

Chemical Constituents from the Leaves and Stem Bark of Garcinia dulcis

Arun Saelee

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Organic Chemistry Prince of Songkla University 2014

Copyright of Prince of Songkla University

Major Advisor:	Examining Committee:		
Major Program	Organic Chemistry		
Author	Mr. Arun Saelee		
	Garcinia dulcis		
Thesis Title	Chemical Constituents from the Leaves and Stem Bark of		

Examining Committee:

(Assoc. Prof. Dr. Wilawan Mahabusarakam) (Asst. Prof. Dr. Orasa Pancharoen)

.....

(Assoc. Prof. Dr. Wilawan Mahabusarakam)

(Asst. Prof. Dr. Suda Chakthong)

.....

The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Master of Science Degree in Organic Chemistry.

.....

(Assoc. Prof. Dr. Teerapol Srichana) Dean of Graduate School

This is to certify that the work here submitted is the result of the candidate's own investigations. Due acknowledgement has been made of any assistance received.

.....Signature (Assoc. Prof. Dr. Wilawan Mahabusarakam) Major Advisor

.....Signature

(Mr. Arun Saelee) Candidate I hereby certify that this work has not been accepted in substance for any degree, and is not being currently submitted in candidature for any degree.

.....Signature

(Mr. Arun Saelee) Candidate

ชื่อวิทยานิพนธ์	องค์ประกอบทางเคมีจากใบและเปลือกต้นมะพูด
ผู้เขียน	นายอรุณ แซ่หลี
สาขาวิชา	เคมีอินทรีย์
ปีการศึกษา	2556

บทคัดย่อ

การศึกษาองค์ประกอบทางเคมีจากส่วนสกัดหยาบอะซีโตนของใบมะพูดสามารถ แขกสารบริสุทธิ์ได้ 9 สาร เป็นสารกลุ่ม triterpenoids 1 สาร คือ lupeol (AS1) สารกลุ่ม benzene derivatives 2 สาร คือ 4-hydroxy benzoic acid (AS2), 4-hydroxy-3-methoxybenzoic acid (AS3) สารกลุ่ม biflavonoids 6 สาร คือ 8-(5-(5,7-dihydroxy-4-oxo-4H-chromen-2-yl)-2-hydroxy-3-(3methylbut-2-enyl)phenyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)-6-(3-methylbut-2-enyl)-4Hchromen-4-one (AS4), GB-2a (AS5), amentoflavone (AS6), morelloflavone (AS7), morelloflavone-7"-sulfate (AS8) และ volkensiflavone (AS9) การศึกษาองค์ประกอบทางเคมีจาก ้ส่วนสกัดหยาบไดคลอโรมีเทนของเปลือกต้นมะพูดสามารถแยกสารบริสุทธิ์ได้ 9 สาร เป็นสารกลุ่ม triterpenoids 1 สาร คือ oleanolic acid (AS10) และสารกลุ่ม xanthones 8 สาร คือ garciniaxanthone C (AS11), garciniaxanthone A (AS12), 1,4,8-trihydroxy-6-methoxy-2-(3-methylbut-2-enyl)-9Hxanthen-9-one (AS13), 12b-hydroxy-des-D-garcigerrin A (AS14), 1,2,5,6-tetrahydroxy-7-(3methylbut-2-enyl)-3-(2-methylbut-3-en-2-yl)-9*H*-xanthen-9-one (AS15), 1,3,5,6-tetrahydroxy-2,8-bis(3-methylbut-2-enyl)-9H-xanthen-9-one (AS16), garciniaxanthone E (AS17) 1182 1,3,5,6tetrahydroxy-4,8-bis(3-methylbut-2-enyl)-9H-xanthen-9-one (AS18) ซึ่งพบว่าสาร AS4, AS13, AS15, AS16 และ AS18 เป็นสารใหม่ที่ยังไม่มีการรายงานโครงสร้าง

การศึกษาฤทธิ์ต้านแบคทีเรียของสาร AS4, AS5, AS6, AS7, AS11, AS13, AS14 และ AS16 พบว่า AS5, AS7, AS14 และ AS16 สามารถยับยั้งการเจริญเติบของ *Staphylococcus aureus* ATCC25923 ด้วยค่าความเข้มข้นต่ำสุด (MIC) 128, 64, 2 และ 128 μg/mL ตามลำดับ ยับยั้ง การเจริญของ methicillin - resistant *Staphylococcus aureus* ด้วยค่าความเข้มข้นต่ำสุด (MIC) 64, 64, 1 และ 128 μg/mL ตามลำดับ แต่ไม่สามารถยับยั้งการเจริญของ *Escherichia coli* ATCC25922, *Pseudomonas aeruginosa* ATCC27853 สาร AS4, AS6, AS11 และ AS13 ไม่แสดงฤทธิ์ต้าน แบคทีเรียทั้งสองที่ความเข้มข้น 200 μg/mL

AS2 : R = HAS3 : R = OMe

AS5

AS6

 $AS7: R_1 = OH, R_2 = H$ $AS8: R_1 = OH, R_2 = SO_3H$ $AS9: R_1, R_2 = H$

Thesis Title	Chemical Constituents from the Leaves and Stem Bark of	
	Garcinia dulcis	
Author	Mr. Arun Saelee	
Major Program	Organic Chemistry	

Academic Year 2013

ABSTRACT

Study of the chemical constituents from the acetone extract of the leaves of *Garcinia dulcis*, yielded nine compounds, one triterpenoids; lupeol (AS1), benzene derivatives; 4-hydroxy benzoic acid (AS2), 4-hydroxy-3two methoxybenzoic acid (AS3) and six biflavonoids; 8-(5-(5,7-dihydroxy-4-oxo-4Hchromen-2-yl)-2-hydroxy-3-(3-methylbut-2-enyl)phenyl)-5,7-dihydroxy-2-(4-hydroxy phenyl)-6-(3-methylbut-2-enyl)-4*H*-chromen-4-one (AS4), GB-2a (AS5), amentoflavone (AS6), morelloflavone (AS7), morelloflavone-7"-sulfate (AS8) and volkensiflavone (AS9). Study of the chemical constituents from the dichloromethane extract of the stem bark of G. dulcis, yielded nine compounds, one triterpenoids; oleanolic acid (AS10) and eight xanthones; garciniaxanthone C (AS11), garciniaxanthoneA (AS12), 1,4,8-trihydroxy-6-methoxy-2-(3-methylbut-2-enyl)-9H-12b-hydroxy-des-D-garcigerrin xanthen-9-one (AS13), A (AS14), 1,2,5,6tetrahydroxy-7-(3-methylbut-2-enyl)-3-(2-methylbut-3-en-2-yl)-9H-xanthen-9-one (AS15), 1,3,5,6-tetrahydroxy-2,8-bis(3-methylbut-2-enyl)-9*H*-xanthen-9-one (AS16), garciniaxanthone E (AS17), 1,3,5,6-tetrahydroxy-4,8-bis(3-methylbut-2-enyl)-9Hxanthen-9-one (AS18). Compounds AS4, AS13, AS15, AS16 and AS18 are new naturally occurrence compounds.

Compounds AS4, AS5, AS6, AS7, AS11, AS13, AS14 and AS16 were tested for their antibacterial activity. The result for the antibacterial activity AS5, AS7, AS14 and AS16 also showed interesting activity with MIC values of 128, 64, 2 and 128 μ g/mL against *Staphylococcus aureus* ATCC25923 and 64, 64, 1 and 128 μ g/mL against methicillin-resistant *Staphylococcus aureus*, respectively. They could not inhibit the growth of *Escherichia coli* ATCC25922, *Pseudomonas aeruginosa* ATCC27853 at 200 μ g/mL. Compounds AS4, AS6, AS11 and AS13 showed no activity against four bacterial strains tested at 200 μ g/mL.

AS2 : R = HAS3 : R = OMe

AS5

H

.OH

ö

R₁

.OH

но

AS6

AS7 : $R_1 = OH, R_2 = H$ AS8 : $R_1 = OH, R_2 = SO_3H$ AS9 : $R_1, R_2 = H$

он

ACKNOWLEDGMENT

I wish to express my deepest and sincere gratitude to my supervisor, Associate Professor Dr. Wilawan Mahabusarakam, for her valuable instruction, expert guidance and excellent suggestions. I would like to express my appreciation to her for correcting my thesis.

This work was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission and the Graduate School, Prince of Songkla University. I would like to express my appreciation to the staffs of the Department of Chemistry, Faculty of Science, Print of Songkla University for making this thesis possible.

Finally, none of this would have been possible without love and encouragement of my family and friends. I think them for their understanding during all of the times when I could not be with them and their steady love that support me. Everything will always keep in my mind.

Arun Sealee

CONTENTS

Abstract (in Thai)	v
Abstract (in English)	viii
Acknowledgements	xi
Contents	xii
List of Tables	XV
List of Illustrations	xvi
List of Abbreviations and Symbols	XX
Chapter 1	1
Introduction	1
1.1 Introduction	1
1.2 Review of Literatures	3
1.2.1 The chemical constituents of Garcinia genus (2005-2012)	3
1.2.2 The biological activity of chemical composition in the plants	16
(biflavoniods xanthones and triterpenoids)	
1.3 Objective	18
Chapter 2	19
Experimental	19
2.1 Instruments and chemicals	19
2.2 Plant material	20
2.3 Chemical investigation of the leaves	20
2.3.1 Extraction and isolation	20
2.3.2 Purification of CH ₂ Cl ₂ soluble fraction	21
2.3.3 Purification of CH ₂ Cl ₂ insoluble fraction	23
2.4 Chemical investigation of the stem bark	26
2.4.1 Extraction and isolation	26
2.4.2 Purification of aqueous layer (L) fraction	27

CONTENTS (Continued)

	Page
Chapter 3	32
Results and Discussion	32
3.1 Structural elucidation of compounds from the leaves and stem bark	32
of G. dulcis	
AS1: lupeol	33
AS2: 4-hydroxybenzoic acid	34
AS3: 4-hydroxy-3-methoxybenzoic acid	35
AS4: 8-(5-(5,7-dihydroxy-4-oxo-4 <i>H</i> -chromen-2-yl)-2-hydroxy-3-(3-	36
methylbut-2-enyl)phenyl)-5,7-dihydroxy-2-(4-hydroxy	
phenyl)-6-(3-methylbut-2-enyl)-4H-chromen-4-one	
AS5: (2 <i>S</i> ,2 <i>"S</i> ,3 <i>R</i>)-2 <i>"</i> -(3,4-dihydroxyphenyl)-2,3,2 <i>"</i> ,3 <i>"</i> -tetrahydro-	40
5,7,5",7"- tetrahydroxy-2-(4-hydroxyphenyl)-[3,8"-Bi-4H-1-	
benzopyran]-4,4"-dione (GB-2a)	
AS6: 8-(5-(5,7-dihydroxy-4-oxo-4 <i>H</i> -chromen-2-yl)-2-hydroxy	43
phenyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-	
one (amentoflavone)	
AS7:5,7,4',5",7",3",4"-heptahydroxy-[3,8"]-flavonylflavanone	46
(morelloflavone)	
AS8: (2 <i>S</i> ,3 <i>R</i>)-2'-(3,4-dihydroxyphenyl)-5,5',7-trihydroxy-2-	49
(4-hydroxyphenyl)-4,4'-dioxo-3,8'-bichroman-7'-ylhydrogen	
sulfate (morelloflavone-7"-sulfate)	
AS9: (2 <i>S</i> ,3 <i>R</i>)-2,3-dihydro-5,5',7,7'-tetrahydroxy-2,2'-bis	52
(4-hydroxyphenyl)-[3,8"-Bi-4H-1-benzopyran]-4,4"-dione	
(volkensiflavone)	
AS10: oleanolic acid	55
AS11: 1,4,5-trihydroxy-3,6-bis(3-methylbut-2-enyl)-9H-xanthen-	56
9-one (garciniaxanthone C)	

CONTENTS (Continued)

	Page
AS12:1,4,5-trihydroxy-6-(3-methylbut-2-enyl)-2-(2-methylbut-3-	58
en-2-yl)-9H-xanthen-9-one (garciniaxanthone A)	
AS13:1,4,8-trihydroxy-6-methoxy-2-(3-methylbut-2-enyl)-9H-	60
xanthen-9-one	
AS14:1,4,5-trihydroxy-2-(2-methylbut-3-en-2-yl)-9H-xanthen-9-	62
one (12b-hydroxy-des-D-garcigerrin A)	
AS15: 1,2,5,6-tetrahydroxy-7-(3-methylbut-2-enyl)-3-(2-methylbut	64
-3-en-2-yl)-9H-xanthen-9-one	
AS16:1,3,5,6-tetrahydroxy-2,8-bis(3-methylbut-2-enyl)-9H-	66
xanthen-9-one	
AS17: (<i>E</i>)-2-(3,7-dimethylocta-2,6-dienyl)-3,4,6,8-tetrahydroxy-1-	68
(3-methylbut-2-enyl)-9H-xanthen-9-one	
(garciniaxanthone E)	
AS18:1,3,5,6-tetrahydroxy-4,8-bis(3-methylbut-2-enyl)-9H-	71
xanthen-9-one	
3.2 Antibacterial activity of the isolated compounds from the leaves and	74
stem bark of G. dulcis	
Conclusion	75
Reference	78
Appendix	83
Vitae	132

LIST OF TABLE

Table		Page
1.	Compounds isolated from the plants of Garcinia genus	3
2.	Physical characteristic and weight of fractions C1-C5	21
3.	Physical characteristic and weight of fractions B1-B4	23
4.	Physical characteristic and weight of fractions L1-L3	28
5.	Physical characteristic and weight of fractions N1-N15	29
6.	¹ H NMR spectrum data of AS1	33
7.	¹ H NMR spectral data of AS2 and 4-hydroxybenzoic acid	34
8.	¹ H NMR spectrum data of AS3	35
9.	¹ H, ¹³ C NMR and HMBC spectral data (DMSO- d_6) of AS4	38
10.	¹ H, ¹³ C NMR and HMBC spectral data (DMSO- d_6) of AS5	41
11.	¹ H, ¹³ C NMR and HMBC spectral data (CDCl ₃ +DMSO- d_6)	44
	of AS6	
12.	¹ H, ¹³ C NMR and HMBC spectral data (DMSO- d_6) of AS7	47
13.	¹ H, ¹³ C NMR and HMBC spectral data (DMSO- d_6) of AS8	50
14.	¹ H, ¹³ C NMR and HMBC spectral data (CDCl ₃ +DMSO- d_6)	53
	of AS9	
15.	¹ H NMR spectral data (CDCl ₃) of AS10	55
16.	¹ H, ¹³ C NMR and HMBC spectral data (Acetone- d_6) of AS11	57
17.	¹ H, ¹³ C NMR and HMBC spectral data (Acetone- d_6) of AS12	59
18.	¹ H, ¹³ C NMR and HMBC spectral data (Acetone- d_6) of AS13	61
19.	¹ H, ¹³ C NMR and HMBC spectral data (CDCl ₃ +DMSO- d_6)	63
	of AS14	
20.	¹ H, ¹³ C NMR and HMBC spectral data (Acetone- d_6) of AS15	65
21.	¹ H, ¹³ C NMR and HMBC spectral data (Acetone- d_6) of AS16	67
22.	¹ H, ¹³ C NMR and HMBC spectral data (Acetone- d_6) of AS17	69
23.	¹ H, ¹³ C NMR and HMBC spectral data (Acetone- d_6) of AS18	72

LIST OF ILLUSTRATIONS

Scheme		Page
1.	Extraction of crude extracts from the leaves of G. dulcis	20
2.	Isolation of fractions C1-C5 from the CH_2Cl_2 soluble fraction	21
3.	Isolation of fractions B1-B4 from the CH_2Cl_2 insoluble fraction	24
4.	Extraction of crude extracts from the stem bark of G. dulcis	27
5.	Isolation of fractions $N1 - N15$ from the aqueous layer (L)	28
Figure		Page
1.	Garcinia dulcis Kurz.	2
2.	UV (MeOH) spectrum of AS1	84
3.	IR (neat) spectrum of AS1	84
4.	¹ H NMR (300 MHz) (CDCl ₃) spectrum of AS1	85
5.	UV (MeOH) spectrum of AS2	85
6.	IR (neat) spectrum of AS2	86
7.	¹ H NMR (300 MHz) (CDCl ₃) spectrum of AS2	86
8.	UV (MeOH) spectrum of AS3	87
9.	IR (neat) spectrum of AS3	87
10.	¹ H NMR (300 MHz) (CDCl ₃ +CD ₃ OD) spectrum of AS3	88
11.	NOE (300 MHz) (Acetone- d_6) spectrum of AS3	88
12.	UV (MeOH) spectrum of AS4	89
13.	IR (neat) spectrum of AS4	89
14.	¹ H NMR (300 MHz) (DMSO- d_6) spectrum of AS4	90
15.	¹³ C NMR (75 MHz) (DMSO- d_6) spectrum of AS4	90
16.	2D HMBC (DMSO- d_6) spectrum of AS4	91
17.	UV (MeOH) spectrum of AS5	91
18.	IR (neat) spectrum of AS5	92

LIST OF ILLUSTRATIONS (CONTINUED)

Figure		Page
19.	¹ H NMR (300 MHz) (DMSO- d_6) spectrum of AS5	92
20.	13 C NMR (75 MHz) (DMSO- d_6) spectrum of AS5	93
21.	2D HMBC (DMSO- d_6) spectrum of AS5	93
22.	UV (MeOH) spectrum of AS6	94
23.	IR (neat) spectrum of AS6	94
24.	¹ H NMR (300 MHz) (CDCl ₃ +DMSO- d_6) spectrum of AS6	95
25.	¹³ C NMR (75 MHz) (CDCl ₃ +DMSO- d_6) spectrum of AS6	95
26.	DEPT $135^{\circ}(\text{CDCl}_3+\text{DMSO-}d_6)$ spectrum of AS6	96
27.	2D HMQC (CDCl ₃ +DMSO- d_6) spectrum of AS6	96
28.	2D HMBC (CDCl ₃ +DMSO- <i>d</i> ₆) spectrum of AS6	97
29.	2D COSY (CDCl ₃ +DMSO- d_6) spectrum of AS6	97
30.	UV (MeOH) spectrum of AS7	98
31.	IR (neat) spectrum of AS7	98
32.	¹ H NMR (300 MHz) (DMSO- d_6) spectrum of AS7	99
33.	UV (MeOH) spectrum of AS8	99
34.	IR (neat) spectrum of AS8	100
35.	¹ H NMR (300 MHz) (DMSO- d_6) spectrum of AS8	100
36.	13 C (75 MHz) (DMSO- d_6) spectrum of AS8	101
37.	2D HMQC (DMSO- d_6) spectrum of AS8	101
38.	2D HMBC (DMSO- d_6) spectrum of AS8	102
39.	2D COSY (DMSO- d_6) spectrum of AS8	102
40.	UV (MeOH) spectrum of AS9	103
41.	IR (neat) spectrum of AS9	103
42.	¹ H NMR (300 MHz) (CDCl ₃ +DMSO- d_6) spectrum of AS9	104
43.	2D HMBC (CDCl ₃ +DMSO- <i>d</i> ₆) spectrum of AS9	104
44.	2D COSY (CDCl ₃ +DMSO- <i>d</i> ₆) spectrum of AS9	105
45.	UV (MeOH) spectrum of AS10	105
46.	IR (neat) spectrum of AS10	106

