสารอ้างอิงมาตรฐาน NIST (NIST SRM 1633b) กับ Granodiorite, ภาคผนวก ก.6. Silver Plume, Colorado (GSP-2) และตัวอย่างสำหรับเทคนิคการวิเคราะห์โดย การอาบนิวตรอนโดยการอาบนิวตรอน
- น้ำหนักตัวอย่างซากหอยน้ำจืดใช้วิเคราะห์ธาตุด้วยเทคนิคการวิเคราะห์โดย ตารางที่ ก.6.1 การอาบนิวตรอน

ຮະສະດວຍໃດ	ຕັດລະໄດ	q	น้ำหนัก (g)
าทยผาอก เท	M 100 IV	1	2	3
А	#010	0.22532	0.22686	0.25354
В	#028	0.25522	0.22766	0.22047
С	#123	0.22800	0.24275	0.24112
\mathbf{F}	#140	0.25418	0.24111	0.26274
Ι	#245	0.24909	0.25163	0.27071
J	#248	0.27025	0.23158	0.24508
K	#253	0.27949	0.22298	0.23564
E SOM	0	•		ans

ตารางที่ ก.6.2 น้ำหนักตัวอย่างสิ่งแวดล้อมรอบซากหอยน้ำจืดใช้วิเคราะห์ธาตุด้วย เทคนิคการวิเคราะห์โดยการอาบนิวตรอบ

si dropio i			น้ำหนัก (g)		
21/201.108.14	N.100.14	1	2	3	
Р	#010	0.24274	0.25766	0.25074	
Q	#028	0.25372	0.24566	0.23245	
R	#123	0.24670	0.26804	0.25194	
U	#140	0.26507	0.26767	0.25564	
Х	#245	0.24753	0.20342	0.24936	
Y	#248	0.23233	0.24200	0.23275	
Z	#253	0.21223	0.20546	0.21635	

น้ำหนักสารอ้างอิงมาตรฐาน NIST SRM 1633b (NIST) ใช้วิเคราะห์ธาตุด้วย ตารางที่ ก.6.3 เทคนิคการวิเคราะห์โดยการอาบนิวตรอน

รหัสตัวอย่าง	น้ำหนัก (g)
St1A	145.98
St1B	138.78
St1C	138.97
St1F	149.32
St1I	143.59
St1J	148.91
St1P	143.29

น้ำหนักสารมาตรฐาน Granodiorite, Silver Plume, Colorado (GSP-2) ใช้ ตารางที่ ก.6.4 วิเคราะห์ธาตุด้วยเทคนิคการวิเคราะห์โดยการอาบนิวตรอน

อย่าง	น้ำหนัก (g)
2A	205.46
2B	146.26
2E	138.44
2H	140.60
2I	148.68
2P	136.62
2J	148.68
	220 22 23 20 20 20 20 20 20 20 20 20 20 20 20 20

ตารางที่ **ก.6.5** การกำหนดรหัสตัวอย่างใช้อาบรังสี

° ° 4	รหัสตัวอย่าง		
สาตบท	ซากหอยน้ำจืด	สิ่งแวดล้อมรอบหอย	
1	$\#010 \rightarrow A$	#010 →P	
2	$\#028 \rightarrow B$	$\#028 \rightarrow Q$	
3	$\#123 \rightarrow C$	$\#123 \rightarrow R$	
6	$\#140 \rightarrow F$	$\#140 \rightarrow U$	
9	$\#245 \rightarrow I$	$\#245 \rightarrow X$	
10	$\#248 \rightarrow J$	$\#248 \rightarrow Y$	
11	$\#253 \rightarrow K$	$\#253 \rightarrow Z$	

ภาคผนวก ก.8. โครงสร้างผลึกอราโกไนท์–แคลไซต์ ในตัวอย่างซากหอยน้ำจืด

ก.8.1 ผลึกอราโกไนท์ในตัวอย่างซากหอยน้ำจืด

Date: 25/6/2014 Time: 13:30:55	File: CO2	Usei
Name and formula		
Reference code:	00-041-1475	
Mineral name: PDF index name:	Aragonite Calcium Carbonate	
Empirical formula:	CCaO3	
Chemical formula:	CaCO ₃	
Crystallographic parame	ters	
Crystal system:	Orthorhombic	
Space group: Space group number:	Pmcn 62	
a (?):	4.9623	
b (?):	7.9680	
c (/): Alnha (2):	5.7439	
Beta (?):	90.0000	
Gamma (?):	90.0000	
Calculated density (g/cm^3):	2.93	
Measured density (g/cm^3):	2.95	
Volume of cell (10^6 pm^3):	227.11	
Z:	4.00	
RIR: PO	1.00	
Subfiles and Quality		
Subfiles:	Inorganic Mineral Cement and Hydration Product Common Phase Educational pattern Pharmaceutical	
Quality:	Star (S)	
<u>Comments</u>		
Color:	Colorless	
General comments:	Optical data on specimen from Bilin, Bohemia, Czechoslovakia.	
Sample source:	Specimen from Setrou, Morocco. Microprobe analyzes (wt %): major Calland trace Se(441)	
Analysis. Ontical data:	Microprope analyses (wt.%), major Ca, and trace Sr(<<1). A=1.5300 B=1.6810 Ci=1.6854 Sign=- 2V=18(calc.)*	
Additional pattern:	To replace 5-453 and validated by calculated pattern 24-25.	

