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Chapter 2 

Methodology 

This chapter includes a description of the methodology used in the study as the 

following components: 

1. Study design and data sources 

2. Data management 

3. Path diagram and variables 

4. Statistical model 

2.1 Study design and data sources 

A retrospective ill-defined mortality data analysis from year 2000 to 2009 was carried 

out. These data were obtained from the Bureau of Health Policy and Strategy, 

Ministry of Public Health, Thailand.  The International Classification of Diseases 

tenth revision (ICD-10)  of ill-defined  causes of death codes are R00-R99 which 

defined as “symptoms, signs and abnormal clinical and laboratory findings, not 

elsewhere classified” when there is unavailable information on cause of death. 

The projected population for Thailand from year 2000 to 2030 was obtained from the 

Institute of Population and Social Research, Mahidol University. 

2.2 Data management  

Ill-defined death data from the Bureau of Health Policy and Strategy, Ministry of 

Public Health were recorded as a text file. Data cleaning was performed to eliminate 
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wrong coding and dealing with missing values. Numbers of ill-defined deaths were 

aggregated by gender, age group, region, year and place of death. Since age was 

included as a demographic determinant, it was divided into 7 groups: 0-9, 10-19, 20-

29, 30-39, 40-49, 50-59 and 60 years and over. The region was classified into 5 

groups: Bangkok, Central, North, Northeast and South. The place of death was 

divided into 2 groups: in hospital and outside hospital. The projected population was 

used as denominator by merging with ill-defined mortality data according to gender-

age group, region, year and place of death. Gender-age group were combined in order 

to explain how ill-defined death rate for each gender varies with age which these two 

variables had significant interaction term. It was divided into 14 groups: male aged 0-

9, male 10-19, male 20-29, male 30-39, male 40-49, male 50-59, male 60+, female 

aged 0-9, female 10-19, female 20-29, female 30-39, female 40-49, female 50-59, and 

female 60+. R program was used for graphical display and statistical analysis (R 

Development Core Team, 2010 version 2.11.1).  

2.3 Path diagram and variables 

The path diagram of this study is shown in Figure 2.1.  In this study, ill-defined 

mortality rate was determined by gender-age group, region, year and place of death.  
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Path diagram 

 

Figure 2.1 Path diagram of the study 

Variables 

Determinants 

There are four determinants: gender-age group, region, year and place of death.  

The region was classified into 5 groups: Bangkok, Central, North, Northeast and 

South. Death rates per 100,000 population were computed from the number of ill-

defined deaths divided by mid-year population. 

 Outcome 

The outcome is ill-defined death rate from year 2000 to 2009. 

2.4 Statistical Methods 

2.4.1 Mortality rate   

Suppose that Dijkm are a random variable denoted number of ill-defined deaths in 

gender-age group i (i = male aged 0-9, male aged 10-19, male aged 20-29, male  aged 

30-39, male aged 40-49, male aged 50-59, male aged 60+, female aged 0-9, female 

           Outcome 
      …………………….. 

Ill-defined mortality rates 

(per 100,000 population)  

Determinants 
………………………………. 

Gender-age group: 14 groups  

Region: 5 regions  

Year: 10 years (2000-2009)  

Place of death: (in/outside 

hospital) 
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aged 10-19, female aged 20-29, female  aged 30-39, female aged 40-49, female aged 

50-59, female aged 60+), region j (j = Bangkok, Central, North, Northeast and South), 

year k (k = 2000, 2001, 2002,…, 2009), and place of death m (m = in hospital and 

outside hospital) in estimated population Pijkm. Thus the mortality rate can be 

computed by 

                                                     
ijkm

ijkm
ijkm P

KD
y =                                           (1) 

where yijkm are ill-defined mortality rate for gender-age group i, region j, year k, and 

place of death m, K is a scaling constant such as 1,000, 10,000 or 100,000.  