LIST OF ILLUSTRATIONS (CONTINUED)

	Page
¹ H NMR (300 MHz) (CDCl ₃) spectrum of AS10	106
UV (EtOH) spectrum of AS11	107
IR (neat) spectrum of AS11	107
¹ H NMR (300 MHz) (Acetone- d_6) spectrum of AS11	108
2D HMBC (Acetone- d_6) spectrum of AS11	108
UV (EtOH) spectrum of AS12	109
IR (neat) spectrum of AS12	109
¹ H NMR (300 MHz) (Acetone- d_6) spectrum of AS12	110
¹³ C NMR (75 MHz) (Acetone- d_6) spectrum of AS12	110
2D HMQC (300 MHz) (Acetone- d_6) spectrum of AS12	111
2D HMBC (Acetone- d_6) spectrum of AS12	111
UV (EtOH) spectrum of AS13	112
IR (neat) spectrum of AS13	112
¹ H NMR (300 MHz) (Acetone- d_6) spectrum of AS13	113
¹³ C NMR (75 MHz) (Acetone- d_6) spectrum of AS13	113
NOE (300 MHz) (Acetone- d_6) spectrum of AS13	114
2D HMBC (300 MHz) (Acetone- d_6) spectrum of AS13	115
UV (EtOH) spectrum of AS14	115
IR (neat) spectrum of AS14	116
¹ H NMR (300 MHz) (CDCl ₃ +DMSO- d_6) spectrum of AS14	116
¹³ C NMR (75 MHz) (CDCl ₃ +DMSO- d_6) spectrum of AS14	117
DEPT 135°(CDCl ₃ +DMSO- <i>d</i> ₆) spectrum of AS14	117
2D HMQC (300 MHz) (CDCl ₃ +DMSO- d_6) spectrum of AS14	118
2D HMBC (300 MHz) (CDCl ₃ +DMSO- <i>d</i> ₆) spectrum of AS14	118
UV (EtOH) spectrum of AS15	119
IR (neat) spectrum of AS15	119
¹ H NMR (300 MHz) (Acetone- d_6) spectrum of AS15	120
¹³ C NMR (75 MHz) (Acetone- d_6) spectrum of AS15	120
	 ¹H NMR (300 MHz) (CDCl₃) spectrum of AS10 UV (EtOH) spectrum of AS11 ¹R (neat) spectrum of AS11 ¹H NMR (300 MHz) (Acetone-<i>d₀</i>) spectrum of AS11 2D HMBC (Acetone-<i>d₀</i>) spectrum of AS11 UV (EtOH) spectrum of AS12 ¹R (neat) spectrum of AS12 ¹H NMR (300 MHz) (Acetone-<i>d₀</i>) spectrum of AS12 ¹H NMR (300 MHz) (Acetone-<i>d₀</i>) spectrum of AS12 ¹D NMR (75 MHz) (Acetone-<i>d₀</i>) spectrum of AS12 2D HMQC (300 MHz) (Acetone-<i>d₀</i>) spectrum of AS12 2D HMBC (Acetone-<i>d₀</i>) spectrum of AS12 2D HMBC (Acetone-<i>d₀</i>) spectrum of AS13 IR (neat) spectrum of AS13 IR (neat) spectrum of AS13 ¹A NMR (300 MHz) (Acetone-<i>d₀</i>) spectrum of AS13 ¹³C NMR (75 MHz) (Acetone-<i>d₀</i>) spectrum of AS13 ¹³C NMR (75 MHz) (Acetone-<i>d₀</i>) spectrum of AS13 NOE (300 MHz) (Acetone-<i>d₀</i>) spectrum of AS13 IV (EtOH) spectrum of AS14 ¹⁴ NMR (300 MHz) (CDC1₃+DMSO-<i>d₀</i>) spectrum of AS14 ¹³C NMR (75 MHz) (CDC1₃+DMSO-<i>d₀</i>) spectrum of AS14 ¹³C NMR (300 MHz) (CDC1₃+DMSO-<i>d₀</i>) spectrum of AS14 ¹³C NMR (300 MHz) (CDC1₃+DMSO-<i>d₀</i>) spectrum of AS14 ¹⁴ NMR (300 MHz) (CDC1₃+DMSO-<i>d₀</i>) spectrum of AS14 ¹⁵C NMR (75 MHz) (Acetone-<i>d₀</i>) spectrum of AS14

LIST OF ILLUSTRATIONS (CONTINUED)

Figure		Page
75.	2D HMQC (300 MHz) (Acetone- d_6) spectrum of AS15	121
76.	2D HMBC (300 MHz) (Acetone- d_6) spectrum of AS15	121
77.	UV (EtOH) spectrum of AS16	122
78.	IR (neat) spectrum of AS16	122
79.	¹ H NMR (300 MHz) (Acetone- d_6) spectrum of AS16	123
80.	¹³ C NMR (75 MHz) (Acetone- d_6) spectrum of AS16	123
81.	DEPT 135° (Acetone- d_6) spectrum of AS16	124
82.	2D HMBC (300 MHz) (Acetone- d_6) spectrum of AS16	124
83.	UV (EtOH) spectrum of AS17	125
84.	IR (neat) spectrum of AS17	125
85.	¹ H NMR (300 MHz) (Acetone- d_6) spectrum of AS17	126
86.	¹³ C NMR (75 MHz) (Acetone- d_6) spectrum of AS17	126
87.	DEPT 135° (Acetone- d_6) spectrum of AS17	127
88.	2D HMQC (300 MHz) (Acetone- d_6) spectrum of AS17	127
89.	2D HMBC (300 MHz) (Acetone- d_6) spectrum of AS17	128
90.	UV (EtOH) spectrum of AS18	128
91.	IR (neat) spectrum of AS18	129
92.	¹ H NMR (300 MHz) (Acetone- d_6) spectrum of AS18	129
93.	¹³ C NMR (75 MHz) (Acetone- d_6) spectrum of AS18	130
94.	NOE (300 MHz) (Acetone- d_6) spectrum of AS18	130
95.	NOE (300 MHz) (Acetone- d_6) spectrum of AS18	131
96.	2D HMBC (300 MHz) (Acetone- d_6) spectrum of AS18	131

LIST OF ABBREVIATIONS AND SYMBOLS

S	=	Singlet
d	=	Doublet
t	=	Triplet
q	=	Quartet
m	=	Multiplet
dd	=	doublet of doublet
dt	=	doublet of triplet
br s	=	broad singlet
g	=	Gram
nm	=	Nanometer
mp	=	melting point
cm ⁻¹	=	reciprocal centimeter (wave number)
δ	=	chemical shift relative to TMS
J	=	coupling constant
$[\alpha]_D$	=	specific rotation
λ_{max}	=	maximum wavelength
ν	=	absorption frequencies
3	=	molar extinction coefficient
m/z	=	a value of mass divided by charge
°C	=	degree celcius
MHz	=	Megahertz
ppm	=	part per million
С	=	concentration
IR	=	Infrared
UV	=	Ultraviolet

LIST OF ABBREVIATIONS AND SYMBOLS (CONTINUED)

MS	=	Mass spectroscopy
ESITOFMS	=	Electrospray Ionization Time of Flight Mass Spectroscopy
HREIMS	=	High Resolution Electron Impact Mass Spectroscopy
NMR	=	Nuclear Magnetic Resonance
1D NMR	=	One Dimensional Nuclear Magnetic Resonance
2D NMR	=	Two Dimensional Nuclear Magnetic Resonance
COSY	=	Correlation Spectroscopy
DEPT	=	Distortionless Enhancement by Polarization Transfer
HMBC	=	Heteronuclear Multiple Bond Correlation
HMQC	=	Heteronuclear Multiple Quantum Coherence
NOESY	=	Nuclear Overhauser Effect Spectroscopy
CC	=	Column Chromatography
QCC	=	Quick Column Chromatography
PLC	=	Preparative Thin Layer Chromatography
TMS	=	tetramethylsilane
Acetone- d_6	=	Deuteroacetone
DMSO- d_6	=	deuterodimethyl sulphoxide
CDCl ₃	=	deuterochloroform
EtOAc	=	Ethyl acetate
EtOH	=	Ethanol
MeOH	=	Methanol

CHAPTER 1

INTRODUCTION

1.1 Introduction

Recently medicinal plants have been widely accepted for the international community to use for medicine, healthy diet, cosmetics as well as industrial and agriculture. Factors indicate of differences in the chemical composition of each type of plant, such as xanthones, flavonoids, alkaloids, terpeniods. There are the biological activities of their compounds, such as antioxidation, anti-inflammatory, antibacterial and cytotoxic activities. The genus *Garcinia* (Guttiferae) consists of 57 species, mostly distributed throughout the tropical countries. Many of them are used in the folk medicine in several countries. Plants in this genus have been studied for biological activity such as antioxidation, anti-inflammatory, antibacterial, anti-atherogenic and cytotoxic activities. Flavonoids, biflavonoids, xanthones and chalcones, were isolated from this plant.

Garcinia dulcis Kurz., (Guttiferae) grows widely in the tropical rain forest area in Thailand. Its local name is Ma-Phut (มะพูด) (เต็ม, 2553). *G. dulcis* is a medium-size tree about 20-40 feet tall. The trunk is simple straight, the branches 4 angled. Leaves are deep green coriaceous ovate-oblong, shortly acuminate, base rounded; nerves 10 pairs, inarching near edge, not very prominent 5-10 inches long, 1.75-4.5 inches wide; petioles 0.4-0.6 inches long stout. Flowers are greenish yellow with 0.25 inches. Fruits are 2.5-3.0 inches long globular, ovoid or pear-shaped, peduncle, pulpy yellow. Seed are 1-5 oblong. Fruits can be eaten raw or cooked.

Figure 1 Garcinia dulcis Kurz.

(๑๐๙ พรรณไม้ไทย, 2542)

1.2 Review of Literatures

1.2.1 The chemical constituents of *Garcinia* genus (2005-2012)

The chemical constituents which were isolated from this genus before 2005 were summarized in the thesis of Miss Suwanna Deachathai (2005). The additional constituents of *Garcinia* genus from 2005-2012, according to the information from SciFinder were summarized in **Table 1**.

Scientific name	Compound	Reference
(Investigated part)		
G. bancana	[1,1'-biphenyl]-2-(3-methyl-2-butenyl)-3-	Rukachaisirikul
(twigs and leaves)	methoxy-4,4′,5,6-tetraol, a1	et al., 2005
G. bracteata	1,4,5,6-tetrahydroxyxanthone, d4	Niu et al., 2012
(stem bark)	bracteaxanthone III, d5	
	bracteaxanthone IV, d6	
	bracteaxanthone V, d7	
	bracteaxanthone VI, d8	
G. cowa	β-mangostin, d9	Panthong et al.,
(fruits)	α-mangostin, d10	2006
	cowawin, d11	
	cowaxanthone A, d17	
	cowaxanthone B, d18	
	cowaxanthone C, d19	
	cowaxanthone D, d20	
	cowaxanthone E, d21	
G. cowa	cowaxanthone F, d16	Panthong et al.,
(twigs)		2009

Table 1 Compounds isolated from the plants of Garcinia genus

Scientific name	Compound	Reference
(Investigated part)		
G. cowa	fuscaxanthone A, d12	Trisuwan <i>et al.</i> ,
(inflorescences)	9-hydroxycalabaxanthone, d13	2012
	garcinianone A, d14	
	cowanol, d15	
G. dulcis	dulcisisoflavone, b1	Deachathai et al.,
(fruit)	dulcisflavan, b2	2005
	dulcinoside, b3	
	sphaerobioside acetate, b4	
	dulcisxanthone A, d1	
	dulcisxanthone B, d25	
	isonormangostin, d26	
G. dulcis	dulcisxanthone D, d22	Deachathai et al.,
(flowers)	dulcisxanthone E, d23	2006
	dulcisxanthone F, d24	
	dulcisxanthone C, d42	
G. dulcis	dulcisxanthone G, d27	Deachathai et al.,
(seeds)		2008
G. hombroniana	garcihombronane K, c1	Klaiklay <i>et al.</i> ,
(twigs)	garcihombronane L, c2	2013
	garcihombronone A, d28	
	garcihombronone B, d29	
	garcihombronone C, d43	
	garcihombronone D, d44	
G.mangostana	mangosharin, d2	Ee et al., 2006
(stem)		

Table 1 Compounds isolated from the plant of Garcinia genus (continued)

Scientific name	Compound	Reference
(Investigated part)		
G.mangostana	3-hydroxy-6-methoxy-5'-isopropyl-	Zhao et al., 2011
(pericarp)	4',5'-dihydrofuro[2',3':7,8]-6",6"-	
	dimethyl-4",5"-dihydropyrano[2",3":	
	1,2]xanthone, d30	
	1,6-dihydroxy-7-methoxy-8-(3-methyl	
	but-3-enyl)-6',6'-dimethyl-4',5'dihydro	
	pyrano[2'3':3,2]xanthone, d31	
G. mangostana	11-hydroxy-3-O-methyl-1-	Han et al., 2009
(stem bark)	isomangostin, d32	
G. nobilis	caroxanthone, d3	Fouotsa et al.,
(stem bark)		2012
G. nitida	1,6-dihydroxy-5-methoxy-6,6-dimethyl	Ee et al., 2011
(stem bark)	pyrano[2',3':2,3]-xanthone, d33	
G. pedunculata	pedunxanthone A, d34	Vo et al., 2012
(bark)	pedunxanthone B, d35	
	pedunxanthone C, d36	
G. schomburgkiana	6- <i>O</i> -demethyloliverixanthone, d37	Vo et al., 2012
(bark)	schomburgxanthone, d38	
G. smeathmannii	smeathxanthone A, d39	Komguem et al.,
(stem bark)	smeathxanthone B, d40	2005
G.xipshuanbannaensis	bannaxanthone I, d41	Na et al., 2010
(leaves)		

Table 1 Compounds isolated from the plant of *Garcinia* genus (continued)

a. Biphenyl derivative

[1,1'-biphenyl]-2-(3-methyl-2-butenyl)-3-methoxy-4,4',5,6-tetraol, a1

b. Flavonoids

dulcisisoflavone, b1

dulcinoside, b3

sphaerobioside acetate, b4

c. Steroids

garcihombronane L, c2

garcihombronane K, c1

d. Xanthones

• Trioxygenated xanthones

dulcisxanthone A, **d1**

caroxanthone, d3

• Tetraoxygenated xanthones

1,4,5,6- tetrahydroxyxanthone, $\mathbf{d4}$

bracteaxanthone III, d5

όн

оМе

bracteaxanthone IV, d6

но

bracteaxanthone V, $\mathbf{d7}$

bracteaxanthone VI, d8

β-mangostin, **d9**

α-mangostin, **d10**

cowawin, d11

fuscaxanthone A, d12

9-hydroxycalabaxanthone, d13

garcinianone A, d14

cowaxanthone F, d16

cowaxanthone A, d17

cowaxanthone B, d18

cowaxanthone C, d19

cowaxanthone D, d20

dulcisxanthone D, d22

dulcisxanthone E, d23

12

dulcisxanthone B, d25

isonormangostin, d26

dulcisxanthone G, d27

garcihombronone A, d28

garcihombronone B, d29

3-hydroxy-6-methoxy-5'-isopropyl-4',5'dihydrofuro[2',3':7,8]-6",6"-dimethyl-4",5"-dihydropyrano[2",3":1,2]xanthone, **d30**

1,6-dihydroxy-7-methoxy-8-(3-methylbut-3-enyl)-6',6'-dimethyl-4',5'-dihydro pyrano[2'3':3,2]xanthone, **d31**

11-hydroxy-3-*O*-methyl-1-isomangostin, **d32**

1,6-dihydroxy-5-methoxy-6, 6-dimethylpyrano [2',3':2,3]-xanthone, **d33**

pedunxanthone B, d35

pedunxanthone A, d34

pedunxanthone C, d36

6-O-demethyloliverixanthone, d37

schomburgxanthone, d38

bannaxanthone I, **d41**

• Pentaoxygenated xanthones

dulcisxanthone C, d42

garcihombronone D, d44
1.2.2 The biological activity of chemical composition in the plants (biflavoniods xanthones and triterpenoids)

Garcinia dulcis Kurz., (Guttiferae) is an Asian medicinal plants used in folk medicines. In Thailand, the stem bark of this plant has been used as an antiinflammatory agent (มาในขและเพ็ญนกา, 2540) and the fruit juice has been used in traditional medicine as an expectorant (วุฒิ, 2540). In Indonesia, the leaves and seeds have been used for the treatment of lymphatitis, parotitis and struma (Kasahara and Henmi, 1986).

Amentoflavone, morelloflavone, GB-1a, GB-1a, agathisflavone and GB-2a were isolated from *Rhus succedanea* and *Garcinia multiflora*. These compounds showed moderately activity against HIV-1 RT, with IC₅₀ values of 119, 116, 236, 100 and 170 μ M, respectively. Morelloflavone also showed significant antiviral activity against HIV-1 (strain LAV-1) in phytohemagglutinin stimulated primary human peripheral blood mononuclear cells at an EC₅₀ value of 6.9 μ M and a selectivity index value of approximately 10. (Lin, *et al.*, 1997).

Endodesmiadiol, friedelin, canophyllol, canophyllal, cerin, morelloflavone, 8-deoxygartanin and 3- β -acetoxyoleanolic acid were isolated from the ethyl acetate extract of the stem bark of *Endodesmia calophylloides* (Guttiferae). These compounds were tested for antiplasmodial activity against the W2 strain of *Plasmodium falciparum*, which is resistant to chloroquine and other antimalarial drugs. They were found to exhibit antiplasmodial activity *in vitro* with IC₅₀ values of 13.0, 7.2, 15.0, 18.2, 14.1, 23.6, 11.8, and 13.1 μ M, respectively (Ngouamegne, *et al.*, 2008).

Amentoflavone was isolated from the leaves of *Torreya nucifera*, which is traditionally used as a medicinal plant in Asia. These compounds showed most potent SARS-CoV3CL^{pro} inhibitory effect, with IC₅₀ values of 8.3 μ M (Ryu, *et al.*, 2010).

Amentoflavone and 4- monomethoxy amentoflavone were isolated from the leaves of *Garcinia livingstonei*. These compounds had good activities (MIC 6 and 8 g/ml) against some nosocomial bacteria. (Kaikabo, *et al.*, 2011).

Amentoflavone exerted potent cytotoxic effects against both MCF-7 and HeLa cells, with IC₅₀ of 25 and 20 μ M, respectively. It has been reported that amentoflavone has anti-inflammatory activity and pregulates hPPAR γ in TNF α activated A549 cells. However, in the results, amentoflavone did not show noticeable cytotoxic activity against A549 cell line. Collectively, these observations suggest that amentoflavone is a potent agonist of hPPAR γ with cytotoxic activities against human breast and cervical cancers (Lee, *et al.*, 2012).

1.3 Objective

The objectives of this work were to investigate the chemical constituents from the leaves and stem bark of *Garcinia dulcis* and evaluate for their antibacterial activity.