Date:	25/6/201	4 Tir	ne: 13:3	30:55	File:	CO2		Usei
Struct	ture:			Jarosch, D)., Heger, G., <i>Ts</i> e	chermaks M	lineral. Petrogr. Mitt., 35 , 127, (1986)	
Optica	al data:			Dana's Sy	stem of Mineralo	gy, 7th Ed.,	II , 182, (1951)	
Peak	list							
No	h	lr.	1	d [0]	2 Thata [dag]	I T [%]		
1	1	1		4 21200	21 075	3 0		
2	, i	2	0	3 98400	22.297	1.0		
3	1	1	1	3 39700	26 213	100.0		
4	Ô	2	1	3 27400	27 216	50.0		
5	Ő	õ	2	2 87200	31 116	6.0		
6	1	2	1	2 73300	32 741	9.0		
7	Ô	1	2	2.70200	33,128	60.0		
. 8	2	ň	0	2.48100	36.176	40.0		
q	õ	3	1	2 41100	37 265	14 0		
10	1	1	2	2 37300	37 884	45 0		
11	1	3	0	2.34200	38,405	25.0		
12	, î	2	2	2 33000	38 610	25.0		
13	2	1	1	2 19000	41 187	12 0		
14	1	3	1	2 16800	41 624	2.0		
15	1	2	2	2.10800	42 867	20.0		
16	2	2	1	1.97740	45.853	55.0		
17	0	3	2	1,95000	46.535	1.0		
18	ō	4	1	1.88210	48.319	25.0		
19	2	Ô	2	1.87750	48,445	25.0		
20	0	1	3	1.86160	48.886	2.0		
21	2	ĩ	2	1.82750	49.859	4.0		
22	1	3	2	1.81490	50.229	20.0		
23	î	4	ei	1.75980	51.917	3.0		
24	ĩ	1	23	1.74300	52.455	25.0		
25	2	3	n j	1.72900	52.913	12.0		
2.6	0	2	3	1.72570	53.022	16.0		
27	2	2	2	1.69840	53,943	2.0		
28		4	2	1.63690	56,145	3.0		
29	1	2	3	1.63000	56.403	1.0		
30	3	1	Ô	1,61980	56.791	2.0		
31	3	1	1	1.55880	59.229	4.0		
32	o	5	(A)	1.53570	60.211	2.0		
33	2	4	1	1.49930	61.831	4.0		
34	2	1	3	1.48910	62.302	1.0		
35	3	2	1	1.47640	62.898	2.0		
36	1	5	1	1.46720	63.338	4.0		
37	ō	ō	4	1.43600	64.881	1.0		
38	2	2	3	1.41670	65.876	1.0		
39	0	1	4	1.41320	66.060	3.0		
40	3	1	2	1.41070	66.192	4.0		
41	3	3	0	1.40400	66.548	3.0		
42	ō	4	3	1.38040	67.839	1.0		
43	2	4	2	1.36630	68.636	2.0		
44	3	3	1	1.36390	68.774	2.0		
45	1	1	4	1.35920	69.045	5.0		
46	ō	2	4	1.35070	69.542	2.0		
47	3	2	2	1.34870	69.660	3.0		
48	1	5	2	1.34160	70.082	2.0		
49	1	4	3	1.32900	70.846	1.0		
48 49	1	5 4	2	1.34160 1.32900	70.082	2.0		

Date	: 25/6/20	14 Tim	e: 13:30:5	55	File	: CO2	Usei
54	2	0	4	1.24270	76.612	3.0	
55	4	0	0	1.24060	76.765	4.0	
56	3	1	з	1.23650	77.066	6.0	
57	0	5	з	1.22450	77.964	3.0	
58	2	5	2	1.21490	78.698	2.0	
59	2	4	3	1.20590	79.401	4.0	
60	1	5	з	1.18900	80.760	3.0	
61	2	2	4	1.18640	80.974	2.0	
62	1	6	2	1.17110	82.258	3.0	
63	0	4	4	1.16420	82.853	1.0	
64	4	2	1	1.16000	83.219	2.0	
65	4	0	2	1.13890	85.119	1.0	
66	0	1	5	1.13700	85.295	1.0	
67	3	з	з	1.13230	85.734	1.0	
68	4	1	2	1.12740	86.197	1.0	
69	2	з	4	1.12560	86.368	2.0	
70	1	7	0	1.10890	87.999	2.0	
71	0	2	5	1.10350	88.542	1.0	
72	4	2	2	1.09500	89.412	1.0	

Stick Pattern

ก.8.2 ผลึกแคลไซต์ในตัวอย่างซากหอยน้ำจืด

Date: 25/6/2014 Time: 13:28:51	File: CO2	Usei
Name and formula		
Reference code:	00-005-0586	
Mineral name: PDF index name:	Calcite, syn Calcium Carbonate	
Empirical formula:	CCaO ₃	
Chemical formula:	CaCO ₃	
Crystallographic paramet	ters	
Crystal system:	Rhombohedral	
Space group:	R-3c	
Space group number:	167	
a (?):	4.9890	
b (?):	4.9890	
c (?):	17.0620	
Alpha (?):	90.0000	
Beta (?):	90.0000	
Gamma (?):	120.0000	
Calculated density (g/cm^3):	2.71	
Measured density (g/cm^3):	2.71	
Volume of cell (10% pm/3)	367.78	
Z:	6.00	
PIP CC C	2 00 0 0 0 0 0 0 0 0 0 0	
11090	and Coo	
Subfiles and Quality		
Subfiles:	Inorganic	
	Mineral	
	Cement and Hydration Product	
	Common Phase	
	Educational pattern	
	Forensic	
	NBS nattern	
	Pharmaceutical	
	Superconducting Material	
Quality:	Star (S)	
<u>Comments</u>		
Color:	Colorless	
General comments:	Other form: aragonite.	
	Pattern reviewed by Parks, J., McCarthy, G., North Dakota State Univ.	, Fargo, Noi
	Dakota, USA, /CDD Grant-in-Aid(1992).	
	Agrees well with experimental and calculated patterns.	
	Additional weak reflections [indicated by brackets] were observed	
8 <u>11</u> 4 - 1146		

Date: 25/6/2014 Time: 13:28:51	File: CO2	Usei
	ICSD 73446 (PDF 81-2027); ICSD 79673 (PDF 83-577); ICSD	79674 (PDF 83-578).
Temperature:	Pattern taken at 26 C.	