2.4.2 Multiple Linear Regression Analysis 

Since death rate for ill-defined was considered as a continuous outcome and the 

determinants comprise gender-age group, region, year and place of death. Multiple 

linear regression analysis was fitted. The model takes the form 

                                                                                          
mkjiijkmy δγβαμ ++++=                                                  (2) 

where  yijkm are the ill-defined death rates,  μ is the overall effect, αi are the effects of 

gender-age group, βj are the effects of region, kγ  are the effects of year, and mδ  are 

the effects of place of death. The model is fitted to the data using least squares, which 

minimizes the sum of squares of the residuals. Linear regression consists of four 

assumptions including the association is linear, the variability of the errors (in the 

outcome variable) is constant and these errors are normal distributed. If these 

assumptions were not met, the data may need to be transformed. In this study, the 
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death rate was transformed by taking natural logarithms. The estimated additive 

model for death rates takes the form                                         

                                           mji δγβαμ ++++= kijkm )(yln                                            (3) 

The parameter yijkm are the ill-defined death rates, μ is the overall effect, αi are the 

effects of gender-age group, βj are the effects of region, kγ  are the effects of year 

and mδ  are the effects of place of death. Poisson model was considered when the linear 

regression model was not fit to the data. 

Poisson Regression  

Poisson regression is appropriate for fitting models with count data, which are non-

negative and integer values. The probability function for the Poisson distribution with 

observed counts of y is given by: 

                                               Prob (Y = y) 
!y

e yλλ−                                                  (4) 

where 

  e is the base of the natural logarithm (e = 2.71828…) 

  y is the number of occurrences of an event 

   λ is a positive real number, equal to the expected number of  

           occurrences that occur during the given interval. 

Poisson regression model can be fitted by using the generalized linear models (GLMs) 

equation with the log link function (McCullagh and Nelder, 1989). Suppose that 

ijkmy is a random variable denoted number of ill-defined deaths in gender-age group i, 
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region j, year k and place of death m. Then the Poisson regression model is takes the 

form:   

                                          
mkjiijkmijkm )Pln()ln( δγβαμλ +++++= .                       (5) 

The parameter λ is the mean of λijkm, Pijkm are the population in gender-age group i, 

region j, year k and place of death m, αi are the effects of gender-age group i, βj are 

the effects of region j, γk are the effects of year k and δm are the effects of place of 

death m. We suppose that the effect of variables α1, β1, γ1 and δ1 equal zero. A 

problem with the Poisson regression model occurs when we encounter over-

dispersion. This means that the variance is greater than mean. The alternative model 

which is negative binomial was then considered instead. 

Negative binomial regression 

The negative binomial is traditional alternative regression model for count data when 

over-dispersion Poisson occurred. This distribution of observed counts y takes the 

form: 

                                    Prob (Y= y) 
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where Г is the gamma function and k is known as the dispersion parameter, which k is 

greater than 0. Unlike the Poisson distribution that mean must equal with variance, 

negative binomial can allow variance greater than mean. This can be done because 

variance of negative binomial is λ+ λ2/k. Note that negative binomial will be 

equivalence with the Poisson if k as dispersion parameter equal to 0. Thus if k is equal 
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to 0 Poisson regression model is appropriate, but negative binomial is appropriate if k 

significantly difference from 0. 

Goodness of fit 

A measure discrepancy between observed and fitted values is the deviance.  We show 

that for Poisson responses the deviance takes the form   
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The first term is identical to the binomial deviance, representing “twice a sum of 

observed times log of observed over fitted”. The second term, a sum of differences 

between observed and fitted values, is usually zero, because Poisson model has the 

property of reproducing marginal totals, as noted above. For large samples the 

distribution of the deviance is approximately a chi-squared with n-p degrees of 

freedom, where n is the number of observations and p the number of parameters. 

Thus, the deviance can be used directly to test the goodness of fit of the model. An 

alternative measure of goodness of fit is Pearson’s chi-squared statistic, which is 

defined as 
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The numerator is the squared difference between observed and fitted values, and the 

denominator is the variance of the observed value. The Pearson’s statistics has the 

same from for Poisson and binomial data, namely a sum of squared observed minus 

expected over expected. 
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In large samples the distribution of Pearson’s statistics is also approximately chi-

squared with n-p degree of freedom. One advantage of the deviance over Pearson’s 

chi-squared is that it can be used to compare nested models. 

2.5.5 Sum Contrasts 

Sum contrast (Venables and Ripley, 2002; Tongkumchum and McNeil, 2009) was 

used to obtain confidence intervals for comparing means within each factor with the 

overall mean. An advantage of these confidence intervals is that they provide a simple 

criterion for classifying level of the factor into three groups according to whether each 

corresponding confidence intervals exceeds, crosses, or is below the overall mean. 

 