CHAPTER 2

EXPERIMENTAL

2.1 Instruments and chemicals

Quick column chromatography (QCC) and column chromatography (CC) was performed by using silica gel 60 H (Merck) and silica gel 100 (70-230 Mesh ASTM, Merck), SephadexTM LH-20 (Amersham Biosciences, Sweden) and reversedphase (RP), respectively. For thin-layer chromatography (TLC), aluminum sheets of silica gel 60 GF $_{254}$ (20x20 cm, layer thickness 0.2 mm, Merck) were used for analytical purposes and the compounds were visualized under ultraviolet light. Solvent for extraction and chromatography were distilled at their boiling ranges prior to use. Melting points were recorded with a digital electrothermal melting point apparatus (Electrothermal 9100). Ultraviolet spectra were measured with a UV-160A spectrophotometer (SHIMADZU) and principle bands (λ_{max}) were recorded as wavelengths (nm) and log ε in methanol solution. Infrared spectra (IR) were obtained on a Perkin-Elmer 783 FTS165 FT-IR spectrophotometer and were recorded in wave number (cm⁻¹). ¹H and ¹³C-nuclear magnetic resonance spectra were recorded with a FT-NMR Bruker Avance 300 MHz and 500 MHz spectrometer at Department of Chemistry, Faculty of Sicence, Prince of Songkla University. Spectra were recorded in acetone- d_6 , CDCl₃ and DMSO- d_6 as δ value in ppm down field from TMS (internal standard δ 0.00). Low and high resolution mass spectra were recorded on a MAT 95 XL at Scientific Equipment Center, Prince of Songkla University.

2.2 Plant material

The leaves and stem bark of *G. dulcis* was collected in October 2012 from Songkhla province in the southern part of Thailand. The voucher specimen (Coll. No. 02, Herbarium No. 0012652) has been deposited at Prince of Songkla University Herbarium, Biology Department, Faculty of Science, Prince of Songkla University, Thailand.

2.3 Chemical investigation of the leaves

2.3.1 Extraction and isolation

The leaves of *G. dulcis* (800 g) were chopped and immersed at room temperature in acetone (3 days) to give an acetone extract (45.19 g). The crude extract was dissolved in CH_2Cl_2 to give dichloromethane soluble (A 23.96 g) and insoluble fractions (B 21.23 g). The process of extraction was shown in **Scheme 1**.

Scheme 1 Extraction of crude extracts from the leaves of G. dulcis

2.3.2 Purification of CH₂Cl₂ soluble fraction

The CH₂Cl₂ soluble fraction (**A**, 23.96 g), after removal of solvent was partitioned with EtOAc/5%NaOH to give, after work up, an aqueous layer (**C**, 8.96 g) and an EtOAc layer (**D**, 14.50 g). The aqueous layer **C** was subjected on sephadex LH-20 and eluted with 8:2 MeOH:CH₂Cl₂ to give fractions C1-C5 (**Table 2**). The selected fractions were further purified by CC and PTLC. Three pure compounds were obtained (**Scheme 2**).

Table 2 Physical characteristic and weight of fractions C1-C5

Fractions	Weight (g)	Appearance
C1	1.74	dark-green viscous liquid
C2	0.82	green viscous liquid
C3	1.30	green viscous liquid
C4	2.27	green viscous liquid
C5	2.85	brown viscous liquid

Scheme 2 Isolation of fractions C1-C5 from the CH₂Cl₂ soluble fraction

Fractions C1 and C2

Chromatogram characteristics on normal phase TLC with 7:3 CH₂Cl₂: MeOH showed none of well-separated spots under UV-lamp. Further investigation was not carried out.

Fraction C3

Fraction C3 (208 mg) was chromatographed on CC using MeOH:CH₂Cl₂ (0.5:9.5) as eluent to give eleven fractions (E1-E11). Fraction E3 (208.3 mg) was chromatographed on CC using acetone:CH₂Cl₂:hexane (1.0:3.0:6.0) as an elutent to give **AS1** (1.3 mg).

Fraction C4

Fraction C4 (2.27 g) was chromatographed on CC using acetone:hexane (3:7) as an eluent to give twelve fractions (F1-F12). Fraction F6 (30.0 mg) was further purified by PTLC using MeOH:CH₂Cl₂ (2:8) as a mobile phase to give **AS2** (1.0 mg) and **AS3** (1.8 mg).

Fraction C5

Chromatogram characteristics on normal phase TLC with 7:3 CH₂Cl₂: MeOH showed one major UV-lamp. This fraction was combined with subfraction B2 of the dichloromethane insoluble extract.

AS1

Melting point: 193-194 °C UV (MeOH) λ_{max} (nm) (log ε): 332 (1.98), 323 (2.00) and 203 (3.51) FT-IR (neat) v_{max} (cm⁻¹): 3382 (O-H stretching), 2943 (C-H stretching) and 1641 (C=C stretching) ¹H NMR, ¹³C NMR spectral data, see **Table 6**

UV (MeOH) λ_{max} (nm) (log ε): 333 (3.23), 256 (3.69) and 202 (3.98) FT-IR (neat) v_{max} (cm⁻¹): 3218 (O-H stretching) and 1684 (C=O stretching) ¹H NMR, ¹³C NMR spectral data, see **Table 7**

AS3

```
UV (MeOH) \lambda_{max} (nm) (log \varepsilon): 337 (2.76), 326 (2.81), 289 (3.67), 256 (3.93)
and 203 (4.35)
FT-IR (neat) v_{max} (cm<sup>-1</sup>): 3235 (O-H stretching) and 1690 (C=O stretching)
```

¹H NMR, ¹³C NMR spectral data, see **Table 8**

2.3.3 Purification of CH₂Cl₂ insoluble fraction

The CH_2Cl_2 insoluble fraction (B, 21.23 g) was subjected to column chromatography using sephadex LH-20 as stationary phase and eluted with 7:3 MeOH: CH_2Cl_2 . On the basis of their TLC characteristics, the fractions which contained the same major components were combined to give fractions B1-B4 (**Table 3**). The selected fractions were further purified by CC and crystallized. Six pure compounds were obtained (**Scheme 3**).

Table 3 Physical characteristic	and weight of fractions B1-B4
--	-------------------------------

Fractions	Weight (g)	Appearance
B1	7.61	green viscous liquid
B2	8.84	yellow solid mixed with brown liquid
B3	0.37	brown viscous liquid
B4	1.53	dark-brown viscous liquid

*No further investigation

Scheme 3 Isolation of fractions B1-B4 from the CH₂Cl₂ insoluble fraction

Fraction B2

A yellow solid of **AS7** (40.0 mg) which formed in fraction B2 was filtered off, the filtrate (8.80g) was further purified by CC on silica gel and eluted with CH₂Cl₂:MeOH (7:3) to give nine fractions (G1–G9). Fraction G2 (34.0 mg) was purified by CC on silica gel and eluted with acetone:CH₂Cl₂:hexane (2.5:1.5:6.0) to give **AS4** (4.3 mg). Fraction G5 (738.3 mg) was purified by CC on silica gel and eluted with acetone:hexane (4:6) to give five fractions (H1-H5). Fraction H2 (362.4 mg) was purified by CC on silica gel and eluted with acetone:CH₂Cl₂:hexane (3:2:5) to give a yellow solid **AS5** (6.2 mg). Fraction G6 (730.5 mg) was purified by CC on silica gel and eluted with CH₂Cl₂:MeOH (9.7:0.3) to give a yellow powder **AS6** (5.5 mg).

Fraction B3

Fraction B3 (374.0 mg) was purified by CC on silica gel and eluted with MeOH:CH₂Cl₂ (1.8:8.2) to give twelve fractions (I1-I12). Fractions I7 (78.2 mg) was purified by CC silica gel and eluted with MeOH:CH₂Cl₂ (1.5:8.5) to give a yellow solid **AS8** (9.0 mg).

Fraction B4

Fraction B4 (1.53 g) was purified by CC on reversed-phase and eluted with MeOH:H₂O (2:8) to give fifteen fractions (J1-J15). Faction J14 (80.0 mg) was purified by CC on silica gel and eluted with MeOH:CH₂Cl₂ (7:3)to give **AS9** (1.2 mg).

AS4

Melting point: 233-234 °C UV (MeOH) λ_{max} (nm) (log ε): 339 (4.42), 269 (4.47) and 203 (4.69) FT-IR (neat) v_{max} (cm⁻¹): 3421 (O-H stretching) and 1653 (C=O stretching) ¹H NMR, ¹³C NMR spectral data, see **Table 9**

AS5

Melting point: 215-216 °C UV (MeOH) λ_{max} (nm) (log ε): 291 (5.14) and 201 (5.54) FT-IR (neat) v_{max} (cm⁻¹): 3215 (O-H stretching) and 1635 (C=O stretching) ¹H NMR, ¹³C NMR spectral data, see **Table 10**

AS6

Melting point: 236-238 °C UV (MeOH) λ_{max} (nm) (log ε): 333 (4.05), 269 (4.09) and 202 (4.28) FT-IR (neat) ν_{max} (cm⁻¹): 3402 (O-H stretching) and 1649 (C=O stretching) ¹H NMR, ¹³C NMR spectral data, see **Table 11**

Melting point: 305-307 °C UV (MeOH) λ_{max} (nm) (log ε): 344 (4.75) and 289 (4.93) FT-IR (neat) v_{max} (cm⁻¹): 3215 (O-H stretching) and 1641 (C=O stretching) ¹H NMR, ¹³C NMR spectral data, see **Table 12**

AS8

Melting point: 290-293 °C UV (MeOH) λ_{max} (nm) (log ε): 348 (4.88), 289 (5.02) and 201 (5.41) FT-IR (neat) v_{max} (cm⁻¹): 3423 (O-H stretching), 1643 (C=O stretching), 1262 (S=O stretching) and 1042 (C-O-S stretching) ¹H NMR, ¹³C NMR spectral data, see **Table 13**

AS9

Melting point: 247-250 °C UV (MeOH) λ_{max} (nm) (log ε): 339 (3.17), 322 (3.21) and 292 (3.34) FT-IR (neat) v_{max} (cm⁻¹): 3215 (O-H stretching) and 1622 (C=O stretching) ¹H NMR, ¹³C NMR spectral data, see **Table 14**

2.4 Chemical investigation of the stem bark

2.4.1 Extraction and isolation

The stem bark of *G. dulcis* (3.0 kg) was chopped and immersed at room temperature in CH_2Cl_2 (3 days) to give the CH_2Cl_2 extract (113.5 g). Partition of CH_2Cl_2 extract with $CH_2Cl_2/5\%$ NaOH gave aqueous layer after work up (**L**; 78.3 g) and CH_2Cl_2 layer (M; 38.5 g) (**Scheme 4**). Fraction L was subjected on sephadex LH-20 and eluted with MeOH: CH_2Cl_2 (8:2) to give fractions L1-L3 (**Table 4**). The selected fractions were further purified by CC. Nine pure compounds were obtained (**Scheme 5**).

Scheme 4 Extraction of crude extracts from the stem bark of G. dulcis

2.4.2 Purification of aqueous layer (L) fraction

Aqueous layer L (78.3 g) was subjected on sephadex LH-20 and eluted with MeOH:CH₂Cl₂ (7:3) to give fractions (L1-L3). Fraction L3 (10.35 g) was separated by quick column chromatography over silica 60H using hexane, hexane-acetone and acetone as eluents. On the basis of their TLC characteristics, the fractions which contained the same major components were combined to give fifteen fractions (N1-N15). Fractions N2, N4, N6, N9, N11 and N15 were crystallized in hexane:acetone (7:3) to give yellow solids of AS11, AS12, AS13, AS14, AS15 and AS16 (9.6, 1.5, 6.0, 138.6, 43.5 and 11.9 mg), respectively. Fraction N7 was crystallized in hexane-acetone (7:3) to give a white solid of AS10 (4.8 mg). Fraction N14 (118.0 mg) was purified by CC on silica gel and eluted with acetone:hexane (2:7) to give AS17 (2.5 mg) and AS18 (1.2 mg).

Fractions	Weight (g)	Appearance
L1	16.43	brown viscous liquid
L2	36.02	yellow-brown viscous liquid
L3	10.35	yellow solid mixed with brown liquid

 Table 4 Physical characteristic and weight of fractions L1-L3

Scheme 5 Isolation of fractions N1 – N15 from the aqueous layer (L)

Fractions	Weight (g)	Appearance
N1	0.56	yellow gel
N2	0.15	yellow solid mixed yellow liquid
N3	0.66	yellow solid mixed yellow liquid
N4	0.10	yellow solid mixed yellow liquid
N5	0.22	yellow solid mixed yellow liquid
N6	0.10	yellow solid mixed yellow liquid
N7	0.33	white solid
N8	0.14	yellow solid mixed yellow liquid
N9	0.19	yellow solid mixed yellow liquid
N10	0.48	yellow solid mixed yellow liquid
N11	0.76	yellow solid mixed yellow liquid
N12	0.48	yellow solid mixed yellow liquid
N13	0.40	yellow solid mixed yellow liquid
N14	0.55	yellow solid mixed yellow liquid
N15	1.52	brown viscous liquid

Table 5 Physical characteristic and weight of fractions N1-N15

Melting point : 280-282 °C

UV (MeOH) λ_{max} (nm) (log ε) : 313 (3.13), 269 (3.41), 244 (3.42) and 202 (4.64) FT-IR (neat) v_{max} (cm⁻¹): 3420 (O-H stretching), 1689 (C=O stretching) and 2939 (C-H stretching)

¹H NMR, ¹³C NMR spectral data, see **Table 15**

AS11

Melting point: 203-205 °C

UV (EtOH) λ_{max} (nm) (log ε): 382 (3.85), 322 (4.35), 267 (4.75) and 253 (4.79) FT-IR (neat) ν_{max} (cm⁻¹): 3375 (O-H stretching) and 1645 (C=O stretching) ¹H NMR, ¹³C NMR spectral data, see **Table 16**

Melting point: 99-100 °C UV (EtOH) λ_{max} (nm) (log ε): 326 (3.90), 255 (4.33) and 205 (4.28) FT-IR (neat) v_{max} (cm⁻¹): 3361 (O-H stretching) and 1615 (C=O stretching) ¹H NMR, ¹³C NMR spectral data, see **Table 17**

AS13

Melting point: 194-196 °C UV (EtOH) λ_{max} (nm) (log ε) : 332 (4.01), 280 (4.40) and 256 (4.30) FT-IR (neat) ν_{max} (cm⁻¹): 3420 (O-H stretching) and 1657 (C=O stretching) ¹H NMR, ¹³C NMR spectral data, see **Table 18**

AS14

Melting point: 188-189 °C UV (EtOH) λ_{max} (nm) (log ε): 318 (3.45), 265 (3.89), 250 (3.92), 239 (3.89) and 204 (391) FT-IR (neat) v_{max} (cm⁻¹): 3244 (O-H stretching) and 1640 (C=O stretching)

¹H NMR, ¹³C NMR spectral data, see **Table 19**

AS15

Melting point: 223-225 °C UV (EtOH) λ_{max} (nm) (log ε): 327 (3.15), 269 (3.62) and 247 (3.58) FT-IR (neat) v_{max} (cm⁻¹): 3422 (O-H stretching) and 1630 (C=O stretching) ¹H NMR, ¹³C NMR spectral data, see **Table 20**

AS16

Melting point: 240-243 °C UV (EtOH) λ_{max} (nm) (log ε): 329 (4.02), 280 (3.69) and 255 (4.30) FT-IR (neat) v_{max} (cm⁻¹): 3419 (O-H stretching) and 1640 (C=O stretching) ¹H NMR, ¹³C NMR spectral data, see **Table 21**

UV (EtOH) λ_{max} (nm) (log ε): 329 (4.53), 255 (4.82) and 208 (4.80) FT-IR (neat) ν_{max} (cm⁻¹): 3525 (O-H stretching) and 1633 (C=O stretching) ¹H NMR, ¹³C NMR spectral data, see **Table 22**

AS18

Melting point: 102-105 °C UV (EtOH) λ_{max} (nm) (log ε): 331 (4.05), 256 (4.41) and 203 (4.32) FT-IR (neat) v_{max} (cm⁻¹): 3229 (O-H stretching) and 1645 (C=O stretching) ¹H NMR, ¹³C NMR spectral data, see **Table 23**

CHAPTER 3

RESULTS AND DISCUSSION

3.1 Structural elucidation of compounds from the leaves and stem bark of *G. dulcis*

The crude acetone extract and dichloromethane extract from the leaves and stem bark of G. dulcis were subjected to repeated quick column, column chromatography over silica gel and Sephadex LH-20 to give eighteen compounds. Their structures were elucidated mainly by 1D and 2D NMR spectroscopic data: ¹H, ¹³C NMR, DEPT 135°, DEPT 90°, HMQC, HMBC, COSY and NOE. The physical properties and spectroscopic data were also compared with the reported values. Nine compounds were isolated from the leaves. They were identified as lupeol (AS1), 4-hydroxy benzoic acid (AS2), 4-hydroxy-3-methoxybenzoic acid (AS3), 8-(5-(5,7dihydroxy-4-oxo-4H-chromen-2-yl)-2-hydroxy-3-(3-methylbut-2-enyl)phenyl)-5,7dihydroxy-2-(4-hydroxyphenyl)-6-(3-methylbut-2-enyl)-4H-chromen-4-one (AS4), GB-2a (AS5), amentoflavone (AS6), morelloflavone (AS7), morelloflavone-7"-sulfate (AS8), volkensiflavone (AS9). Nine compounds were obtained from the stem bark. They were identified as oleanolic acid (AS10), garciniaxanthone C (AS11), garciniaxanthone A (AS12), 1,4,8-trihydroxy-6-methoxy-2-(3-methylbut-2-enyl)-9Hxanthen-9-one 1.2.5.6-(AS13), 12b-hydroxy-des-D-garcigerrin A (AS14), tetrahydroxy-7-(3-methylbut-2-enyl)-3-(2-methylbut-3-en-2-yl)-9H-xanthen-9-one (AS15), 1,3,5,6-tetrahydroxy-2,8-bis(3-methylbut-2-enyl)-9*H*-xanthen-9-one(AS16), (AS17), 1,3,5,6-tetrahydroxy-4,8-bis(3-methylbut-2-enyl)-9HgarciniaxanthoneE xanthen-9-one (AS18). AS4, AS13, AS15, AS16 and AS18 are new naturally occurrence compounds.

AS1: lupeol

AS1 was a white solid, m.p. 193-194°C. The UV spectrum showed absorption bands at λ_{max} 203, 323 and 332 nm. The IR spectrum showed the absorption bands of O-H stretching at 3382, C-H stretching at 2943 and C=C stretching at 1641 cm⁻¹. The ¹H NMR spectrum (**Table 6**) showed resonances of seven methyl singlet signals at δ 0.76, δ 0.79, δ 0.83, δ 0.94, δ 0.97 and δ 1.03, along with one vinylic methyl at δ 1.68, two protons of an isopropenyl moiety at δ 4.68 (1H, *d*, 3.0, H-29a) and δ 4.57 (1H, *m*, H-29b) and a methine proton at δ 2.38 (1H, *m*, H-19) and an oxy-methine proton at δ 3.20 (1H, *dd*, 9.0, 3.0, H-3). These data are in agreement with those of lupeol (Reynolds *et al.*, 1986). Thus **AS1** was assigned to be lupeol (Pakakrong, 2005).