References

Primary reference: Optical data: Swanson, Fuyat., *Natl. Bur. Stand. (U.S.), Circ. 539* II, 51, (1953) Dana's System of Mineralogy, 7th Ed., II, 142

Peak list

No.	h	k	1	d [A]	2Theta[deg]	I [%]	
1	0	1	2	3.86000	23.022	12.0	
2	1	0	4	3.03500	29.406	100.0	
3	0	0	6	2.84500	31.418	3.0	
4	1	1	0	2.49500	35.966	14.0	
5	1	1	3	2.28500	39.402	18.0	
6	2	0	2	2.09500	43.146	18.0	
7	0	2	4	1.92700	47.124	5.0	
8	0	1	8	1.91300	47.490	17.0	
9	1	1	6	1.87500	48.514	17.0	
10	2	1	1	1.62600	56.555	4.0	
11	1	2	2	1.60400	57.402	8.0	
12	1	0	10	1.58700	58.075	2.0	
13	2	1	4	1.52500	60.678	5.0	
14	2	0	8	1.51800	60.987	4.0	
15	1	1	9	1.51000	61.345	3.0	
16	1	2	5	1.47300	63.060	2.0	
17	3	0	0	1.44000	64.678	5.0	
18	0	0	12	1.42200	65.599	3.0	
19	2	1	7	1.35600	69.231	1.0	
20	0	2	10	1.33900	70.238	2.0	
21	1	2	8	1.29700	72.870	2.0	
22	~ 3	0	6	1.28400	73.729	1.0	
23	2	2	0	1.24700	76.300	1.0	
24	1	1	12	1.23500	77.177	2.0	
25	3	1	2	1.18690	80.933	1.0	
26	2	1	10	1.17950	81.547	3.0	
27	0	1	14	1.17280	82.113	1.0	
28	1	з	4	1.15380	83.767	3.0	
29	2	2	6	1.14250	84.788	1.0	
30	1	2	11	1.12440	86.483	1.0	
31	2	0	14	1.06130	93.072	1.0	
32	4	0	4	1.04730	94.701	3.0	
33	з	1	8	1.04470	95.011	4.0	
34	1	0	16	1.03520	96.165	2.0	
35	2	1	13	1.02340	97.647	1.0	
36	3	0	12	1.01180	99.161	2.0	
37	3	2	1	0.98950	102.242	1.0	
38	2	3	2	0.98460	102.952	1.0	
39	1	3	10	0.97820	103.899	1.0	
40	1	2	14	0.97670	104.124	3.0	
41	3	2	4	0.96550	105.846	2.0	
42	0	4	8	0.96360	106.145	4.0	
43	0	2	16	0.95620	107.334	1.0	
44	4	1	0	0.94290	109.561	2.0	

Usei

ภาคผนวก ข

การเผยแพร่ผลการวิจัย

- บทคัดย่อ (Abstract) จากการเผยแพร่ผลงานวิทยานิพนธ์แบบโปสเตอร์ในงานประชุม
 The 3rd International Fisheries Symposium ระหว่างวันที่ 28 เดือน พฤศจิกายน
 พ.ศ. 2556 ถึงวันที่ 30 เดือน ธันวาคม พ.ศ. 2556
- ข.2 นิพนธ์ต้นฉบับ (Manuscript) จากการเผยแพร่ผลงานวิทยานิพนธ์แบบบรรยายในงาน การประชุมวิชาการประจำปี 2556 มหาวิทยาลัยแม่โจ้ จังหวัดเชียงใหม่ ระหว่างวันที่ 3 เดือน ธันวาคม พ.ศ. 2556 ถึงวันที่ 4 เดือน ธันวาคม พ.ศ. 2556

RADIATION DOSE RESPONSE OF FRESHWATER SHELLS FROM KHOWHARN CAVE SATUN PROVINCE BY THERMOLUMINESCENCE

Sainap Doloh*, Sommai Changkian, Tidarut Vichaidid Applied Physics Division, Faculty of Science and Technology, Prince of Songkla University, Mueang, Pattani Province, 94000 Thailand Email: oilphy@gmail.com and anisah32@hotmail.com

We studied the crystal structure by X-ray Diffraction (XRD) and the Thermoluminescence properties of gamma irradiated freshwater shells from Khowharn Cave in Satun province at level 2 (70-80 cm.dt), 3 (80-90 cm.dt), 4 (90-100 cm.dt). The samples were irradiated with gamma rays from Co-60 at dose 10 Gy-80 Gy. The thermoluminescence properties of samples were read with a Harshaw 3500 TL Reader, temperature rate of 5 °C/s until maximum at 400 °C in nitrogen gas Brance of Songland Campbeller Battant Campbeller atmosphere. The results from x-ray diffraction (XRD) of freshwater shells showed that crystals have aragonite structure and the thermoluminescence displayed for freshwater sensitivity peaked

SESSION1

1-p-28

93

การวิเคราะห์ปริมาณยูเรเนียม ทอเรียม และโพแทสเซียมในซากหอยน้ำจืด บริเวณแหล่งโบราณคดีถ้ำเขาหาน จังหวัดสตูล โดยการอาบนิวตรอน Determination of U, Th and K of Freshwater Fossil Shells in Khow Harn Cave Historical Satun Province by Neutron Activation Analysis (NAA)

ไซนับ ดอเลาะ'' ธิดารัตน์ วิชัยดิษฐู1 สมหมาย ช่างเขียน1 พรทิพย์ พันธุโกวิท² ศิริพร สังข์หิรัญ² ธนิสรา พุ่มผะกา² เกียรติชัย สุทธิโชติ² วิเชียร รตนธงชัย³ ศศิพันธุ์ คะวีรัตน์³ และเจตรจันทร์ จันทร์นุ้ย³

Sainap Doloh^{1*}, Tidarut Vichaidid¹, Sommai Changkian¹, Pornthip Puntukowit²

Siriporn Sankhiran², Thanisra Phumpaka², Kiattichai suthichot², Wichian Ratanatongchai³

Sasiphan Kaweerat³ and Jatechan Channuie³

¹หลักสูตรสาขาพิสิกส์ประยุกต์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยสงขลานครินทร์ ป[ั]ตตานี 94000 ²สำนักศิลปากรที่ 13 สงขลา กรมศิลปากร กระทรวงวัฒนธรรม สงขลา 90100 ³สถาบันเทคโนโลยีนิวเคลียร์แห่งชาติ (องค์การมหาชน) กรุงเทพฯ 10900

¹Program in Applied physics, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand 94000 ²FineArts 13 Department, Songkla, Thailand 90100

³Thailand Institute of Nuclear Technology (Public Organization), Bangkok, Thailand 10900

