รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาคุณค่าทางโภชนาการและทางยาของข้าวงอกเพื่อเป็น ส่วนประกอบในผลิตภัณฑ์เสริมอาหารและอาหารเพื่อสุขภาพ

โดย รศ. ไพบูลย์ ธรรมรัตน์วาสิก และคณะ

สารบัญ

หน้า

บทคัดย่อ i
Abstract iv
บทสรุปผู้บริหาร vii
กิตติกรรมประกาศ xi
สารบัญ xii
สารบัญตาราง xiii
สารบัญรูป xix
สารบัญภาคผนวก xxii
บทที่ 1 บทนำ 1
บทที่ 2 การตรวจเอกสารและงานวิจัยที่เกี่ยวข้อง 4
บทที่ 3 วิธีการทดลอง 28
บทที่ 4 ผลและวิจารณ์ผลการทดลอง 48
บทที่ 5 บทสรุปและข้อเสนอแนะ 129
เอกสารอ้างอิง 134
ภาคผนวก 147

สารบัญตาราง

ตารางที่ หน้า
2.1 ปริมาณสารอาหารในข้าวกล้องและข้าวขัดขาว 100 กรัม (นน.เปียก) 6
2.2 การแบ่งตามปริมาณของอะไมโลสและลักษณะข้าวสุก 7
2.3 ความสัมพันธ์ของอุณหภูมิแป้งสุกกับระยะเวลาในการหุงต้ม 8
2.4 การแบ่งประเภทข้าวตามความคงตัวของแป้งสุก 8
2.5 คุณค่าทางโภชนาการและสารออกฤทธิ์ทางชีวภาพของข้าวกล้องและข้าวกล้องงอก 15
2.6 ปริมาณกรดอะมิโนอิสระในข้าวพันธุ์ Haiminori ที่ผ่านการเพาะให้งอก 16 ด้วยการแช่น้ำและไม่ได้แช่น้ำ
2.7 วิธีการหรือสภาวะที่ใช้ในกระบวนการงอกเพื่อทำให้ปริมาณ GABA ในเมล็คข้าวเพิ่มสูงขึ้น 18
2.8 ประโยชน์ต่อสุขภาพของข้าวกล้องงอก 21
2.9 ปริมาณ GABA ของจมูกข้าวที่มีระยะเวลาการเก็บรักษาต่างกันก่อนนำมาแช่ในน้ำ 25
2.10 การเปลี่ยนแปลงปริมาณ GABA ระหว่างกระบวนการงอก (เพาะให้งอกที่อุณหภูมิ $30^{\circ} \mathrm{C}$) 26
3.1 สารละลายที่ pH ต่างๆ ที่ใช้แช่ข้าวกล้อง 32
3.2 ชนิดตัวทำละลายที่ใช้ในการชะผ่าน Column chromatography 40
4.1 องค์ประกอบทางเคมีของข้าวกล้องพันธุ์ต่างง 48
4.2 ผล pH ของสารละลายที่ใช้ระหว่างการแช่ข้าวกล้องพันธุ์ต่างๆต่อปริมาณ GABA 52
4.3 ผลของอุณหภูมิ ในระหว่างการแช่ข้าวกล้องพันธุ์ต่างๆ ต่อปริม่น GABA 54
4.4 ผลของระยะเวลาในระหว่างการแช่ข้าวกล้องพันธุ์ต่างๆ ต่อปริมาณ GABA 55
4.5 ปริมาณ GABA ของข้าวกล้องพันธุ์ต่างๆเมื่อเพาะด้วยวิธีต่างๆ 58
4.6 สภาวะการเพาะที่ให้ GABA สูงที่สุคของข้าวพันธุ์ต่างๆ 59

สารบัญตาราง (ต่อ)

ตารางที่ หน้า
4.7 องค์ประกอบทางเคมีของข้าวกล้องและข้าวกล้องงอกพันธุ์ต่างๆ 61
4.8 ปริมาณ Gamma-oryzanol ในข้าวกล้องงอกสายพันธุ์ต่างๆซึ่งเพาะจากสภาวะ 62 ที่ให้ GABA สูงสุด ที่ววลาต่างๆ
4.9 ปริมาณ phytate ของข้าวกล้องงอกสายพันธุ์ต่างๆซึ่งเพาะจากสภาวะ 63 ที่ให้ GABA สูงสุด ที่เวลาต่างๆ
4.10 ปริมาณ Total phenolic ในข้าวกล้องงอกสายพันธุ์ต่างๆๆึึ่งเพาะจากสภาวะ 65
ที่ให้ GABA สูงสุค ที่เวลาต่างๆ
4.11 ปริมาณ ferulic acid ของข้าวกล้องงอกสายพันธุ์ต่างๆซึ่งเพาะจากสภาวะ 66
ที่ให้ GABA สูงสุค ที่เวลาต่างๆ
4.12 ปริมาณ tocopherol ของข้าวกล้องงอกสายพัน์ุุต่างๆซึ่งเพาะจากสภาวะ 67
ที่ให้ GABA สูงสุด ที่ววลาต่างๆ
4.13 ปริมาณ GABA ของข้าวกล้องงอกพันธุ์ต่างๆซึ่งเพาะจากสภาวะ 68
ที่ให้ GABAสูงสุดที่เวลาต่างๆ
4.14 ปริมาณ GABA ในส่วนต่างๆของข้าวกล้องงอกทั้ง 4 สายพันธุธซึ่งเพาะจากสภาวะ 69
ที่ให้ GABA สูงสุด ที่เวลาต่างๆ
4.15 ปริมาณสารประกอบฟีนอลิกทั้งหมดและกิจกรรมการต้านออกซิเดชันของข้าวกล้องงอก 69
4.16 ปริมาณตัวอย่างที่ร้อยละการยับยั้งกิจกรรมอะไมเลสจากน้ำลาย 50 ร้อยละการยับยั้ง 73
ของส่วนต่างๆ ของข้าวกล้องงอก เล็บนกปัตตานี
4.17 ผลของวิธีเพาะต่อร้อยละการยับยั้งเอนไซม์อะไมเลสจากน้ำลายของสารสกัด 74 ข้าวเล็บนกปัตตานีและช่อลุง
4.18 ผลของวิธีเพาะต่อร้อยละการยับยั้งกิจกรรมเอนไซม์อะไมเลสของสารสกัดข้าวกล้องช่อลุง 74

สารบัญตาราง (ต่อ)

ตารางที่ หน้า
4.19 ผลของสายพันธุ์ข้าวกล้องต่อร้อยละการขับยั้งกิจกรรมเอนไซม์อะไมเลส 75 จากการเพาะแบบแช่ที่เวลาเพาะต่างๆ
4.20 ผลของชั่วโมงเพาะแบบแช่ และพันธุ์ข้าวต่อปริมาณวิตามินละลายในไขมัน 76
4.21 ผลของชั่วโมงเพาะแบบแช่ต่อปริมาณวิตามินกลุ่มละลายดีในไขมัน ของข้าวกล้องช่อลุง 77
4.22 ผลการแยกค้วย silica gel column chromatography ของ Fraction A 79
4.234.24
4.25
4.26
4.27
4.28
4.294.30
4.31ประเภทของผลิตภัณฑ์อาหารที่มีข้าวกล้องงอกเป็นส่วนประกอบ89
ที่ผู้ตอบแบบสอบถามเคยรับประทาน
ความถี่ในการบริโภคผลิตภัณฑ์อาหารที่มีข้าวกล้องงอกเป็นส่วนประกอบ 90
สาหตุสำคัญที่ทำให้ผู้ตอบแบบสอบถามไม่เคยรับประทานหรือ 91
เลิกรับประทานอาหารที่มีข้าวกล้องงอกเป็นส่วนประกอบ

สารบัญตาราง (ต่อ)

ตารางที่ หน้า
4.34 ความต้องการของผู้ตอบแบบสอบถามต่อการปรับปรุงคุณค่าทางโภชนาการ 92
4.35 รูปแบบของผลิตภัณฑ์จากข้าวกล้องงอก 93
4.36 ความเห็นเกี่ยวกับส่วนผสมอื่นๆ ในข้าวกล้องงอกสำเร็จรูป/กึ่งสำเร็จรูป 94
4.37 ความเห็นในปัจจัยวัตถุดิบที่เหมาะสมที่จะนำมาใช้เป็นส่วนผสม 94
ในข้าวกล้องงอกสำเร็จรูปกึ่งสำเร็จรูป
4.38 ข้อมูลประชากรศาสตร์ของผู้ตอบแบบสอบถาม 95
4.39 ปริมาณความชื้นของข้าวกล้องหลังเพาะและผลิตภัณฑ์ข้าวกล้องงอก 97 สำเร็จรูปบรรจุในถุงรีทอร์ทเพาซ์
4.40 ปริมาณความชื้นของข้าวกล้องหลังเพาะและผลิตภัณฑ์ 97
ข้าวกล้องงอกสำเร็งรูปบรรจุกระป๋อง
4.41 ค่าสีของข้าวกล้องงอกและผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปบรรจุในถุงรีทอร์ทเพาซ์ 98
4.42 ค่าสีของข้าวกล้องงอกและผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปบรรุุกระป๋อง 99
4.43 ค่า Elongation ratio และ Elongation index ของผลิตภัณฑ์ข้าวกล้องงอกสำร็จรูป 99 บรรจุในถุงรีทอร์ทเพาซ์
4.44 ค่า Elongation ratio และ Elongation index ของผลิตภัณฑ์ 100
ข้าวกล้องงอกสำเร็จรูปบรรจุในกระป๋อง
4.45 พฤติกรรมการเปลี่ยนแปลงความหนืคของข้าวกล้องงอกหลังเพาะและ 103
ผลิตภันฑ์ข้าวกล้องงอกสำเร็จรูปที่บรรจุในถุงรีทอร์ทเพาซ์
4.46 พฤติกรรมการเปลี่ยนแปลงความหนืคของข้าวกล้องงอกหลังเพาะและ 103 ผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปที่บรรจุในกระป๋อง
4.47 ค่าความเข็งของข้าวกล้องงอกสำเร็จรูปบรรจุในถุงรีทอร์ทเพาซ์ 104

สารบัญตาราง (ต่อ)

ตารางที่ หน้า
4.48 ค่าความแข็งของข้าวกล้องงอกสำเร็จูปบรรฉุกระป๋อง 105
4.49 ระดับสภาพผลึกขของข้าวกล้องงอกหลังเพาะและผลิตภัณฑ์ 107
ข้าวกล้องงอกสำเร็จรูปทั้ง 2 ชนิด
4.50 ผลการทดสอบทางประสาทสัมผัสของผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูป 111
บรรจุในถุงรีทอร์ทเพาซ์
4.51 ผลการทดสอบทางประสาทสัมผัสเปรียบเทียบระหว่างผลิตภัณฑ์ข้าวกล้องงอก 112
สำเร็จรูปบรรจุในถุงรีทอร์ทเพาซ์และในกระป๋อง
4.52 คุณค่าทางโภชนาการของข้าวพันธุ์ช่ลลุง เปรียบเทียบระหว่างข้าวกล้อง 114
ข้าวกล้องงอกและผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูป
4.53 ชนิคและปริมาณแร่ธาตุของข้าวกล้อง ข้าวกล้องงอก และผลิตภัณฑ์ 116
ข้าวกล้องงอกสำเร็จรูปจ จากข้าวพันธุช่ช่อลุง
4.54 ปริมาณสาร GABA ในข้าวพันธุ์ช่อลุง งปรียบเทียบระหว่างข้าวกล้อง 117
ข้าวกล้องงอกและผลิตภัณฑ์ข้าวกล้องงอกสำเร็งรูป
4.55 ปริมาณสารประกอบฟืนอลิกทั้งหมดและกิจกรรมการต้านออกซิเดชัน 119
ของข้าวกล้อง ข้าวกล้องงอกและผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูป
4.56 ศักยภาพการยับยั้งกิจกรรมเอนไซม์อะไมเลส ของสารสกัดจากข้าวกล้อง 120
ข้าวกล้องงอกและผลิตภัณฑ์ข้าวกล้องงอกสำเร็งรูป จากข้าวพันธุ์ช่อลุง
4.57 ข้อมูลประชากรศาสตร์ของผู้ทำแบบสอบถาม 121
4.58
จำนวนและเปอร์เซ็นต์ของกลุ่บตัวอย่างที่เคยรู้จักหรือทราบข่าวเกี่ยวกับข้าวกล้องงอก 123
4.59 สื่อต่างๆที่ทำให้กลุ่มตัวอย่างรู้กักข้าวกล้องงอก 123
4.60 จำนวนและเปอร์เซ็นต์ของกลุ่มตัวอย่างที่สนใจบริโภคข้าวกล้องงอก 124

สารบัญตาราง (ต่อ)

ตารางที่ หน้า
4.61 เหตุผลที่ทำให้กลุ่มตัวอย่างสนใจบริโภคข้าวกล้องงอก 124
4.62 เหตุผลที่ทำให้กลุ่มตัวอย่างไม่สนใจบริโภคข้าวกล้องงอก 125
4.63 จำนวนและเปอร์เซ็นต์ของกลุ่มตัวอย่างที่เคยรับประทานข้าวกล้องงอก 125
หรือผลิตภัณฑ์จากข้าวกล้องงอก
4.64 จำนวนและร้อยละของผลิตภัณฑ์จกกข้าวกล้องงอกที่ผู้ทดสอบเคยรับประทาน 126
4.65 ผลการทคสอบทางประสาทสัมผัสของผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูป 126
กับผู้บริโภคกลุ่มผู้สูงอายุ จำนวน 111 คน
4.66 จำนวนและร้อยละของผู้ตอบแบบสอบถามที่ยอมรับข้าวกล้องงอกบรรจุกระป๋อง 127
4.67 จำนวนและร้อยละของผู้ตอบแบบสอบถามที่สนใจจะซื้อข้าวกล้องงอกบรรจุกระป๋อง 127
4.68 จำนวนและร้อยละของผู้ตอบแบบสอบถามที่สนใจจะซื้อข้าวกล้องงอกบรรจุกระป๋อง 128
เมื่อมีข้อมูลบ่งชี้ว่าข้าวกล้องงอกบรรจุกระป๋องมีสาร GABA

สารบัญรูป

รูปที่ หน้า
2.1 โครงสร้างและส่วนประกอบของข้าว 5
2.2 ตัวอย่างกราฟที่ได้จากการวิเคราะห์ความหนืดของแบ้งด้วยเครื่อง RVA 9
2.3 ข้าวกล้องงอกจากข้าวพันธุ์ช่อลุง, เหนียวคำเปลือกขาว, เหนียวหลันตัน และเล็บนกปัตตานี 11
2.4 ระยะต่างๆในการงอกของเมล็คพืช 13
2.5 การเปลี่ยนแปลงทางชีวเคมีและสารอาหารในระยะต่างๆของข้าว 17
2.6 โครงสร้างโมเลกุลของ GABA 17
2.7 ปริมาณสารอาหาร 6 ชนิดในข้าวกล้องที่ผ่านการแช่ของข้าว 24
ที่มีจมูกข้าวขนาคใหญ่ (GE) กับมีจมูกข้าวขนาคปกติ (NE)
2.8 ปริมาณ GABA ในจมูกข้าวที่แช่ในสารละลายกรด-ค่างต่างๆ ใน 0.1 โมลาร์ 26
ฟอสเฟตบัฟเฟอร์และซิเตรท บัฟเฟอร์ ระยะเวลาการแช่ 1 ชั่วโมง และ 4 ชั่วโมง
2.9 ผลของชนิคสารละลายที่ใช้ในการแช่ข้าวต่อกิจกรรมของเอนไซม์ 27
กลูตาเมต คีคาร์บอกซิเลส และปริมาณ GABA ในเอมบริโอหลังจากแช่นาน 4 ชั่วโมง
3.1 ข้าวกล้องทั้ง 4 สายพันธุ์ก่อนและหลังการบรรจุแบบสุญญากาศ 28 ในถุงโพลีเอทธิลีน ขนาค 8×12 นิ้ว
3.2 ภาชนะสำหรับใช้เพาะข้าวกล้องงอก 34
4.1 การเปลี่ยนแปลงของปริมาณความชื้นของข้าวกล้องทั้ง 4 สายพันธุ 50 ระหว่างการแช่ในน้ำกลั่นที่อุณหภูมิห้อง นาน 24 ชั่วโมง
4.2 การเปลี่ยนแปลงของปริมาณ GABA ของข้าวกล้องทั้ง 4 สายพันธุ์ 51 ระหว่างการแช่ในน้ำกลั่นที่อุณหภูมิห้อง นาน 24 ชั่วโมง
4.3 ข้าวกล้องพันธุ์ต่างๆที่เพาะให้งอกด้วยการแช่ในสารละลาย 56
Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่ pH 3 โดยใช้อุณหภูมิ $40^{\circ} \mathrm{C}$ ที่เวลาต่างๆ
 สารบัญรูป (ต่อ)
รูปที่ หน้า
4.4 ข้าวกล้องพันธุ์ต่างๆที่เพาะให้งอกในภาชนะเปิด (ตะกร้า) 57
4.5 ข้าวกล้องพันธุ์ต่างๆที่เพาะให้งอกในภาชนะปิด (กล่องพลาสติกมีฝาปิด) 57
4.6 ผลของระยะเวลาในการงอกกับการขับขั้งการย่อยแป้งของเอนไซม์อะไมเลส 70
ของสารสกัดจากข้าวเล็บนกปัตตานี
4.7 ข้าวกล้อง ข้าวกล้องงอก และส่วนของข้าวสารและจมูกข้าว 71
4.8 การกระจายตัวของสารยับขั้งอะไมเลสในส่วนต่างๆของเมล็คข้าวกล้องอก 72 พันนุ์เล็บนกปัตตานี เพาะโดยใช้ภาชนะเปีด ที่ค่าการเอือจางต่างๆ
4.9 สูตรโครงสร้าง Hydroxy Phenyllactic acid 80
4.10 แสคงความสัมพันธ์ระหว่างระยะเวลาทคลองกับน้ำหนักตัวของ 82
หนูขาวเพศผู้ (M) และเพศเมีย (F) ซึ่งได้รับสารสกัดข้าวงอกในขนาดต่างๆ กัน
4.11 แสคงภาพจากกล้องจุลทรรศน์ของตัวอย่างเนื้อเยื่ออวัยวะภายในของ 87 หนูเพศผู้ซึ่งได้รับสารสกัดข้าวกล้องงอกในขนาค $300 \mathrm{mg} / \mathrm{kg}$ BW/day
4.12 เปอร์เซ็นต์ของผู้ตอบแบบสอบถามเกี่ยวกับสาเหตุสำคัญูที่ทำให้ผู้ตอบแบบสอบถาม 90 เลือกรับประทานผลิตภัณฑ์อาหารที่มีข้าวกล้องงอกเป็นส่วนประกอบ
4.13 เปอร์เซ็นต์ของผู้ตอบแบบสอบถามเกี่ยวกับการปรับปรุงผลิตภัณฑ์อาหาร 91
ที่ใช้ข้าวกล้องงอกเป็นส่วนประกอบหลัก เมื่อมีการพัฒนาเป็นผลิศภัณฑ์
4.14 เปอร์เซ็นต์ของความสนใจของผู้ตอบแบบสอบถามที่มี่อพัตนา 93
ผลิตภัณฑ์ชนิดต่างๆหากมีการพัฒนาโดยใช้ข้าวกล้องงอกเป็นส่วนประกอบ
4.15 รูปแบบโครงสร้างผลึกของข้าวกล้องงอกหลังเพาะที่บรรจุในถุงรีทอร์ทเพาซ์ 106
4.16 รูปแบบโครงสร้างผลึกของข้าวกล้องงอกหลังเพาะที่บรรจุในกระป๋อง 107

สารบัญรูป (ต่อ)

รูปที่ หน้า
4.17 ลักษณะและรูปร่างโมเลกุลแป้งของข้าวกล้องงอกหลังเพาะ ข้าวกล้องงอก 1091:0.5, 1:0.6 และ $1: 0.7$ ที่กำลังขยาย $60 x, 5000 x$ และ $9000 x$ ตามลำคับ
4.18 ลักษณะและรูปร่างโมเลกุลแป้งของข้าวกล้องงอกหลังเพาะ ข้าวกล้องงอก 110
สำเร็จรูปบรรจุกระป๋องที่เตรียมโดยใช้อัตราส่วนข้าวกล้อง: น้ำเท่ากับ 1:1.25, 1:1.50 และ 1:1.75 ที่กำลังขยาย $60 x, 5000 \mathrm{x}$ และ 9000 x ตามลำคับ
4.19 ข้าวกล้องงอกสำเร็จรุปบรรจุกระป๋อง 113
4.20 กราฟเปรียบเทียบปริมาณวิตามิน ในข้าวกล้อง ข้าวกล้องงอก และผลิตภัณฑ์ 115
4.21 การยับยั้งกิจกรรมเอนไซม์อะไมเลสจากตับอ่อนของสารสกัด 121
ข้าวกล้องช่อลุงแบบแช่ (0.2 กรัม/มล.) ที่ค่าการเจือจางต่างๆ

สารบัญภาคผนวก

กาคผนวก หน้า
ก การเผยแพร่ผลงานทางวิชาการ 147
ข ตารางค่าวิเคราะห์ทางเคมี 150
ค การวิเคราะห์องค์ประกอบทางเคมี ปริมาณอะไมโลสและ 153 แกมมาอะมิโนบิวทิริกแอซิด (GABA)
ง สรุปขั้นตอนการเพาะข้าวกล้องแต่ละวิธี 166
 168
ฉ การศึกษาการส่งผ่านความร้อนในผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูป 170
ช ตัวอย่างแบบสอบถาม: การพัฒนาผลิตภัณฑ์จากข้าวกล้องงอก 172
ซ สรุปขั้นตอนการเตรียมตัวอย่างข้าวกล้องงอกพันธุช่ชลุงเพื่อใช้ในการพัฒนาผลิตภัณฑ์ 183
ฏ แบบสอบถามทางประสาทสัมผัสของผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูป 184
ญู-1 ใบชี้แจงข้อมูลและการแสคงความยินยอมเข้าร่วมการทคสอบทาง 185 ประสาทสัมผัสของผลิตภัณฑ์ข้าวกล้องงอกบรรจุกระป๋อง
ญ-2 ตัวอย่างแบบสอบถาม: การยอมรับของผู้บริโภคต่อข้าวกล้องงอกบรรจุกระป๋อง 186

บทคัดย่อ

การวิจัยมี้มีวัตุุประสงก์ (1) เพื่อศึกษาสกาวะการงอกที่เหมาะสมของข้าวกล้องพันษ์นื้นเมือง ภคคใต้ ที่ให้ปริมาณกบบาสูงสุด (2) ประเมิิคุนค่าทงงโภชนาการและสารออกฤทธิ์ทางชีวภาพในข้าวกล้อง
 การทคสอบความเป็นพิษของสารรกัคจากข้ววกล้องงอก และ (4) การพัฒนาผลิตกัณษ์จกกข้ววกล้องงยกและ
 เปลือกขาวและเหนียวหลันตัน ด้วยวิธีการเพาะโดยการแช่นนสารละลยยที่มี pH ต่างๆ เพะในภชชนะปีด และเพาะในกาชนะเปีด จากการึึกษาพบว่าเมื่เพิ่มระยะเวลาการเพาะให้นานขึ้นทำให้มีปริมานกบบาเพิ่ม สูงงื้นในทุกๆวิธีที่ใช้พาะ(ค<0.05) ระยะเวาที่หมมาะสมสำหรับการเพาะข้ววกล้องทุกสายพันธุ คือ 48 ชั่วโมง การเพาดด้วขวิธินช่ในสาระะลยย Citric acid- $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer (pH 3) ที่ถุณหภูิิิ $40^{\circ} \mathrm{C}$ ให้ข้าวกล้อง งอกทั้ง 3 สาพพันฐุ์ได้แก่ พันรุ์ช่ชลุุงเส็บนกปัตตานี เหนียวคำปลีอกขาว มีปริมานกาบาสูงสุด $(75.03,53.53$ และ $60.03 \mathrm{mg} / 100 \mathrm{~g}$ ตามกำดับ) รองสงมา คือ การเพาะนนกาชนะปิดดเละการเพาะในกาชนะเปิด ตามกำคับ สำหรับข้าวัหัุุุหนียวหลันตันเพาะในภาชนะปีคจะให้ข้าวกล้องงอกที่ได้มีปริมิมณกาบสูงสุด (94.91 มิลลิกรัมต่อ 100 กรัม) รองสงมา คือ การเพาะในภหชนะเปิดเละการแช่ในสารละลาย Citric acid- $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer $(\mathrm{PH} 3)$ ที่อุณหหูมิ $40^{\circ} \mathrm{C}$ ตามลำดับ ดังนั้นสกาวะการงจกที่หมาะสมที่ให้ปริมาณกาบสูงสุด คือ การ แช่ในสรรละลาย Citric acid- $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer $\left(\mathrm{pH} 3\right.$) ใช้ัตราส่วนข้าว:น้ำ เท่ากับ $1: 2$ ที่อุณหหูมิ $40^{\circ} \mathrm{C}$ นาน 48 ชั่วโมง ในพันธัช่อลุง เล็บนกปัตตานี และเหนียวคำปลืือกขาว ในขมะที่ข้าวเหนียวหลันตัน ต้องเพาะใน ภาชนะปีด ที่อุณหหูมินิอง $\left(30 \pm 2^{\circ} \mathrm{C}\right)$ นาน 48 ชั่วโมง หลังจากเพาะข้วกล้องทั้ง 4 สายพันธุตามสภาวะที่ คัคเลือกพบว่า ข้าวกล้องงอกทุกสาขพันธุ์มีคุมค่าทงงโภชนาการ คือ ปริมานคาร์โปไไเดรต เถ้า และไขมัน เพิ่มสูงงึ้น($\mathrm{p}<0.05)$ แผ่มีมิริมาณโปรตีนลคต่ำลง ($\mathrm{p}<0.05$) สำหรับสารออกฤทริ์ทงชี่วภาพพ พบว่าข้ววกล้อง งอกส่วนให่่มีคี่าของสารเกมมา-อริิซานอล ไม่ค่างงกกข้าวกล้องก่อนเพาะ ในขนะที่ข้ววกล้องงอกทุกสาย พันโุ้มีปริมิาณไฟเตทลคลง ($\mathrm{p}<0.05$) และมีปริมามของสารฟืนนลิกทั้งหมด กรดเฟอรูริก โทโโคีีรอล และ สารกาบา เพิ่มสูงง้้น ($\mathrm{p}<0.05$) โดยเฉพาะปริมามกาบมีค่าเพิ่มขึ้น $6.80-20.69$ เท่ามื่อเปรียบเทียบกับข้าว กล้องก่อนเพาะโคยข้าวเนนียวหลันตันมีปริมาณกาบาพิ่มสูงขึ้นมากที่สุด รจงลงมา คือ ข้าวพันรุ์ช่จลุง
 จมูกข้าว รำข้วว และเนื้อด้านในมมล์ค พบว่าในแต่ละส่วนมีปริมาณกาบที่แตกต่างกัน ($\mathrm{p}<0.05$) โดยพบว่า ส่วนมมูกข้าวมีปริมานกบบสูงที่ธุด ($180.70-429.06 \mathrm{mg} / 100 \mathrm{~g}$) รจงลงมา คือ รำข้าว ($47.41-176.61$)และ ส่วนเนื้อค้านในของเมล็ค้้ว $(15.11-24.42 \mathrm{mg} / 100 \mathrm{~g})$ ตามลำคับ และจากการทคสอบกิจกรรมการด้านออก ซิเดชั่นของข้าวกล้องงอกทั้ง 4 สายพันธุ์ พบว่าข้าเหนนียวคำปลือกขาวมีททธิ์ในการด้านออกซิเดชั่นสูงสุด รถงลงมาคือ ข้าวเหียวนลันตัน ข้าวช่อลุง และข้ววล็็นนกปัตตานี ตามลำคับ

สำหรับฤทธิ์การยับยั้งการทำงานของเอนไซม์แอลฟ่า-อะไมเลส พบว่าการเพาะในภาชนะเปิดมี ผลให้ข้าวกล้องงอกมีศักยภาพในการยับยั้งเอนไซม์เอลฟ่า-อะไมเลสจากน้ำลายและตับอ่อนดีกว่าการเพาะ แบบแช่ในสารละลาย ข้าวกล้องงอกพันธุ์ช่อลุงและเล็บนกปัตตานีต้องใช้ววลาแช่ 24 ชั่วโมง จึงจะยับยั้ง เอนไซม์อะไมเลสได้สูงสุด และเมื่อนำข้าวกล้องพันธุ์เล็บนกปัตตานีมาแยกเป็น 3 ส่วน คือ ข้าวกล้องทั้ง เมล็ค จมูกข้าว และข้าวกล้องที่ไม่มีจมูกข้าว พบว่าส่วนจมูกข้าวมีการยับยั้งอะไมเลสได้สูงสุด $(98.9 \%$ ที่ ปริมาณ 200 มก. /มล.; IC_{50} ที่ 34.5 มก./มล.) รองลงมา คือ ข้าวกล้องที่มีจมูกและข้าวกล้องที่ไม่มีจมูก ตามลำดับ เมื่อระยะเวลาการเพาะนานขึ้น มีผลเพิ่มฤทธิ์ในการยับยั้งอะไมเลส

ข้าวกล้องงอกพันธุ์ช่อลุงถูกเลือกมาเป็นตัวอย่างเพื่อใช้ในการทคสอบฤทธิ์การยับยั้งการทำงาน ของเอนไซม์แอลฟ่า-อะไมเลส การแยกสารสำคัญที่มีถทธิ์ต้านการอักเสบ และการทคสอบความเป็นพิษของ สารสกัคจากข้าวกล้องงอก รวมถึงใช้เป็นตัวอย่างในการพัฒนาผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูป โดยพบว่า ข้าวกล้องงอกมีปริมาณวิตามิน อี บี 1 บี3และ บี 6 ลคต่ำลง ($\mathrm{p}<0.05$) มีปริมาณแร่ธาตุลคลงจากข้าวกล้อง $21.5-95.7 \%$ รวมถึงมีฤヤธิ์ยับยั้งการทำงานของเอนไซม์แอลฟ่า-อะไมเลสไค้ต่ำลงเมื่อเปรียบเทียบกับข้าว กล้อง $(\mathrm{p}<0.05)$ การแยกสารส์ำคัญที่มีถทธิ์ต้านการอักเสบ สามารณแยกได้ 2 ชนิค สารชนิดที่ 1 แทบจะไม่มี สัญญาณโปรตอน และค่า $\mathrm{IC}_{50}>100 \mu \mathrm{~g} / \mathrm{mL}$ สารชนิคที่ 2 น่าจะเป็น Hydroxy Phenyllactic acid ซึ่งมีค่า IC_{50} $=107.7 \mu \mathrm{~g} / \mathrm{mL}$ สำหรับการทคสอบความเป็นพิษแบบเฉียบพลันและพิษแบบเรื้อรังในสัคว์ทคลอง พบว่า สารสกัดจากข้าวกล้องงอกมีความปลอคภัยในสัตว์ทดลอง โดยการทดสอบความเป็นพิษแบบเฉียบพลันใช้ ขนาคของสารสกัด (Dose) เท่ากับ 2 กรัม ต่อน้ำหนัก 1 กิโลกรัมของหนูถีบจักร และในขณะที่การทดสอบ ความเป็นพิษแบบเรื้อรังซึ่งทำการทคสอบกับหนูขาวใช้ขนาคของสารสกัดสูงถึง $300 \mathrm{mg} / \mathrm{kg} \mathrm{BW} / \mathrm{day}$ ซึ่งคิด เป็น 4 เท่าของปริมาณเฉลี่ยที่คนได้รับเมื่อบริโภคข้าวงอกทุกวัน วันละ 3 มื้อ ติดต่อกันนาน 12 สัปดาห์

การสำรวจความต้องการของผู้บริโภคกลุ่มผู้สูงอายุที่มีต่อผลิตภัณฑ์ข้าวกล้องงอก พบว่ากลุ่ม ผู้บริโภคส่วนใหญ่ให้ความสนใจกับผลิตภัณฑ์ข้าวกล้องงอกกึ่งสำเร็จรูป/ สำเร็จรูป ซึ่งสูตรที่ได้รับคะแนน จากการทดสอบทางประสาทสัมผัสสูงสุด ในทุกๆปัจจัยที่ทำการทดสอบ คือ ข้าวกล้องงอกสำเร็จรูปบรรจุ กระป๋องที่เตรียมโดยใช้อัตราส่วนของข้าวกล้องงอก : น้ำ เท่ากับ $1: 1.25$ ซึ่งมีปริมาณกาบา เท่ากับ 1.94 mg 100 g มีปริมาณสารประกอบฟืนอลิกทั้งหมด เท่ากับ $11.06 \mathrm{mg} \mathrm{FAE} / 100 \mathrm{~g}$ มีกิจกรรมการต้านออกซิเดชันที่ ทดสอบด้วยวิธี DPPH, ABTS และ FRAP เท่ากับ $10.54,9.09$ และ $7.13 \mathrm{mg} \mathrm{FAE} / 100 \mathrm{~g}$ ตามลำดับ และจาก การประเมินฤทธิ์ต้านการอักเสบของผลิตภันฑ์สำเร็จรูป พบว่ามีฤทธิ์ต้านการอักเสบที่ $\mathrm{IC}_{50}>100 \mu \mathrm{~g} / \mathrm{mL}$ สำหรับฤทธิ์การขับยั้งกิจกรรมเอนไซม์อะไมเลสจากตับอ่อนของผลิตภันฑ์ข้าวกล้องงอกสำเร็จรูปพบว่ามีค่า น้อยกว่าข้าวกล้องงอกและข้าวกล้อง $(p<0.05)$

นอกจากนี้จากการทคสอบการยอมรับของผู้บริโภคที่มีต่อผลิตภัณฑ์ที่พัตนาขึ้น พบว่าผู้ตอบ แบบสอบถาม 93.69% ให้การยอมรับผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปบรรจุกระป๋อง ในระดับชอบรวมปาน กลาง (คะแนนเฉลี่ย เท่ากับ 7.39) ถ้ามีผลิตรัณฑ์ชนิคนี้จำหน่ายในท้องตลาด จะมีู้้ที่สนใจซื้อ 82.57% และ
 สุบกาพกามสนใชซื้อะะเพิ่มขึ้น จาก 82.57% เป็น 95.50% การให้ข้อบูลเกี่ยวกับประโยชน์ต่อสุงกาพทำให้มี โอกสที่มู่แริโภคจะเปลี่งนใจซื้อสินค่าเพิ่มขึ้น 5.94 ถึง 19.66%

Abstract

This research aims to (i) study optimal condition for germination Southern Thai rice with the highest GABA content, (ii) evaluate nutritional composition and bioactive compounds in germinated brown rice, (iii) determine anti-oxidant activity, anti-inflammatory activity, inhibitory amylase enzyme activity and toxicity of germinated brown rice and the extracts and (iv) develope new product from germinated brown rice. Four Southern Thai rice varieties which two varieties are non-glutinous rice (Cholung and Leb Nok Pattani) and other two varieties are glutinous rice (Niaw Dam Peuak Khao and Niaw Lun Tun) were used to germinate with different methods (soaking in buffer solution with different pH , germinating in open and closed vessels). The results indicated that GABA content increased with increasing germination time ($\mathrm{p}<0.05$) and the optimal time for germination of all varieties were 48 hr . The highest GABA contents were found in Cholung ($75.03 \mathrm{mg} / 100 \mathrm{~g}$), Leb Nok Pattani ($53.53 \mathrm{mg} / 100 \mathrm{~g}$) and Niaw Dam Peuak Khao ($60.03 \mathrm{mg} / 100 \mathrm{~g}$) respectively which were germinated by soaking in the Citric acid- $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer (pH 3) at $40^{\circ} \mathrm{C}$ with ratio of brown rice and solution equal to $1: 2$, and germinated in closed and open vessels. While Niaw Lun Tun varieties gave $94.91 \mathrm{mg} / 100 \mathrm{~g}$, germinating in closed vessel following by open vessel and by soaking in the Citric acid- $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer (pH 3) solution. Thus the optimum conditions for germination of three Southern Thai rice varieties (Cholung, Leb Nok Pattani and Niaw Dam Peuak Khao) were to soak the brown rice in the Citric acid- $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer $(\mathrm{pH} 3)$ at $40^{\circ} \mathrm{C}$ for 48 hr with ratio of brown rice and solution equal to $1: 2$ while the other variety (Niaw Lun Tun) was germinated in the closed vessel at room temperature $\left(30 \pm 2^{\circ} \mathrm{C}\right)$ for 48 hr . After germination, most nutritional components increased in all varieties ($\mathrm{p}<0.05$) excepting protein content. The bioactive compounds in the germinated brown rice were found that the amount of γ-Oryzanol of all germinated brown rice were not significantly different from the ungerminated brown rice. The phytate content was significantly decreased while total

phenolic, ferulic acid, tocopherol and GABA contents were significantly increased in all germinated brown rice ($\mathrm{p}<0.05$). Comparing to other bioactive compounds, the amount of GABA increased 6.80-20.69 times which was the highest rate. Niaw Lun Tun had the highest amount of GABA after germination, following by Cholung, Niaw Dam Peuak Khao and Leb Nok Pattani respectively. The germinated brown rice was separated into 3 parts; germ, bran and inner endosperm or white rice; had different amount of GABA ($\mathrm{p}<0.05$). Germ gave the highest GABA content ($180.70-429.06 \mathrm{mg} / 100 \mathrm{~g}$), bran ($47.41-176.61 \mathrm{mg} / 100 \mathrm{~g}$) and inner endosperm (15.11-24.42 mg/100 g) respectively. For anti-oxidant activity, the results showed that Niaw Dam Peuak Khao had the highest activity, following by Niaw Lun Tun, Cholung, and Leb Nok Pattani respectively.

The inhibition α-amylase activity indicated that germination methods affected the inhibitory activity of α-amylase enzyme. Open vessel method showed the better activity in inhibiting α-amylase enzyme from saliva and pancreatic than of germinating with soaking in the buffer solution (pH 3). The optimum time that showed the highest inhibitory activity of Cholung and Leb Nok Pattani varieties (germinated by soaking in the buffer solution) was 24 hr . The brown rice, germ and brown rice without germ were determined the inhibitory activity of α-amylase enzyme. The highest inhibitory activity was found in germ (98.9% at 200 $\mathrm{mg} / \mathrm{mL}$; $\mathrm{IC}_{50}=34.5 \mathrm{mg} / \mathrm{mL}$.) following by brown rice and brown rice without germ respectively. The inhibitory activity increased with increasing germination time.

Germinated brown rice from Cholung variety was selected for product development as well as inhibition of α-amylase activity testing, anti-inflammatory activity and toxicity testing. After germination, activity of inhibition the α-amylase enzyme and the amount of vitamin E, B1, B3 and B6 were significantly decreased ($\mathrm{p}<0.05$), including mineral content which was lower than brown rice $21.5-95.7 \%$. After fractionation the extract, the results showed that 2 main compounds can be separated from the crude extract. The first
compound contained $\mathrm{IC}_{50}>100 \mu \mathrm{~g} / \mathrm{mL}$ and the second compound that might be Hydroxy Phenyllactic acid had $\mathrm{IC}_{50}=107.7 \mu \mathrm{~g} / \mathrm{mL}$. For acute and sub-chronic toxicity testing, the results indicated that germinated brown rice extract had no toxicity to the rats. The extract dose used for acute toxicity that was $2 \mathrm{~g} / \mathrm{kg}$ BW of mice, while for sub-chronic toxicity that was $300 \mathrm{mg} / \mathrm{kg} \mathrm{BW} /$ day.

The target group of consumer in this research was the elderly (60 years olds up). From the consumer survey, the results showed that most consumers were interested in instant rice product. The canned germinated brown rice that prepared by using ratio of germinated brown rice and water equal to $1: 1.25$ was chosen for market survey because this product earned the highest sensory score. GABA and total phenolic contents in the product were 1.94 $\mathrm{mg} / 100 \mathrm{~g}$ and 11.06 mg FAE/ 100 g respectively. Determining anti-oxidant activity by DPPH, ABTS and FRAP methods, the results showed that the product had anti-oxidant activity which were $10.54,9.09$ and 7.13 mg FAE/ 100 g respectively. This product possessed anti-inflammatory activity at $\mathrm{IC}_{50}>100 \mu \mathrm{~g} / \mathrm{mL}$. For the inhibitory α-amylase activity, canned germinated brown rice product was lower activity than of germinated brown rice and brown rice respectively.

The result from marketing survey indicated that 93.69% of consumers accepted this product with the average 7.39 score. This score indicated that the consumers moderately like the product. The consumers were interested to purchase 82.57%, if this product available in the market. Moreover, the buying trend would increase from 82.57% to 95.50%, if health benefit of GABA was informed. Health benefit information will change consumers' mind to purchase this product from 5.94 to 19.66%.

บทสรุปผู้บริหาร

กระบวนการงอกเป็นกระบวนการหนึ่งที่ทำให้คุมค่าทางโกชนาการและสารออกถทธิ์ทาง ชีวกาพของข้ววกล้องสูงงื้น นอกจากนั้นัังช่วยทำใน้ข้ววกล้องมีเนื้สสัมผัสสที่มุ่มนี้นด้วว เนื่องจกกในระหว่าง
 ต่างฯภายในเมล็ดข้าวเกิดการทำงาน ทำให้สารอาหารที่ถูกเก็บไว้ในเมล็คข้าวถูกอ่อยสลายไปตาม กระบวนการทางชีวคมี จนเกิคเป็นสารประเภคคาร์โบไยเครตที่มีโมเลกุลเส็กลง (oligosaccharide) และ น้ำตาารีดีวซ์ (reducing sugar) นอกจากนี้ไปรตีนกยในเมล็คข้าวจะดุก่อยให้เกิคเป็นกรคอะมินนและเปป ไทค์ รวมทั้งงังพบการสะสมสารเคมีสีาคัญต่งๆา เช่น แกมมาออริชานอล (gamma-orazynol) โทโคฟีรอล (tocopherol) โnโคไตรอีนอล (tocotrienol) และแกมมาอะมิโนบิวิิริกแอพิด (gamma-aminobutyric acid, GABA) โดยเฉพาะสาร GABA มีปริมามเพิ่มสูงขึ้นมากกว่า 13 เท่าหลังจากที่ข้าวงอกแล้ว ซึ่ง GABA มี
 กรรวิัชพบว่า GABA เป็นสารที่มี่รระโยชน์ต่อสุบภาพ โดขช่วยในการกระตุ้นการไหลเวียนขขงเลือคใน
 และลคอากรรััก รวมถึงช่วยรักบรระดับควพมดันเลือคและการเด้นของหัวใจให้คงที่ ช่วยลคความวิตกกังวล และควมมุ้สึกกเจ็บปวค ช่วยลคไขบันในเส้นเสือด ช่วยเพิ่มการหสั่งอินชุลิน และควบดุมระดับน้ำตาลในเลือค หลังรับประทานอาหาร นอกจากนี้การบริโกคอาหารที่มีสาร GABA สูงจะชัวยยับยั้งการเงิิญูขงเซลล์มะเร่ง และช่วยพเพ่มประสิทิิภาพพกรเรียบรู้และความจำในหนูให้สูงข้น

การวิับครั้งนี้งแงได้ศึกษาสภาวะการงอกที่เหมาะสมที่ทำให้เมล์คข้าวกล้องงอกมีปริมาณ GABA สูงที่สุด โดยใช้ตัวอย่างข้ววกล้องพันุุ์พื้นมืองกาคใด้ มีเหล่งเพาะปลูกที่จงหวัคพักลุง จำนวน 4 สาย
 มีองค์ปรรกอบทางเคมี ไคืแก่ เด้า ไขมัน โปรตืน คาร์โบไฮเครต และใขอาหารทั้งหมด ในปริมาแตั้งแต่ $0.48-1.44 \%, 2.05-3.47 \%, 8.98-11.61 \%, 8.443-88.43 \%$ และ $3.00-5.90 \%$ ตามลำคับ ข้าวกล้องทุกายยพันโุนี ใขอาหารแบบไม่ละลาน้ำไ็็นองค์ปรรกอบหลัก หลังจกกนั้นมื่อนำข้าวกล้องทั้ง 4 สยพพันธุ มเหาะด้วย วิธีกรรที่เตกต่างกัน 3 วิธ ถือ เพาะด้วยการแช่นสสารละลยในพีเอชที่ต่างๆกัน เพาะในภาชนะเปิด และเพาะ ในภาหนะปีด ซึ่งวิธีกรเพาะที่ให้ปริมาน GABA สูงสุดในข้ววกล้องงอกส่วนใหฐ่ คือ การแช่ในสาระลาย รองสงมาคือการเพาะในภาชนะปิด และการเพาะในภาชนะเปีด ตามสำดับ ยกเว้นพันธุ์หนนียวหลันตันที่มี ปริมาน GABA สูงสุดเมื่อเพาะในภาชนะปีด รองสงมา คือ การเพาะในภาชนะเปิด และการแช่ในสารละลาย ตามลำคับ นอกจากนี้นื่อใ่ใช้ระะะเวกาในการเพาะนานขึ้นจะใน้มล็คข้าวงอกมีปริมาม GABA เพิ่มมากขึ้นใน
 ข้วามีปริมาม GABA สูงสุด แต่ตัวอย่างข้าวกล้องงอกที่เพาได้มืมีลิ่นไม่พึ่งประสงค์ ซึ่งเกิคจากการหมักของ เชื้อุุลินทรีย์ และมีการปนเปื้อนของเชื้อรา ดังนั้นระยะเวลาที่เหมาะสมสัาหรับการเพาะุุกวิรีธี คือ 48

ชั่วโมง และสภาวะที่เหมาะสมส่าหรับารเพาะข้ววพันธุ์ช่อุุง เส็บนกบัตตานี และเหนียวคำบลื่อกขาว คือ กรเพาะด้วยวิธีกรแแ่่นสารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่ pH 3 โดยใช้อัตราส่วนข้าวน้ำ เท่ากับ 1:2 และแเช่ที่อุแหภูมิ $40^{\circ} \mathrm{C}$ นาน 48 ชั่วโมง ในขมะที่ข้ววเหนียวหลันตัน คือ การเพาะในภาชนะงิด แช่ใน สารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่ pH 3 อัตราส่วนข้วว:น้ำท่ากับ $1: 2$ นาน 5 ชั่วโมง หกังจกกนั้น นำมามพะต่อในกล่องพลาสติกกี่มี่าปิด ที่ตุมหภูมิท้อง $\left(30 \pm 2^{\circ} \mathrm{C}\right.$) นาน 48 ชั่วโมง)

หลังจากเพาะข้าวกล้องทั้ง 4 สยพันโุตามสกาวะที่คคคเลืกกได้ พบว่องค์ปรระกอบทางเคมีของ

 และโปงตีนของง้าวกล้องงอกทุกสายพันธุ์ มีคี่าังนี้ $1.05-1.52 \%, 2.78-3.88 \%$ และ $4.76-7.68 \%$ ตาวลำคับ และจากการทศสอบกิจกรรมการต้านออกชิเดชั่นของข้วกกล้องงอกทั้ง 4 สาขพันธุ พบว่า ข้าวหนียวคำ แลือกขาว มีฉทธิ์ในการด้านออกซิ|ดั่นสูงที่สุด รองสงมาดือ ข้วเหนียวหลันตัน ข้าวช่อลุง และข้าวล็บนก ปัตตานี ตามลําคับ นอกจากนี้เม่อวิคราะะห์ปริมาณสารออกฤทธิ์ทงชืวภาพ พบว่าตัวอย่างข้าวกล้องงอกมี
 phytate ลคลง ($p<0.05$) โดยลคลงจากข้าวกล้องก่อนเพาะประมาม $41.25-63.29 \%$ มีปริมาน Total phenolic, Ferulic acid, Tocolpherol และ GABA เพิ่มสูงขึ้น (p<0.05) โดยมีค่าพพิ่มขึ้นจากข้าวาวล้องก่อนเพาะตั้งแต่ $1.37-2.14$ เท่า, $1.19-2.70$ เท่, $1.17-2.49$ เท่่ และ $6.80-20.69$ เท่า ตามลำดับ ดังนั้นเห์นได้ว่า GABA เป็นสาร
 ตันมีปริมาณ GABA เพิ่มขึ้นสูงสุด $(94.91 \mathrm{mg} / 100 \mathrm{~g})$ รองสงมา คือ ข้าวพันธุ่อลุง $(75.03 \mathrm{mg} / 100 \mathrm{~g})$ พันธ์

 ของรำและจมูกข้าว) พบว่าในแต่ละส่วนมีปริมาม GABA ที่เตกต่างกัน (p<0.05) โดยพบว่าส่วนจมูกข้าวมี ปริมาณ GABA สูงที่สุด (มีค่าตั้แเค่ 180.70-429.06 mg/100 g) รจงลงมา คือ รำข้ว ($47.41-17.61 \mathrm{mg} / 100 \mathrm{~g}$) และส่วนนนื้อค้านในของเมล็คข้าว $(15.11-24.42 \mathrm{mg} / 100 \mathrm{~g}$) ตมรำคับ

สำหรับฐทธิ์กรรับบั้งการทำงานของเอนไซม่แอลท่า-จะไไมลส พบว่ากรรเพาะในภาชนะเปีดมี
 เพาะแบนแช่นนสารละลาย ข้ววกล้องงอกพันห์ช่อลุงแเละเล็หนกััตตานีต้องใช้วลแแช่ 24 ชั่วโมง จึงงะัับยั้ง เอนไษม่อะไมเลสได้สูงสุุค และเมื่อนำข้าวกล้องพันษุเล็นนกปัตตตนีมาแยกแบ่งเป็น 3 ส่วน คือ ข้ววกล้องที่ มีจมูก จมูกข้าว และข้าวกล้องที่ไม่มีจมูกข้าว พบว่ส่วนดมูกข้าวมีการับยั้งอะไมเลกได้สูงสุด 98.9% ที่ ปริมาม 200 มก. /มล.; $1 C 50$ ที่ 34.5 มก./มล.) รองกงมา คือ ข้วกกล้องที่มื่จมูกและข้าวกล้องที่ไม่มีจมูก

แว้ว่าข้าวกล้องขอกจากหันฐุเหนียวหลันตันจะมีปริมาน GABA สูงสุด แต่การสำรวจความ ต้องการของต้มริโกคกลุ่งศู้สูงอยุที่มี่อผลิตกันฑ์ข้ววกล้องงอก พบว่ากลุ่มสู้บริกรคส่วนใหถู่ให้ความ สนใจกับผลิคกัณฑ์ข้าวกล้องงอกกึ่งสำเร็ธรูป/ สำเร็รูป ดังนั้นเพื่อให้สอคคล้องกับความต้องกรรของ ผู้รริโภคจึงงเลือกใชช้าวาเจ้าเป็นตัวอย่างในการริจัยต่อไป โดยเลือกใช้ข้าวพันฐุ์ช่ชลุงเนื่องจากเป็นข้าวเจ้าพันธุ ที่ให้ปริมาม GABA สูงสุด หลังจากเตรียมเป็นข้าวกล้องงอกโดยใช้สภาวะที่แช่ในสารละลาย Citric acid $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่ pH 3 โดยใช้อัตรสส่วนข้าววน้ำ เท่ากับ $1: 2$ และแเช่ที่ถุอหภูิิ $40^{\circ} \mathrm{C}$ นาน 48 ชั่วโมง พบว่า
 แร่รตุลคลง $21.5-95.7 \%$ จากการแยกสารสำคัษูที่มีคทิิต้ดนนกรรอักเสบพบว่าสามารณแยกสารสำคัญจากสาร สกัคข้าวกล้องงอกได้ 2 ชนิด โคยสารชนิคที่ 1 แทบจะไม่มีสัญูญูาโปรรตอน (proton) และมีค่า $1 \mathrm{C}_{50}>100$ $\mu \mathrm{mL}$ และสารชนิดที่ 2 ซึ่งน่าจะเป็น Hydroxy Phenyllactic acid ซึ่งมีค่า $1 \mathrm{C} 50=107.7 \mu \mathrm{~mL}$ และเืื่อนำ ข้าวกล้องงอกไปทคสอบความเป็นพิษแบบเฉียบพลันและพิษแบบเรื้อรังพบว่าสารสกัคจากข้าวกล้องงอกมี ความปลอคกัยในสัตวทดดลอง โคยการทดสอบความเป็นหิษแบบเฉียบหลันใช้ขนาคของสารสกัด (Dose)
 การทคสอบกับหนุขาวชช้ขนาคของสารสกัคสูงถึง $300 \mathrm{mg} / \mathrm{kg} \mathrm{BW} / \mathrm{day}$ ซึ่งคิคเป็น 4 เท่าของงริมานเฉลี่ยที่ คนจะได้รับมื่อบริโภคข้าวกล้องงอกทุกวัน วันละ 3 มื้อ ติคต่อกันนาน 12 สัปดาห์
 หากมีการพัผนาเป็นผลิคภัณฑ์ใหม่ คือ ข้าวกล้องงอกสำเร็จรูป และจากการพัฒนาผลิคภัแท์พบว่าสูตรที่ ได้รับคะแนนจากการทคสอบทางประสาทสังผัสสูงสุด ในทุกๆปัจจัยที่ทำการทดสอบ คือ ข้าวกล้องงอก สัําเร็จรูปบรรรจุกระป๋องซึ่งตรีรมโโดยใช้อัตราส่วนของข้าวคล้องงอก : น้ำเท่ากับ $1: 1.25$ ผลิคภัแท์ที่ได้มี คุแค่าทงงโกชนาการ ดังนี้ เถ้า (0.35%) ไขมัน (2.49%) โปรตีน (5.40%) และคาร์โบไยเเรต (91.77%) วิตามิน ถี $(003 \mathrm{mg} / 100 \mathrm{~g})$ วิตามิน บี1 $(0.01 \mathrm{mg} / 100 \mathrm{~g})$ วิตวิิน บี $(0.05 \mathrm{mg} 100 \mathrm{~g})$ และวิตามิน บี6 $(0.02$ $\mathrm{mg} / 100 \mathrm{~g})$ แคลเซียม ($250.96 \mathrm{mg} / \mathrm{kg}$) โซเดีขม ($0.571 \mathrm{mg} / \mathrm{kg}$) โปเตสเซียม $(16.44 \mathrm{mg} / \mathrm{kg})$ แมกนีเซียม $(12.25 \mathrm{mg} / \mathrm{kg})$ เหล็ก $(2.67 \mathrm{mg} / \mathrm{kg})$ ทองเนค $(0.39 \mathrm{mg} / \mathrm{kg}$ ซิสีเนียม ($0.68 \mathrm{mg} / \mathrm{kg})$ สังกะกี $(1.08 \mathrm{mg} / \mathrm{kg})$ โครเมียม $(0.13 \mathrm{mg} / \mathrm{kg})$ นอกจากนี้ในข้วกล้องงอกสำเร็จููปมีปริมาน GABA เท่ากับ $1.94 \mathrm{mg} / 100 \mathrm{~g}$ หาก บริโกคข้าวกล้องงอกส์ำร็จรูปวันละ 5 กระป๋อง (น้ำหนักบรรจุ 120 กรัม) ต่อกระปีองจะได้รับปริมาณ GABA ในปริมาณพียงพอที่จะส่งผลคีค่อสุขภาพ และมีสารประกอบฟืนอลิกทั้งหมด เท่ากับ 11.06 mg FAE/ $100 \mathrm{~g} \mathrm{mg} / 100 \mathrm{~g}$ และมีกิกกรรมการต้านออกชิเดชันที่ทดสอบด้วยวิธ DPPH, ABTS และ FRAP เท่ากับ $10.54,9.09$ และ $7.13 \mathrm{mg} \mathrm{FAE} / 100 \mathrm{~g}$ ตามลำคับ จากการประเมินดททธิ้ต้านการอักเสบของผลิตกัมฑ์ สำเร็จรูป พบว่ามีททธิต์้านการอักเสบที่ $1 \mathrm{C}_{50}>100 \mu \mathrm{~g} \mathrm{~mL}$ สำหรับฤทธิ์กรขับขั้งกิกิกรรมเอนไซม่อะไมเลส

จากการทดสอบการยอมรับของสู้บริกคกที่มี่อยคลิคกัแฑ์ที่พัพนาขึ้น พบว่าตู้ตอบเบบสอบกาม

 ที่สนใจซื้อ 82.57% และเมื่อรู้ว่านลิกัณัน์์ข้าวกล้องงอกบรรจุกระปี้องนี้มีสาร GABA ซึ่งเป็นสารออกถทธี่ ทงชีวกาพที่มีประโยชน์ต์ตสุขกาพ ความสนใจซื้อจะเพิ่มขึ้น จา 82.57% เป็น 95.50% โุดการให้ข้อมูล

กิตติกรรมประกาศ

รายงานวิจัยถบับนี้ํำเร์จุุล่ว่งด้ววดีได้ เนื่องจากได้รับการสนับสนุนและความร่วมมือจาก
 ของทุกฝ่ายมาดังนี้

ขอขอบดุมสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) สำหรับการสนับสนุนทุนในการ คำนินการรังัยคร้งนี้
 คุณนิิิศ แสงอรุดน คุณสำเริง แซ่ตัน และเด้าหน้ทที่ทุกท่าน สำหรับข้อมูลและคำแนะนำต่างาเกี่ยวกับพันรุ์

สุดท้ายขอขอบคุมนุคลากรจกกหลาชๆหน่วขงานของมหาวิทยาลัยสงงลานครินทร์ โดยเฉพาะ คณะฉุสาหกรรมเกษตร คมะเภสัชศาสตร์ และคมะวิทยาศาสตร์ สำหรับความช่วยเหลื่แและการสนับสนุน ต่างๆที่ชวยให้การคำเนินการวิจัยสำเร์ขไปได้ด้วยดี

หากรายงานดบับนี้มข้อบกพร่จงหรือผิคพลาคประการใด ขออกัยมาไร้ น ที่นี้ และคณะด้วัจัย

รศ.ไพบุละ์ ธรรมรันน์วาสิก
หัวหน้าโครงการ
31 กรกฎาคม 2554

บทที่ 1

บทนำ

คนไทยบริโภคข้าวเป็นอาหารหลัก โดยนิยมบริโภคข้าวขัดขาวมากกว่าข้าวกล้อง ทั้งนี้เนื่องจาก ข้าวขัคขาวมีเนื้อสัมผัสที่นุ่มกว่าทำให้บริโภคได้ง่ายกว่า แต่ในแง่ของคุณค่าทางโภชนาการแล้วพบว่าข้าว กล้องมีคุณค่าทางโภชนาการและสารออกฤทธิ์ทางชีวภาพสูงกว่าข้าวขัคขาว เนื่องจากข้าวกล้องยังมีส่วนของ จมูกข้าวและรำข้าวอยู่ ซึ่งทั้งสองส่วนคังกล่าวเป็นแหล่งของสารอาหารต่างๆ ได้แก่ โปรตีน, คาร์โปไฮเครต, ไขมัน, เถ้า, ใยอาหาร, total free amino acids, α-tocopherol และ γ-oryzanol เป็นต้น (กรมอนามัย, 2530 ; ดวง จันทร์ เซงสวัสคิ์, 2547) ซึ่งสารเหล่านี้ให้ประโยชน์ต่อสุขภาพทั้งในแง่งองการป้องกันและการรักษาโรค