Position	AS1; $\delta_{ m H}$ (mult., $J_{ m Hz}$)	lupeol; $\delta_{ m H}$ (mult., $J_{ m Hz}$)
3	3.20 (<i>dd</i> , 9.0, 3.0)	3.18 (<i>dd</i> , 10.8, 5.1)
19	2.38 (<i>m</i>)	2.39 (<i>m</i>)
23	0.97 (s)	0.98 (s)
24	0.76 (<i>s</i>)	0.77 (<i>s</i>)
25	0.83 (s)	0.84 (s)
26	1.03 (s)	1.04 (s)
27	0.94 (s)	0.97 (s)
28	0.79 (s)	0.79 (<i>s</i>)
29a	4.68 (<i>d</i> , 3.0)	4.69 <i>(m)</i>
29b	4.57 (<i>m</i>)	4.56 (<i>m</i>)
30	1.68 (s)	1.69 (<i>s</i>)

 Table 6¹H NMR spectrum data of AS1 and lipeol

AS2: 4-hydroxybenzoic acid

AS2 was obtained as a colorless gum. The UV spectrum showed absorption bands at λ_{max} 202, 256 and 333 nm. The IR spectrum exhibited absorption bands at 3218 and 1684 cm⁻¹ for a hydroxyl group and a carbonyl group of a carboxylic acid, respectively. The ¹H NMR spectrum (Table 7) showed the resonances of doublet aromatic protons H-2/H-6 at δ 7.91 (J = 9.0 Hz) and doublet aromatic protons H-3/H-5 at δ 6.92 (J = 9.0 Hz) indicating 1,4-disubstituted benzene. These data were corresponded with those of 4-hydroxybenzoic acid (Choi et al., 2002). Therefore AS2 was 4-hydroxybenzoic acid.

Position	AS2; $\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	4-hydroxybenzoic acid; $\delta_{\rm H}$ (mult., $J_{\rm Hz}$)
1	-	-
2,6	7.91 (<i>d</i> , 9.0)	7.93 (<i>d</i> , 8.7)
3,5	6.92 (<i>d</i> , 9.0)	6.84 (<i>d</i> , 8.7)
4	-	-
7	-	-

Table 7¹H NMR spectral data of AS2 and 4-hydroxybenzoic acid

AS3: 4-hydroxy-3-methoxybenzoic acid

AS3 was obtained as a colorless gum. The UV spectrum showed absorption bands at λ_{max} 203, 256, 289, 326 and 337 nm. The IR spectrum exhibited absorption bands at 3235 and 1690 cm⁻¹ for a hydroxyl group and a carbonyl group of carboxylic acid, respectively. The ¹H NMR spectrum (**Table 8**) showed the signals of doublet of doublet aromatic proton H-6 at δ 7.55 (J = 9.0, 1.8 Hz) and two signals of doublet aromatic protons H-2 and H-5 at δ 7.53 (J = 1.8 Hz) and δ 6.87 (d, J = 9.0 Hz) suggesting a 1,3,4-trisubstituted benzene ring and showed the resonance of a methoxyl group at δ 3.87. The assignment of the substituent was deduced from the NOE spectra. The enhancement of H-2 which was caused by irradiation 3-OMe at δ 3.87, in the NOE experiment supported that 3-OMe was adjacent to H-2. The spectral data of **AS3** corresponded to those of 4-hydroxy-3-methoxybenzoic acid (Chen *et al.*, 2010).

NOE of AS3

Table 8 ¹H NMR spectrum data of AS3 and 4-hydroxy-3-methoxybenzoic acid

Position	AS3; $\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	4-hydroxy-3-methoxybenzoic acid; $\delta_{\rm H}$ (mult., $J_{\rm Hz}$)
2	7.53 (<i>d</i> , 1.8)	7.54 (<i>d</i> , 2.2)
5	6.87 (<i>d</i> , 9.0)	6.90 (<i>d</i> , 8.3)
6	7.55 (<i>dd</i> , 9.0, 1.8)	7.58 (<i>dd</i> , 8.3, 2.2)
3-OMe	3.87 (<i>s</i>)	3.89 (s)

AS4: 8-(5-(5,7-dihydroxy-4-oxo-4*H*-chromen-2-yl)-2-hydroxy-3-(3-methylbut-2enyl)phenyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)-6-(3-methylbut-2-enyl)-4*H*chromen-4-one

AS4 was a pale yellow powder, m.p. 233-234 $^{\circ}$ C, EIMS at [M]⁺ m/z 674.5 for C₄₀H₃₄O₁₀ (calcd 674.2). The UV spectrum showed absorption bands at λ_{max} 203, 269 and 339 nm. The IR spectrum showed the absorption bands of O-H stretching at 3421 and C=O stretching at 1653 cm⁻¹. The ¹H NMR spectrum (**Table 9**) suggested that it was a flavonylflavone which the methine olefinic protons H-3 and H-3" resonated at δ 6.82 (s) and δ 6.77 (s). The resonances of a chelated hydroxyl protons 5-OH at δ 12.96, an olefenic methine proton H-3 at δ 6.82 (s), meta aromatic protons H-6 and H-8 at δ 6.16 and δ 6.43 (d, J = 1.8 Hz, each), meta aromatic protons H-2' and H-6' at δ 7.87 and δ 7.76 (d, J = 2.1 Hz, each) were assigned for the first unit. The HMBC correlation of 5-OH to C-4a (δ 103.5), C-6 (δ 99.3) and H-6 to C-4a confirmed the location of H-6. The HMBC correlation of H-2'/H-6' to C-2 (δ 164.4) and H-3 to C-1'(δ 121.6) suggested the tetrasubstituted aromatic ring was at C-2. Protons H-6, H-8, 5-OH and H-3 all correlated to C-4a. The resonances of a chelated hydroxyl protons 5"-OH at δ 13.38 (s), olefinic proton H-3" at 6.77 (s) and aromatic protons H-2"'/H-6"' and H-3"'/ H-5"' at δ 7.52 and 6.70 (AA'BB' pattern, J = 8.7 Hz) were assigned for the second unit. The HMBC correlation of H-2"/H-6" to C-2" (δ 163.8) and H-3" to C-1"' (δ 121.9) suggested the disubstituted aromatic ring was at C-2". In HMBC experiment, the correlations of 5"-OH and H-3" to C-4a" (δ 104.4) and H-3" to C-2" confirmed the location of H-3". Two sets of characteristic signals of prenyl group were displayed. According to COSY and HMBC correlations, the resonances at δ 3.30 (*m*, H-7'), δ 5.23 (*t*, *J* = 6.6 Hz, H-8') and δ 1.74 (H-10', H-11') were assigned for 3'-prenyl group, whereas those the resonances at δ 3.30 (*m*, H-9"), at δ 5.42 (*t*, *J* = 7.2 Hz, H-10") and at δ 1.63, 1.74 (*s*, H-12" and H-13") were assigned for 6"-prenyl group. According to HMBC correlations of H-7' to C-2' (δ 128.0) and H-9" to C-5" (δ 158.4) indicated that the 3'-prenyl group was at C-3' and the 6"-prenyl group was at C-6". The HMBC correlation of H-6' to C-8" allowed the two units of flavonoids connected via C-6 and C-8". To fulfill the structure, the hydroxyl groups were placed at C-7, C-4', C-7" and C-4"'. The chemical shift of δ 164.5, δ 157.8, δ 160.0 and δ 161.4 were assigned at C-7, C-4', C-7" and C-4"'. The flavonoid units were corresponded to yinyanghuo D (Chen, *et al.*, 1996) and 6-prenylapigenin (Lee, *et al.*, 1998). Thus **AS4** was assigned to be 8-(5-(5,7-dihydroxy-4-oxo-4*H*-chromen-2-yl)-2-hydroxy-3-(3-methylbut-2-enyl)phenyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)-6-(3-methylbut-2-enyl)-4*H*-chromen-4-one.

Major HMBC of AS4

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	HMBC
2	164.4 (C)	-	-
3	103.5 (CH)	6.82 (s)	C-4a, C-1′
4	182.1 (C=0)	-	-
4a	103.5 (C)	-	-
5	161.9 (C)	-	-
6	99.3 (CH)	6.16 (<i>d</i> , 1.8)	C-4a, C-5, C-7, C-8
7	164.5 (C)	-	-
8	94.5 (CH)	6.43 (<i>d</i> , 1.8)	C-4a, C-6, C-7, C-8a
8a	157.8 (C)	-	-
1′	121.6 (C)	-	-
2'	128.0 (CH)	7.87 (<i>d</i> , 2.1)	C-2, C-4', C-6', C-7'
3'	119.0 (C)	-	-
4′	157.8 (C)	-	-
5'	112.0 (C)	-	-
6'	129.8 (CH)	7.76 (<i>d</i> , 2.1)	C-2, C-2', C-4' , C-8"
7′	21.9 (CH ₂)	3.30 (<i>m</i>)	C-5', C-8', C-9'
8′	122.4 (CH)	5.23 (<i>t</i> , 6.6)	C-10', C-11'
9′	132.5 (C)	-	-
10′	18.2 (CH ₃)	1.74 (s)	C-8', C-9', C-11'
11′	26.0 (CH ₃)	1.74 (s)	C-8', C-9', C-10'
2″	163.8 (C)	-	-
3″	102.9 (CH)	6.77 (<i>s</i>)	C-4a", C-1"'
4″	182.7 (C=O)	-	-
4a″	104.4 (C)	-	-
5″	158.4 (C)	-	-
6″	112.0 (C)	-	-
7″	160.0 (C)	-	-
8″	104.2 (C)	-	-
8a″	153.3 (C)	-	-

Table 9 1 H, 13 C NMR and HMBC spectral data (DMSO- d_6) of AS4

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	HMBC
9″	22.6 (CH ₂)	3.30 (<i>m</i>)	C-5", C-7", C-10", C-11"
10″	122.8 (CH)	5.42 (<i>t</i> , 7.2)	C-12", C-13"
11″	131.1 (C)	-	-
12″	26.0 (CH ₃)	1.63 (<i>s</i>)	C-9", C-10", C-13"
13″	18.3 (CH ₃)	1.74 (<i>s</i>)	C-9", C-10", C-12"
1‴	121.9 (C)	-	-
2‴	128.6 (CH)	7.52 (<i>d</i> , 8.7)	C-2", C-4"', C-6'"
3‴	116.18 (CH)	6.70 (<i>d</i> , 8.7)	C-1"', C-4"', C-5"
4‴	161.4 (C)	-	-
5‴	116.2 (CH)	6.70 (<i>d</i> , 8.7)	C-1"', C-4"', C-5"
6‴	128.5 (CH)	7.52 (<i>d</i> , 8.7)	C-2", C-4"', C-6'"
5-OH	-	12.96 (s)	C-4a, C-5, C-6
5″-OH	-	13.38 (s)	C-4a", C-5", C-6"

Table 9 ¹H, ¹³C NMR and HMBC spectral data (DMSO- d_6) of AS4 (continued)

AS5 is a pale yellow solid, m.p. 215-216 °C. The ¹H and ¹³C NMR spectrum in DMSO- d_6 displayed duplicated signals (in a ratio of 1:0.4), suggested the existence of two conformers at room temperature. The major reasons leading to the existence of such conformer being rotational restrictions about the interflavanone C-3, C-8" bond. The major conformer (Table 10) showed the resonances of a chelated hydroxyl protons 5-OH at δ 12.19 (s), meta aromatic protons H-6 and H-8 at δ 5.90 and 5.79 (1H each, br s), trans methine protons H-2 and H-3 at δ 5.73 and 4.56 (1H each, d, J = 12.3 Hz) and aromatic protons H-2'/H-6' and H-3'/H-5' at δ 7.13 and 6.79 (2H each, d, J = 8.5 Hz). The HMBC correlation of H-6 to C-8 $(\delta 95.9)$, C-4a $(\delta 101.8)$ and 5-OH to C-6 $(\delta 96.5)$, C-4a suggested the aromatic proton H-6 was *ortho* to 5-OH. The HMBC correlation of H-2'/H-6' to C-2 (δ 82.2) and H-2 to C-2'/C-6' (δ 129.4) suggested the 1.4-disubstituted aromatic ring was connected to C-2. The ¹H NMR spectrum further showed a singlet of an aromatic proton H-6" at δ 5.86 (s), an oxy-methine proton H-2" at δ 5.43 (br t), non equivalent methylene protons H-3" at δ 2.90, δ 2.60 (m) and ABX pattern aromatic protons H-2"', H-5"' and H-6"' at δ 7.10 (*d*, *J* = 2.0 Hz), δ 6.64 (*d*, *J* = 8.5 Hz) and δ 6.73 (*dd*, J = 8.5, 2.0 Hz). Protons H-3" and H-6" correlated to C-4a" (δ 102.1). The HMBC showed the correlations of H-2" to C-2" (δ 79.0) and H-3" to C-1" (δ 128.4) suggested the disubstituted benzene ring was connected to C-2". This assigned structure was corresponded to a flavanone named eriodictyol (Schroder, G. et al., 2004) The HMBC correlation of H-3 to C-8a" allowed the two units of flavonoids connected via C-3 and C-8". To fulfill the structure, the hydroxyl groups were placed

at C-7, C-4', C-7", C-3"' and C-4"'. The HMBC correlation of H-6, H-8 to carbon resonance at δ 166.9, H-2'/H-6' to carbon resonance at δ 158.1, H-6" to carbon resonance at δ 161.2, H-5"' to carbon resonance at δ 145.7 and the correlation of H-2"' to carbon resonance at δ 146.2 allowed C-7, C-4', C-7", C-3"' and C-4"' having chemical shift of δ 166.9, δ 158.1, δ 161.2, δ 145.7 and δ 146.2, respectively. The complete HMBC confirmed the structure of **AS5** as (2*S*,2"*S*,3*R*)-2"-(3,4-dihydroxyphenyl)-2,3,2",3"-tetrahydro-5,7,5",7"-tetrahydroxy-2-(4-hydroxyphenyl)-[3,8"-Bi-4*H*-1-benzopyran]-4,4"-dione or known as GB-2a (Ansari, *et al.*, 1976).

Major HMBC of AS5

Table 10	ΉH,	¹³ C NMR	and HMBC	spectral data	$(DMSO-d_6)$) of AS5
----------	-----	---------------------	----------	---------------	--------------	-----------------

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	НМВС
2	82.2 (CH)	5.73 (<i>d</i> , 2.3)	C-4, C-1', C-2', C-6'
3	47.8 (CH)	4.56 (<i>d</i> , 12.3)	C-2, C-4, C-7", C-8", C-8a"
4	197.1 (C=O)	-	-
4a	101.8 (C)	-	-
5	165.3 (C)	-	-
6	96.5 (CH)	5.90 (<i>br s</i>)	C-4a, C-5, C-7, C-8
7	166.9 (C)	-	-
8	95.9 (CH)	5.79 (br s)	C-6, C-4a, C-7, C-8a

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	HMBC
8a	163.3 (C)	-	-
1'	130.2 (C)	-	-
2'	129.4 (CH)	7.13 (<i>d</i> , 8.5)	C-2, C-6', C-4'
3'	114.4 (CH)	6.79 (<i>d</i> , 8.5)	C-1', C-2', C-5', C-4'
4'	158.1 (C)	-	-
5'	114.4 (CH)	6.79 (<i>d</i> , 8.5)	C-1',C-3', C-4', C-6'
6'	129.4 (CH)	7.13 (<i>d</i> , 8.5)	C-2, C-2', C-4'
2"	79.0 (CH)	5.43 (<i>br t</i>)	C-4", C-1", C-2"'
3"	43.1 (CH ₂)	2.90 (<i>m</i>)	C-2", C-4", C-1""
		2.60 (<i>m</i>)	C-2", C-4", C-1"'
4″	196.6 (C=O)	-	-
4a″	102.1 (C)	-	-
5″	164.1 (C)	-	-
6″	95.5 (CH)	5.86 (s)	C-4a", C-5", C-7", C-8"
7″	161.2 (C)	-	-
8″	101.8 (C)	-	-
8a″	162.5 (C)	-	-
1‴	128.4 (C)	-	-
2′″	129.0 (CH)	7.10 (<i>d</i> , 2.0)	C-2", C-3", C-4", C-6"
3'"	145.7 (C)	-	-
4'''	146.2 (C)	-	-
5‴	115.3 (CH)	6.64 (<i>d</i> , 8.5)	C-1"', C-3"', C-4"'
6‴	118.2 (CH)	6.73 (<i>dd</i> , 8.5, 2.0)	C-2", C-1"", C-2"", C-4""
5-OH	-	12.19 (s)	C-4a, C-5, C-6
4'-OH	-	9.61 (s)	C-4', C-3', C-5'
5″-OH	-	12.15 (s)	C-4a", C-5", C-6"
3′′′-ОН	-	9.20 (s)	C-3", C-4"
4‴-OH	-	9.08 (s)	C-3", C-4", C-5"

Table 10 ¹H, ¹³C NMR and HMBC spectral data (DMSO- d_6) of **AS5** (continued)

AS6 is a yellow powder, m.p. 236-238 °C. The UV spectrum showed absorption bands at λ_{max} 333, 269 and 202 nm. The IR spectrum showed the absorption bands of O-H stretching at 3402 and C=O stretching at 1649 cm⁻¹. The ¹H NMR spectrum (Table 11) suggested that it was a flavonylflavone which the methine olefinic protons H-3 and H-3" resonated at δ 6.39 (s). The resonances of chelated hydroxyl protons 5-OH at δ 12.67, meta aromatic protons H-6 and H-8 at δ 6.12 and 6.25 (d, J = 2.1 Hz), aromatic proton H-2', H-5' and H-6' as an ABX pattern at δ 7.76 $(d, J = 2.1 \text{ Hz}), \delta 7.05 (d, J = 8.7 \text{ Hz}) \text{ and } \delta 7.67 (dd, J = 8.7, 2.1 \text{ Hz}) \text{ were determined}$ for the first unit. The HMBC correlation of 5-OH to C-4a (δ 109.2), C-6 (δ 104.2) and H-6 to C-4a confirmed the location of H-6. The HMBC correlation of H-3 to C-1' (δ 126.9) and H-6' to C-2 (δ 168.9) suggested the trisubstituted benzene ring was at C-2. The resonances of chelated hydroxyl proton 5"-OH at δ 12.86, aromatic proton H-6" at δ 6.41 (s), aromatic proton H-2"/H-6" and H-3"/H-5" at δ 7.31 and δ 6.62 (d, J = 8.7 Hz each) were assigned for the second unit. The HMBC correlation of 5"-OH to C-6" (δ 104.2), C-4a" (δ 109.6), and H-6" to C-4a" confirmed the location of H-6". The correlation of H-3" to C-1"' (δ 126.7) and H-2"'/H-6"' to C-2" (δ 168.9) suggested the para-disubstituted benzene ring was at C-2". The HMBC correlation of H-2' to C-8" (δ 108.4) allowed the two units of flavonoids connected via C-6 and C-8". Thus AS6 was assigned to be 8-(5-(5,7-dihydroxy-4-oxo-4H-chromen-2-yl)-2hydroxyphenyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one or known as amentoflavone (Cao, et al., 1997).