*Corresponding author: anisah32@hotmail.com

บทคัดย่อ

การวิเคราะห์หาปริมาณกัมมันตภาพรังสีในธรรมชาติ ของซากหอยน้ำจืดบริเวณแหล่งโบราณคดีถ้ำ เขาหานจังหวัดสตูล เป็นแหล่งประวัติศาสตร์ที่มีการขุดพบตัวอย่างทางโบราณคดีเป็นจำนวนมาก ซึ่งวิเคราะห์ หาปริมาณกัมมันตภาพรังสีโดยการอาบนิวตรอน (Neutron Activation Analysis, NAA) และวัดรังสีแกมมา (Gamma-ray spectrometry) ใช้สารอ้างอิงมาตรฐานที่ได้รับการรับรองจาก NIST (NIST SRM 1633b) โดย วิเคราะห์ปริมาณกัมมันตภาพรังสีหลักในธรรมชาติ คือ ยูเรเนียม (U) ทอเรียม (Th) และโพแทสเซียม (K) ใน ซากหอยน้ำจืด ซึ่งได้จากการอาบตัวอย่างด้วยนิวตรอน แล้ววิเคราะห์ความแรงของรังสีแกมมาที่สลายตัว ของไอโซโทปกัมมันตรังสี ²³⁹Np, ²³³Pa และ ⁴²K ที่พลังงาน 277.60, 312.01 และ 1524.58 กิโลอิเล็กตรอน โวลต์ตามลำดับ ผลการวิเคราะห์ พบว่า ในตัวอย่างซากหอยน้ำจืดมีค่าปริมาณยูเรเนียม ทอเรียม และ โพแทสเซียมอยู่ในช่วง 0.61-2.51, 1.45-10.80 มก.ต่อกก. และ 0.03-0.92 เปอร์เซ็นต์ ตามลำดับ จากผล การวิเคราะห์สามารถนำข้อมูลไปใช้ประกอบการหาอายุ ของซากหอยน้ำจืดบริเวณแหล่งโบราณคดีถ้ำเขาหาน จังหวัดสตูล ซึ่งจะนำไปสู่ข้อมูลทางประวัติศาสตร์ได้

คำสำคัญ: ซากหอยน้ำจืด แหล่งโบราณคดี ถ้ำเขาหาน การวิเคราะห์โดยการอาบนิวตรอน ระบบวัดรังสแกมมา

Abstract

Analysis of the natural radioactivity content of freshwater fossil shells collected from Khow Harn cave historical in Satun province, a historical site that has unearthed a lot archaeological samples is presented. The sample has been determined by using gamma spectrometry together with neutron activation analysis technique (NAA). This analysis technique was adopted by activating NIST standard reference materials (NIST SRM 1633b) and sediment matrices at the same condition before measuring them at the specific time schedule. Most of natural radioactive elements are members of uranium, thorium and from non-series nuclides, mainly potassium. The sample is activated with neutrons, causing the elements to form radioactive isotopes, and then analyze the strength of the gamma radiation decay of radioactive isotopes ²³⁹Np, ²³³Pa and ⁴²K to energy 277.60, 312.01 and 1524.58 (keV), respectively. The concentrations of uranium, thorium, and potassium in samples can be achieved by this technique and found to be in the range of 0.61-2.51, 1.45-10.80 mg/kg, and 0.03 to 0.92%, respectively. The data can lead to determine the age of freshwater fossil in Khow Harn cave historical Satun province.

Keywords: freshwater fossil, Khow Harn cave historical, neutron activation analysis, gamma spectrometry

คำนำ

ประเทศไทยเคยเป็นแหล่งวิวัฒนาการของพืชและสัตว์ยุคดึกดำบรรพ์ ซึ่งเป็นแหล่งโบราณคดีที่พบว่า มนุษย์อาศัยอยู่มาตั้งแต่โลกดึกดำบรรพ์ มีการค้นพบหลักฐานสำคัญที่มีอายุเก่าแก่จากเหตุการณ์ต่าง ๆ ในอดีต เกิดเป็นแหล่งโบราณคดีซึ่งมีเรื่องเล่าต่อ ๆ กันมาอย่างยาวนาน เรื่องเล่าดังกล่าวอาจเกิดจากการบันทึกในอดีต อาจเกิดจากการสันนิษฐานของชาวบ้าน หรือจากกระบวนการทางวิทยาศาสตร์ และกลายเป็นประวัติศาสตร์ ในปัจจุบันนี้ เช่นเดียวกับจังหวัดสตูลในภาคใต้ของประเทศไทยเป็นหนึ่งในพื้นที่ซึ่งมีการพบหลักฐาน ทางโบราณคดีเป็นจำนวนมาก อีกทั้งยังเป็นแหล่งท่องเที่ยวระดับต้น ๆ ของประเทศไทย เมื่อไม่นานมานี้ แหล่งโบราณคดีถ้ำเขาหานได้มีการขุดพบชุมชนสมัยก่อนประวัติศาสตร์ ด้วอย่างที่พบประกอบด้วย ฟอสซิล หอยน้ำจึดและเศษภาชนะเครื่องปั้นดินเผาบางส่วน แหล่งโบราณคดีถ้ำเขาหานตั้งอยู่ที่ หมู่ 7 บ้านบูเก็ตยามู ดำบลควนโดน อำเภอควนโดน จังหวัดสตูล (สำนักศิลปากรที่ 13 สงขลา กรมศิลปากร กระทรวงวัฒนธรรม, 2553) การค้นพบสิ่งของดังกล่าวนับเป็นหลักฐานที่สามารถเชื่อมโยงเหตุการณ์ในอดีตได้เป็นอย่างดี หากมี การวิเคราะห์ปริมาณยูเรเนียม (²³⁸U) ทอเรียม (²³²Th) และโพแทสเซียม (⁴⁰K) เพื่อหาปริมาณรังสีสะสมต่อปี (Annual dose) (Ikeya, 1993) จะสามารถนำไปวิเคราะห์หาอายุโดยใช้กระบวนการทางวิทยาศาสตร์ เพื่อวิเคราะห์ค่าอายุที่น่าเชื่อถือเพื่อเป็นข้อมูลที่เชื่อมโยงทางประวัติศาสตร์จะเป็นประโยชน์อย่างยิ่งกับ ประวัติศาสตร์ของประเทศไทย รวมถึงเป็นกรพัฒนาแหล่งท่องเที่ยวของจังหวัดทางภาคไต้อีกด้วย