มีงานวิจัยมากมายที่พบว่ากระบวนการงอกทำให้คุณค่าทางโภชนาการของข้าวกล้องเพิ่มสูงขึ้น และช่วยทำให้ข้าวกล้องมีเนื้อสัมผัสที่มุ่มขึ้นด้วย (Jung et al., 2005; Ohtsubo et al., 2005; Lee at al., 2008; Jiraporn, 2010; Moongngarm and Saetung, 2010) กระบวนการงอกของเมล็คข้าวทำได้โดยการนำข้าวกล้อง มาแช่ในน้ำ ซึ่งน้ำจะเป็นตัวกระตุ้นให้เกิดการเปลี่ยนแปลงทางชีวเคมีในเมล็คข้าว การเปลี่ยนแปลงเริ่มขึ้น เมื่อน้ำได้แทรกเข้าไปในเมล็ดข้าว โดยจะกระตุ้นให้เอนไซม์ภายในเมล็ดข้าวเกิดการทำงาน เมื่อเมล็คข้าวเริ่ม งอก (malting) สารอาหารที่ถูกเก็บไว้ในเมล์คข้าวถูกย่อยสลายไปตามกระบวนการทางชีวเคมี จนเกิดเป็นสาร ประเภทคาร์โบไฮเดรตที่มีโมเลกุลเล็กลง (oligosaccharide) และน้ำตาลรีดิวซ์ (reducing sugar) นอกจากนี้ โปรตีนภายในเมล็ดข้าวก็จะถูกย่อยให้เกิดเป็น กรดอะมิโนและเปปไทด์ รวมทั้งยังพบการสะสมสารเคมี สำคัญต่างๆ เช่น แกมมาออริซานอล (gamma-orazynol) โทโคฟีรอล (tocopherol) โทโคไตรอีนอล (tocotrienol) และสารแกมมาอะมิโนบิวทิริกแอซิด (gamma-aminobutyric acid, GABA) หรือที่รู้จักกันว่า "สารกาบา" (Varanyanond, 2005) โดยเฉพาะ GABA จะมีปริมาณเพิ่มสูงขึ้นมากกว่า 13 เท่าเมื่อเทียบกับข้าว กล้องก่อนเพาะ (Oh and Oh , 2004) ซึ่ง GABA เป็นกรดอะมิโนชนิดหนึ่งที่ผลิตจากกระบวนการ decarboxylation ของกรดกลูตามิก กรดชนิคนี้มีบทบาทสำคัญในการเป็น neurotransmitter ในระบบประสาท ส่วนกลาง มีการใช้ GABA ในการรักษาโรคเกี่ยวกับระบบประสาทหลายโรค เช่น โรควิตกกังวล นอนไม่ หลับ โรคลมชัก และยังมีคุณสมบัติในการลคความคันโลหิตด้วย นอกจากนี้ในข้าวกล้องงอกยังมีสารออก ฤทธิ์ทางชีวภาพอื่นๆที่มีฤทธิ์ในการต้านการอักเสบ โดยมีฤททิ์ยับยั้งการเกิด thrombin ป้องกันการเกิด thombosis หรือการผิดปกติของการแข็งตัวของเลือคได้ (Nie and Wang, 2008) มีคุณสมบัติต้านเบาหวาน ต้านภาวะความคันสูง เนื่องจากมีสารยับยั้งเอนไซม์ย่อยคาร์โปไฮเครต เช่น แอลฟ่า-อะไมเลส ทำให้การย่อย คาร์โบไฮเครตเกิคขึ้นน้อยลง และการดุคซึมน้ำตาลกลูโคสที่บริเวณลำไส้เล็กเข้าสู่กระแสเลือคเกิคได้น้อยลง จึงส่งผลทำให้ระดับน้ำตาลในเลือคลคลง

 โกชนาการเละสารออกดทธิ์ทาชชืวภาพของง้าวกล้องอกจากข้าวพันธุ์ื้้นมืองภากใต้ โดยหาสภาวะที่ เหมาสสมในการงคกขขงงมล์คข้าว และเป็นสกาวะที่ใน้ไิมมาม GABA สูง รวมถึงมีการทดลองการผลิตข้าว
 กล้องงอกเป็นส่วนประกอบหลัก เนื่องจากมุคคลกลุ่มนี้ส่วนใหมู่มัมมีบีญูหาในด้านความจํา ปัฐหหากี่ยวกับ ระบบสมอง นอนไม่หลับ คังนั้นการได้ร้บสาร GABA จะชั่วยให้สภาพหรืออากการี่ำคคิ้้นบรรเทาลง แต่
 ของข้าพันรู้นึ้นเืืองที่มี่อู่

วัตถุประสงค์

1. เพื่อหาสกาวะที่เหมาะสมสำหรับการเพาะข้วกก้องงอกพันธุุพื้นเมืองของภาคใต้ตั้งหมด 4 สาย พันฐ์ ประกอบด้วขข้ววเเ้า 2 สาชหันโุ ((่่อลุงแเละเล็บนกปัตตานี) และข้าวเหนียว 2 สาษันฐุ์ (เหนียวคำ เปลื่อกขาวและเหนียวหลันตัน) เพื่อให้มี GABA ใน1ริมามสูง
 เตรียมจกกกระบวนการเพาะี่ทำําหน้มีปริมาม GABA ฐูง
2. พื่อศึกษากิจกรรมการด้านออกพิ|คพั่นในข้าวกล้องงอกเต่ละสายพันโุ์ที่เรียยมจกกกระบวนการ เพะะี่ำําให้มีปริมาณ GABA สูง
3. เพื่แยกสารสำคัญูากข้าวกล้องงคก (ตตรียมูคากสกาวะที่ให้ปริมาม GABA สูงที่สุด) ที่มีททธ์์ ต้านการอักเสบโดยกคบริมามณกรรสร้าง nitric oxide
4. เพื่อทดสอบความเป็นพิษแบบเฉียบบลันและแบบกึ่งเรื้อรังของสารสกัดจากข้าวกล้องงยกใน สัตร์nคลอง
5. ศึกษาการยับยั้งการทำงานของเอนไซม์แอลฟ่า-อะไมเลสจากน้ำลายและตับอ่อน ในหลอดทดลอง ของข้าวงอกแต่ละขั้นตอนของกระบวนการผลิตผลิตภัณฑ์
6. เพื่อสำรวจความต้องการของผู้สูงอายุ (อายุตั้งแต่ 60 ปีขึ้นไป) เพื่อใช้เป็นแนวทางในการพัตนา ผลิตภัณฑ์จากข้าวกล้องงอก
7. เพื่อพัฒนาผลิตภัณฑ์จากข้าวกล้องงอก
8. เพื่อศึกษาคุณค่าทางโภชนาการ สารออกฤทธิ์ทางชีวภาพและคุณภาพของผลิตภัณฑ์ที่พัฒนาขึ้น 10. เพื่อทดสอบการยอมรับผลิตภัณฑ์ที่พัฒนาขึ้นและความตั้งใจซื้อของผู้บริโภค

การตรวจเอกสารและ งานวิจัยที่เกี่ยวข้อง

2.1 ข้าว (RICE)

ข้วาเป็นเมล็คของพืชที่อย่ในตระกูลหพู้า Gramineae จัดเป็นอาหารหกักของปรรชากรมากกว่า 50% ในประเทศต่างาของโลก ข้าวแบ่งออกเป็นชนิคตำคัญา ตามลิ่นกำเนิดและความนินมในการมริโคค 2 ชนิค (บริสุทธิ์ สมตทธิ์ 2537; อรอนงค์ นั้วิคุด, 2547) คือ

1. Oryza glabberina แี่ถ่นกำนิดและใช้บริโกกในบางประเทศในทวีวเเอฟริกา

2. $O_{\text {ryza }}$ sativa มีถิ่นกำนิิดในทวีปเอเชีย แลบตะวันออกกลางของยุโรป อมริกาและ ออสตรเลีย ซึ่งถีอว่าเป็นชนิคที่มีกกรปลูกและใช้เป็นอาหารมากกว่าชนิดเรก O ryza sativa แบ่งยอย ออกเป็น 3 สายันฐ์ ไค้แก่
2.1 indica เป็นข้าวที่ปไูกในประเทศต่างๆในเขตร้อน เช่น ศรีกังกา จีนตอนกลางแสะตอน

2.2 japonica เป็นข้าวที่ปจุกในยเเชียตะวันออก ในประเทคคีนตอนเหนื่อ ญี่่มน เกาหลี และ ประเทคอื่นๆ ที่อยุ่ในเขตอบอุ่น เมล์คมีกักบมะว้วน ปีอม รวงแน่น ใบสีเขียวเข้ม
2.3 javaniga เป็นข้าวที่ปดูกในหมู่เกะชชาประเทศอินโคนีเซีย ซึ่งมีปปูกเละใช้บริโกค
 ยาวเมล็คมีหาง ใบสีเงีวว่อน

2.2 องค์ประกอบและโครงสร้างของเมล็ดข้าว

เมล์คข้าวประกอบค้วอ 2 ส่วนใหมู่า ดังนี้ (คคืือวัล์ อัตตะวิริะะสุง, 2536; และ Juliano, 1985) ดัง รูปที่ 2.1

1. เปืือกนอกหรืืแกลบ (hull) เป็นส่วนของกลีบคอกประกอบต้วย palea และ lemma น้ำหนัก เฉลี่ย1ระมาณ 20% ของน้ำหนักมมลคคข้าว เชื่อมกันโคยโโครงสร้างพิศษษที่รียกว่า hook - shaped ชั้นนอกของ hull มี มrichomes องค์ปรรกอบส่วนใหญู่กขยใน hull ได้แเก่ ลิกนิน (30%) เซลจูโโส (25%) และเถ้า (21%) ดังนั้นส่วนนี้จี้งมีคุมค่าทางโภชนาการต่ำ แต่มีความธัาคัญในการข้องกันเมล็คจากเชื้อราและแมลงใน ระหว่างการเก็บรักยา
2. ส่วนที่ทริโกคได้หืือข้าวกล้อง (caryopsis, brown rice, dehull rice, husked rice or cargo rice) ประกอบด้วย

- เยื่อทุ้มผล (pericarp หรือ fruit coat) เป็นส่วนผิวนอกของข้าวกล้อง ประกอบด้วย เนื้อเขื่อ 3 ชั้นด้วยกัน คือ epicarp, mesocarp และ endocarp เยื่อหุ้มผลเหล่านี้มีลักษณะเป็น fibrous ผนังเซลล์ ประกอบด้วย โปรตีน เซลลูโลสและเฮมิเซลลูโลส
- เยื่อหู้มเมล็ด (seed coat หรือ tegmen) เป็นเซลล์ชั้นเดียว หนาประมาณ 0.5 ไมครอน อยู่ถัด จากเยื่อหุ้มผลเข้าไปประกอบด้วยเนื้อเยื่อสองชั้นเรียงกันเป็นแถว เป็นชั้นที่มีไขมันอยู่มาก
- ชั้นแอลิวโรน (aleurone layer) เป็นเยื่อชั้นถัดจากเยื่อหุ้มเมล็ด ประกอบด้วยเซลล์ $1-7$ ชั้น ลักษณะของเยื่อหุ้มด้านหลังของเมล็คจะหนากว่าเยื่อหุ้มค้านท้อง ซึ่งความหนานี้จะแตกต่างไปตามพันธุ์ข้าว เช่น ข้าวเมล็คป้อม-สั้นจะมีเยื่อชั้นแอลิวโรนหนากว่าข้าวเมล็คยาว เป็นต้น และชั้นแอลิวโรนเป็นชั้นที่มี คุณค่าทางอาหารสูง ภายในชั้นแอลิวโรน ประกอบด้วยโปรตีน ไขมัน วิตามินและมีแป้งเล็กน้อย ดังนั้นเมื่อ บริโภคข้าวกล้องซึ่งไม่ได้ข้ดสีเอาชั้นแอลิวโรน ออกไปจึรู้สึกกระด้างกว่าข้าวสาร
- เนื้อเมล็ดหรือเนื้อข้าว (Endosperm) เป็นส่วนเนื้อของเมล็คข้าว (ประมาณ 80% ของ น้ำหนักณมล็คทั้งหมด) ส่วนใหญ่ประกอบด้วยคาร์โบไฮเครตหรือแป้ง แป้งข้าวจะอยู่รวมกันเป็นกลุ่ม (starch compound) กลุ่มแป้งหลายๆกลุ่มจะอยู่รวมกันเป็น micelles โดยมีโปรตีน (protein body) แทรกอยู่ และ ไขมันเล็กน้อย แป้งข้าวแบ่งออกเป็น 2 ชนิดคืออะไมโลส (amylose) และอะไมโลเพคติน (amylopectin)
- จมูกข้าวหรือคัพภะ (embryo) เป็นส่วนเล็กๆอยู่ที่มุมล่างของเมล็ด ส่วนท้องของเมล็ดมี ส่วนประกอบเป็นรากอ่อน (radicle), ต้นอ่อน (plumule), เยื่อทุ้มรากอ่อน (coleorhiza), เขื่อभุ้มต้นอ่อน (caleoptile), ท่อน้ำท่ออาหาร (epiblast) และใบเลี้ยง (scutellum) ซึ่งเป็นใบเลี้ยงเดี่ยว จมูกข้าวเป็นแหล่ง สะสมอาหารสำหรับการเจริญเติบโตของต้นอ่อน จึงถุคมไปด้วยโปรตีนและไขมันส่วนต่างๆ ยกเว้น แป้ง วิตามิน B 1 B 2 และไนอาซิน ซึ่งวิตามินเหล่านี้จะถูกขัดออกไป เมื่อผ่านกระบวนการขัดขาว

รูปที่ 2.1 โครงสร้างและส่วนประกอบของข้าว
ที่มา: สมวงษ์ ตระกูลรุ่ง (2546)

ดังนั้นข้าวที่ประชาชนบริโกคและมี่าหน่ายใน้้องตกาดในปัจุุบันแบ่งได้เ็็น 2 ประภภท คือ ข้าว

 ชั้นแอลิวโรน และจมูกข้าวจะถูกข้คออกไป เหลือแต่ส่วนที่เ็นนเน้อข้าวสืขาว เรียก่า ข้าวข้ดขาว เมื่อนำมา หุงจะมีสีขาวน่ารับประทาน แต่เมื่อเปรียบเทียบกับข้าวกล้องแล้วคุณค่าทางอาหารที่ได้รับมีเพียง
 และจมูกข้าวเป็นแหล่งของโปรต็น วิตามินและะกลือแร่ คังนั้นคุมค่าทางยาหารโุดยเฉพาะวิดามินและแเร่ธาตุ ต่งงๆในข้าวัดขาวจึงม้อยกก่าข้าวกล้อง คังแสคงงในตรรงที่ 2.1
ตรางที่ 2.1 ปริมามสารอาหารในท้าวกล้องและข้วขขัดขาว 100 กััม (นน.เปียก)

ส่วนประกอบ	ข้าวกล้อง	ข้าวขัดขาว	ข้าวกล้อง:ข้าวขัดขาว (เท่า)
สารอาหารหลัก (g)			
โปรตีน	7.6	6.4	1.19
ไขมัน	2.0	0.8	2.50
คาร์โบไฮเดรต	75.1	79.4	-
ใยอาหาร (mg)	2.1	0.7	3.0
วิตามิน (mg)			
วิตามิน บี1	0.34	0.07	4.86
วิตามิน บี2	0.05	0.03	1.66
ไนอะซิน	5.4	1.79	3.01
วิตามิน บี6	0.62	0.11	5.64
วิตามิน อี	0.07	0.04	1.75
แร่ธาตุ (mg)	9		
แคเซียม	1.6	0	1.50
ธาตุเหล็ก	60	20	2.0
แมกนีเซียม	267	144	195
ฟอสฟอรัส	84	79	3.0
โพแทสเซียม	1.9	1.5	1.37
โซเคียม			1.19
สังกะสี			1.06

[^0]
2.3 คุณภาพเมล็ดข้าวในด้านคุณภาพการหุงต้มและรับประทาน (Cooking and eating quality)

คุณภาพการหุงต้มและรับประทาน เป็นการจำแนกข้าวอีกลักษณะหนึ่งโดยแบ่งตามลักษณะทางเคมี ภายในเมล็ดข้าว ซึ่งประกอบไปด้วยอัตราส่วนของอะไมโลสในแป้ง อุณหภูทิที่แป้งสุก ความคงตัวของแป้ง การยืคตัวของเมล็คเมื่อหุง ความชื้น กลิ่นหอม ฯลฯ ซึ่งสมบัติเหล่านี้จะมีผลต่อคุณภาพในการหูงต้มของข้าว
1.ปริมาณอะไมโลส (Apparent amylase content) อัตราส่วนอะไมโลสต่ออะไมโลเพคตินในแป้งเป็น สาเหตุสำคัญทำให้ข้าวสุกมีคุณภาพแตกต่างกัน คือ ถ้าข้าวพันธุ์ใดมีอะไมโลสสูงก็จะมี อะไมโลเพคตินต่ำ อะไมโลสทำให้ข้าวมีลักษณะร่วนเป็นตัวและแข็ง นอกจากนี้อะไมโลสสามารถดูดซับน้ำได้ดี จึงมีผลต่อการ ทุงขึ้นหม้อของข้าว ข้าวที่มีปริมาณอะไมโลสมากจะหุงขึ้นหม้อ ส่วนความนุ่มและความเหนียวของข้าวที่หุง สุกแล้วจะขึ้นกับสัดส่วนของอะไมโลเพคตินในแป้ง แป้งข้าวเหนียวมักเป็นอะไมโลเพคตินเกือบทั้งหมด แต่ ข้ววเจ้าจะมีการแบ่งตามปริมาณของอะไมโลสในสัคส่วนที่แตกต่างกัน (Juliano et al., 1974; ละม้ายมาศ ขัง สุข, 2541) ดังตารางที่ 2.2

ตารางที่ 2.2 การแบ่งตามปริมาณของอะไมโลสและลักษณะข้าวสุก

ประเภทข้าว	ปริมาณอะไมโลส (\%)	ถักษณะข้าวฮุก	ชนิดข้าวที่รู้จักทั่วไป
ข้าวเหนียว	$0-2$	เหนียวมาก	ข้าวเหนียว
ข้าวอะไมโลสต่ำ	$10-20$	เหนียวนุ่ม	ข้าวหอมมะลิ
ข้าวอะไมโลสปานกลาง	$20-25$	ค่อนข้างร่วนไม่เข็ง	ข้าวขาวตาแห้ง
ข้าวอะไมโลสสูง	$25-34$	ร่วนแข็ง	ข้าวเสาไห้

ที่มา: จารนัย พามิชยกุล (2537)
2. อุณหภูมิแป้งสุกหรืออุณหภูมิการเกิดเจล (Gelatinization temperature) อุณหภูมิแไ้งสุกหรือ อุณหภูมิการเกิคเจล หมายถึง อุณหภูมิสุดท้ายที่ทำให้เม็คแป้งซึ่งแขวงลอยอยู่ในน้ำดูคน้ำและพองตัวขึ้น จนกระทั่งความร้อนทำลายการจัดตัวภายในเม็คแป้ง ทำให้เกิดการเปลี่ยนแปลงโครงสร้างภายในอย่างถาวร (จารนัย พานิชยกุล, 2537) อุณหภูมิเบ้งสุกมีความสัมพันธ์กับระยะเวลาในการหุงต้ม คือ ข้าวที่มีอุณหภูมิ แป้งสุกสูง ใช้ระยะเวลาในการหุงต้มนานกว่าข้าวที่มีอุณหภูมิต่ำ Juliano (1985) ได้จัดแบ่งประเภทข้าวตาม ระดับอุณหภูมิเป้งสุกเป็น 3 กลุ่ม ดังตารางที่ 2.3

ตเรงงที่ 2.3 ความััมพันธ์ข์องคุมหภูมิเป้งสุกกับระะเวลาในการหดงต้ม

อุณหภูมิแบ้งสุก $\left({ }^{\circ} \mathrm{C}\right)$	ประเภทอุณหภูมิแป้งสุก	ระยะเวลาในการหุงต้ม (นาที)
ต่ำกว่า 69	ต่ำ	$12-16$
$70-74$	ปานกลาง	$16-24$
สูงกว่า 74	สูง	มากกว่า 24

ที่มา: Juliano (1985)
3. ความคงตัวของแป้งสุก (Gel consistency) การหาความคงตัวของแป้งสุกอาศัยหลักการทำให้แป้ง ใสโดยการต้มในสารละลายเบสโพแทสเซียมไฮดรอกไซด์ แล้วทำให้เย็นในห้องและวัดระยะทางที่แป้งไหล ไปเมื่อวางในแนวราบ ข้าวที่มีอะไมโลสเท่ากัน อาจมีความแข็งของข้าวสุกแตกต่างกัน ทั้งนี้เนื่องจากสมบัติ ของแป้งสุกมีอัตราการคืนตัวไม่เท่ากัน ทำให้แป้งสุกมีความแข็งและอ่อนแตกต่างกัน Buttery และคณะ (1983) ได้ทำการทดสอบความแข็งของแป้งสุกโดยอ่านจากระยะทางแป้งไหลไป พบว่าในการพิจารณา คุณภาพข้าวเจ้าโดยใช้ความคงตัวของแป้งสุกนั้น ต้องพิจารณาข้าวที่มีอะไมโลสอยู่ในประเภทเดียวกัน คังนั้น หากข้าว 2 พันธุ์ มี อะไมโลสสูงใกล้เคียงกัน ข้าวที่มีความคงตัวของแป้งสุกอ่อน เมื่อหุงเป็นข้าวสวยจะได้ ข้าวที่แข็งกระด้างน้อยกว่าข้าวที่มีความคงตัวของแป้งสุกแข็ง ดังนั้น IRRI จึงได้แบ่งข้าวตามความค่าความคง ตัวของแป้งสุกเป็น 3 ประเภท ดังตารางที่ 2.4

ตารางที่ 2.4 การแบ่งประเภทข้าวตามความคงตัวของแป้งสุก

ประเภทแป้งสุก	ระยะทางที่แป้งไหล (มม.)
แป้งสุกแข็ง	$26-40$
แป้งสุกปานกลาง	$41-60$
แป้งสุกอ่อน	$61-100$

ที่มา: Juliano (1985)
4. ความหนืดของแป้ง (Viscoamylograph) อุณหภูมิในการเกิดเจลและความหนืดของแป้งสุก สามารถวัดโดยเครื่อง Rapid Visco Analyzer (RVA) ซึ่งแสดงพฤติกรรมการเปลี่ยนแปลงความหนืดของน้ำ แป้งเมื่อได้รับความร้อน เมื่อให้ความร้อนเม็คแป้งจะเกิดการพองตัว ความหนืคเริ่มต้นเพิ่มขึ้น ความหนืดจะ สูงขึ้นจนถึงจุดสูงสุด เรียกความหนืดที่จุคสูงสุดนี้ว่า peak viscosity แสคงถึงความสามารถในการรวมตัวของ น้ำแป้งเอง อะไมโลแพคตินมีความสามารถรวมตัวกับน้ำสูง ปัจจัยที่มีผลต่อ peak viscosity ได้แก่ อายุการ เก็บรักษา (Aging) ปริมาณโปรตีน และปริมาณอะไมโลส โดยทั่วไปแป้งจากข้าวจะมี peak viscosity ต่ำ กว่าแป้งอย่างอื่น ยกเว้นแป้งข้าวเหนียว (waxy starch) หลังจากเกิด peak viscosity แล้วความหนืดจะลดลง

เนื่องจากการแตกตัวของเม็ดแป้ง อะไมโลสจะถูกปล่อยออกมากับสารละลาย และอาจมีบางส่วนที่เป็น อะไมโลแพคตินด้วย ความหนืดมีการเปลี่ยนแปลงไปสู่ขั้นสลายตัวหรือเรียกว่า breakdown ค่า breakdown มี ความสัมพันธ์กับอะไมโลส เมื่อเข้าสู่ระยะการทำให้น้ำแป้งเย็นตัวลง ความหนืดจะเพิ่มขึ้นอีก เป็นความหนืด ที่เกิคจากโครงสร้างของแป้งที่เกิดการจัคเรียงตัวใหม่ (retrogradation) ซ่วงอุณหภูมิที่แเ้งคืนตัวเรียกว่า setback ส่วน peak viscosity มีหน่วยเป็น RVU ค่านี้สามารถใช้ในการคาคคะเนความแบ็งกระด้างของข้าวสุก ได้ อัตราส่วนระหว่างอะไมโลสต่ออะไมโลแพคตินมีผลต่อการเกิด setback เมื่อระคับอะไมโลสสูงทำให้ setback สูงขึ้นตาม (จารนัย พานิชยกุล, 2537) คังรูปที่ 2.2

รูปที่ 2.2 ตัวอย่างกราฟที่ได้จากการวิเคราะห์ความหนืดของแป้งด้วยเครื่อง RVA ที่มา: จารนัย พาณิชยกุล (2537)
5. การยืดของเมล็คข้าว (Elongation) เมล็คข้าวมีการขยายตัวในระหว่างการหุงต้ม ข้าวสุกที่ยืดตัวได้ มากและไม่เหนียวติดกันเป็นข้าวที่หุงขึ้นหม้อ การที่เมล็คขยายตัวได้มากทำให้เนื้อภายในโปร่งไม่อัดแน่น และช่วยให้ข้าวนุ่มมากขึ้น ข้าวที่ผ่านการเก็บรักษามีการขยายตัวของข้าวสุกเพิ่มขึ้น เนื่องจากเมล็ดข้าว สามารถคูคซับน้ำได้มากขึ้น คังนั้นข้าวเก่าจึงใช้น้ำในการหุงต้มมากกว่าข้าวใหม่ ซึ่งอัตราการยืดตัวของเมล็ด ข้าว (Elongation ratio) หาได้จากความยาวของข้าวสุกต่อความยาวของข้าวสาร หรือคำนวณได้จากสูตร

$$
\begin{gathered}
\text { อัตราการยืดของเมล็ดข้าวสุก }= \\
\text { ความยาวเฉลี่ยของเมล็คข้าวสกก } 10 \text { เมล็ด } \\
\text { ความยาวเฉลี่ยของเมล็คข้าวสาร } 10 \text { เมล็ด }
\end{gathered}
$$

6. กลิ่นหอม (Aroma) ข้าวบางพันธุ์มีกลิ่นสารระเหยบางชนิดที่ผู้บริโภคบางกลุ่มชอบ แต่บางกลุ่มไม่ ชอบซึ่งเป็นกลิ่นที่มีอยุ่ประจำพันธุ์ เช่น ข้าวหอมที่ซื้อขายในตลาดข้าวของโลก คือ พันธุ์ข้าวที่มีสาร 2 -แอ ซีทิล-1-ไพร์รอลืน (2-acetye - 1-pyrroline) ซึ่งเป็นสารหลักของกลิ่นหอมจากข้าว โดยข้าวหอมที่อยู่ในรูป ข้าวกล้องจะมีสารนี้ประมาณ $0.1-0.2$ ไมโครกรัมต่อกรัม (น้ำหนักแห้ง) ในขณะที่ข้าวสารมีเพียง $0.04-0.09$ ไมโครกรัมต่อกรัม (น้ำหนักแห้ง) ส่วนกลิ่นเหม็นอาจเกิคจากปฏิกิริยาการเปลี่ยนแปลงของกรดไขมันไม่ อิ่มตัว, กรดแอมิโนที่มีสารซัลเฟอร์ในโมเลกุล, สารประเภทไฮโดรเจนซัลไฟล์, แอมโมเนีย, คาร์บอนไดออกไซด์ หรือ แอซิแทลคีไฮด์ ซึ่งเป็นกลิ่นที่ผู้บริโภคไม่ยอมรับ (Juliano, 1985) กลิ่นหอมของ ข้าวจะลคลงเมื่อเป็นข้าวเก่า เนื่องจากสารหอมระเหยค่อยๆระเหยหายไป ปัจจัยที่ส่งเสริมให้กลิ่นหอมเสื่อม เร็ว คือ ความร้อน และความชื้น การเก็บข้าวหอมในสภาพข้าวเปลือกและข้าวสารในห้องเย็น 15 องศา เซลเซียส จะช่วยรักษาคุณภาพข้าวสุกได้กกล้เคียงกับข้าวใหม่แม้จะเก็บนานถึง 10 เดือน และช่วยชะลอการ ลคลงของกลิ่นหอมได้ การเก็บข้าวสารในสภาพอากาศผ่านได้ไม่ควรเก็บนานเกิน 4 เดือน เพราะข้าวจะมี กลิ่นหอมลคลง (งามชื่น คงเสรี, 2539 ก)
7. ปริมาณความชื้นในเมล็คข้าว เป็นองค์ประกอบทางเมมีที่มีสำคัญต่อคุณภาพเมล็คข้าวทั้งทางตรง และทางอ้อมคือ ปริมาณความชื้นของข้าว ทั้งในข้าวเปลือกและข้าวสาร ใช้เป็นแกณฑ์มาตรฐานสำคัญในการ ซื้อขายข้าว เนื่องจากปริมาณความชื้นสามารถบ่งบอกถึงน้ำหนักของเนื้อข้าวที่ผู้ซื้อ และผู้ขายเกี่ยวข้องกัน โดยตรงในการกำหนคราคาซื้อ-ขาย และในทางอ้อมนั้น ความชื้นสามารถบ่งชึ้ถึงอายุการเก็บรักษาข้าวหรือ บ่งบอกถึงความปลอดภัยในการเก็บรักษาให้ข้าวมีคุณภาพดี (อรอนงค์ นัยวิกุล, 2547) Juliano (1985) ได้ทำ การทดลองพบว่า ข้าวที่มีความชื้นสูงจะเสื่อมเร็วกว่าข้าวที่มีความชื้นต่ำ ระดับความชื้นของข้าวที่ยอมรับว่า ปลอคภัยต่อการเก็บรักษาข้าวที่เหมาะสม คือ $13 \% \mathrm{w} . \mathrm{b}$. ซึ่งจะเก็บรักษาได้ดีภายในเวลา 6 เคือน และถ้าข้าวมี ความชื้น $12 \% \mathrm{w}$. .. จะทำให้เก็บรักษาได้นานขึ้น นอกจากนี้ความชื้นของข้าวยังมีผลต่อคุณภาพการสีของ ข้าวเปลือกโดยเป็นปัจจัยสำคัญตั้งแต่การเก็บเกี่ยวข้าวความชื้นที่เหมาะสม $(22-26 \% \mathrm{w} . \mathrm{b})$) การตากข้าวเปลือก เพื่อลดความชื้นลงให้อยู่ในเกณฑ์ที่ปลอคภัยต่อการเก็บรักษา (ความชื้นไม่สูงกว่า14\%w.b.) จนถึงเวลาการสี ข้าวเปลือกที่มีความชื้นที่เหมาะสมก็จะทำให้ได้ข้าวที่เต็มเมล็คสูง และหักน้อย

2.4 ผลของการใช้ความร้อนต่อคุณภาพเมล็ดข้าว

การศึกษาการถนอมอาหารด้วยความร้อนในผลิตภัณฑ์ข้าวซึ่งเป็นอาหารที่มีกรดต่ำ จะใช้อุณหภูมิ ในช่วง $112-125^{\circ} \mathrm{C}$ ในเวลาที่กำหนดเพื่อให้ได้การสเตอร์ไรซ์ระดับการค้า (commercial sterilite) ผลิตภัณฑ์ ที่ได้มีอายูการเก็บรักษาประมาณ 12 เคือน (Prakash et al., 2005) การศึกษาการแปรรูปข้าวพร้อมบริโภค (ready-to-eat rice) ของ Prakash และคณะ(2005) ที่ศึกษาข้าวอินเดีย (Bangeru Thiguda) บรรจุถุงรีทอร์ท เพาซ์ ซึ่งใช้วัสดุประกบ 3 ชั้น ได้แก่ Polyester tetraphtalate (PET), Aluminium foil (Al) และ Cast polypropelene (CPP) โดยมีอัตราส่วนข้าวต่อน้ำเท่ากับ $1: 2$ นำมาผ่านการม่าเชื้อที่ $\mathrm{F} 0=3$ นาที ที่ถุณหภูมิและ เวลาระดับต่างๆ $\left(112^{\circ} \mathrm{C} \quad 30\right.$ นาที, $115^{\circ} \mathrm{C}$ 20 นาที, $118{ }^{\circ} \mathrm{C} 8$ นาที, $118^{\circ} \mathrm{C} 12$ นาที และ $121^{\circ} \mathrm{C}$

นาที) พบว่อุ่อุหหููิเแะะเวกาในการม่าชื้อที่สูงขึ้นมีผลทำใน้ความเข็งที่วัดโดย Texture analyzer โดยการ ม่าชื้้ที่ $118^{\circ} \mathrm{C} 8$ นาที มีคะแนนคุดภาพโดยรวมและคุนลักษณะทางประสาทสัมผัส ได้แก่ การจับเป็น ก้อน (plumpness) และความเข็งใก้เคียงกับชุดควบคุม (ทุงโดยใช้หม้อความดันน) มากที่สุด นอกจากนี้ Prasert และ Suvunnaporn (2009) ได้ศึกษาสภาวะ (ปริมามความชื้น ความดัน และอุณหภูิิอบแห้ง) ที่ เหมาะมในการแปรรูปข้าวที่หุงสุกเร็ว (Instant or quick-cooking rice) พบว่าค่าควมมเข็ง (hardness) และ ค่าต้านแรรบดดคื้ยว (chewiness) จากการทดสอบ Texture profile analysis มีค่าลคลงเมื่อปริมานความชึ้นและ ความคันสูงขึ้น ขณะที่อุณหภูพิอบแห้งที่สูขง้นมีผลกำให้่าทั้งสองสูงขึ้น ความคันและความชื้นมีผลกับการ เพิ่มปริมาตตของข้าวหุทสุกเร็ว เนื่องจากความเป็นรูพรุนของเมด็ดข้าว (kermel) อีททั้งควางคันบังเป็นปัจจัย
 ทั่วไป และแสคงใน้เห็นว่าข้าวดังกล่าวมีสมบัติในการดูดซับน้ำได้เร็ว และใช้วลาในการำให้สุกสั้น นอกจากนี้สภาวะที่คึกษษาังมี้ผลต่อการเกิดโครงสร้างแบบชับช้นนของอะไมโลสและไลปิดดังแสดงจาก รูปแบบวี (V-shape pattem) ในการตรวจสอบโดย X -ray diffractrometer

2.5 ข้าวกล้องงอก

ข้าวกล้องงอก คือ ข้ววกล้องที่ผ่านการแช่น้ำนรือให้ความชื้นที่อุณหภูมิต่างๆอย่างหมมาะสงจนมีปม รากงอกยาวออกมาประมาณ $0.5-1$ มิลลิมตรที่บริวฉณคมูกข้าว วังรูปที่ 2.3

 พันทุ้ดดกนนกับตตานี (D)

2.5.1 กระบวนการผลิตข้าวกล้องงอก

ขั้นตอนในการผลิตข้าวกล้องงอก ประกอบด้วย 2 ขั้นตอน คือ การแช่ข้าวและการงอกของเมล็ด ข้าว (Manna et al., 1995) ซึ่งมีรายละเอียค ดังนี้

2.5.1.1 การแช่ข้าว (Soaking process)

การแช่ข้าวมีจุคประสงค์เพื่อให้น้ำถูกดูดซึมสู่เมล็คและกระจายตัวเข้าไปในส่วนต่างๆอย่าง สม่่าเสมอ ซึ่งจะเป็นการกระตุ้นให้เกิดการเปลี่ยนแปลงขององค์ประกอบทางเคมีในเนื้อเมล็คและทำให้เกิด การงอกของเมล็ด โดยอัตราเร็วของการดูคน้ำเข้าสู่เมล็ดและระยะเวลาที่ใช้ในการแช่น้ำขึ้นอยู่กับ (1) อุณหภูมิของน้ำที่แช่ (2) ขนาคของเมล็ด (3) ชนิดและสายพันธุ์ของข้าว และ (4) ลักษณะของส่วนประกอบ ในเนื้อเมล็ด เมื่อใช้น้ำอุณหภูมิสูงในการแช่เมล็คจะทำให้เกิดการดูคน้ำเข้าสู่เมล็ดอย่างรวคเร็ว ทำให้การ กระจายตัวของความชื้นในส่วนต่างๆของเมล็คโดยเฉพาะในส่วนเนื้อเมล็คและคัพพะไม่สม่ำเสมอ ส่งผลให้ ประสิทธิภาพการเกิดการเปลี่ยนแปลงทางชีวเคมีในการผลิตเอนไซม์ การเจริญของรากและลำต้นมี ประสิทธิภาพต่ำ ในทางตรงกันข้ามหากใช้อุณหภูติ่ำเกินไป การคูคน้ำของเมล็คจะเป็นไปอย่างช้าๆ จึงเป็น การเพิ่มโอกาสในการเจริญของจุสินทรีย์ เนื่องจากต้องใช้ระยะเวลานานเพื่อให้น้ำการกระจายเข้าไปในส่วน ต่างๆอย่างทั่วถึง ส่งผลให้เกิดการเสื่อมสลายของเมล็คและทำให้ประสิทธิภาพการงอกของเมล็คต่ำลงเช่นกัน

2.5.1.2 การงอกของเมล็ดข้าว (Germination process)

การงอกของเมล็ดเป็นกระบวนการที่สำคัญของพืช เพื่อให้พืชดำรงเผ่าพันธุ์ตามธรรมชาติ เพื่อ การเพาะปลูกของมนุยย์ และเพื่อเพิ่มคุณค่าทางโภชนาการของเมล์คพืช การที่เมล็ดจะงอกออกมาเป็นต้น อ่อนได้จะต้องมีสิ่งต่างๆ (นันทิยา วรรธนะภูติ, 2542) คังนี้

- เมล็คต้องมีชีวิต คือ เอ็บบริโอ (ต้นอ่อน) มีชีวิตอยู่และพร้อมที่จะงอก
- เมล็คต้องได้รับสภาพแวดล้อมภายนอกที่เหมาะสม เช่น มีความชื้นพอเพียงมีอุณหภูมิ พอเหมาะ มีออกซิเจนและเมล็คบางชนิคต้องการแสงในการงอกด้วย
- เมล็ดต้องมีสภาพภายในเมล็คเหมาะสม คือ สภาพการพักตัวครั้งแรก (primary dormancy) ภายในเมล็คต้องหมดไปแล้ว กระบวนการภายในเมล็ดที่จะทำให้สภาพการพักตัวครั้งแรกหมดไปเรียกรวมว่า after-ripening และเป็นผลเนื่องมาจากปฏิกิริยาของสภาพแวดล้อมกับสภาพการพักตัวครั้งแรก กระบวนการ after-ripening ต้องการเวลาระยะหนึ่งและบางครั้งต้องการการจัคการกับเมล็คเป็นพิเศษด้วย

Bewley (1997) ได้รายงานว่ากระบวนการงอกของเมล็คข้าว แบ่งออกเป็น 3 ระยะ คือ ระยะเริ่ม ทำงาน (ระยะที่ 1) ระยะการย่อยอาหารและลำเลียงอาหาร (ระยะที่ 2) และระยะการเติบโตของต้นกล้า (ระยะ ที่ 3) ดังรูปที่2. 4

รูปที่ 2.4 ระะะต่างๆในการงอกของเมล็ดพืช
ที่มา: Bewley (1997)
ระยะที่ 1: ระยะเริ่มทำงาน (Activation)
ก. การดูคน้ำเข้าในเมล็ด (Imbibition of water) การดุดซึมของน้ำเข้าสู่เมล็ดจะเพิ่มขึ้นอย่างรวดเร็ว ในตอนแรกและต่อมาจะคงที่ ทำให้ความชื้นของเมล็ดเพิ่มสูงขึ้นอย่างรวดเร็ว ซึ่งน้ำจะช่วยให้เปลือกเมล็ด อ่อนลงและทำให้โปรโทพลาสซึมในเซลล์ได้รับน้ำเมล็คจึงบวมขึ้นและเปลือกเมล็คอาจแตก

ข. การสังเคราะห์เอนไซม์ (Synthesis of enzymes) เมื่อน้ำถูกคูคซึมเข้าสู่เมล็ค ทำให้เกิดการ กระตุ้นให้เกิคกิจกรรมของเอนไซม์ชนิดต่างๆ โดยทั่วไปในเมล์คข้าวมีเอนไซม์เบต้าอะไมเลสสะสมอยู่แล้ว เอนไซม์ชนิดนี้ถูกสร้างขึ้นมาพร้อมกับการพัฒนาของเมล็ดจนกลายเป็นเมล็คที่สมบูรณ์ คังนั้นในขั้นตอนการ งอกของเมล็คจึงเป็นการผลิตเอนไซม์เบต้าอะไมเลสเป็นหลัก การสร้างเอนไซม์เบต้าอะไมเลสเกิดขึ้นใน ส่วนคัพพะโดยการกระตุ้นของฮอร์โมนจินเบอเรลริกที่ถูกสร้างในขณะเกิดการงอก นอกจากนั้นเอนไซม์ เบต้าอะไมเลสและกรคจิบเบอเรลริกขังเป็นตัวกระตุ้นให้เื่อหุ้มเนื้อเมล็คผลิตเอนไซม์ชนิดอื่นๆ เช่น เบต้ากลู แคนเนส (β-glucanase) เพนโตแซนเนส (pentosanase) เป็นต้น

ค. การยืคของเซลล์และการงอกของราก (Cell elongation and emergence of the radicle) สิ่งที่บ่ง บอกว่าเกิคการงอกของเมล็คคือการเกิดถุดขาว (white chit) ของรากเทียม (root sheet) ซึ่งเกิคจากเซลล์ขยาย ขนาคใหญู่ขึ้นมากกว่าเกิดจากการแบ่งตัว การงอกของรากอาจเกิดขึ้นภายใน $2-3$ ชั่วโมงหรือ $2-3$ วัน ภายหลังจากการงอกได้เริ่มขึ้นและแสคงว่าระยะที่ 1 ได้สิ้นสุดลง

ระยะที่ 2: การย่อยอาหารและลำเลียงอาหาร (Digestion and Translocation)
หลังจากคัพพะและเยื่อหุ้มเนื้อเมล็ดมีการผลิตเอนไซม์ต่างๆขึ้นมา เอนไซม์เหล่านั้นมีกิจกรรมในการ สลายสารอาหารต่างๆที่สะสมในส่วนเนื้อเมล็ด โดยสารอาหารที่สะสมอยู่ในรูปไขมัน โปรตีนและ คาร์โบไฮเดรตถูกย่อยให้เป็นสาร โมเลกุลไม่ซับซ้อน คังนี้

- ไขมันและน้ำมันจะถูกย่อยเป็นกรดไขมันและน้ำตาล
- โปรตีนจะถูกย่อยเป็นสารประกอบที่มีไนโตรเจนเป็นหลัก (กรดอะมิโน) ซึ่งจำเป็นในการ เจริญเติบโตของต้นกล้า
- แป้งจะถูกย่อยเป็นน้ำตาลรีดิวซ์ เช่น กลูโคส มอลโตส ฟรุคโตส เป็นต้น

หลังจากผ่านการย่อยแล้ว สารอาหารเหล่านั้นจะเคลื่อนข้ายไปที่จุดเจริญส่วนต่างๆของเอมบริโอ ซึ่ง เซลล์ทั้งระบบจะถูกกระตุ้นให้ทำงาน ระบบการสังเคราะห์โปรตีนทำหน้าที่ผลิตเอนไซม์ใหม่และสังเคราะห์ สารใหม่ที่เป็นโครงสร้าง การดูดน้ำและการหายใจในระยะนี้เกิดขึ้นในอัตราที่คงที่

ระยะที่ 3: การเติบโตของต้นกล้า (seedling growth)
เกิดการเพิ่มปริมาณของเซลล์และเกิคการเจริญของต้นพืช โดยเมื่อคัพพะได้รับสารอาหารจะมีการ แบ่งเซลล์ที่ปลายรากแรกเกิด จากนั้นโครงสร้างของต้นกล้าจึงขยายใหญ่ขึ้น ส่วนจุดการเจริญเติบโตของลำ ต้นในคัพภะ คือ plumule มีการยืดตัวและเติบโตเกิดเป็นใบแรก และแกนของคัพพะส่วนใต้ใบเลี้ยงจะเติบโต เป็นไฮโปโคทีล (hypocotyls) ในขณะที่ส่วนเหนือใบเลี้ยงจะเจริญเป็นอีพีโคทีล (epicotyls)

2.5.2 คุณค่าทางโภชนาการ สารออกฤทธิ์ทางชีวภาพและประโยชน์ต่อสุขภาพของข้าวกล้องงอก

2.5.2.1 คุณค่าทางโภชนาการของข้าวกล้องงอก

ข้าวที่ผ่านการเพาะให้งอกมีคุณค่าทางโภชนาการเพิ่มขึ้น(Tsukahara, 2004; Komatsuzaki et al., 2007, Moongngarm and Saetung, 2010) ดังแสดงในตารางที่ 2.5 นอกจากนี้กระบวนการงอกยังทำให้ ชั้นนอกของข้าวมีความนุ่มขึ้น ทำให้ง่ายต่อการหุงและรับประทานได้ง่ายเหมือนข้าวขัดขาว (Tsukahara, 2004)

เช่นเคียวกับงานวิจัยของ Kanyahara และ Tsukahara (2000) ซึ่งรายงานว่าในระหว่าง กระบวนการงอก องค์ประกอบในข้าวกล้องจะเกิดการเปลี่ยนแปลงมากโดยสารหลักที่เพิ่มขึ้นในข้าวกล้อง งอก คือ GABA, fiber, inositol, ferulic acid, phytic acid, magnesium, potassium, γ-Oryzanol และ zinc โดย พบว่าข้าวกล้องงอกมี GABA วิตามินอี วิตามิน บี ไลซีน วิตามิน บี1 และวิตามิน บี 6 มากกว่าข้าวขัดขาว 10 , $4,4,4,3$ และ 3 เท่า ตามลำดับ นอกจากนี้ Komatsuzaki และคณะ (2005) วิเคราะห์ปริมาณกรดอะมิโนอิสระ ของข้าวกล้องงอกพันธุ์ Haiminori โดยเปรียบเทียบวิธีการเพาะระหว่างเพาะด้วยการแช่และไม่แช่น้ำ (แช่น้ำ ที่อุณหภูมิ $35^{\circ} \mathrm{C}$ นาน 24 ชม.) พบว่าการเพาะด้วยการแช่ในน้ำส่งผลให้กรดอะมิโนหลายๆชนิคเพิ่มขึ้น โดยเฉพาะ GABA ดังแสดงในตารางที่ 2.6

ตารางที่ 2.5 คุณค่าทางโภชนาการและสารออกฤทธิ์ทางชีวภาพของข้าวกล้องและข้าวกล้องงอก

สารอาหาร	ข้าวกล้อง	ข้าวกล้องงอก
องค์ประกอบทางเคมี (\%)		
ความชื้น	$9.44 \pm 0.76^{\text {a }}$	$8.86 \pm 0.95^{\text {a }}$
โปรตีน	$6.98 \pm 0.07^{\text {b }}$	$8.98 \pm 0.27^{\text {a }}$
ไขมัน ${ }^{\text {ns }}$	1.20 ± 0.68	1.23 ± 0.68
คาร์โบไฮเดรต ${ }^{\text {ns }}$	79.2 ± 2.08	77.7 ± 2.49
เถ้า ${ }^{\text {ns }}$	1.96 ± 0.11	2.06 ± 0.11
เยื่อใย ${ }^{\text {ns }}$	1.13 ± 0.16	1.22 ± 0.26
น้ำตาลทั้งหมด ${ }^{\mathrm{ns}}$	0.91 ± 0.03	1.88 ± 0.13
น้ำตาลรีคิวซ์"	0.19 ± 0.04	0.81 ± 0.19
ปริมาณกรดอะมิโนทั้งหมด ${ }^{\text {ns }}$	2.11 ± 0.56	3.12 ± 0.55
วิตามิน ($\mathrm{mg} / 100 \mathrm{~g}$)		
วิตามิน บี1	$0.23 \pm 0.02^{\text {a }}$	$0.12 \pm 0.02^{\text {b }}$
วิตามิน บี3	$7.66 \pm 0.14^{\text {a }}$	$4.47 \pm 0.18^{\text {b }}$
วิตามิน บี6	$0.76 \pm 0.08^{\text {a }}$	$0.66 \pm 0.04^{\text {b }}$
สารออกฤทธิ่ทางชีวภาพ		
Phytic acid (g/100 g)	$1.32 \pm 0.07^{\text {a }}$	$1.15 \pm 0.08^{\text {b }}$
Total phenolic ($\mathrm{mg} / 100 \mathrm{~g}$) ${ }^{\text {ns }}$	70.3 ± 8.31	84.3 ± 6.35
α-Tocopherol (mg/ 100 g$)^{\text {ns }}$	0.93 ± 0.18	0.86 ± 0.08
γ-Oryzanol (mg/100 g) ${ }^{\text {ns }}$	66.0 ± 5.93	84.0 ± 5.93
20.... ตัวอักษรที่แตกต่างกันในแนวนอน แสคงว่ามีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($p<0.05$)		
${ }^{\text {ns }}$ ไม่มีความแตกต่างกันทางสถิติ		
ที่มา: ดัดแปลงจาก Moongngarm	ng (2010)	

ตารางที่ 2.6 ปริมาณกรดอะมิโนอิสระในข้าวพันธุ่ Haiminori ที่ผ่านการเพาะให้งอกค้วยการแช่น้ำและไม่ได้ แช่น้ำ

กรดอะมิโน	มิลลิกรัม/100 กรัม น้ำหนักสด		
	ข้าวกล้อง (Control)	ข้าวกล้องงอก (เพาะโคยไม่แช่น้ำ)	ข้าวกล้องงอก (เพาะโดยแช่น้ำที่ $35^{\circ} \mathrm{C}$ นาน 24 ชม.)
Asp	6.6 ± 1.04	1.2 ± 0.22	1.8 ± 0.61
Thr	1.0 ± 0.48	3.1 ± 0.76	6.0 ± 1.16
Ser	3.5 ± 0.29	2.0 ± 0.75	2.7 ± 0.42
Asn	7.1 ± 1.69	3.7 ± 0.55	7.0 ± 0.78
Glu	12.4 ± 3.06	4.5 ± 0.41	13.4 ± 3.57
Pro	1.9 ± 1.66	5.1 ± 0.67	8.4 ± 1.26
Gly	1.5 ± 0.89	4.3 ± 0.82	8.7 ± 1.50
Ala	12.2 ± 4.48	13.0 ± 2.00	25.6 ± 9.29
Val	0.8 ± 0.33	4.5 ± 0.76	12.3 ± 1.00
Cys	1.4 ± 0.51	1.9 ± 1.41	2.9 ± 0.70
Met	0.4 ± 0.40	2.2 ± 0.52	3.3 ± 1.01
Ile	0.7 ± 0.15	3.7 ± 0.67	5.8 ± 0.70
Leu	0.9 ± 0.17	6.4 ± 0.97	12.3 ± 1.31
Tyr	1.4 ± 0.39	4.1 ± 0.37	7.0 ± 0.33
Phe	1.0 ± 0.59	3.8 ± 0.37	5.5 ± 0.99
GABA	7.3 ± 2.05	10.1 ± 1.36	24.9 ± 4.00
Lys	3.9 ± 1.45	4.4 ± 0.84	9.6 ± 2.55
His	1.0 ± 0.30	2.4 ± 0.79	4.3 ± 0.99
Arg	4.9 ± 1.14	9.0 ± 3.06	10.6 ± 6.48
รวมทั้งหมด	67.0 ± 12.38	93.0 ± 13.34	$\mathbf{1 7 8 . 7} \pm \mathbf{3 2 . 7 8}$

ข้อมูลแสดงเป็นค่า mean $\pm \mathrm{SD}$ ของการวิเคราะห์ 3 ซ้ำ
ที่มา: Komatsuzaki และคณะ (2005)
จากตารางที่ 2.5 และตารางที่ 2.6 จะเห็นว่ากระบวนการงอกส่งผลให้สารอาหารหลายชนิดมี ปริมาณเพิ่มมากขึ้น ซึ่งการเปลี่ยนแปลงทางชีวเคมีและสารอาหารในระยะต่างๆของข้าว แสคงคังรูปที่ 2.5

รูปที่ 2.5 การเปลี่ยนแปลงทางชีวเคมีและสารอาหารในระยะต่างๆของข้าว
ที่มา: http://pcog.pharmacy.psu.ac.th
สารต่างๆที่สร้างขึ้นในช่วงอยยุของข้าวที่ต่างกันมีรุปแบบการสะสมสารทุิิงภูิที่ค่างกัน เช่น สาร oryzadione ที่มีทททิ์ต้านเชื้อแบคที่รียช่นนดียวกับสาร oryzalic acid B (Kono et al., 2004) สารด้าน อนมูลอิสระ ได้แก่ γ-oryzanol (Julino et al., 2005), feruloyl arabinoxylans, สารที่มีทททธิ์คคระดับคลอ เรสตตอรอลในเลือค (Miura et al., 2006) และสารี่คุ่มสมบัติช่วยคลายความวิตกกังวล (antianxiety) เช่น GABA (Kamatsuzaki et al, 2005) เป็นต้น

2.5.2.2 สรรอกกทริ์ทางชีวภาพในข้ววกล้องงอก

1. $\boldsymbol{\gamma}$-aminobutyric acid (GABA)

GABA เป็นกรดอะมิโนที่ไม่ใช่โปรตีน (shelp et al., 1999) กล่าวคือเป็นโมเลุลที่ ประกอบด้วยหมู่อะมิโน $\left(\mathrm{NH}_{3}\right)$) และหมู่คร์บอกซิล (COOH) อย่างละ 1 มมู่ต่ออ่ก่กับคาร์บอนอะตอม คังรูป ที่ 2.6 GABA มีความสามารถในการละลยในน้ำได้สูงและมีคุนสมบัติเป็น zwiterionic คือมีทั้งขั้วบวกและ ขั้วลบ ซึ่งมีคีค PK เท่ากับ 4.03 และ 10.56 (Chritensen, 1994)

รปปที่ 2.6 โครงสร้างโมเกุลขของ $G A B A$
ที่มา: Shelp และคณะ (1999)

GABA เป็นกรดอะมิโนที่พบในธรรมชาติทั้งสัตว์มีกระคุกสันหลังและสัววไไม่มีกระดูกสัน

 หลังรวมทั้งพืช ซึ่งสิ่งมี่ชีวิศสังเคราะะ์ GABA จากกจุตามท (Maeda et al. 2007) สำนรับในหืช โดยทั่วไป เนื้อยยื่อพืชจะมี GABA ในระคับต่ำ $(0.03-2.00 \mu \mathrm{~mol} / \mathrm{g})$ (Fougere et al., 1991; Bown and Shelp, 1997) การศึกกษาพบว่าการแช่มล็คพืชในน้ำ จนกระทั่งรากงอกยาวออกมาประมาม $0.5-1.0$ มิลลิมตร จะทำให้มี GABA เพิ่มสูงขึ้น (Saikusa et al., 1994; Ohtsubo et al., 2005; Maeda et al. 2007) และนอกจากการเพิ่มขึ้น ของ GABA แล้ว กระบวนการงอกยังส่งผลทำให้สารอาหารอื่นๆ ได้แก่ วิตามิน ใยอาหาร กรดไฟติก และ กรดเฟอร์รูริก เพิ่มขึ้นอีกด้วย (Tian et al., 2004) นอกจากนี้ Maeda และคณะ (2007) ได้รายงานว่าข้าวกล้อง งอกมีปริมาณ GABA มากกว่าข้าวกล้องปกติ 2 ถึง 7 เท่า แสดงว่าในระหว่างการงอกมีการสังเคราะห์ GABA เกิดขึ้นจากกระบวนการดีคาร์บอกซิเลชั่น (Decarboxylation) ของกรดอะมิโนแอล-กลูตาเมทโดยอาศัย
 หรือสกาวทท่ให้ในกรระบวนการงอกเพื่อทำให้ปริมาม GABA ในเมล็คข้ววพิ่มสงขึ้น แสคงดังงารงงที่ 2.7

ตัวอย่ง	สภาวะในกรงยก	เอกสารต้าอิง
ข้วของประเทตญู่ ป่น	แช่ในน้ำกลั่นที่อุณหภูมิ $25^{\circ} \mathrm{C}$ นาน 18 ชม. ภายใต้ความดันสูง ที่ 400 MPa แช่ในน้ำที่อุณหภูมิ $30^{\circ} \mathrm{C}$ นาน 72 ชม. แช่ในน้ำกลั่นนาน 3 ชม. ภายใต้สภาวะกาซ ที่อุณหภูมิ $35^{\circ} \mathrm{C}$ นาน 21 ชม.	Miwako et al., 1999 Ohtsubo et al., 2005 Komatsuzaki et al., 2007
ข้วของประเทศเกหกี	แช่นสารละลยกรคกกลุตามิก เง้มข้น 5 mM ที่มีไดโโตแชนเข้มข้น 50 ppm โคยแช่ไนที่มื่ด คุมหภูมิ $25-26^{\circ} \mathrm{C}$ นาน 72 ชม.	Oh, 2003
ข้าวของประเทคไทย	แช่ในสารละลายแคลเซียมคลอไรด์ เข้มข้น $0.1 \mathrm{mM}, \mathrm{pH} 5.0$ อุณหภูมิ $40^{\circ} \mathrm{C}$ นาน 36 ชม. แช่ในน้ำ pH 5.0 อุณหภูมิ $35^{\circ} \mathrm{C}$ นาน 24 ชม. แช่ในสารละลาย pH 3.0 นาน 48 ชม.	Sunte et al., 2007 Watchraparpaiboon et al., 2007 Charoenthaikij et al., 2009

GABA มีความสำคัญักับรรบบประสาท โดยทำหน้าที่เป็นInhibitory nerve transmitter ใน ระบบประสาทส่วนกลาง มีการวิัยพบว่า GABA เป็นสารที่มี่ประโยชน์ต่อสุบภาพ โคยะะช่วยในการกระตุ้น

Su et al., 2003; Huang et al., 2007) ช่วยรักษาระดับความดันเลือคและการเต้นของหัวใจให้คงที่ รวมถึงช่วย ลคความวิตกกังวลและความรู้สึกเจ็บปวค (Kono and Himeno, 2000; Toshio et al., 2004) ช่วยลดไขมันใน เส้นเลือด (Zhang et al., 2005; Miura et al., 2006) ช่วยเพิ่มการหลั่งอินซูลิน (Huang et al., 2007) และควบคุม ระดับน้ำตาลในเลือคหลังรับประทานอาหาร (postprandial blood glucose) (Ito et al., 2005) นอกจากนี้การ บริโภคอาหารที่มีสาร GABA สูงจะช่วยยับยั้งการเจริญของเซลล์มะเร็ง (Park and Oh, 2007; Oh and Oh, 2004) และช่วยเพิ่มประสิทธิภาพการเรียนรู้และความจำในหนูให้สูงขึ้น (Miura et al., 2006)