Major HMBC of AS6

Table 11 ¹H, ¹³C NMR and HMBC spectral data (CDCl₃+DMSO-*d*₆) of **AS6**

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	НМВС
2	168.9 (C)	-	-
3	108.2 (CH)	6.39 (<i>s</i>)	C-4, C-4a, C-1′
4	188.9 (C=O)	-	-
4a	109.2 (C)	-	-
5	166.7 (C)	-	-
6	104.2 (CH)	6.12 (<i>d</i> , 2.1)	C-4a, C-5, C-7, C-8a
7	168.9 (C)	-	-
8	98.9 (CH)	6.25 (<i>d</i> , 2.1)	C-4a, C-6, C-7, C-8a
8a	162.6 (C)	-	-
1'	126.9 (C)	-	-
2'	136.1 (CH)	7.76 (<i>d</i> , 2.1)	C-2, C-4', C-6', C-8"
3'	124.8 (C)	-	-
4'	163.9 (C)	-	-
5'	120.9 (CH)	7.05 (<i>d</i> , 8.7)	C-1',C-3', C-4'
6′	132.3 (CH)	7.67 (<i>dd</i> , 8.7, 2.1)	C-2, C-2', C-4'

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	HMBC
2″	168.9 (C)	-	-
3″	107.7 (CH)	6.39 (<i>s</i>)	C-2", C-4", C-4a", C-1"'
4″	187.4 (C=O)	-	-
4a″	109.6 (C)	-	-
5″	166.3 (C)	-	-
6″	104.2 (CH)	6.41 (<i>s</i>)	C-4a", C-5", C-7", C-8"
7″	166.2 (C)	-	-
8″	108.4 (C)	-	-
8a″	159.8 (C)	-	-
1‴	126.7 (C)	-	-
2‴	132.7 (CH)	7.31 (<i>d</i> , 8.7)	C-2", C-4"', C-6"'
3‴	121.6 (CH)	6.62 (<i>d</i> , 8.7)	C-1"', C-4"', C-5"'
4‴	165.8 (C)	-	-
5‴	121.6 (CH)	6.62 (<i>d</i> , 8.7)	C-1"', C-3"', C-4"'
6‴′	132.7 (CH)	7.31 (<i>d</i> , 8.7)	C-2", C-2"', C-4"'
5-OH	-	12.67 (s)	C-4a, C-5, C-6
5″-OH	-	12.86 (<i>s</i>)	C-4a", C-5", C-6"

 Table 11 ¹H, ¹³C NMR and HMBC spectral data (CDCl₃+DMSO-d₆) of AS6 (continued)

AS7: 5,7,4',5",7",3",4"-heptahydroxy-[3,8"]-flavonylflavanone (morelloflavone)

AS7 is a yellow solid, m.p. 305-307 °C. The ¹H and ¹³C NMR spectrum in DMSO- d_6 displayed duplicated signals (in a ratio of 1:0.38), suggested the existence of two conformers at room temperature. The signals of major conformer (Table 12) were a singlet chelated hydroxyl protons 5-OH, 5"-OH at δ 12.30 and δ 13.10, two *meta* aromatic protons H-6, H-8 at δ 5.99 and δ 6.06, two doublets of trans methine protons H-2 and H-3 at (δ 5.73 and δ 4.92 J = 12.0 Hz) and AA'BB' system of aromatic protons H-2'/H-6' and H-3'/H-5' at δ 7.17 and δ 6.41 (d each, J = 8.4 Hz). In HMBC experiment, protons H-6, H-8, 5-OH and H-3 all correlated to C-4a (δ 102.1). The chemical shift of δ 5.99 was assigned for H-6 due to HMBC correlation of 5-OH to C-6 (δ 95.8) and H-6 to C-5 (δ 164.3). The HMBC correlation of H-2'/H-6' to C-2 (δ 81.4) and H-2 to C-2'/C-6' (δ 128.7), suggested the 1,4-disubstituted aromatic ring was connected to C-2. This assigned structure was corresponded to a flavone named aromadendrine (Lee, I.-K. et al., 1995). The ¹H NMR spectrum further showed singlet of aromatic protons H-6" at δ 6.24, singlet olefinic proton H-3" at δ 6.60 and a 1,3,4-trisubstituted benzene (δ 7.45, d, J = 2.4 Hz, H-2'''; δ 6.92, d, J = 8.4 Hz, H-5'''; δ 7.27, dd, J = 8.4, 2.4 Hz, H-6'''). Protons H-3'' and H-6" correlated to C-4a" (δ 103.6). The HMBC showed the correlation of H-2", H-6''' to C-2'' (δ 164.1) and H-3'' to C-1''' (δ 121.5) suggested the 1,3,4-trisubstituted benzene was connected to C-2". The HMBC correlation of H-3 to C-8a" allowed the two units of flavonoids connected via C-3 and C-8". To fulfill the structure, the hydroxyl groups were placed at C-7, C-4', C-7", C-3"' and C-4"'. The HMBC correlation of H-6, H-8 to carbon resonance at δ 167.0, H-2'/H-6' to carbon resonance at δ 157.8, H-6" to carbon resonance at δ 162.1, H-2", H-5" to carbon resonance at δ 161.0 and the correlation of H-2", H-6" to carbon resonance at δ 150.1 allowed C-7, C-4', C-7", C-4" and C-4" having chemical shift of δ 167.0, δ 157.8, δ 162.1, δ 161.0 and δ 150.1, respectively. The complete HMBC confirmed the structure of **AS7** as 5,7,4',5",7",3",4"-heptahydroxyl-[3,8"]-flavonylflavanone or known as morelloflavone (Li *et al.*, 2002)

Major HMBC of AS7

Table 12¹H, ¹³C NMR and HMBC spectral data (DMSO-*d*₆) of AS7

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	НМВС
2	81.4 (CH)	5.73 (<i>d</i> , 12.0)	C-4, C-1′
3	49.1 (CH)	4.92 (<i>d</i> , 12.0)	C-2, C-4, C-4a, C-1', C-8"
4	196.7 (C=O)	-	-
4a	102.1 (C)	-	-
5	164.3 (C)	-	-
6	95.8 (CH)	5.99 (s)	C-4a, C-5, C-7, C-8
7	167.0 (C)	-	-
8	96.7 (CH)	6.06 (<i>s</i>)	C-4a, C-7
8a	163.3 (C)	-	-
1′	128.6 (C)	-	-
2'	128.7 (CH)	7.17 (<i>d</i> , 8.4)	C-2, C-4', C-5', C-4'
3'	114.9 (CH)	6.41 (<i>d</i> , 8.4)	C-2', C-4', C-5'

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	HMBC
4'	157.8 (C)	-	-
5'	114.9 (CH)	6.41 (<i>d</i> , 8.4)	C-3', C-4', C-6'
6′	128.7 (CH)	7.17 (<i>d</i> , 8.4)	C-2, C-2', C-4', C-5'
2″	164.1 (C)	-	-
3″	102.7 (CH)	6.60 (<i>s</i>)	C-4", C-4a", C-1"''
4″	182.1 (C=O)	-	-
4a″	103.6 (C)	-	-
5″	163.9 (C)	-	-
6″	99.1 (CH)	6.24 (<i>s</i>)	C-5", C-4a", C-7", C-8"
7″	162.1 (C)	-	-
8″	101.0 (C)	-	-
8a″	155.7 (C)	-	-
1‴	121.5 (C)	-	-
2′″	113.7 (CH)	7.45 (<i>d</i> , 2.4)	C-2", C-4"", C-6"'
3‴	161.0 (C)	-	-
4′′′	150.1 (C)	-	-
5′″	116.6 (CH)	6.92 (<i>d</i> , 8.4)	C-1"', C-4'''
6‴	119.8 (CH)	7.27 (<i>dd</i> , 8.4, 2.4)	C-2", C-1"', C-2"', C-4'''
5-OH	-	12.30 (s)	C-4a, C-5, C-6
5″-OH	-	13.10 (s)	-

Table 12 ¹H, ¹³C NMR and HMBC spectral data (DMSO- d_6) of **AS7** (continued)

AS8: (2S,3R)-2'-(3,4-dihydroxyphenyl)-5,5',7-trihydroxy-2-(4-hydroxyphenyl)-4,4'-

dioxo-3,8'-bichroman-7'-yl hydrogen sulfate (morelloflavone-7"-sulfate)

AS8 was a yellow solid, m.p. 290-293 °C. The UV spectrum showed absorption bands at λ_{max} 201, 289 and 348 nm. The IR spectrum showed the absorption bands of O-H stretching at 3423, C=O stretching at 1643, S=O stretching at 1262 and C-O-S stretching at 1042 cm⁻¹.The ¹H, ¹³C NMR, COSY and HMBC spectrum (Table 13) of AS8 was much similar to AS7. The ¹H NMR spectrum showed the resonances of *trans* methine protons H-2 and, H-3 (δ 5.81 and 4.83, J = 12.0 Hz), methine olefinic protons H-3" ($\delta 6.60$, s), chelated hydroxyl protons 5-OH (δ 12.19) and 5"-OH (δ 12.95), meta aromatic protons H-6 (δ 5.92) and H-8 (δ 5.94), para-disubstituted benzene H-2'/H-6' (δ 7.18) and H-3'/H-5' (δ 6.31), aromatic proton H-6" (δ 7.05) as for AS7. The protons resonances of AS8 were almost identical to those of AS7, except for the H-6" (δ 7.05) of AS8 appearance at much lower field than that of AS7 (δ 6.24). According to the IR spectrum that showed S=O stretching at 1262 and C-O-S stretching at 1042 cm⁻¹ and the chemical shift of C-7" $(\delta 158.1)$ allowed to assigned –OSO₃H at C-7. The structure of AS8 was supported by HMBC correlation. In HMBC spectrum, the flavonyl moiety displayed the correlations of 5-OH to C-6 (\$\delta\$ 96.6), C-4a (\$\delta\$ 101.9); H-6 to C-4a, C-7 (\$\delta\$ 166.9), C-8 (δ 95.6); H-8 to C-4a, C-7; H-2/H-6' to C-2 (δ 81.4) and H-3 to C-8" (δ 104.6). Moreover, in HMBC spectrum, the flavanone moiety displayed the correlations of 5"-OH to C-6" (\$\delta\$ 102.8), C-4a" (\$\delta\$ 105.5); H-6" to C-4a" C-8"; H-2" /H-6" to C-2". Thus AS8 was assigned to be morelloflavone-7"-sulfate (Li, et al., 2002).

Major HMBC of AS8

Table 13 ¹ H	¹³ C NMR and HMBC s	nectral data	$(DMSO_{-}d_{c})$	of AS8
	, C NINK and IIMDC s	pechai uala	$(DNISO-u_6)$	01 A 50

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	HMBC
2	81.4 (CH)	5.81 (<i>d</i> , 12.0)	C-4, C-1′
3	49.0 (CH)	4.83 (<i>d</i> , 12.0)	C-4, C-2, C-1', C-7", C-8", C-8a"
4	195.8 (C=O)	-	-
4a	101.9 (C)	-	-
5	164.3 (C)	-	-
6	96.6 (CH)	5.92 (<i>d</i> , 2.1)	C-4a, C-5, C-7, C-8
7	166.9 (C)	-	-
8	95.6 (CH)	5.94 (<i>d</i> , 2.1)	C-4a, C-6, C-7, C-8a
8a	163.3 (C)	-	-
1′	128.9 (C)	-	-
2'	129.0 (CH)	7.18 (<i>d</i> , 8.4)	C-2, C-4′, C-6′
3'	114.6 (CH)	6.31 (<i>d</i> , 8.4)	C-1', C-4', C-5'
4'	157.5 (C)	-	-
5'	114.6 (CH)	6.31 (<i>d</i> , 8.4)	
6′	129.0 (CH)	7.18 (<i>d</i> , 8.4)	C-2, C-2', C-4'
2″	164.4 (C)	-	-
3″	102.9 (CH)	6.60 (s)	C-2", C-4", C-4a", C-1"'
4″	182.4 (C=O)	-	-
4a″	105.5 (C)	-	-

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	HMBC
5"	160.2 (C)	-	-
6″	102.8 (CH)	7.05 (s)	C-4a", C-5", C-7", C-8"
7″	158.1 (C)	-	-
8″	104.6 (C)	-	-
8a″	154.8 (C)	-	-
1 ‴	121.4 (C)	-	-
2‴	113.8 (CH)	7.39 (<i>br s</i>)	C-2", C-3"', C-4"', C-6"'
3‴	146.1 (C)	-	-
4‴	150.4 (C)	-	-
5 '''	116.6 (CH)	6.88 (<i>d</i> , 8.1)	C-1"', C-3"', C-4"'
6‴	119.9 (CH)	7.40 (<i>d</i> , 8.1)	C-1"', C-2"', C-4"'
5-OH	-	12.19 (s)	C-4a, C-5, C-6
5″-OH	-	12.95 (s)	-

Table 13 ¹H, ¹³C NMR and HMBC spectral data (DMSO-*d*₆) of **AS8** (continued)
AS9: (2*S*,3*R*)-2,3-dihydro-5,5',7,7'-tetrahydroxy-2,2'-bis(4-hydroxyphenyl)- [3,8"-Bi- 4*H*-1-benzopyran] -4,4"-dione (volkensiflavone)

AS9 is a yellow solid, m.p. 247-250 °C. The ¹H and ¹³C NMR spectrum in CDCl₃+DMSO- d_6 displayed duplicated signals (in a ratio of 1:0.67), suggesting the existence of two conformers at room temperature. The ¹H and ¹³C NMR was similar to those of AS7. The ¹H NMR spectrum (Table 14) suggested that it was a flavonylflavanone which the *trans* methine protons H-2, H-3 resonated at δ 5.75 and 4.65 (J = 12.0 Hz) and the methine olefinic protons H-3" resonated at δ 6.23 (s). The ¹H NMR spectrum showed the resonances of chelated hydroxyl protons 5-OH (δ 12.20), meta aromatic protons H-6 (δ 5.95) and H-8 (δ 5.97), two paradisubstituted benzene H-2'/H-6' (δ 6.99), H-3'/H-5' (δ 6.41) and H-2"'/H-6"' (δ 7.45), H-3"'/ H-5"' (δ 6.86). The spectrum pattern of AS9 was similar to that of AS7, except for the presence of 1,4-disubstituted benzene instead of 1,3,4-trisubstituted benzene. In HMBC spectrum, the flavonyl moiety displayed the correlations of 5-OH to C-6 (\$\delta\$ 95.8), C-4a (\$\delta\$ 102.3); H-6 to C-4a, C-7 (\$\delta\$ 167.2), C-8 (\$\delta\$ 96.8); H-8 to C-4a, C-7; H-2/H-6' to C-2 (\$\delta\$ 82.0) and H-3 to C-8" (\$\delta\$ 101.2). In HMBC spectrum, the flavanone moiety displayed the correlations of H-3" to C-4a" (δ 104.2), C-1''' (δ 122.5); H-6" to C-4a", C-8"; H-2" /H-6" to C-2" (δ 164.3). The HMBC correlation of AS9 showed the same pattern as that of AS7. AS9 then was assigned as (2S,3R)-2,3-dihydro-5,5',7,7'-tetrahydroxy-2,2'-bis(4-hydroxyphenyl)-[3,8"-Bi-4H-1-benzopyran]-4,4"-dione which was known as volkensiflavone (Ansari, et al., 1976).

Table 14 ¹H, ¹³C NMR and HMBC spectral data (CDCl₃+DMSO-*d*₆) of **AS9**

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	HMBC
2	82.0 (CH)	5.75 (<i>d</i> , 12.0)	C-1', C-2', 6'
3	48.7(CH)	4.65 (<i>d</i> , 12.0)	C-4, C-7", C-8"
4	196.5 (C=O)	-	-
4a	102.3 (C)	-	-
5	164.4 (C)	-	-
6	95.8 (CH)	5.95 (s)	C-4a, C-5, C-7, C-8
7	167.2 (C)	-	-
8	96.8 (CH)	5.97 (s)	C-6, C-7, C-4a
8a	163.5 (C)	-	-
1'	128.8 (C)	-	-
2'	128.7 (CH)	6.99 (<i>d</i> , 8.4)	C-2, C-1', C-4', C-6'
3'	115.3 (CH)	6.41 (<i>d</i> , 8.4)	C-1', C-5', C-4'
4'	157.0 (C)	-	-
5'	115.3 (CH)	6.41 (<i>d</i> , 8.4)	C-1', C-3', C-4'

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	HMBC
6'	128.7 (CH)	6.99 (<i>d</i> , 8.4)	C-2, C-1', C-2', C-4'
2″	164.3 (C)	-	-
3″	103.4 (CH)	6.23 (<i>s</i>)	C-2", C-4a", C-5", C-1"'
4″	182.2 (C=O)	-	-
4a″	104.2 (C)	-	-
5″	161.0 (C)	-	-
6″	99.0 (CH)	6.25 (<i>s</i>)	C-4a", C-5", C-7", C-8"
7″	161.6 (C)	-	-
8″	101.2 (C)	-	-
8a″	156.0 (C)	-	-
1‴	122.5 (C)	-	-
2‴	128.8 (CH)	7.45 (<i>d</i> , 8.7)	C-2", C-4"", C-6"'
3′″	116.5 (CH)	6.86 (<i>d</i> , 8.7)	C-1''', C-5''', C-4'''
4‴	161.0 (C)	-	-
5′″	116.5 (CH)	6.86 (<i>d</i> , 8.7)	C-1''', C-3''', C-4'''
6‴	128.7 (CH)	7.45 (<i>d</i> , 8.7)	C-2", C-2"", C-4""
5-OH	-	12.20 (s)	C-4a, C-5, C-6
5″-OH	-	12.20 (s)	-

 Table 14 ¹H, ¹³C NMR and HMBC spectral data (CDCl₃+DMSO-d₆) of AS9 (continued)

AS10: oleanolic acid

AS10 was a white solid, m.p. 280-282 °C. The UV spectrum showed absorption bands at λ_{max} 313, 269, 244 and 202 nm. The IR spectrum showed the absorption bands of O-H stretching at 3420, C=O stretching at 1689 and C-H stretching at 2939 cm⁻¹. The ¹H NMR spectrum (**Table 15**) showed the resonances of seven methyl singlet signals at δ 0.75, δ 0.77, δ 0.90, δ 0.91, δ 0.93, δ 0.99, δ 1.13, an olefinic proton at δ 5.28 (*t*, 3.0, H-12), a methine proton at δ 2.83 (*dd*, 13.8, 4.2, H-18) and an oxy-methine proton at δ 3.23 (*dd*, 12.0, 6.0, H-3). These data were identical to those of oleanolic acid. Thus **AS10** was assigned to be oleanolic acid (Pakakrong, 2005)

Position	AS10; $\delta_{ m H}$ (mult., $J_{ m Hz}$)	oleanolic acid; $\delta_{ m H}$ (mult., $J_{ m Hz}$)
3	3.23 (<i>dd</i> , 12.0, 6.0)	3.22 (<i>dd</i> , 10.8, 4.5)
12	5.28 (<i>t</i> , 3.0)	5.28 (<i>t</i> , 3.3)
18	2.83 (<i>dd</i> , 13.8, 4.2)	2.82 (<i>dd</i> , 14.4, 3.9)
23	0.99 (s)	0.99 (s)
24	0.75 (<i>s</i>)	0.76 (<i>s</i>)
25	0.93 (s)	0.93 (s)
26	0.77 (s)	0.78 (s)
27	1.13 (s)	1.13 (s)
29	0.90(s)	0.90 (s)
30	0.91 (s)	0.91 (s)

Table 15 ¹H NMR spectral data (CDCl₃) of AS10 and oleanolic acid

AS11: 1,4,5-trihydroxy-3,6-bis(3-methylbut-2-enyl)-9H-xanthen-9-one

(garciniaxanthone C)

AS11 was a yellow solid, m.p. 203-205 °C. The UV spectrum showed absorption bands at λ_{max} 253, 267, 322 and 382 nm. The IR spectrum showed the absorption bands of O-H stretching at 3375 and C=O stretching at 1645 cm⁻¹. The ¹H NMR spectrum (**Table 16**) showed a singlet of a chelated hydroxyl proton 1-OH at δ 11.94 and a singlet of aromatic proton H-2 at δ 6.54. The location of H-2 was supported by the HMBC correlation of 1-OH to C-2 (δ 109.8). A prenyl group was indicated from the resonances of methylene protons H-1' at δ 3.42 (d, J = 7.2 Hz), methine olefinic proton H-2' at δ 5.34 (*br t*, *J* = 7.2 Hz) and two allylic methyl groups H-4' at δ 1.75 and H-5' at δ 1.73. The HMBC correlation of H-1' to C-2, C-3 (δ 135.0), C-4 (δ 138.0) and H-2 to C-1' (δ 29.0) suggested that the prenyl group was ortho to H-2. The doublet resonance, with J = 8.1 Hz, of *ortho* aromatic protons H-7 and H-8 were shown at δ 7.17 and δ 7.60. The low field chemical shift of δ 7.60 was assigned for H-8 due to the resonance effect of the carbonyl group and was also comfirmed by HMBC correlations of H-8 to C-9 (δ 182.9). The presence of the second prenyl group was indicated from resonances of H-1" at δ 3.47 (d, J = 7.2 Hz), H-2" at δ 5.34 (br t, J = 7.2 Hz), H-4" at δ 1.75 and H-5" at δ 1.73. The HMBC correlation of H-1" to C-5 $(\delta 143.0)$, C-6 $(\delta 135.7)$, C-7 $(\delta 125.0)$ suggested that the prenyl group was at C-6. Finally the hydoxy groups 4-OH and 5-OH were placed at C-4 and C-5 to fulfill the structure. Since H-2 and H-1' showed correlation to the oxy carbon that resonated at δ 138.0, H-7 and H-1" showed correlation to the oxy carbon that resonated at δ 143.0, the carbon resonances at δ 138.0 and δ 143.0 then were assigned for C-4 and C-5, respectively. The ¹³C NMR data and HMBC correlation corresponded to the assigned structure. Thus AS11 was assigned to be 1,4,5-trihydroxy-3,6-bis(3-methylbut-2envl)-9H-xanthen-9-one. It was known as garciniaxanthone C (Minami, et al., 1994).