เนื่องจากว่าตัวอย่าง อาทิเช่น ตัวอย่างหอยนั้นเมื่ออยู่ใต้ดินจะได้รับปริมาณรังสี (Dose) จากรังสี ในธรรมชาติที่แผ่ออกมาจากธาตุในดินและรังสีธรรมชาติที่แผ่ออกมาจากธาตุในหอยที่มาจากอัตรา การแผ่กัมมันตภาพรังสีในธรรมชาติและไอโซโทปรังสีที่มีกำเนิดมาพร้อมโลก ได้แก่ ธาตุยูเรเนียม ทอเรียมและ โพแทลเซียม ซึ่งทั้ง 3 ธาตุนี้จะสลายตัวตามหลักครึ่งชีวิต (Half-life) ซึ่งธาตุเหล่านี้มีค่าครึ่งชีวิตยาว จึงยังมีปรากฏอยู่ในโลกจนถึงปัจจุบันและในระหว่างการสลายตัวจะแผ่รังสีออกมาในปริมาณต่างๆ กันในรูปของ รังสีแอลฟา เบต้า และแกมมา ยูเรเนียมและทอเรียมเป็นไอโซโทปรังสีที่มีการสลายตัวต่อเนื่องเป็นห่วงโซ่เรียกว่า อนุกรมและจะไปสิ้นสุดที่ไอโซโทปที่เสถียรมีอยู่ 4 อนุกรม (Table 1) สำหรับอนุกรมเนปทูเนียมมีครึ่งชีวิตสั้นมาก เมื่อเทียบกับอายุของเอกภพ ซึ่งมีอายุประมาณ 10¹⁰ ปี ดังนั้นจึงไม่มีโอกาสที่จะพบนิวเคลียสที่เป็นสมาชิกใน อนุกรมนี้ในธรรมชาติ นอกจากนี้ยังมีรังสีบางส่วนที่ได้รับจากภายนอกโลกหรืออวกาศ เช่น รังสีคอสมิก (Cosmic ray) แต่เป็นส่วนน้อย รังสีที่มีการสัมผัสกับผลึกตัวอย่างนี้สามารถแปลงเป็นปริมาณรังสีสะสมต่อปี (Annual dose) ได้ โดยวิเคราะห์จากปริมาณยูเรเนียม (²³⁸U) ทอเรียม (²³²Th) และโพแทสเซียม (⁴⁰K) ซึ่งเป็น ปจจัยที่สำคัญที่นำไปใช้ประโยชน์กับการกำหนดอายุวัตถุทางด้านโบราณคดีและธรณีวิทยาด้วยวิธีเทอร์โมลู มิเนสเซนซ์ (Ikeya, 1993)

	,		
Series	Nuclide	Half Life (year)	Product of decay
Uranium	²³⁸ U	4.47×10 ⁹	²⁰⁶ Pb
Actinium	²³⁵ U	7.04×10 ⁸	²⁰⁷ Pb
Thorium	²³² Th	1.41×10 ¹⁰	²⁰⁸ Pb
Neptunium	²³⁷ Np	2.14×10 ⁶	209Pb
		~	

 Table 1
 The natural radioactive series (Ikeva, 1993)

การหาปริมาณความเข้มข้นของธาตุต่างๆ ที่มีอยู่ในตัวอย่างด้วยวิธีทางเทคนิคต่างๆ เช่น วิธี Neutron activation analysis (NAA) โดยใช้เครื่อง Gamma spectrometer วัดรังสีแกมมาหรือวิธี Inductively coupled plasma mass spectrometer (ICP-MS) (ศุภกิจ, 2549) โดยในงานวิจัยนี้เลือกศึกษาจากวิธีการอาบนิวตรอน (Neutron activation analysis; NAA) ใช้หลักการเปรียบเทียบตัวอย่างกับสารอ้างอิงมาตรฐาน (Standard reference materials) ซึ่งทราบปริมาณธาตุยูเรเนียม ทอเรียม และโพแทสเซียมที่สนใจแน่นอน ถือได้ว่าวิธีการ อาบนิวตรอนเป็นเทคนิคหนึ่งที่นิยมใช้ในการวิเคราะห์ปริมาณธาตุ ทำได้โดยการนำตัวอย่างไปอาบด้วยรังสี นิวตรอนจากต้นกำเนิดนิวตรอนด้วยเครื่องปฏิกรณ์นิวเคลียร์ ทำให้เกิดอันตรกิริยากับตัวอย่างเมื่ออะตอม ของไอโซโทปเสถียรได้รับนิวตรอนจะกลายเป็นไอโซโทปที่เป็นธาตุกัมมันตรังสีซึ่งปล่อยรังสีแกมมาออกมา ไอโซโทปรังสีที่เกิดจากการอาบนิวตรอนเพื่อวิเคราะห์ปริมาณยูเรเนียม ทอเรียม และโพแทสเซียมเกิดอันตรกิริยา ดังนี้

238
U (n, γ) 239 U ---- β ----> 239 Np (2.35d) (1)

41
K (n, γ) 42 K (12.8h) (3)

เทคนิคการวิเคราะห์โดยการอาบนิวตรอน อาศัยการเปลี่ยนแปลงภายในนิวเคลียสของอะตอมของธาตุ จากคุณสมบัติของไอโซโทปรังสีหนึ่ง ๆ ซึ่งมีครึ่งชีวิตและพลังงานที่ปลดปล่อยออกมา จากปริมาณรังสีที่วัดได้ โดยระบบวัดรังสีแกมมาเมื่อนำมาเปรียบเทียบกับปริมาณสารรังสีมาตรฐานของธาตุนั้น ๆ ที่ทราบน้ำหนัก แน่นอน ทำให้ทราบปริมาณความเข้มขันของธาตุที่สนใจได้ (อุษณี, 2553) โดยสามารถคำนวณหาปริมาณ ความเข้มขันของธาตุโดยใช้สมการที่ 4

$$\frac{W_{sam}}{W_{std}} = \frac{A_{sam}}{A_{std}}$$
(4)

เมื่อ A คือ ปริมาณรังสีของสารอ้างอิงมาตรฐาน (std) และสารตัวอย่าง (sam) W คือ ความเข้มขันของธาตุในสารอ้างอิงมาตรฐาน (std) และสารตัวอย่าง (sam)