2. Gamma-Oryzanol

Gamma-oryzanol เป็นสารทางเคมีที่พบได้ทั่วไปในพืช ประกอบด้วยสารประกอบหลายตัว ด้วยกัน สารประกอบหลักๆคือ campestenyl ferulate, cycloartenyl ferulate และ 24 -methylene-cycloartanyl ferulate

จากการรวบรวมผลงานวิจัยทางด้านโภชนาการของ gamma-oryzanol พบว่า การบริโภค gamma-oryzanol สามารถลคระดับโคเลสเตอรอลในเลือด ส่งเสริมการทำงานของหลอคเลือด ลคการจับตัว ของเกล็ดเลือดและลดการสังเคราะห์โคเลสเตอรอลในตับ ปัจจุบัน gamma-oryzanol ยังมีความสำคัญมาก ขึ้น ในการใช้เป็นยา อาหารเสริมสุขภาพ และเครื่องสำอาง นอกจากนั้น ยังช่วยปรับสมดุลของระดับ ฮอร์โมนในสตรีวัยทอง ลดอาการวูบวาบ (Hot flashes) ป้องกันแสงยูวี ทำให้ผิวหนังชุ่มชื้น ใช้ต้านการ อักเสบ และ gamma-oryzanol ในน้ำมันรำข้าวยังสามารถ เพิ่มระดับโคเลสเตอรอลชนิดคี (HDL-C) ได้อีก ด้วย

ข้าวเป็นพืชที่นักวิจัยพบว่ามีสาร gamma-oryzanol ค่อนข้างสูงเมื่อเทียบกับพืชชนิดอื่น โดย ส่วนที่มีมากสุคคือส่วนรำข้าว มีการศึกษาสารประกอบกลุ่ม gamma-oryzanol ในตัวอย่างข้าวกล้องใน ประเทศแถบยุโรปพบว่าค่าเฉลี่ยของสารคือ 41.7 มิลลิกรัมต่อ 100 กรัมตัวอย่าง มีสารประกอบ 5 ตัวคือ cycloartenyl ferulate, 24 -methylene cycloartanyl ferulate, campesteryl ferulate, campestanyl ferulate และ sitosteryl ferulate (Miller และคณะ, 2006) และนอกจากนี้ยังมีการศึกษาในข้าวกล้องงอก

Hirunpong และคณะ (2007) ศึกษาผลของการงอกต่อปริมาณสารชีวกิจกรรมในข้าวกล้องงอก สามสายพันธุ์คือ ขาวคอกมะลิ 105 , กข 23 และ ชัยนาท 1 พบว่า γ-Oryzanol ในข้าวกล้องทั้งสามสายพันธุ์ เท่ากับ $83.54,84.41$ และ 86.52 มิลลิกรัมต่อ 100 กรัมตัวอย่างข้าว และเมื่อเวลาการทำให้งอก 24 ชั่วโมง ปริมาณสารเพิ่มขึ้นเป็น $102.76,84.52$ และ 102.04 มิลลิกรัมต่อ 100 กรัมตัวอย่างข้าวตามลำคับ

3. Tocophenol

วิตามินอีเป็นสารที่ละลายได้ดีในน้ำมัน ประกอบด้วยสารประกอบกลุ่มหนึ่งที่เรียกเป็นภาษา วิทยาศาสตร์ว่า Tocopherols ดังนั้นเราจึงพบวิตามินอีในอาหารที่เป็นน้ำมัน หรือมีน้ำมันเป็นส่วนประกอบ เช่น น้ำมันพืช (น้ำมันถั่วเหลือง ดอกทานตะวัน และข้าวโพค) เมล็ดพืช เมล็ดถั่ว ข้าวซ้อมมือ รำ และผักบาง ชนิด จากการศึกษาค้นคว้าของโภชนาการ พบว่า วิตามินอีป้องกันการเกิดออกซิเคชัน (antioxdation) ของ ประสิทธิภาพแตกต่างกัน ชนิดที่มีประสิทธิภาพทางชีวภาพมากที่สุค คือ alpha-tocophenol

วิตามินชื่ช่วยปกก้ององซลล์ในร่างกาขอากสารอมมูคอิสระ โคยไปขัตขวางปูิกิริยาออกซิศดชั่น ของสารในร่างกายโดยอาศัยคุมสมบัตัที่เป็นตัวที่ไวต่อการดูกออกซิใดส์มาก จึงเป็นตัวที่ถูกออกซิไดส์เอง แทนสารอื่นตใในร่างกายที่มีความไวต่อการถูกออกชิไดส์ได้น้อยกว่า ป้องกันไขมันไม่อิ่มตัวที่กินเข้าไปรวม กับออกชิเนศึึงงะก่อให้เกิคอหมูมอิศระ เป็นสารต้านไม่ให้หลอดเลืคคเส็งตัว และัังขยายหลคคเลือคฝอย เล็กๆได้อืกคววย ทำให้การไหลเวียนดี้ื้น ปืองกันการเกาตัวของเกร็ดเลือคที่ผนังหลอคเลือค จึงช่วยลคการ ถุดคันของคอเลสเตอรอล นอกจากนี้ห้งมีดทถิ์ลคคอเลสเตตรอล ทำให้่างกายมีการนำพาออกซิเงไดไดย่าง สะดวก ส่งผลให้ร่างกายใช้ออกชิเจนได้คื้นึ้น ทำให้กล้ามเนื้อมีกำลังมากขึ้น อีกทั้งข้งช่วยให้มีการผลัด ผิวหนังขึ้นมาใหม่ ช่วแเพิ่มการทำงนของอินศุลิน ทำใหระะบประสาทคี้ึื้นสามารถทำงนได้ตามปกติ ช่วยทำใหัระบบสื่บพันธ์เป็นปบกติ รักบาอาการเป็นหมันได้ ช่วขป้องกันการเกิดต้อกระจกได้ และชังเชื่อว่า ทำายษททิ์ของสาร่่อมะเร็งได้ด้วย

Orozco และคณะ (2006) ศึกษาผลของการงอกและการหมักของเมล็ด Lupin (Lupinus angustifolius L . var. Zapaton) ต่อปริมาณ Vitamin C และ Tocopherol ด้วยวิธี HPLC โดยแช่เม็็ Lupin ใน 0.07% sodium hypochloride เป็นเวลา 30 นาที ล้างด้วยน้ำกลั่นเพื่อทำให้เป็นกลาง จากนั้นแช่ในน้ำกลั่น 5 ชั่วโมง โดยเขย่าทุก 30 นาที นำมาเพาะให้งอกต่อบน germination tray ที่อุณหภูมิ 20 องศาเซลเซียส ในที่มืด เป็นเวลา $2,3,4,5,6$ และ 9 วัน พบว่า เมื่อระยะเวลาในการงอกเพิ่มขึ้น ปริมาณ Vitamin C และ Tocopherol มี แนวโน้มเพิ่มขึ้นอย่างมีนัยสำคัญ

4. สารประกอบฟีนอถิก (Phenolic compounds)

Tian และคณะ (2004) วิเคราะห์องค์ประกอบของสาร Phenolics ในข้าวขัดขาว ข้าวกล้อง ข้าว กล้องงอก พบสารประกอบ 11 ตัว ได้แก่ protocatechuic acid, hydroxybenzoic acid, vanillic acid, syringic acid, chlorogenic acid , p-coumaric acid, ferulic acid, sinapinic acid, feruloylsucrose และ sinapoylsucrose ซึ่งจากการวิเคราะห์ ferulic acid ให้ค่าสูงที่สุด ในข้าวขัคขาวมีปริมาณ 5.26 มิลลิกรัมต่อ 100 กรัม ในข้าว กล้องมี 15.19 มิลลิกรัมต่อ 100 กรัม และในข้าวกล้องงอกมีสูงสุดคือ 20.04 มิลลิกรัมต่อ 100 กรัม เมื่อแช่น้ำ ที่ 32 องศาซสลซซียสเป็นเวลา 21 ชั่วโมง
ferulic acid เป็นองค์ประกอบของผนังเซลล์ที่อยู่ร่วมกับสารประกอบอื่นๆ เช่น ลิกโน เซลลูโลส (Lignocellulose) มีคุณสมบัติซึ่งช่วยให้ผนังเซลล์ของพืชมีความแง็งแรง และมีคุณสมบัติเป็นสาร ต้านอนุมูลอิสระ

5. Phytate

วัฒนาและคณะ (2007) ได้นำข้าวขาวดอกมะลิ 105 และข้าวชัยนาท มาทำให้งอกโดยการแช่ ข้าวในสารละลายที่ pH ต่างๆ แปรผันเวลาในการแช่ จากนั้นทำการวิเคราะห์องค์ประกอบทางเคมี อันได้แก่ วิตามินบี1 และ phytic acid ในส่วนของการวิเคราะห์ Phytic acid พบว่าเมื่อเวลาในการแช่เพิ่มขึ้น ปริมาณ Phytic acid ลคลง ในข้าวขาวดอกมะลิ 105 แช่ข้าวที่ pH 3.0 อุณหภูมิ 35 องศาเซลเซียส ที่เวลา 12 ชั่วโมง มี ค่า Phytic acid 567.06 มิลลิกรัมต่อ 100 กรัมตัวอย่าง และเมื่อเวลาผ่านไปเป็น 24 ชั่วโมงมีค่า 545.06 มิลลิกรัมต่อ 100 กรัมตัวอย่าง เช่นเดียวกับข้าวพันธุ์ััยนาท1 ที่เวลา 12 และ 24 ชั่วโมงมีค่า 626.93 และ 512.03 มิลลิกรัมต่อ 100 กรัมตามลำดับ การลดลงของ Phytic acid เกิดจากการงอกไปกระตุ้นการทำงานของ เอนไซม์ phytase ทำให้เกิคการย่อยสลายสาร Phytic acid ไปเป็น myo-inosiol และ inositol phosphates ${\text { (} \mathrm{IP}_{1} \text { - }}^{-1}$ IP_{6}) เพื่อนำไปใช้ในการเจริญเติบโต (Oatway และคณะ, 2001)

2.5.2.3 ประโยชน์ต่อสุขภาพของข้าวกล้องงอก

สารออกฤทธิ์ทางชีวภาพในข้าวกล้องงอกมีผลคีต่อสุขภาพ ดังแสดงในตารางที่ 2.8
ตารางที่ 2.8 ประโยชน์ต่อสุขภาพของข้าวกล้องงอก

สาร	ประโยชน์	ประโยชน์
	(Kayahara and Tsukahara, 2000)	(Asia BioBusiness, 2006)
GABA	เร่งกระบวนการเมตาบอริซึมใน สมอง	-
ใยอาหาร	บรรเทาอาการท้องผูก ป้องกัน มะเร็งลำไส้ใหญ่ ควบคุมปริมาณ น้ำตาลในเลือด	-
อินโนซิทอล (Inositols)	เร่งการเผาผลาญไขมัน ป้องกันตับ มีไขมัน	เป็นสารจำเป็นในการสร้าง เลซิธินและทำงานอย่างใกล้ชิด กับวิตามิน บีรวม อินโนซิทอล เป็นสารหลักของเยื่อหุ้มเซลล์ จึงจำเป็นต้องการทำงานของ ระบบประสาท สมอง และ กล้ามเนื้อ อินโนซิทอลทำงาน ร่วมกับสารอื่นๆในการป้องกัน การสะสมของไขมันที่ตับ

ตารางที่ 2.8 (ต่อ)

สาร	ประโยชน์ (Kayahara and Tsukahara, 2000)	ประโยชน์ (Asia BioBusiness, 2006)
กรดเฟอร์รูริก (Ferulic acid) (พบมากในน้ำมันรำข้าว และมี โครงสร้างทางเคมีคล้าย curcumin ที่เป็นสารจากขมิ้น)	- กำจัคอนุมูลอิสระ (Superoxides) - ระงับกระบวนการสร้างเม็คสีผิว (Melanogenesis)	การประยุกต์ใช้โรคเบาหวาน มะเร็ง การเสื่อมของกระดูก ภาวะการหมด ประจำเดือน และ ความผิดปกติของ ระบบภูมิคุ้มกัน
กรดไฟติก (Phytic acid)	ต่อต้านอนุมูลอิสระ ป้องกันโรค หลอดเลือคหัวใจ ป้องกันการ แจ็งตัวของเลือด	-
โทโคโทเรียนอล (Tocotorienols)	ปกป้องผิวหนังจากรังสียูวี	-
แมกนีเซียม	บ้องกันโรคหัวใจ	-
โพแตสเซียม	ลดความดันโลหิต	-
สังกะสี	กระตุ้นระบบสืบพันธุ์	-
γ-oryzanol	- Antioxidative effects - ป้องกันุการแก่ตัวของผิวหนัง	- ลคปริมาณคอเลสเตอรอล ซึ่งมีการ ค้นพบว่าลดปฏิกิริยาออกซิเดชั่นของ คอเลสเตอรอลไค้คีกว่าวิตามินอี - สารโอไรซานอลในข้าวมีฤทธิ์ลค ภาวะกระดูกพรุนในหนูทดลอง ซึ่ง เป็นที่น่าสนใจว่าสารโอไรซานอล บริสุทธิ์มีฤทธิ์ดังกล่าวน้อยกว่าสาร ธรรมชาติที่ได้จากน้ำมันรำข้าว
Prolylendopepsidase inhibitor	มีแนวโน้มป้องกันโรคอัลไซเมอร์	-
Squalene	-	มีฤทธิ์ยับยั้งเนื้องอกในปอด และ มะเร็งลำไส้ใหญ่ของสัตว์ทคลอง

ตารางที่ 2.8 (ต่อ)

สาร	ประโยชน์ (Kayahara and Tsukahara, 2000)	ประโยชน์ (Asia BioBusiness, 2006)
Phytosterols	-	จากการทดลองพบว่า Phtosterols สามารถช่วยลดคอเลสเตอรอล
		ระงับการ สังเคราะห์ LDL-C ลด การเติบโตของเซลล์มะเร็งเต้านม ระงับเซลล์มะเร็งลำไส้ใหญ่ และ
Oligosaccharides	ปรับปรุงระบบภูมิคุ้มกัน	

ที่มา: ประสิทธิ์ วังภคพัฒนวงศ์ (2553)

2.5 .3 ปัจัอัทีีมีผลต่อกระบวนการผลิตข้าวกล้องงอก

การเปลี่ยนแปลงปริมาณสารอาหารที่สะสมในระหว่างกระบวนการงอกของข้าว เกิดจากปัจจัย หลักๆ 2 ปัจจัย คือ ปัจจัยค้านวัตถุคิบและปัจจัยด้านกระบวนการผลิต ซึ่งมีรายละะอียคดังนี้

2.5.3.1 ปั0จัยด้านวัตถุดิบ

1. พันธุ์ข้าว

ชนิคของพันธุ์ข้าวส่งผลต่อปริมาณของกรดอะมิโนที่มีอยู่ในข้าวกล้องงอก โดยข้าวกล้อง งอกที่เพาะมาจากข้าวสายพันธุ์ที่แตกต่างกันจะให้ปริมาณ GABA ที่แตกต่างกัน โดยพบว่าข้าวสายพันธุ์ที่มี จมูกข้าวขนาคใหญู่มีปริมาณการเพิ่มขึ้นของ GABA มากกว่าข้าวสายพันธุ์ที่มีจมูกข้าวขนาคเล็ก (Horino et al., 1994) และนอกจาก GABA แล้ว กรดอะมิโนตัวอื่นๆ ซึ่งได้แก่ กรดแอสพาติก กลูตาเมต อะลานีน ก็มี ปริมาณที่แตกต่างกันด้วยเมื่อเป็นข้าวกล้องงอกที่เพาะมาจากสายพันธุ์ที่แตกต่างกัน (Ito and Ishikawa, 2004)

2. ขนาดของจมูกข้าวหรือคัพพะ

ขนาคของจมูกข้าวมีส่วนสำคัญต่อการการเปลี่ยนแปลงปริมาณสารอาหารเมื่อนำข้าวมาเพาะ ให้งอกด้วยการแช่น้ำ ซึ่งพบว่าเมล็คข้าวมีจมูกข้าวขนาคใหญ่กว่าจะมีสารอาหารต่างๆเพิ่มสูงขึ้นมากกว่าข้าว

ที่มีจมูกข้าวปกติเมื่อแช่ในน้ำอุณหภูมิ $30^{\circ} \mathrm{C}$ นาน 24 ชั่วโมง ซึ่งปริมาณของสารอาหารต่างๆที่เพิ่มขึ้นหลัง การแช่ข้าวกล้อง ได้แก่ GABA ไลซีน แมกนีเซียม วิตามิน บี1 วิตามินอี และแคลเซียม (Zhang et al., 2005) ดังรูปที่ 2.7

รูปที่ 2.7 ปริมาณสารอาหาร 6 ชนิคในข้าวกล้องที่ผ่านการแช่ของข้าวที่มีจมูกข้าวขนาคใหญ่ (GE) กับมีจมูก ข้าวขนาดปกติ (NE)
ที่มา: Zhang และคณะ (2005)
จากรูปที่ 2.7 จะเห็นว่าข้าวกล้องที่ผ่านการแช่มีการเพิ่มขึ้นของสารอาหาร โดยเฉพาะอย่าง ยิ่ง GABA ซึ่งจะเพิ่มขึ้น $2-3$ เท่าในข้าวกล้องงอกพันธุ์ที่มีจมูกข้าวขนาคใหญ่เมื่อเปรียบเทียบกับข้าวที่มีจมูก ข้าวขนาดปกติ (Zhang et al., 2005)

Horino และคณะ (1994b) นำข้าวพันธุ์ Hokkai ซึ่งเป็นข้าวที่มีจมูกข้าวขนาดใหญ่และข้าวที่ มีจมูกข้าวขนาคปกติ ได้แก่ พันธุ์ Koshihikari และ Takanari ไปแช่ในน้ำอุณหภูมิ $40^{\circ} \mathrm{C}$ นาน 4 ชั่วโมง จากนั้นนำไปวิเคราะห์ปริมาณ GABA พบว่าข้าวพันธุ์ Hokkai มีปริมาณ GABA เพิ่มขึ้นมากกว่าข้าวพันธุ์ที่มี จมูกข้าวขนาดปกติ

นอกจากขนาดของจมูกข้าวแล้ว ส่วนประกอบอื่นๆของเมล็ดข้าวก็ให้ปริมาณสารอาหารที่ แตกต่างกัน ซึ่งจะส่งผลต่อการเปลี่ยนแปลงของสารอาหารเมื่อนำเมล็ดข้าวนั้นมาเพาะให้งอก จากการวิจัย ของ Horino และคณะ (1994a) พบว่าเมื่อนำส่วนต่างๆของเมล็คข้าวมาแช่ในน้ำ มีการเปลี่ยนแปลงปริมาณ ของกรดอะมิโนแต่ละชนิดแตกต่างกัน

3. ระยะเวลาการเก็บรักษาข้าวหลังการเก็บเกี่ยว

จากการศึกษาของ Horino และคณะ (1994b) พบว่าปริมาณ GABA ของจมูกข้าวที่มี ระยะเวลาการเก็บรักษานาน มีค่าน้อยกว่าข้าวที่มีระยะเวลาการเก็บสั้นกว่า เมื่อนำมาเพาะให้งอกโคยการแช่ น้ำที่อุณหภูมิ $40^{\circ} \mathrm{C}$ นาน 4 ชั่วโมง (ดังตารางที่ 2.9) ทั้งนี้เนื่องจากระยะเวลาการเก็บที่ยาวจะมีผลยับยั้ง กิจกรรมของเอนไซม์กลูตาเมต ดีคาร์บอกซีเลส และเอนไซม์ที่ย่อยสลายโปรตีน ดังนั้นจมูกข้าวที่เก็บไว้นาน สามารถผลิต GABA ได้น้อยลง

ตารางที่ 2.9 ปริมาณ GABA ของจมูกข้าวที่มีระยะเวลาการเก็บรักษาต่างกันก่อนนำมาแช่ในน้ำ

จำนวนวันหลังการเก็บ เกี่ยวก่อนแห่ (วัน)	GABA ที่วัดก่อนแช่ (มิลลิกรัม/100 กรัม)	GABA ที่วัดหลังแช่ (มิลลิกรัม/100 กรัม)	สัดส่วน GABA (หลังแช่:ก่อน)
119	25.4	215	8.5
269	36.9	162	4.4

ที่มา: Horino และคณะ (1994b)
4. ระดับการสีของเมล็คข้าว

การขัดสีในระดับที่แตกต่างกันจะส่งผลให้เมล็คข้าวมีองค์ประกอบของเนื้อเยื่อที่แตกต่างกัน และทำให้มีปริมาณสารอาหารที่แตกต่างกัน โดยเมื่อเพิ่มระดับการสีให้สูงขึ้นจะส่งผลทำให้ปริมาณ GABA ที่ได้ลคลง (Horino et al., 1994a)

2.5.3.2 ปัจจัยด้านกระบวนการผลิต

1. อุณหภูมิในการแช่ข้าว

อุณหภูมิมีความสำคัญต่อการควบดุมอัตราการเกิดปฏิกิริยาทางชีวเคมี ซึ่งมีผลต่อการงอก และเจริญเติบโตของพืช อุณหภูมีที่เหมาะสมสำหรับการงอกของเมล็ดพืชแต่ละชนิดแตกต่างกันไปตามพันธุ์ ซึ่งอุณหภูมิในการแช่ข้าวที่แตกต่างกัน ส่งผลทำให้ปริมาณ GABA และสารอาหารอื่นๆ ของข้าวกล้องงอกมี ค่าแตกต่างกันด้วย (Ito and Ishikawa, 2004)
2. ระยะเวลาในการงอกของข้าว (germinating time)

ระยะเวลาในการงอกที่แตกต่างกัน มีผลทำให้ปริมาณสารอาหารและ GABA ในข้าวกล้อง งอกแตกต่างกัน ซึ่งจากการวิจัยของ Ohtsubu และคณะ (2005) พบว่าเมื่อเพิ่มระยะเวลาในการงอกให้นานขึ้น มีผลให้ปริมาณ GABA ที่ได้มีค่าเพิ่มมากขึ้น คังตารางที่ 2.10

ตารางที่ 2.10 การเปลี่ยนแปลงปริมาณ GABA ระหว่างกระบวนการงอก (เพาะให้งอกที่ฝุณหภูมิ $30^{\circ} \mathrm{C}$)

ตัวอย่าง	GABA* (มิลลิกรัม/ 100 กรัม)
ข้าวขัดขาว	1.70 ± 0.01
ข้าวกล้อง	6.04 ± 0.20
ผ่านการงอก 24 ชั่วโมง	11.02 ± 0.25
ผ่านการงอก 48 ชั่วโมง	27.73 ± 0.46
ผ่านการงอก 72 ชั่วโมง	69.21 ± 0.14
ผ่านการงอก 96 ชั่วโมง	149.03 ± 5.16

*เป็นค่า mean \pm SD vองการวิคราะห์ 3 ช้ำ
ที่มา: Ohtsubu และคณะ (2005)
นอกจากระยะเวลาในการงอกจะมีผลต่อปริมาณ GABA แล้ว ยังมีผลต่อปริมาณของกรดอะ มิโนชนิดอื่นๆด้วย โคยพบว่าปริมาณของอะลานีน ไทโรซีน ฮีสทิดีน GABA ไลซีนและไอโซลิวซีน เพิ่ม สูงขึ้นเมื่อระยะเวลาเพิ่มมากขึ้น ในขณะที่กลูตาเมตและกรดแอสพาติกลคต่ำลงเมื่อระยะเวลาเพิ่มมากขึ้น (Watanabe et al., 2004)

3. ความเป็นกรค-ด่าง

Horino และคณะ (1994a) นำจมูกข้าวพันธุ์ Koshihikari แช่ในสารละลายที่มีความเป็นกรดด่าง แตกต่างกัน โดยแช่ที่อุณหภูมิ $40^{\circ} \mathrm{C}$ นาน 1 และ 4 ชั่วโมง พบว่าปริมาณ GABA เพิ่มสูงขึ้นมากที่สุคเมื่อ แช่ที่ค่าความเป็นกรค-ค่าง เท่ากับ 5.5 และจะมีปริมาณต่ำที่สุดเมื่อแช่ที่ค่าความเป็นกรด-ค่าง เท่ากับ 8 แสคง ในรูปที่ 2.8

รูปที่ 2.8 ปริมาณ GABA ในจมูกข้าวที่แช่ในสารละลายกรด-ด่างต่างๆ ใน 0.1 โมลาร์ ฟอสเฟตบัฟเฟอร์ (o, Δ) และซิเตรท บัฟเฟอร์ $(\boldsymbol{\bullet}, \mathbf{A})$ ระยะเวลาการแช่ 1 ชั่วโมง $(0, \bullet)$ และ 4 ชั่วโมง (Δ, \mathbf{A}) ที่มา: Horino และคณะ (1994a)
4. ชนิดของสารละลายที่ใช้ในกระบวนการแช่ข้าว

ชนิดของสารละลายที่ใช้ในกระบวนการแช่ข้าวมีผลต่อปริมาณ GABA ซึ่ง Liu และคณะ (2005) ได้ศึกษากิจกรรมของเอนไซม์กลูตาเมต ดีคาร์บอกซิเลส และปริมาณ GABA เมื่อแช่จมูกข้าวที่ อุณหภูมิห้อง (ประมาณ $28^{\circ} \mathrm{C}$) นาน 4 ชั่วโมง ในสารละลายต่างๆ 4 ชนิด ดังนี้

- สารละลายแคลเซียมคลอไรด์ 0.5 มิลลิโมลต่อลิตร $\left(\mathrm{Ca}^{2+}\right)$
- สารละลายเมอร์คิวรีคลอไรด์ 1 มิลลิโมลต่อลิตร $\left(\mathrm{Hg}^{2+}\right)$
- สารละลายแคลเซียมคลอไรด์ 0.5 มิลลิโมลต่อลิตร ร่วมกับ EGTA 0.5 มิลลิโมลต่อลิตร ($\mathrm{Ca}^{2+} /$ EGTA $)$
- น้ำขจัคอิออน (เป็นตัวอย่างควบดุม) (CK)

จากผลการทดลอง (รูปที่ 2.9) พบว่าการใช้แคลเซียมคลอไรด์ 0.5 มิลลิโมลต่อลิตร มีผลทำ ให้กิจกรรมของเอนไซม์กลูตาเมต ดีคาร์บอกซิเลสสูงขึ้นเมื่อเทียบกับตัวอย่างที่แช่ในน้ำที่ไม่มีการเติม แคลเซียม และกิจกรรมของเอนไซม์มีค่าลดลงเมื่อแช่ในสารลาย $\mathrm{Ca}^{2+} / E G T A$ และ Hg^{2+} ซึ่งผลดังกล่าว สอคคล้องกับการเปลี่ยนแปลงปริมาณ GABA เช่นเดียวกัน กล่าวคือ กิจกรรมของเอนไซม์กลูตาเมต ดีคาร์ บอกซิเลสที่สูง ส่งผลให้ GABA มีปริมาณสูงด้วย คังนั้นจากผลการทดลองนี้สามารถสรุปได้ว่าแคลเซียมอิออ นช่วยกระตุ้นกิจกรรมของเอนไซม์กลูตามตต ดีคาร์บอกซิเลส จึงส่งผลให้ปริมาณ GABA เพิ่มสูงขึ้น

รูปที่ 2.9 ผลของชนิดสารละลายที่ใช้ในการแช่ข้าวต่อกิจกรรมของเอนไซม์กลูตาเมต ดีคาร์บอกซิเลส และ ปริมาณ GABA ในเอมบริโอหลังจากแช่นาน 4 ชั่วโมง
ที่มา: Liu และคณะ (2005)

วิธีการทดลอง

3.1 เครื่องมือและอุปกรณ์ที่ใช้ในการวิจัย

3.1.1 วัตถุดิบ

 อุมหภูมิ $4^{\circ} \mathrm{C}$ เพื่อนำมาใช้นกการวจัขต่อไป

สำหรับตัวอย่างข้าวพันธุ่ช่อุุงที่นำมาใชหำนลิดงัณท์ เป็นข้าวที่เป็นผลผลิตจากข้าวนาปีจาก ศูนย์วัจัขข้าวปัตตานี ในปี 2553 เนื่องจากในช่วงเวลาดังกล่าวจังหวัดพัทลุงประสบอุทกภัยทำให้นาข้าว เสียหายจำนวนมาก ผลผลิดที่ได้ด้งมีงปริมามไมม่เพียงพอกับความต้องการที่จะนำมาหช้ในการทดลอง

รูปที่ 3.1 ข้าวกล้องทั้ง 4 สายพันธุ์ก่อนและหลังการบรรจุแบบสูญญูากาศในถุงโพลีเอทธิลีน ขนาด 8×12 นิ้ว

3.1.2 วัสดุและฉุปกรณ์

1. เครื่องชั่งไฟฟ้า 2 ตำแหน่ง และ 4 ตำแหน่ง ยี่ห้อ Satorious รุ่น $\mathrm{BS} / \mathrm{BT}$ ประเทศเยอรมนี
2. อ่างควบคุมอุณหภูมี ยี่ห้อ Memmert ประเทศสหรัฐอเมริกา
3. เครื่องวัด pH ยี่ห้อ Schott ประเทศอังกฤษ
4. ตู้อบลมร้อน ยี่ห้อ Memmert รุ่น D-91126 ประเทศสหรัฐเอมริกา
5. เครื่องผสมสารละลาย (vortex mixer genie 2) ยี่ห้อ Scientific Industries รุ่น G650E ประเทศ สหรัฐอเมริกา
6. เครื่องเขย่าสารละลาย (shaker) ยี่ห้อ DAIHAN Scientific รุ่น SHO 2D ประเทศเกาหลี 7. เครื่องหมุนเหวี่ยงควบคุมอุณหภูมิ ยี่ห้อ Sorvall รุ่น RC-5B Plus ประเทศสหรัฐอเมริกา
7. เครื่องระเหยแบบลคความดัน (vacuum rotary evaporator) ยี่ห้อ BUCHI ประเทศ

สวิตเซอร์แลนด์
9. เครื่อง HPLC ยี่ห้อ Agilent Technologies รุ่น 1200 ประเทศเยอรมนี
10. เครื่องบคผสมตัวอย่าง ยี่ห้อ PHILIPS ประเทศไทย
11. โถคูดความชื้น
12. อุปกรณ์ย่อยและกลั่นโปรตีน ยี่ห้อ FOSS รุ่น 2006 และ 2200 ตามลำดับ ประเทศสวีเดน 13. อุปกรณ์ชุคสกัคไขมัน (Soxhlet apparatus) ยี่ห้อ Selecta รุ่น 6003286 ประเทศสวีเคน
14. เครื่องระเหยแบบสุญญากาศ ยี่ห้อ EYELA รุ่น SB-1000 ประเทศญู่ปุ่น
15. เตาเผา (muffle furnace) ยี่ห้อ Ney รุ่น Vulcan3-1750 ประเทศสหรัฐอเมริกา
16. เตาให้ความร้อน (Hot plate) ยี่ห้อ IKA รุ่น C-MAG HS7ประเทศเยอรมนี
17. เครื่อง microplate reader ยี่ห้อ Biotek รุ่น Power Wave X ประเทศสหรัฐเอมริกา
18. ถุงรีทอร์ทเพาซ์ (retort pouch) ขนาด $160 \times 190 \mathrm{~mm}$ เป็นถุงแบบ transparent แบบ PET12/NY15/CPP70 บริษัทรอแยลแคน อินครัสทรีส์ ประเทศไทย
19. กระป๋อง 3 ชิ้น ขนาด 307×113 บริษัทรอแยลแคน อินดรัสทรีส์ ประเทศไทย 20. เวอร์เนียคาลิปเปอร์ ยี่ห้อ Mitntoyo ประเทศญู่ปุ่น
21.เครื่องวัดค่าสี HunterLab รุ่น ColorFlex ประเทศสหรัฐเอมริกา
22. เครื่องวิเคราะห์ลักษณะเนื้อสัมผัส (Texture Analyzer) ยี่ห้อ Stable Micro System, รุ่น TAXT2i Surrey สหราชอาณาจักร
23. เครื่อง X-ray Diffractometer ยี่ห้อ Philips รุ่น X'Pert MPD ประเทศเนเธอร์แลนด์
24. เครื่อง Rapid Visco Analyzer (RVA) ยี่ห้อ Newport Sciencetific RVA-4 สหราชอาณาจักร
25. กล้องอิเลคตรอนแบบส่องกราด (Scanning electron micrographs, SEM) ยี่ห้อ JEOL รุ่น JSM-5200 ประเทศญู่ปุ่น
26. หม้อม่าเื้้ย (Retort) ยี่ทั่อ FMC Food tech ประเทคเบลยยี่ยม
27. เคร่องบิดดากระป๋้อง (seammer) ยี่ท้อ VFM ประเทศไทย

29. ห้อ้ดุงข้าวไฟฟ้า ยี่ที่อ SHARP รุ่น KSH-555 ประเทคไทย
30. ไมโครเวฟ ยื่ทื้อ SANYO ประตทคไทย

3.1.3 สารเคมี

1. Di-Sodium hydrogen phosphate ยี่ห้อ J.T. Beker (NJ., USA.)
2. Citric acid ยี่ห้อ J.T. Beker (NJ., USA.)
3. Sulfuric acid (AR Grade) ยี่ห้อ LAB-SCAN (Thailand)
4. Copper sulfate ยี่ห้อ J.T. Beker (NJ., USA.)
5. Potassium sulfate ยี่ห้อ J.T. Beker (NJ., USA.)
6. Sodium hydroxide ยี่ห้อ LAB-SCAN (Thailand)
7. Boric acid ยี่ห้อ Merck (Darmstadt, Germany)
8. Hydrochloric acid ยี่ห้อ LAB-SCAN (Thailand)
9. Ethanol and Methanol (AR grade) ยี่ห้อ LAB-SCAN (Thailand)
10. Bromocresol green ยี่ห้อ Merck (Darmstadt, Germany)
11. Petrolium ether ยี่ห้อ LAB-SCAN (Thailand)
12. Acetic acid ยี่ห้อ LAB-SCAN (Thailand)
13. Iodine ยี่ห้อ Merck (Darmstadt, Germany)
14. Potassium iodide ยี่ห้อ LAB-SCAN (Thailand)
15. Sulfosalicylic acid ยี่ห้อ LAB-SCAN (Thailand)
16.4-dimethylaminoazobenzene-4-sulfonyl chloride ยี่ห้อ Sigma Chemical Co. (MO., USA.)
16. Sodium hydrogen carbonate ยี่ห้อ Merck (Darmstadt, Germany)
17. Acetonitrile (HPLC Grade) ยี่ห้อ LAB-SCAN (Thailand)
19.4-aminobutyric acid ยี่ห้อ Fluka (Steinheim, Germany)

18. Tetrahydrofuran ยี่ห้อ LAB-SCAN (Thailand)
19. Folin-Cioculate ยี่ห้อ Merck (Darmstadt, GERmany)
20. Sodium carbonate ยี่ห้อ Merck (Darmstadt, Germany)
21. Dichloromethane ยี่ห้อ LAB-SCAN (Thailand)
22. Sodium chloride ยี่ห้อ Merck (Darmstadt, Germany)

3.2 วิธีการทดลอง

งานวิจัยครั้งนี้แบ่งวิธีการทคลองออกเป็น 2 ส่วนใหฝ่า ดังนี้
ส่วนที่ 1: การศึกษาสภาวะที่เหมาะสมในการเตรียมข้าวกล้อง คุณค่าทางโภชนาการและสารออก

ฤทธิ่ทางชีวภาพของข้าวกล้องงอก

ส่วนนี้เป็นการศึกษาเพื่อหาสภาวะที่เหมาะสมในการเตรียมข้าวกล้องงอกเพื่อให้มีปริมาณ GABA ที่สูง การวิเคราะห์คุณค่าทางโภชนาการและสารออกฤทธิ์ทางชีวภาพจากข้าวกล้องงอก รวมถึง การศึกษากิจกรรมการต้านเบาหวานโดยการยับยั้งการทำงานของเอนไซม์แอลฟ่า-อะไมเลสจากน้ำลายและ ตับอ่อน กิจกรรมการต้านการอักเสบ กิจกรรมการต้านออกซิเคชั่น และการทคสอบความเป็นพิษของสาร สกัคจากข้าวกล้องงอก

ส่วนที่ 2: การพัฒนาผลิตภัณฑ์จากข้าวกล้องงอก

ส่วนนี้เป็นการสำรวจความต้องการของผู้บริโภค เพื่อใช้เป็นแนวทางในการพัฒนาผลิตภัณฑ์จาก ข้าวกล้องงอก และมีการวิเคราะห์คุณค่าทางโภชนาการ สารออกฤทธิ์ทางชีวภาพและคุณภาพของผลิตภัณฑ์ ที่พัฒนาขึ้น รวมถึงทำการทดสอบการยอมรับของผู้บริโภคที่มีต่อผลิตภัณฑ์ที่พัพนาขึ้น

ซึ่งการทดลองในแต่ละส่วนมีรายละเอียด ดังนี้

ส่วนที่ 1: การศึกษาสภาวะที่เหมาะสมในการเตรียมข้าวกล้องงอก คุณค่าทาง โภชนาการและสารออกฤทธี์ทางชีวภาพของข้าวกล้องงอก

1.1 องค์ประกอบทางเคมีของข้าวกล้อง

นำข้าวกล้องแต่ละพันธุ์ที่เก็บไว้ที่อุณหภูมิ $4^{\circ} \mathrm{C}$ มาคัดเมล็คที่ไม่สมบูรณ์และเปลือกที่ตกค้างออก จากนั้นทำการวิเคราะห์สมบัติทางเคมี ได้แก่ ความชื้น ไขมัน โปรตีน เถ้า ใยอาหาร โดยวิธี AOAC (2000) และปริมาณอะไมโลส (Juliano, 1971) ตามวิธีในภาคผนวก ค ตามลำดับ
1.2 กรรดูดซึมน้ำของเมล็ดข้าวกล้องระหว่างการแช่ (Hydration characteristic of brown rice during soaking)

ชั่งข้าวกล้องทั้ง 4 สายพันธุ์ที่ผ่านการคัดเลือกเฉพาะเมล์คที่สมบูรณ์แล้วใส่ในภาชนะๆละ 10 กรัม จำนวน 24 ชุดสำหรับข้าวแต่ละพันธุ์ จากนั้นล้างน้ำให้สะอาคเพื่อกำจัดสิ่งแปลกปลอมที่ติดอยู่ในตัวอย่าง และเติมน้ำกลั่นในอัตราส่วนข้าวต่อน้ำเท่ากับ $1: 2$ วางทิ้งไว้ที่อุณหภูมิห้อง $\left(30 \pm 2^{\circ} \mathrm{C}\right)$ โดยสุ่มเก็บตัวอย่าง ทุกๆชั่วโมง เป็นเวลา 24 ชั่วโมง หลังจากการเก็บตัวอย่างน้ำที่ใช้แช่ข้าวจะถูกเททิ้งไป จากนั้นนำข้าวไปล้าง ให้สะอาด ตัวอย่างข้าวถูกแบ่งออกเป็น 2 ส่วน ส่วนหนึ่งนำไปวิเคราะห์ความชื้นตามวิธี A.O.A.C (2000) อีก ส่วนหนึ่งนำไปอบที่อุณหภูมิ $50^{\circ} \mathrm{C}$ ประมาณ $3-4$ ชั่วโมงหรือจนกระทั่งมีความชื้นประมาณร้อยละ $12-13$ เพื่อใช้ในการวิเคราะห์ GABA ตามวิธีของ Cohen and Michaud (1993) คังแสคงในภาคผนวก ค

ข้าวกล้องทั้ง 4 สาขพันโุ์ที่นำมาใหชเรรีมมเป็นข้าวกล้องงอก จะต้องผ่านการคัดแยกด้วววิธีการ
 กล้องงงคด้วขวิธีต่าๆ (คังแสงงในกาคผนวก ง) คังนี้
1.3.1 กรเพะะห้งอกคด้วยการแช่ในสารละกาย
1.3 .2 การเหาะห้งอกในกหนนะเปินเละปีด

โดยในแต่ละวิธีการทำให้งอก มีการรึกษยาขัจจังต่งงๆที่มีผลต่อบริมา GABA ดังนี้

1.3 .1 การษพะไห้งยงกด้วยกรรแชันสารละลาย

ตัวอย่าง้้ววกล้องทั้ง 4 สายพันท์ที่ผ่านการกัคเพื่อเลือกเฉพาะเมล็คที่สมมูรณ์ จะถูนำมาทำให้ งอกโดยการแช่นนสารละลยง ในอัตราส่วนของข้าวกล้องต่อสารละลยย เท่ากับ $1: 2$ โดยศึกษาปัจััยต่างงที่มี ผลต่อปริมาณ GABA ดังนี้

1.3.1.1 ผล p ข ขขงสารละลยที่ใช้ระห่างการแช่ท้ววกล้อง

นำข้าวกล้องทั้ง 4 สายพันฉุนแแช่ในสารละลายที่ pH ต่งงา คังแสดงในตารงที่ 3.1 (การ
 กรบตามเวลที่กำหนด เทสารสะะายออก ล้างตัววย่งดด้วบน้ำให้สสอาดแสะนำไปอบที่อุดหหูมิ $50^{\circ} \mathrm{C}$ นาน 5 ชั่วโมง หรือคนกระทั่งตัวอย่างมีความรี้นเหลือประมาณร้อยละ $12-13$ บดตัวอย่างข้าวกล้องงอกที่เตรียมได้ ให้ละเอียดดเละร่อนผ่านตะแกรงขนาด 42 mesh (355 ไมโครเมตร) และวิเคราะห์ปริมิาม GABA ตามวิธีของ Cohen and Michaud (1993) เพื่คัคคเลือกสภาะ pH ที่เหมาะสมชึ่งให้ประมาน GABA สูงที่สุดเื่อนำไปไช้ ในกรรคึกษาผลของยุมหภูิิรหว่างการเช่ของง้าวกล้องต่อไป ตรรงที่ 3.1 สารละลายี่ pH ต่างๆ ที่ใช้แช่ข้วากล้อง

$\mathbf{p H}$	สารละลาย/ บัฟเฟอร์
2.0	Clark and Lubs solution
2.5	Glycine- HCl buffer solution
3.0	Citric acid- $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer
3.5	Citric acid- $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer
4.0	Citric acid- $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer
4.5	Citric acid- $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer
5.0	Citric acid- $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer
5.5	Citric acid- $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer
6.0	Citric acid- $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer

1.3.1.2 ผลของอุณหภูมิระหว่างการแช่ข้าวกล้อง

นำข้าวกล้องทั้ง 4 สายพันธุ์ มาทำให้งอกโดยแช่ในสารละลายที่มี pH ตามที่คัดเลือกได้จาก ข้อ 1.3.1.1 โดยใช้อุณหภูมิ 30,40 และ $50^{\circ} \mathrm{C}$ เป็นเวลา 24 ชั่วโมง หลังจากครบตามเวลาที่กำหนด เท สารละลายออก ล้างตัวอย่างด้วยน้ำให้สะอาดและนำไปอบที่อุณหภูมิ $50^{\circ} \mathrm{C}$ นาน 5 ชั่วโมงหรือจนกระทั่ง ตัวอย่างมืความชื้นเหลือประมาณร้อยละ $12-13$ บดตัวอย่างข้าวกล้องงอกที่เตรียมได้ให้ละเอียคและร่อนผ่าน ตะแกรงขนาด 42 mesh (355 ไมโครเมตร) และวิเคราะห์ปริมาณ GABA ตามวิธีของ Cohen and Michaud (1993) เพื่อคัคเลือกอุณหภูมีที่เหมาะสมซึ่งให้ประมาณ GABA สูงที่สุดเพื่อใช้ในการศึกษาผลของระยะเวลา ระหว่างการแช่ของข้าวกล้องต่อไป

1.3.1.3 ผลของระยะเวลาระหว่างการแช่ของข้าวกล้อง

นำข้าวกล้องงทั้ง 4 สายพันธุ์มาทำให้งอกโคยแช่ในสารละลายที่มี pH และอุณหภูมีที่ คัดเลือกได้จากข้อ 1.3.1.1 และข้อ 1.3.1.2 ตามลำคับ เป็นเวลา $12,24,36$ และ 72 ชั่วโมง หลังจากครบตาม เวลาที่กำหนคให้เทสารละลายออก ล้างตัวอย่างด้วยน้ำให้สะอาดและนำไปอบที่อุณหภูมิ $50^{\circ} \mathrm{C}$ นาน 5 ชั่วโมง หรือจนกระทั่งตัวอย่างมีความชื้นเหลือประมาณร้อยละ 12-13 บดตัวอย่างข้าวกล้องงอกที่เตรียมได้ ให้ละเอียดและร่อนผ่านตะแกรงขนาด 42 mesh (355 ไมโครเมตร) และวิเคราะห์ปริมาณ GABA ตามวิธีของ Cohen and Michaud (1993) เพื่อใช้คัคเลือกเวลาที่เหมาะสมซึ่งให้ประมาณ GABA สูงที่สุดสำหรับการเพาะ ให้งอกค้วยการแช่ในสารละลาย

ซึ่งจากผลการทดลองที่ได้จากข้อ 1.3.1.1-1.3.1.3 จะได้สภาวะที่เหมาะสมสำหรับการเพาะ ให้งอกด้วยการแช่ด้วยสารละลาย เพื่อให้มี GABA ในปริมาณสูง ซึ่งจะนำไปไช้เปรียบเทียบกับวิธีการเพาะ อื่นๆต่อไป

1.3.2 การเพาะให้งอกในภาชนะเปิดและปิด

ตัวอย่างข้าวกล้องทั้ง 4 สายพันธุ์ที่ผ่านการคัดเพื่อเลือกเฉพาะเมล็คที่สมบูรณ์ จะถูกนำมาทำให้ งอกโคยการเพาะในภาชนะเปิดและภาชนะปิด (ดังรูปที่ 3.2) โคยตัวอย่างข้าวกล้องแต่ละสายพันธุ์จะถูกนำมา แช่ในสารละลายที่คัดเลือกได้จากข้อ 1.3.1.1 ด้วยอัตราส่วนของข้าวกล้องต่อสารละลาย เท่ากับ $1: 2$ นาน 5 ชั่วโมง จากนั้นเทสารละลายทิ้ง ล้างตัวอย่างด้วยน้ำให้สะอาด และนำไปเพาะให้งอกในภาชนะเปิดและ ภาชนะปิดที่อุณหภูมิห้อง $\left(30 \pm 2^{\circ} \mathrm{C}\right)$ โดยใช้เวลาในการเพาะต่างๆ ดังนี้ $12,24,36,48$ และ 72 ชั่วโมง หลังจากครบตามระยะเวลาที่กำหนค นำตัวอย่างข้าวมาล้างน้ำให้สะอาด นำไปอบที่อุณหภูมิ $50^{\circ} \mathrm{C}$ จนมีค่า ความชื้นประมาณร้อยละ $12-13$ บดตัวอย่างข้าวกล้องงอกที่เตรียมได้ให้ละเอียดและร่อนผ่านตะแกรงขนาค 42 mesh (355 ไมโครเมตร) และวิเคราะห์ปริมาณ GABA ตามวิธีของ Cohen and Michaud (1993) เปรียบเทียบผลที่ได้กับการเพาะโดยการแช่ในสารละลาย เพื่อคัดเลือกวิธีการเพาะที่เหมาะสมสำหรับการ เตรียมข้าวกล้องงอกเพื่อให้มีปริมาณ GABA ที่สูง

(a) ภาชนะเปิด

(b) ภาชนะปิด

รูปที่ 3.2 กาชนะสำหรับใชหพาะข้ววกล้องงอก
การเพาะในภาชนะเปิด เป็นการเพาะตัวอย่งในตะกร้า ขนาด 24×32 เซนติเมตร ซึ่งภายในตะกร้า
 ตัวอย่างในตะกร้แแล้ว (ประมาม $100-150$ กรัม/ตะกร้า) ใน้ใช้ผ้าสำลีเปียีกน้ำอีกผืนคจุมทับ นำไปเก็บในต้ หรือบริวมนี่ไมมีมีกรรบกวนจากเมลงหรือสัตว์ท่างๆ และมีการพ่นน้ำพื่อเพิ่มความชื้นใหกักตัวอย่งงทุก 12 ชั่วโมง ซึ่งกรเเพาะด้วววิวินี้อากาศสามารรถถ่ายเได้สะดวกแเละออกชิชิเนมีปริมาณคงที่

ในขมะที่การเพาะในภาชนะแบบปิด เป็นการเพาะตัวอย่างในกล่องพลาสติกที่มีฝปปิด ขนาด $9 \times 20 \times 22$ เซนติเมตร ซึ่งภายในมีตะแกรงรองก้นกล่งงสูงประมาน 1 เซนติเมตร บนตะแกรงมุด้วอยผ้าสำลีที่

 อากาศไม่ค่อยก่ายเททำใน้ปริมามออกซิเงนในกล่องลคลงเรื่อยา

 สารซอกฉทธิ์ทงชืวภภาพและกิกิกรรมการต้านออกพิดหั่น ดังนี้
1.4.1 องค์ประกอบทางงคมีของข้าวกล้องงยก ได้แก่ ความชื้น ไขมัน โปรตีน เถ้าและ คาร์โบไฮยดตต โดยวิธี AOAC (2000)
1.4 .2 ปริมาณ Total phenolic ตามวิธีของ Slinkard และ Slingleton (1977) เติมตัวอย่างหรือสารมาตรฐาน 12.5 ไมโครลิตร น้ำกลั่น 50 ไมโครลิตรและสาร Folin-Ciocalteu reagent 12.5 ไมโโรลิตร ผสมให้เข้กันัต้้งท้้งไว้ที่มี้ด 6 นาที หกังจากนั้นเิิม $\mathrm{Na}_{2} \mathrm{CO}_{3}$ เข้มข้นร้อยละ 7 ปริมาตร 125 ไมโครลิตร และน้ำกลั่น 100 ไมโครลิตร ผสมใน้เ้้ากันวางทิ้งไว้ในที่มืค 90 นาที วัดค่าการ

ดูคกลืนแสงที่ 760 นาโนเมตร ด้วยเครื่อง microplate reader โดยใช้ Ferulic acid เป็นสารมาตรฐานในการ เปรียบเทียบแล้วรายงานผลในรุป mmol สมมูลของ ferulic acid (mmol FAE/ 100 g sample)
1.4.3 ปริมาณ Gamma-oryzanol ตามวิธีของ Chen และ Bergman (2005)

ชั่งตัวอย่างข้าวที่ผ่านการบคละเอียด 0.05 กรัม สกัคค้วยเมทานอล $(100 \%) 3$ มิลลิลิตร เขย่า โดยใช้ vortex เป็นเวลา 1 นาที และนำไปปั่นเหวี่ยง (entrifuge) ที่ 830 รอบต่อนาที เป็นเวลา 10 นาที กรองและนำส่วนใสไปวิเคราะห์ HPLC สภาวะการทำงานของ HPLC คือใช้คอลัมน์ Econosphere C 18 $(250 \mathrm{~mm})$ mobile phase คือ methanol : acetonitrile : dichloromethane : acetic acid เท่ากับ $50: 44: 3: 3$ อัตราการไหล 1 มิลลิลิตรต่อนาที วัดที่อุณหภูมิห้องและใช้ความยาวคลื่น 330 นาโนเมตร ฉีดตัวอย่าง 50 ไมโครลิตร

1.4.4 ปริมาณ Phytate ตามวิธีของ AOAC (2000)

ทำการเตรียมคอลัมน์โดยใช้เรซิน Dowex 1×8 (Fluka) ในการ pack คอลัมน์ ก่อนใช้ต้องแช่ เรซินในน้ำก่อนปรฺะมาณ 1 คืน (ใช้ 0.5 กรัมต่อ 1 คอลัมน์) ในการเตรียมคอลัมน์ นำคอลัมน์วางบนขาตั้ง คอลัมน์ ใส่สำลีลงในคอลัมน์เพื่อปิดปลายคอลัมน์โดยใช้น้ำ DI ในการ pack จากนั้นปีเปตเรซินด้วย dropper ลงในคอลัมน์ โดยพยายามให้ผิวหน้าเรียบ (ขณะ pack อย่าให้น้ำในคอลัมน์แห้ง) จากนั้นรอให้น้ำหยคเกือบ หมดเติม 0.7 M NaCl ลงไป 15 มิลลิลิตร รอให้สารละลายหยคเกือบหมด ใส่น้ำ DI ลงไป 15 มิลลิลิตร จากนั้นสามารถใช้พาราฟินพันปลายคอลัมน์เก็บไว้ ระหว่างรอการใช้งาน (เรซินสามารถใช้ได้ 2 ครั้ง) สำหรับการเตรียมตัวอย่างมีขั้นตอนคังนี้คือ ชั่งตัวอย่างข้าวที่บดละเอียด 2 กรัม ใส่ flask ขนาค 125 มิลลิลิตร เติม $2.4 \% \mathrm{HCl}$ (20 มิลลิลิตร/1กรัม ตัวอย่าง) เขย่าเป็นเวลา 3 ชั่วโมง จากนั้นกรองตัวอย่างด้วย whatman \# 541 (สารสกัดจะเก็บได้ประมาณ 1 อาทิตย์ โดยการแช่ยย็น) ปีเปตตัวอย่าง 1 มิลลิลิตร ลงใน volumetric flasks ขนาค 25 มิลลิลิตร จากนั้นปีเปต Na_{2} EDTA- NaOH 1 มิลลิลิตรลงไป ปล่อยทิ้งไว้ประมาณ 15 นาที ปรับปริมาตรด้วยน้ำ DI ให้ครบ 25 มิลลิลิตร ปีเปตตัวอย่างใส่ในคอลัมน์ รอจนเกือบหมคจากนั้นเติม น้ำ DI , 0.1 NaCl และ 0.7 NaCl ตามลำดับโคยแต่ละสารใช้ไริมาตร 15 มิลลิลิตรในการชะ ในการเก็บสารละลายที่ ผ่านการชะเริ่มเก็บเมื่อทำการเติม 0.7 NaCl หลังจากนั้นเติมน้ำ DI ตามไปอีกครั้งโดยในระหว่างนี้ก็อาจทำ การเก็บสารที่ผ่านการชะไว้ด้วย ตัวอย่างที่ได้จากการชะต้องนำไปทำการย่อย โดยเริ่มต้นทำการเตรียม micro kjahl flask ใส่ glass bead ลงไปประมาณ 3 เม็ด เทตัวอย่างที่ได้จากขั้นตอนการชะลงไป เติมกรด $\mathrm{H}_{2} \mathrm{SO}_{4}$ เข้มข้นลงไป 0.5 มิลลิลิตร เติมกรด HNO_{3} เข้มข้นลงไป 3 มิลลิลิตร จากนั้นนำไปผ่านการย่อยด้วยเครื่องย่อย เขย่าบ้างเป็นครั้งคราว รอจนสารละลายแห้งเกือบหมดยกลงจากเครื่อง วางทิ้งไว้ให้เย็นจะเห็นผลึกสีขาว เกิดขึ้นเติมน้ำ DI ลงไปประมาณ 10 มิลลิลิตร เพื่อละลายผลึก โดยวางบนเตาประมาณ 5 นาที จากนั้นยก ออกมาวางทิ้งไว้ให้เย็น เก็บตัวอย่างที่ได้จากการย่อย นำตัวอย่างมาวิเคราะห์หาค่าไฟเตท โดยเทสารละลายที่ ได้จากการย่อยลงใน volumetric flask ขนาด 50 มิลลิลิตร เติม molybdate solution ลงไป 2 มิลลิลิตร จากนั้น

เติม sulfonic acid reagent ลงไปป 1 มิลลิลิตร ผสมไห้เ้้กัน ทำกรรปรับปริมตตร วางทิ้งไว้ 15 นาที วัคค่าการ ดูคกลืนแสงที่ 640 นาโนมมตร

1.4.5 ปริมาณ Ferulic acid ตามวิธีของ Ohtsubo และคณะ (2005)

ชั่งตัวอย่างข้าว 0.5 กรัม สกัดด้วย 50 มิลลิลิตร ของ 1 M NaOH เป็น 3 ชั่วโมง ที่ $40^{\circ} \mathrm{C}$ และปรับ ค่าความเป็นกลางด้วย 2 M HCl จากนั้นสกัดด้วย ethyl acetate ปริมาตร 50 มิลลิลิตร เป็นเวลา 5 นาที แยก ส่วนที่เป็นชั้นของ ethyl acetate ทำการระเหยแห้งสุญญากาศแบบหมุน (rotary evaporator) และละลาย ตัวอย่างอีกครั้งด้วย 50% methyl alcohol เก็บตัวอย่างที่ได้สำหรับวิเคราะห์ HPLC สภาวะการทำงานของ HPLC คือใช้คอลัมน์ $\mathrm{C} 18(150 \mathrm{~mm})$ mobile phase คือ acetonitrile : 2.5% acetic acid เท่ากับ $12: 88$ อัตรา การไหล 1 มิลลิลิตรต่อนาที อุณหภูมิ $40^{\circ} \mathrm{C}$ วัคที่ความยาวคลื่น 320 นาโนเมตร ฉีดตัวอย่าง 5 ไมโครลิตร
1.4.6 ปริมาณ Tocolpherol ตามวิธีที่คัดแปลงจาก Chen and Bergman (2005) และ Lloyd และ คณะ (2000)

ชั่งตัวอย่างข้าว 0.05 กรัม สกัดด้วยเมธานอล 3 มิลลิลิตร เขย่าโดยใช้ vortex เป็นเวลา 1 นาที และ นำไปปั่นเหวี่ยง ที่ 830 รอบต่อนาที กรองและนำส่วนใสไปวิเคราะห์ด้วย HPLC สภาวะการทำงานของ HPLC คือใช้คอลัมน์ C 18 (150 mm) mobile phase คือ methanol: water เท่ากับ $97: 3$ อัตราการ ไหล 1 มิลลิลิตรต่อนาที วัดที่อุณหภูมิห้องและใช้ความยาวคลื่น 292 นาโนเมตร ฉีดตัวอย่าง 20 ไมโครลิตร
1.4.7 ปริมาณ GABA ตามวิธีของ ของ Cohen and Michaud (1993)

ตัวอย่างข้าวกล้องงอกที่เตรียมจากสภาวะตามข้อ 1.3.1-1.3.2 ซึ่งให้ปริมาณ GABA สูงสุคในแต่ ละสายพันธุจะถูกนำมาแยกเป็น 3 ส่วน คือ จมูกข้าว (germ) รำข้าว (bran) และเนื้อด้านในเมล็คข้าว (endosperm) เพื่อวิเคราะห์ปริมาณ GABA เปรียบเทียบกับข้าวกล้องงอกทั้งเมล็ค (ไม่มีการแยกส่วน)