Table 16 ¹H, ¹³C NMR and HMBC spectral data (Acetone- d_6) of AS11

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	HMBC
1	153.0 (C)	-	-
2	109.8 (CH)	6.54 (<i>s</i>)	C-1, C-3, C-4, C-9a, C-1'
3	135.0 (C)	-	-
4	138.0 (C)	-	-
4a	141.2 (C)	-	-
4b	144.1 (C)	-	-
5	143.0 (C)	-	-
6	135.7 (C)	-	-
7	125.0 (CH)	7.17 (<i>d</i> , 8.1)	C-5, C-8a, C-1"
8	115.2 (CH)	7.60 (<i>d</i> , 8.1)	C-4b, C-6, C-9
8a	119.0 (C)	-	-
9	182.9 (C)	-	-
9a	106.0 (C)	-	-
1′	29.0 (CH ₂)	3.42 (<i>d</i> , 7.2)	C-2, C-3, C-4, C-2', C-3'
2'	122.0 (CH)	5.34 (br t, 7.2)	-
3'	132.2 (C)	-	-
4'	17.0 (CH ₃)	1.75 (s)	C-2', C-3', C-5'
5'	25.0 (CH ₃)	1.73 (s)	C-2', C-3', C-4'
1″	28.2 (CH ₂)	3.47 (<i>d</i> , 7.2)	C-5, C-6, C-7, C-2", C-3"
2"	121.3 (CH)	5.34 (br t, 7.2)	-
3"	132.9 (C)	-	-
4″	17.0 (CH ₃)	1.75 (s)	C-2", C-3", C-5"
5″	25.0 (CH ₃)	1.73 (s)	C-2", C-3", C-4"
1-OH	-	11.94 (s)	C-1, C-2, C-9a

AS12 was a yellow solid, m.p. 99-100 °C. The UV spectrum showed absorption bands at λ_{max} 205, 255 and 326 nm. The IR spectrum showed the absorption bands of O-H stretching at 3361 and C=O stretching at 1615 cm⁻¹. The ¹H NMR spectrum (Table 17) showed signals of a hydrogen-bonded hydroxyl proton 1-OH (δ 12.96), ortho aromatic protons H-7 and H-8 (δ 7.24 and δ 7.66, J = 8.1 Hz) and C-6 prenyl group (δ 5.34, t, J = 7.2 Hz, H-2"; δ 3.51, d, J = 7.2 Hz, H-1"; δ 1.76, s, H-4"; δ 1.73, s, H-5") as for AS11. The location of a prenyl group at C-6 was supported by HMBC correlation of H-1" to C-5 (δ 143.0), C-6 (δ 135.2), C-7 (δ 125.0). Proton H-8 was supported by HMBC correlation of H-8 to C-9 (δ 182.9). Proton H-3 which was shown at δ 7.32 was placed *meta* to 1-OH due to HMBC correlations of H-3 and 1-OH to C-1 (δ 152.5). The presence of 1,1-dimethylallyl group was assigned from two singlets of gem-dimethyl protons (H-2', H-3') at δ 1.53 (3H each, s), two doublet of doublet of terminal olefinic protons (H-5'E, H-5'Z) at δ 5.03 (J = 17.7, 1.2 Hz), δ 5.00 (J = 10.8,1.2 Hz) and a doublet of doublet of a methine proton (H-4') at δ 6.32 (J = 17.7, 10.8 Hz). This side chain was placed at C-2 according to HMBC correlation of H-2'/H-3', 1-OH to C-2 (δ 128.6) and H-3 to C-1' (δ 40.1). Finally the hydoxy groups 4-OH and 5-OH were placed at C-4 and C-5 to fulfill the structure. Since H-7 and H-1" showed correlation to the oxy carbon that resonated at δ 143.0, this chemical shift then was assigned for C-5. Consequently the chemical shift at δ 136.0 was assigned for C-4. The ¹³C NMR data and HMBC correlation corresponded to the assigned structure. Thus AS12 was assigned as 1,4,5trihydroxy-6-(3-methylbut-2-enyl)-2-(2-methylbut-3-en-2-yl)-9H-xanthen-9-one or known as garciniaxanthone A (Minami, et al., 1994).

Table 17 ¹H, ¹³C NMR and HMBC spectral data (Acetone- d_6) of AS12

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	НМВС
1	152.5 (C)	-	-
2	128.6 (C)	-	-
3	122.2 (CH)	7.32 (s)	C-1, C-4a, C-1′
4	136.0 (C)	-	-
4a	141.2 (C)	-	-
4b	144.1 (C)	-	-
5	143.0 (C)	-	-
6	135.2 (C)	-	-
7	125.0 (CH)	7.24 (<i>d</i> , 8.1)	C-5, C-8a, C-1"
8	115.2 (CH)	7.66 (<i>d</i> , 8.1)	C-5a, C-6, C-9
8a	118.9 (C)	-	-
9	182.9 (C)	-	-
9a	108.2 (C)	-	-
1′	40.1 (C)	-	-
2'	26.0 (CH ₃)	1.53 (s)	C-2, C-1', C-3', C-4'
3'	26.0 (CH ₃)	1.53 (s)	C-2, C-1', C-2', C-4'
4′	145.0 (CH)	6.32 (<i>dd</i> , 17.7, 10.8)	C-1', C-2', C-3'
5'(E)	110.1 (CH ₂)	5.03 (<i>dd</i> , 17.7, 1.2)	C-1', C-4'
5'(Z)	110.1 (CH ₂)	5.00 (<i>dd</i> , 10.8, 1.2)	C-1', C-4'
1″	28.2 (CH ₂)	3.51 (<i>d</i> , 7.2)	C-5, C-6, C-7, C-2", C-3"
2″	121.3 (CH)	5.34 (<i>t</i> , 7.2)	-
3″	133.0 (C)	-	-
4″	17.0 (CH ₃)	1.76 (s)	C-2", C-3", C-5"
5″	25.0 (CH ₃)	1.73 (s)	C-2", C-3", C-4"
1-OH	-	12.96 (s)	C-1, C-2, C-9a

59

AS13 was a yellow solid, m.p. 194-196 °C, with the molecular formula $C_{19}H_{18}O_6$. The UV spectrum showed absorption bands at λ_{max} 256, 280 and 332 nm. The IR spectrum showed the absorption bands of O-H stretching at 3420 and C=O stretching at 1657 cm⁻¹. The ¹H NMR spectrum (**Table 18**) showed signals of chelated hydroxyl protons 1-OH at δ 11.43 and 8-OH at δ 12.00, a methoxyl proton 6-OMe at δ 3.95, an isolated aromatic proton H-3 at δ 7.19 and *meta* aromatic protons H-5 and H-7 at δ 6.51 and δ 6.33 (d, J = 1.8 Hz). The presence of a prenyl group was indicated from the resonances of a methine olefinic proton H-2' at δ 5.32 (br t, J = 7.2 Hz), a methylene proton H-1' at δ 3.32 (d, J = 7.2 Hz) and two allylic methyl groups H-4' and H-5' at δ 1.74. The HMBC correlations of 1-OH and H-1' to C-1 (δ 150.2), C-2 (δ 122.7) suggested that the prenyl group was *ortho* to the chelated hydroxyl group (1-OH). The aromatic proton H-3 was confirmed by HMBC correlation of H-3 to C-1 $(\delta 150.2)$, C-1' $(\delta 26.5)$ and C-4a $(\delta 143.0)$. The HMBC correlations of H-5 to C-4b (δ 157.9), C-7 (δ 97.2), C-8a (δ 103.5) and H-7 to C-5 (δ 92.7), C-8 (δ 163.0), C-8a (δ 103.5) confirmed the location of aromatic proton H-5 and H-7. The methoxyl group 6-OMe was indicated ortho to aromatic protons H-5 and H-7 due to HMBC correlation of H-5, H-7 and 6-OMe to C-6 (δ 167.7). The assignments of 6-OMe and prenyl group were also confirmed by NOE experiment. Irradiation at the resonance of 6-OMe (δ 3.95) enhanced the resonances of H-5 (δ 6.51) and H-7 (δ 6.33). Irradiation at the resonance of H-1' (δ 3.32) enhanced the resonances of 1-OH (δ 11.43) and H-3 (δ 7.19). To fulfill the structure, the hydroxyl group 4-OH was placed at C-4. Since H-3 showed correlation to the oxy carbon that resonated at δ 136.6, the chemical shift of δ 136.6 then was assigned for C-4. The ¹³C NMR data and HMBC correlations corresponded to the assigned structure. Thus AS13 was assigned to be 1,4,8trihydroxy-6-methoxy-2-(3-methylbut-2-enyl)-9H-xanthen-9-one. It is a new xanthone derivative and is an isomer of afzeliixanthone A (Waffo, et al., 2006).

NOE of AS13

Major HMBC of AS13

Table 18 ¹ H,	¹³ C NMR and J	HMBC spectral d	data (Acetone- d_6)) of AS13

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	НМВС
1	150.2 (C)	-	-
2	122.7 (C)	-	-
3	124.3 (CH)	7.19 (s)	C-1, C-4, C-4a, C-1'
4	136.6 (C)	-	-
4a	143.0 (C)	-	-
4b	157.9 (C)	-	-
5	92.7 (CH)	6.51 (<i>d</i> , 1.8)	C-4b, C-6, C-7, C-8a
6	167.7 (C)	-	-
7	97.2 (CH)	6.33 (<i>d</i> , 1.8)	C-5, C-6, C-8, C-8a
8	163.0 (C)	-	-
8a	103.5 (C)	-	-
9	185.1 (C)	-	-
9a	107.4 (C)	-	-
1′	26.5 (CH ₂)	3.32 (<i>d</i> , 7.2)	C-1, C-2, C-3, C-2"
2'	121.9 (CH)	5.32 (br t, 7.2)	-
3'	132.6 (C)	-	-
4'	16.9 (CH ₃)	1.74 (s)	C-2', C-3'
5'	24.9 (CH ₃)	1.74 (s)	C-2', C-3'
6-OMe	55.7 (OCH ₃)	3.95 (s)	C-6
1-OH	-	11.43 (s)	C-1, C-2, C-9a
8-OH	-	12.00 (<i>br s</i>)	-

(12b-hydroxy-des-D-garcigerrin A)

AS14 was a yellow solid, m.p. 188-189 °C. The UV spectrum showed absorption bands at λ_{max} 204, 239, 250, 265 and 318 nm. The IR spectrum showed the absorption bands of O-H stretching at 3244 and C=O stretching at 1640 cm⁻¹. The 1 H NMR spectrum (Table 19) showed signals of a chelated hydroxyl proton 1-OH $(\delta 12.68)$, an aromatic proton H-3 $(\delta 7.32)$ and a 1,1-dimethylallyl group [H-2', H-3' at δ 1.54 (s), H-5'Z at δ 5.00 (dd, J = 10.2,1.2 Hz), H-5'E at δ 5.05 (br s), H-4' at δ 6.29 (dd, J = 18.0, 10.2 Hz)]. The location of 1,1-dimethylallyl group at C-2 and H-3 were supported by HMBC correlations of 1-OH and H-4' to C-2 (δ 123.9) and H-3 to C-1 $(\delta 147.5)$, C-4a $(\delta 136.1)$ and C-1' $(\delta 35.6)$. The resonances of H-6, H-7 and H-8 were shown as ABM system at δ 7.21 (d, J = 7.5 Hz), δ 7.24 (t, J = 7.5 Hz) and δ 7.71 (dd, J = 7.5, 2.1 Hz), respectively. The most deshielded resonance was assigned for H-8 according to an anisotropic effect of the carbonyl group. The assignments of H-6, H-7 and H-8 were supported by ${}^{3}J$ coupling of H-6 to C-4b (δ 139.3), H-7 to C-8a $(\delta 116.2)$ and H-8 to C-9 $(\delta 178.2)$ on the HMBC experiment. To fulfill the structure, 4-OH and 5-OH were assigned. Thus AS14 was identified to be 1,4,5-trihydroxy-2-(2methylbut-3-en-2-yl)-9H-xanthen-9-one or known as 12b-hydroxy-des-D-garcigerrin A (Sordat-Diserens, et al., 1991).

Major HMBC of AS14

 Table 19 ¹H, ¹³C NMR and HMBC spectral data (CDCl₃+DMSO-d₆) of AS14

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	HMBC
1	147.5 (C)	-	-
2	123.9 (C)	-	-
3	117.3 (CH)	7.32 (s)	C-1, C-4, C-4a, C-1'
4	131.2 (C)	-	-
4a	136.1 (C)	-	-
4b	139.3 (C)	-	-
5	141.2 (C)	-	-
6	115.8 (CH)	7.21 (<i>d</i> , 7.5)	C-4b, C-5, C-8
7	119.2 (CH)	7.24 (<i>t</i> , 7.5)	C-5, C-8a
8	111.0 (CH)	7.71 (<i>dd</i> , 7.5,2.1)	C-4b, C-6, C-9
8a	116.2 (C)	-	-
9	178.2 (C)	-	-
9a	103.6 (C)	-	-
1′	35.6 (C)	-	-
2', 3'	22.0 (CH ₃)	1.54 (s)	C-2, C-4′
4'	142.5 (CH)	6.29 (<i>dd</i> , 18.0, 10.2)	C-2, C-1', C-2', C-3'
5′(E)	105.7 (CH ₂)	5.05 (s)	C-1', C-4'
5′(Z)	105.7 (CH ₂)	5.00 (<i>dd</i> , 10.2, 1.2)	C-1', C-4'
1-OH	-	12.68 (s)	C-1, C-2, C-9a

AS15 was a yellow solid, m.p. 223-225 °C, with the molecular formula $C_{23}H_{24}O_6$. The UV spectrum showed absorption bands at λ_{max} 247, 269 and 327 nm. The IR spectrum showed the absorption bands of O-H stretching at 3422 and C=O stretching at 1630 cm⁻¹. The ¹H NMR spectrum (**Table 20**) showed signals of a chelated hydroxyl proton (δ 13.06, 1-OH), a 1,1-dimethylallyl unit [H-2'/H-3', δ 1.61; H-5'Z, δ 5.04 (d, J = 10.5 Hz); H-5'E, δ 5.16 (d, J = 17.7 Hz); H-4', δ 6.42 (dd, J = 17.7, 10.5 Hz)] and a prenyl group [H-1", δ 3.45 (d, J = 7.2 Hz); H-2", 5.39 (t, J = 7.2 Hz); H-4", 1.75 (s) and H-5", 1.73 (s)]. The singlet aromatic proton H-4 which resonated at δ 7.32 was placed *para* to the chelated hydroxyl group (1-OH) since both H-4 and 1-OH showed ³J HMBC correlation to C-2 (δ 139.1) and C-9a (δ 109.7). While the singlet aromatic proton H-8 which resonated at δ 7.57 was placed *peri* to carbonyl carbon due to H-8 correlated to carbonyl carbon (C-9, δ 182.2). The HMBC correlations of H-2'/H-3' to C-3 (δ 126.4) and H-4 to C-1' (δ 40.1) suggested the 1,1dimethylallyl unit *ortho* to the aromatic H-4. The correlation of H-8 to C-1" (δ 28.0) and H-1" to C-8 (δ 116.2) indicated the prenyl group *ortho* to H-8. To fulfill the structure, three of hydroxyl group were assigned at C-2, C-5 and C-6. The HMBC correlations of 1-OH to the carbon resonance at δ 139.1 and H-8 to the carbon resonance at δ 151.0 allowed oxy carbons C-2 and C-6 having chemical shifts of δ 139.1 and δ 151.0, respectively. The remaining oxy carbon resonance at δ 131.5 then was assigned for C-5. Thus AS15 was assigned to be 1,2,5,6-tetrahydroxy-7-(3methylbut-2-enyl)-3-(2-methylbut-3-en-2-yl)-9H-xanthen-9-one. It is a new xanthone derivative and is an isomer of subelliptenone B (Iinuma, M. et al. 1993).