จากค่าปริมาณความเข้มข้นของธาตุยูเรเนียมและทอเรียมที่คำนวณได้ในหน่วยมิลลิกรัมต่อกิโลกรัม (mg/kg) ส่วนธาตุโพแทสเซียมที่คำนวณได้ในหน่วยเปอร์เซ็นด์ (%) นำไปคำนวณหาปริมาณรังสีสะสมต่อปี (Annual dose) ที่นำเสนอโดย Ikeya ในงานวิจัยนี้จะกล่าวเฉพาะการหาค่าปริมาณความเข้มข้นของ ธาตุยูเรเนียม ทอเรียม และโพแทสเซียม โดยการอาบนิวตรอนและวัดรังสีแกมมาเพียงอย่างเดียว ข้อดีของวิธีนี้ คือ เป็นเทคนิคที่สามารถใช้ในการวัดและวิเคราะห์ตัวอย่างที่มีปริมาณน้อย ๆ อาทิเช่น ตัวอย่างทางโบราณคดี ซึ่งเป็นเทคนิคที่ได้รับการยอมรับว่าสามารถวิเคราะห์ธาตุปริมาณน้อยในล้านส่วนได้อย่างสะดวกและแม่นยำ โดยไม่จำเป็นต้องผ่านขั้นตอนทางเคมีและใช้เวลาในการวิเคราะห์อาปริมาณน้อยในล้านส่วนได้อย่างสะดวกและแม่นยำ โดยไม่จำเป็นต้องผ่านขั้นตอนทางเคมีและใช้เวลาในการวิเคราะห์องได้ค่า Annual dose สั้นกว่าวิธีอื่น ๆ ยกเว้น วิธีวัดในพื้นที่โดยตรงเท่านั้น ดังนั้นงานวิจัยนี้มีวัตถุประสงค์เพื่อวิเคราะห์ปริมาณยูเรเนียม (²³⁸U) ทอเรียม (²³²Th) และโพแทสเซียม (⁴⁰K) ด้วยเทคนิคการวิเคราะห์โดยการอาบนิวตรอนและวัดรังสีแกมมา เพื่อนำไป หาค่าปริมาณรังสีสะสมต่อปี (Annual dose) ในการหาอายุต่อไป และยังได้กรรมวิธีในการวิเคราะห์ธาตุ ยูเรเนียม (²³⁸U) ทอเรียม (²³²Th) และโพแทสเซียม (⁴⁰K) ในซากหอยน้ำจึดจากแหล่งโบราณคดีถ้ำเขาหาน จังหวัดสตูล เพื่อเป็นแนวทางให้แก่ผู้คันคว้าวิจัยในงานแขนงนี้ได้ทราบถึงเทคนิคการวิเคราะห์อีกหนึ่งวิธี อันอาจจะนำไปใช้ให้เป็นประโยชน์ต่อกรวิจัยได้

Table 2Theused important nuclear data from neutron activation of U, Th and K. (El-Ghawi et al.,2005; Soliman, 2006; Tidarut et al., 2008)

Element	lsotope	Half Life	Energies of emitted Gamma ray (keV)	%of emission
U	²³⁹ Np	2.55 d	277.60	14.1
Th	²³³ Pa	27.4 d	312.01	33.7
К	⁴² K	12.36 h	1524.58	17.9

อุปกรณ์และวิธีการ

การเก็บตัวอย่าง

ตัวอย่างซากหอยน้ำจืดได้มาจากแหล่งโบราณคดีถ้ำเขาหานจังหวัดสตูล โดยกรมสำนักศิลปากรที่ 13 สงขลา ทำการขุดค้นในปี พ.ศ. 2553 จากหลุมขุดค้นจำนวน 1 หลุม มีขนาด 4 เมตร ด้านกว้างขนาด 2 เมตร ขุดค้นตามระดับชั้นดินสมมติ (Arbitary layer) โดยกำหนดชั้นดินแต่ละชั้นมีระดับความลึกห่างกันชั้นละ 10 เซนติเมตร อุปกรณ์ที่ใช้ในการขุดค้นใช้เครื่องมือหนักและเครื่องมือเบา เช่น เกรียง จอบ เสียม ฯลฯ ขึ้นอยู่กับ สภาพของชั้นการทับถมทางโบราณคดี แผนผังการขุดค้นแสดงได้ดัง Figure 1

Figure 1 (a) Showing location of the KhowHarn Cave Historical Satun Province (b) Characteristic of sample in KhowHarn Cave Historical Satun Province(สำนักศิลปากรที่ 13 สงขลา กรมศิลปากร กระทรวงวัฒนธรรม, 2553)

การเตรียมตัวอย่าง

เก็บและรวบรวมตัวอย่างซากหอยน้ำจืดจากแหล่งโบราณคดีถ้ำเขาหานจังหวัดสตูล จำนวน 15 ตัวอย่าง ล้างทำความสะอาดจนแน่ใจว่าไม่มีเศษดินเหลือติดอยู่ อบตัวอย่างจนแห้งสนิทที่อุณหภูมิ 40 องศาเซลเซียส เป็นเวลา 8 ชั่วโมง แล้วนำตัวอย่างไปบดจนละเอียดสม่ำเสมอขนาด 0-90 ไมโครเมตร โดยขั้นตอนการเตรียม ตัวอย่างจะต้องบรรจุอยู่ในภาชนะที่สะอาดเพื่อหลีกเลี่ยงการปนเปื้อนใด ๆ (El-Ghawi *et al.,* 2005) ชั่งน้ำหนักสารมาตรฐาน NIST (NIST SRM 1633b) และตัวอย่างประมาณ 150 มก.และ 250 มก.ตามลำดับ ใส่ลงในหลอดบรรจุตัวอย่างทำด้วยพอลิเอทิลีน (Polyethylene) ที่มีรูปทรงเรขาคณิตที่เหมือนกัน ปิดฝาหลอด ให้สนิทด้วยความร้อน กำหนดรหัสและเขียนหมายเลขกำกับ