1.4.8 กิจกรรมการต้านออกซิเดชั่น

1.4.8.1 การเตรียมสารสกัด

นำตัวอย่างข้าวกล้องงอกแต่ละพันธุ์ (เตรียมด้วยสภาวะที่คัคเลือกได้โคยให้ปริมาณ GABA ที่ สูง) ไปสกัคตามวิธีของ Sawaddiwong และคณะ (2008) โดยใช้สารละลายของเอทานอลเข้มข้น 50% ใช้ อัตราส่วนของตัวอย่างต่อตัวทำละลายเท่ากับ $1: 2(\mathrm{w} / \mathrm{v})$ โดยสกัดตามวิธีการดังนี้คือ นำข้าวกล้องงอกมาบด ให้ละเอียด จากนั้นนำตัวอย่างที่บดแล้ว 200 กรัมมาผสมกับสารละลายเอทานอลเข้มข้นร้อยละ 50 ปริมาตร 400 มิลลิลิตร ทำการโฮโมจีไนซ์เป็นเวลา 1 นาที แล้วกวนต่อเนื่องนาน 12 ชั่วโมง ที่อุณหภูมิห้อง เมื่อครบ เวลากรองตัวอย่างด้วยกระดาษกรอง Whatman เบอร์ 1 ได้ออกมาเป็น 2 ส่วนคือส่วนที่เป็นกากตะกอนค้างอยู่ บนกระดาษกรอง และส่วนที่ผ่านกระดาษกรองลงไป นำกากตะกอนที่ได้ไปผสมกับตัวทำละลายเอทานอล เข้มข้น 50% ปริมาตร 200 มิลลิลิตรอีกครั้ง จากนั้นกวนต่อเนื่องนาน 30 นาที ที่อุณหภูมิห้อง แล้วนำไป กรองผ่านกระดาษกรอง Whatman เบอร์ 1 ส่วนที่กรองได้จะนำไปรวมกับส่วนที่กรองได้ก่อนหน้านี้ จากนั้น

นำสารละลายตัวอย่างที่ผ่านการกรองทั้งหมด ไปปั่นเหวี่ยงที่ 8000 rpm ที่ฝุณหภูมิ 4 องศาซลเซียส นำส่วน ใสที่ได้มากำจัดไขมันออกโดยการเติม hexane ปริมาตร 400 มิลลิลิตร เขย่าแล้วทำการแยก (ทำ 3 ซ้ำ) ได้เป็น สารสกัดจากข้าว จากนั้นนำไประเหยแห้งโดยใช้เครื่องระเหยแบบลดความดัน (Vacuum rotary evaporator) ที่อุณหภูมิ 40 องศาเซลเซียส ได้เป็นสารสกัด (crude extract) นำสารสกัคที่ได้ละลายน้ำให้ได้ความเข้มข้นที่ เหมาะสมก่อนนำไปวิเคราะห์กิจกรรมการต้านออกซิเดชันต่อไป

1.4.8.2 การวิเคราะห์กิจกรรมการต้านออกซิเคชัน คังนี้

1. DPPH radical scavenging activity ตามวิธี Brand-Williams และคณะ (1995)

เตรียมสารละลาย DPPH เข้มข้น 0.2 มิลลิโมลาร์ ในเอทานอล หลังจากนั้นเติมสารละลาย DPPH ปริมาตร 100 ไมโครลิตร และตัวอย่างหรือสารมาตรฐานปริมาตร 100 ไมโครลิตร ผสมให้เข้ากันตั้ง ทิ้งไว้ในที่มืด 30 นาที วัดค่าการดูคกลืนแสงที่ 517 นาโนเมตร ด้วยเครื่อง microplate reader โดยใช้ ferulic acid เป็นสารมาตรฐานแล้วรายงานผลในรูป mmol สมมูลของ ferulic acid (mmol FAE/100g sample)

2. ABTS radical scavenging activity ตามวิธี Binsan และคณะ (2008)

เตรียมสารละลาย ABTS^{+}เข้มข้น 7.4 มิลลิโมลาร์ และสารละลาย potassium persulphate เข้มข้น 2.6 มิลลิโมลาร์ จากนั้นผสมให้เข้ากันด้วขอัตราส่วน $1: 1(\mathrm{v} / \mathrm{v})$ บ่มทิ้งไว้ในที่มืคที่อุณหภูมิห้องเป็น เวลา 12 ชั่วโมง เมื่อครบเวลาบ่มนำสารละลาย ABTS มาเจือจางด้วย methanol อัตราส่วน $1: 50(\mathrm{v} / \mathrm{v})$ วัคค่า การคูดกลืนแสงที่ 734 นาโนเมตร ให้ได้ค่าการดูดกลืนแสง 1.1 ± 0.02 โดยเมื่อได้สารละลาย ABTS ตาม ต้องการแล้วึึงเติมสารละลาย ABTS ปริมาตร 190 ไมโครลิตร และตัวอย่างหรือสารมาตรฐานปริมาตร 10 ไมโครลิตร ผสมให้เข้ากันตั้งทิ้งไว้ในที่มืด 120 นาที วัดค่าการดูคกลืนแสงที่ 734 นาโนเมตร ด้วยเครื่อง microplate reader โดยใช้ ferulic acid เป็นสารมาตรฐาน แล้วรายงานผลในรูป mmol สมมูลของ ferulic acid (mmol FAE/100g sample)
3. รีดิวซิ่งพาววอร์ โดยวิเคราะห์ Ferric reducing/antioxidant power (FRAP) ตามวิธิของ Benzie และ Strain (1996)

เตรียมสารละลาย FRAP reagent ประกอบด้วย acetate buffer (pH 3.6) เข้มข้น 300 มิลลิโม ลาร์ ปริมาตร 25 มิลลิลิตร สารละลาย $\operatorname{TPTZ}(2,4,6$-tripyridyl-s-triazine) เข้มข้น 10 มิลลิโมลาร์ ใน HCl เข้มข้น 40 มิลลิโมลาร์ ปริมาตร 2.5 มิลลิลิตร และสารละลาย $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H} 2 \mathrm{O}$ เข้มข้น 20 มิลลิโมลาร์ ปริมาตร 2.5 มิลลิลิตร ผสมให้เข้ากันนำไปบ่มที่อุณหภูมิ $37^{\circ} \mathrm{C}$ นาน 30 นาที เมื่อครบเวลาเติมตัวอย่างหรือสารละลาย มาตรฐานปริมาตร 30 ไมโครลิตร และสารละลาย FRAP reagent ปริมาตร 270 ไมโครลิตร ผสมให้เข้ากันตั้ง ทิ้งไว้ในที่มืค 30 นาที วัดค่าการดูคกลืนแสงที่ 595 นาโนเมตร ด้วยเกรื่อง microplate reader โดยใช้ FeSO_{4} เป็นสารมาตรฐาน แล้วรายงานผลในรูป mmol สมมูลของ $\mathrm{FeSO}_{4}(\mathrm{mmol} \mathrm{FE} / 100 \mathrm{~g}$ sample)

หมายเหตุ: การวิเคราะห์ในข้อ 1.4.2-1.4.6 จะทำการวิเคราะห์เปรียบเทียบระหว่าง (1) ข้าวกล้องก่อน เพาะข้าว (2) กล้องงอกที่เพาะในสภาวะที่ไห้ไริมา GABA สูงที่สุด และ (3) ข้าวกล้องงอกที่เพาะในสภาวะ ที่ให้ไริมา GABA สูงเป็นอันคับสอง

1.5 กรรับธั้งกรรทำงนนของเดนไซม่แยลฟ่า-อะไมมลสในหลอดทคลองของข้ววกล้งงงคก

1.5.1 การสกัดตัวอย่าง

นำตัวอย่างท้าวที่ต้ดงกรรคึกษามาบดละเอียค ชั่งน้ำหนักและสกัคด้วย 0.02 M phosphate buffer pH 6.900 .15 M NaCl ในสัดส่วน $1: 5$ โดยน้ำหนักต่อปริมตตร ที่ถุมหภูิิิ ${ }^{\circ} \mathrm{C}$ นาน 16 ชั่วโมง คน ด้วยแท่งแม่หนโ์กค่อเนื่อง เซ็นตริฟิวจ์ ที่ $4^{\circ} \mathrm{C}$ ใช้ความเร็วรอบ $50,000 \times \mathrm{g}$ นาน 20 นาที เก็บสารละลาย ส่วนบน แบ่งย่อยในหลอดพลาสติกบนาด 1.5 มล. นึำก็บในต้ $20^{\circ} \mathrm{C}$ เพื่อศึกษาการับยั้งการทำงนของ เฉนไษม์แอลฟ่า-อะไมลส และตรวจหาปริมีมโปปรีนนโดขวิธี Lowry และคณะ (1951) เพื่อใช้ในการคคำนวณ กิกกรรมของอนไซม่อะไมเลส

นำสารสกัคของตัวอย่งงข้ววตามวิธินนข้อ 1.5 .1 มาบ่มกับอนไซม์อะไมลสที่ทราบค่ากิกกรรม เริ่มต้น $\left(0.6+0.05\right.$ maltose) ที่ $37{ }^{\circ} \mathrm{C}$ นาน 30 นาที เงย่าบาๆา เติมน้ำแป้ง 0.2% ในพัฟเพอร์ 0.02 M phosphate buffer pH $6.9-0.015 \mathrm{M} \mathrm{NaCl} \mathrm{บ่มที่} 37^{\circ} \mathrm{C} 3$ นาที เติมสารละลาย 3,5 -dinitrosalicylate (DNS) นำไปด้มในน้ำเดือค 5 นาที เติมน้ำกั่นและทิ้งงไห้เน วัคค่าดคกลืนแสสที่ 540 นาโนเมตร เปรียบเทียบกับ กราฟมาตรรานมอลโตส (Bernfeld, 1955) คำนวแร้อยละกรรับชั้งะะไมลลสจากผลที่ไค้ในหน่ววของ มิลิกกัมมน้ำตาลบอลโตสที่มายไไปจากค่าเริ่มต้นของเอนไซม่มื่อไอไม่ติมสารตัววย่าง ตังสมการ

> ร้อยละการยับยั้งอะไมเลส $=100 x$ (กิจกรรมอะไมเลสเริ่มต้น - กิจกรรมอะไมเลสที่เหลือ) กิจกรรมอะไมเลสเริ่มต้น

เมื่อทราบค่าร้อยละกิจกรรมการยับยั้งอะไมเลส แล้วนำตัวอย่างที่มีค่าเกินกว่าร้อยละ 50 มา เจือจางหลายๆ ความเข้มข้นที่เหมาะสม และนำไปตรวจกิจกรรมการขับยั้งชชนวิธีข้างต้น คำนวณผลและเขียน กราฟระหว่างความเข้มข้นของตัวอย่างแต่ละค่าการเจือจาง กับร้อยละของกิจกรรมการขับขั้ง จากกราฟหาค่า ความเข้มข้นของตัวอย่าง ที่ให้ค่าการยับยั้งร้อยละ $50\left(\mathrm{IC}_{50}\right)$ เพื่อรายงานผลศักยภาพในการยับยั้งเอนไซม์ อะไมเลส

1.5 .3 การหาปริมาณโปรตีน

นำตัวอย่างที่ต้องการศึกษาทำปฏิกริยากับ Lowry's Reagent ตามวิธีของ Lowry และคณะ (1951) วัดค่าคูดกลืนแสงที่ 500 นาโนเมตร เทียบกับกราฟมาตรฐานโปรตีน Bovine Serum Albumin นำค่าที่ ได้ไปคำนวณกิจกรรมอะไมเลส

1.6 ชนิดและปริมาณของวิตามินและเกลือแร่

1.6 .1 การวิเคราะห์ชนิดและปริมาณวิตามิน

1. วิตามิน เอ ดี และอี (modified AOAC 2005)

นำตัวอย่างข้าวที่บดละเอียดแล้ว มาสกัดด้วยตัวทำละลายแอทธานอล-โปแตสเซียม ไฮครอกไซด์ ที่อุณหภูมิ $80^{\circ} \mathrm{C}$ นาน 30 นาที สกัดด้วยเฮกเซน ทำให้แห้งภายใต้ความคันสูญญากาศ ละลาย สารที่ได้คืนด้วยตัวทำละลายเมทธานอล แล้วนำไปตรวจวิเคราะห์ปริมาณ วิตามิน เอ ดี และ อี ด้วย C 18 Reverse phase HPLC LiChroCART ($125 \times 4 \mathrm{~mm}, 5 \mathrm{um}$) ชะด้วยสารผสมระหว่างเมธานอล-น้ำ ($90 / 10$, ปริมาตรต่อปริมาตร) อัตราไหล 1.0 มล..นาที
2. วิตามิน บี1 บี3 และ บี 6 (modified AOAC 2005, Blake 2007, Aslam และคณะ 2008) นำตัวอย่างข้าวที่บคละเอียดแล้ว มาสกัดด้วย กรดไฮโดรคลอริก 0.1 M สัดส่วน $1: 15$ โดย น้ำหนักต่อปริมาตร เขย่าแรงๆ ต้มในอ่างน้ำ เดือด $\left(95-100^{\circ} \mathrm{C}\right) 30$ นาที โคยคนเรื่อยๆ เซนตริฟิวจ์ เก็บส่วน ใส กรอง และ นำไปตรวจวิเคราะห์ปริมาณ วิตามิน บี 1 บี 3 และ บี 6 ด้วย C18 Reverse phase HPLC Column LiChroCART ($125 \times 4 \mathrm{~mm}, 5 \mathrm{um}$) ชะด้วยสารผสมระหว่างน้ำปรับพีเอช 3 -เมธานอล ($90 / 10$, ปริมาตรต่อปริมาตร) แบบ linear gradient อัตราไหล 1.0 มล./นาที

1.6.2 การวิเคราะห์ชนิดและปริมาณเกลือแร่

วิเคราะห์ปริมาณธาตุ $\mathrm{Ca}, \mathrm{Na}, \mathrm{K}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Se}, \mathrm{Zn}, \mathrm{Cr}, \mathrm{Mo}, \mathrm{Pb}$, และ Cd ในตัวอย่าง ข้าวกล้อง ข้าวกล้องงอก และผลิตภัณฑ์ ด้วยวิธี ICP-OES ตามวิธี AOAC Official Method 990.08 (modified AOAC 2005) โดยสกัดตัวอย่าง ที่บดละเอียดเป็นผงแล้ว 2 กรัม ใน $50 \% \mathrm{HNO}_{3}$ Reflux ที่ 95 องศาเซลเซียส 15 นาที ทิ้งให้เย็นแล้ว Reflux ซ้ำใน conc. $\mathrm{HNO}_{3} 30$ นาที สองรอบ แล้วนำไปทำปฎิกิริยากับ $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ เมื่อ ปฎิกิริยาสมบูรณ์ นำไป Reflux กับ conc. HCl 15 นาที ปรับปริมาตรและกรองด้วย Whatman เบอร์ 41 แล้วนำ ตัวอย่างไปวิเคราะห์ปริมาณแต่ละธาตุด้วย ICP-OES เทียบกับธาตุมาตรฐานที่ทราบความเข้มข้น คำนวณ ปริมาณธาตุของตัวอย่างที่ใช้ ในหน่วย มก./กก.

1.7 สารออกฤทธิ่จากข้าวกล้องงอกที่มีฤทธิ่ต้านการอักสบ

ตัวอย่างข้าวกล้องงอกที่มีปริมาณ GABA สูงสุดที่คัดเลือกได้จากข้อ 1.3.2 จะถูกนำศึกษาสารออก ฤทธิ์ที่มีฤทธิ์ต้านการอักเสบ คังนี้

1.7.1 การแยกสารออกฤทธิ์ทางชีวภาพ

นำตัวอย่างข้าวกล้องงอกที่คัดเลือกได้จากข้อ 1.3 .2 ซึ่งมีปริมาณ GABA สูงที่สุด 2 กิโลกรัม บดให้ละเอียด แล้วแช่สกัดด้วยตัวทำละลายเอธานอลต่อน้ำ (อัตราส่วน 1:1) เป็นเวลา 3 วัน จนครบ 3 ครั้ง ปริมาตรตัวทำละลายที่ใช้ในครั้งที่ $1-3$ เท่ากับ 3.5 ลิตร 2.0 ลิตร และ 1.5 ลิตร ตามลำดับ

จากนั้นนำไปกรองและระเหยตัวทำละลยยออกให้หมด สารสกัคที่ได้มรรวมกันและทำไห้แห้ง โดยวิธีการ freezed dry จากนั้นแบ่งสารสกัคที่ได้จากการ freezed dry ปริมาณ 20 กรัม เพื่อนำมาทำการแยก สารด้วยวิธี column chromatography โดยใช้ตัวทำละลายต่างๆ ดังตารางที่ 3.2 ตารางที่ 3.2 ชนิดตัวทำละลายที่ใช้ในการชะผ่าน Column chromatography

ลำดับ	ชนิดตัวทำละลาย	อัตราส่วน	ปริมาตรรวม	จำนวนครั้ง
1	Hexane	-	250	2
2	Hexane $:$ EtOAc	$1: 1$	250	2
3	EtOAc	-	250	2
4	EtOAc $: \mathrm{MeOH}$	$98: 2$	250	2
5	EtOAc: MeOH	$90: 10$	250	2
6	EtOAc: MeOH	$80: 20$	250	2
7	EtOAc: MeOH	$60: 40$	250	2
8	EtOAc $:$ MeOH: Water	$38: 60: 2$	250	2
9	EtOAc $:$ MeOH: Water	$36: 60: 4$	250	2
10	EtOAc $:$ MeOH: Water	$26: 70: 4$	250	2
11	EtOAc $:$ MeOH: Water	$24: 70: 6$	250	2

Fraction ที่ได้จากการชำระผ่าน column chromatography ถูกนำไปผ่านการแยกด้วย silica gel column chromatography เพื่อแยก fraction อีกครั้ง โดยตัวทำละลาย $\mathrm{EtOAc}, \mathrm{MeOH}$, Water, Formic acid ใน อัตราส่วนที่ต่างกัน เก็บ fraction ที่ไค้เพื่อใช้วิเคราะห์ต่อไป
1.7.2 การทคสอบฤทธิ์ต้านการอักเสบ (Asssay for NO inhibitory effect from RAW264.7
cells) ตามวิธีของTewtrakul และคณะ (2009)
เลี้ยงเซลล์ RAW264.7 cell line ในอาหาร RPMI medium (เสริมด้วย 0.1% sodium bicarbonate , 2 mM glutamine, penicillin G ($100 \mathrm{units} / \mathrm{ml}$), streptomycin ($100 \mu \mathrm{~g} / \mathrm{ml}$) และ $10 \% \mathrm{FCS}$) ใช้ trypsin-EDTA ในการเก็บเซลล์ และเจือจางด้วยอาหารเลี้ยงเชื้อ ทำการเพาะเซลล์ใน 96 -well plates โดยมี ปริมาณเซลล์ 1×10^{5} cells/well และตั้งทิ้งไว้ให้เซลล์ได้ยึคเกาะเป็นเวลา 1 ชั่วโมงที่อุณหภูมิ $37^{\circ} \mathrm{C}$ เลี้ยงใน บรรยากาศที่มี $5 \% \mathrm{CO}_{2}$ เปลี่ยนอาหารเลี้ยงเชื้อ โดยใช้อาหารที่มี LPS $100 \mu \mathrm{~g} / \mathrm{ml}$ พร้อมกับสารสกัคความ เข้มข้นต่างๆในช่วง $3-100 \mu \mathrm{~g} / \mathrm{ml}$ (3-100 $\mu \mathrm{M}$ สำหรับสารมาตรฐาน) เพาะเลี้ยงไว้ 48 ชั่วโมง (สารมาตรฐาน คือ indomethacin)

1.7.3 การวัดปริมาณ Nitric oxide (NO) ทำโดยวิเคราะห์ปริมาณโดยใช้ Griess reagent

 หลังจากเพาะเซลล์ไว้ 48 ชั่วโมง ปีเปต supernatant $100 \mu 1$ ลงใน 96 -well plate และเติม Griess reagent $100 \mu \mathrm{l}$ จากนั้นนำไปวัดค่าการดูดกลืนแสงที่ 570 นาโนเมตรคำนวณ \% Inhibition ได้ตาม สมการด้านล่าง และ IC_{50} values คำนวณโดยการ plot curve $(n=4)$:$$
\text { Inhibition (\%) }=\frac{A-B}{A-C} \times 10
$$

$A-C: \mathrm{NO}_{2}$ concentration $(\mu \mathrm{M})[A: \operatorname{LPS}(+)$, sample $(-) ; B: \operatorname{LPS}(+)$, sample $(+) ; C: \operatorname{LPS}(-)$, sample $(-)]$.

1.8 การทดสอบความเป็นพิษเฉียบพลันและเป็นพิษกึ่งเรื้อรังในสัตว์ทดลองของสารสกัดจากข้าว

 กล้องงอกตัวอย่างข้าวกล้องงอกที่มีปริมาณ GABA สูงสุคที่คัคเลือกได้จากข้อ 1.3 .2 จะถูกนำทคสอบความเป็น พิษทั้งแบบเฉียบพลันและกึ่งเรื้อรังในสัตว์ทคลอง คังนี้

1.8.1 การเตรียมสารสกัด

นำตัวอย่างข้าวกล้องงอกที่คัคเลือกได้จากข้อ 1.3 .2 ซึ่งมีปริมาณ GABA สูงที่สุค มาบดให้ ละเอียด แล้วแช่ในสารละลายผสมระหว่างเอธานอลกับน้ำ $(1: 1 \mathrm{v} / \mathrm{v})$ จนครบ 3 ครั้งๆ ละ 3 วัน นำเฉพาะส่วน ที่ละลายมารวมกัน จากนั้นจึงระเหยตัวทำละลายออกไป แล้วนำส่วนที่สกัดได้ไปทำให้แห้งด้วยวิธี freezedry เพื่อนำไปทดสอบต่อไป

1.8.2 การทดสอบความเป็นพิยเฉียบพลัน

การทคสอบความเป็นพิษเฉียบพลันเบื้องต้น (Bruce, 1985) เป็นการทคสอบความเป็นพิษ เบื้องต้นในหนูถีบจักร โดยการทดลองใช้หนูเพศผู้และเพศเมียอย่างละ 10 ตัว ป้อนสารสกัดข้าวกล้องงอก ขนาด 2 กรัม/กิโลกรัม ของน้ำหนักตัวหนู แล้วสังเกตคูอาการเป็นเวลา 7 วัน

1.8.3 การทคสอบความเป็นพิษกึ่งเรื้อรัง

1.8.3.1 การเตรียมสัตว์ทคลอง

ก่อนทำการทดลองประมาณ 1 สัปดาห์ นำหนูขาวสายพันธุ์ Wistar เพศผู้และเพศเมีย อายุ ประมาณ 5 สัปดาห์ น้ำหนักตัวประมาณ 300 และ 200 กรัม ตามลำดับ มาเลี้ยงแยกกันในกรงโลหะสเตนเลส ขนาด $25 \times 96 \times 15$ ซ.ม. บรรจุกรงละ 5 ตัว โดยเลี้ยงอยู่ภายในห้องของสถานสัตว์ทดลองภาคใต้ มหาวิทยาลัยสงขลานครินทร์ ซึ่งควบคุมอุณหภูมิประมาณ $22-24^{\circ} \mathrm{C}$ และได้รับแสงสว่างวันละประมาณ 12 ชั่วโมง (เวลา $6.00-18.00$ น.) หนูทุกตัวได้รับอาหารเม็คสำเร็จรูป (CP® Mice Feed) ของบริษัท เจริญโภค ภัณฑ์ จำกัด และน้ำกรอง อย่างไม่จำกัด (adibitum) ในแต่ละวัน ขั้นตอนการศึกษาในสัตว์ทดลองของ

โครงการวิจัยนี้ผ่านการพิจารณาและเห็นชอบจากคณะกรรมการจรรยาบรรณการใช้สัตว์ทคลอง มหาวิทยาลังสงขลานครินทรัร์ แล้ว(หนังสือรับรองเลทที่ 24/53)

1.8.3.2 การทดสอบในสัตว์ทดลอง

แบ่งหนูออกเป็น 4 กลุ่ม คือ control, LD, MD และ HD แต่ละกลุ่มประกอบด้วยหนูเพศผู้ 10 ตัว และเพศเมีย 10 ตัว ในเวลาประมาณ $10.00-12.00$ น. ของทุกๆวันป้อนหนูแต่ละตัวด้วยสารสกัดข้าว กล้องงอกซึ่งละลายในน้ำกลั่นตามปริมาณที่กำหนด ดังนี้ กลุ่ม control ได้รับน้ำกลั่นอย่างเดียว $(0 \mathrm{mg} / \mathrm{kg}$ $\mathrm{BW} /$ /day) กลุ่ม low dose (LD), middle dose (MD) และ high dose (HD) ได้รับสารสกัดเท่ากับ 75,150 และ 300 mg kg BW/day ตามลำคับ พร้อมกับสังเกตอาการทางคลินิก รวมทั้งความผิิปกติอื่น ๆ ติคต่อกันนาน 12 สัปดาห์

เมื่อเสร็จสิ้นการทดลอง งดให้อาหารหนูทุกตัวประมาณ 12 ชั่วโมงก่อนเก็บตัวอย่างเลือด โดยสูบจากหัวใจโคยตรง (heart puncture) ขณะสลบด้วยอีเซอร์ แล้วเตรียมเป็นพลาสมาสำหรับตรวจวัด ค่าพารามิตตร์ต่างๆ ทางชีวเคมี ต่อไป จากนั้น ม่าหนูทุกตัวโดยวิธีดึงคอ (cervical dislocation) ก่อนชำแหละ ศพเพื่อเก็บ ตับ ไต ม้าม และหัวใจ มาชั่งน้ำหนัก แล้วแช่ในน้ำยา 10% (v/v) formalin เพื่อตรวงวิเคราะห์ทาง พยาธิวิทยาเนื้อเยื่อต่อไป
1.8.3.3 การตรวจวัดระดับสารชีวเคมีต่างๆ ในพลาสมา

ใช้เครื่องตรวจวิเคราะห์ทางเคมีคลินิคอัตโนมัติของ Biosystems รุ่น A15 (BioSystems S.A., Barcelona, Spain)

1.8.3.4 การหาค่าทางโลหิตวิทยา

ใช้เครื่องตรวจนับค่าทางโลหิตวิทยาอัตโนมัติของ Nihon Kohden รุ่น Celltac E (MEK7222) (Nihon Kohden Corp., Tokyo, Japan)

1.9 การวิเคราะห์ข้อมูลทางสถิติ

วิเคราะห์ข้อมูลที่ได้ด้วยโปรแกรม SPSS 10.0 for windows โดยข้อมูลที่เกี่ยวกับการวิเคราะห์ องค์ประกอบทางเคมีและปริมาณของสารออกฤทธิ์ทางชีวภาพ (ข้อ 1.1-1.4) ใช้การวิเคราะห์ความแปรปรวน (Analysis of variance; ANOVA) และเปรียบเทียบความแตกต่างของค่าเฉลี่ยโดยใช้ Duncan's Multiple Range Test (DMRT) ที่ $p<0.5$

สำหรับการทดสอบความเป็นพิษกึ่งรรื้อรังของสารสกัดข้าวกล้องงอก (ข้อ 1.7.3) ข้อมูลทั้งหมดที่ได้ แสคงค่าในรูปของ Mean \pm S.E.M. และนำมาวิเคราะห์หาความ แตกต่างทางสถิติโดยใช้ one-way ANOVA (analysis of variance) ที่ระดับความเชื่อมั่น $95 \% ~(p<0.05)$ จากนั้นจึงทำการทดสอบด้วย LSD (least significant difference) test เพื่อเปรยยบเทียบความแตกต่างระหว่างกลุ่มทคลองกับกลุ่มควบคุม

ส่วนที่ 2: การพัฒนาผลิตภัณฑ์จากข้าวกล้องงอก

 ในกรพัพนาผลิตรัมตฑ์จกกข้าวกล้องงอก โดยมีรยยละเฉียคคเต่ะะขั้นคอนดังนี้

2.1 กรรสำวจความต้องกรรของู้บริโภคกี่มี่อิอผิิตรัมข์ข้าวกล้องงยก

 สอบถามประเภทของผลิกรัณท์ากกข้าวกล้องงอกที่ผู้บริโกคต้องการเพื่อใช้เป็นแนวทางในการพัมนา
 ดังภาคผนวก ช ซึ่งประกอบด้ววคำกามที่กี่ยขวกับพคติกรรมการบริโกคข้ววกล้องงอก ผลิคภัแท์ข้าวกล้อง งอกนละกุมลักบณะของผลิกรัณท์ที่ผู่บริโกคต้องการ รวมลึงข้อมูลชิงปประชากรศาสตร์ของงู้บริโกคใน พื้นที่ค่พๆในอำเภอหาดใหญ่ จังหวัดสงงลา

2.2 การพัตนาผลิตภัมฑำขววลล้องงคกสำเร็จรปป

ข้าวกล้องงอกสำเร็รูป คือ ผลิกกัณฑ์ข้าวกล้องงอกหุงสุกแล้วนำไปบรรุุในถูงรีทตร์ทเพาซ์

 อุ่นไห้รัอนได้โดยใช้ไมโครเวเมียีงง $1-2$ นาที

 ต่อุุนกาพของผลิตกัญท์ คังนี้

 หลังจากนั้นจึงนำข้ววกล้องงอกที่ตรียมมได้มาหุงให้สุกโดยแปรผันปริมามน้ำที่ให้หุงข้าวเป็น 3 ระคับ และ บรรจุในภาชนะบรรุด คังนี้

1. บรรจุในษุรีทตร์ทพพาซ์

หุงโดงใช้อัครสส่วนของข้าว : น้ำเท่ากับ $1: 0.5,1: 0.6$ และ $1: 0.7$ ตามลำคับ

2. บรรุุนกระะั้ง

หุงไช้ัตตราส่วนของข้าว : น้ำเท่ากับ 1:1.25, 1:1.50 และ $1: 1.75$ ตามจำดับ
 อัตราส่วนน้ำที่แตกต่างกันของตัวอย่างที่บรรุุกระข๋องและบรรุุดุงรียร์ทเพาซ์เน่องจากการใช้อัตราส่วน น้ำ $1: 0.7$ ในตัวอย่างบรรรุกระป๋องจะทำให้ข้าวมีลักษณะแเง็มาก (คล้าขข้วไม่สุก) จึงต้อบปรับปริมาณน้ำให้ สูงทื้น

ตรหุงะะใช้หม้อหุงข้วไฟฟ้า หลังจกกข้าวสุกแล้วนำข้าวมมบรรุุลงในกระข้องขนาด 307×113 น้ำหนักบรรจุ เท่ากับ 120 กรัม โดยบรรจุขมะร้อนและปีดฝากระปีองโดยใช้ครื่งงีีดฝากระปีอง หลังจาก นั้นนำไป่ม่าชื้อโดยใช้หม้อม่าเชื้อ โคยใใช้อุดหภูิิ $118^{\circ} \mathrm{C}$ และให้มีค่า $\mathrm{F}_{0}=3$ (ผลการหาค่า F_{0} ทดสอบจาก ศูนย์พัตนนาุุตสาหกรรมเกษตรเพื่อการส่งออก คมะฉุศสาหกรรมเกษตร มหาวิทยาลังสงขลานคริทร์ คัง แสคงในภาคผนวก ฉ) จะใช้วลามม่าเชื้อนาน 45 นาที สำนรับตัวอย่างที่บรรุุดุงรีทตร์ทเพาซ์ นำข้าวสุกมา

 มีค่า $F_{0}=3$ (ผลการหาค่า F_{0} ซึ่งทดสอบจากศูนย์พัพนนาดุตสากกรรมเกษตรเื่่อการ่ง่ออก คมะดุตสาหกรรม เกษตร มหาวิทยาััยสงขลนนริททร์ คังแสงงในภาคผนวก ฉ) จะใช้ววกาในการม่าชื้อนาน 15 นาที
 โดยใช้แบบทคสอบ 9 -point hedonic scale (คังแสคงรายละเอียดในข้อ 2.2 .2) เพ่อคัดเลืดกผลิครัมษ์ที่มี คะแนนการยอมรับทงงประสาทัสมตัสสูงสุด และนำไปขขาขขนาดคกรผลิค วิคราะห์องค์ประกอบทางเคมี
 ข้อ 2.3 และ 2.4 ต่อไป

2.2 .2 การตรวจสอบุุณภาพผลิตรัมต์

2.2.2.1 ความชื้น โดยวิิธี AOAC (2000)

2.2.2.2 คุณกาพทางกายภาพ

1. วัคค่าสี โดยวัคเป็นค่า L^{*}, a^{*} และ b^{*}
2. Elongation ratio (ER) และ Elongation index (EI) ตามวิธีของ Julino และ Perez (1984) โดงคัดเลือกเมล็คค้าวกล้องงอกที่ไม่ผ่านและผ่นนการหูงแล้ว ซึ่เป็นเมล์คที่สมมูรณ์ ไม่เตกทัก จำนวน 10
 คำนวม ER และ El ได้ดังนี้
$\mathrm{ER}=$ ความยาวของมมล็คข้าวกล้องอกกที่หงแล้ว
ความยาวของเมโ์คข้าวกล้องงอกก่อนหูง
อัตรส่วนของความยาวต่อความกว้างของแมล์คน้าวกล้องงยกก่อนหุง
3. พฤติกรรมการเปลี่ยนแปลงความหนืด (Pasting properties) ทคสอบโดยใช้เครื่อง Rapid Visco Analyzer (RVA) ตามวิธีของ Zhou และคณะ (2003) โคยชั่งตัวอย่างแป้งจำนวน 3 กรัม เติมน้ำกลั่น ปริมาตร 25 มล. และผสมให้เข้ากันโดยการกวนที่ความเร็วรอบ 960 rpm นาน 10 วินาที หลังจากนั้นปรับ ความเร็วรอบลคลงเป็น 160 rpm ให้ความร้อนกับตัวอย่างจนได้อุณหภูมิ $50^{\circ} \mathrm{C}$ นาน 1 นาทีเและค่อยๆปรับ ให้อุณหภูมิเพิ่มสูงขึ้นเป็น $95^{\circ} \mathrm{C}$ (อัตราการเพิ่มของอุณหภูมิ เท่ากับ $12^{\circ} \mathrm{C} / น า ท ี$) และให้ตัวอย่างมีอุณหภูมิ คงไว้ที่ $95^{\circ} \mathrm{C}$ นาน 2.5 นาที หลังจากนั้นให้ค่อยๆปรับอุณหภูมิให้ลคลงมาที่ $50^{\circ} \mathrm{C}$ (อัตราการลคลงของ อุณหภูมิ เท่ากับ $12^{\circ} \mathrm{C} /$ นาที) และให้ตัวอย่างคงอยู่ที่อุณหภูมิ $50^{\circ} \mathrm{C}$ นาน 5 นาที เพื่อให้เครื่องวัดพฤติกรรม การเปลี่ยนแปลงความหนืด ซึ่งจากกราฟที่แสดงความสัมพันธ์ระหว่างเวลาและค่าความหนืค ที่มีหน่วยเป็น RVU สามารถนำมาใช้ในการคำนวณหาค่าความหนืดสูงสุด (peak viscosity, PV) อุณหภูมิเริมตันของความ หนืด (pasting temperature, Ptenp) ค่าความหนืคของเหลวข้นขณะร้อน (trough viscosity) และค่าเซตแบค (setback viscosity, SBV) ได้
4. ความเข็ง (hardness) โดยใช้เครื่อง Texture analyzer ตามวิธีของ Bourne (1982)
5. ระดับสภาพความเป็นผลึก วัคโดยใช้เครื่อง X -ray diffractometer ตามวิธีของ Kim และ คณะ (2001)
6. ลักษณะและรูปร่างโมเลกุลแป้ง ด้วยเครื่อง scanning electron micrographs (SEM) โดย ทดสอบตามวิธีของ Singh และคณะ (2006)

2.2.2.3 การทดสอบการยอมรับทางประสาทสัมสัสของผลิตภัณฑ์

การทคสอบทางประสาทสัมผัสของผลิตภัณฑ์ ใช้แบบทดสอบ 9 -point hedonic scale โดยมี ระดับคะแนนตั้งแต่ $1-9$ คะแนน ($1=$ ไม่ชอบมากที่สุด, $5=$ บอกไม่ได้ว่าชอบหรือไม่ชอบ และ $9=$ ชอบมาก ที่สุด) แสดงคังภาคผนวก ฌ เพื่อสอบถามความชอบของผู้ทคสอบที่มีต่อผลิตภัณฑ์ในด้านต่างๆ ได้แก่ ลักษณะปรากฏ (ความแตกของเมล็คข้าว/ความร่วน/การเกาะตัวกันของเมล็คข้าว) สี กลิ่น รสชาติ ลักษณะ เนื้อสัมผัส (ความเหนียว/ความแช็ง/การเกาะกลุ่มกันของเมล็ดข้าว) และความชอบโคยรวม โดยใช้บุคลากร และนักศึกษาจากคณะอุตสาหกรรมเกษตร มหาวิทยาลัยสงขลานครินทร์จำนวน 30 คน เป็นผู้ทคสอบ โดย นำเสนอตัวอย่างให้แก่ผู้ทดสอบแบบสุ่มและนำเสนอครั้งละ 1 ตัวอย่างจนครบทุกตัวอย่าง อุณหภูมิของ ตัวอย่างขณะนำเสนออยู่ในช่วง $50-60^{\circ} \mathrm{C}$ และหลังจากผู้ทคสอบชิมผลิตภัณฑ์แล้วก็จะให้คะแนนตามระดับ ความชอบที่มีต่อผลิตภัณฑ์ตามปัจจัยต่างๆที่ทดสอบ

ตัวอย่างที่นำมาทดสอบจะถูกกำหนดเป็นรหัสเลข 3 ตัวจากตารางตัวเลขสุ่ม และนำเสนอ ผลิตภัณฑ์ให้แก่ผู้ทคสอบทีละตัวอย่างโคยสุ่มลำดับการนำเสนอแบบ Balance order and carry-over effect Design (Macfie et al., 1989) และผู้ทคสอบจะทำการบ้วนปากด้วยน้ำเปล่าก่อนทำการทคสอบตัวอย่างทุก ครั้ง

ผลิตกับท์ที่มีคคะแนนการยอมรับทางประสาทสัมผัสสูงสุด ที่คัคเลือกได้จากข้อ 2.2 จะดูกำมา วิเุราะทังงค่ประกอบทางเคมีเละสารออกฤทธิ์ทงงชีวภาพ ตังนี้
2.3.1 องค์ปประกอบทางเคมี ได้แก่ ความชื้น โปรตีน पขมัน เถ้า และคาร์โบไฮเดรต ตามวิธี AOAC (2000)
2.3.2 ชนิคเละงริมามของวิดพินินแสะกกืือแร่ ตามวิธีที่เสคงในข้อ 1.6
2.3.3 ปริมาม GABA ตามวิธีของ Cohen and Michaud (1993)
2.3 .4 ปริมาณฟีนอลิกทั้งหมด (Total phenolic) ตาวิิธีที่แสคงในข้อ 1.4 .2
2.3 .5 ทคสอบกิกิกรรมกกรด้านออกซิเดันนโคยวิธ DPPH radical scavenging activity, ABTS และ ferric reducing antioxidant power (FRAP) assay ตามวิธีที่เสดงในข้อ 1.4.8

2.3 .6 ฤทธิ้ต้านกรรอักสสบ

นำผลิตวันต์ข้าวกล้องงอก 4 กระปีอง (น้ำหนัก 467.71 กรัม) สกัดด้ววตัวทำละลายผสม ระหว่าง Ethanol: water เท่ากับ1: 1 ำนวน 700 มิลลิลิตร โคยแช่ไว้นาน 24 ชั่วโมง หลังจากนั้นนำไปกรอง และระเหยตัวทำละลาขออก และนำส่วนกากที่เหลือมาสกัศศ้ำอีก 2 ครั้ง จากนั้นนำสารสกัคที่ได้มารวมกัน นำไปทำให้แง้งโดยการ freze dry และประเมินฤทริ์ต้านการอักเสบตามวิธีที่เสคงในข้อ 1.7.2-1.7.3
2.3.7 กักยภาพการัับยั้งกิกกกรรมอนไขม่อะไมเลส ตามวิทีที่แสคงในข้อ 1.5

2.4 กรททดชอบกรยยอมรับและความตั้งใใชื้อของผู้บริโภค

การทคสอบการยอมรับผลิดกัณท์กกบตู้บริโภค มีวัดดุประสงค์เพื่อสัารวจความคิคเห็นของ
 ตู้สงยายุ (อายู 60 ปีขึ้นไป) จำนวนทั้งมมด 111 คน ที่มรร่วมงนนมหกรรมไไ้เก๊กััมพันธ์ทั่วประเทศ ที่บริววณ สนามกีหาตินสูกานนท์ จังหวัดสงขลา ระหว่างวันที่ $18-19$ มีนคคม 2554 โดยเป็นการร่วมตอบแบบสอบกาม ค้วยความสบัครใจ ซึ่งต้ตอบแบบสอบกมมได้กรอกใบยินยอมการเป็นอาสาสมัคร (ดังแสคงงนกภาคผนวก ญ1) และได้รับทราบวัดดุประสงก์เดะเนื้อหาของแบบสอบถมก่อนเริ่มทำการสอบถาม

ในส่วนของการทคสอบทางประสาทสัมัสัของผลิตัมัมต์ ตัวอย่างที่นำสนอให้กับผู้กคสอบจะ ผ่านการอุ่นให้ร้อนโดยใช้มมโครววฟที่ระดับกำลังไฟ 720 W นาน 1.5 นาที และนำเสนอให้กับผู้ทคสอบ ในขณะร้อน (อุณหภูิิของตัวอย่างอยู่ในช่วง $50-60^{\circ} \mathrm{C}$) เพื่อสอบถามคะแนนตามระดับความชอบที่มี่อ ผลิคคัมท์ด้านลักษณะปรากฏ กี กลิ่น รสชาติ เนื้อสัมััส และควพหชบโดยรวม

2.5 การวิเคราะห์ข้อมูลทางสถิติ

วิเคราะห์ข้อมูลที่ได้ด้วยโปรแกรม SPSS 10.0 for windows โดยข้อมูลของแบบสอบถามจากข้อ 2.1 และ 2.4 ใช้การวิเคราะห์ความถี่ และค่าไคสแควร์ สำหรับข้อมูลที่ได้จากการตรวจสอบคุณภาพของ ผลิตภัณฑ์ (ข้อ 2.2.2) และการวิเคราะห์องค์ประกอบทางเคมีและการทดสอบฤทธิ์ทางชีวภาพ (ข้อ 2.3) ใช้ การวิเคราะห์ความแปรปรวน (Analysis of variance; ANOVA) และเปรียบเทียบความแตกต่างของค่าเฉลี่ย โดยใช้ Duncan's Multiple Range Test (DMRT) ที่ $p<0.5$

ผลและวิจารณ์ผลการทดลอง

ส่วนที่ 1: การศึกษาสภาวะที่เหมาะสมในการเตรียมข้าวกล้องงอก คุณค่าทาง โภชนาการและสารออกฤทธิ์ทางชีวภาพของข้าวกล้องงอก

1.1 องค์ประกอบทางเคมีของข้าวกล้อง

องค์ประกอบทางเคมีของข้าวกล้องพันธุ่ช่อลุง เล็บนกปัตตานี เหนียวคำเปลือกขาว และเหนียวหลัน ตัน แสคงคังตารางที่ 4.1 จะเห็นว่าข้าวแต่ละพันธุ์มีองค์ประกอบทางเคมีที่แตกต่างกัน โคยองค์ประกอบหลัก ของข้าวทั้ง 4 พันธุ์ คือ คาร์โบไฮเดรต มีค่าตั้งแต่ 84.43-88.43\% โดยข้าวกล้องพันธุ์เล็บนกปัตตานีมี คาร์โบไฮเครตสูงที่สุด (88.43%) สำหรับปริมาณโปรตีน ไขมัน เถ้า และใยอาหารทั้งหมคของข้าวกล้องทั้ง 4 พันธุ์ พบว่ามีค่า เท่ากับ $8.98-11.61 \%, 2.05-3.47 \%, 0.48-1.44 \%$ และ $1.25-5.90 \%$ ตามลำดับ โดยข้าวกล้อง พันธุ์ที่มีโปรตีนและไขมันมากที่สุด คือ เหนียวคำเปลือกขาว ในขณะที่ข้าวกล้องพันธุ์เหนียวหลันตันและช่อ ลุงเป็นพันธุ์ที่มีปริมาณเถ้าและใยอาหารทั้งหมดสูงที่สุด โดยมีใยอาหารไม่ละลายน้ำเป็นองค์ประกอบหลัก ของข้าวกล้องทั้ง 4 สายพันธุ์

ตารางที่ 4.1 องค์ประกอบทางเคมีของข้าวกล้องพันธุต่างๆ

องค์ประกอบ* (\%, นน.แห้ง)		ข้าวเจ้า		ข้าวเหนียว	
คาร์โบไฮเครต	ช่อลุง		เล็บนกปัตตานี	เหนียวคำเปลือกขาว	

*ค่าเฉลี่ย $\pm \mathrm{SD}$ ของการวิเคราะห์ 3 ซ้ำ
a...." $=$ ค่าเฉลี่ยในแนวนอนที่ตามด้วยอักษรที่แตกต่างกัน มีความแตกต่างกันทางสถิติ ($\mathrm{p}<0.05$)

นอกากานี้จกกตารางที่ 4.1 จะเห็น่าข้าวาแต่ละสายพันุุ์มีปริมามอะไมโลสที่แตกต่างกันอย่างมี

 สัมพันธุทางบวกกับการขยายปริมตตรและการคุดน้ำในระหว่างการหุดด้ม และมีความสัมพันธ์ทางสบกับ ควมมุ่มและความเหนียวของข้าวสุก โดยพบว่ามื่องริมามอะมิโลสเพิ่มยึ้น ทำให้ดัชนีกรรละลายน้ำและ ควมมหนืคเพิ่มขึ้น ในขณะที่กำกังการพองตัวคคลง ข้าวี่มี่ปิริมาณอะไมโลสสูงเมื่อหุงสุกจะมีกักษณะร่วน

 กะม้าขมาศ, 2541; Juliano e tal, 1974)

โดยปกติข้าวเจ้จะมีปริมามอะไมโลสสูงก่าข้าวเหนียว และจากตารางที่ 4.1 จะเห็นว่าปริมาณ จะไมโลสของข้ววพันุุ์ชอลุง เล็บนกปัตตานี เหนียวคำปลื่อกขาว และเหนียวหลันตัน มีค่าท่ากับ 25.58%, $29.08 \%, 8.24 \%$ และ 3.41% ตามลำดับ ธำเริง (2550) ราขงานว่าข้าวช่อลุงและเหนียวหลันดันมีมริมาม จะไมโลส เท่ากับ 23.06% และ 5.66% ตามลำคับ และChansuwan (2005) รายานว่าข้ววเ็์บนกปับตตนีที่มี แหล่งเหาะปดูกาากจังหวัดััทลุงมีปริมาณอะไมโลส เท่ากับ 26.76%

Juliano และคณะ (1992) ได้จัคแบ่งกลุ่มของข้าวตามปริมามมปริมาณอะไมโลส เป็น 5 กลุ่ม คังนี้ ปริมามอะไมโลส เท่ากับ $0-5 \%$ จัคเป็นง้าเเหนียว, $5-12 \%$ จัคเป็นกลุ่มอะไมโลสต่ำมาก, $12-20 \%$ จัคเป็น กลุ่บขะไมโลสตั่า, $20-25 \%$ ขัคเป็นกลุ่มขะะไมโลสปานกลาง และ $25-33 \%$ จัดเป็นอะไมโลสสงง ดังนั้นขากผล กรทดดลองสามารถสรูได้ว้าข้าวหนหยวค่าบปลื๋กกขาวและหนียวหลันตันจัดอยู่ในกลุ่มข้าวเหนียว ในขมะที่ ข้าาช่อลุงจัคเ็นน้าวที่มื่อะไมโลสปานกลาง และข้าวล็นนกปัตตานีจัดเป็นข้วที่มีอะไมโลสสูง คังแสคงค่า ในตรรงที่ 4.1
1.2 การดดดศึมห้ำของงมด์คข้าวกล้องระหว่งการแช่ (Hydration characteristic of brown rice during soaking)

การเปลี่ยนแปลลงขงงปริมานความหี้นของข้าวกล้องทั้ง 4 สาชพันธุ์ ในระหว่างการเช่ในน้ำกั่่นที่

 ภายในมมีคคมีค่าคงที่หรื้อมีการเปลี่ยนแปลลงน้อยมาก (ฐูปที่ 4.1) เมื่อแช่เมล์คข้าวกล้องพันธุ์ช่อลุง เล็ทนก
 ความชื้น เท่ากับ $37.34 \%, 37.96 \%, 44.78 \%$ และ 40.19% ตามลำดับ ปริมาณอะไมโลสและอะไมโลเพคตินที่
 เหนียมมีอะไมโลเพคตินมากกว่าอะไมโลส อะไมโลพคตินธปนโพถีเมอร์เชิงกิ่ง ทำให้สามารถจับกับน้ำได้ ดีกว่าะไมโลสที่เึนนโพสีเมอร์เชิงส้น (กล้านรงค์, 2543) คังนั้นจึ่งทำให้ความชื้นภายในมล็คคของง้าวกล้อง ที่เั่นข้ววหนียววข้าวหนีขวคำเปลือกขาวเละเหนียวหลันตัน) มีค่าสูงกว่าข้าวกล้องที่เ็นข้าวเจ้า (รูปที่ 4.1) ซึ่งสอดคล้องกับการศึกษาที่พบว่าความชื้นกายในเมส็คข้าวเหนียวมีค่าสูงกว่าข้าวเจ้าหลังการแช่ (Benjamasuttkkul and Naivikul, 2007; Jiraporn, 2010)

ปริมามความชื้นภายในเมล็คหลังการแช่มีความสำคัญในการช่วยกระตุ้นให้เอนไซม์ที่อยู่ภายใน เมล็ดทำงาน เพื่อทำให้เกิดกระบวนการงอกขึ้น (Rimsten, 2003) และความชื้นภายในเมล็คที่เหมาะสม สำหรับการงอกของข้าวบาร์เลย์มีค่าเท่ากับ $39-44 \%$ (Haraldsson et al., 2004) โดยปกติข้าวกล้องงอกมี ความชื้นอยู่ประมาณ $30-35 \%$ (Komatsuzaki et al., 2007) จากการศึกษาของ Benjamassuttikul และ Naiviku1 (2007) พบว่าระยะเวลาที่เหมาะสมสำหรับการแช่ข้าวขาวดอกมะลิ 105 และข้าว กข 6 เท่ากับ 5 ชั่วโมง ดังนั้น จากรูปที่ 4.1 สามารถสรุปได้ว่าระยะเวลาที่เหมาะสมสำหรับการแช่ข้าวกล้องสายพันธุ์ต่างๆที่ใช้ในการวิจัย ครั้งนี้ คือ 5 ชั่วโมง เนื่องจากเมื่อผ่านชั่วโมงที่ 5 ไปแล้ว ปริมาณความชื้นในตัวอย่างข้าวกล้องพันธุ์ต่างๆมี การเปลี่ยนแปลงน้อยมาก

รูปที่ 4.1 การเปลี่ยนแปลงของปริมาณความชื้นของข้าวกล้องทั้ง 4 สายพันธุ์ ระหว่างการแช่ในน้ำกลั่นที่ อุณหภูมิห้อง นาน 24 ชั่วโมง

การเปลี่ยนแปไลงของปริมาณ GABA ของบ้าวกล้องงอกพันรุด่างๆๆระหว่างการแช่ในน้ำกลั่นที่ อุณหภูมิน้ขง แสคงงังตารงที่ $\mathrm{V}-2$ ในภาคผนวก ข และรูปที่ 4.2 ปริมาม GABA เริ่มต้นของข้าวกล้องแเต่ละ สขพันฐุ ได้แก่ ช่อลุง เส็บนกปัตตานี เหนียวคำแลือกกขาว และเหนีขวหลันตัน มีค่าเท่ากับ $8.72,5.62,7.66$ และ3.61 มิลลิกรัม/100 กับ (นน.แห้ง) ตามกำดับ และจากรูปจะแห็นว่าปริมาม GABA มีค่าพิ่มฐูงขึ้นมื่อ ระะะเวลาในการแช่เพิ่มขึ้น โคยที่เวลา 24 ชั่วโมงหลังการเช่พบว่าปริมาน GABA ในข้าวกล้องงอกแต่ละ
 และ 2.8 เท่า ตามลำคับ การเพิ่มยื้นของ GABA เป็นผลเนื่องจากในระหว่างกระบวนการงอก เอนไซมม่างงๆ

 ให้งยกโดยการแช่น้ำ (Komatsuzaki et al., 2005) และเมื่อเพิ่มระยะเวลากามแช่ห้น้นนขึ้น ทำให้ GABA มี ปริมามเพิ่มมากขึ้น (Komatuzaki et al., 2007) โคยปริมาณ GABA ของข้าวพันต์ค่างๆ ได้เก็ พันโุ์ข้าวคอก
 รวดเร็รารระมา $0.5-2.0$ เท่า หลังการแช่น้ำ 2 ชั่วโมง และการเพิ่มเวลทที่แช่ให้นานชื้น พบว่า GABA ก็ัังคง
 สอคคล้องกับผลการวิอยครั้งนี้

รูปที่ 4.2 การเปลี่ยนแปลลงของปริมาม GABA ของข้วกกล้องทั้ง 4 สายพันธุ์ระหว่างการแช่ในน้ำ กลั่นที่อุดหภูิิ้้อง นาน 24 ชั่วโมง

1.3 การศึกษาปัจจัยที่มีผลต่อปริมาณ GABA โดยใช้วิธีการทำให้งอกที่แตกต่างกัน

หลังจากเตรียมข้าวกล้องทั้ง 4 สายพันโุ์ ได้แก่ พันนุ์ช่อลุง เล็กนกปัตตานี เหนียวคำเปลือกขาว เหนียวหลันตัน ด้วยวิธีต่างๆ (เพาะให้งอกโดยการแช่ในสารละลาย และการเพาะให้งอกในภาชนะเปิดและ จิด) เพื่อให้ในการศึกษาปัจจัยต่างๆที่มีผลต่อปริมาณ GABA ได้ผลคังนี้

1.3 .1 การเพาะให้งอกด้วยการแช่ในสารละลาย

หลังจากนำตัวอย่างข้าวกล้องทั้ง 4 สายพันโุ์มาทำให้งอกโดยการแช่ในสารละลายเพื่อหา สภาวะการแช่ที่เหมาะสมที่จะให้ GABA ในปริมาณที่สูงที่สุด ได้ผลการทดลองคังนี้

1.3.1.1 ผล pH ของสารละลายที่ใช้ระหว่างการแช่ข้าวกล้อง

หลังจากนำข้าวกล้องทั้ง 4 สายพันฐุ์มาแช่ในสารละลายที่ pH ต่างๆ ไค้แก่ Clark and Lubs solution (pH 2.0), Glycine- HCl buffer solution (pH 2.5) และ Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ($\mathrm{pH} 3.0,3.5,4.0$, $4.5,5.0,5.5$ และ 6.0) แช่ในอัตราส่วนข้าวกล้องต่อสารละลาย เท่ากับ $1: 2$ ที่อุณหภูมิห้อง $\left(30^{\circ} \mathrm{C}\right)$ นาน 24 ชั่วโมง หลังจากครบเวลาที่กำหนดนำตัวอย่างข้าวกล้องงอกที่เตรียมได้มาวิเคราะห์ GABA ได้ผลแสดงดัง ตารางที่ 4.2

ตารางที่ 4.2 ผล pH ของสารละลายที่ใช้ระหว่างการแช่ข้าวกล้องพันธุ์ต่างๆต่อปริมาณ GABA

pH	สารละลาย/บัฟเฟอร์	ปริมาณ GABA* (มิลลิกรัม/ 100 กรัมตัวอย่าง, นน.แห้ง)			
		ข้าวเจ้า		ข้าวเหนียว	
		ช่อลุง	เล็บนกปัตตานี	เหนียวดำ เปลือกขาว	เหนียวหลันตัน
2	Clark and Lubs solution	$21.16 \pm 1.40^{\text {d }}$	$14.85 \pm 0.58^{\circ}$	$11.68 \pm 3.77^{\text {a }}$	$15.73 \pm 0.38^{\text {c }}$
2.5	Glycine- HCl buffer solution	$21.87 \pm 0.85{ }^{\text {d }}$	$19.49 \pm 0.60^{\text {d }}$	$18.83 \pm 0.91^{\text {c }}$	$7.02 \pm 0.29{ }^{\text {a }}$
3.0	Citric acid - $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer	$\mathbf{3 2 . 7 2} \pm 0.29^{\text {8 }}$	$39.86 \pm 0.24^{\text {i }}$	$33.32 \pm 0.77^{\text {h }}$	$38.36 \pm 1.06{ }^{\text {f }}$
3.5	Citric acid - $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer	$30.69 \pm 0.61{ }^{\text {f }}$	$36.09 \pm 1.07^{\text {h }}$	$29.42 \pm 0.77^{\text {g }}$	$23.65 \pm 0.94{ }^{\text {e }}$
4.0	Citric acid - $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer	$29.69 \pm 0.43^{\text {f }}$	$29.96 \pm 1.00^{\mathrm{g}}$	$24.46 \pm 0.21^{\text {e }}$	$22.70 \pm 1.70^{\text {e }}$
4.5	Citric acid - $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer	$24.58 \pm 0.74{ }^{\text {e }}$	$27.06 \pm 0.37^{\text {f }}$	$26.93 \pm 0.12^{\text {f }}$	$6.63 \pm 0.38^{\text {a }}$
5.0	Citric acid - $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer	$19.63 \pm 0.92^{\text {c }}$	$20.77 \pm 0.67^{\text {e }}$	$21.62 \pm 0.45{ }^{\text {d }}$	$12.16 \pm 0.67^{\text {b }}$
5.5	Citric acid - $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer	$12.41 \pm 1.02^{\text {b }}$	$12.79 \pm 0.63^{\text {b }}$	$18.51 \pm 0.01^{\text {b }}$	$17.39 \pm 0.96{ }^{\text {d }}$
6.0	Citric acid - $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer	$9.88 \pm 0.01^{\text {a }}$	$8.61 \pm 0.31{ }^{\text {a }}$	$16.22 \pm 0.17^{\text {b }}$	$10.76 \pm 0.44{ }^{\text {b }}$

*ค่าเฉลี่ย $\pm \mathrm{SD}$ ของการวิเคราะห์ 3 ซ้ำ
2.b... $=$ ค่นฉลี่ยในแนวตั้งที่ตามด้วยอักษรที่แตกต่างกัน มีความแตกต่างกันทางสถิติ ($\mathrm{p}<0.05$)