Table 20 ¹H, ¹³C NMR and HMBC spectral data (Acetone- d_6) of AS15

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	НМВС
1	146.3 (C)	-	-
2	139.1 (C)	-	-
3	126.4 (C)	-	-
4	121.6 (CH)	7.32 (<i>s</i>)	C-2, C-3, C-4a, C-9a, C-1′
4a	146.0 (C)	-	-
4b	146.3 (C)	-	-
5	131.5 (C)	-	-
6	151.0 (C)	-	-
7	127.0 (CH)	-	-
8	116.2 (CH)	7.57 (s)	C-4b, C-6, C-9, C-1"
8a	112.6 (C)	-	-
9	182.2 (C)	-	-
9a	109.7 (C)	-	-
1′	40.1 (C)	-	-
2'	26.9 (CH ₃)	1.61 (s)	C-3, C-1', C-3', C-4'
3'	26.9 (CH ₃)	1.61 (s)	C-3, C-1', C-2', C-4'
4'	148.5 (CH)	6.42 (<i>dd</i> , 17.7, 10.5)	C-3, C-1', C-2', C-3'
5'(E)	108.8 (CH ₂)	5.16 (<i>d</i> , 17.7)	C-1', C-4'
5′(Z)	108.8 (CH ₂)	5.04 (<i>d</i> , 10.5)	C-1', C-4'
1″	28.0 (CH ₂)	3.45 (<i>d</i> , 7.2)	C-6, C-7, C-8, C-2", C-3"
2″	121.5 (CH)	5.39 (<i>t</i> , 7.2)	C-4", C-5"
3"	133.0 (C)	-	-
4″	25.0 (CH ₃)	1.75 (s)	C-2", C-3", C-5"
5"	17.0 (CH ₃)	1.73 (s)	C-2", C-3", C-4"
1-OH	-	13.06 (s)	C-1, C-2, C-9a

AS16 was a yellow solid, m.p 240-243 °C, with the molecular formula $C_{23}H_{24}O_6$. The UV spectrum showed absorption bands at λ_{max} 255, 280 and 329 nm. The IR spectrum showed the absorption bands of O-H stretching at 3419 and C=O stretching at 1640 cm⁻¹. The ¹H NMR spectrum (**Table 21**) exhibited signals of a chelated hydroxyl proton 1-OH at δ 13.82 and two isolated aromatic protons at δ 6.48 (H-4) and 6.77 (H-7). Two sets of two prenyl groups were displayed at δ 5.28 (H-2', t, 7.2), 5.39 (H-2", t, J = 7.2), 3.35 (H-1', d, J = 7.2), 3.97 (H-1", d, J = 7.2), 1.78 (H-4', s), 1.65 (H-5', s), 1.74 (H-4", s) and 1.72 (H-5", s). Proton H-4, 1-OH and H-2' of 2-prenyl group showed ³J HMBC correlations to C-2 (δ 110.2) indicating that H-4 was para to 1-OH, whereas a prenyl side chain was ortho to 1-OH. The 8-prenyl side chain was placed peri to the carbonyl group and ortho to H-7 due to the correlations of H-1" to C-8a (δ 111.3), C-7 (δ 113.8) and H-7 correlated to C-8a, C-1" (δ 32.8). The molecular formula of C₂₃H₂₄O₆ allowed to complete the structure with hydroxyl groups at C-3, C-5 and C-6. The HMBC correlations of H-4 to the carbon resonance at δ 162.1 suggested that this chemical shift belonged to the oxy carbon C-3. The HMBC correlations of H-7 to carbon resonances at δ 130.5 and δ 150.1 suggested oxycarbons C-5 and C-6 having chemical shifts of δ 130.5 and δ 150.1, respectively. The oxy carbon C-5 was resonated effected by two ortho hydroxyl group, the higher field chemical shift (δ 130.5) then was confirmed for C-5. AS16 then was proposed as 1,3,5,6-tetrahydroxy-2,8-bis(3-methylbut-2-enyl)-9H-xanthen-9-one. It is a new xanthone derivative and is an isomer of γ -mangostin (Mahabusarakam, *et al.*, 1987).

Table 21 ¹ H	¹³ C NMR and	HMRC spectral data	(Acetone- d_c) of AS16
	, C N M A and	Third spectral data	$(Accione-a_6)$ of ASIC

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	НМВС
1	161.0 (C)	-	-
2	110.2 (C)	-	-
3	162.1 (C)	-	-
4	92.5 (CH)	6.48 (s)	C-2, C-3, C-4a, C-9, C-9a
4a	158.7 (C)	-	-
4b	135.7 (C)	-	-
5	130.5 (C)	-	-
6	150.1 (C)	-	-
7	113.8 (CH)	6.77 (<i>s</i>)	C-5, C-6, C-8a, C-1"
8	135.7 (C)	-	-
8a	111.3 (C)	-	-
9	181.5 (C)	-	-
9a	102.6 (C)	-	-
1′	21.1 (CH ₂)	3.35 (<i>d</i> , 7.2)	C-1, C-2, C-3, C-2', C-3'
2'	122.6 (CH)	5.28 (<i>t</i> , 7.2)	-
3'	130.5 (C)	-	-
4'	17.11 (CH ₃)	1.78 (s)	C-2', C-3', C-5'
5'	24.9 (CH ₃)	1.65 (s)	C-2', C-3', C-4'
1″	32.8 (CH ₂)	3.97 (<i>d</i> , 7.2)	C-7, C-8, C-8a, C-2", C-3"
2"	123.5 (CH)	5.39 (<i>t</i> , 7.2)	-
3"	131.6 (C)	-	-
4″	16.9 (CH ₃)	1.74 (<i>s</i>)	C-2", C-3", C-5"
5"	25.0 (CH ₃)	1.72 (s)	C-2", C-3", C-4"
1-OH	-	13.82 (s)	C-1, C-2, C-9a

67

enyl)-9*H*-xanthen-9-one (garciniaxanthone E)

AS17 was an orange gummy oil. The UV spectrum showed absorption bands at λ_{max} 208, 255 and 329 nm. The IR spectrum showed the absorption bands of O-H stretching at 3525 and C=O stretching at 1633 cm⁻¹. The ¹H NMR spectrum (Table 22) showed signals of one singlet chelated hydroxyl group (1-OH) at δ 13.61 and two doublets of *meta* aromatic protons (H-2, H-4) at δ 6.18 and 6.35 (J = 1.8 Hz). The assignment of H-2 and H-4 were supported by HMBC correlation of 1-OH to C-2 (δ 97.8), C-9a (δ 103.0); H-2 to C-9a, C-4 (δ 92.9) and H-4 to C-2, C-9a. The signals of a prenyl side chain were displayed; an olefinic proton H-2" at δ 5.08 (br t, J = 6.0 Hz), benzylic methylene protons H-1" at δ 4.10 (d, J = 6.0 Hz), methyl groups H-4", H-5" at δ 1.78 (s) and 1.66 (s). Due to the low field chemical shift of methylene protons H-1" (δ 4.10), the prenyl group then was placed nearby the carbonyl group. The remaining signals including a doublet of methylene protons H-1' at δ 3.47 (J = 6.0 Hz), broad triplets of olefinic protons H-2', H-6' at δ 5.08, multiplets of methylene protons H-4', H-5' at δ 2.00, δ 2.05 and three singlet signals of methyl groups H-8', H-9', H-10' at δ 1.56, δ 1.78 and δ 1.61, respectively, corresponded to a geranyl group. The geranyl side chain was located at C-7 ortho to phenyl group according to the cross peak of H-2' and H-1" to C-7 (δ 126.0) in HMBC correlation. Three hydroxyl groups were substituted at C-3 (δ 164.4), C-5 (δ 130.8) and C-6 (δ 149.2) to fulfill structure. The HMBC data that H-2, H-4 correlated to the resonance at δ 164.4, while H-1' correlated to the resonance at δ 149.2, suggested C3 and C6 have chemical shifts of δ 164.4 and δ 149.2, respectively. Thus AS17 was assigned to be (E)-2-(3,7dimethylocta-2,6-dienyl)-3,4,6,8-tetrahydroxy-1-(3-methylbut-2-enyl)-9H-xanthen-9one or known as garciniaxanthone E (Minami, et al., 1996).

Table 22 ¹H, ¹³C NMR and HMBC spectral data (Acetone- d_6) of AS17

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	HMBC
1	164.2 (C)	-	-
2	97.8 (CH)	6.18 (<i>d</i> , 1.8)	C-3, C-4, C-9a
3	164.4 (C)	-	-
4	92.92 (CH)	6.35 (<i>d</i> , 1.8)	C-2, C-3, C-4a, C-9a
4a	156.7 (C)	-	-
4b	145.5 (C)	-	-
5	130.8 (C)	-	-
6	149.2 (C)	-	-
7	126.0 (CH)	-	-
8	134.1 (C)	-	-
8a	111.0 (C)	-	-
9	182.5 (C)	-	-
9a	103.0 (C)	-	-
1′	24.2 (CH ₂)	3.47 (<i>d</i> , 6.0)	C-6, C-7, C-8, C-2', C-3'
2'	123.0 (CH)	5.08 (<i>br t</i> , 6.0)	-
3'	134.8 (C)	-	-
4'	39.5 (CH ₂)	2.00 (<i>m</i>)	C-2', C-3', C-5', C-6', C-9'
5'	26.4 (CH ₂)	2.05 (<i>m</i>)	C-3', C-4', C-6', C-7'
6′	124.2 (CH)	5.08 (<i>br t</i> , 6.0)	-

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	НМВС
7′	130.0 (C)	-	-
8′	16.8 (CH ₃)	1.56 (<i>s</i>)	C-6', C-7', C-10'
9′	15.6 (CH ₃)	1.78 (s)	C-2', C-3', C-4'
10′	25.0 (CH ₃)	1.61 (s)	C-6', C-7', C-8'
1″	24.9 (CH ₂)	4.10 (<i>d</i> , 6.0)	C-7, C-8, C-8a, C-2", C-3"
2"	124.6 (CH)	5.08 (<i>br t</i> , 6.0)	-
3"	127.7 (C)	-	-
4″	17.4 (CH ₃)	1.78 (s)	C-2", C-3", C-5"
5"	24.9 (CH ₃)	1.66 (s)	C-2", C-3", C-4"
1-OH	-	13.61 (s)	C-1, C-2, C-9a

Table 22¹H, ¹³C NMR and HMBC spectral data (Acetone-*d*₆) of **AS17** (Continued)

AS18 was a yellow solid, m.p. 102-105 °C, with the molecular formula $C_{23}H_{24}O_6$. The UV spectrum showed absorption bands at λ_{max} 203, 256 and 331 nm. The IR spectrum showed the absorption band of O-H stretching at 3229 and C=O stretching at 1645 cm⁻¹. The ¹H NMR spectrum (**Table 23**) showed the resonances of a chelated hydroxyl proton (1-OH, δ 13.49), two isolated aromatic protons (H-2, δ 6.29 and H-7, 6.80), two of prenyl groups at δ 5.38 (H-2', br t, 7.2), 5.38 (H-2", br t, 7.2), 3.57 (H-1', d, 7.5), 4.00 (H-1", d, 7.5), 1.83 (H-4', s), 1.64 (H-5', s) and δ 1.72 (H-4" and H-5 ", s) as for AS16 with a little change of the chemical shifts of one aromatic proton (δ 6.48, H-4 of **AS16**; δ 6.29, H-2 of **AS18**). The HMBC and NOE experiments indicated that a prenyl group and an aromatic proton (δ 6.29) were at C-8 and C-2 as for its isomer, AS16. The aromatic proton that resonated at δ 6.29 was assigned for H-2 due to the HMBC correlation of H-2 to C-9a (δ 102.0) and its carbon (C-2) correlated to 1-OH. Furthermore, the correlations of H-2 and H-1' to C-4 (δ 106.0) revealed that the prenyl group was at C-4. The molecular formula of C₂₃H₂₄O₆ together with the carbon chemical shifts of δ 162.5, δ 130.7 and δ 150.8 allowed to assigns hydroxyl groups at C-3, C-5 and C-6. The HMBC correlations of H-1' to carbon resonance at δ 162.5, and H-7 to carbon resonance at δ 130.7 and δ 150.8 allowed C-3, C-5 and C-6 having chemical shift of δ 162.5, 130.7 and δ 150.8, respectively. Thus **AS18** was assigned to be 1,3,5,6-tetrahydroxy-4,8-bis(3-methylbut-2-envl)-9H-xanthen-9-one. It is a new xanthone derivative and is an isomer of cudratricusxanthone B (Zou, et al. 2004).

Table 23 ¹H, ¹³C NMR and HMBC spectral data (Acetone- d_6) of AS18

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	HMBC
1	161.0 (C)	-	-
2	97.8 (CH)	6.29 (<i>s</i>)	C-4, C-9a
3	162.5 (C)	-	-
4	106.0 (C)	-	-
4a	154.2 (C)	-	-
4b	135.7 (C)	-	-
5	130.7 (C)	-	-
6	150.8 (C)	-	-
7	113.8 (CH)	6.80 (s)	C-5, C-6, C-8a, C-1"
8	135.8 (C)	-	-
8a	111.5 (C)	-	-
9	181.5 (C)	-	-
9a	102.0 (C)	-	-
1'	21.1 (CH ₂)	3.57 (<i>d</i> , 7.5)	C-3, C-4, C-5, C-2', C-3'
2'	123.0 (CH)	5.38 (br t, 7.2)	-
3'	130.7 (C)	-	-
4'	17.00 (CH ₃)	1.83(<i>s</i>)	C-2', C-3', C-5'
5'	25.0 (CH ₃)	1.64(<i>s</i>)	C-2', C-3', C-4'
1″	32.8 (CH ₂)	4.00 (<i>d</i> , 7.5)	C-7, C-8, C-8a, C-2", C-3"

Position	$\delta_{\rm C}$ (C-Type)	$\delta_{ m H}$ (multiplicity, $J_{ m Hz}$)	HMBC
2"	123.7 (CH)	5.38 (<i>t</i> , 7.2)	-
3"	131.9 (C)	-	-
4″	17.0 (CH ₃)	1.72 (s)	C-2", C-3", C-5"
5"	25.0 (CH ₃)	1.72 (s)	C-2", C-3", C-4"
1-OH	-	13.49 (<i>s</i>)	C-1, C-2, C-9a

Table 23 ¹H, ¹³C NMR and HMBC spectral data (Acetone-*d*₆) of **AS18** (continued)

3.2 Antibacterial activity of the isolated compounds from the leaves and stem bark of *G. dulcis*

The acetone extract and dichloromethane extract from the leaves and stem bark of *G. dulcis* were tested for antibacterial activity on *Staphylococus aureus* ATCC25923 and methicillin-resistant strain MRSA. It was found that the extract from the leaves had no effect on these microorganisms up to a dose of 200 μ g/mL, the extract from the stem bark showed activity with MIC 16-32 μ g/mL.

Some of the pure compounds obtained from the leaves and stem bark extract were evaluated for their antibacterial activity against *S. aureus* ATCC25923 and MRSA. Compounds **AS5**, **AS7** and **AS16** were more active than the crude extract (MIC 64-128 μ g/mL). Among the active compound **AS14** showed the strongest inhibitory activity with a MIC value of 2 μ g/mL against *S. aureus* and 1 μ g/mL against MRSA, however it was less active than vancomycin, the standard antibiotic (MIC 0.5 μ g/mL). **AS4**, **AS6**, **AS11** and **AS13** showed no activity against four bacterial strains tested at 200 μ g/mL. Compounds **AS1**, **AS2**, **AS3**, **AS8**, **AS9**, **AS10**, **AS12**, **AS15**, **AS17** and **AS18** were not tested due to insufficient amount.

CONCLUSION

With the aim of studying of the chemical constituents of the leaves and stem bark of *G. dulcis*, we found that the leaves were a source of biflavonoids (AS4, AS5, AS6, AS7, AS8, AS9), whereas the stem bark were a source of xanthones (AS11, AS12, AS13, AS14, AS15, AS16, AS17, AS18). Apart from biflavonoids and xanthones, triterpenoids (AS1, AS10) and benzene derivatives (AS2, AS3) were also isolated.

AS14 was the most active compound against *S. aureus* ATCC25923 and methicillin-resistant *S. aureus* (MIC 1 and 2 μ g/mL). **AS5**, **AS7** and **AS16** showed significant activity against *S. aureus* ATCC25923 (MIC 64-128 μ g/mL) and methicillin-resistant *S. aureus*, (64-128 μ g/mL). They could not inhibit the growth of *E. coli* ATCC25922, *P. aeruginosa* ATCC27853 at 200 μ g/mL. **AS4**, **AS6**, **AS11** and **AS13** showed no activity against four bacterial strains tested at 200 μ g/mL. Compounds **AS1**, **AS2**, **AS3**, **AS8**, **AS9**, **AS10**, **AS12**, **AS15**, **AS17** and **AS18** were not tested. **Biflvonoids**

 $\begin{array}{l} AS7:R_1=OH,R_2=H\ ;\ morelloflavone\\ AS8:R_1=OH,R_2=SO_3H\ ;\ morelloflavone-7''\ -sulfate\\ AS9:R_1,R_2=H\ ;\ volkensiflavone \end{array}$

Xanthones

AS11 ; garciniaxanthone C

AS13 ; 1,4,8-trihydroxy-6-methoxy-2-(3methylbut-2-enyl)-9*H* -xanthen-9-one

AS12; garciniaxanthoneA

AS14 ; 12b-hydroxy-des-D-garcigerrin A

AS15 ; 1,2,5,6-tetrahydroxy-7-(3-methylbut-2-enyl) -3-(2-methylbut-3-en-2-yl)-9*H*-xanthen-9-one

AS16 ; 1,3,5,6-tetrahydroxy-2,8-bis(3-methylbut-2-enyl)-9*H* -xanthen-9-one

AS17; garciniaxanthone E

AS18 ; 1,3,5,6-tetrahydroxy-4,8-bis(3-methyl but-2-enyl)-9*H* -xanthen-9-one

AS2 : R = H ; 4-hydroxy benzoic acid AS3 : R = OMe ; 4-hydroxy-3-methoxybenzoic acid

AS1; lupeol

AS10; oleanolic acid

REFERENCES

- Ansari, W. H., Rahman, W., Barraclough, D., Maynard, M.R. and Scheinmann, F.
 1976. "Biflavonoids and flavanone-chromone from the leaves of *Garcinia dulcis*", J. Chem. Soc. Perkin Trans I. 1458-1463.
- Cao, S.-G., Sim, K.-Y. and Goh, S.-H. **1997**. "Biflavonoids of *Calophyllum venulosum*", J. Nat. Prod., 60, 1245-1250.
- Chen, G. Y., Dai, C. Y., Wang, T. S., Jiang, C. W., Han, C. R. and Song, X. P. **2010**. "A new flavonol from the stem-bark of *Premna fulva*", *ARKIVOC*, (ii) 179-185.
- Chen, C.-C., Huang, Y.-L., Sun, C. M., Shen, C.-C. **1996**. "New prenylflavones from the leaves of *Epimedium sagittatum*", *J. Nat. Prod.*, *59*, 412-414.
- Choi, C. H., Sun, K. H., AN, C. S., Yoo, J. C. and Hahm, K. S. 2002. "Reversal of P-glycoprotein-mediated multidrug resistance by 5,6,7,3',4'-pentamethoxy flavone (Sinensetin)". *Biochem. and Biophy. Research Comm.*, 295, 832-840.
- Deachathai, S. 2005. Chemical constituents from flowers, fruits and seeds of *Garcinia dulcis* and antioxidation properties. Ph. D. Thesis, Prince of Songkla university, Songkhla, Thailand.
- Deachathai, S., Mahabusarakam, W., Phongpaichit, S. and Taylor, W.C. **2005**. "Phenolic compounds from the fruit of *Garcinia dulcis*", *Phytochemistry*, 66, 2368-2375.
- Deachathai, S., Mahabusarakam, W., Phongpaichit, S., Taylor, W.C., Zhang, Y.-J. and Yang, C.-R. 2006. "Phenolic compounds from the flowers of Garcinia dulcis", *Phytochemistry*, 67, 464-469.
- Deachathai, S., Phongpaichit, S. and Mahabusarakam, W. **2008**. "Phenolic compounds from the seeds of Garcinia dulcis", *J. Nat. Prod.*, 22 (15), 1327-1332.
- Ee, G.C.L., Daud, S., Taufiq-Yap, Y.H., Ismail, N.H. and Rahmani, M. 2006. "Xanthone from *Garcinia mangostana* (Guttiferae)", *Nat Prod Res.*, 20 (12), 1067-1073.