การอาบรังสี

นำตัวอย่างและสารอ้างอิงมาตรฐานที่เรียงสลับกันบรรจุในกระบอกพลาสติกไปอาบรังสีนิวตรอน ชุดครึ่งชีวิตยาวจากเครื่องปฏิกรณ์นิวเคลียร์พร้อมกันเป็นเวลา 5 ชั่วโมง ปล่อยตัวอย่างที่ผ่านการอาบรังสี ให้สลายตัวเป็นเวลานาน 2 วัน นำไปวิเคราะห์ปริมาณโพแทสเซียมและปล่อยให้สลายตัวเป็นเวลานาน 4 วัน นำไปวิเคราะห์ปริมาณยูเรเนียม ทอเรียมจากการวัดปริมาณรังสีแกมมาเป็นเวลา 10 นาที ด้วยระบบวัด รังสีแกมมาแบบสารกึ่งตัวนำชนิดเจอมาเนียมบริสุทธิ์สูง (High-Purity Germanium; HPGe)

การวิเคราะห์หาปริมาณธาตุในตัวอย่าง

นำสเปกตรัมของสารตัวอย่าง (Figure 2 และ Figure 3) ไปวิเคราะห์หาพื้นที่ใต้พีคที่พลังงาน 277.60, 312.01 และ 1524.58 กิโลอิเล็กตรอนโวลต์ เพื่อคำนวณหาปริมาณธาตุ ²³⁹Np, ²³³Pa และ ⁴²K โดยใช้หลักการ เปรียบเทียบจำนวนนับรังสีแกมมาของตัวอย่างกับสารอ้างอิงมาตรฐานซึ่งทราบปริมาณความเข้มข้นของธาตุ ที่สนใจแน่นอนตามสมการที่ (4)

ผลการวิจัย

ในงานวิจัยครั้งนี้ ได้วิเคราะห์ปริมาณความเข้มข้นของยูเรเนียม (U) ทอเรียม (Th) และโพแทสเซียม (K) โดยการอาบนิวตรอนและวัดรังสีแกมมา (Limsuwan *et al.,* 2011) ของตัวอย่างซากหอยน้ำจืด ทำการวิเคราะห์ ความแรงของรังสีแกมมาที่สลายตัวของไอโซโทปกัมมันตรังสี ²³⁹Np, ²³³Pa และ ⁴²K ที่พลังงาน 277.60, 312.01 และ 1524.58 กิโลอิเล็กตรอนโวลต์ ตามลำดับ ได้ผลการทดลองดังนี้ (Table 3, Figure 2 และ Figure 3)

No.		Sample	U-238 (ma/ka)	Th-232 (mg/kg)	K-40 (%)
1	TR' 2010 TP:T1 Le	evel 2 (70-80 cm.dt) no. 010	1.70±0.66	3.27±0.46	0.19±0.08
2	TR' 2010 TP1:T2 L	evel 2 (70-80 cm.dt) no.123	0.96±0.16	3.15±0.28	0.92±1.15
3	TR' 2010 TP1:T2E	Level 2 (70-80 cm.dt) no. 245	1.04±0.44	2.09±0.68	0.09±0.01
4	TR' 2010 TP1:T3E	Level 2 (70-80 cm.dt) no.248	0.92±0.23	3.01±0.25	0.04±0.01
5	TR' 2010 TP1:T1 L	evel 3 (80-90 cm.dt) no.028.	0.93±01.4	3.02±0.08	0.08±0.05
6	TR' 2010 TP1:T2 L	evel 3 (80-90 cm.dt) no.134.	1.03±0.81	4.67±2.17	0.04±0.01
7	TR' 2010 TP1:T3 L	evel 3 (80-90 cm.dt) no.137.	2.51±1.67	10.80±1.42	0.16±0.02
8	TR' 2010 TP1:T2E	Level 3 (80-90 cm.dt) no.259	0.69±0.23	1.45±0.36	0.04±0.02
9	TR' 2010 TP1:T2W	Level 3 (80-90 cm.dt) no.256	1.80±0.50	3.83±0.49	0.13±0.01
10	TR' 2010 TP1:T3W	Level 3 (80-90 cm.dt) no.253	0.61±0.18	1.98±0.40	0.05±0.01
11	TR' 2010 TP1:T3E	Level 3 (80-90 cm.dt) no. 261	0.85±0.42	3.29±0.49	0.07±0.02
12	TR' 2010 TP1:T3 L	evel 4 (90-100 cm.dt) no.140.	1.03±0.16	2.62±0.40	0.11±0.01
13	TR 2010 TP1:T3W	Level 4 (90-100 cm.dt) no. 270	1.08±0.52	4.18±0.15	0.03±0.01
14	TR'2010 TP1:T3 Le	vel 8 (130-140 cm.dt) no.183	0.68±0.14	1.66±0.36	0.08±0.01
15	TR 2010 TP1:T3 Le	evel 10 (150-160 cm.dt) no.206	1.22±0.40	2.47±0.02	0.05±0.01

Table 3 Concentrations of U, Th and K in samples

Figure 2 Gamma spectra for radioactive elements U and Th in samples

จากผลการทดลอง (Table 3) แสดงให้เห็นว่า การวิเคราะห์ปริมาณกัมมันตภาพรังสีด้วยเทคนิค NAA นี้ มีความน่าเชื่อถือเนื่องจากมีการวิเคราะห์เทียบกับสารมาตรฐาน ผลการวิเคราะห์พบปริมาณยูเรเนียม ทอเรียม และโพแทสเซียมต่ำสุดมีค่า 0.61 มก.ต่อ กก 1.45 มก.ต่อกก. และ 0.03 เปอร์เซ็นต์ ตามลำดับ

ในงานวิจัยนี้ได้เลือกใช้ตัวอย่างมาตรฐาน NIST (NIST SRM 1633b) ผลที่ได้พบว่า จากการวัดโดย ระบบวัดรังสีแกมมาชนิดสารกึ่งตัวนำชนิดเจอมาเนียมบริสุทธิ์สูงดังกล่าว สามารถวัดสเปกตรัมของยูเรเนียม ทอเรียม และโพแทสเซียมได้อย่างชัดเจน และสามารถนำผลที่ได้ไปสู่ค่าอายุของตัวอย่างซึ่งเป็นข้อมูล ทางประวัติศาสตร์ได้