จากผลการวิเคราะห์ปริมาณ GABA (ตารางที่ 4.2) พบว่าการแช่ข้าวกล้องในสารละลายที่มี pH ต่างๆกันทำให้ปริมาณ GABA ของข้าวกล้องงอกทั้ง 4 พันธุธมีค่าแตกต่างกัน โคยพบว่า GABA ของข้าว ทั้ง 4 สายพันธุ์มีค่าเพิ่มสูงขึ้นเมื่อ pH ของสารละลายมีค่าลคต่ำลง $(\mathrm{p}<0.05)$ แต่จะมากขึ้นจน pH มีค่าเท่ากับ 3.5 และหลังจากนั้นปริมาณ GABA ของข้าวทั้ง 4 สายพันธุ์มีค่าลคลง $(p<0.05)$ และมีค่าต่ำที่สุคเมื่อ สารละลายมี pH เท่ากับ 6.0 ทั้งนี้เนื่องจาก GABA เป็นสารที่เกิดขึ้นจากกระบวนการ decarboxylation ของ กรคกลูตามิก (glutamic acid) โดยอาศัยเอนไซม์ glutamate decarboxylase (GAD) ซึ่ง pH ที่เหมาะสมที่ เอนไซม์คังกล่าวทำงานได้ดีคือ ที่ค่า pH ประมาณ 5.5 (Berry et al., 1999) แต่จากการศึกษาของ Alan และ คณะ (1997) พบว่าการเพิ่มขึ้นของ GABA ขึ้นอยุ่กับการเพิ่มของ H^{+}และ Ca^{+}เพราะในภาวะที่เป็นกรด H^{+} สามารถกระตุ้นการทำงานของเอนไซม์ GAD ทำให้มีการเปลี่ยน glutamic acid ไปเป็น GABA ได้มากขึ้น จากเหตุผลดังกล่าวจึงทำให้ข้าวกล้องงอกที่แช่ในสารละลายที่มี pH ต่ำหรือมีความเป็นกรดสูงมีปริมาณ GABA สูงกว่าข้าวกล้องงอกที่แช่ในสารละลายที่มี pH สูงหรือมีความเป็นกรดต่ำ (ตารางที่ 4.2)

นอกจากนี้จากตารางที่ 4.2 จะเห็นว่าข้าวกล้องที่ผ่านการแช่ในสารละลายที่มี pH 3 มี ปริมาณ GABA สูงกว่าข้าวกล้องที่แช่ในสารละลายอื่นๆในทุกๆสายพันธุ์ ($\mathrm{p}<0.05$) โดยข้าวกล้องงอกพันธุ์ ช่อลุง เล็บนกปัตตานี เหนียวคำเปลือกขาว และเหนียวหลันตัน มีปริมาณ GABA เท่ากับ $32.72,39.86,33.32$ และ 38.36 มิลลิกรัม/ 100 กรัมตัวอย่าง (นน.แห้ง) ตามลำดับ ซึ่งปริมาณของ GABA คังกล่าวเป็นปริมาณที่สูง ที่สุดของการเพาะข้าวด้วยการแช่ในสารละลายที่ pH ต่างๆ ผลการทคลองที่ได้สอดคล้องกับการศึกษาของ Charoenthaikij และคณะ (2009) ที่พบว่าการใช้ citrate buffer ที่มี $\mathrm{pH}=3$ แช่ข้าวกล้องพันธุ์ขาวดอกมะลิ105 นาน 48 ชั่วโมงและแช่พันธุ์ กข 6 นาน 24 ชั่วโมง จะทำให้ข้าวกล้องงอกที่ได้มีปริมาณ GABA สูงที่สุด (67 และ 30.69 มิลลิกรัมต่อ 100 กรัม ตามลำดับ) คังนั้นจึงเลือกสารละลายที่มี pH เท่ากับ 3 เพื่อนำมาใช้ใน การศึกษาต่อไป

1.3.1.2 ผลของอุณหภูมิระหว่างการแช่ข้าวกล้อง

นำข้าวกล้องงอกทั้ง 4 สายพันธุ์ มาทำให้งอกโดยแช่ในสารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่มี pH 3 จากผลข้อ 1.3.1. โดยใช้อัตราส่วนข้าวกล้องต่อสารละลาย เท่ากับ $1: 2$ เป็นเวลา 24 ชั่วโมง ที่ อุณหภูมิ 30,40 และ $50^{\circ} \mathrm{C}$ หลังจากครบตามเวลาและนำตัวอย่างข้าวกล้องงอกที่เตรียมได้มาวิเคราะห์ GABA ได้ผลแสคงดังตารางที่ 4.3

ตารางที่ 4.3 ผลของอุณหภูมิ ในระหว่างการแช่ข้าวกล้องพันต์ต่างๆ ต่อปริมาณ GABA

อุณหภูมิ (${ }^{\circ} \mathrm{C}$)	ปริมาณ GABA^{*} (มิลลิกรัม/ 100 กรัมตัวอย่าง, นน.แห้ง)			
	ข้าวเจ้า		ข้าวเหนียว	
	ช่อลุง	เล็บนกปัตตานี	เหนียวดำ เปลือกขาว	เหนียวหลันตัน
30	$27.13 \pm 0.10^{\text {b }}$	$17.59 \pm 0.68^{\text {b }}$	$24.86 \pm 0.22^{\text {b }}$	$43.41 \pm 1.26^{\text {b }}$
40	$37.16 \pm 0.05^{\text {c }}$	$27.78 \pm 0.09^{\text {c }}$	$27.55 \pm 0.48{ }^{\text {c }}$	$50.49 \pm 1.96{ }^{\text {c }}$
50	$7.68 \pm 0.37^{\text {a }}$	$9.07 \pm 0.07^{\text {a }}$	$13.55 \pm 0.15^{\text {a }}$	$26.46 \pm 1.17^{\text {a }}$

*ค่าเฉลี่ย \pm SD ของการวิเคราะห์ 3 ซ้ำ
2.,... $=$ ค่าเฉลี่ยในแนวตั้งที่ตามด้วยอักษรที่แตกต่างกัน มีความแตกต่างกันทางสถิติ ($\mathrm{p}<0.05$)

จากผลการวิเคราะห์ปริมาณ GABA (ตารางที่ 4.3) พบว่าเมื่อแช่ข้าวกล้องทั้ง 4 พันธุ์ใน สารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer $(\mathrm{pH}=3)$ ที่มีอุณหภูมิเตกต่างกัน $\left(30,40\right.$ และ $\left.50^{\circ} \mathrm{C}\right)$ ทำให้ตัวอย่าง มีปริมาณ GABA แตกต่างกัน $(\mathrm{p}<0.05)$ และการแช่ที่อุณหภูมิ $40^{\circ} \mathrm{C}$ ทำให้ข้าวกล้องทุกๆพันธุ์มีปริมาณ GABA สูงสุค $(\mathrm{p}<0.05)$ โดยข้าวกล้องงอกพันธุ์ช่อลุง เล็บนกปัตตานี เหนียวดำเปลือกขาว และเหนียวแคง หลันตัน มีปริมาณ GABA เท่ากับ $37.16,27.78,27.55$ และ 50.49 มิลลิกรัม/ 100 กรัมตัวอย่าง (นน.แห้ง) ตามลำดับ ดังแสคงในตารางที่ 4.3 ซึ่งสอคคล้องกับผลการทดลองของจารุรัตน์ และคณะ (2550) ที่รายงานว่า การแช่ข้าวกล้องพันธุ์หอมมะลิ 105 ที่อุณหภูมิ $40^{\circ} \mathrm{C}$ นาน 8 ชั่วโมง ทำให้มี GABA สูงที่สุดเมื่อเปรียบเทียบ กับอุณหภูมิอื่นๆ (31.18 มิลลิกรัมต่อ 100 กรัมตัวอย่าง) นอกจากนี้มีหลายๆการศึกษาที่รายงานว่าอุณหภูมิที่ เหมาะสมสำหรับใช้ในการการแช่ข้าว คือ $40^{\circ} \mathrm{C}$ (Saikura et al., 1994; Varanyanond et al., 2005) คังนั้นจึง เลือกอุณหภูมิ $40^{\circ} \mathrm{C}$ เป็นอุณหภูมิที่ใช้สำหรับการแช่ตัวอย่างข้าวกล้อง เพื่อใช้ในการทดสอบต่อไป

1.3.1.3 ผลของระยะเวลาระหว่างการแช่ของข้าวกล้อง

นำข้าวกล้องงอกทั้ง 4 สายพันธุ์มาทำให้งอกโดยแช่ในสารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่มี pH 3 โดยใช้อัตราส่วนข้าวกล้องต่อสารละลาย เท่ากับ $1: 2$ ที่อุณหภูมิ $40^{\circ} \mathrm{C}$ (จากผลข้อ 1.3.1.1 และ1.3.1.2) เป็นเวลา $12,24,36,48$ และ 72 ชั่วโมง หลังจากครบตามเวลาและนำตัวอย่างข้าวกล้องงอกที่ เตรียมได้มาวิเคราะห์ GABA ได้ผลแสดงดังตารางที่ 4.4 และรูปที่ 4.3

ตารงทที่ 4.4 ผลของระะะววลาในระหว่างการเชช้าวกล้องพันโุ่างๆ ต่อบริมาน GABA

$\begin{gathered} \text { เวลา } \\ \text { (ชั่วโมง) } \end{gathered}$	ปริมาณ GABA* (มิลลิกรัม/100 กรัมตัวอย่าง, นน.แห้ง)			
	ข้าวเจ้า		ข้าวเหนียว	
	ช่อลุง	เล็บนกปัตตานี	เหนียวคำเปลือกขาว	เหนียวหลันตัน
0	$9.97 \pm 0.98^{\text {a }}$	$6.45 \pm 1.45^{\text {a }}$	$8.83 \pm 0.41^{\text {a }}$	$4.07 \pm 0.02^{\text {a }}$
12	$17.07 \pm 0.68^{\text {b }}$	$19.63 \pm 0.84^{\text {b }}$	$6.83 \pm 0.74{ }^{\text {a }}$	$22.99 \pm 1.02^{\text {b }}$
24	$31.05 \pm 0.60^{\text {c }}$	$24.28 \pm 0.01^{\text {c }}$	$30.02 \pm 0.62^{\text {b }}$	$29.89 \pm 1.12^{\text {c }}$
36	$50.78 \pm 0.57^{\text {d }}$	$46.51 \pm 0.31^{\text {d }}$	$51.60 \pm 0.57^{\text {c }}$	$35.52 \pm 0.95^{\text {e }}$
48	$75.03 \pm 0.40{ }^{\text {e }}$	$53.53 \pm 0.67^{\circ}$	$\mathbf{6 0 . 0 3} \pm 0.70^{\text {d }}$	$32.61 \pm 1.94^{\text {d }}$
72	$93.34 \pm 0.10^{\text {f }}$	$92.78 \pm 0.44^{\text {f }}$	$108.80 \pm 0.09^{\text {e }}$	$37.11 \pm 0.20^{\text {e }}$

*ค่าเฉลี่ย $\pm \mathrm{SD}$ ของการวิเคราะห์ 3 ซ้ำ
2..... $=$ ค่าเฉลี่ยในแนวตั้งที่ตามด้วยอักษรที่แตกต่างกัน มีความแตกต่างกันทางสถิติ ($\mathrm{p}<0.05$)

จากตารางที่ 4.4 พบว่ามมื่อเช่วัวอย่างนานขึ้น ทำให้ตัวอย่างมีปริมา GABA เพิ่มสูงขึ้น ($\mathrm{p}<0.05$) และ GABA ของข้าวกล้องงอกทั้ง 4 สาขพันธุจีปปริมาณสูงที่สุดเพื่อแช่นาน 72 ชั่วโมง ข้าวพันธุ์ช่อ
 12.32 และ 9.12 เท่าหกังจากเพาให้งอก ซึ่งสอคคล้องกับหลายาการึึกษาที่รางงนว่าการเพิ่มระะะเวลกการ งอกให้นานนึ้น ปริมิา GABA เพิ่มมากขึ้น (Saikura e tal., 1994; Varanyanond e tal., 2005; Komatsuzaki et al., 2007; Chung et al., 2009; Jirapom, 2010) ทั้งนื้เนื่องกากระทว่งการแช่น้ำในสกาวะที่เหมาะสมเพื่อทำ

 ไทค์ (Veluppillal e tal., 2009) และ GABA เป็นกรคอะมินนตัวนนึ่งที่มีปริมาณเพิ่มสูงึ้นนลังงกกทำให้เมล็ค ข้าวงอก (Varanyanond et al., 2005; Komatsuzaki et al., 2007; Chung et al., 2009)
 ที่ซุด แต่วัวอย่างข้าวกล้องงอกคังกล่าวมีกลิ่นที่ไม่พึ่พประสงค์ ซึ่งเกิคจากการหมักของชื้ชุดิินทรี์์ (มีการ
 พัผนาผลิตกัณฑ์ไหม่ การเลือกให้ตัวอย่างข้ววกล้องงอกที่เพาะนาน 72 ชั่วโมจงึงไม่หมาะสมเนื่องจกออาจ ทำให้ผลิศภัณท์ที่พัผนนขึ้นมีกลิ่นที่ผู้ริโกคไม่สมมรรถยมรับได้ ดังน้้นข้าวกล้องอกที่หมาะสมสำหรับการ วิจัอกรั้งี้ คือ ข้าวกล้องงอกที่เพะะากการแช่นาน 48 ชั่วโมง

 $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer (pH=3) โดยใช้อัตราส่วนข้ววกล้องต่อสารละลาย เท่ากับ $1: 2$ ที่อุมหหูมิ $40^{\circ} \mathrm{C}$ แช่นาน 48 ชั่โโมง และจากสภาวะการเพาะดังกล่ว พบว่าข้ว้วพันุด์ช่อดุงมี่โริมาณ GABA ที่สูงที่สุด (p<0.05)

ชั่วโมง

เล็บนกััตตานี

เหนียวดำปลือกขาว

เหนียวหลันตัน

รูปที่ 4.3 ข้าวกล้องพันธุ์ต่างๆที่เพาะให้งอกด้วยการแช่ในสารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่ pH 3 โดยใช้อุณหภูมิ $40^{\circ} \mathrm{C}$ ที่เวลาต่างๆ

1.3.2 การเพาะให้งอกในภาชนะเปิดและปิด

หลังจากนำตัวอย่างข้าวกล้องทั้ง 4 สายพันธุ์ มาแช่ในสารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่มี $\mathrm{pH}=3$ นาน 5 ชั่วโมงและนำมาเพาะให้งอกในภาชนะเปิดและภาชนะปิด โดยเพาะที่อุณหภูมิห้อง $\left(30 \pm 2^{\circ} \mathrm{C}\right)$ และใช้เวลาในการเพาะต่างๆ ดังนี้ $12,24,36,48$ และ 72 ชั่วโมง ตัวอย่างข้าวกล้องทั้ง 4 สายพันธุ์ที่เพาะได้มี ลักษณะแสดงดังรูปที่ 4.4 และ 4.5 ซึ่งจะเห็นว่าเมื่อระยะเวลาในการเพาะนานขึ้นจะมีการเจริญของรากต้น อ่อนเพิ่มสูงึ้น การเจริญของรากต้นอ่อนจะเกิดบริเวณจมูกข้าวโดยพบว่าเมล็ดข้าวกล้องจะเริ่มมีปมรากงอก ยาวออกมาประมาณ $0.5-1$ มิลลิเมตรเมื่อเพาะไว้นานประมาณ 24 ชั่วโมง และเมื่อระยะเวลาการเพาะนานขึ้น จะเห็นว่ามีการเจริญของรากเพิ่มมากขึ้น โดยหลังจาก 72 ชั่วโมงจะพบว่ารากของตัวอย่างข้าวกล้องงอกทั้ง 4 สายพันธุ์ยาวมากกว่า 1 เซนติเมตร (ดังรูปที่ 4.4 และ 4.5)

ชั่วโมง

เล็บนกปัตตานี 101010 111111
41518

เหนียวดำเปลือกขาว

เหนียวหลันตัน

รูปที่ 4.5 ข้าวกล้องพันธุ์ต่างๆที่เพาะให้งอกในภาชนะปิด (กล่องพลาสติกมีฝาปิด)

เมื่อนำตัวอย่างข้าวกล้องที่เพาะได้ไปวิเคราะห์ไริมาม GABA ได้ผลแสคงดังตาราทที่ 4.5 ซึ่ง พบว่าพื่อปล่อยให้ข้าวกล้องมีระะะเวลาการงจกที่นานขึ้น จะทำให้ปริมาม GABA มีค่าเพิ่มสูงขึ้นจากทั้งการ เพะโดยาไ้กาชนะเปิดและกาชนะทีด ($p<0.05$) ซึ่ง GABA มีค่าสูงที่สุดมมี่อเพาะนาน 72 ชั่วโมง และการ เพาะ้าวกล้องทั้ง 4 สาขพันธุ์ในกาชนะปีดจะทำให้ได้ปริมิาแ GABA สูงกว่าการเพาะในภาชนะเปิด
 ขาว และเหนียวหลันตัน ที่เพาะโดยใช้ภาชนะเปีดที่เวลา 72 ชั่วโมง มีค่าสูงกว่าข้าวกล้องก่อนเพาะ เท่ากับ $9.21,15.48,10.47$ และ 21.31 เท่าตามลําคับ ในขนะที่กรรเพาะในกาชนะปีคมีค่าสูงก่างข้าวกล้องก่อนเพาะ เท่ากับ $10.84,11.14,14.04$ และ 25.62 เท่า ตามำคับ
ตรรงงี่ 4.5 ปริมาม GABA ของข้าวกล้องพันธุต่างๆามื่อเพาะต้วววิริต่างๆ

ตัวอย่าง ข้าว	สภาวะในการ เพาะ**	ปริมาณ GABA^{*} (มิลลิกรัม/100 กรัมตัวอย่าง, นน.แห้ง)				
		12 ชั่วโมง	24 ชั่วโมง	36 ชั่วโมง	48 ชั่วโมง	72 ชั่วโมง
ช่อลุง	ภาชนะเปิด	$19.16 \pm 0.08^{\text {a }}$	$21.54 \pm 0.111^{\text {bA }}$	$31.73 \pm 0.77^{\text {cA }}$	$41.11 \pm 0.47^{\text {dA }}$	$91.86 \pm 0.57^{\text {cA }}$
	ภาชนะปิด	$19.98 \pm 0.38^{\text {a }}$	$23.62 \pm 0.15^{\text {bB }}$	$32.97 \pm 0.07{ }^{\text {cB }}$	$48.76 \pm 0.74^{\text {dB }}$	$108.18 \pm 0.23{ }^{\text {ec }}$
	แช่ในสารละลาย	$17.07 \pm 0.68{ }^{\text {a }}$	$31.05 \pm 0.60^{\text {bC }}$	$50.78 \pm 0.57^{\text {c }}$	$75.03 \pm 0.40^{\text {dC }}$	$93.34 \pm 0.10^{\text {eB }}$
เล็บนก ปัตตานี	ภาชนะเปิด	$19.23 \pm 0.41^{\text {a }}$	$22.09 \pm 0.32^{\text {bA }}$	$26.71 \pm 0.05^{\text {cA }}$	$33.55 \pm 0.63^{\text {dA }}$	$99.87 \pm 0.67^{\circ}$
	ภาชนะปิด	$20.39 \pm 0.49^{\text {af }}$	$25.71 \pm 0.53{ }^{\text {bC }}$	$29.61 \pm 0.15^{\text {cB }}$	$35.98 \pm 0.74^{\text {dB }}$	$71.85 \pm 0.77^{\text {eA }}$
	แช่ในสารละลาย	$19.63 \pm 0.84^{\text {a }}$	$24.28 \pm 0.01^{\text {b8 }}$	$46.51 \pm 0.31^{\text {cc }}$	$53.53 \pm 0.67^{\text {dC }}$	$92.78 \pm 0.44^{\text {EB }}$
เหนียวดำ เปลือกขาว	ภาชนะเปิด	$19.71 \pm 0.42^{\text {a }}$	$23.60 \pm 0.18^{\text {bA }}$	$28.62 \pm 0.20^{\text {cA }}$	$54.70 \pm 0.55^{\text {dB }}$	$92.48 \pm 0.70^{\text {eA }}$
	ภาชนะปิด	$21.12 \pm 0.55^{\text {a }}$	$24.38 \pm 0.18^{\text {bB }}$	$37.58 \pm 0.80^{\text {cB }}$	$52.56 \pm 0.38^{\text {dA }}$	$123.99 \pm 0.02^{\text {ec }}$
	แช่ในสารละลาย	$6.83 \pm 0.74^{\text {as }}$	$30.02 \pm 0.62^{\text {bC }}$	$51.60 \pm 0.57^{\text {c }}$	$60.03 \pm 0.70^{\text {ac }}$	$108.80 \pm 0.09^{\text {cB }}$
เหนียว หลันตัน	ภาชนะเปิด	$22.13 \pm 0.56^{\text {aFF }}$	$29.28 \pm 1.15^{\text {bA }}$	$41.61 \pm 0.19{ }^{\text {cB }}$	$84.19 \pm 3.09{ }^{\text {dB }}$	$86.72 \pm 0.69^{\text {dB }}$
	ภาชนะปิด	$20.32 \pm 1.47^{\text {abC }}$	$29.54 \pm 0.96{ }^{\text {bA }}$	$44.99 \pm 0.52^{\text {cB }}$	$94.91 \pm 3.69{ }^{\text {dC }}$	$104.26 \pm 3.55^{\text {ec }}$
	แช่ในสารละลาย	$22.99 \pm 1.02^{2 \mathrm{C}}$	$29.89 \pm 1.12^{\text {bA }}$	$35.52 \pm 0.95^{\text {dA }}$	$32.61 \pm 1.94{ }^{\text {cA }}$	$37.11 \pm 0.20{ }^{\text {dA }}$

*ค่าเฉลี่ย $\pm \mathrm{SD}$ ของการวิเคราะห์ 3 ซ้ำ, ** แช่ในสารละลาย หมายถึง แช่ในสารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่ pH 3 (อัตราส่วนข้าว: น้ำ $=1: 2$) โดยใช้อุณหภูมิ $40^{\circ} \mathrm{C}$ และการเพาะในภาชนะเปิดและภาชนะปัด หมายถึง การแช่ตัวอย่างใน สารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่มี $\mathrm{pH}=3$ ที่อุณหภูมิห้อง นาน 5 ชั่วโมง ก่อนนำมาเพาะในภาชนะเปิด (ไม่มีฝา ปิด) และภาชนะปิด (มีฝาปิด) ที่อุณหภูมิห้อง
2. $\mathrm{b}, \ldots=$ ค่าเฉลี่ยในแนวนอนของข้าวสายพันธุ์เดียวกันที่ตามด้วยอักษรที่แตกต่างกัน มีความแตกต่างกันทางสถิติ ($\mathrm{p}<0.05$)
A. घ.... $=$ ค่าเฉลี่ยในแนวตั้งงของข้าวสายพันนธ์เคียวกันที่ตามด้วยอักษรที่แตกต่างกัน มีความแตกต่างกันทางสถิติ ($\mathrm{p}<0.05$)

อย่าไรก็คามถึงเม้ว่าการรเพาะ้าวกล้องพันโุ็ทั้ง 4 สาซพันโุ์ในกชชนะเปิดและภาชนะปีด นาน 72 ชั่วโมงงะให้ไริมาม GABA ที่สูงที่สุด แต่ตัวอย่างง้วกกล้องจกกดังกล่าวก็มีมกลิ่นที่ไม่พึ่งประสงค์ ที่ เกิคจากการหมักของเชื้อุุุินทรีย์ และมีการปนเปื้อนของเชื้อรา ซึ่งสอคคล้องกับรายงนนของ Jirapom (2010) ที่พบว่าหากใชระะะเวลาในการเพาะข้าวในภาชนะเปีดและภาชนะปิดนานกว่า 48 ชั่วโมงจะทำให้ข้าว
 ใหม่จกกข้าวกล้องงอกด้ววจ จึงไม่เหมาทที่จะนำข้ววกล้องงอกที่เพาะนาน 72 ชั่วโมงมาใช้เป็นวัตดุดิบในการ ทำผลิดภัณฑ์ ดังนั้นระยะเวลาที่เหมาะสมการเพาะข้าวคล้องโดยใช้กาชนะเปิดและภาชนะดิดสำหรับการ วิจัยนี้ คือ เพาะนาน 48 ชั่วโมง แต่ากตตารงทที่ 4.5 จะเห็นว่ากรรเพาะในภาชนะปีดจะให้ปริมิาม GABA ที่ สูงกว่าการเพาะในภาชนะเปีด ($\mathrm{p}<0.05$)

นอกาากนี้มื่อแรียบบเทีขบปริมาณ GABA ของข้าวกล้องงอกเต่ละสาษันธุ์ ที่เวลาการเพาะ 48 ชั่วโมง (ตาราง 4.5) พบว่าการใช้วิวีกรารเพาะที่แตกต่งกัน ทำไห้ปริมาณ GABA ของข้าวกล้ององคแเต่ละ สาษพันโุ์มี่าแตกต่างกัน ($\mathrm{p}<0.05$) สำหรับข้าวกล้องพันธุ่่อลุง เล็บนกปัตตานี และเหนียวคำนปลื่อกขาว พบว่ามื่อเพาะโดยการแช่ในสารละละย (Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer $\mathrm{pH}=3$) ให้ไริมาณ GABA สูงที่สุด ส่วนวิธีเพาะที่ให้ปริมาม GABA รองลงมา คือการเพาะโดยการใช้ภ้ชชนะปีดและกาชนะเปีด ตามลำคับ ในขณะที่ข้ววหนียวหนันตัน เมื่แเพะโดยการใช้กาชนะปีดจะทำน้มีมีปริมาแ GABA สูงที่สุด ส่วนวิธีเพาะที่ ให้ปริมาณ GABA รจงลงมา คือ เพาะโดยการแช่ในสารละลยย และเพาะในกาชนะเปีด ตามลำคับ ดังนั้น วิธีกรเพะะที่หมมาะสมสำนรับข้าวกล้องแต่ละสายพันโุ์ที่ให้ไริมาน GABA สูงสุด สามรกสรูไไ้ดังตตาราง ที่ 4.6
ตเรงงที่ 4.6 สกาวะกาวรพาะที่ให้ GABA สูงที่สุคของข้าวพันธุ์ค่างๆ

ตัวอย่างข้าว	ประเภท	สภาวะการเพาะที่ให้ GABA สูงที่สุด
ช่อลุง		เพาะด้วยวิธีการแช่ในสารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่ pH 3 โดย ใช้อัตราส่วนข้าว:น้ำ เท่ากับ $1: 2$ และแช่ที่อุณหภูมิ $40^{\circ} \mathrm{C}$ นาน 48 ชั่วโมง
เล็บนกบัตตานี		เพาะด้วยวิธีการแช่ในสารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่ pH 3 โดย ใช้อัตราส่วนข้าว:น้ำ เท่ากับ $1: 2$ และแช่ที่อุณหภูมิ $40^{\circ} \mathrm{C}$ นาน 48 ชั่วโมง
เหนียวคำ เปลือกขาว		เพาะด้วยวิธีการแช่ในสารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่ pH 3 โดย ใช้อัตราส่วนข้าว:น้ำ เท่ากับ $1: 2$ และแช่ที่อุณหภูมิ $40^{\circ} \mathrm{C}$ นาน 48 ชั่วโมง
เหนียวหลันตัน	ข้าวเหนียว	เพาะให้งอกในภาชนะปีด (โดยแช่ในสารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่ pH 3 โดยใช้อัตราส่วนข้าว:น้ำ เท่ากับ $1: 2$ นาน 5 ชั่วโมง หลังจาก นั้นนำมาเพาะต่อในกล่องพลาสติกที่มีฝาปิดด ที่อุณหภูมิห้อง $\left(30 \pm 2^{\circ} \mathrm{C}\right)$ นาน 48 ชั่วโมง)

1.4 สารออกฤทธิ่ทางชีวภาพและกิจกรรมการต้านออกซิเดชั่นของข้าวกล้องงอก

เตรียมตัวอย่างข้าวกล้องงอกทั้ง 4 สายพันธุ์ตามสภาวะการเพาะที่แสดงในตารางที่ 4.6 เพื่อใช้ในการ วิเคราะห์ต่างๆ ดังนี้

1.4.1 องค์ประกอบทางเคมีของข้าวกล้องงอก

องค์ประกอบทางเคมีของข้าวกล้องงอก (ที่เพาะตามวิธีที่แสดงในตารางที่ 4.6) มีค่าดังแสดงใน ตารางที่ 4.7 พบว่าข้าวกล้องงอกทุกสายพัน์ุ์มีคาร์โบไฮเดรตเป็นองค์ประกอบหลัก โคยมีค่าตั้งแต่ 86.97$91.18 \%$ สำหรับปริมาณเถ้า ไขมัน และโปรตีนของข้าวกล้องงอกทุกสายพันทุ์ มีค่าตั้งแต่ $1.05-1.52 \%, 2.78-$ 3.88% และ $4.76-7.68 \%$ ตามลำดับ การงอกเป็นกระบวนการหนึ่งที่ช่วยปรับปรุงคุณค่าทางโภชนาการและ คุณภาพของเมล็คข้าว เนื่องจากกระบวนการงอกช่วยกระตุ้นให้เกิคการเปลี่ยนแปลงทางชีวเคมีภายในเมล็ด ข้าว (Veluppillali et al., 2009) และเมื่อเปรียบเทียบปริมาณสารอาหารของข้าวกล้องงอกกับข้าวกล้อง (ตาราง ที่ 4.7) พบว่าปริมาณเถ้า ไขมันและคาร์โบไฮเครตในข้าวกล้องงอกทุกสายพันธุ์มีค่าเพิ่มสูงขึ้น ยกเว้นโปรตืน ที่มีปริมาณลคต่ำลง ($\mathrm{p}<0.05$) ในทุกสายพันธุ์ ซึ่งการเพิ่มขึ้นของปริมาณสารอาหารต่างๆ ก็สอคคล้องกับ งานวิจัยหลายๆฉบับที่รายงานว่าการงอกช่วยเพิ่มคุณค่าทางโภชนาการให้กับเมล็คข้าว (Jung et al., 2005; Ohtsubo et al., 2005; Lee at al., 2008; Jiraporn, 2010; Moongngarm and Saetung, 2010) ในขณะที่ผลการ ลคลงของปริมาณโปรตีนดังกล่าวสอคคล้องกับการทดลองของ Veluppillali et al (2009) และ Mohan et al (2010) ที่พบว่ากระบวนการงอกมีผลทำให้ปริมาณโปรตืนทั้งหมด (total protein) ในข้าวกล้องลคลง ($\mathrm{p}<$ $0.05)$ เนื่องจากระคับของเอนไซม์โปรติเอส มีค่าเพิ่มสูงงึ้น $(\mathrm{p}<0.05)$ รวมถึงโปรตีนที่ละลายน้ำได้มีปริมาณ ลคลงจาก 7.24 เป็น 3.89 มิลลิกรัมต่อกรัม (น้ำหนักแห้ง) เมื่อปล่อยทิ้งไว้ให้งอกนาน 2 วัน (Veluppillali et al., 2009) ประกอบกับในกระบวนการผลิตข้าวกล้องงอกตามวิธีที่แสดงในภาคผนวกง มีการล้างด้วยน้ำ หลายครั้ง อาจจะทำให้มีการสูญเสียโปรตีนที่ละลายน้ำได้ไปกับขั้นตอนการล้าง จึงทำให้ปริมาณโปรตีนใน ข้าวกล้องงอกมีค่าที่ต่ำกว่าข้าวกล้อง ($\mathrm{p}<0.05$) (ตารางที่ 4.7)

ตารางที่ 4.7 องค์ประกอบทางเคมีของข้าวกล้องและข้าวกล้องงอกพันธุ์่างๆ

พันชุ์ข้าว	สภาวะ	องค์ประกอบ* (\%, นน.แห้ง)			
		เถ้า	ไขมัน	โปรตีน	คาร์ไบไฮเดรต
ช่อลุง	ก่อนงอก	$0.51 \pm 0.03^{\text {a }}$	$2.64 \pm 0.12^{\text {b }}$	$11.54 \pm 0.08^{\text {b }}$	$85.31 \pm 0.13^{\text {a }}$
	หลังงอก**	$1.11 \pm 0.03^{\text {b }}$	$2.78 \pm 0.03^{\text {b }}$	$6.05 \pm 0.55^{\text {a }}$	$90.06 \pm 0.57^{\text {b }}$
เล็บนกปัตตานี	ก่อนงอก	$0.54 \pm 0.01^{\text {a }}$	$2.05 \pm 0.12^{\text {a }}$	$8.98 \pm 0.08^{\text {b }}$	$88.43 \pm 0.15^{\text {a }}$
	หลังงอก**	$1.05 \pm 0.02^{\text {b }}$	$3.00 \pm 0.29^{\text {b }}$	$4.76 \pm 0.33^{\text {a }}$	$91.18 \pm 0.53^{\text {b }}$
เหนียวดำเปลือกขาว	ก่อนงอก	$0.48 \pm 0.01^{\text {a }}$	$3.47 \pm 0.01^{\text {a }}$	$11.61 \pm 0.15^{\text {b }}$	$84.43 \pm 0.15^{\text {a }}$
	หลังงอก**	$1.48 \pm 0.01^{\text {b }}$	$3.88 \pm 0.05^{\text {b }}$	$7.68 \pm 0.13^{\text {a }}$	$86.97 \pm 0.09^{\text {b }}$
เหนียวหลันตัน	ก่อนงอก	$1.44 \pm 0.03^{\text {a }}$	$3.11 \pm 0.03^{\text {a }}$	$9.09 \pm 0.04^{\text {b }}$	$86.36 \pm 0.03^{\text {a }}$
	หลังงอก**	$1.52 \pm 0.07^{\text {b }}$	$3.10 \pm 0.03^{\text {a }}$	$7.56 \pm 0.42^{\text {a }}$	$87.81 \pm 0.42^{\text {b }}$

* ค่าเฉลี่ย $\pm \mathrm{SD}$ ของการวิเคราะห์ 3 ซ้ำ, **เพาะให้งอกตามสภาวะที่สรุปไว้ในตาราง 4.6
2..." $=$ ค่าเฉลี่ยในแนวตั้งของข้าวสายพันธุ์เดียวกันที่ตามด้วยอักษรที่แตกต่างกัน มีความแตกต่างกันทางสถิติ ($\mathrm{p}<0.05$)

1.4.1 ปริมาณ Gamma-oryzanol

ผลการวิเคราะห์ปริมาณ γ-Oryzanol ของข้าวกล้องและข้าวกล้องงอกทั้ง 4 สายพันธุ์ คังแสดงใน ตารางที่ 4.8 แสดงในรูปของสารที่เป็นองค์ประกอบหลัก 4 ตัว คือ cycloartenol, 24 -methylencycloartenol, campesterol และ sitosterol (Miller และคณะ, 2006) และจากการวิเคราะห์ปริมาณ γ-Oryzanol ในรำข้าวด้วย เครื่อง HPLC พบว่ามี peak ที่สามารถวัดค่าได้มี 4 ตัว คือ cycloartenyl ferulate, 24 -methylene cycloartanyl ferulate, campesteryl ferulate และsitosteryl ferulate (Azrina et al., 2008)

จากผลการทคลอง (ตารางที่ 4.8) พบว่าปริมาณ γ-Oryzanol ในข้าวกล้องและข้าวกล้องงอกของ ข้าวเหนียวทั้ง 2 สายพันธุ์มีค่าสูงกว่าข้าวเจ้าทั้ง 2 สายพันธุ์ ซึ่งสอคคล้องกับการศึกษาของ Manuswarakul และคณะ (2003) ที่พบว่าข้าวเหนียวดำมีปริมาณ γ-Oryzanol สูงที่สุด รองลงมา คือ ข้าวเหนียวที่มีเปลือกหุ้ม เมล็ดสีขาวและข้าวเจ้า ตามลำดับ นอกจากนั้นปริมาณ γ-Oryzanol ของตัวอย่างข้าวกล้องส่วนใหญ่ไม่มีการ เปลี่ยนแปลงหลังจากการเพาะนาน 48 ชั่วโมง ยกเว้นปริมาณของสาร 24 - methylencycloartenol ในข้าวกล้อง งอกพันธุ์ช่อลุง และปริมาณของสาร campesterol ในข้าวกล้องงอกพันธุเหนียวดำเปลือกขาวและเหนียวหลัน ตัน รวมถึงปริมาณของสาร sitosterol ในข้าวกล้องงอกพันธุ์เหนียวดำเปลือกขาวที่มีปริมาณเพิ่มขึ้นหลังจาก เพาะนาน 48 ชั่วโมง ($\mathrm{p}<0.05$) ในขณะที่ปริมาณของสาร cycloartenol และ 24- methylencycloartenol มีค่า ลดลง ($\mathrm{p}<0.05$) ดังแสคงผลในตารางที่ 4.8 ซึ่งสอคคล้องกับผลการศึกษาของ Ohtsubo และคณะ (2005) ที่

พบว่าปริมาณของ γ-Oryzanol ในข้าวกล้องหลังเพาะไม่แตกต่างจากข้าวกล้องก่อนเพาะ เช่นเดียวกับ การศึกษาของ King และคณะ (2009) ที่ศึกษาผลของกระบวนการงอกที่มีต่อปริมาณ γ-Oryzanol ของข้าว พันธุ์พื้นเมืองของรัฐซาราวัก ประเทศมาเลเซีย พบว่า ข้าวกล้องพันธุ์Sabak, Silah และ Hitam มีปริมาณ γ Oryzanol เพิ่มขึ้นเล็กน้อยหลังจากการเพาะนาน 24 ชั่วโมง ในขณะที่ข้าวกล้องพันโุ์ Chelum, Biris, Boria, Udang Halus และ Mamut มีปริมาณ γ-Oryzanol ลคลงเมื่อเปรียบเทียบกับข้าวกล้องก่อนเพาะ

ตารางที่ 4.8 ปริมาณ Gamma-oryzanol ในข้าวกล้องงอกสายพันตุ่ต่างๆซึ่งเพาะจากสภาวะที่ให้ GABA สูงสุค ที่เวลาต่างๆ

ข้วกล้องงอก**	ชั่วโมง การแช่ (ชม)	ปริมาณ $\boldsymbol{\gamma}$-Oryzanol* (มิลลิกรัมต่อ 100 กรัมตัวอย่าง, นน.แห้ง)			
		cycloartenol	24-methylencycloartenol	campesterol	sitosterol
ช่อลุง	0	$36.68 \pm 1.61^{\text {b }}$	$71.89 \pm 1.31^{\text {a }}$	$72.04 \pm 1.83{ }^{\text {b }}$	$85.60 \pm 12.98^{\text {a }}$
	36	$32.32 \pm 2.37^{\text {a }}$	$71.93 \pm 4.74^{\text {a }}$	$63.66 \pm 4.72^{\text {a }}$	$90.03 \pm 6.22^{\text {a }}$
	48	$34.55 \pm 0.92{ }^{\text {ab }}$	$80.90 \pm 1.59{ }^{\text {b }}$	$72.70 \pm 4.09^{\text {b }}$	$99.43 \pm 2.90^{\text {a }}$
เล็บนกัิตตานี	0	$22.24 \pm 1.31^{\text {b }}$	$66.90 \pm 1.32^{\text {c }}$	$65.26 \pm 5.62^{\text {b }}$	$91.83 \pm 19.16^{\text {a }}$
	36	$16.11 \pm 1.09^{\text {a }}$	$52.75 \pm 1.92^{\text {b }}$	$47.19 \pm 3.17^{\text {a }}$	$74.45 \pm 3.76{ }^{\text {a }}$
	48	$15.92 \pm 1.86{ }^{\text {a }}$	$45.84 \pm 2.23{ }^{\text {a }}$	$67.24 \pm 3.76{ }^{\text {b }}$	$72.77 \pm 4.91^{\text {a }}$
เหนียวดำ เปลือกขาว	0	$78.52 \pm 11.17^{\text {a }}$	$45.37 \pm 7.15^{\text {a }}$	$92.56 \pm 15.11^{\text {a }}$	$116.91 \pm 19.17^{\text {a }}$
	36	$89.38 \pm 4.34^{\text {a }}$	$49.52 \pm 2.49^{\text {a }}$	$101.96 \pm 1.68{ }^{\text {ab }}$	$145.70 \pm 18.54{ }^{\text {ab }}$
	48	$91.05 \pm 10.07^{\text {a }}$	$52.70 \pm 4.15^{\text {a }}$	$116.92 \pm 9.79^{\text {b }}$	$159.59 \pm 19.49^{\text {b }}$
เหนียวหลันตัน	0	$61.07 \pm 2.12^{\text {a }}$	$70.82 \pm 3.30^{\text {a }}$	$72.82 \pm 3.58^{\text {a }}$	$119.87 \pm 6.69^{\text {a }}$
	36	$66.31 \pm 2.64^{\text {b }}$	$78.64 \pm 2.58{ }^{\text {b }}$	$110.70 \pm 3.87^{\text {b }}$	$135.15 \pm 3.65^{\text {b }}$
	48	$61.70 \pm 2.33^{\text {ab }}$	$73.80 \pm 2.27^{\text {ab }}$	$100.00 \pm 9.45^{\text {b }}$	$125.97 \pm 3.37^{\text {ab }}$

* ค่เฉลี่ยย SD ของการวิเคราะห์ 3 ช้า, **หาะให้งอกตามสกาวะที่สรุปไว้ในตาราง 4.6

อย่างไรก็ตามมีรายงานวิอัยที่พบว่าหลังจากการเพาะให้งอก γ-Oryzanol มีปริมาณเพิ่มมากขึ้น โดย Jiamyangyuen (2006) พบว่าการแช่ข้าวกล้องแดงและข้าวกล้องพันธุ์ขาวดอกมะลิ 105 ในน้ำเป็นเวลา 6 ชั่วโมงและนำมาเพาะให้งอก ทำให้ปริมาณ γ-Oryzanol มีค่าเพิ่มสูงขึ้น $1.3-1.5$ เท่าเมื่อเทียบกับตัวอย่างก่อน

เพาะ ในขณะที่ Sungsopha และคณะ (2009) รายงานว่าหลังจากการเพาะให้งอก γ-Oryzanol มีค่าเพิ่มสูงขึ้น 29.31% เมื่อเทียบกับตัวอย่งกก่อนเพาะ จากผลการทคลองครั้งนี้สามารถสสรุได้ว้่าระยะเวลาที่ใช้ในการเหาะ ไม่มีผลต่อการปลี่ยนแปลลงของรริมิม γ-Oryzano ของข้าวกล้องทั้ง 4 สยยันฐ์

1.4.2 ปริมาณ Phytate

ผลการวิเคราะห์ปริมาณ phytate ของข้าวกล้องและข้าวกล้องงอกทั้ง 4 สายพันธุ์แสดงคังตารางที่ 4.9 ซึ่งพบว่าปริมาณ phytate ของข้าวกล้องมีค่าตั้งแต่ 486.15-840.44 มิลลิกรัม/100 กรัม (นน.แห้ง) phytate หรือ Phytic acid (myoinositol hexaphosphate, IP6) เป็นสารประกอบฟอสฟอรัสที่มีในเมล็คพืชเป็นส่วน ใหญ่ ปริมาณ phytate ของเมล็คข้าวจะมากหรือน้อยขึ้นอยู่กับระดับของการขัคสี โคยปกติแล้วข้าวกล้องจะมี ปริมาณ phytate ที่สูงกว่าข้าวขัดข้าว (Ravindean et al., 1994) จากตารางที่ 4.9 พบว่าปริมาณ phytate ของข้าว กล้องทั้ง 4 สายพันธุ์ มีค่าลดลงประมาณ $41-63 \%$ หลังจากเพาะนาน 48 ชั่วโมง ซึ่งผลการทคลองที่ได้ก็ สอคคล้องกับการศึกษาที่พบว่ากระบวนการงอกทำให้ปริมาณ phytateในเมล็คข้าวลดลง โดย Lee และคณะ (2007) วิเคราะห์ปริมาณ Phytate จากตัวอย่างข้าว Goami2, Keunnun และ Heugkwang ก่อนแช่ข้าว มีค่า 608, 987 และ 908 มิลลิกรัมต่อ 100 กรัมตัวอย่าง ตามลำดับ และเมื่อผ่านการแช่น้ำ 72 ชั่วโมงแล้ว มีค่าเท่ากับ 538 , 638 และ 623 มิลลิกรัมต่อ 100 กรัมตัวอย่าง ตามลำดับ เช่นเดียวกันกับ Liang และคณะ (2008) ที่พบว่า phytate จะมีค่าลดลง 60% เมื่อเพาะข้าวกล้องพันธุ์ Kenjian $90-31$ (ข้าวของประเทศจีน)ที่อุณหภูมิ $30^{\circ} \mathrm{C}$ นาน 72 ชั่วโมง ในขณะที่ Khampang และคณะ (2009) รายงานว่าเมื่อแช่ข้าวกล้องพันธุ์ขาวดอกมะลิ 105 ใน น้ำที่อุณหภูมิ $25^{\circ} \mathrm{C}$ นาน 48 ชั่วโมง โดยที่น้ำมีค่า pH เท่ากับ 5.5 และ 6.5 จะทำให้ปริมาณ phytate ลดลง 3.47% และ 5.27% ตามลำคับ

ตารางที่ 4.9 ปริมาณ phytate ของข้าวกล้องงอกสายพันธุ์ต่างๆซึ่งเพาะจากสภาวะที่ให้ GABA สูงสุด ที่เวลา ต่างๆ

ข้าวกล้องงอก**	ประเภท	ปริมาณ phytate* (มิลลิกรัม 100 กรัมตัวอย่าง, นน.แห้ง)			ปริมาณ phytate ที่ลดลง (\%)
		0 ชม	36 ชม	48 ชม	
ช่อลุง		$840.44 \pm 36.35^{\text {c }}$	$672.67 \pm 31.07^{\text {b }}$	$493.74 \pm 27.38^{\text {a }}$	41.25
เล็บนกปัตตานี		$780.50 \pm 63.89{ }^{\text {c }}$	$526.38 \pm 39.09^{\text {b }}$	$419.88 \pm 33.62^{\text {a }}$	46.20
เหนียวดำเปลือกขาว	เหนีย	$707.33 \pm 65.52^{\text {c }}$	$558.13 \pm 13.15^{\text {b }}$	$404.06 \pm 24.28^{\text {a }}$	42.88
เหนียวหลันตัน		$486.15 \pm 6.42^{\text {c }}$	$267.25 \pm 21.55^{\text {b }}$	$178.45 \pm 27.87^{\text {a }}$	63.29

* ค่าเฉลี่ย $\pm \mathrm{SD}$ ของการวิเคราะห์ 3 ซ้ำ, **เพาะให้งอกตามสภาวะที่สรุปไว้ในตาราง 4.6
a.b..." $=$ ค่าเฉลี่ยในแนวนอนของข้าวสายพันธุ์เดียวกันที่ตามด้วยอักษรที่แตกต่างกัน มีความแตกต่างกันทางสถิติ ($\mathrm{p}<0.05$)

นอกกากนี้จกกผลการทดลอง (ตารงงที่ 4.9) ขังพบว่าปริมาณ phytate ของข้วกกล้องงอกทั้ง 4 สาย พันษุ์ที่พาะนาน 48 ชั่าโมงมีคี่ที่น้นยกก่าตัวอย่างข้าวกล้องที่เพะะนน 36 ชั่วโมง $(p<0.05)$ และผลดังกล่าวก็ สอคคล้องกับหลายๆการศึกษาที่พบว่าการใชระะะเวลาในการเพาบี่นานชื้นิิ่งะะทำให้ phyate มีค่าลคต่ำลง (Moong-ngarm, 2005; Liang et al., 2008) ซึ่กการลคลงของปริมิา phytate ในเม็คคืืชทที่ผ่านกระบวนการทำ

 กรรเริญุเติบโต (Oatway และคณะ, 2001)

1.4 .3 ปริมมม Toal phenolic

ผลกรรวิกราะห์ปริมาม Total phenolic ของข้าวกล้องแสะข้าวกล้องงอกทั้ง 4 สายพันฐุ แสคงดัง ตารางที่ 4.10 ซึ่งพบว่าปริมาณ Total phenolic ของข้าวกล้องทั้ง 4 สายพันร์ มี่าตั้งแต่ $18.31-105.82$ มิลลิกกัมต่อ 100 กรัมตัวอย่าง (นน.แห้ง) ข้ววหนนียวมีปริมาณ Total phenolic สูงกว่าข้าวเง้า โคยเฉหาะข้าว

 มีสารเอนโทไซชานินหรือสารฟลาโวนอยค์อื่นาเป็นองค์ปรรกอบ ทำให้ปริมาน Total phenoic ที่วิเกราะท์

 $1.67,2.14,1.55$ และ 1.37 เท่า หลังจากเหาะนาน 48 ชั่วโมง ซึ่งงลการทคลองที่ได้สอคคล้องกับงานวิธัยของ Tian และคณะ (2004) ที่รายงาน่าท้าวกล้องหันฐุ์ Koshihikari มีปริมาณสารประกอบฟืนอลิก เท่ากับ 18.47

 เกาหลี 3 พันธุ คือ Goami2, Keunnun และ Heugkwang สกัดสารต้านอนุููอิศระ ได้แก่ Phytic acid, Total phenolic, DPPH และ Hydroxy radical scavenging โุยศึกษบบปรียบเทียบตัวอย่างระหว่างสกาวะที่ไม่เช่น้ำ กับที่แช่ในน้ำ 3 วันที่ถุมหภููิ้อง พบว่าปิมาม total phenoic ในข้าที่ผ่านการทำใหงอกแล้ว (สภาวะที่แช่ น้ำ)จะมีค่า total phenolic เพิ่มขึ้นจากตอนที่ขังไม่่านการทำให้งอก (สภาวะที่ไม่แช่น้ำ)โดยข้าวกล้อง Goami2, Keunnun และ Heugkwang มีที่ 260,210 และ 490 มิลลิกัรัมต่อ 100 กรัมตามกำดับ และเมื่อผ่าน การำให้งอกแล้วค่า total phenolic จะเิิ่มเป็น 330,310 และ 790 มิลลิกัรัมต่อ 100 กรัมตตมลำคับ

ตารางที่ 4.10 ปริมาณ Total phenolic ในข้าวกล้องงอกสายพันธุ์ต่างๆซึ่งเพาะจากสภาวะที่ให้ GABA สูงสุค ที่เวลาต่างๆ

ข้าวกล้องงอก**	ประเภท	ปริมาณ Total phenolic* (มิลลิกรัมต่อ 100 กรัมตัวอย่าง, นน.แห้ง)		
		0 ชม	36 ชม	48 ชม
ช่อลุง	ข้าวเจ้า	$18.31 \pm 0.19^{\text {a }}$	$28.22 \pm 0.49^{\text {b }}$	$30.87 \pm 0.07^{\text {c }}$
เล็บนกปัตตานี		$10.90 \pm 0.10^{\text {a }}$	$20.82 \pm 0.35^{\text {b }}$	$23.30 \pm 0.43^{\text {c }}$
เหนียวคำเปลือกขาว	ข้าวเหนียว	$105.82 \pm 1.10^{\text {a }}$	$120.37 \pm 0.71^{\text {b }}$	$164.01 \pm 0.97^{\text {c }}$
เหนียวหลันตัน		$38.50 \pm 0.54^{\text {a }}$	$46.71 \pm 0.88^{\text {b }}$	$52.76 \pm 3.69{ }^{\text {c }}$

* ค่าเฉลี่ย SD ของการวิเคราะห์ 3 ซ้ำ, **เพาะให้งอกตามสภาวะที่สรุปไว้ในตาราง 4.6
$2, \mathrm{~b}, \ldots=$ ค่าเฉลี่ยในแนวนอนของข้าวสายพัน ุุ์เคียวกันที่ตามด้วยอักษรที่แตกต่างกัน มีความแตกต่างกันทางสถิติ ($\mathrm{p}<0.05$)
นอกจากนั้นจากการศึกษาของ Tian และคณะ (2004) พบว่าสาร phenolic ที่เป็นองค์ประกอบของ ข้าวขัดขาว ข้าวกล้อง ข้าวกล้องงอก (แช่น้ำที่อุณหภูมิ $32{ }^{\circ} \mathrm{C}$ นาน 21 ชั่วโมง) มีทั้งหมด 11 ชนิค ได้แก่ protocatechuic acid, hydroxybenzoic acid, vanillic acid, syringic acid, chlorogenic acid, p-coumaric acid, ferulic acid, sinapinic acid, feruloylsucrose และ sinapoylsucrose ซึ่งจากสารทั้ง 11 ชนิดคังกล่าว ferulic acid มีปริมาณมากที่สุค โดยในข้าวขัดขาว ข้าวกล้อง และข้าวกล้องงอก มีปริมาณ เท่ากับ $5.26,15.19$ และ 20.04 มิลลิกรัม/ 100 กรัม ตามลำดับ และข้าวกล้องงอกมีปริมาณ ferulic acid สูงที่สุด ซึ่งจากข้อสรุปดังกล่าวจึงมี การวิเคราะห์ปริมาณ ferulic acid ในตัวอย่างข้าวกล้องงอกทั้ง 4 พันธุ์ ดังแสดงในข้อ 1.4.4

1.4.4 ปริมาณ Ferulic acid

ผลการวิเคราะห์ปริมาณ ferulic acid ของข้าวกล้องและข้าวกล้องงอกทั้ง 4 สายพันธุ์ แสดงคัง ตารางที่ 4.11 พบว่าข้าวกล้องทั้ง 4 สายพันธุ์ ได้แก่ พันธุ์ช่อลุง เล็บนกปัตตานี เหนียวดำเปลือกขาว เหนียว หลันตัน มีปริมาณ ferulic acid ตั้งแต่ 5.70-11.20 มิลลิกรัม $/ 100$ กรัมตัวอย่าง (นน.แห้ง) โดยข้าวพันธุ์ช่อลุงมี ปริมาณสูงที่สุด และเมื่อนำข้าวกล้องทั้ง 4 สายพันธุ์มาเพาะให้งอก พบว่ากระบวนการงอกช่วยเพิ่มปริมาณ ferulic acid ของเมล็ดข้าวให้สูงขึ้น (ตาราง 4.11) โดยปริมาณ ferulic acid เพิ่มสูงขึ้นตามระยะเวลาการเพาะ ที่นานขึ้น ซึ่งพบว่าเมื่อใช้เวลาเพาะนาน 36 ชั่วโมง มีเพียงข้าวเหนียวหลันตันเพียงพันธุ์เดียวเท่านั้นที่มี ปริมาณ ferulic acid เพิ่มมากขึ้นต่างจากข้าวกล้องก่อนเพาะ ($\mathrm{p}<0.05$) แต่เมื่อเพิ่มระยะเวลาการเพาะเป็น 48 ชั่วโมง พบว่าข้าวกล้องทั้ง 4 สายพันธุ์จะมีปริมาณ ferulic acid เพิ่มสูงขึ้นต่างจากตัวอย่างที่ใช้เวลาการเพาะ อื่นๆ ($\mathrm{p}<0.05$) และปริมาณ ferulic acid ที่ระยะเวลาการเพาะดังกล่าว (48 ชั่วโมง) เป็นค่าที่สูงสุด โดยมีค่า

ตั้งแต่ 10.81-21.24 มิลลิกรัม/100 กรัมตัวอย่าง (นน.แห้ง) (ตาราง 4.11) และเมื่อเปรียบเทียบกับตัวอย่างข้าว กล้องก่อนเพาะพบว่าปริมาณ ferulic acid ของข้าวกล้องงอกทั้ง 4 สายพันธุ์ ได้แก่ พันธุ์ช่อลุง เล็บนกปัตตานี เหนียวคำเปลือกขาว เหนียวหลันตัน มีค่าเพิ่มขึ้น $1.19,2.57,2.70$ และ 1.43 เท่า ตามลำดับ ซึ่งสอดคล้องกับ การศึกษาของ Ohtsubo และคณะ (2005) ที่พบว่าปริมาณ ferulic acid ของข้าวกล้องงอกพันธุ์ Koshihikari มี ค่าเพิ่มสูงขึ้น 1.26 และ 3.93 เท่าเมื่อเปรียบเทียบกับข้าวกล้องก่อนเพาะและข้าวขัดขาวก่อนเพาะตามลำดับ ตารางที่ 4.11 ปริมาณ ferulic acid ของข้าวกล้องงอกสายพันธุ์ต่างๆซึ่งเพาะจากสภาวะที่ให้ GABA สูงสุด ที่ เวลาต่างๆ

ข้าวกล้องงอก**	ประเภท	ปริมาณ ferulic acid* (มิลลิกรัม/ 100 กรัมตัวอย่าง, นน.แห้ง)		
		0 ชม	36 ชม	48 ชม
ช่อลุง เล็บนกปัตตานี	ข้าวเจ้า	$11.20 \pm 0.58^{\text {a }}$ $5.70 \pm 0.55{ }^{\text {a }}$	$12.53 \pm 0.83{ }^{\text {ab }}$ $6.16 \pm 0.34^{\text {a }}$	$13.29 \pm 1.29^{\text {b }}$ $14.67 \pm 0.05{ }^{\text {b }}$
เหนียวดำเปลือกขาว เหนียวหลันตัน	ข้าวเหนียว	$7.87 \pm 0.19^{\mathrm{a}}$ $7.54 \pm 0.01^{\mathrm{a}}$	$8.40 \pm 0.89^{\text {a }}$ $9.25 \pm 0.04{ }^{\text {b }}$	$21.24 \pm 0.37^{\text {b }}$ $10.81 \pm 0.17^{\text {c }}$

* ค่าเฉลี่ย SD ของการวิเคราะห์ 3 ช้ำ, **เพาะให้งอกตามสภาวะที่สรุปไว้ในตาราง 4.6

2. b.... $=$ ค่าเฉลี่ยในแนวนอนของข้าวสายพันธุ์เดียวกันที่ตามด้วยอักษรที่แตกต่างกัน มีความแตกต่างกันทางสถิติ ($p<0.05$)