- Ee, G. C. L., Foo, C.H., Jong, V. Y. M., Ismail, N.H., Sukari, M.A., Yap, Y. H. T. and Awang, K. 2011. "A new xanthone from *Garcinia nitida*", *Nat Prod Res.*, 26 (9), 830-835.
- Fouotsa, H., Lannang, A.M., Mbazoa, C. D., Rasheed, S., Marasini, B. P., Ali, Z., Devkota, K. P., Kengfack, A. E., Shaheen, F., Choudhary, M. I. and Sewald, N. 2012. "Xanthones inhibitors of α-glucosidase and glycation from Garcinia nobilis", *Phytochemistry Lett.*, *5*, 236-239.
- Han, A.-R., Kim, J.-A., Lantvit, D.D., Leonardus, Kardono, B.S., Riswan, S., Chai,
 H., Carcache de Blanco, E.J., Farnsworth, N.R., Swanson, S.M. and
 Kinghorn, A.D. 2009. "Cytotoxic xanthone constituents of the stem bark
 of *Garcinia mangostana* (Mangosteen)", J. Nat. Prod., 72, 2028-2031.
- Iinuma, M., Tosa, H., Tanaka, T., Shimano, R., Asai, F. and Yonemor, S. 1993. "Two xanthones from root bark of *Garcinia subelliptica*", *Phytochemistry*, 35 (5), 1355-1360.
- Kaikabo, A. A. and Eloff, J. N. 2011. "Antibacterial activity of two biflavonoids from Garcinia livingstonei leaves against Mycobacterium smegmatis", J. of Ethnopharmacology, 138, 253-255.
- Klaiklay, S., Sukpondma, Y., Rukachaisirikul, V. amd Phongpaichit, S. 2013. "Friedolanostanes and xanthones from the twigs of *Garcinia hombroniana*", *Phytochemistry*, 85, 161-166.
- Komguem, J., Meli, A.L., Manfouo, R.N., Lontsi, D., Ngounou, F.N., Kuete, V., Kamdem, H.W., Tane, P., Ngadjui, B.T., Sondengam, B.L. and Connolly, J.d. 2005. "Xanthones from *Garcinia smeathmannii* (Oliver) and their antimicrobial activity", *Phytochemistry*, 66, 1713-1717.
- Kasahara, S. and Henmi, S. **1986**. Medicine herb index in Indonesia. Jakarta: Eisai Indonesia, pp.92.
- Li, X.-C., Joshi, A. S., Tan, B., Elsohly, H. N., Walker, L. A., Zjawiony, J. K. and Ferreira, D. 2002. "Absolute configuration, conformation, and chiral properties of flavanone-(3→8")-flavone biflavonoids from *Rheedia* acuminate", Tetrahedron, 58, 8709–8717.

- Lin, Y.-M., Anderson, H., Flavin, M. T. and Pai, Y.-H. 1997. "In vitro anti-HIV activity of biflavonoids isolated from *Rhus succedanea* and *Garcinia multiflora*", J. Nat. Prod., 60, 884-888.
- Lee, E., Shin, S., Lee, J.-Y., Lee, S., Kim, J.-K., Yoon, D.-Y., Woo, E.-R. and Kim, Y.
 2012. "Cytotoxic activities of amentoflavone against human breast and Cervical Cancers are mediated by increasing of PTEN expression levels due to peroxisome proliferator-activated receptor γ activation", *Bull. Korean Chem. Soc.*, 33 (7), 2219-2223.
- Lee, S.-J., Wood, A. R., Maier, C. G. A., Dixon, R.A. and Mabry, T. J. 1998. "Prenylated flavonoids from *Maclura pomifera*", *Phytochemistry*, 49 (8), 2573-2577.
- Mahabusarakam, W., Wiriyachitra, P. and Taylor, W. C. **1987**. "Chemical constituents of Garcinia mangostana", *J. Nat. Prod.*, *50* (3), 474-478.
- Maungjunburee, S. 2010. Chemical constituents from the stem bark of Oroxylum indicum (L.) Benth. Ex Kurz. Master of Science Thesis, Prince of Songkla university, Songkhla, Thailand.
- Marti, G., Eparvier, V., Litaudon, M., Grellier, P. and Gureritte, F. **2010**. "A new xanthone from the bark extract of *Rheedia acuminate* and antiplasmodial activity of its major compounds", *Molecules*, *15*, 7106-7114.
- Minami, H., Takahashi, H., Kodama, M. and Fukuyama, Y. **1996**. "Three xanthones from *Garcinia subelliptica*", *Phytochemistry*, *41* (2), 629-63.
- Minami, H., Kinoshita, M., Fukuyama, Y., Kodama, M., Yoshizawa, T., Sugiura, M., Nakagawa, K. and Tago, H. 1994. "Antioxidant xanthones from *Garcinia* subelliptica", Phytochemistry, 36 (2), 501-506.
- Ngouamegne, E. T., Fongang, R. S., Ngouela, S., Boyom, F. F., Rohmer, M., Tsamo, E., Gut, J. and Rosenthal, P. J. 2008. "Endodesmiadiol, a friedelane triterpenoid, and other antiplasmodial compounds from *Endodesmia calophylloides*", *Chemical & Pharmaceutical Bulletin*, 56 (3), 374-377.
- Na, Z. and Xu, Y.-K. **2010**. "A new prenylated xanthone from Garcinia xipshuanbannaensis Y.H. Li", *Nat. Prod. Res.*, *24* (17), 1648-1653.

- Niu, S.-L., Li, Z.-L., Ji, F., Liu, G.-Y., Zhao, N., Liu, X.-Q., Jing, Y.-K. and Hua, H.-M. 2012. "Xanthones from the stem bark of *Garcinia bracteata* with growth inhibitory effects against HL-60 cells", *Phytochemistry*, 77, 280-286.
- Pakakrong, T. 2005. Chemical constituents from leaves of *Ceriops decandra* (Griff.) Ding Hon. Master Thesis, Prince of Songkla university, Songkhla, Thailand.
- Panthong, K., Pongcharoen, W., Phongpaichit, S. and Taylor, W. 2006. "Tetraoxygenated xanthones from the fruits of *Garcinia cowa*", *Phytochemistry*, 67, 999-1004.
- Panthong, K., Hutadilok-Towatana, N. and Panthong, A. 2009. "Cowaxanthone F, a new tetraoxygenated xanthone, and other anti-inflammatory and antioxidant compounds from *Garcinia cowa*", J. Chem. Educ., 87, 1636-1640.
- Rukachaisirikul, V., Naklue, W., Sukpondma, Y. and Phongpaichit, S. 2005. "An antibacterial biphenyl derivative from *Garcinia bancana* Miq.", *Chem. Pharm. Bull.*, 53(3) 342—343.
- Ryu, Y. B., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, J.-Y., Kim, D., Naguyen, T. T.
 H., Park, S.-J., Chang, J. S., Park, K. P., Rho, M.-C. and Lee, W. S. 2010.
 "Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL^{pro} inhibition", *Bioorganic & Medicinal Chemistry*, 18, 7940-7947.
- Salae, S. 2006. Chemical constituents from the twigs, seeds and fruits of Garcinia nervosa. Master of Science Thesis, Prince of Songkla university, Songkhla, Thailand.
- Sordat-Diserens, I., Rogers, C., Sordat, B. and Hostettmann, K. **1991**. "Prenylated xanthones from *Garcinia livingstonei*", *Phytochemistry*, *31* (1), 313-316.
- Schroder, G., Wehingera, E., Lukacin, R., Wellmann, F., Seefelder, W., Schwacb, W. and Schroder, J. 2004. "Flavonoid methylation: a novel 4'-Omethyltransferase from *Catharanthus roseus* and evidence that partially methylated flavanones are substrates of four different flavonoid dioxygenases", *Phytochemistry*, 65, 1085-1094.

- Tantapakul, C., Phakhode, W., Ritthiwigrom, T., Cheenpracha, S., Prawat, U., Deachathai, S. and Laphookhieo, S. 2012. "Rearranged benzophenones and phenylated xanthones from *Garcinia propinqua* twigs", J. Nat. Prod., 75, 1660-1664.
- Trisuwan, K. and Ritthiwigrom, T. 2012. "Benzophenone and xanthone derivative from the inflorescences of *Garcinia cowa*" Archives Pharmacal Research, 35 (10), 1733-1738.
- Vo, H. T., Nguyen, N.-T. T., Maas, G. and Werz, U. R. **2012**. "Xanthone from the bark of *Garcinia pedunculata*", *Phytochemistry Lett.*, *5*, 766-769.
- Vo, H. T., Nguyen, N.–T. T., Nguyen, H. T., Do, K. Q., Connolly, J. D., Maas, G., Heilmann, J., Werz, U. R., Pham, H. D. and Nguyen, L.-H. 2012.
 "Cytotoxic tetraoxygenated xanthones from the bark of *Garcinia* schomburgkiana", Phytochemistry Lett., 5, 553-557.
- Waffo, A. F. K., Mulholland, D., Wansi, J. D., Mbaze, L. M., Powo, R., Mpondo, T. N., Fomum, Z. T., Konig, W. and Ephrem, A. N. 2006. "Afzeliixanthones A and B, Two New Prenylated Xanthones from *Garcinia afzelii* ENGL. (Guttiferae)", *Chem. Pharm. Bull.*, 54 (4), 448–451.
- Zhao, Y., Liu, J. -P., Lu, D.; Li, P. Y. and Zhang, L.-X. **2011**. "Two new xanthone from the pericarp of Garcinia mangostana", *Nat Prod Res.*, *26* (1), 61-65.
- Zou, Y.-S., Hou, A.-J., Zhu, G.-F., Chen, Y.-F., Sunc, H.-D. and Zhaoc, Q.-S. 2004. "Cytotoxic isoprenylated xanthones from Cudrania tricuspidata", *Bioorganic & Medicinal Chemistry*, 12, 1947–1953.
- เต็ม สมิตินันท์. 2523. <u>ชื่อพรรณไม้แห่งประเทศไทย (ชื่อพฤกษศาสตร์-ชื่อพื้นเมือง)</u>. 379 หน้า. กรุงเทพฯ : ฟันนี่พับบลิสชิ่ง.
- มาโนช วามานนท์ และ เพ็ญนภา ทรัพย์เจริญ. 2540. <u>ยาสมุนไพรสำหรับงานสาธารณสุขมูลฐาน</u>. 133 หน้า. สำนักปลัดกระทรวงกรุงเทพฯ.
- วุฒิ วุฒิธรรมเวช. 2540. <u>สารานุกรมสมุนไพร: รวมหลักเภสัชกรรมไทย</u>. 358 หน้า. กรุงเทพฯ: โอ เดียนสโตร์

APPENDIX

• ¹H-NMR and ¹³C-NMR spectra of AS1-AS18

Figure 2 UV (MeOH) spectrum of AS1

Figure 3 IR (neat) spectrum of AS1

Figure 4¹H NMR (300 MHz) (CDCl₃) spectrum of AS1

Figure 5 UV (MeOH) spectrum of AS2

Figure 6 IR (neat) spectrum of AS2

Figure 7¹H NMR (300 MHz) (CDCl₃) spectrum of AS2

Figure 8 UV (MeOH) spectrum of AS3

Figure 9 IR (neat) spectrum of AS3

Figure 10 1 H NMR (300 MHz) (CDCl₃+CD₃OD) spectrum of AS3

Figure 11 NOE (300 MHz) (Acetone-d₆) spectrum of AS3

Figure 12 UV (MeOH) spectrum of AS4

Figure 13 IR (neat) spectrum of AS4

Figure 14¹H NMR (300 MHz) (DMSO-*d*₆) spectrum of AS4

Figure 15¹³ C NMR (75 MHz) (DMSO-*d*₆) spectrum of AS4

Figure 16 2D HMBC (DMSO-d₆) spectrum of AS4

Figure 17 UV (MeOH) spectrum of AS5

Figure 18 IR (neat) spectrum of AS5

Figure 19 ¹H NMR (300 MHz) (DMSO- d_6) spectrum of AS5

Figure 20 ¹³C NMR (75 MHz) (DMSO- d_6) spectrum of AS5

Figure 21 2D HMBC (DMSO-d₆) spectrum of AS5

Figure 22 UV (MeOH) spectrum of AS6

Figure 23 IR (neat) spectrum of AS6

Figure 25¹³C NMR (75 MHz) (CDCl₃+DMSO-*d*₆) spectrum of AS6

Figure 26 DEPT 135° (CDCl₃+DMSO-*d*₆) spectrum of AS6

Figure 27 2D HMQC (CDCl₃+DMSO-*d*₆) spectrum of AS6

Figure 28 2D HMBC (CDCl₃+DMSO-*d*₆) spectrum of AS6

Figure 29 2D COSY (CDCl₃+DMSO-d₆) spectrum of AS6

Figure 30 UV (MeOH) spectrum of AS7

Figure 31 IR (neat) spectrum of AS7

Figure 32 ¹H NMR (300 MHz) (DMSO-*d*₆) spectrum of AS7

Figure 33 UV (MeOH) spectrum of AS8

Figure 34 IR (neat) spectrum of AS8

Figure 35 ¹H NMR (300 MHz) (DMSO- d_6) spectrum of AS8

Figure 36 13 C NMR (75 MHz) (DMSO- d_6) spectrum of AS8

Figure 37 2D HMQC (DMSO-d₆) spectrum of AS8

Figure 38 2D HMBC (DMSO-d₆) spectrum of AS8

Figure 39 2D COSY (DMSO-*d*₆) spectrum of AS8

Figure 40 UV (MeOH) spectrum of AS9

Figure 41 IR (neat) spectrum of AS9

Figure 42 ¹H NMR (300 MHz) (CDCl₃+DMSO-*d*₆) spectrum of AS9

Figure 43 2D HMBC (CDCl₃+DMSO-*d*₆) spectrum of AS9

Figure 44 2D COSY (CDCl₃+DMSO-*d*₆) spectrum of AS9

Figure 45 UV (MeOH) spectrum of AS10

Figure 46 IR (neat) spectrum of AS10

Figure 47 ¹H NMR (300 MHz) (CDCl₃) spectrum of AS10

Figure 48 UV (EtOH) spectrum of AS11

Figure 49 IR (neat) spectrum of AS11

Figure 50 ¹H NMR (300 MHz) (Acetone- d_6) spectrum of AS11

Figure 51 2D HMBC (Acetone-*d*₆) spectrum of AS11

Figure 52 UV (EtOH) spectrum of AS12

Figure 53 IR (neat) spectrum of AS12

Figure 54 ¹H NMR (300 MHz) (Acetone- d_6) spectrum of AS12

Figure 55 ¹³C NMR (75 MHz) (Acetone-*d*₆) spectrum of AS12

Figure 56 2D HMQC (300 MHz) (Acetone-*d*₆) spectrum of AS12

Figure 57 2D HMBC (Acetone-*d*₆) spectrum of AS12

Figure 58 UV (EtOH) spectrum of AS13

Figure 59 IR (neat) spectrum of AS13

Figure 60 ¹H NMR (300 MHz) (Acetone- d_6) spectrum of AS13

Figure 61¹³C NMR (75 MHz) (Acetone-*d*₆) spectrum of **AS13**

Figure 63 2D HMBC (300 MHz) (Acetone-*d*₆) spectrum of AS13

Figure 64 UV (EtOH) spectrum of AS14

Figure 65 IR (neat) spectrum of AS14

Figure 66 ¹H NMR (300 MHz) (CDCl₃+DMSO-*d*₆) spectrum of **AS14**

Figure 67¹³C NMR (75 MHz) (CDCl₃+DMSO-*d*₆) spectrum of AS14

Figure 68 DEPT 135° (CDCl₃+DMSO-*d*₆) spectrum of AS14

Figure 69 2D HMQC (300 MHz) (CDCl₃+DMSO-*d*₆) spectrum of AS14

Figure 70 2D HMBC (300 MHz) (CDCl₃+DMSO-*d*₆) spectrum of AS14

Figure 71 UV (EtOH) spectrum of AS15

Figure 72 IR (neat) spectrum of AS15

Figure 73 ¹H NMR (300 MHz) (Acetone-*d*₆) spectrum of **AS15**

Figure 74 ¹³C NMR (75 MHz) (Acetone-*d*₆) spectrum of AS15

Figure 75 2D HMQC (300 MHz) (Acetone-*d*₆) spectrum of AS15

Figure 76 2D HMBC (300 MHz) (Acetone-*d*₆) spectrum of AS15

Figure 77 UV (EtOH) spectrum of AS16

Figure 78 IR (neat) spectrum of AS16

Figure 79 ¹H NMR (300 MHz) (Acetone- d_6) spectrum of AS16

Figure 80 13 C NMR (75 MHz) (Acetone- d_6) spectrum of AS16

Figure 81 DEPT 135° (Acetone-*d*₆) spectrum of AS16

Figure 82 2D HMBC (300 MHz) (Acetone- d_6) spectrum of AS16

Figure 83 UV (EtOH) spectrum of AS17

Figure 84 IR (neat) spectrum of AS17

Figure 85 ¹H NMR (300 MHz) (Acetone- d_6) spectrum of AS17

Figure 86¹³C NMR (75 MHz) (Acetone-*d*₆) spectrum of AS17

Figure 87 DEPT 135° (Acetone-*d*₆) spectrum of AS17

Figure 88 2D HMQC (300 MHz) (Acetone-d₆) spectrum of AS17

Figure 89 2D HMBC (300 MHz) (Acetone- d_6) spectrum of AS17

Figure 90 UV (EtOH) spectrum of AS18

Figure 91 IR (neat) spectrum of AS18

Figure 92 ¹H NMR (300 MHz) (Acetone- d_6) spectrum of AS18

Figure 93 ¹³C NMR (75 MHz) (Acetone-*d*₆) spectrum of AS18

Figure 94 NOE (300 MHz) (Acetone- d_6) spectrum of AS18

Figure 95 NOE (300 MHz) (Acetone- d_6) spectrum of AS18

Figure 96 2D HMBC (300 MHz) (Acetone-d₆) spectrum of AS18

VITAE

Name	Mr. Arun Saelee	
Student ID	5410220105	
Place of Birth	Songkhla, THAILAND	

Education Attainment

Degree	Name of Institution	Year of Graduation
B.Sc.(Chemistry)	Prince of Songkla University	2010

Scholarship Awards during Enrolment

- 1. National Research University, Prince of Songkla University
- 2. Graduate School, Prince of Songkla University
- Teacher Assistant for undergraduate-level, Faculty of Science, Prince of Songkla University

List of Publication and Proceeding

Arun Saelee, Wilawan Mahabusarakam. "Biflavonoids from the Leaves of *Garcinia dulcis*". Pure and Applied Chemistry International Conference 2013, The Tide Resort, Chon Buri, Thailand, 23-25 January 2013. (Poster presentation)

Arun Saelee, Wilawan Mahabusarakam. "Phenolic Compounds from the Leaves of *Garcinia dulcis*". The 5th International Conference on Natural Products for Health and Beauty (NATPRO 5. Moevenpick Resort & Spa Karon Beach Phuket, Thailand, May 6-8, 2014. (poster presentation)