สรุปผลการวิจัย

จากตัวอย่างซากหอยน้ำจืดจำนวน 15 ตัวอย่าง ซึ่งเก็บและรวมรวบจากแหล่งโบราณคดีถ้ำเขาหาน จังหวัดสดูล เมื่อวิเคราะห์ปริมาณความเข้มข้นของธาตุยูเรเนียม ทอเรียม และโพแทสเซียม ด้วยเทคนิค การอาบนิวตรอนและระบบวัดรังสีแกมมา ผลการวิเคราะห์พบว่าในตัวอย่างซากหอยน้ำจืดมีค่าปริมาณยูเรเนียม ทอเรียม และโพแทสเซียม อยู่ในช่วง 0.61-2.51 มก.ต่อกก 1.45-10.80 มก.ต่อกก. และ 0.03-0.92 เปอร์เซ็นต์ ซึ่งเทคนิคดังกล่าวนี้เหมาะสำหรับการวิเคราะห์ปริมาณยูเรเนียม ทอเรียม และโพแทสเซียม ยิ่งไปกว่านั้น ยังเป็นเทคนิคที่มีความเหมาะสมในการนำมาวิเคราะห์ตัวอย่างวิจัยที่มีปริมาณกัมมันตภาพรังสีน้อยและ มีจำนวนจำกัด ผู้วิจัยจึงนำเทคนิคดังกล่าวมาใช้เพื่อให้เหมาะสมกับปริมาณตัวอย่างและให้เกิดประสิทธิภาพ ได้สูงสุดเพื่อความแม่นยำในการนำไปหาอายุต่อไป

กิตกรรมประกาศ

งานวิจัยฉบับนี้สำเร็จได้ด้วยความกรุณาจาก ดร. ธิดารัตน์ วิชัยดิษฐ ได้กรุณาให้คำแนะนำ ชี้แนะ แนวทางการแก้ไขปัญหาต่างๆ จนสำเร็จลุล่วงไปได้ด้วยดี ผู้เขียนขอกราบขอบพระคุณเป็นอย่างสูงไว้ ณ ที่นี้ ขอบคุณ คุณวิเซียร รัตนธงชัย คุณศศิพันธุ์ คะวีรัตน์ และคุณเจตรจันทร์ จันทร์นุ้ย สังกัดกลุ่มวิจัยและ พัฒนานิวเคลียร์ สถาบันเทคโนโลยีนิวเคลียร์แห่งชาติ ช่วยเหลือในด้านการวิเคราะห์ปริมาณธาตุในซากหอยน้ำจืด โดยการอาบนิวตรอน และอีกหลายท่านที่ไม่สามารถกล่าวได้ครบในที่นี้

ขอบคุณ คุณพรทิพย์ พันธุโกวิท คุณศิริพร สังข์หิรัญ และคุณธนิสรา พุ่มผะกา นักโบราณคดีชำนาญการ และคุณเกียรติชัย สุทธิโชติ นายช่างสำรวจปฏิบัติงาน สำนักศิลปากรที่ 13 กรมศิลปากร กระทรวงวัฒนธรรม ที่ช่วยกรุณาสำรวจและเก็บตัวอย่างซากหอยน้ำจืดจากแหล่งโบราณคดีถ้ำเขาหาน จังหวัดสตูลให้

ขอขอบคุณ ดร. สมหมาย ช่างเขียน หน่วยวิจัยรังสีประยุกต์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตปัตตานี ที่ให้การสนับสนุนเกี่ยวกับอุปกรณ์ เครื่องมือ และสารเคมี รวมถึงพี่ๆ น้องๆ ทุกคนที่ได้ช่วยเหลือและอำนวยความสะดวกในการทำงานตลอดมา ท้ายนี้ขอบคุณทุกท่านที่ ได้มี ส่วนช่วยเหลือในงานครั้งนี้

เอกสารอ้างอิง

ศุภกิจ อรรถบุตร. 2549. <mark>การกำหนดอายุเคลือบฟันของสัตว์และเปลือกหอยโบราณบางชนิด</mark> โดยวิธีอิเล็กตรอนสปินเรโซแนนซ์. วิทยานิพนธ์ปริญญาโท. จุฬาลงกรณ์มหาวิทยาลัย. 180 น.

เตยาออเลกตรอนสบนเรเชแนนชา. วทยานพนธบรญญาเท. จุฬาลงกรแมหาวทยาลย. 180 น สำนักศิลปากรที่ 13 สงขลา กรมศิลปากร กระทรวงวัฒนธรรม. 2553. รายงานผลการดำเนินงาน

ในโครงการวิจัยการตั้งถิ่นฐานและการดำรงชีวิตและแรกเริ่มประวัติศาสตร์ในเขต

จังหวัดสตูล และสตูลระยะที่ 2. พิมพ์ครั้งที่ 1. สงขลา: จหก. ทรีโอ ครีเอชั่น. 245 น. อุษณี เกิดพินธ์. 2553. การวิเคราะห์หาปริมาณธาตุต่าง ๆ ในดินชุดหางดงและสันทรายโดยเทคนิค นิวตรอนแอคติเวชันและเอกซ์เรย์ฟลูออเรสเซนซ์. วิทยานิพนธ์ปริญญาโท. มหาวิทยาลัยเชียงใหม่. 140 น.

- El-Ghawi, U.M., M.M. Bejey, S.M. Al-Fakhri, A.A. Al-Sadeq and K.K. Doubali. 2005. Analysis of libyan arable soils by means of thermal and epithermal NAA. The Arabian Journal for Science and Engineering 30: 147-153.
- Hubert, L.O. 2001. Calibration standard for use in gamma spectrometry and luminescence dating. Methods and Applications of Absolute Chronology 20: 31-38.
- Ikeya, M. 1993. New Applications of Electron Spin Resonance Dating.Dosimetry and Microscopy. Singapore: World Scientific. 447 p.
- Soliman, N. F. 2006. Investigation of an Egyptian Alabaster Ore by Measuring its Natural Radioactivity and by NAA using K₀Standardization and comparator Methods. **Nuclear and Radiation Physics**.1(1): 31-40.
- Tidarut, V., S. Thongchai, S. Natnalin, O. Chutima and L. Pichet. 2008. Determination of U, Th and K in sediments and fossil Ccollected from Mae Moh Mine using gamma-ray spectrometry and neutron activation analysis (NAA). Kasetsart J. (Nat. Sci.). 42: 333-339.
- Limsuwan, S., T. Vichaidid and P. Limsuwan. 2011. ESR dating of laterite from Ban Tha Ta Suea, Kanchanaburi, Thailand. Applied RadiationandIsotopes 69: 545–549.