1.4.5 ปริมาณ Tocolpherol

ผลการวิเคราะห์ปริมาณ tocopherol ของข้าวกล้องและข้าวกล้องงอกทั้ง 4 สายพันธุ์ แสคงคัง ตารางที่ 4.12 ซึ่งพบว่าข้าวกล้องทั้ง 4 พันธุ์ ได้แก่ พันธุ์ช่อลุง เล็บนกปัตตานี เหนียวดำเปลือกขาว เหนียว หลันตัน มีปริมาณ tocopherol ตั้งแต่ 7.59-21.84 มิลลิกรัม/100 กรัมตัวอย่าง (นน.แห้ง) โดยข้าวเหนียวดำ เปลือกขาวมีปริมาณสูงที่สุด และเมื่อนำข้าวกล้องทั้ง 4 พันธุ์มาเพาะให้งอก พบว่ากระบวนการงอกช่วยเพิ่ม ปริมาณ tocopherol ของเมล็คข้าวให้สูงขึ้น (ตารางที่ 4.12) โดยปริมาณ tocopherol มีแนวโน้มเพิ่มสูงขึ้นตาม ระยะเวลาการเพาะที่นานขึ้น และเมื่อเพิ่มระยะเวลาการเพาะเป็น 48 ชั่วโมง จะทำให้ข้าวกล้องงอกทั้ง 4 สาย พันธุ์มีปริมาณ tocopherol เพิ่มมากขึ้นแตกต่างจากข้าวกล้องก่อนเพาะ ($\mathrm{p}<0.05$) โดยในแต่ละพันธุ์มีค่าเพิ่ม มากขึ้น $1.47,1.17,1.19$ และ 2.49 เท่าตามลำดับ ทั้งนี้เนื่องจากในระหว่างการแช่เพื่อทำให้งอก เมล็คข้าวจะมี การเปลี่ยนแปลงทางเมตาบอลิซึม ทำให้สารอาหารต่างๆมีปริมาณเพิ่มสูงขึ้น ซึ่งสารเหล่านี้ได้แก่ GABA, dietary fiber, inositols, ferulic acid, phytic acid, tocotrienols, magnesium, potassium, zinc, gamma-oryzanol and prolylendopeptidase inhibitor (Kayahara et al., 2000) เช่นเดียวกับการศึกษาของ Orozco และคณะ (2006) ที่สรุปว่าหลังจากการแช่เมล็ด Lupin (Lupinus angustifolius L. var. Zapaton) ในน้ำกลั่น 5 ชั่วโมง

และนำมาเพาะให้งอกต่อบน germination tray ที่อุณหภูมิ 20 องศาเซลเซียส ในที่มืดเป็นเวลา $2,3,4,5,6$ และ 9 วัน พบว่าระยะเวลาในการงอกที่เพิ่มขึ้น มีผลทำให้ปริมาณวิตามินซี และ tocopherol มีค่าเพิ่มขึ้น ($p<0.05$)

ตารางที่ 4.12 ปริมาณ tocopherol ของข้าวกล้องงอกสายพันรุ์ต่างๆซึ่งเพาะจากสภาวะที่ให้ GABA สูงสุด ที่ เวลาต่างๆ

ข้าวกล้องงอก**	ประเภท	ปริมาณ tocopherol*		
		0 ชม	36 ชม	48 ชม
ช่อลุง	ข้าวเจ้า	$20.37 \pm 2.78^{\text {a }}$	$27.79 \pm 0.99^{\text {ab }}$	$30.04 \pm 0.43^{\text {b }}$
เล็บนกบัตตานี		$17.91 \pm 1.09^{\text {a }}$	$19.75 \pm 1.99^{\text {a }}$	$20.87 \pm 3.36^{\text {b }}$
เหนียวคำเปลือกขาว	ข้าวเหนียว	$21.84 \pm 0.81{ }^{\text {a }}$	$25.54 \pm 1.64{ }^{\text {a }}$	$26.08 \pm 4.63{ }^{\text {b }}$
เหนียวหลันตัน		7.59 ± 0.27^{8}	$16.54 \pm 0.67^{\text {b }}$	$18.87 \pm 1.18^{\text {c }}$

* ค่าเฉลี่ย SD ของการวิเคราะห์ 3 ซ้ำ, **พาะให้งอกตามสกาวะที่สรุปไว้ในตาราง 4.6
2.เ... $=$ ค่าเฉลี่งในแนวนอนของข้าวสายพันที์ดียวกันที่ตามด้วยอักษรที่แตกต่างกัน มีความแตกต่างกันทางสดิติ ($p<0.05$)

1.4.6 ปริมาณ GABA

ผลการวิเคราะห์ปริมาณ GABA ของข้าวกล้องและข้าวกล้องงอกทั้ง 4 พันตุ์ แสคงคังตารางที่ 4.13 พบว่าปริมาณ GABA ของข้าวกล้องทั้ง 4 พันธุ์ ได้แก่ พันธุ์ช่อลุง เล็บนกปัตตานี เหนียวคำเปลือกขาว และเหนียวหลันตัน มีค่าตั้งแต่ 4.07-9.97 มิลลิกรัม/100 กรัมตัวอย่าง (นน.แห้ง) โดยข้าวพันธุ์ช่อลุงมีปริมาณ GABA สูงที่สุด และเมื่อนำข้าวกล้องพันธุ์ต่างๆมาเพาะให้งอกตามสภาวะที่สรุปไว้ในตารางที่ 4.6 พบว่า ปริมาณ GABA ของข้าวกล้องงอกทั้ง 4 สายพันธุมีค่าเพิ่มมากขึ้นจากตัวอย่างข้าวกล้องก่อนเพาะ ($\mathrm{p}<0.05$) โดยมีค่าสูงเพิ่มขึ้น $7.53,8.30,6.80$ และ 20.69 เท่า ตามลำคับ ผลการทดลองที่ได้สอดคล้องกับหลายๆ การศึกษาที่รายงานว่ากระบวนการงอกมีผลช่วยทำให้ปริมาณ GABA ในเมล็คพืชเพิ่มสูงขึ้น (Saikura et al., 1994; Varanyanond et al., 2005; Komatsuzaki et al., 2007; Chung et al., 2009; Jiraporn, 2010) และจาก ปริมาณ GABA ของข้าวกล้องงอกทั้ง 4 สายพันธุ์ พบว่าข้าวเหนียวหลันตันซึ่งเพาะให้งอกโดยในภาชนะปิด (โดยแช่ในสารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่ pH 3 โดยใช้อัตราส่วนข้าว:น้ำ เท่ากับ $1: 2$ นาน 5 ชั่วโมง หลังจากนั้นนำมาเพาะต่อในกล่องพลาสติกที่มีฝาปีค ที่อุณหภูมิหैอง $\left(30 \pm 2{ }^{\circ} \mathrm{C}\right)$ นาน 48 ชั่วโมง) มี ปริมาณ GABA ที่สูงที่สุด แต่เนื่องจากผลการสำรวจความต้องการของผู้บริโภคที่มีต่อผลิตภัณฑ์ข้าวกล้อง งอกพบว่าผู้บริโภคกลุ่มเป้าหมาย (กลุ่มผู้สูงอายุ) คิดว่าผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปปเป็นผลิตกัณฑ์ที่ น่าสนใจมากที่สุดหากจะมีการพัฒนาข้าวกล้องงอกให้เป็นผลิตภัณฑ์ คังนั้นคณะผู้วัยังึงต้องคัดเลือกชนิด

ของข้าวให้สอคคล้องกับความต้องการของผู้บริโภคกลุ่มเป้าหมาย และปริมาณ GABA ของข้าวที่เป็นข้าวเจ้า ที่มีปริมาณ GABA สูงที่สุค คือ ข้าวพันธุ์ช่อลุงที่เพาะให้งอกโดยการแช่ในสารละลาย (สารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่ pH 3 โดยใช้อัตราส่วนข้าว:น้ำ เท่ากับ $1: 2$ และแช่ที่อุณหภูมิ $40^{\circ} \mathrm{C}$ นาน 48 ชั่วโมง) มี ปริมาณ GABA สูงที่สุด คังนั้นจึงเลือกข้าวพันธุ์ช่อลุงมาใช้เป็นตัวอย่างสำหรับใช้ในส่วนของการพัฒนา ผลิตภันฑ์รวมถึงส่วนของการแยกสารออกฤทธิ์จากข้าวกล้องงอกที่มีฤทธิ์ต้านการอักเสบและการทคสอบ ความเป็นพิษของสารสกัดจากข้าวกล้องงอก

ตารางที่ 4.13 ปริมาณ GABA ของข้าวกล้องงอกพันธุ์ต่างๆซึ่งเพาะจากสภาวะที่ให้ GABA สูงสุด ที่เวลา ต่างๆ

พันธุ์ข้ว	ประเภท	ปริมาณ GABA*	GABA* ตัวอย่าง, นน.แห้ง)
		ข้ววกล้อง	ข้ววกล้องงอก**
ช่อลุง	ข้าวเจ้า	$9.97 \pm 0.98^{\text {Ac }}$	$75.03 \pm 0.04{ }^{\text {Bc }}$
เล็บนกปัตตานี		$6.45 \pm 1.45^{\text {Ab }}$	$53.53 \pm 0.58{ }^{\text {Ba }}$
เหนียวดำเปลือกขาว	ข้าวเหนียว	$8.83 \pm 0.41^{\text {Ac }}$	$60.03 \pm 0.70^{\text {Bb }}$
เหนียวหลันตัน		$4.07 \pm 0.02^{\text {Aa }}$	$84.19 \pm 3.09{ }^{\text {Bd }}$

* ค่านลี่ยย SD ของการวิคราะห์ 3 ซ้ำ, *เพาะให้งอกตามสภาวะที่สรุ่ไว้ใวตาราง 4.6
2.b..." $=$ ค่าเฉลี่ยในแนวตั้งที่ตามด้วยอักษรที่แตกต่างกัน มีความแตกต่างกันทางสลิติ (p<0.05)

นอกจากนี้หลังจากที่มีการแยกส่วนของข้าวกล้องงอกทั้ง 4 สายพันเุ์เป็น 3 ส่วน คือ รำข้าว จมูก ข้าว และเนื้อด้านในของเมล็คข้าว (ไม่มีส่วนของรำและจมูกข้าว) และนำมาวิเคราะห์ปริมาณ GABA ได้ผล แสดงคังตารางที่ 4.14 ซึ่งจะพบว่าในแต่ละส่วนของเมล็คข้าวมีปริมาณ GABA ที่แตกต่างกัน ($\mathrm{p}<0.05$) โดย พบว่าส่วนจมูกข้าวมีปริมาณ GABA สูงที่สุค โดยมีค่าตั้งแต่ $180.70-429.06$ มิลลิกรัม/100 กรัมตัวอย่าง (นน. แห้ง) รองลงมา คือ รำข้าวและส่วนเนื้อด้านในของเมล็คข้าว ตามลำดับ โดยมีค่าตั้งแต่ 47.41-176.61 และ 15.11-24.42 มิลลิกรัม/100 กรัมตัวอย่าง (นน.แห้ง) ตามลำดับ

ตรรงงที่ 4.14 ปริมาม GABA ในส่วนต่างๆของข้วากล้องงอกทั้ง 4 สายพันโุุซึ่งเพาะากสกาวะที่ให้ GABA สงสุดที่เวาต่งๆา

ข้าวกล้องงอก**	ประเภท	ปริมาณ GABA* (มิลลิกรัม/100 กรัมตัวอย่าง, นน.แห้ง)			
		เน้้อด้านในของ เมล็ดข้าว	รำข้าว (เปลือกหุ้มเมล็ด)	จมูกข้าว	

*ค่เฉลี่ย SD ของการวิเคราะห์ 3 ซัำ, **เพาะให้งอกตตบสภาวะที่สรุปไว้ไนตาราง 4.6

1.4.7 กิจกรรมการต้านออกซิเดชั่น

ผลการวิเคราะห์กิจกรรมการต้านออกซิเคชันของข้าวกล้องงอกทั้ง 4 สายพันธุ์ ซึ่งประกอบด้วย การวิเคราะห์ DPPH radical scavenging activity, ABTS radical scavenging activity และ ferric reducing antioxidant power (FRAP) assay โดยรายงานผลในรูปมิลลิกรัมสมมูลของกรดเฟอรูลิกต่อ 100 กรัม ตัวอย่าง (mg equivalent of ferulic acid/ 100 g sample) แสดงคังตารางที่ 4.15

ตารางที่ 4.15 ปริมาณสารประกอบฟีนอลิกทั้งหมดและกิจกรรมการต้านออกซิเคชันของข้าวกล้องงอก

| ข้าวกล้องงอก** | ปริมาณ Total phenolic*
 $(\mathrm{mg} / 100 \mathrm{~g}$, นน.แห้ง) | Antioxidant activities* (mg FAE/100 g sample) | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | DPPH assay | ABTS assay | FRAP assay |
| ช่อลุง | $30.87 \pm 0.07^{\mathrm{c}}$ | $18.23 \pm 1.12^{\mathrm{c}}$ | $19.76 \pm 0.37^{\mathrm{c}}$ | $15.79 \pm 0.27^{\mathrm{c}}$ |
| เล็บนกปัตตานี | $23.30 \pm 0.43^{\mathrm{c}}$ | $15.69 \pm 0.44^{\mathrm{c}}$ | $15.77 \pm 0.48^{\mathrm{d}}$ | $13.27 \pm 0.02^{\mathrm{d}}$ |
| เหนียวคำเปลือกขาว | $164.01 \pm 0.97^{\mathrm{c}}$ | $142.70 \pm 3.71^{\mathrm{a}}$ | $119.31 \pm 0.83^{\mathrm{a}}$ | $160.02 \pm 2.13^{\mathrm{a}}$ |
| เหนียวหลันตัน | $52.76 \pm 3.69^{\mathrm{c}}$ | $25.76 \pm 0.66^{\mathrm{b}}$ | $35.14 \pm 0.95^{\mathrm{b}}$ | $33.07 \pm 0.24^{\mathrm{b}}$ |

* ค่าเฉลี่ยยSD ของการิเคราะห์ 3 ซ้ำ,**พาะให้งอกตามสภาวะที่สรุปไว้นนตาราง 4.6
2.b.... $=$ ค่าเฉลี่ยในแนวตั้งที่ตามด้วยอักษรที่แตกต่างกัน มีความแตกต่างกันทางสถิติ ($\mathrm{P}<0.05$).

ปริมาณสารประกอบฟีนอลิกทั้งหมดและกิจกรรมการต้านออกซิเดชัน ของข้าวเหนียวดำเปลือกขาว มีค่ามากที่สุด รองลงมาคื่อ ข้าวเหนียวหลันตัน ข้าวช่อลุง และข้าวเธ็บนกปัตตานี ตามลำดับ โดย สารประกอบฟืนอลิกชนิดพิ|ศษที่พบมากในข้าวโดยทั่วไปดีอสารประกอบเขอรูลิก (ferulic acii) กังนั้นใน
 ได้ว้าข้าวหนียยวดําปปลือกขขาวมีปริมามสารประกอบฟืนอลิกมากกว่าข้าวสยพันธุ้อน่นๆ ดังนั้นจึงงมีกิจกรรม การ้าน้นออกชิดหันที่มากกว่าเช่นกัน โดยผลการึึกษานี้สอคคล้องกับงานวิจัขของ Sawaddiwong และคมะ (2008) ซึ่งพบว่าข้าวกล้องงอกสายพันธ์ธังงช์หยคพัทลุซซึ่งเป็นข้าวที่มียยื่อมุ้มเมล็คสีเดงมีปริมาณ สารประกอบพีนอลิกทั้งนมดและกิจกรรมการต้านออกชิ|ดชันสูงกว่าข้าวเดี้งงพักลุงเละเล็บนกปัดตานี ซึ่ เป็นข้วที่มี่สีขขวตามลำดับ ซึ่งให้ผลในทำนองเดียวกันกับการึึกษาของ T Tian และคมะ (2004) รายานว่า ข้าวที่มีสีมีปริมาณสารประกอบฟีนอลิกมากกว่าข้าวที่ไม่มี่สี ึึ่งมีค่าท่ากับ 20.64 ± 3.45 และ 6.05 ± 1.39
 เมล็คและความเข้มของสีเมด็คที่เตกต่างกันไปอาจมีผลต่อปริมามสารประกอบฟืนอลิกที่แตคต่างกัน และ ส่งผลลหห้กิกกรรรมารต้านออกซิดดันแตกต่างกันไปด้วย

1.5 การยับบั้งการทำงานของเอนไชม่แอลฟ่า-อะไมเลส ในหลอดทดลองของข้ววกล้องอก

ในการศึกษมานี้ใช้้าวกล้องสาขันธ์เล็เดนกปัตตตานี ที่ได้จากกาเพาะในตระกร้า ระะะเวลา การงอก $0,12,24,36$ และ 48 ชั่วโมง เป็นตัวอย่างในการสกัดด้วย0.02 M phosphate buffer $\mathrm{pH} 6.9-0.15 \mathrm{M}$ NaCl ในสัคส่วน $1: 5$ โดยน้ำหนักต่อปริมาตร ที่ 4 องคาเซลเซียส นาน 16 ชั่วโมง คนด้วแแท่งแม่เหล็ก ต่อเนื่อง เซ็นตริวิวจ์ ที่ 4 องศาเซเเซียส เก็บสารละลายส่วนบน แล้วนำไปตรวจหา ปริมามโปรตืน และค่า การับบั้งกิกกรรมของงเอนไซม์มอลฟ่า-อะไมเสส ตามที่กล่าวในระเบียบวิธิวิวัย

ผลการศึกษบที่ได้ด้ใน รูปที่ 4.6 แสคงให้เห็นชัดว่า ระยะเวลาในการงอกมีผล ต่อความ
 งอกนานมีกักยภาพในการับบั้งกิจกรรมอะไมลสได้สูกก่าข้าวกล้องที่ใชรระะเวลาเพะสั้นกว่า

รูปที่ 4.6 ผลของระยะเวลาในการงอกกับการยับยั้งการย่อยแป้งของเอนไซม์อะไมเลสของสารสกัด จากข้าวเล็บนกปัตตานี

1.5.2 การกระจายตัวของสารยับยั้งอะไมเลสในเมล็ดข้าวกล้องงอก

ในการศึกษา ใช้ข้าวกล้องสายพันธ์เล็บนกปัตตานี ที่ได้จากการเพาะในตระกร้า ระยะเวลา การงอก $0,12,24,36$ และ 48 ชั่วโมง เป็นตัวอย่าง โดยตัดแยกเป็น 3 ส่วน ด้วยกรรไกร เป็น (1). ข้าวกล้องซึ่ง ยังมีส่วนของจมูกข้าวติดอยู่กับเมล็ดข้าว (2). จมูกข้าวซึ่งมีเฉพาะส่วนของจมูก และ (3). ข้าวสารซึ่งถูกตัด แยกจมูกข้าวออกแล้ว ดังรูปที่ 4.7 (แถวบนข้าวกล้อง แถวล่างข้าวกล้องงอก)

รูปที่ 4.7 ข้าวกล้อง ข้าวกล้องงอก และส่วนของข้าวสารและจมูกข้าว
นำข้าวตัวอย่างแต่ละส่วน ทั้ง 3 ส่วนที่ระยะเวลางอกต่างๆ มาบดละเอียด ชั่งน้ำหนัก และ สกัดด้วย 0.02 M phosphate buffer $\mathrm{pH} 6.9-0.15 \mathrm{M} \mathrm{NaCl}$ ตรวจหา ปริมาณโปรตีน และค่าการยับยั้งกิจกรรม ของเอนไซม์แอลฟ่า-อะไมเลส ตามที่กล่าวในระเบียบวิธิวิอัย

ผลการศึกษาที่แสดงในรูปที่ 4.8 พบว่าส่วนของจมูกข้าวมีศักยภาพในการยับยั้งอะไมเลส สูงสุด โดยเฉพาะจมูกข้าวที่ได้จากระยะเวลาการเพาะ 48 ชั่วโมง มีค่าสูงสุดเมื่อเทียบกับชั่วโมงเพาะอื่นๆ และตัวจูกข้าวงอกมองเห็นด้วยตาเปล่าอย่างชัดเจน ง่ายต่อการแยกส่วนจากข้าวสาร ส่วนข้าวกล้องพบว่าค่า การยับยั้งที่ได้มีค่าต่ำกว่าผลการวิเคราะห์จากจมูกข้าวเมื่อเปรียบเทียบที่ระยะเวลาการเพาะเดียวกัน ผลเช่นนี้ น่าจะสืบเนื่องจากปริมาณความเข้มข้นของตัวอย่างในสารสกัด ปริมาณจมูกข้าวในสัคส่วน $1: 5$ น้ำหนักต่อ ปริมาตร กับบัฟเฟอร์สกัดมีปริมาณตัวอย่างมากกว่าในสัดส่วนเดียวกันเมื่อใช้ในรูปของข้าวกล้อง ผลการ วิเคราะห์ส่วนของข้าวสาร พบว่าค่าการยับยั้งอยู่ในระดับต่ำมาก สารสกัดข้าวสารจากระยะเวลาเพาะ 48 ชั่วโมง มีค่าการยับยั้งไม่ถึงร้อยละ 50 ทั้งที่ยงงไม่มีการเจือจาง ทั้งนี้น่าจะเนื่องจากไม่มีส่วนของจมูกข้าวซึ่งมี ศักยภาพสูงในการยับยั้งกิจกรรมเอนไซม์อะไมเลส

ตารางที่ 4.16 แสดงปริมาณสารสกัดตัวอย่างข้าวที่ให้ค่าการยับยั้งอะไมเลส จากน้ำลายร้อย ละ 50 (IC50) จากส่วนต่างๆ ของข้าวกล้องอก โดยหาจากกราฟรูปที่ 4.8 ที่ค่าการยับยั้งร้อยละ 50 และ ที่ให้ ค่าการยับยั้งน้อยกว่าของสารตัวอย่างตั้งต้นก่อนการเจือจาง ผลที่ได้แสดงชัดว่าข้าวกล้องที่ผ่านการเพาะให้ งอก ระยะเวลาแช่ $0,12,24,36$ และ 48 ชั่วโมง มีศักยภาพในการยับยั้งกิจกรรมอะไมเลส จากน้อยไปมาก ตามระยะเวลาการเพาะให้เกิคการงอก และสารสำคัญที่มีผลหลักต่อการยับยั้งอยู่ในส่วนของจมูกข้าวที่งอก เป็นสำคัญ

ก. จมูกข้าว

ข. ข้าวกล้อง

ค. ข้าวสาร
รูปที่ 4.8 การกระจายตัวของสารยับยั้งอะไมเลสในส่วนต่างๆของเมล็ดข้าวกล้องอกพันธุ์เล็บนกปัตตานี เพาะ โดยใช้ภาชนะเปิด ที่ค่าการเจือจางต่างๆ (—ค่าการเจือจางตัวอย่างที่ร้อยละการยับยั้ง 50)

ตารางที่ 4.16 ปริมาณตัวอย่างที่ร้อยละการยับยั้งกิจกรรมอะไมเลสจากน้ำลาย 50 ร้อยละการขับยั้งของส่วน ต่างๆ ของข้าวกล้องงอก เล็บนกปัตตานี

ส่วนของข้าว	ปริมาณตัวอย่าง $(\mathrm{mg} / \mathrm{mL})$ ที่ร้อยละการยับยั้งกิจกรรมอะไมเลส $50^{\text {L }}$		
	จมูกข้าว (JNK)	ข้าวกล้อง (NK)	ข้าวสาร(RNK)
วัตถุคิบ (0 ชั่วโมง)	*	*	*
	(200 for 34.6\%)	(200 for 1.5\%)	(200 for 0\%)
แช่ 12 ชั่วโมง	170.5	*	*
		(200 for 7.6\%)	(200 for 1.8\%)
แช่ 24 ชั่วโมง	133.6	192.0	*
			(200 for 12.2\%)
แช่ 36 ชั่วโมง	55.3	141.5	*
			(200 for 35.9\%)
แช่ 48 ชั่วโมง	34.5	126.9	*
			(200 for 39.9\%)

ไการใช้าริมามตัวอย่างน้อย ในการัับยั้กกิจกรรมเอนไพม่อะไมเลส จากน้ำกยย้อยละ 50 (IC50) แสคงว่า ตัวอย่างนั้นมี ศักยภาพในการ ยับงั้งกิจกรรมเอนไชม์อะไมเลส จากน้ำลยยีุุด

* ไม่สามารถหาค่าㄷ 50 ค่แสสงคือปริมาณตัวอย่างที่ให้ค่าการับขั้งสูงสุดของตัวอย่างนั้นา

1.5.3 ผลกระทบของวิธีการเพาะข้าวกล้องงอกต่อการยับยั้งการทำงานของเอนไซม่อะไมเลส

การศึกษานี้ใช้ข้าวกล้องสายพันธุ์เล็บนกปัตตานีและช่อลุงที่ได้จากการเพาะในภาชนะเปิด (ตระกร้า) และที่ได้จากการเพาะแบบแช่ในสารละลาย Citric acid- $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer $(\mathrm{pH} 3)$ ที่ระยะเวลาการงอก 0,12 , 24,36 และ 48 ชั่วโมง เป็นตัวอย่างในการวิจัย ผลการวิเคราะห์ดังตารางที่ 4.17 พบว่าวิธีการเพาะในภาชนะ เปีดให้ผลต่อการยับยั้งอะไมเลสจากน้ำลายดีกว่าการเพาะแบบแช่ในสารละลายบัฟเฟอร์ สำหรับข้าวกล้อง เล็บนกปัตตานีและช่อลุง ซึ่งมีผลทำให้ศักยภาพในการยับยั้งอะไมเลสจากน้ำลายเป็น 0 ในการเพาะแบบแช่ ในสารละลายบัฟเฟอร์

ตารางที่ 4.17 ผลของวิธีเพาะต่อร้อยละการยับธั้งเอนไซม์อะไมเลสจากน้ำลายของสารสกัดข้าวเล็บนก ปัตตานีและช่อลุง

ข้าว	รออยละการยับยั้งกิจกรรมอะไมเลส*			
	การเพาะในภาชนะปิด		การเพาะแบบแช่ในสารละลาย	
	เล็บนกปัตตานี	ช่อลุง	เล็บนกััตตานี	ช่อลูง
วัตถุคิบ (0 ชั่วโมง)	1.48	10.82	<0	7.62
แช่ 12 ชั่วโมง	7.59	19.24	<0	<0
แช่ 24 ชั่วโมง	52.16	31.10	<0	<0
แช่ 36 ชั่วโมง	67.18	79.24	<0	<0
แช่ 48 ชั่วโมง	76.26	91.85	<0	<0
*อะไมเสสากน้ำยา จา	ลี่งตัวอย่าง 1 โุ่น	ครั้ง วิเค	บ 2 ชำ	

ตารางที่ 4.18 แสดงผลการขับยั้งต่อเอนไซม์อะไมเลสจากน้ำลาย และ ตับอ่อน ของข้าวพันธุ์ ช่อลุงที่ทำให้งอกด้วยวิธีการเพาะในภาชนะเปิด และเพาะแบบแช่ในสารละลายบัฟเฟอร์ พีเอช 3 พบว่า วิธีการเพาะในภาชนะเปิดให้ผลคีกว่าแบบแช่เช่นเดียวกัน ทั้งเอนไซม์จากน้ำลาย และตับอ่อน แตกต่างตรงที่ การเพาะแบบแช่มีผล ลดศักยภาพในการยับยั้งอะไมเลสจากน้ำลายเป็น 0 แต่ยังมีค่าการยับยั้งอะไมเลสจาก ตับอ่อนในระดับที่สูงกว่ามาก
ตารางที่ 4.18 ผลของวิธีเพาะต่อร้อยละการยับยั้งกิจกรรมเอนไซม์อะไมเลสของสารสกัดข้าวกล้องช่อลุง

ข้าว	ร้อยละการยับยั้งกิจกรรมอะไมเลส ${ }^{+}$			
	การเพาะในตระกร้า		การเพาะแบบแช่	
	จากน้ำลาย	จากตับอ่อน	จากน้ำลาย	จากตับอ่อน
วัตถุคิบ (0 ชั่วโมง)	10.82	92.72	7.62	95.08
แช่ 12 ชั่วโมง	19.24	94.22	<0	96.69
แช่ 24 ชั่วโมง	31.10	89.69	<0	100.00
แช่ 36 ชั่วโมง	79.24	80.02	<0	94.84
แช่ 48 ชั่วโมง	91.85	87.29	<0	94.00

จจากค่เฉลี่งตัวอย่า 1 รุ่น สกัค 1 ครั้ง วิครระหหเบบ 2 ซ้ำ

1.5.4 ผลของสายพันธุ์ข้าวกับการยับยั้งการทำงานของเอนไซม่แอลฟ่า-อะไมเลสจากการเพาะแบบแช่

การศึกษานี้ ใช้ข้าวกล้อง 4 สายพันธุ์ คือ เล็บนกปัตตานี ช่อลุง เหนียวหลันตัน และ เหนียว คำเปลือกขาว ที่ได้จากการเพาะแบบแช่ที่ระยะเวลาการงอก $0,12,24,36$ และ 48 ชั่วโมง เป็นตัวอย่างในการ วิจัย ผลการวิเคราะห์ในตารางที่ 4.19 พบว่าในสภาวะก่อนนำไปทำการเพาะข้าวกล้องสายพันธุ์หนียวดคำ เปลือกขาวมีความสามารถในการยับยั้งเอนไซม์จากน้ำลายสูงสุด (33.02\%) ข้าวกล้องสายพันธุ์เหนียวหลัน ตันลำดับรอง (15.63%) ช่อลุงมีความสามารถในการยับยั้งเอนไซม์อันดับสาม (7.62%) ส่วนเล็บนกปัตตานี ไม่พบค่าการยับยั้ง เมื่อนำไปเพาะแบบแช่ในสารละลายบัฟเฟอร์ พบว่า ข้าวกล้องสายพันกุ์เหนียวคำเปลือก ขาวมีความ สามารถในการยับยั้งการทำงานย่อยแป้งของเอนไซม์สูงขึ้นตามระยะเวลาเพาะ จาก $12,24,36$ และ 48 ชั่วโมง ดังนี้ $33.02,33.22,39.65,50.27,63.96$ แต่ข้าวกล้องสายพันธุ์เหนียวหลันตันมีความสามารถ ในการยับยั้งการทำงานย่อยแป้งของเอนไซม์สูงขื้นตามระยะเวลาเพาะในช่วง 24 และ 36 ชั่วโมง คือ 24.51% และ 24.63% และกลับลดลงใกล้เคียงกับก่อนเพาะที่เวลาเพาะ 48 ชั่วโมง ส่วนข้าวกล้องเล็บนกปัตตานีและ ข้าวกล้องช่อลุง ไม่พบค่าร้อยละการยับยั้งเอนไซม์ทุกระยะเวลาการเพาะแบบแช่ ตารางที่ 4.19 ผลของสายพันธุ์ข้าวกล้องต่อร้อยละการขับยั้งกิจกรรมเอนไซม์อะไมเลส จากการเพาะแบบแช่ ที่เวลาเพาะต่างๆ

ส่วนของข้าว	ร้อยละการยับยั้งกิจกรรมเอนไซม์อะไมเลส							
	น้ำลาย				ตับอ่อน			
	ช่อลุง	เล็บนก ปัตตานี	เหนียว แดง หลันตัน	เหนียว ดำ เปลือก	ช่อลุง	เล็บนก ปัตตานี	เหนียวห ลันตัน	เหนียว ดำ เปลือก
				ขาว				ขาว
วัตถุดิบ (ไม่แช่)	7.62	<0	15.63	33.02	95.08	86.44	87.03	78.24
แช่ 12 ชั่วโมง	<0	<0	12.12	33.22	96.69	90.73	92.35	77.98
แช่ 24 ชั่วโมง	<0	<0	24.51	39.65	100.00	91.90	103.65	78.75
แช่ 36 ชั่วโมง	<0	<0	24.63	50.27	94.84	87.02	115.42	100.77
แช่ 48 ชั่วโมง	<0	<0	17.74	63.96	94.00	63.32	88.11	99.87

หมายเหต 0 *: ข้าวกล้องวัตถุคิบ ก่อนทำให้งอก
ส่วนศักยภาพในการยับยั้งการทำงานย่อยแป้ง ของเอนไซม์แอลฟ่า-อะไมเลสจากตับอ่อน ของข้าวกล้องพันธุ์ช่อลุง เล็บนกปัตตานี เหนียวหลันตัน และเหนียวคำเปลือกขาว ในสภาวะก่อนนำไปทำ การเพาะ พบว่าก่อนการเพาะข้าวกล้องช่อลุงมีค่าร้อยละการยับยั้งสูงสุด(95.08%) และสูงกว่าข้าวกล้องเล็บ นกปัตตานีและข้าวกล้องเหนียวหลันตัน ซึ่งมีศักยภาพพอๆกัน $(86.44 \%, 87.03 \%)$ และข้าวกล้องเหนียวดำ
 ของเอนไมม่สูงขึ้นตามระะะเวลนพาะในช่วง 12 และ 24 ชั่วโมง สำหรับข้าวกล้องง่อลงง ข้าวกล้องเล็บนก

 มีค่าร้อยลละกรรับบั้งอนไไชม์ในช่วง 12 และ 24 ชั่วโมง 90.73 และ 91.90 ตามลําดับ ที่ 36 และ 48 ชั่วโนง มี ค่าร้อยละการับขั้งเอนไซมี่ลคลงเป็น 67.19 และ 63.32 ตามลำคันววลา ข้าวเหียวหลันตันมี่าร้ร้อยละการ ชับบั้งเอนไชม่ในช่วงง 12 และ 24 ชั่วโมง เท่ากับ 92.35 และ 103.65 ตามลำคับ แค่เมี่อเวลาการเพาะสูขึ้นที่ 36

ข้าวกล้องเหนียวดำเปลือกขาว พบว่าความสามารกในการยับยั้งการทำงงนย่อแแปิงของ เอไซซม์จากตับอ่อนไม่เตกต่างกันทางสลิติระหว่งงข้าวกล้องก่อนเพาะ เพาะที่ 12 และ 24 ชั่วโนง (78.24\%,
 100.77 และ 99.87 ตามลำดับ อย่างมีนียสำคัญททงสลิคิ (p<0.05)

1.6 ชนิดแแะงริมาณของิิตมินของข้าวงอก

ในการทคลองนี้ใช้ข้ววกล้องช่อลุงและข้ววเหนียวคำปปลือกขาว ในการิวคราะห์วิตพิน ละลยในไขมัน ตารางที่ 4.20 แสคงผลการวิครราม์ไริมาณละลขดีในไขมันเอ คี และอี พบว่า ข้าททั้ง 2

 ทำการเพาะ เท่ากับบ 0.72 มิลลิกิรัมวิวามิน/ 100 ตัวอย่งที่ใช้สกัด และภยหลังการเพาะแบบแช่ 48 ชั่วโมง
 เพาะ เท่ากับ 1.29 มิลลิกัรัมวิามิน/ 100 ตัวอย่างที่ไช้สกัด และภยยลังกรเเพาะ 48 ชั่วโมง เท่ากับ 0.97 มิลกิกรัมวิตินิิ/ 100 ตัวอย่างที่ใช้สกัด

ชั่วโมงที่เพาะ	มิลลิกรัมวิตามิน/ 100 กรัม ตัวอย่าง					
	บ่อลุง			เหนียวดำเปลือกขาว		
	เอ	ดี	อี	เอ	ดี	อี
0*	nf	nf	0.72	nf	nf	1.29
48	nf	nf	0.63	nf	nf	0.97

หมายเหตุ 0^{*} : ข้าวกล้องวัตถุคิบ ก่อนทำให้งอก; nf : not found

เพื่แแรียบผลการวิเครรหห์ระหว่าง 2 สายพันฐุ พบว่าข้าวกล้องสายพันฉุ์หนียวคำปปลือก ขามีปริมามวิตามินีี สูงกว่าข้าวกล้องสาชันโุ์ช勹อลุง 1.79 เท่า ในภาวะก่อนทำกรรเพาะ และ 1.54 เท่าใน กาวะกชหลังการเพาะ 48 ชั่วโมง

เมื่แแรียบบเทียบค่าก่อนการเพากับกายหลังการเพาะ 48 ชั่วโมง พบว่าปริมามวิาามินอี คคลงทั้ง 2 สาขพันโุ์ในกกรเพาะแบบแช่ โดยข้าวกล้องสายพันหุ์ชอลุงก่อนการเพาะมีค่าวิตมมิิดีสูงกว่าหลัง กรเพาะ 48 ชั่วโโมง 1.14 เท่า หรือการเพาะแบบแช่นาน 48 ชั่วโมง มีผลลคค่าปริมามวิิามินอีลงรัอยละ 12.5 (คำนวม จาก: ($0.72-0.63$)(0.72*100) ส่วนข้วกล้องสายันตุหหนียวคำปลื่อกขาว ก่อนการเพะะมค่า วิตามินีีสูงกว่าหลังการเพาะ 48 ชั่วโมง 1.33 เท่า หรือการเพาะแบบแช่นาน 48 ชั่วโมง มีผลค่าาคคปริมาณ วิตพินอี ลงร้อยละ 24.8 (คำนวณ จาก:($1.29-0.97) 0.97 * 100$)

วิตามิน กลุ่มละลยยดีนไขมันที่พบในตัวอย่างข้าวกล้องที่วิเคราะห์ คือวิตมินอี ส่วน วิตพบิน๒ และ ดี ไม่พบปริมาณวิตามินีี คิคตาม ค่แนะนำปริมาณที่ควรได้รับแต่ละวันของคนไทย (Thai RDA) สำหรับ 1 หน่วยยริโกคของข้ววสาร 50 กรัม พบว่า ข้ววกล้องพันธุ์ช่อลงก่อนเพาะะ และที่เวาเพาะ 48 มีมริมามมิตติินอี้อยละ 3.6 และ 3.15 ของส่วนปริมามวิาามินอีของข้าวกล้องพันฉุ์หนียวคำปปลือกขาว ก่อนพาะ และที่เวลาพาะ 48 มีรริมามวิามินอืรีอยละ 6.45 และ 4.85 ตามลำคับ

1.6.2 ชิินและะริมาณวิตามินปปรียบเทียบระหว่งงวลเที่พาะข้าวกล้อง

ในการทคลองนี้ใช้ข้วกกล้องช่อลุง ในการวิคราะห์วิาามินละลายยนไขมัน ตารงที่ 4.21 แสคงผลกรรวิคราะห์ไริมามละลายดีในไขมันเอ ดี และอี ของข้าวกล้องสายพันโุ์ช่อลุง ก่อนทำกรเหาะ และกยหลังระะะเวลที่ทำกากรเพาะแบบแช่ ตั้งเต่ $12,24,36$, และ 48 ชั่วโเมพพบว่า ทุกห่วงวลาพบแต่
 ปริมานวิตพิินอี ในหน่วชมิลลิกัรมวิิามมิน/ 100 ตัวอย่งงที่ใช้สกัด ที่พบของเต่ลชช่วงเวลกการเพะะดือ ก่อน ทำการเพาะ เท่ากับ 0.72 และกยาหกังการเพาะ $12,24,36$, และ 48 ชั่าโมง เท่ากับ $0.86,0.70,0.57$ และ 0.63 ตมมลําดับ
ตารงที่ 4.21 ผลของชั่วโมงเพาะแบบแห่ต่อปริมาณวิามินกลุ่มละะกยดืในไขมัน ของข้วกกล้องช่อลุง

	มิลลิกรัมวิตามิน/ 100 กรัม ตัวอย่าง		
ชั่วโมงที่เพาะ	เอ	ดี	อี
0^{*}	nf	nf	0.72
12	nf	nf	0.86
24	nf	nf	0.70
36	nf	nf	0.57
48	nf	nf	0.63

หมายแหต 0^{*} : ข้าวกล้องวัตถุดิบ ก่อนทำให้งอก; nf: not found

ผลการวิเคระะห์ที่ได้แสคงว่าระยะเวลกการเพาะแบบแช่ 12 ชั่าโมงให้ค่าปริมามวิติมิน อี สูงสุด โดขสูงก่าข้ววกล้องก่อนทำการเพาะ 1.19 เท่า ส่วนระะะวลลที่ทำการเพาะตั้งแต่ $24-48$ ชั่วโนง มีผล ลดปริมามของิิตมิินอี กงในช่วง $0.57-0.70$ หรือเฉลี่ย 0.63 มิลลิกัรัมวิามิน/ 100 ตัวอย่างที่ใช้สกัด ซึ่งต่า กว่าปริมานวิตานินอิ เริ่มต้นของข้าวกล้องก่อนเพารร้อยละ 12.5

ตัวอย่างข้าวกล้องงอกที่นำมาใช้ในการแยกสารสำคัญู่ี่มีถทริ์ต้านการอักเสบ คือ ข้าวพันหุ์ช่อลุงที่ เพาะไห้งอกโดยการแช่ในสารละสาย (สารละลยย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่ pH 3 โคยใช้อัตราส่วนของ ข้าว: น้ำเท่ากับ $1: 2$ และแช่ที่คุณหภูมิ $40^{\circ} \mathrm{C}$ นาน 48 ชั่วโมง) ซึ่งเป็นตัวอย่างที่มีปริมาณ GABA สูงที่โุด ที่ คัคเลือกได้จ้ากข้อ 1.4.6

หลังจากนำตัวอย่างข้าวกล้องงอกดังกล่าวมาสกัคด้ววตัวทำละลยยเอรานอลต่อน้ำ (อัตรสส่วน $1: 1$) สารสกัคที่ได้จากการทำแห้งโดย freezed dry มีปริมาณ 29.26 กรัม หลังจากนั้นเมื่อแยกสารด้วขวิธี chromatography พบว่าสามารณยกสารไ้้ 2 fraction คือ

1. Fraction A มีน้ำหนัก 234.5 มิลลิกรัม
2. Fraction B มีน้ำหนัก 499.7 มิลลิกรัม

และจากผลการประเมินดทธิ์กรรับบบั้งสาร nitric oxide wบว่า Fraction A มีค่า $1 \mathrm{C}_{50}=37.7 \mu \mathrm{~g} / \mathrm{ml}$ ในขแะที่ $\operatorname{Fraction} \mathrm{B}$ มีค่า $1 \mathrm{I}_{50}>100 \mu \mathrm{~g} \mathrm{~m}$ จึ งึทำการแยกสารจากทั้ง 2 fraction ดังนี้

1.7.1 กรเยกสารจาก fraction A

นำสารสกัด fraction A จำนวน 230 มิลลิกรัมมาแยกด้วย silica gel column chromatography โดยใช้ ตัวทำละลายดังนี้

- $\mathrm{EtOAc}(\mathrm{ml})$: $\mathrm{MeOH}(\mathrm{ml})$: Water (ml) : Formic acid (drop) อัตราส่วน (8: 1.5: 0.5:2)
- $\mathrm{EtOAc}(\mathrm{ml})$: $\mathrm{MeOH}(\mathrm{ml})$: Water (ml) : Formic acid (drop) อัตราส่วน (6: 3.5: 0.5: 2)

ซึ่งแยกได้ 7 fraction ย่อยได้แก่ $\mathrm{F} 1-\mathrm{F} 7$ แสดงผลดังตารางที่ 4.22 ซึ่งเมื่อพิจารณาน้ำหนักแล้วพบว่า แต่ละ fraction มีน้ำหนักน้อยไม่สามารณแยกต่อได้เนื่องจากองค์ประกอบแต่ละ fraction ซับซ้อน

ตารางที่ 4.22 ผลการแยกด้วย silica gel column chromatography ของ Fraction A

Fraction A	น้ำหนัก (มิลลิกรัม)
F1	15.4
F2	30.0
F3	34.6
F4	6.5
F5	29.4
F6	33.0
F7	43.8

1.6.2 การแยกสารจาก fraction B

นำ Fraction B 490 มิลลิกรัมมาแยกด้วย silica gel column chromatography โคยใช้ตัวทำละลาย $\mathrm{EtOAC}(\mathrm{ml}): \mathrm{MeOH}(\mathrm{ml}):$ Water (ml): Formic acid (drop) (6:3.5:0.5:2) ได้ 5 fraction ย่อย ได้แก่ F1-F5 ดัง ตารางที่ 4.23

ตารางที่ 4.23 ผลการแยกด้วย silica gel column chromatography ของ Fraction B

Fraction ที่	น้ำหนัก (มิลลิกรัม)
F-1	50
F-2	170
F-3	110
F-4	130
F-5	10

พบว่า $\mathrm{F} 2, \mathrm{~F} 3$ และ F 4 มีปริมาณมากพอที่จะทำการแยกต่อได้ แต่จากการทดสอบด้วย Thin Layer Chromatography (TLC) พบว่า fraction F4 มีแถบที่แยกได้ (band) ไม่ซับซ้อน จึงเลือก F4 มาศึกษาต่อ เพื่อให้ทราบองค์ประกอบทางเคมีและใช้ในการควบคุมคุณภาพวัตถุคิบ จึงนำ F 4 จำนวน 130 มิลลิกรัม มา แยกต่อด้วย silica gel column chromatography ได้ 4 fraction F6-F9 (ตาราง 4.24)

ตารางที่ 4.24 ผลการสกัดแยกของ Fraction F-4

Fraction ที่	น้ำหนัก (มิลลิกรัม)
F-6	29.6
F-7 *	28.9
F-8	30.2
F-9*	38.5

จากการแยก Fraction F 4 มีสารที่น่าสนใจ 2 ตัวคือ F 7 และ F 9 เพราะเมื่อวิเคราะห์ลักษณะบน TLC พบว่า มีลักษณะเป็น spot เดียว ซึ่งมีแนวโน้มที่จะบริสุทธิ์ จึงนำไปวิเคราะห์ NMR แสดงผลคังตารางที่ 4.25 ตารางที่ 4.25 ผลการวิเคราะห์ ฤทธิ์และ 'H NMR

Fraction	IC $_{50}$	ผล $^{\text {'H NMR }}$
F7	$>100 \mu \mathrm{~g} / \mathrm{ml}$	แทบจะไม่มีสัญญาณ proton เลยยกเว้นที่ 8.43 ppm
F9	$107.7 \mu \mathrm{~g} / \mathrm{ml}$	พบสัญญานของ ${ }^{1} \mathrm{H}$ NMR ดังตารางที่ 4.26

สามารถประเมินได้ว่า F9 น่าจะเป็น hydroxy phenyllactic acid ซึ่งข้อมูล 'H NMR เปรียบเทียบได้ กับข้อมูลขององค์ประกอบย่อยของ micropeptins (Adiv et al., 2010) ที่ทำการ run โดยใช้ตัวทำละลายเป็น DMSO-d ${ }_{6}$

ตารางที่ 4.26 แสคง ${ }^{1} \mathrm{H}$ NMR ของ $\mathrm{F9}\left(\mathrm{D}_{2} \mathrm{O}\right)$

Position	δ (multiplicity)
2	$3.84(\mathrm{dd}, 7.3,5.5)$
3	$2.95(\mathrm{dd}, 14.6,7.3)$ และ $3.10(\mathrm{dd}, 14.6,5.5)$
5,9	$7.10(\mathrm{~d}, 7.8)$
6,8	$6.80(\mathrm{~d}, 7.8)$

รูปที่ 4.9 สูตรโครงสร้าง Hydroxy Phenyllactic acid

ดังนั้นจากการทดสอบเบื้องต้นพบว่าสามารถแยกสารสำคัญจากสารสกัดข้าวกล้องงอกได้ 2 ชนิด สารชนิดที่ 1 แทบจะไม่มีสัญญาณ proton และค่า IC50 $>100 \mu \mathrm{~g} / \mathrm{mL}$ สารชนิคที่ 2 น่าจะเป็น Hydroxy Phenyllactic acid ซึ่งมีค่า $1 \mathrm{C} 50=107.7 \mu \mathrm{~g} / \mathrm{mL}$ ซึ่งงานวิจัยนี้ไม่สามารถแยกสารสกัดที่มีถทธิ์ดีใกล้เคียงกับ สารสกัดหยาบได้ อาจเนื่องมาจากสารที่มีฤทธิ์ดีมีปริมาณน้อย จึงไม่สามารถแยกสารสำคัญออกมาได้ หรือ ฤทธิ์ต้านการอักเสบเป็นฤทธิ์ที่เกิดจากการเสริมฤทธิ์ของสารต่างๆในสารสกัดหยาบ อย่างไรก็ตามสามารถ ใช้ Hydroxy phenyllactic acid เป็น marker ควบคุมคุณภาพถึงแม้มีฤททิ์ต้านอักเสบไม่ดีมากนัก นอกจากนี้ยัง พบว่า Hydroxy phenyllactic acid ยังเป็นองค์ประกอบของ oligopeptides หลายชนิดเช่น aeruginosins ซึ่ง aeruginosins มีฤทธิ์ขับยั้งการเกิด thrombin ป้องกันการเกิด thrombosis หรือการผิดปกติของการแข็งตัวของ เลือดได้ (Nie ang Wang, 2008)

1.7 การทดสอบความเป็นพิษเฉียบพลันและเป็นพิษกึ่งเรื้อรังในสัตว์ทดลองของสารสกัดจากข้าว

 กล้องงยก
1.7.1 การทดสอบความเป็นพิษเฉียบพลันโดยเบื้องต้น

ในการทคสอบความเป็นพิษเฉียบพลันเบื้องต้น ทำการทคสอบโคยใช้หนูถีบจักรและสารละลาย ที่ใช้ป้อน คือ สารสกัคข้าวกล้องงอก (ที่เตรียมได้จากข้อ 1.7 .1 ของบทที่ 3) ทำการละลายสารสกัดโดยใช้น้ำ กลั่น เป็นตัวทำละลาย หลังจากนั้นป้อนสารสกัดข้าวกล้องงอกขนาด 2 กรัม/กิโลกรัมของน้ำหนักตัวหนู สังเกตอาการเป็นเวลา 7 วันหลังจากการป้อนสารสกัดแสดงผลดังตารางที่ 4.27 ตารางที่ 4.27 ผลการทคสอบฤทธิ์เุียบพลันโดยเบื้องต้น

หนูถีบจักร	อาการแสคงหลังจากให้สารสกัคเป็นเวลา			
	$1-3$ ชม.	1 วัน	3 วัน	7 วัน
	-	-	-	-
	-	-	-	-

- ไม่พบอาการผิดปกติใดๆ

จากผลการทดสอบความเป็นพิษเฉียบพลันโดยเบื้องต้นหลังจากให้สารสกัคข้าวกล้องงอกใน ขนาค 2 กรัมต่อกิโลกรัมเพียงครั้งเดียว ดังแสดงในตารางที่ 4.21 พบว่เมื่อเวลาผ่านไป 7 วัน ไม่พบสิ่ง ผิดปกติของหนูและไม่ทำให้หนูถีบจักรตาย

1.7.3 การทดสอบความเป็นพิษกึ่งเรื้อรัง

1.7.3.1 ผลของสารสกัดต่อน้ำหนักตัวของสัตว์nดลอง

เมื่อเปรียบเทียบค่าเฉลี่ยของน้ำหนักตัวหนูแต่ละกลุ่ม ตั้งแต่เริ่มต้นจนสิ้นสุคการทดลอง(รูปที่ 4.10) พบว่า น้ำหนักตัวเฉลี่ยของหนูเพศผู้ทุกกลุ่มเพิ่มขึ้นอย่างต่อเนื่อง และไม่มีความแตกต่างระหว่างกลุ่มที่ ได้รับสารสกัดกับกลุ่มควบคุมตลอคระยะเวลา12 สัปดาห์ $(p>0.05)$ ในขณะที่น้ำหนักตัวของหนูเพศเมีย

แทบไม่เปลี่ยนแปลง ยกเว้หหนูกลุ่มควบคุมซึ่งมีน้ำหนักตัวเฉลี่ยเพิ่มขึ้น $(p<0.05)$ ตั้งแต่สัปดาห์ที่ 4 แต่ค้วย อัตราที่ช้ากว่าหนูเพศผู้ในวัยเดียวกันมาก ส่วนหนูที่ได้รับสารสกัคทั้ง 3 กลุ่มนั้น ถึงแม้น้ำหนักตัวมีแนวโน้ม เพิ่มขื้นแต่ไม่แตกต่างอย่างมีนัยสำคัญากกเริ่มต้น อย่างไรก็ตามเมื่อเปรียบเทียบน้ำหนักตัวเฉสี่ยของหนูเพศ เมียแต่ละกลุ่มในสัปดาห์สุดท้ายของการทคลอง ไม่พบความแตกต่าง $(p>0.05)$ จึงสรุปว่า สารสกัดข้าวงอก ในทุกขนาด (dose) ที่ใช้ทคสอบไม่มีผลต่อน้ำหนักตัวของหนูขาวทั้งเพศผู้และเพศเมีย

รูปที่ 4.10 แสดงความสัมพันธ์ระหว่างระยะเวลาทคลองกับน้ำหนักตัวของหนูขาวเพศผู้ (M) และเพศเมีย (F) ซึ่งได้รับสารสกัดข้าวกล้องงอกในขนาคต่างๆ กัน (control $=0 \mathrm{mg} / \mathrm{kg} \mathrm{BW} /$ day, low dose $=75$ $\mathrm{mg} / \mathrm{kg} \mathrm{BW} /$ day, middle dose $=150 \mathrm{mg} / \mathrm{kg}$ BW $/$ day, high dose $=300 \mathrm{mg} / \mathrm{kg} \mathrm{BW} /$ day $)$ ผลที่แสคง เป็นค่าเฉลี่ยของแต่ละกลุ่ม (mean $\pm \mathrm{SEM}), \mathrm{n}=10 ; *=p<0.05$ เทียบกับเมื่อเริ่มต้นการทดลอง น้ำหนักตัวเฉลี่ยระหว่างกลุ่มของหนูแต่ละเพศในสัปดาห์ที่ 12 ไม่มีความแตกต่างกัน $(p>0.05)$

1.7.3.2 ผลของสารสกัดต่อค่าพารามิเตอร์ต่างๆ ทางชีวเคมีในเลือด

เมื่อพิจารณาระดับเฉลี่ยของสารชีวเคมีต่างๆ ในเลือดของหนูทุกกลุ่มเมื่อสิ้นสุดการทคลอง ดัง แสดงในตารางที่ 4.28 พบว่าในพลาสมาของหนูกลุ่ม LD และ MD ทั้งเพศผู้และเพศเมียซึ่งได้รับสารสกัดใน ขนาด 75 และ $150 \mathrm{mg} / \mathrm{kg}$ BW/day ตามลำคับ มีค่าเฉลี่ยของพารามิตอร์ทางชีวเคมีบางชนิคแตกต่างจากหนู กลุ่มควบคุมเพคเดียวกัน ในขณะที่ กลุ่ม HD ซึ่งได้รับสารสกัคในปริมาณที่สูงกว่าไม่พบความเปลี่ยนแปลง ใดๆ เลย ทำให้เข้าใจว่า ค่าแตกต่างจากกลุ่มควบคุมซึ่งพบเฉพาะในกลุ่ม LD และ MD นั้นน่าจะเป็นความ แปรปรวนทางชีวภาพซึ่งเป็นเรื่องปกติในสัตว์ทดลองมากกว่าฤทธิ์ของสารสกัด เพราะผลที่เกิดขึ้นไม่สม่ำเสมอ ค่าต่างๆ ที่ว้ดได้ยังอยู่ในช่วงอ้างอิง (reference intervals) ของหนู Wistar ปกติซึ่งมีขนาดตัวใกล้เคียงกับ ที่ใช้ในการศึกษาครั้งนี้ (Boehm et al, 2007) และที่สำคัญคือ ระดับความแตกต่างไม่แปรตามขนาคของสาร สกัคที่หนูได้รับ

ดังนั้น การได้รับสารสกัดข้าวกล้องงอกที่ใช้ทคสอบในขนาคที่สูงถึง $300 \mathrm{mg} / \mathrm{kg}$ BW/day ซึ่ง คิคเป็น 4 เท่าของปริมาณสารสกัดที่คนเราหนักประมาณ 60 กิโลกรัม จะได้ร้บเมื่อบริโภคข้าวกล้องงอกเฉลี่ย วันละ 3 มื้อ (300 กรัม) ติคต่อกันนาน 12 สัปดาห์ จึงไม่มีผลต่อค่าพารามิตอร์ต่างๆ ทางชีวเคมีในเลือคของ สัตว์ทดลอง ซึ่งสามารถสะท้อนได้ถึงสภาพของอวัยวะภายในโดยเฉพาะตับกับไต นั่นเอง ตารางที่ 4.28 ผลการตรวจวัดระดับสารชีวเคมีต่างๆ ในพลาสมาของหนูแต่ละกลุ่มซึ่งได้รับสารสกัคข้าว กล้องงอกในขนาดต่างๆ กัน (control $=0 \mathrm{mg} / \mathrm{kg}$ BW/day, $\mathrm{LD}=75 \mathrm{mg} / \mathrm{kg} \mathrm{BW} / \mathrm{day}, \mathrm{MD}=150 \mathrm{mg} / \mathrm{kg}$ BW/day, $\mathrm{HD}=300 \mathrm{mg} / \mathrm{kg}$ BW/day)

Parameters	Treatment Groups			
	Control	LD	MD	HD
Male Rats				
Glucose (mg\%)	88.50 ± 3.72	75.44 ± 5.50	$66.71 \pm 10.52^{*}$	86.00 ± 5.08
BUN (mg\%)	26.46 ± 1.45	$21.24 \pm 3.82^{*}$	$21.80 \pm 0.94^{*}$	25.03 ± 0.77
Creatinine (mg\%)	0.64 ± 0.20	0.68 ± 0.36	$0.43 \pm 0.46^{*}$	0.56 ± 0.03
Cholesterol (mg\%)	54.00 ± 4.26	77.00 ± 5.83	$69.88 \pm 5.97^{*}$	60.40 ± 3.62
Triglycerides	47.70 ± 3.50	$90.56 \pm 10.73^{*}$	$82.00 \pm 16.40^{*}$	52.10 ± 3.66
HDL-C (mg\%)	42.30 ± 4.07	40.22 ± 4.99	42.33 ± 7.33	32.56 ± 2.49
Total Protein (g\%)	7.10 ± 0.11	$8.29 \pm 0.12^{*}$	$7.75 \pm 0.23^{*}$	7.10 ± 0.10
Total Bilirubin	0.50 ± 0.07	0.53 ± 0.08	0.75 ± 0.22	0.42 ± 0.10
AST (U/L)	$191.80 \pm$	$257.00 \pm$	$239.38 \pm$	178.00 ± 8.71
ALT (U/L)	45.90 ± 2.84	43.44 ± 1.44	47.75 ± 4.84	51.70 ± 4.44

ตารางที่ 4.28 (ต่อ)

Parameters	Treatment Groups			
	Control	LD	MD	HD
Male Rats				
Alkaline				
Phosphatase (U/L)	65.10 ± 2.48	61.44 ± 2.65	76.13 ± 14.17	67.70 ± 3.53
Albumin (g\%)	3.49 ± 0.04	$3.86 \pm 0.04^{*}$	3.52 ± 0.26	3.47 ± 0.06
Uric Acid (mg\%)	1.20 ± 0.15	$1.92 \pm 0.14^{*}$	$1.99 \pm 0.20^{*}$	1.56 ± 0.12
Femalemale Rats				
Glucose (mg\%)	68.30 ± 4.48	$131.83 \pm$	55.50 ± 9.43	72.00 ± 6.99
BUN (mg\%)	27.85 ± 1.71	22.33 ± 5.58	30.40 ± 5.79	24.72 ± 1.49
Creatinine (mg\%)	0.74 ± 0.10	$0.43 \pm 0.10^{*}$	0.73 ± 0.05	0.58 ± 0.02
Cholesterol (mg\%)	50.30 ± 4.41	85.43 ± 22.78	103.12 ± 43.76	75.50 ± 7.32
Triglycerides	52.90 ± 4.12	83.50 ± 21.79	212.88 ± 37.31	60.60 ± 5.62
HDL-C (mg\%)	47.10 ± 4.00	28.00 ± 0.00	$28.25 \pm 5.15 *$	35.78 ± 4.64
Total Protein (g\%)	7.19 ± 0.26	5.20 ± 1.09	11.03 ± 3.69	7.22 ± 0.92
Total Bilirubin	0.82 ± 0.19	1.18 ± 0.43	0.68 ± 0.43	0.78 ± 0.33
AST (U/L)	$157.40 \pm$	151.67 ± 55.27	216.20 ± 15.63	164.33 ± 13.84
ALT(U/L)	53.10 ± 9.65	134.50 ± 85.34	32.83 ± 5.48	34.67 ± 2.68
Alkaline	35.40 ± 1.92	35.50 ± 5.32	34.17 ± 3.82	39.67 ± 4.18
Albumin (g\%)	3.62 ± 0.07	2.70 ± 0.86	4.19 ± 0.28	3.71 ± 0.54
Uric Acid (g\%)	1.99 ± 0.34	2.03 ± 0.34	2.42 ± 0.54	1.58 ± 0.11

ผลที่แสคงเป็นค่าเฉลี่ย (mean $\pm \mathrm{SEM}), \mathrm{n}=8-10 ; *=p<0.05$ เทียบกับกลุ่มควบคุม
BUN = blood urea nitrogen, HDL-C = high density lipoprotein-cholesterol, AST = aspartate aminotransferase, ALT = alanine aminotransferase

1.7.3.3 ผลของสารสกัดต่อค่าทางโลหิตวิทยา

ค่าต่างๆ ทางโลหิตวิทยาของหนูแต่ละกลุ่มเมื่อสิ้นสุดการทดลอง พบว่า ใกล้เคียงกัน ดังแสคง ในตารางที่ 4.29 ยกเว้นหนูกลุ่ม LD เพศผู้ ซึ่งมีค่าฮีโมโกลบิน เม็คเลือคแดงอัคแน่น (\% hematocrit) และ ปริมาตรเม็คเลือดแดงเฉลี่ย (MCV)สูงกว่ากลุ่มควบคุมเล็กน้อย ในขณะที่เกร็คเลือดมีปริมาณเพิ่มขึ้นใกล้เคียง

กันเฉาะในกลุ่บ LD และ MD ส่วนในหนูเพผเมียนั้นพบว่า มีสัดส่วน (\%differential) ของเม็คเลือดขาวชนิด eosinophil ต่ำกว่ากลุ่มควบคุม ในทำนองเดียวกันกับผลกรตตรวจวัดพารามิตอร์ทางชีวคมีในเลือคที่กล่าว มแแล้ว ค่าคามมแตกต่างเห่านี้น่าจะเป็นลักบมะแปรปรวนทางรีวกาพมากกว่าผลของสารสกัด ตารงที่ 4.29 ผลการตรวจวัดค่าต่างๆ ทางโลหิตวิทยาของหนูแต่ละกลุ่มซึ่ได้ร้บสารสกัคข้าวกล้องงอก ในขนาดต่างๆ กัน (control $=0 \mathrm{mgkg}$ BW/day, $\mathrm{LD}=75 \mathrm{mgkg}$ BW/day, $\mathrm{MD}=150 \mathrm{mg} \mathrm{kg}$ BW/day, $\mathrm{HD}=$ $300 \mathrm{mg} / \mathrm{kg} \mathrm{BW} /$ day)

	Treatment Groups			
Parameters	Control	LD	MD	HD
Male Rats				
WBC ($\left.\mu \mathrm{LL}^{-1}\right)$	$5,680.00 \pm 214.89$	$5,677.80 \pm 462.41$	$7,575.00 \pm 2,403.40$	$5,510.00 \pm 502.98$
HB (g\%)	14.81 ± 0.19	$16.03 \pm 0.22^{*}$	15.46 ± 0.55	14.48 ± 0.27
HCT (\%)	43.50 ± 0.69	$47.56 \pm 0.44^{*}$	45.38 ± 1.59	42.20 ± 0.83
MCV (fL)	52.50 ± 0.22	$54.00 \pm 0.53^{*}$	52.88 ± 0.61	51.40 ± 0.60
MCH (pg)	18.00 ± 0.00	18.22 ± 0.22	18.00 ± 0.19	17.60 ± 0.27
MCHC (g/dL)	34.20 ± 0.13	33.78 ± 0.22	34.33 ± 0.24	34.10 ± 0.31
PMN (\%)	70.00 ± 1.25	73.33 ± 1.17	70.75 ± 1.63	68.40 ± 2.09
Lymp (\%)	27.30 ± 1.27	24.33 ± 1.12	25.63 ± 1.41	28.50 ± 1.70
Mono (\%)	1.30 ± 0.15	1.22 ± 0.15	2.13 ± 0.40	2.10 ± 0.50
Eo (\%)	1.40 ± 0.22	1.11 ± 0.20	1.50 ± 0.33	1.00 ± 0.15
Baso (\%)	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
Plt ($\left.\mu \mathrm{L}^{-1}\right)$	$561,300.0 \pm 21,686.7$	$770,625.0 \pm 27,305.8^{*}$	$728,750.0 \pm 52,925.0^{*}$	$561,600.0 \pm 45,552.7$
RBC ($\left.\mu \mathrm{L}^{-1}\right)$	$8,252,000.0 \pm 153,947.0$	$8,796,666.7 \pm 121,747.0$	$8,591,250.0 \pm 327,080.0$	$8,249,000.0 \pm 146,799.0$
Female Rats				
WBC ($\left.\mu \mathrm{L}^{-1}\right)$	$3,070.00 \pm 282.47$	$4,080.00 \pm 377.36$	$3,188.90 \pm 524.26$	$4,250.00 \pm 571.21$
HB (g\%)	14.07 ± 0.47	15.00 ± 0.47	15.30 ± 0.36	14.23 ± 0.30
HCT (\%)	39.90 ± 1.36	42.30 ± 1.25	43.00 ± 0.82	40.80 ± 1.07
MCV (fL)	53.90 ± 0.46	55.30 ± 0.47	52.44 ± 2.16	53.00 ± 0.33
MCH (pg)	19.00 ± 0.21	21.70 ± 2.04	19.00 ± 0.36	19.00 ± 0.33
MCHC (g/dL)	35.40 ± 0.22	35.70 ± 0.30	35.67 ± 0.44	35.70 ± 0.65
PMN (\%)	68.60 ± 1.59	69.00 ± 2.56	68.89 ± 1.40	$73.40 \pm 0.79^{*}$

ตารางที่ 4.29 (ต่อ)

	Treatment Groups			
Parameters	Control	LD	MD	HD
Female Rats (ต่อ)		27.44 ± 1.82	23.80 ± 1.08	
Lymp (\%)	26.10 ± 1.38	26.30 ± 2.54	1.89 ± 0.31	1.80 ± 0.55
Mono (\%)	2.20 ± 0.49	2.50 ± 0.62	1.78 ± 0.40	$1.00 \pm 0.47^{*}$
Eo (\%)	3.00 ± 0.54	2.20 ± 0.59	0.00	0.00
Baso (\%)	0.10 ± 0.10	0.00	$800,890.0 \pm 10,578.3$	$616,400.0 \pm 70,433.8$
Plt $\left(\mu \mathrm{L}^{-1}\right)$	$549,500.0 \pm 70,106.8$	$742,000.0 \pm 77,419.7$		
RBC $\left(\mu \mathrm{L}^{-1}\right)$	$7,406,000.0 \pm 260,888.0$	$7,661,000.0 \pm 265,173.0$	$7,735,600.0 \pm 245,821.0$	$7,697,000.0 \pm 197,130.0$

ผลที่แสคงเป็นค่าเฉลี่ย (mean $\pm \mathrm{SEM}), \mathrm{n}=8-10 ;$ * $=p<0.05$ เทียบกับกลุ่มควบคุม
$\mathrm{WBC}=$ leukocyte count, $\mathrm{HB}=$ hemoglobin concentration, $\mathrm{HCT}=$ hematocrit, $\mathrm{MCV}=$ mean corpuscular volume, $\mathrm{MCH}=$ mean corpuscular hemoglobin, $\mathrm{MCHC}=$ mean corpuscular hemoglobin concentration, $\mathrm{PMN}=$ polymorphonuclear leukocyte, Lymp $=$ lymphocyte, $\mathrm{Mono}=$ monocyte, $\mathrm{E}=$ $=$ eosinophil, Baso $=$ basophil, $\mathrm{Plt}=$ platelet count, $\mathrm{RBC}=$ erythrocyte count

1.7.3.4 ผลของสารสกัดต่อลักษณะอวัยวะภายใน

จากการพิจารณาลักษณะภายนอกและขนาดของอวัยวะภายในของหนูแต่ละตัว เมื่อสิ้นสุดการ ทคลอง โดยเฉพาะตับและไตซึ่งเป็นอวัยวะสำคัญที่ต้องสัมผัสกับสารพิษโดยตรงและยังทำหน้าที่กำจัดสาร พิษออกจากร่างกาย ไม่พบความผิดปกติของ ตับ ไต หัวใจ และม้ามในหนูทุกกลุ่มและขนาคของอวัยวะแต่ละ ชนิดไม่แตกต่างกัน ดังแสดงในตารางที่ 4.30 สอดคล้องกับผลการตรวจพยาธิวิทยาเนื้อเยื่อของอวัยวะเหล่านี้ ซึ่งไม่พบความผิคปกติใดๆ คังแสดงตัวอย่างในรูปที่ 4.11

ตรรงที่ 4.30 น้ำหนักอวัยวะภายในของหนู่เต่ละกลุ่มซึ่ได้ร้บสารสกัดข้าวกล้องงกกในขนาตต่างๆ กัน (control $=0 \mathrm{mg} / \mathrm{kg}$ BW/day, LD $=75 \mathrm{mg} / \mathrm{kg}$ BW/day, MD $=150 \mathrm{mg} / \mathrm{kg} \mathrm{BW} /$ day, $\mathrm{HD}=300 \mathrm{mg} / \mathrm{kg} \mathrm{BW} /$ day)

Organ Weights (g)	Treatment Groups			
	LD	MD	HD	
Male Rats				
liver	8.95 ± 0.46	7.99 ± 0.23	8.17 ± 0.32	8.90 ± 0.29
kidney	2.02 ± 0.07	1.91 ± 0.08	1.84 ± 0.06	2.02 ± 0.06
heart	1.29 ± 0.05	1.25 ± 0.06	1.28 ± 0.06	1.26 ± 0.05
spleen	0.73 ± 0.02	0.67 ± 0.04	0.69 ± 0.05	0.67 ± 0.03
Female Rats				
liver	5.84 ± 0.18	5.20 ± 0.20	5.26 ± 0.22	5.28 ± 0.14
kidney	1.40 ± 0.05	1.31 ± 0.05	1.31 ± 0.04	1.25 ± 0.03
heart	0.83 ± 0.02	0.84 ± 0.03	0.84 ± 0.03	0.80 ± 0.04
spleen	0.55 ± 0.02	0.50 ± 0.03	0.59 ± 0.08	0.52 ± 0.02

ผลที่แสดงเป็นค่าเฉลี่ย $($ mean $\pm \mathrm{SEM}), \mathrm{n}=9-10$

รูปที่ 4.11 แสดงภาพจากกล้องจุลทรรศน์ของตัวอย่างเนื้อเยื่ออวัยวะภายในของหนูเพศผู้ซึ่งได้รับสารสกัด ข้าวงอกในขนาด $300 \mathrm{mg} / \mathrm{kg}$ BW/day [$\mathrm{A}=$ ตับ $(\mathrm{x} \mathrm{10)}, \mathrm{~B}=$ ไต (x 40), $\mathrm{C}=$ หัวใจ $(\mathrm{x} 40), \mathrm{D}=$ ม้าม (x 10$)$]

ส่วนที่ 2: การพัฒนาผลิตภัณฑ์จากข้าวกล้องงอก

ตัวอย่างข้ววกล้องงอกที่นำมาใช้เป็นวัตุุดิบหลักในการพัพนาผลิตรัแต์ากกข้ววกล้องงอก คือ ข้าว
 อัตราส่วนของข้าว: น้ำ เท่ากับ $1: 2$ และแห่ที่ตุมหหภูิิ $40^{\circ} \mathrm{C}$ นาน 48 ชั่วโมง) ซึ่งเป็นตัวอย่างที่มีมิมิมาณ GABA สูงที่สุด ที่คัคเลือกได้จากข้อ 1.4 .6 ซึ่งสามารถสรุปวิธีกรรตรียมดังแสคงในภาคผนวก ซ

 ชีวกาพที่มี่อุ่ในข้าวกล้องงอก ได้แก่ GABA , gamma-oryzanol, ferulic acid, phytate, total phenolic มีททธิ์ ในกรรดคความเสี่งทต่อการเคิดโรคต่างๆ เช่น โรคอัลไชชมอร์ ความคันโโกิต โรคเบาหวาน และมีฤทธิ้ด้าน อभมูลิิกระ (Richard, 2000; Su et al., 2003; Ito et al., 2005; Miura et al., 2006; Huang et al., 2007) ึٌง

 ผลิคกัญท์ข์าวกล้องงอก และได้ผลคังนี้
 \%) โดยภาพรวมพบว่ากุุ่มตัวอย่างรู้กักข้าวกล้องงอก 71% ไม่รุ้ัก 23% และไม่แน่ใด 6% และจากการ สัํารวงว่ากลุ่มตัวอย่างเคยรับประทานผลิกรัณท์ากกข้าวกล้องงอกหรือไม่ พบว่า 51% เคยรับปรระทาน ในขมะที่ 49% ไม่เคยรับประทาน ซึ่งป็นอัตราส่วนที่ใกล้ลีคยงกัน

สำหรับตูตตอบเบบสอบกามจำนวน 51% ที่โยรับประทานลลิคกัญท์ที่มีข้าวกล้องเป็นส่วนประกอบ

 ที่กยรับประทนทั้ังหมดพบว่าคิคเป็น $60.78 \%, 52.94 \%$ และ 39.22% ตามลำคับ (คังตารงทที่ 4.31)

ตารางที่ 4.31 ประเภทของผลิศรัญฑ์อาหารที่มีข้าวกกล้องงอกเป็นส่วนประกอบที่ผู้ตอบแบบสอบถามเคย รับประทาน

ผลิตภัณฑ์อาหารที่มีข้าวกล้องงอกเป็น ส่วนประกอบที่ท่านเคยรับประทานคือ ผลิตภัณฑ์ประเภทใด	จำนวนผู้ตอบแบบสอบถาม	
	จำนวนคน	\%
ข้าวต้ม / โจ๊กสำเร็จรูปหรือกึ่งสำเร็จรูป	14	27.45
เครื่องดื่มแบบชงดื่ม	20	39.22
เครื่องดื่มแบบที่บรรจุขวด/ กล่อง/ กระป๋อง	27	52.94
ข้าวกล้องงอกหุงสุก	31	60.78
ซุปสำเร็จรูปหรือกึ่งสัาเร็จรูป	5	9.80
อาหารเช้าธัญพืช	3	5.88
ขนมหวาน เช่น ไอศกรีม เค้ก ขนมหวาน ไทยๆ	7	13.73
อาหารขบเคี้ยว	4	7.84
ผลิตภัณฑ์เบเกอรี่	2	3.92
ผลิตภัณฑ์เส้นและแผ่น เช่น เส้นก๋วยเตี๋ยว ขนาคต่างๆ ขนมจีน เกี่ยมอี่ แป้งแผ่น	8	15.69

ในการบริโภคผลิตภัณฑ์อาหารที่มีข้าวกล้องงอกเป็นส่วนประกอบพบว่า ผู้ตอบแบบสอบถามส่วน ใหญ่บริโภคน้อยกว่า 1 ครั้งต่อเดือนโดยคิคเป็น 37.25% รองลงมาคือ $1-2$ ครั้งต่อสัปดาห์ คิคเป็น 27.45% แสคงดังตารางที่ 4.32

ตรรงที่ 4.32 ความถี่ในการบริโกคผลิิคัณฑ์อาหารที่มีข้าวกล้องงอกเป็นส่วนประกอบ

ความถี่ในการบริโภคผลิตภัณฑ์อาหารที่มีข้าว	จำนวนผู้ตอบแบบสอบถาม	
	จำนวน	$\%$
มากกว่า 3 ครั้ง/สัปดาห์	6	11.76
$1-2$ ครั้ง/สัปดาห์	14	27.45
$1-3$ ครั้ง/ดือน	12	23.53
น้อยกว่า 1 ครั้ง/ดดือน	19	37.25
รวม	$\mathbf{5 1}$	$\mathbf{1 0 0}$

นอกจากนี้สาเหตุที่ผู้ตอบแบบสอบถามใช้นนการเลือกรับประทานผลิตักัแฑ์อาหารที่มีข้าวกล้อง
 มีข้าวกล้องงอกเ็็นส่วนประกอบมีส่วนช่วยในการ้้องกันโรคและช่วยให้สุขภาพแเง็งแรงสมบุรณ์ ซึ่งคิด เป็น 48.31% รองลงมาคือช่วยรักยาโรค คิคเป็น 24.72% ตังรูปที่ 4.12 แสดงใน้เห็นว่าู้บริโภคเลือก รัขประทานโดยเน้นประโยชน์ที่มี่อสุงภาพเป็นเหตุผลหลัก ส่วนเหตุผลที่ผู้ตอบแบบสอบถามไม่คย รับประทานหรือคครับประทนนอยู่ แล้วลลกกรับประทานส่วนใหญู่ค่อไมมรู้จัก หาซื้อลำบาก และไมมีีขาขตาม ร้านค้าเล็กๆ แสคงคังตารางที่ 4.33

 รับประทานผลิดรัณฑ์อาหาทที่มีข้วกกล้องงอกเป็นส่วนประกอบ

ตารางที่ 4.33 สาเหตุสำคัญที่ทำให้ผู้ตอบแบบสอบถามไม่เคยรับประทานหรือเลิกรับประทานอาหารที่มีข้าว กล้องงอกเป็นส่วนประกอบ

สาเหตุสำคัญที่ทำให้ท่านเลือกรับประทานผลิตภัณฑ์	ผู้ตอบแบบสอบถาม				
อาหารที่มีข้าวกล้องงอกเป็นส่วนประกอบ	จำนวน	$\%$			
ผลิตภัณฑ์ไม่มีความหลากหลาย	10	14.93			
เบื่อ	3	4.48			
รับประทานแล้วไม่รู้สึกคีขึ้น	2	2.99			
กลัวรสชาติไม่ดี	5	7.46			
ไม่คุ้มค่ากับราคาของผลิตภัณฑ์	6	8.96			
ไม่เชื่อว่าให้ผลดีจริงตามคำกล่าวอ้าง	10	14.93			
ผลิตภัณฑ์อยู่ในรูปแบบที่ไม่สะดวกในการรับประทาน	3	4.48			
ไม่กล้าลอง	7	10.45			
อื่นๆ ได้แก่ ไม่มีขายตามร้านค้าเล็กๆ , ไม่เคยรู้จักมาก่อน	21	31.34			
รวม				$\mathbf{6 7}$	$\mathbf{1 0 0}$

ในการปรับปรุงผลิตภัณฑ์อาหารที่ใช้ข้าวกล้องงอกเป็นส่วนประกอบ จากการสำรวจผู้ตอบ แบบสอบถาม 100 คน โดยให้เลือกตอบ 2 อันดับที่คิคว่าควรมีการปรับปรุงพบว่า อันดับหนึ่งที่ผู้ตอบ แบบสอบถามให้ความสำคัญคือการปรับปรุงคุณค่าทางโภชนาการที่เหมาะสมกับผู้สูงอายุคิดเป็น 68.75% อันดับสองคือการปรับปรุงรสชาติให้มีความอร่อย แปลกใหม่และหลากหลาย และผลิตภัณฑ์อยู่ในรูปแบบที่ สามารถใช้รับประทานได้ง่าย คิดเป็น 31.18% แสดงดังรูปที่ 4.13

รูปที่ 4.13 เปอร์เซนต์ของผู้ตอบแบบสอบถามเกี่ยวกับการปรับปรุงผลิตัภณฑ์อาหารที่ใช้ข้าวกล้องงอกเป็น ส่วนประกอบหลัก เมื่อมีการพัฒนาเป็นผลิตภัณฑ์

จากตารางที่ 4.34 จะเห็นได้ว่าผู้ตอบแบบสอบถามต้องการให้ทลิกกัณต์มีกกรเสริม DHA ซึ่งเป็น
 มากที่ฟดดถึง 28.13% รองสงมมดือต้องการให้ลคโใขันคิคเป็น 16.67%

การสำรวจคคามคิคเห็นโดยใหหู้ตูอบนบบสอบถามสามารถเลือกได้ 2 อันดับขากตัววย่างผลิคกัณฑ์

 ตารงที่ 4.34 ควมมต้งงการขขงผู้ตอบเบบสอบกามต่อการปรับปรุุงุุดค่าทงงโงชนกการ

จกตารอาหรชหนิใดร่วมกับกราใช้ข้ววกล้องงอก	จำนวนผู้ตอบแบบสอบอาม	
	จำนว	\%
เสริม DHA (กรดไขมันที่มีความสำคัญต่อการพัตนาสมองและ ระบบสายตา ได้จากน้ำมันสกัคจากผลิตรัณฑ์ทางทะเล)	27	28.13
	4	4.17
เสริมขอาหาร/ / เรไบโอติก	11	11.46
เสิมววิามินต่งๆ	8	8.33
เรริมเกีอแร่ เช่น แคลเซียม	11	11.46
ลคไขบัน	16	16.67
ลคค่าพลังงาน เช่น ลคน้ำขาล	8	8.33
เสริมสารต้นอนููกeิสระ	9	9.38
อื่นๆ ได้แก่ ไส่ได้ทุกอย่างที่มีประโยชน์	2	2.08
รวม	96	100

รูปที่ 4.14 เปอร์เซนต์ของความสนใจของผู้ตอบแบบสอบถามที่มีต่อพัฒนาผลิตภัณฑ์ชนิดต่างๆหากมีการ พัฒนาโดยใช้ข้าวกล้องงอกเป็นส่วนประกอบ

จากการสำรวจพบว่า ข้าวกล้องงอกสำเร็จรูป/ กึ่งสำเร็จรูปเป็นผลิตภัณฑ์ที่ได้รับความสนใจมากที่สุด ดังนั้นจึงทำการสำรวจความคิดเห็นที่มีต่อรูปแบบและลักษณะของผลิตภัณฑ์ พบว่าผู้ตอบแบบสอบมี ความเห็นว่าผลิตภัณฑ์ควรมีลักษณะของข้าวกล้องงอกเป็นแบบกึ่งสำเร็จรูป (ผู้บริโภคจะต้องเตรียมเอง เช่น เติมน้ำร้อนจึงจะรับประทานได้) มากที่สุดคือ 56.82% (ตารางที่ 4.35) และควรมีส่วนผสมของวัตถุดิบอื่นๆ เพิ่มอีก (ผลการสำรวจคิดเป็น 73.17%) (ตารางที่ 4.36) และวัตถุดิบที่เหมาะสมที่นำมาใช้เป็นส่วนผสมในข้าว กล้องงอกสำเร็จรูป/ กึ่งสำเร็จรูปแสดงดังตารางที่ 4.37

ตารางที่ 4.35 รูปแบบของผลิตภัณฑ์จากข้าวกล้องงอก

ท่านคิดว่าผลิตภัณฑ์จากข้าวกล้องงอกควรมีรูปแบบ ลักษณะอย่างไร	จำนวนผู้ตอบแบบสอบถาม	
	จำนวน	\%
ข้าวสวยพร้อมรับประทาน	15	34.09
ข้าวกึ่งสำเร็จรูป (ผู้บริโภคจะต้องเตรียมเอง เช่น เติมน้ำร้อน	25	56.82
จึงจะรับประทานได้)		
ข้าวผัด	2	4.55
อื่นๆ ได้แก่ ข้าวพร้อมหุง	2	4.55
รวม	56	100

ท่านคิดว่าข้าวกล้องงอกสำเร็จรูป/ กึ่งสำเร็จรูปควรมี ส่วนผสมของวัตถุดิบอื่นๆ อีกหรือไม่	จำนวนผู้ตอบแบบสอบถาม	
		$\%$
ควรมี	30	73.17
ไม่ควรมี	11	26.83
	$\mathbf{4 1}$	$\mathbf{1 0 0}$

ตารางที่ 4.37 ความเห็นในปัจจัขวัตถุดิบที่เหมาะสมที่จะนำมาใช้เป็นส่วนผสมในข้าวกล้องงอกสำเร็จรูป/กึ่ง สำเร็จรูป

ท่านคิดว่าวัตถุดิบที่เหมาะสมที่จะนำมาใช้ เป็นส่วนผสมในข้าวกล้องงอกสำเร็จรูป/ กึ่งสำเร็จรูป	อันดับหนึ่ง		อันดับสอง	
	จำนวน	\%	จำนวน	\%
ข้าวสาร/ข้าวกล้อง	4	14.29	1	3.57
ข้าวโพด	3	10.71	1	3.57
ผักหวาน	1	3.57	-	-
ถั่วเขียว	1	3.57	-	-
เมล็คแปะก๊วย	1	3.57	-	-
จมูกข้าวสาลี	7	25.00	4	14.29
เนื้อปลา	7	25.00	5	17.86
โปรตีนเกษตร	2	7.14	3	10.71
เต้าหู้	-	-	1	3.57
ต้นหอม/ผักชี	-	-	2	7.14
คะน้า	-	-	1	3.57
ผักโขม	-	-	1	3.57
เห็ดหอม	-	-	3	10.71
สาหร่าย	-	-	3	10.71
ข้าวโพคอ่อน	-	-	1	3.57
ถั่วเหลือง	-	-	1	10.71
เมล็ดเกาลัด	-	-	1	10.71
อื่นๆ ได้แก่ งาคำ	2	7.14	-	-
รวม	28	100	28	100

จากการสั่รวจูู้ตอบแบบสอบกามจำนวน 100 คน เป็นชาย 28% และเป็นหญิง 72% นับลืดศาสนา ทุทธ 77% ผู้ตอบแบบสอบถามเป็นกล่มผู้สูงอาษุ (60 ปี้ทื้นไป) ส่วนใหญู่อยู่ในช่วงอาษุ $60-65$ ปี (คิดเป็น 44\%) ระดับการึึกษาของผู้ขอบแบบสอบกามมีหลกกหลาย (ประถมศึกษา 51%, ปวช//ววส/มัธยมศึกษา 23%, ปิหูญฺตรี 20%) มีจำนวนสมาชิกในครอบครัวมากกว่า 4 คนขึ้นไป (59%) มีราขได้ของครอบครัว $10,000-30,000$ บาท (48%) เมื่อกำรวจด้านสุขภาพพบว่าต้ตอบแบบสอบถมมเป็นโรคความดันโกทิตสูง (45%), โรคไขมันในเลือดสูง(32%), โรคกระดูกและข้อ (27%), โรคที่กี่ยวกับระบบทางเคิน (24%) และ โรคเบาหวาน (21\%) นอกากกนี้ผู้ตอบเบบสอบถมมมีฟันปลอมและใช้พ้นปลอมในการรับประทานอาหาร 46% แสคงคังตารรงที่ 4.38

ตารงงที่ 4.38 ข้อมูลปรระกกรศาสตร์ของตู้ออบแบบสอบถาม

ถักษณะทางประชากรศาสตร์	
1. เพศ	จำนวนผู้ตอบแบบสอบณาม (\%)
ชาย	
หญิง	28
2. ศาสนา	72
พุทธ	
คริสต์	77
อิสลาม	1
อื่นๆ	22
3. อายุ	0
$60-65$ ปี	44
$66-70$ ปี	24
$71-75$ ปี	19
$76-80$ ปี	7
80 ปีขึ้นไป	6
4. การศึกษา	
ประถึศึกษา	51
ปวช./ปวส./ มัธยมศึกษา	23
อนุปริญญาหรือเทียบเท่า	2
ปริญญาตรี	20
สูงกว่าปริญญาตรี	1
อื่น ๆได้แก่ เรียนโรงเรียนจีน, ไม่เรียน	3

ตารางที่ 4.38 (ต่อ)

ถักษณะทางประชากรศาสตร์	จำนวนผู้ตอบแบบสอบถาม (\%)
5. รายได้ของครอบครัวต่อเดือน	
น้อยกว่า 10,000 บาท	24
10,000-30,000 บาท	48
$30,001-50,000$ บาท	15
มากกว่า 50,000 บาท	13
6. จำนวนสมาชิกในครอบครัว (นับรวมตัวท่านด้วย)	
1 คน	3
2 คน	12
3 คน	26
4 คนขึ้นไป	59
7. ท่านมีประวัติเจ็บป่วยจากโรคต่างๆเหล่านี้หรือไม่	
ไม่มี	15
โรคเบาหวาน	21
โรคไขมันในเลือคสูง	32
โรคความคันโลหิตสูง	45
โรคหัวใจและหลอคเลือค	6
โรคไต	3
โรคกระดูกและข้อ ชช่น โรคเก๊าท์ โรคกระดูกพรุน	27
โรคที่เกี่ยวกับระบบทางเดิน อาหาร เช่น ท้องอืค	24
ท้องผูก ท้องเฟ้อ	
อื่นๆ	3
8. ท่านมีและใช้ฟันปลอมในการรับประทานอาหารหรือไม่	
ไม่มี	52
มีและใช้ในการ รับประทานอาหาร	46
มีแต่ไม่ใช้ในการรับประทานอาหาร	1

ดังนั้นแนวทางการพัฒนาผลิตภัณฑ์ ผู้ตอบแบบสอบถามมีความเห็นว่าข้าวกล้องงอกสำเร็จรูป/ กึ่ง สำเร็จรูป มีความน่าสนใจมากที่สุด โดยมีลักษณะเป็นข้าวกึ่งสำเร็จรูป (ผู้บริโภคจะต้องเตรียมเอง เช่น เติมน้ำ ร้อนจึงจะรับประทานได้) และควรมีการเติมส่วนผสมอื่นๆ เช่น จมูกข้าวสาลี หรือเนื้อปลา แต่จากการสำรวจ

 เพื่เป็นการเพิ่มโอกาสทงกกรตตาดดและการเพิ่มความหลากกหลชขของผลิคคัณฑ์ในท้องตลาค

2.2 กรพัพนนผลิตภัมข์ข้าวกล้องงจกลำเร็รูปป

 ทงด้นกายกาพ และกรททคสอบทงงระสาทสัมสัส ดังนี้

2.2. 1 ความชิ้น

ความชี้นของตัวอย่างข้าวกล้องงอกสำเร็จุปมมี่ค่าสันแปรตตามอัตราส่วนน้ำที่ไช้ โดยเมื่ออัตราส่วน
 ในข้วากล้องงอกสำเร็จรูปเพิมขึ้นอย่ามมีนัยสำคัญูทางสถิติ (p<0.05) เพื่อปริมาณน้ำที่ใช้นกการหุงข้ววเพิ่ม
 ตารงงที่ 4.39 ปริมามความชื้นของข้าวกล้องหลังเพะและผลิกกัณฑ์ข้าวกล้องงอกสำเร็จูปมบรรจุในดุงรี ทอร์ทเพาช์

ตัวอย่างข้าว	ความชื้น* $(\%)$	
ข้าวกล้องอกหลังเพาะ		$33.00 \pm 0.31^{\mathrm{a}}$
อัตราส่วนข้าวกล้อง:น้ำ	$1: 0.5$	$49.02 \pm 0.05^{\mathrm{b}}$
	$1: 0.6$	$52.76 \pm 0.14^{\mathrm{c}}$
	$1: 0.7$	$53.68 \pm 0.04^{\mathrm{d}}$

* Mean \pm SD ของการวิเคราะห์ 3 ซ้ำ
2.,.c,.... ค่าเฉลี่ยในแนวตั้งที่ตามค้วยตัวอักษรที่แตกต่างกัน มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติที่ $p<0.5$

ตัวอย่างข้าว		ความชื้น* (\%)
ข้าวกล้องอกหลังเพาะ	$33.00 \pm 0.31^{\mathrm{a}}$	
อัตราส่วนข้าวกล้อง:น้ำ	$1: 1.25$	$63.35 \pm 0.13^{\mathrm{b}}$
	$1: 1.50$	$65.11 \pm 0.30^{\mathrm{C}}$
	$1: 1.75$	$66.48 \pm 0.31^{\mathrm{d}}$

[^1]
2.2.2 คุณภาพทางกายภาพ

คุณสมบัติทางกายภาพสามารถใซ้เป็นตัวบ่งบอกถึงคุณภาพและลักษณะต่างๆ ของผลิตภัณฑ์ที่ พัฒนาขึ้น โคยลักษณะต่างๆ ประกอบด้วย สี เนื้อสัมผัส ปริมาณโมเลกุลแป้งที่มีลักษณะเป็นผลึก เป็นต้น

1. ค่าสี

ค่าสีของข้าวกล้องงอก ผลิตภัมต์ข้าวกล้องงอกสำเร็รูปปบรรุในนดุงรีทอร์ทเพาซ์และในกระป๋อง
 ชนิคจะมีสีเข้มกว่าข้าวกล้องงอกหลังเพาะ ทั้งนี้เนื่องจากค่าความสว่าง (หรือค่า L^{*}) มีค่าลคลงงย่างมี นัยสัำคัญทางสถิติ (p<0.05) เมื่อเทียบกับข้าวกล้องงอกหลังเพาะ ในขมะที่ค่าสีเหลืงง (หรือค่า b*) ของ
 ส่วนใหฝู่งะมีค่าใพิ่มนึ้นหรือใกล้เคียงกับค่ำสีแดงงองข้าวกล้องงอกหลังเพาะ ทั้งนี้สาหตตุที่ทำให้ค่าความ
 ร้อนจากขั้นตอนการหูงข้าวและจากกระบวนการม่าเชื้ออาจส่งผลให้เคิคปดิกิริยามมลลาร์ด (Maillard reaction) ขึ้น โดยปฏิกิริยานี้เป็นปฏิกิกิยาการเคิิสีน้ำตาตแบบไม่ใช้เนไซม่ (non enyymatic browning reaction) ซึ่งเคิคขึ้นแนื่องจากน้ำตากรืดิวซ์ (อัลโดส หรือ คีโศส) ทำปฏิกิริยากับบมู่อมืน จากโปรตีนที่เป็น องค์ประกอบของผลิตกัมท์ ทำให้เกิดสารสีน้ำตากที่เรียกว่า เมลานอยดิน (melanoidins) จึ้้น (Cristina Delgado-Andrade et al., 2006; Sirsoontaralak and Noomhorm, 2007) จืงสู่งผลให้ผลิกัณณฑ์ข้าวกล้องงอก สำเร็งรูปทั้งสฮงงนิคมีสีที่คล้ำกว่าข้ววกล้องงอกหลังเพาะ

ตัวอย่างข้าว	ค่าสี **			
	L^{*}	a^{*}	$\mathrm{~b}^{*}$	
ข้าวกล้องอกหลังเพาะ	$82.01 \pm 0.68^{\mathrm{a}}$	$1.86 \pm 0.14^{\mathrm{b}}$	$16.83 \pm 1.83^{\mathrm{a}}$	
อัตราส่วนข้าวกล้อง:น้ำ	$1: 0.5$	$76.69 \pm 1.41^{\mathrm{c}}$	$1.60 \pm 0.16^{\mathrm{c}}$	$14.95 \pm 1.36^{\mathrm{b}}$
	$1: 0.6$	$78.78 \pm 1.34^{\mathrm{b}}$	$2.02 \pm 0.23^{\mathrm{a}}$	$16.31 \pm 0.73^{\mathrm{a}}$
	$1: 0.7$	$77.93 \pm 0.36^{\mathrm{b}}$	$1.80 \pm 0.10^{\mathrm{b}}$	$17.27 \pm 0.14^{\mathrm{a}}$

[^2]ตารางที่ 4.42 ค่าสีของข้าวกล้องงอกและผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปบรรุุกระป๋อง

ตัวอย่างข้าว	ค่าสี **			
	L^{*}	a^{*}	$\mathrm{~b}^{*}$	
ข้าวกล้องอกหลังเพาะ	$82.01 \pm 0.68^{\mathrm{a}}$	$1.86 \pm 0.14^{\mathrm{b}}$	$16.83 \pm 1.83^{\mathrm{b}}$	
อัตราส่วนข้าวกล้อง:น้ำ	$1: 1.25$	$70.96 \pm 1.42^{\mathrm{d}}$	$2.93 \pm 0.32^{\mathrm{d}}$	$20.02 \pm 1.83^{\mathrm{a}}$
	$1: 1.50$	$72.18 \pm 0.88^{\mathrm{c}}$	$1.72 \pm 0.23^{\mathrm{b}}$	$17.43 \pm 2.03^{\mathrm{b}}$
	$1: 1.75$	$73.72 \pm 0.78^{\mathrm{b}}$	$1.73 \pm 0.16^{\mathrm{b}}$	$14.99 \pm 1.61^{\mathrm{c}}$

** Mean $\pm \mathrm{SD}$ ของการวิคราะห์ 12 ซ้ำ

2. Elongation ratio (ER) และ Elongation index (EI)

ในระหว่างการหุงต้มเมล็ดข้าวมีการขยายตัวทุกด้านโดยเฉพาะด้านยาวคุณลักษณะนี้เป็นคุณภาพ พิเศษของข้าว หากข้าวสุกที่ไม่เหนียวติดกันและการขยายตัวของข้าวสุกจะช่วยทำให้ข้าวขึ้นหม้อดีขึ้น และ การที่เมล็ดข้าวขยายตัวได้มากทำให้เนื้อภายในโปร่งขึ้น ไม่อัดแน่นและช่วยให้ข้าวนุ่มมากขึ้น การขยายตัว ของข้าวสุกเกิดจากปรากฏการณ์ที่เม็คแป้งซึ่งเป็นองค์ประกอบหลักของข้าวได้รับความร้อนและมีน้ำใน ปริมาณที่เพียงพอ เม็ดแป้งเกิดการพองตัว เรียกปรากฏการณ์คังกล่าวว่า เจลาติไนเซชั่น ซึ่งส่งผลให้เนื้อ สัมผัสของข้าวนุ่มลง และผลการวิเคราะห์ ER และ EI แสดงคังตารางที่ 4.43 และ 4.44

ตารางที่ 4.43 ค่า Elongation ratio และ Elongation index ของผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปบรรจุในถุง รีทอร์ทเพาซ์

อัตราส่วนข้าวกล้อง : น้ำ	Elongation ratio (ER)**	Elongation index (EI)**
$1: 0.5$	$1.07 \pm 0.07^{\mathrm{NS}}$	$0.74 \pm 0.08^{\mathrm{NS}}$
$1: 0.6$	$1.08 \pm 0.14^{\mathrm{NS}}$	$0.72 \pm 0.11^{\mathrm{NS}}$
$1: 0.7$	$1.10 \pm 0.07^{\mathrm{NS}}$	$0.73 \pm 0.05^{\mathrm{NS}}$

** Mean \pm SD ของการวิเคราะห์ 3 ซ้ำ (ซ้ำละ 10 เม็ด)
${ }^{\text {NS ค่าเฉลี่ยในแนวตั้งไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิตีที่ } p>0.5}$
ค่า ER เป็นค่าที่คำนวณได้จากอัตราส่วนความยาวของข้าวที่หุงสุกแล้วต่อความยาวของข้าวที่ยัง ไม่ได้หุง แสดงถึงอัตราการขยายตัวของเมล็ดข้าวที่หุงสุกแล้ว ซึ่งเกิดขึ้นจากการพองตัวของเม็ดแป้งหลังจาก การดูดซับน้ำเข้าไปในเมล็ค (Julino, 1979) จากตารางที่ 4.43 จะเห็นว่าปริมาณน้ำที่ใช้ในการทุงข้าวเพิ่มขึ้น ค่า ER ของตัวอย่างก็มีแนวโน้มเพิ่มขึ้นตามอัตราส่วนน้ำที่ใช้ในการหุง แต่อัตราส่วนน้ำที่ใช้ระหว่าง $0.5-0.7$

มีปริมาณไม่มากพอที่จะส่งผลให้ค่า ER เพิ่มขึ้น ($\mathrm{p}>0.05$) เช่นเดียวกันกับผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปที่ บรรจุในกระป๋อง ถึงแม้อัตราส่วนของน้ำจะเพิ่มขึ้นจาก 1.25 เป็น 1.50 ไม่ได้ทำให้ค่า ER มีความแตกต่างกัน ทางสถิติ ($\mathrm{p}>0.05$) แต่ถ้าเพิ่มอัตราส่วนของน้ำจนถึง 1.75 จะทำให้ค่า ER มีค่าสูงขึ้น ($\mathrm{p}<0.05$) ดังแสคงผลใน ตารางที่ 4.44

ตารางที่ 4.44 ค่า Elongation ratio และ Elongation index ของผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปบรรจุใน กระป๋อง

อัตราส่วนข้าวกล้อง : น้ำ	Elongation ratio (ER)**	Elongation index (EI)**
$1: 1.25$	$1.11 \pm 0.06^{\mathrm{a}}$	$0.90 \pm 0.07^{\mathrm{NS}}$
$1: 1.50$	$1.13 \pm 0.06^{\mathrm{a}}$	$0.87 \pm 0.54^{\mathrm{NS}}$
$1: 1.75$	$1.19 \pm 0.58^{\mathrm{b}}$	$0.88 \pm 0.07^{\mathrm{NS}}$

[^3]นอกจากนี้จากตารางที่ 4.43 และ 4.44 จะเห็นว่าค่าการขยายตัว (ER) ของข้าวกล้องงอกสำเร็จรูปที่ บรรจุในกระป๋องมีแนวโน้มสูงกว่าผลิตภัณฑ์ที่บรรจุในถุงทอร์ทเพาซ์ ทั้งนี้เนื่องจากผลิตภัณฑ์ข้าวกล้องงอก บรรจุกระป๋องเตรียมโดยใช้อัตราส่วนของน้ำที่มากกว่า และระยะเวลาที่ใช้ในการฆ่าเชื้อที่นานกว่า โดยข้าว กล้องงอกบรรจุกระป๋องใช้เวลาฆ่าเชื้อ 45 นาที ในขณะที่ข้าวกล้องงอกบรรจุในถุงรีทอร์ทเพาซ์ ใช้เวลา 15 นาที ทำให้โมเลกุลน้ำสามารถซึมผ่านเข้าไปในโมเลกุลแป้งได้คีกว่า การพองตัวของเม็คแป้งดังกล่าวส่งผล ให้เมล็ดข้าวมีการยืคออกได้มาก ทำให้ค่า ER ของข้าวกล้องงอกบรรจุกระป๋องมีค่าสูงกว่าข้าวกล้องงอกที่ บรรจุในถุงรีทอร์ทเพาซ์ สอดคล้องกับการศึกษาของขวัญหทัย (2549) ที่พบว่าอัตราส่วนน้ำในการทำให้ข้าว สุก (น้ำต่อข้าว $=1: 1,1.5: 1$ และ $2.0: 1$) และจากการศึกษาของ Khatoon และPrakash (2007) พบว่า กระบวนการที่ใช้ในการหุงข้าวมีผลต่อค่า ER การหุงข้าวโดยใช้หม้อความคัน (pressure cooker) จะให้ค่า ER ที่สูงกว่าการใช้ไมโครเวฟในการหุงข้าว และการใช้ความร้อนสูงในการอบข้าวเปลือกก็มีผลทำให้ค่า ER เพิ่ม สูงขึ้น เนื่องจากความร้อนที่ได้จากการอบแห้งมีผลทำให้โครงสร้างภายในเมล็ดข้าวเปลี่ยนแปลง โดยการที่ เมล็ดข้าวขยายตัวทำให้เนื้อภายในโปร่งไม่อัดกันแน่น ซึ่งมีผลสอดคล้องกับการดูดซับน้ำและการขยาย ปริมาตรของข้าวสุกมีค่าเพิ่มขึ้น เมื่อนำมาทำการหุงต้มทำให้การยืคตัวของเมล็คข้าวเพิ่มขึ้น (Soponronnarit et al., 2008)

สำหรับค่า EI ซึ่งเป็นค่าที่คำนวณได้จากอัตราส่วนระหว่าง (ความยาว/ความกว้าง) ของข้าวสุกและ (ความยาว/ความกว้าง)ของข้าวที่ยังไม่ได้หุง ซึ่งค่านี้แสดงถึงความสามารถในการขยายตัวหรือพองตัวของ ข้าวสุก ถ้ามีค่ามากแสดงว่าตัวอย่างมีการพองตัวได้ดี (Hossaina et al., 2009) ข้าวขึ้นหม้อดี และจากตารางที่

 ท่าให้โมเลุุลน้ำสามารถซึมม่านเข้าไปในโมลกุลลเป้งได้ดีดึ งึส่งงลให้เมล็คข้าวมีการืืดขยาขออกได้ มากกว่า ค่า EI ของข้าวกล้องงอกบรรุุกระป้องจึงมีคี่สูงกว่าข้วกกล้องงอกที่ทรรุุในดุงรีทตร์ทเพาซ์ แต่าา
 ค่าЕโ ไม่มีความแตคต่างกัน ($\mathrm{p}>0.05$)

3. พตติกรรมการเปลี่งนแแฟสงคามมหนื้ด (Pasting properties)

ความสมมูรม์ของเม์คสตรร์ชและสมบัติกรจจับตัวกับน้ำสามารดตรวจสอบได้โดยกรรวดตตติกรรม ตรเปลี่ยนแปลงความหนื้ดของข้าวก่อนและหลังกรรแปไรูป เพื่อตรวจสอบการเปลี่ยนแปปลงความหนืคของ แป้งจากตัวอย่างข้วกกล้องงอกเต่ละชนิดโดยใช้ศครื่อง Rapid Visco Analyzer (RVA) พบว่าตัวอย่งงเค่ละ ชนิดให้ ค่าความหนืคสูงสุด (peak viscosity, PV), ถุณหภูเิิมมต้นของความหนืด (pasting temperature, Pemp), เลลากิคคววพหนืดืสงงุุ (paak time), ค่าความหนืดของหลวว้นขณะร้อน (Tourgh), ค่าความหนืด สุดท้ข (Final viscosity, FV) ค่าความหนืคลคคง (breakdown) และ ค่าษชตแบค (Setback, SBV) แตกต่างกัน ($\mathrm{p}<0.05$) ดังแสคงงนตารางที่ 4.45 และ 4.46 โดยพคคิกรรมการเปลี่ยนแปลงความหนืดทุกระยะที่วัค $(\mathrm{PV}$, Tourgh, FV , breakdown และ SBV) ของตัวอ่างข้าวกต้องงอกสำเร็จุปททั้งสองแบบมีค่าต่ำกว่าค่าที่ได้จาก ข้าวกล้องงอกหลังเพาะอย่างเห็นไต้ชัด ($p<0.05$) เนื่องงากขแะให้ความร้อนด้วขไอน้ำ การเรีชงตัวของ โมเลุุกายในเม็คสตาร์ชถูกรบกวน ส่งผลให้เม็คสตรร์ชสูญุสียความสบมูรณ์และทำลายผลึก ส่งผลให้ สตเร์ชเกิดการละลายและลคค่าความหนืดทั้งหมด (Prasert and Suwannapan, 2003) นอกจากนั้นจกกผลการ ทคลงง (ตารงงที่ 4.45 และ 4.46) พบว่าค่า Peak time เวลาเกิดความหนืดสูงสุคของตัวอย่างง้าวกล้อง สำเร็จููปทั้ง 2 ชนิค มีค่าสูงกว่า ขณะที่ Ptemp มีค่าต่ำกว่าค่าของข้าวกล้องงอกหลังเพาะ ($\mathrm{p}<0.05$) และแแ้ง ของข้าวกล้องงอกสำเร็จูปปบรรุุในถุงรีทอร์ทเพาช์ที่ตรียมมโคงใช้อัตราส่วนน้ำเท่ากับ 0.5 มีค่า Ptemp ต่ำ ที่สุด $\left(58.3^{\circ} \mathrm{C}\right.$) ค่า Ptemp เป็นค่าที่มีความสัมพันธ์กับก่ากำกังกการพองตัว (Gunaratne and Hoover, 2002) นั่น
 ค่าต่ากว่าข้วขกล้ององถหลังเพาะ

สำหรับค่าเซตแบค (SBV) ซึ่งเ็นค่าผลต่างของความหนืืศุุดท้า (FV) และค่าความหนืคคของหหลว

 ข้าวสุกนั้นมีความเง็งต่ำหลังงากการหุงสุกและปล่อยให้ข้าวยั้นตัวลง (Eiammi etal, 2004) ซึ่งจากตารงงที่
4.45 และ 4.46 พบว่าค่าเซตแบคของข้าวกล้องงอกสำเร็จรูปบรรจุในถุงรีทอร์ทเพาซ์มีค่าต่ำกว่าข้าวกล้องงอก สำเร็จรูปบรรจุกระป๋อง ($\mathrm{p}<0.05$)

ค่าความหนืดลดลง (breakdown) เป็นค่าความแตกต่างระหว่างค่าความหนืดสูงสุด (Peak Viscoscity) และค่าความหนืดของเหลวข้นขณะร้อน(Trough viscosity) เป็นค่าที่บอกถึงความทนทานและความแข็งแรง ของแป้งสุก (heat stability) สตาร์ชที่มีค่า breakdown สูงกว่าจะมีความแข็งแรงและความคงตัวของเม็ด สตาร์ชน้อยกว่าสตาร์ชที่มีค่า breakdown ต่ำ (Singha et al., 2006) ดังนั้นแป้งของข้าวกล้องงอกสำเร็จรูปทั้ง สองชนิดเป็นแป้งที่ผ่านการให้ความร้อนมาแล้ว จึงทำให้เม็คแป้งแตกได้ง่ายกว่าแป้งของข้าวกล้องงอกหลัง เพาะ ดังนั้นข้าวกล้องงอกสำเร็จรูปทั้ง 2 ชนิดจึงมีค่า Breakdown ต่ำกว่าข้าวกล้องงอกหลังเพาะ ($\mathrm{p}<0.05$) (ตารางที่ 4.45 และ 4.46) อีกทั้งอัตราส่วนของน้ำที่เพิ่มขึ้นมีผลทำให้ค่า breakdown เพิ่มสูงขึ้น

ตารางที่ 4.45 พถติกรรมการเปลี่ยนแปลงความหนืดของข้าวกล้องงอกหลังเพาะและผลิตกัณฑ์ข้าวกล้องงอกสำเร็จรูปที่บรรจุในถุงรีทอร์ทเพาซ์

ตัวอย่างข้าวกล้องงอก		Viscosity (RVU)*					$\begin{gathered} \begin{array}{c} \text { Peak time * } \\ (\mathrm{min}) \end{array} \\ \hline 5.60 \pm 0.00^{\mathrm{c}} \end{gathered}$	$\begin{gathered} \text { Pasting temp* } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline 75.05 \pm 1.39^{2} \end{gathered}$
		$\frac{\mathrm{PV}}{2792.00 \pm 24.52^{\mathrm{a}}}$	$\frac{\text { Trough }}{1439.67 \pm 37.90^{\text {a }}}$	$\frac{\mathrm{FV}}{2415.33 \pm 7.51^{\mathrm{a}}}$	breakdown	setback		
ข้าวกล้องอกหลังเพาะ								
อัตราส่วนข้าวกล้อง:น้ำ	1:0.5	$415.67 \pm 5.69^{\circ}$	$411.67 \pm 5.51^{\text {b }}$	$530.00 \pm 4.58{ }^{\text {c }}$	$4.00 \pm 1.00^{\text {b }}$	$118.33 \pm 1.53^{\text {b }}$	$6.64 \pm 0.28^{\text {c }}$	$58.13 \pm 2.47^{\text {c }}$
	1:0.6	$367.33 \pm 0.58{ }^{\text {d }}$	$371.00 \pm 1.73^{\circ}$	$487.00 \pm 0.00^{\text {d }}$	$5.33 \pm 1.15^{\text {b }}$	$116.00 \pm 1.73^{\text {b }}$	$6.71 \pm 0.10^{\text {c }}$	$62.18 \pm 0.54^{\text {b }}$
	1:0.7	$446.00 \pm 7.21^{\text {b }}$	$436.00 \pm 6.56{ }^{6}$	$562.33 \pm 10.07^{\text {b }}$	$10.00 \pm 1.00^{\text {b }}$	$126.33 \pm 3.51^{\text {b }}$	$6.04 \pm 0.14^{\text {b }}$	$62.17 \pm 1.10^{\text {b }}$

$\mathrm{PV}=$ peak viscosity, $\mathrm{FV}=$ final viscosity, breakdown $=(\mathrm{PV}-$ Trough $)$, setback $=(\mathrm{FV}$ - Trough $) ;$ * Mean $\pm \mathrm{SD}$ ของการวิเคราะห์ 3 ซ้ำ

ตารางที่ 4.46 พโติกรรมการเปลี่ยนแปลงความหนืคของข้าวกล้องงอกหลังเพาะและผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปที่บรรจุในกระป๋อง

ตัวอย่างข้าวกล้องงอก	Viscosity (RVU)*					$\begin{gathered} \text { Peak time * } \\ (\min) \end{gathered}$	Pasting temp*$\left({ }^{\circ} \mathrm{C}\right)$
	PV	Trough	FV	breakdown	setback		
ข้าวกล้องอกหลังเพาะ	$2793.70 \pm 32.72{ }^{\text {a }}$	$2162.00 \pm 32.45{ }^{\text {a }}$	$4327.30 \pm 45.76{ }^{\text {a }}$	$1352.33 \pm 51.60^{\text {a }}$	$1533.70 \pm 13.05^{\text {a }}$	$6.35 \pm 0.04{ }^{\text {b }}$	$77.77 \pm 0.16^{\text {a }}$
อัตราส่วนข้าวกล้อง:น้ำ $1: 1.25$	$286.67 \pm 3.51{ }^{\text {d }}$	$286.00 \pm 3.00^{\text {d }}$	$421.00 \pm 3.61{ }^{\text {d }}$	$10.67 \pm 0.58{ }^{\text {b }}$	$134.33 \pm 0.58^{\text {c }}$	$6.89 \pm 0.08^{\text {a }}$	$62.37 \pm 0.03{ }^{\text {b }}$
1:1.50	$337.67 \pm 4.16^{\text {c }}$	$326.00 \pm 4.36^{\text {c }}$	$476.00 \pm 6.24{ }^{\text {c }}$	$11.67 \pm 0.58{ }^{\text {b }}$	$138.33 \pm 2.08^{\text {bc }}$	$6.18 \pm 0.14{ }^{\text {bc }}$	$62.37 \pm 0.02{ }^{\text {b }}$
1:1.75	$374.67 \pm 6.43{ }^{\text {b }}$	$357.67 \pm 5.51^{\text {b }}$	$523.00 \pm 8.72{ }^{\text {b }}$	$17.00 \pm 1.73{ }^{\text {b }}$	$148.33 \pm 2.31^{\text {b }}$	$6.02 \pm 0.10^{\text {c }}$	$62.4 \pm 0.05^{\text {b }}$

$\mathrm{PV}=$ peak viscosity, $\mathrm{FV}=$ final viscosity, breakdown = (PV-Trough), setback = (FV-Trough $) ;$ * Mean \pm SD ของการวิเคราะห์ 3 ซ้ำ

4. ความแข็ง (Hardness)

ลักษณะเนื้อสัมผัสของข้าวหุงสุกโดยเฉพาะความแข็งเป็นปัจจัยด้านคุณภาพอย่างหนึ่งที่ผู้บริโภคให้ ความสำคัญ ผู้บริโภคส่วนใหญ่นิยมบริโภคข้าวสุกที่ไม่แข็ง ไม่แฉะ และมีลักษณะร่วนไม่ติดกันเป็นก้อน (Sumrerath et al., 2008) ปัจจัยที่มีผลต่อกับบณะเนื้อสัมผัสของข้าวหุงสุก ได้เก่ ปริมามอะไมโลส จะไมโล เพคคิน โปรตืน ไขมันแเะะความชื้น (Ong and Blanshard, 1995) ค่าความมเง็งของข้ววกล้องงอกบรรจุในถุงรี ทอร์ทเพาซ์และในกระป๋อง แสคงในตตรงที่ 4.47 และ 4.48 ตามกำคับ จากตตรางทั้งสองจะแห็นว่เมื่อเพิ่ม

 มากเพียงพอที่จะทำให้เกิคเจลาติไนเชชั่นได้ แต่อย่างไรก็ตามกระบวนการนึ้จะเกิมมากขึ้นมื่อมีระดับน้ำ

 Suwannapon, 2009) นอกขากนี้ค่าความแเพ็งของข้าวกล้องงอกสำเร็จรูปบรรุุกระข๋องมีแนวน้น้มต่ำกว่าข้ว กล้องงอกที่ทรรุุในดุงรีทอร์ทเพาซ์ (ตารางที่ 4.47 และ 4.48) ทั้งนี้เนื่องจากข้าวกล้องงอกสำเร็รูรูบรรจุ กระป๋องมีปริมามน้ำในสัดส่วนที่สูงก่วนละใช้วกาในการม่าหื้อนานกว่าข้ววกล้องงอกสำเร็จรูปที่บรรจุใน
 แฟ็ธซึ่งเกี่ยวข้องกับการเกิคเฉาติไนเซั่น (Prasert and Suwannapom, 2009) นอกจากนั้นเงื่อพิขารนาค่า ความแง็งของเนื้สัสมผัสและอัศราการื้คตัวของเมล์คข้าวสุกโดงให้ความ้้อน พบว่าที่ระดับอัตรสส่วนน้ำ
 สัมัสสบมีค่าคคง

ตารงที่ 4.47 ค่าความมเจ็งของข้ววกล้องงอกสำเร็รูปรบรรุุในดุงรีทตร์ทเพาซ์

อัตราส่วนข้าวกล้อง:น้ำ	Hardness (g)
$1: 0.5$	$34,269.50 \pm 944.43^{\mathrm{a}}$
$1: 0.6$	$18,074.69 \pm 1304.25^{\mathrm{b}}$
$1: 0.7$	$15,584.21 \pm 1296.49^{\mathrm{C}}$

** Mean \pm SD ของการวิเคราะห์ 10 ซ้ำ
a, b, c.... ค่าเฉลี่ยในแนวตั้งที่ตามด้วยตัวอักษรที่แตกต่างกัน มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติที่ $p<0.05$

ตารงทที่ 4.48 ค่าความมเเ็งของท้าวกล้องงอกสำเร็รุรูบรรรุกระป๋อง

อัตราส่วนข้าวกล้อง:น้ำ	Hardness (g)
$1: 1.25$	$20769.48 \pm 1962.54^{\mathrm{a}}$
$1: 1.50$	$18003.27 \pm 1135.57^{\mathrm{b}}$
$1: 1.75$	$15877.22 \pm 1374.86^{\mathrm{c}}$

** Mean \pm SD ของการวิเคราะห์ 10 ซ้ำ
2. ..c.... ค่าเฉลี่ยในแนวตั้งที่ตามด้วยตัวอักษรที่แตกต่างกัน มีความแตกต่างกันอย่างมีนัยสำคัญททางสถิติที่ $\mathrm{p}<0.05$

นอกจากนี้ค่าความแข็งของข้าวกล้องงอกสำเร็จรูปทั้ง 2 ชนิดที่ลคลงก็ให้ผลที่สอดคล้องกับ พฤติกรรมการเปลี่ยนแปลงความหนืด ที่แสดงผลไว้ในตารางที่ 4.45 และ 4.46 ซึ่งจะเห็นว่าข้าวกล้องงอก สำเร็จุปทั้ง 2 ชนิดมีค่าเซตแบคต่ำกว่าข้าวกล้องงอกหลังเพาะ แสคงว่าแป้งหรือสตาร์ชนั้นๆมีความคงตัวสูง ไม่เกิครีโทรเกรเดชั่นง่าย และข้าวนั้นจะมีความแข็งกระด้างต่ำหลังจากการหุงสุกและปล่อยให้ข้าวเย็นตัวลง (Eiammi et al., 2004)

5. รูปแบบโครงสร้างผลึกและระดับสภาพผลึก (Degree of crystallinity)

ผลการวิเคราะห์โครงสร้างผลึกด้วย XRD ในข้าวกล้องงอกหลังเพาะและข้าวกล้องงอกสำเร็จรุป บรรจุถุงรีทอร์ทเพาซ์และบรรจุกระป๋อง โดยหลอดรังสีเอ็กซ์นี้ใช้ทองแดงเป็นแหล่งผลิตรังสีและกำหนดค่า ของการหักเห (2 2) อยู่ในช่วง $4.03-39.98^{\circ}$ พบว่าข้าวกล้องงอกช่อลุงหลังเพาะมีโครงสร้างผลึกแบบ A และ มีระดับสภาพผลึก เท่ากับ 25.92% (ตารางที่ 4.49) โดยมีพีคที่ $15.18^{\circ}, 17.98^{\circ}, 18.03^{\circ}$ และ $23.13^{\circ} 2 \theta$ ดังรูป ที่ 4.15 และ 4.16 ซึ่งเป็นรูปแบบที่พบในข้าวดิบ (Iturriage et al., 2004) และมีลักษณะโครงสร้างผลึก เช่นเดียวกับข้าวหอมมะลิ KDML105 (Prasert and Suwannaporn, 2009) และข้าวพันธุ์ขาวดอกมะลิ 105 (ขวัญหทัย แซ่ทอง, 2549) ที่ให้พีคที่ $15.2^{\circ}, 17.0^{\circ}, 17.9^{\circ}$ และ $22.9^{\circ} 2 \theta$ ขณะที่ข้าวสำเร็จรูปทุกตัวอย่างมี โครงสร้างผลึกแบบอสัณฐาน (amorphous) โดยไม่ปรากฏพีคที่พบในโครงสร้างผลึกของข้าวดิบ (รูปที่ 4.15 และ 4.16) สอดคล้องกับค่าที่ระดับสภาพผลึกที่ลดลงอยู่ในช่วง $10-11 \%$ (ตารางที่ 4.49) เนื่องจากเกิดการ หลอมส่วนที่เป็นผลึกทั้งหมดของแป้งในระหว่างกระบวนการให้ความร้อน (Slade, 1984) แต่อย่างไรก็ตาม การปรากฏพีคเล็กที่ประมาณ $16.98-17.28^{\circ}$ และ $20.83-20.88^{\circ}$ 2 2 ของข้าวกล้องงอกสำเร็จรูปบรรจุในถุงรี ทอร์ทเพาซ์ และที่ $17.08-17.28^{\circ}$ และ $20.88-20.93^{\circ} 2 \theta$ ของข้าวกล้องสำเร็ภรูปบรรจุกระป๋อง (คังฐูปที่ 4.15 และ4.16) แสคงให้เห็นว่ามีลักษณะโครงสร้างแบบ $\mathrm{V}(\mathrm{V}-\mathrm{type})$ ร่วมอย่ด้วย เนื่องจากการเกิดสารประกอบ เชิงซ้อนระหว่างอะมิโลสและไขมัน โดยสอดคล้องกับ Prasert and Suwannaporn (2009) ที่แสคงให้เห็นว่า กระบวนการแปรรูปข้าวหอมมะลิหุงสุกเร็ว (instant rice) สามารถทำลายโครงสร้างผลึกของเมล็คสตาร์ช โดยการเกิดโครงสร้างที่ซับซ้อนของอะไมโลสและไลปิดขณะให้ความร้อนชื้นดังแสดงเป็นรูปแบบ v ส่วน สตาร์ชก่อนการเกิคเจลาติไนเซซันมีความสามารถในการจับกับไลปีดที่จำกัด ดังนั้นไลปีคในระบบจึงไม่

สามารถเข้าไปสัมผัสกับสตาร์ชได้ แต่ภายหลังการเกิดเจลาติไนเซซันสามารถสังเกตเห็นรูปแบบ v ได้ เนื่องจากการเกิคโครงสร้างซับซ้อนดังกล่าวระหว่างการให้ความร้อน หรือบริเวณผลึก (crystalline region) เพิ่ม ขนาคขึ้น เช่นเดียวกับการศึกษาข้าวพันธุ์ขาวดอกมะลิ 105 ที่ผ่านการนึ่งด้วยไอน้ำที่ $100^{\circ} \mathrm{C} 30$ นาที โดยมี อัตราส่วนข้าวต่อน้ำ เท่ากับ $1: 1,1.5: 1$ และ $2: 1$ ซึ่งปรากฏรูปแบบ v ที่ประมาณ $20^{\circ} 2 \theta$ (ขวัญหทัย แซ่ ทอง, 2549) รวมทั้งการศึกษาของ Jiranuntakul และคณะ (2011) ที่รายงานว่ากระบวนการแปรรูปโดยใช้ ความร้อนชื้น (heat-moisture treatment) โคยผ่านการแช่น้ำที่อุณหภูมิต่ำแล้วนำไปทำให้ร้อนที่อุณหภูมิ $100-$ $120^{\circ} \mathrm{C}$ หลังจากนั้นนำมาอบที่อุณหภูมิ $40^{\circ} \mathrm{C}$ จนกระทั่งมีความชื้นประมาณ 11% จะทำให้คุณสมบัติทาง กายภาพและทางเคมีของแป้งเปลี่ยนแปลงไป โดยจะทำให้ระดับสภาพผลึกมีค่าลคลง

รูปที่ 4.15 รูปแบบโครงสร้างผลึกของข้าวกล้องงอกหลังเพาะที่บรรจุในถุงรีทอร์ทเพาซ์ (control คือ ข้าวกล้อง งอกหลังเพาะ, $0.5,0.6$ และ 0.7 คือ อัตราส่วนของข้ววกล้อง:น้ำเท่ากับ $1: 0.5,1: 10.6$ และ $1: 0.7$ ตามลำดับ)

รูปที่ 4.16 รูปแบบโครงสร้างผลึกของข้าวกล้องงอกหลังเพาะที่บรรจุในกระป๋อง (control คือ ข้าวกล้องงอกหลัง เพาะ, $1.25,1.50$ และ 1.75 คือ อัตราส่วนของข้วกล้อง น้ำเท่ากับ $1: 1.25,1: 1.50$ และ $1: 1.75$ ตามลำดับ) ตารางที่ 4.49 ระดับสภาพผลึกของข้าวกล้องงอกหลังเพาะและผลิตภัณฑ์ข้าวกล้องงอกสำเร็รูปทั้้ง 2 ชนิด

ตัวอย่างข้าวกล้องงอก		Degree of crystallinity (\%)
ข้าวกล้องอกหลังเพาะ	25.92	
ข้าวกล้องงอกสำเร็จรูปบรรจุในถุงรีทอร์ทเพาซ์		
อัตราส่วนข้าวกล้อง:น้ำ	$1: 0.5$	10.22
	$1: 0.6$	11.85
	$1: 0.7$	10.28
ข้าวกล้องงอกสำเร็จรูปบรรจุในกระป๋อง		
อัตราส่วนข้าวกล้อง:น้ำ	$1: 1.25$	10.60
	$1: 1.50$	9.75
	$1: 1.75$	10.33

จากการวิคราะห์โครงสร้างุุลกาคคายในเม็คค้าวกล้องงอกหลังเหาะและข้าวกล้องงอกสำเร็รูปป บรรดุดงรีทอร์ทเพาซ์แเละบรรุุกระปีดงด้วย SEM ที่กำลังขยาย 60 เท่า จากการตัดขวางของงเมล์ค้้าว แสดง ดังรูปที่ 4.17 และ 4.18 พบว่าโครงสร้างขขงงเนื้อในมมลคค้าวกล้องงอกหลังเพาะมีลักษมะแน่น ขมะที่ข้าว กล้องงอกสำเร็จูปมี่รอยแตกภายในมมต่ค และมีโครงสร้างที่เป็นรูตรุมมากขึ้นเมื่อมีอัตราส่วนของน้ำสูงขึ้น
 หลายเหลี่ยมเรีงงตัวกันแน่นเป็นร่างแหในตัวอย่างข้าวกล้องงอกหลังเพาะ เป็นเม็คสตาร์ชที่รียงตัววป็น ร่างแหที่มีลักษมะเหลี่ยมลคลงแเละเกิดการพองตัวมากขึ้นมื่อสัดส่วนน้ำในการหุงข้วเพิ่มมากขึ้น $(0.50 .6$ และ 0.7) ในตัววย่างข้าวกล้องงอกสำเร์รูปบรรรุในดุงรีทอร์ทเพาซ์ (รูปที่ 4.17) สำหับบตัวอย่างข้าวกล้อง งอกสำเร็รูรูทที่บรรจุในกระป๋องซึ่มี่สัตสส่วนของน้ำที่ธูงกว่า $(1.25,1.50$ และ 1.75$)$ และผ่านกระบวนการให้ ความร้อนที่รุนแรงกว่า $\left(18^{\circ} \mathrm{C}\right.$ นาน 45 นาที) มีผลทำให้เม่คสตาร์ชพองตัวออกจนแตกและเชื่อมติคกัน
 105 ที่นึ่งว้วยไอน้ำ $100^{\circ} \mathrm{C}$ นาน 30 นาที โคยใช้อัตราส่วนน้ำต่อข้าว เท่ากับ $1: 1,1.5: 1$ และ $2: 1$ (ขวัญุทัย, 2549) และรายงานของ Sanders (1996) ที่พบว่ามม่ดตตาร์ชที่มีการดุดซึนน้ำเข้ามามากกจะเกิดการพซงตัวแบบ ผันกลับไม่ได้ และมีการเปลี่ยนแปลงปูปร่างของเม็ดสตาร์ช์และโครงสร้างแบบที่เกิดการบิดแสงระนาบ โพลาไรซ์ (bireffingence) เนื่องจากร่างแหระหว่าไไมซซล์กายในมม็ดสตาร์ชอ่อนแอลงงากการที่พันะะ ไฮโคเเนดูกทำลาย

นอกจากนี้อะเห็นว่าโครงสร้างทางมุลาคาให้ผลที่สอคคล้องกับค่า ER และ EI (ตารางที่ 4.43 และ 4.44) โดยมีค่าการขยาาตัวสูงขึ้นเมื่อปริมาณน้ำในการหุมมากขึ้น เนื่องจากการพองตัวของเม็ดสตาร์ชตังที่ กล่วข้งงต้น

รูปที่ 4.17 ลักษณะและรูปร่างโมเลกุลแป้งของข้าวกล้องงอกหลังเพาะ (A) ข้าวกล้องงอกสำเร็จรูปบรรจุในถุง รีทอร์ทเพาซ์ที่เตรียมโดยใช้อัตราส่วนข้าวกล้อง: น้ำ เท่ากับ $1: 0.5(\mathrm{~B}), 1: 0.6$ (C) และ $1: 0.7$ (D) ที่กำลังขยาย $60 \mathrm{x}, 5000 \mathrm{x}$ และ 9000 x ตามลำดับ (ตามแนวนอน)

รูปที่ 4.18 ลักษณะและรูปร่างโมเลกุลแป้งของข้าวกล้องงอกหลังเพาะ (A) ข้าวกล้องงอกสำเร็จรูปบรรจุ กระป๋องที่เตรียมโดยใช้อัตราส่วนข้าวกล้อง: น้ำ เท่ากับ 1:1.25 (B), 1:1.50 (C) และ 1:1.75 (D) ที่กำลังขยาย $60 \mathrm{x}, 5000 \mathrm{x}$ และ 9000 x ตามลำดับ (ตามแนวนอน)

2.2.3 การทดสอบทางประสาทสัมผัส

ในการทดสอบทางประสาทสัมผัส มีปัจจัยที่ต้องการให้ผู้ทดสอบประเมินผลิตภัณฑ์ ดังนี้ ลักษณะ ปรากฎ (ความแตกของเมล็คข้าว/ความร่วน/การเกาะตัวกันของเมล็ดข้าว) สี กลิ่น รสชาติ ลักษณะเนื้อสัมผัส

 4.50 และ 4.51 ซึ่งจากตารงที่่ 4.50 พบว่าอัตรสส่วนของง้าต่อย้ำที่ใช้ในการูงข้าทั้ง 3 อัตราส่วน ($1: 0.5$, 1:0.6 และ $1: 0.7$) ไม่มีผล่ต่อทุกุุมลักษณะทงประสาทสัมััสที่ทำการทดสอบ ซึ่งจะเห็นวาาระดับคะแนน
 คะแนนเฉลี่งของอัตราส่วนของข้าวกล้องต่อน้ำ เท่ากับ $1: 0.7$ มีแนวไน้มคะแนนเฉลี่งที่สูงสุดในทุกบัจััยที่ ทดสอบ คังนั้นอัตรสส่วนดังกล่าวจึงงเป็นอัตราส่วนที่หมาสสมในกรรผลิคข้าวกล้องงอกสำเร็จรูปที่บรรจุใน
 ในกระฟ๋องชึ่งเตรียมโดยใชัตัตรสส่วนต่างงกัน (1:1.25, 1:1.50 และ 1:1.75) แสคงผลคังตารางที่ 4.51 ซึ่งจะ เห็นว่าพลการทดสอบของปัจัับด้านลักษมะปรากฏและสีของผลิตรัณฑ์ทั้ง 3 สูตร มีคะแนนความชอบ

 สุตระะเห็นว่าูตรที่ตรียมมโดยใช้อัตราส่วนของข้าวกล้องและน้ำ เท่ากับ $1: 1.25$ ได้ดะแนนจากการทดสอบ ทางประสากสัมััสในทุกััจัชัสูงที่สุด ดังนั้นอัตรสส่วนดังกล่าวึึงงเป็นอัตราส่วนที่เหมาะสมที่ใช้ผลิตข้าว กล้องงอกสึ่าเ็็จุปที่บรรจุในกระี้อง
ตารงที่ 4.50 ผลการทดสอบทางประสาฟสัมผัสของผลิตกัมต์ข้าวกล้องงอกสำเร็จรูปบรรุุในถุง รีทอร์ทีพพาฐ์

ปัจจัยที่ทดสอบ	อัตราส่วนข้าว:น้ำที่ใช้หุง*		
	$1: 0.5$	$1: 0.6$	$1: 0.7$
1. ลักษณะปรากฏ(ความแตกของเมล็คข้าว/	$5.77 \pm 1.55^{\mathrm{a}}$	$5.83 \pm 1.58^{\mathrm{a}}$	$5.93 \pm 1.60^{\mathrm{a}}$
ความร่วน/การเกาะตัวกันของเมล็คข้าว)			
2. สี	$6.47 \pm 1.31^{\mathrm{a}}$	$6.37 \pm 1.40^{\mathrm{a}}$	$6.67 \pm 1.30^{\mathrm{a}}$
3. กลิ่น	$5.77 \pm 1.28^{\mathrm{a}}$	$5.80 \pm 1.45^{\mathrm{a}}$	$6.10 \pm 1.21^{\mathrm{a}}$
4. รสชาติ	$5.70 \pm 1.76^{\mathrm{a}}$	$5.77 \pm 1.59^{\mathrm{a}}$	$6.30 \pm 1.44^{\mathrm{a}}$
5. ลักษณะเนื้อสัมผัส (ความเหนียว/ความแข็ง/	$5.60 \pm 1.96^{\mathrm{a}}$	$5.40 \pm 1.99^{\mathrm{a}}$	$6.30 \pm 1.24^{\mathrm{a}}$
การเกาะกลุ่มกันของเมล็คข้าว)			
6. ความชอบโดยรวมที่มีต่อผลิตภัณฑ์	$6.00 \pm 1.58^{\mathrm{a}}$	$5.87 \pm 1.48^{\mathrm{a}}$	$6.47 \pm 1.11^{\mathrm{a}}$

* Mean $\pm \mathrm{SD}$ ของการคนที่ร่วมทดสอบ 30 คน
${ }^{\mathrm{a}}$ ตัวอักษรที่แตกต่างกันในแนวนอน แสดงว่ามีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($\mathrm{p}<0.05$)

 ผลิคคัณต์ข์าวกล้องงอกสำร็รููปที่มรรจุในกระะีองทั้ง 3 สูตร (ดังตารรงที่ 4.51) พบว่าอัตรสส่วนของน้ำที่ให้ ในกรรหงข้าว ทั้ง 4 อัศราส่วน คือ $0.7,1.25,1.50$ และ 1.75 ไม่มีผลต่อลักบมะทางประสากสัมัสที่ทำการ ทคสอบในด้านลักษมะปรากฎ กลิ่น รสชาติ และ ความชอบโดยรรมที่มี่ต่อผลิตกัมฑ์ โดยพบว่าระดับ

 เกาะตัวกันแม่นและเหนียา ระดับความชอบต้านนน้อสัมตัสแแะความชอบโดยรวมขจงงู้ทคสอบที่มี่อ ผลิคัณันทับรรจุกระป๋๋องที่ตรียมมในตัตราส่วนของข้าวกล้องและน้ำ เท่ากับ $1: 1.25$ คือ 7.03 (ชอบปานกลาง)
 เตี่ยมโดยไห้อัตราส่วนของข้ววกล้องเละน้ำ เท่ากับ $1: 07$ มีคะแนน 6.30 (ชอบเล็กน้อย) และ 6.47 (ชอบ เล็คน้อย) ตามลำคับ ดังนั้นจึงงเลือกผลิตกัมท์ข้าวกล้องงอกสำเร็จรูบที่บรรรุในกระป๋องซึ่งเตรียมจาก อัตราส่วนของข้ววกล้องแนลนน้ำเท่ากับ 1:1.25 เป็นผลิกััณฑ์ที่จะนำไปทดสอบกับผู้บริโกคต่อไป
 ในดูรีทอร์ทีเพพ์แเะในกระปี้อง

ปัจจัยที่ทดสอบ	อัตราส่วนข้าว:น้ำที่ใช้หุง*			
	บรรจุถุง		บรรดุกระป๋อง	
	1:0.7	1:1.25	1:1.50	1:1.75
1. ลักษณะปรากฏ (ความแตกของเมล็คข้าว/ ความร่วน/การเกาะตัวกันของเมล็คข้าว)	$6.70 \pm 1.39^{\text {ab }}$	$6.93 \pm 1.67^{\text {b }}$	$6.29 \pm 1.57^{\text {a }}$	$6.33 \pm 1.60^{\text {ab }}$
2. สี	$7.23 \pm 1.19^{\text {b }}$	$7.03 \pm 1.15^{\text {b }}$	$6.94 \pm 1.12^{\text {ab }}$	$6.33 \pm 1.40^{\text {a }}$
3. กลิ่น	$6.23 \pm 1.25^{\text {a }}$	$6.97 \pm 1.38^{\text {b }}$	$6.77 \pm 1.31^{\text {ab }}$	$6.60 \pm 1.43^{\text {ab }}$
4. รสชาติ	$6.43 \pm 1.38^{\text {a }}$	$6.79 \pm 1.72^{\text {a }}$	$6.29 \pm 1.77^{\text {a }}$	$6.27 \pm 1.57^{\text {a }}$
5. ลักษณะเนื้สสัมผัส (ความเหนียว/ความ	$5.87 \pm 1.50^{\text {a }}$	$7.03 \pm 1.35^{\text {b }}$	$6.52 \pm 1.79^{\text {ab }}$	$6.27 \pm 1.70^{\text {ab }}$
แข็ง/การเกาะกลุ่มกันของเมล็คข้าว)				
6. ความชอบโดยรวมที่มีต่อผลิตภัณฑ์	$6.47 \pm 1.28^{\text {a }}$	$7.14 \pm 1.38^{\text {a }}$	$6.55 \pm 1.50^{\text {a }}$	$6.43 \pm 1.55^{\text {a }}$

[^4]
2.3 องค์ประกอบทางเคมีและสารออกฤทธิ๋ทางชีวภาพของผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูป

ผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปที่ผ่านการคัดเลือก คือ ผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปบรรจุใน กระป๋องซึ่งเตรียม โดยใช้อัตราส่วนของข้าวกล้องและน้ำ เท่ากับ $1: 1.25$ (ดังแสดงในรูปที่ 4.19) นำมา วิเคราะห์องค์ประกอบทางเคมีและสารออกฤทธิ์ทางชีวภาพ ดังนี้

รูปที่ 4.19 ข้าวกล้องงอกสำเร็จรูปบรรจุกระป๋อง (เตรียมจากอัตราส่วนข้าวกล้องงอกและน้ำ เท่ากับ $1: 1.25$)

2.3.1 คุณค่าทางโภชนาการ

คุณค่าทางโภชนาการของผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปแสดงดังตารางที่ 4.52 เมื่อเปรียบเทียบ คุณค่าทางโภชนาการของผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปกับข้าวกล้องและข้าวกล้องงอก พบว่าผลิตภัณฑ์ ข้าวกล้องงอกสำเร็จรูปมีปริมาณของเถ้าและไขมันไม่แตกต่างจากกับข้าวกล้องและข้าวกล้องงอก ($\mathrm{p}>0.05$) ในขณะที่คาร์โบไฮเดรตมีค่าเพิ่มสูงขึ้น $(\mathrm{p}<0.05)$ และข้าวกล้องสำเร็จรูปมีปริมาณคาร์โบไอเดรตสูงที่สุด (91.77%) รองลงมาคือ ข้าวกล้องงอก (90.35%) และข้าวกล้อง (84.50%) ตามลำดับ สำหรับปริมาณโปรตีน พบว่ามีค่าลดลง $(\mathrm{p}<0.05)$ โดยข้าวกล้องมีปริมาณโปรตีนสูงที่สุด (10.22%) รองลงมา คือ ข้าวกล้องงอก (6.44%) และข้าวกล้องสำเร็จรูป (5.40%) ตามลำดับ การลดลงของปริมาณโปรตีนดังกล่าวสอดคล้องกับการ ทดลองของ Veluppillali et al (2009) และ Mohan et al (2010) ที่พบว่ากระบวนการงอกมีผลทำให้ปริมาณ โปรตีนทั้งหมด (total protein) ในข้าวกล้องลดลง $(\mathrm{p}<0.05)$ เนื่องจากระดับของเอนไซม์โปรติเอส มีค่าเพิ่ม สูงขึ้น $(\mathrm{p}<0.05)$ รวมถึงโปรตีนที่ละลายน้ำได้มีปริมาณลดลงจาก 7.24 เป็น 3.89 มิลลิกรัมต่อกรัม (น้ำหนัก แห้ง) เมื่อปล่อยให้ทิ้งไว้ให้งอกนาน 2 วัน (Veluppillali et al., 2009) ประกอบกับในกระบวนการผลิตข้าว กล้องงอกตามวิธีที่แสดงในภาคผนวก ก มีการล้างด้วยน้ำหลายครั้ง อาจจะทำให้มีการสูญเสียโปรตีนที่ ละลายน้ำได้ไปกับขั้นตอนการล้าง จึงทำให้ปริมาณโปรตีนในข้าวกล้องงอกมีค่าที่ต่ำกว่าข้าวกล้อง ($\mathrm{p}<0.05$) ดังแสดงผลในตารางที่ 4.52

สำหรับปริมาณโปรตีนที่ลคลงของผลิตภัมต์ข้าวกล้องงอกสำเร็จรูปนั้น อาจเนื่องมาจากผลิตภัณฑ์ ต้องผ่านการหุงและผ่านกระบวนการม่าเชื้อค้วยความร้อนที่อุณหภูมิ $118^{\circ} \mathrm{C}$ นาน 45 นาที ซึ่งสภาวะดังกล่าว อาจส่งผลให้เกิดปฏิกิริยาเมลลาร์ดขึ้น ซึ่งปฏิกิริยานี้เป็นปฏิกิริยาการเกิดสีน้ำตาลแบบไม่ใช้เอนไซม์ ซึ่ง เกิคขึ้นเนื่องจากน้ำตาลรีดีวซ์ ทำปฏิกิริยากับหมู่อมีน จากโปรตีนที่เป็นองค์ประกอบของผลิตภัณฑ์ ส่งผลให้ ปริมาณโปรตีนในตัวอย่างผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปลดลง

ตารางที่ 4.52 คุณค่าทางโกชนาการของข้าวพันธุช์ช่อลุง เปรียบเทียบระหว่างข้าวกล้อง ข้าวกล้องงอกและ ผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูป

องค์ประกอบทางเคมี* (\% นน.แห้ง)	ข้าวกล้อง	ข้ววกล้องงอก	ผลิตภัณฑ์ข้าวกล้อง งอกสำเร็อรูป
เถ้า	$0.30 \pm 0.06^{\text {Ns }}$	$0.33 \pm 0.07^{\text {Ns }}$	$0.35 \pm 0.08^{\text {Ns }}$
ไขมัน	$2.99 \pm 0.46^{\mathrm{Ns}}$	$2.88 \pm 0.72{ }^{\text {Ns }}$	$2.49 \pm 0.24{ }^{\text {Ns }}$
โปรตีน	$10.22 \pm 0.28^{\text {a }}$	$6.44 \pm 0.26^{\text {b }}$	$5.40 \pm 0.25^{\text {c }}$
คาร์ไบไฮเครต	$84.50 \pm 0.33^{\text {a }}$	$90.35 \pm 0.95{ }^{\text {b }}$	$91.77 \pm 0.39^{\circ}$

* mean \pm SD ของการวิเคราะห์ 3 ซ้ำ
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ ตัวอักษรที่แตกต่างกันในแนวนอน แสดงว่ามีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($\mathrm{p}<0.05$)
${ }^{\text {NS }}$ แสคงว่าไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ ($p>0.05$)

2.3.2 วิตามินและกกลือแร่

2.3.2.1 ชนิดและปริมาณวิตามิน

ผลการวิเคราะห์ชนิดและปริมาณวิตามินของข้าวกล้องพันช์่ช่อลุง ข้าวกล้องงอก และ ผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปในรูปที่ 4.20 และตารางที่ ข-3 ในภาคผนวก ข พบว่าข้าวกล้องมีปริมาณ วิตามิน อี บี1 บี3 และบี6 เท่ากับ $0.69,0.39,0.99$ และ 0.29 มิลลิกรัมต่อ 100 กรัม ตามลำดับ ข้าวกล้องงอก และผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปมีปริมาณวิศามิน อี บี 1 บี 3 และบีธ ลคลงอย่างมีนัยสำคัญ ($\mathrm{p}<0.05$) เมื่อ เทียบกับข้าวกล้องก่อนเพาะ

เมื่อเทียบระหว่างข้าวกล้องงอกกับผลิตภัณฑ์ พบว่าวิตามินอี และ บี1 ไม่มีความแตกต่างกัน ทางสถิติ โดยข้าวกล้องงอกและผลิตภัณฑ์มีปริมาณวิตามิน อี เท่ากับ 0.04 และ 0.03 มิลลิกรัมต่อ 100 กรัม ในขณะที่มีปริมาณวิตามิน บี1 เท่ากับ 0.03 และ 0.01 มิลลิกรัมต่อ 100 กรัม ตามลำดับ สำหรับวิตามิน บี 3 และ บี 6 พว่าผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปมีปริมาณของวิตามินทั้ง 2 ชนิดต่ำกว่าข้าวกล้องงอก $(\mathrm{p}<0.05)$ ข้าวกล้องงอกและผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปมีวิตามิน บี 3 เท่ากับ 0.07 และ 0.05 มิลลิกรัมต่อ 100 กรัม และมีวิตามิน บี6 เท่ากับ 0.11 และ 0.02 มิลลิกรัมต่อ 100 กรัม ตามลำคับ

A. วิตามิน อี

c. วิตขมิน บี 3

в. วิตามินบี 1

D. วิๆเมิน บี 6

รูที่ 4.20 กราฟเปรียบเทียบปริมาณวิตามิน ในข้าวกล้อง ข้าวกล้องงอก และผลิตภัณฑ์

2.3.2.2 ชนิดและปริมาณของเกลือแร่

ผลการวิเคราะห์ชนิดและปริมาณแร่ธาตุของข้าวกล้อง ข้าวกล้องงอก และ ผลิตภัณฑ์ข้าว กล้องงอกสำเร็จรูป จากข้าวพันโุ์ช่อลุง ในตารางที่ 4.53 พบแร่ธาตุที่มีสำคัญูางโภชนาการและจัดได้เป็น 3 กลุ่ม คือ

- กลุ่มที่ 1 แคลเซียม โปเทสเซียม และแมกนีเซียม
- กลุ่มที่ 2 โซเดียม คอปเปอร์ เซลิเนียม และโครเมียม
- กลุ่มที่ 3 ธาตุเหล็์ก และสังกะสี

จากตัวอย่างข้าวทั้ง 3 ชนิด พบว่าข้าวกล้องมีปริมาณแร่ธาตุทุกตัวสูงที่สุค เมื่อเทียบกับข้าว กล้องงอก และผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูป คังนี้ กลุ่มที่ 1 แคลเซียม 250.97 , โปแทสเซียม 1310.71 และ แมกนีเซียม 727.21 มก./กก. ในข้าวกล้อง; แคลเซียม 90.14 , โปแทสเซียม 164.05 และแมกนีเซียม 26.21 มก./ กก. ในข้าวกล้องงอก; แคลเซียม 52.182 , โปแทสเซียม 16.44 และแมกนีเซียม 12.25 มก./กก. ในผลิตภัณฑ์ ข้าวกล้องงอกสำเร็จรูป เมื่อเทียบเปอร์เซ็นต์ของธาตุที่หายไปในข้าวกล้องพบว่า ข้าวกล้องงอกมีแร่ธาตุ หายไป 64.1% สำหรับแคลเซียม, โปแทสเซียม 87.5% และแมกนีเซียม 96.4% ผลิตภัณฑ์ข้าวกล้องงอก สำเร็จรูปมีแร่ธาตุหายไป 79.2% สำหรับแคลเซียม, โปแทสเซียม 98.8% และแมกนีซซียม 98.3%

ธาตุกลุ่มที่ 2 โซเดียม 1.264 , คอปเปอร์ 2.508 , เซลิเนียม 2.189 และโครเมียม 0.446 มก./กก. ในข้าวกล้อง; โซเดียม 1.641 , คอปเปอร์ 0.917 , เซลิเนียม 1.734 และโครเมียม 0.219 มก./กก. ในข้าวกล้อง งอก; โซเดียม 0.571 , คอปเปอร์ 0.387 , เซลิเนียม 0.679 และโครเมียม 0.127 มก./กก. ในผลิตภัณฑ์ของข้าว กล้องงอก เมื่อเทียบเปอร์เซ็นต์ของธาตุที่หายไปกับข้าวกล้องพบว่า ข้าวกล้องงอกมีธาตุหายไป 63.4% สำหรับคอปเปอร์, เซลิเนียม 20.8% และโครเมียม 50.9% เว้นโซเดียม มีค่าเพิ่มขึ้น 29.8% ซึ่งน่าจะมาจาก บัฟเฟอร์ที่แช่ขณะทำให้งอกมีโซเคียมอยู่ด้วย, ผลิตภัณฑ์ของข้าวกล้องงอกมีธาตุหายไป 54.8% สำหรับ โซเดียม, คอปเปอร์ 84.6%, เซลิเนียม 68.9% และโครเมียม 71.5%

ธาตุกลุ่มที่ 3 เหล็ก 20.539 และสังกะสี 19.108 มก./กก.ในข้าวกล้อง; เหล็ก 6.257 และ สังกะสี 1.860 มก./กก.ในข้าวกล้องงอก; เหล็ก 2.670 และสังกะสี 1.084 มก./กก.ในผลิตภัณฑ์ของข้าวกล้อง งอก; เมื่อเทียบเปอร์เซ็นต์ของธาตุที่หายไปกับข้าวกล้องพบว่า ข้าวกล้องงอกมีธาตุหายไป 69.5% สำหรับ เหล็ก และสังกะสี 90.3% ผลิตภัณฑ์ของข้าวกล้องงอกมีธาตุหายไป 87.0% สำหรับเหล็ก และสังกะสี 94.3% โดยการหายไปของธาตุเหล่านี้น่าจะมาจากกระบวนการเพาะ และการทำผลิตภัณฑ์

Hossam และคณะ (2010) พบว่า ข้าวกล้องงอก (Rice Giza 175, Giza 181 (Oryz sativa)เพาะโดยแช่ข้าวกล้องในน้ำ 24 และ 3 ชั่วโมง ที่ $40^{\circ} \mathrm{C}$) มีปริมาณธาตุ $\mathrm{Zn}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Cu}$ และ Fe เพิ่มขึ้นจาก ช้าวกล้อง เนื่องจากปริมาณกรดไฟติก (phytic acid) ที่ลคลงอย่างมีนัยสำคัญเมื่อเทียบกับก่อนงอก แต่ผลการ ทดลองนี้ได้ผลตรงข้าม คือ ธาตุทั้ง 5 มีปริมาณลคลงในข้าวกล้องงอกเมื่อเทียบกับก่อนงอกอย่างมีนัยสำคัญ อาจเนื่องจาก (1) วิธีเพาะข้าวที่ต่างกัน โดยการทดลองนี้แช่ในบัฟเฟอร์ พีเอช 3 , (2) มีการปรับพีเอชจากกรด ให้เป็นกลางก่อนทำผลิตภัณฑ์

ตารางที่ 4.53 ชนิคและปริมาณแร่ธาตุของข้าวกล้อง ข้าวกล้องงอก และผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูป จาก ข้าวพันธุ์ช่อลุง

แร่ธาตุ	มิลลิกรัมวิตามิน/100 กรัม ตัวอย่าง		
	ข้าวกล้อง	ข้าวกล้องงอก	ผลิตภัณฑ์
Ca	$250.96 \pm 5.29^{\mathrm{a}}$	$90.14 \pm 5.49^{\mathrm{b}}$	$250.96 \pm 5.29^{\mathrm{c}}$
Na	$1.264 \pm 0.04^{\mathrm{a}}$	$1.641 \pm 0.07^{\mathrm{b}}$	$0.571 \pm 0.011^{\mathrm{c}}$
K	$1310.71 \pm 34.34^{\mathrm{a}}$	$164.05 \pm 58.01^{\mathrm{b}}$	$16.44 \pm 0.81^{\mathrm{c}}$
Mg	$727.21 \pm 12.05^{\mathrm{a}}$	$26.21 \pm 10.94^{\mathrm{b}}$	$12.25 \pm 0.57^{\mathrm{b}}$
Fe	$20.54 \pm 0.80^{\mathrm{a}}$	$6.26 \pm 0.41^{\mathrm{b}}$	$2.67 \pm 0.03^{\mathrm{c}}$
Cu	$2.51 \pm 0.10^{\mathrm{a}}$	$0.92 \pm 0.05^{\mathrm{b}}$	$0.39 \pm 0.03^{\mathrm{c}}$
Se	$2.19 \pm 0.30^{\mathrm{a}}$	$1.73 \pm 0.16^{\mathrm{b}}$	$0.68 \pm 0.15^{\mathrm{c}}$
Zn	$19.11 \pm 0.66^{\mathrm{a}}$	$1.86 \pm 0.15^{\mathrm{b}}$	$1.08 \pm 0.02^{\mathrm{b}}$
Cr	$0.45 \pm 0.01^{\mathrm{a}}$	$0.22 \pm 0.00^{\mathrm{b}}$	$0.13 \pm 0.01^{\mathrm{c}}$

*ค่าเฉลี่ยของตัวอย่าง 1 รุ่นจากการวิเคราะห์ 3 ซ้ำ

2.3.3 สารออกฤทธิ่ทางชีวภาพ

2.3.3.1 γ-aminobutyric acid (GABA)

GABA มีบทบาทสำคัญต่อสุขภาพของมนุษย์และสัตว์ โดยทำหน้าที่เป็นสารสื่อประสาท ประเภทสารยับยั้ง (inhibitory neurotransmitter) ในระบบประสาทส่วนกลาง (Chebib and Johnston, 1999) มี ผลในการรักษาสมคุลในสมอง ช่วยให้สมองผ่อนคลาย ลดอาการนอนไม่หลับและกระวนกระวายใจ (Tadashi, 2000) นอกจากนี้จากการศึกษาที่ผ่านมายังชี้ให้เห็นว่า GABA เป็นสารที่ส่งผลดีต่อสุขภาพ โดยมี ผลช่วยลดความดันโลหิตในสัตว์ทดลองและในมนุษย์ (Abe et al., 1995; Hayakawa et al., 2002; Inoue et al., 2003) ช่วยลดระดับน้ำตาลในเลือคของสัตว์ทดลอง (Hagiwara, et al., 2004) ช่วยยับยั้งการแพร่กระจายของ เซลล์มะเร็งโคยกระตุ้นให้เกิดการ apoptosis ของเซลล์มะเร็ง (Oh and Oh, 2004) มีหลายๆการศึกษาที่สรุปว่า กระบวนการงอกมีผลทำให้ปริมาณ GABA ของเมล็ดพืชเพิ่มสูงขึ้น (Liu et al., 2005; Ohtsubo et al., 2005; Kihara et al., 2007; Komatsuzaki et al., 2007; Chung et al., 2009; Moongngarm and Saetung, 2010) ซึ่งผล การทคลองที่ได้จากการวิจัยครั้งนี้ ก็สอคคล้องข้อสรุปกับดังกล่าว ซึ่งจะเห็นว่าปริมาณ GABA ของข้าวกล้อง งอกมีค่ามากกว่าข้าวกล้องประมาณ 7 เท่า (ตารางที่ 4.54) และเป็นค่าที่มากกว่าข้าวกล้องอย่างมีนัยสำคัญทาง สถิต ($\mathbf{p}<0.05$)

ตารางที่ 4.54 ปริมาณสาร GABA ในข้าวพันธุ์ช่อลุง เปรียบเทียบระหว่างข้าวกล้อง ข้าวกล้องงอกและ ผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูป

ตัวอย่าง	ปริมาณ GABA (มิลลิกรัม/100 กรัมตัวอย่าง, นน.แห้ง)
ข้าวกล้อง	$9.97 \pm 0.97^{\mathrm{a}}$
ข้าวกล้องงอก	$74.20 \pm 0.04^{\mathrm{b}}$
ผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูป	$1.94 \pm 0.13^{\mathrm{c}}$
a, b, ตัวอักษรที่แตกต่างกันในแนวตั้ง แสคงว่ามีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ (p<0.05)	

จากการศึกษาของ Okada และคณะ (2000) อ้างโดย Otsubo และคณะ (2005) ได้สรุปว่าการ รับประทานอาหารที่มี GABA เป็นส่วนประกอบในปริมาณ 26.4 มิลลิกรัมต่อวัน จะช่วยทำให้อาการที่เกิด จากการหมดประจำเดือน (symtoms of menopauses) หรืออาการของโรคทางจิต (metal disorder) ดีขึ้น ในขณะที่การรับประทาน GABA ปริมาณ 10 มิลลิกรัมต่อวัน ต่อเนื่องนาน 12 สัปดาห์ จะช่วยลดระดับความ คันโลหิตในคนที่เป็นโรคความคันโลหิตสูงได้ (Inoue et al., 2003) ดังนั้นปริมาณของข้าวกล้องงอก (เตรียม ตามวิธีในภาคผนวก ก) ที่ต้องบริโภคเพื่อให้ได้ผลตามข้อสรุปของ Okada และคณะ (2000) รวมถึง Inoue และคณะ (2003) คือ 45 และ 20 กรัม ตามลำคับ ซึ่งเป็นปริมาณที่ไม่สูงมาก แต่อย่างไรก็ตามมีการรายงานว่า
 Joye และคณะ (2011) พบว่าปริมา GABA มีกรรปปี่งนแปลงงในระหว่งกรระบวนการผลิตอาหารเช้าจาก

 ถุมหภูมิ $190^{\circ} \mathrm{C}$ นาน 3 นาที จะทำให้ไริมา GABA ลดลง 74% เมื่อเทียบกับผลิตัณัท์ก่อนอบ แสคงว่า กรรใหความร้้นสูงะะทำหห้ GABA ลคลง ซึ่งผลการิจับคกั้งั้นี้กสอคคล้องกับการรายงานคังกล่าว ที่พบว่า

 $\left(118{ }^{\circ} \mathrm{C}\right)$ เป็นระะะววานาน $(45$ นาที) ดังแสคงผลในตารงที่ 4.54
 เทียบกับข้าวกล้องงอก แต่หากสามารถบริโกคผลิคัมนฑ์ข้าวกล้องงอกสำเร็รุมูวันละ 5 กระปีอง (น้ำหนัก บรรจุ 120 กรัม) จะได้รับปริมาม $G A B A$ ทั้งหมด เท่ากับ 11.28 mg ซึ่งเป็นปริมาณที่เพียงพอที่จะส่งพลดีค่อ สุชภา โดชช่วอลคความคันโกหิตตามข้อสรุปของ Inoue และคมะ (2003)

2.3.3.2 กิจกรรมการต้านยอกซิเดชั่น การประเมินฉทลิ์ต้านการอักสสบและตักยภาพการยับยั้ง

1. กิจกรรมการต้นนอกกิิดชั่น

ผลการิิคราะม์ปไริมามสารประกอบฟีนอลิกทั้งหมดแแะกิจกรรมการด้านออกพิดดันของ ข้าวกล้องงอกซึ่งงประกอบด้วยการิิคระษห์ DPPH radical scavenging activity, ABTS radical scavenging activity และ feric reducing antioxidant power (FRAP) assay โโยรายงานผลในรูปมิลลิกรรัมสมมูลขจงกรด เฟอริลิก่ต่อ 100 กรัม ตัวอย่าง (mg equivalent of ferulic acid/100g sample) แสคงคังตाรงงที่ 4.55 ซึ่งบบว่า ปริมาณฟีนอลิกทั้งหมดในข้าวกล้องงอกมีค่าสงกว่าข้ววกล้อง $(p<0.05)$ และผลคังกล่าวสอดคล้องกับ งนนจิจัยของ Lee et al. (2007) และ Moongggarm and Saetung (2010) ที่รายงานว่าตัวอย่างข้าวที่ผ่นการทำ ให้งอกด้ววสกกาวต่างๆจะมีปริมมมฟืนอลิกัั้งหมดสูงกว่าข้ววกล้องที่ไม่ผ่านการทำให้งอก $(\mathrm{p}<0.05)$ ทั้งนี้
 ขึ้นทำให้สารีนอลิกีที่อยู่ในรูป bound form (bound phenolic) ถูกปปี่งนให้อยุ่ในรูปของงื้นอลิกอิสระ (free phenolic) เพิ่มขึ้น (Maillard et al., 1996) นอกากกนี้จกกการึึกษาของ Tian และคนะ (2004) ยังพบว่าใน
 เพิ่มนึ้นทำให้มี่การเปลี่ยนฟืนอลิกในรูปของ bound form ไปเป็นฟีนอลิกลิสระเพิ่มขึ้น ซึ่งกรคฝฟอริริก (ferulic acid) เป็นฟีนอลิกอิสระที่มีปริมาณพิิมสูงงื้นมากที่สุดในระหว่างกระบวนกกรทำให้ข้าวกล้องงอก และจากเหตุตลทั้งหมคที่กล่าวมาแล้วงึงสส่งผลให้าริมามของ ฟีนอลิกทั้งหมดในข้าวกล้องงอกเพิ่มจื้น
(p<0.05) แต่คะเห์นไค้ว่าแื่อนำข้าวกล้องงอกมาผ่นกรรบวนกรรแปรรูปโดยใช้ควมมร้อนสูง ($118^{\circ} \mathrm{C}$ นาน 45 นทที) ทำใท้ปริมาแนืนอลิกทั้งมมดลคลง (р<0.05) ทั้งนี้นน่องจากความร้อนเป็นปัจจัยสำคัญที่ส่งผลให้ ปริมานฟีนอลิกกั้งหมดรวมทั้งกิกกรรมกกรต้านอนมูกิิสระในพืชค่งงๆสดลง (Franke etal., 1994; Ismail et al., 2004; Lee et al., 2006; Morales-de la Pena et al, 2011; Vadivel et al., 2011) เนื่องจากความร้อนเข้าไป
 ระทว่งกการหงสุก ส่งผลให้สารประกอบฟืนอกิกกูกทำกายได้ง้่ายมากขึ้น (Xu and Chang, 2008)

ตรรงที่ 4.55 ปริมามสารประกอบฟืนอลิกัั้งหมดดแสะกิงกรรมการต้านออกพิเดันนของข้าวกล้อง ข้าวกล้อง งอกและผลิคกัณฑ์ข้าวกล้องงคกสำเร์วููป

ตัวอย่าง	Total phenolic (mg FAE/100g, นน.แห้ง)	Antioxidant activities (mg FAE/100 g sample, นน.แห้ง)		
		DPPH	ABTS	FRAP
ข้าวกล้อง	14.67 ± 12.40^{2}	$11.76 \pm 49.50^{\text {a }}$	$12.71 \pm 28.36^{\text {a }}$	$8.92 \pm 28.99^{\text {a }}$
ข้าวกล้องงอก	$35.50 \pm 70.47^{\text {b }}$	$17.06 \pm 30.51{ }^{\text {b }}$	$18.95 \pm 61.16^{\text {b }}$	$15.76 \pm 34.72^{\text {b }}$
ผลิตภัณฑ์ข้าว กล้องงอกสำเร็จรูป	$11.06 \pm 17.30^{\text {c }}$	$10.54 \pm 29.10^{\text {c }}$	$9.09 \pm 27.79^{\text {c }}$	$7.13 \pm 10.06^{\text {c }}$

$\cdots, \ldots, \ldots=$ ค่าเฉลี่ยในแนวตั้งที่ตามค้วยอักษรที่แตกต่างกัน มีความแตกต่างกันทางสถิติ
สำหรับการทดสอบกิจกรรมกรรด้านออกชิใศั่นเป็นการทำพื่อวัคความสามารถของตัวอย่งในการ จับกับอนุมูอลิสระ ซึ่เป็นการแสคงหห้เห็นถึงความสามารดในการเป็นสารด้านอนุมูลอิสระ จากตารางที่ 4.55 พบว่าข้าวกล้องงอกมีกิงกรรมการด้านออกซิเดัั่หสูงกว่าตัวอย่างข้าวกล้องในทุกาวิธีที่ทคสอบ (p<0.05) โดขมีคี่ทท่ากับ $17.06,18.95$ และ 15.76 มิลลิกัรัม $\mathrm{FAE} / 100$ กรัมตัววย่าง เมื่อทดสขบด้วขวิธี DPPH radical scavenging activity, ABTS radical scavenging activity และ ferric reducing antioxidant power (FRAP) assay ตามลำดับ โดยส่วนใหญู่สรต้านอนมูลอิกระในหืหคื่อ สารประกอบฟีนอลิก (Rice-Evans et al., 1997; Maisuthisakul et al., 2008) มีหลายๆงานวิจับที่รายานว่าปริมามสารฟีนอลิกทั้งหมดมี ควมสัมัันธ์ในทางบวกกับความสามารกในการต้นนอนมูลลิกระในพืช (Liu et al., 2007; Beta et al., 2005;

 งอกมีกิกกรรมการต้นนออกพิดชั่นสูงก่าข้าวกล้อง นอกจากนี้เื่อนำข้วกลล้องงอกไปผ่านกระบวนการแปร รูปโคยใช้ความร้อนสูง $\left(118{ }^{\circ} \mathrm{C}\right.$ นาน 45 นาที) กิจกรรมการด้านออกซิเดั่่นของผลิคกัณฑ์ข้าวกล้องงอก

2. กรรประเมินๆทลิ์ต้านการอักเสบ

น้ำหนักของสารสกัดที่ได้เท่ากับ 1.57 g และหลังจากำไปไประเมินฤทธิ์ต้านอาการัักสบบบบ่า
 ฉทธิ์คคลงไใ้้ นอกจากนี้แหล่งของง้าวกล้องงอกที่แตกต่างกันอาจจะมืผลต่อองค์ประกอบทางเคมีแเละฤทธิ์ ทงชีวภาท"ด้

3. คักยภาพการยับยั้งกิอกรรมเอนไซม่นอดฟ่--ะไมดส

ผลการศึกษาในตารางที่ 4.56 แสคงว่าข้าวช่อลุงทั้ง 3 รูปแบบ (ข้าวกล้อง ข้าวกล้องงยกและ

 ผลิคัณฑ์มีค่ากดต่ำลงจากข้ววกล้องย่างมีนี้สำคัญทางสลิติ (p<0.05) ซึ่งน่าจะเนื่องจากวิธีการเพาะแบบแห่ ที่มีผลลคกรบับขั้ง้อนไซม่เเละกระบวนการเตรียมให้เป็นผลิคพพนธ์ ตารงที่ 4.56 คักยกาพการับชั้งกิกกรรมเอนไฐม่อะไมเลส ของสารสกัดจากข้ววกล้อง ข้ววกล้องงอกนเะะ ผลิคัมัแฑ์ข้วกล้องงอกสำเร็จุปป จากข้าวพันธุช่อลุง

ตัวอย่ง	รอยละการับบั้งกิกกรรมอะไมลส	
	จะไมเสสจกกน้ำลาย	จะไมเสจากตับอ่อน
ข้าวกล้อง	$<0 \pm 6.39^{\circ}$	$90.89 \pm 3.26^{\circ}$
ข้วกลล้องอก	$<0 \pm 3.22^{\text {a }}$	1.23 ± 1.89^{6}
ผลิกันฑ์ข้ววกล้องงอกสำร็จรูป	$<0 \pm 2.81{ }^{\text {a }}$	0.02 ± 1.28^{8}

รูปที่ 4.21 แสดงกราฟึกรรหาปริมามมก.มมล.สารสกัด้าวกล้องช่อลุงที่ความเข้ขข้นต่างๆ เพื่อหา ปริมามที่บับขั้งการทำงานของเอนไซม่อะไมลสสจากตับอ่อนได้ร้อยละ 50 พบว่ว่มีค่าเท่ากับ 15.9 มก./มล. ส่วนท้าวกล้องงอก และผลิตรัแท์ไม่สมมารถทำการหาได้ เนื่องจากสารสกัคของตัวอย่างทั้งสองที่ไริมาณ 200 มก./มล. ขับชั้งอนไซม์ได้ต่ำมกกัดงตารางที่ 4.56 ข้ข้งต้น

รูปที่ 4.21 การยับยั้งกิจกรรมเอนไซม์อะไมเลสจากตับอ่อนของสารสกัคข้าวกล้องช่อลุงแบบแช่ (0.2 กรัม/มล.) ที่ค่าการเจือจางต่างๆ (ข้าวกล้องช่อลุงจากปัตตานี ค่าเฉลี่ยจาก 3 รุ่น สกัด 3 ครั้ง วิเคราะห์แบบ 2 ซ้ำ)

2.4 การทดสอบการยอมรับของผลิตภัณฑ์กับผู้บริโภค

การทดสอบผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปกับผู้บริโภค ทำโดยใช้แบบสำรวจความคิดเห็น (ภาคผนวก ข) ในกลุ่มผู้สูงอายุ (อายตั้งแต่ 60 ปีขึ้นไป) ซึ่งเป็นผู้บริโภคกลุ่มเป้าหมาย โดยเนื้อหาของ แบบสอบถาม แบ่งเป็น 3 ส่วน คังนี้

- ส่วนที่ 1 พฤติกรรมการบริโภคข้าวกล้องงอกบรรจุกระป๋อง
- ส่วนที่ 2 การประเมินการยอมรับข้าวกล้องงอกบรรจุกระป๋อง
- ส่วนที่ 3 ข้อมูลทั่วไปของผู้ตอบแบบสอบถาม

จากการสอบถามผู้บริโภคทั้งหมด 111 คน ข้อมูลทั่วไปของผู้ตอบแบบสอบถามแสดงดังตารางที่ 4.57 ซึ่งผู้ตอบแบบสอบถามส่วนใหญู่เป็นเพศหญิง (86.5\%) นับถือศาสนาพุทธ (99.1%) มีอายุในช่วง $60-65$ ปี (35.1%) อยู่ในสถานภาพที่สมรสแล้ว (59.5%) จบการศึกษาในระดับประถมศึกษาเป็นส่วนใหญ่ (37.8%) มีจำนวนสมาชิกในครอบครัว เท่ากับ $3-4$ คน (39.6%) และมีรายได้ของครอบครัว เท่ากับ $10,000-30,000$ บาท/เดือน (37.8%)

ตารางที่ 4.57 ข้อมูลประชากรศาสตร์ของผู้ทำแบบสอบถาม

ลักษณะทางประชากรศาสตร์	$\%$
1. เพศ	
- ชาย	13.5
- หญิง	86.5
2. ศาสนา	
- พุทธ	99.1
- อื่นๆ	0.9

ตารางที่ 4.57 (ต่อ)

ลักษณะทางประชากรศาสตร์	\%
3. ช่วงอายุ	
-60-65 ปี	35.1
$-66-70$ ปี	12.6
-71-75 ปี	23.4
$-76-80$ ปี	25.2
- มากกว่า 80 ปี	3.6
4. สถานภาพ	
- โสด	16.2
- สมรส	59.5
- หย่า/หม้าย/แยกกันอยู่	24.3
5. ระดับการศึกษา	
- ต่ำกว่าประกมศึกษา	5.4
- ประถมศึกษา	37.8
- มัธยมศึกษา	20.7
- ปวช	2.7
- ปวส. / อนุปริญญา	6.3
- ปริญญาตรี	23.4
- สูงกว่าปริญญาตรี	1.8
6. จำนวนสมาชิกในครอบครัว	
-1-2 คน	30.6
-3-4 คน	39.6
- 5-6 คน	22.5
- มากกว่า 6 คน	7.2
7. รายได้ของครอบครัวต่อเดือน	
- น้อยกว่า 10,000 บาท	29.7
$-10,000-30,000$ บาท	37.8
$-30,001-50,000$ บาท	22.5
$-50,001-100,000$ บาท	0.9
- มากกว่า 100,000 บาท	1.8

จากการสอบถามพบว่าผู้ตอบแบบสอบถามส่วนใหญู่เคยรุ้จักหรือทราบข่าวสารเกี่ยวกับข้าวกล้อง งอกมาก่อน (คิดเป็น 84.68%) โดยในแต่ละช่วงอายุีสัดส่วนของผู้ที่รุ้จักและไม่รู้จักข้าวกล้องงอก แสดงดัง ตารางที่ 4.58 แต่อย่างไรก็ตามหากดูเฉพาะในกลุ่มที่เคยรู้จักข้าวกล้องงอกพบว่า ผู้ตอบแบบสอบถามที่มีอายุ ในช่วง $60-65$ ปี เป็นกลุ่มที่รู่จักข้าวกล้องงอกมากที่สุด (คิดเป็น 30.85%) รองลงมาคือผู้ที่มีอายุในช่วง $71-75$ ปี (คิคเป็น 26.60%) โดยผู้ตอบแบบสอบถามทั้งหมคที่รู่จักข้าวกล้องงอก (94 คน) จะรู้กักผ่านทางสื่อต่างๆ ดังแสคงในตารางที่ 4.59 โคยโทรทัศน์และคำบอกเล่าของบุคคลเป็นสื่อที่ทำให้ผู้ตอบแบบสอบถามรู้กักข้าว กล้องงอกมากที่สุด (50 และ 50% ตามลำคับ) รองลงมาคือ หนังสือพิมพ์ / วารสาร (20.21%) ตารางที่ 4.58 จำนวนและเปอร์เซ็นต์ของกลุ่มตัวอย่างที่เคยยู้จักหรือทราบข่าวเกี่ยวกับข้าวกล้องงอก

ท่านเคยรู้จักหรือทราบข่าวสารเกี่ยวกับ "ข้าวกล้องงอก"						
อ1ยุ	มาก่อนหรือไม่				รวม	
(ปี)	เคย		ไม่เคย			
	จำนวน	\%	จำนวน	\%	จำนวน	\%
60-65	29	26.13	10	9.01	39	35.14
66-70	24	21.62	2	1.80	26	23.42
71-75	25	22.52	3	2.70	28	25.23
76-80	12	10.81	2	1.80	14	12.61
มากกว่า 80	4	3.60	0	0	4	3.60
รวม	94	84.68	17	15.32	111	100

ตารางที่ 4.59 สื่อต่างๆที่ทำให้กลุ่มตัวอย่างรู้จักข้าวกล้องงอก

สื่อต่างๆ	เลือก	
	จำนวน	$\%$
หนังสือพิมพ์/ วารสาร	19	$\mathbf{2 0 . 2 1}$
วิทยุ	10	$\mathbf{1 0 . 6 4}$
งานนิทรรศการ	16	$\mathbf{1 7 . 0 2}$
โทรทัศน์	47	$\mathbf{5 0}$
อินเตอร์เน็ต	3	$\mathbf{3 . 1 9}$
คำบอกเล่าของมุคคล	47	$\mathbf{5 0}$
อื่นๆ	8	$\mathbf{8 . 5 1}$

เมื่อสอบถามถึงความสนใจในการบริโกคข้าวกล้องงอกพบว่า ผู้ตอบแบบสอบถาม 91.89% สนใจที่ จะบริโภคข้าวกล้องงอก (คังตารางที่ 4.60) โดยผู้ตอบแบบสอบถามที่มีอายุในช่วง $60-65$ ปี มีความสนใจที่จะ บริโภคมากที่สุด (37.25% ของผู้ที่สนใจทั้งหมค) และเหตุผลที่ทำให้ผู้ตอบแบบ สอบถามเลือกที่บริโภคข้าว กล้องงอก คือ เพื่อประโขชน์ต่อสุขกาพ (90.20% ของสู้ที่สนใจทั้งหมด) รองลงมาคือเพื่อรักษาโรค $(32.35 \%$ ของสู้ที่สนใจทั้งหมด) คังแสดงในตารางที่ 4.61

ตารางที่ 4.60 จำนวนและเปอร์เซ็นต์ของกลุ่มตัวอย่างที่สนใจบริโภคข้าวกล้องงอก

อายุ (ปี)	ท่านมีความสนใจที่จะบริโภคข้าวกล้องงอกหรือไม่				รวม	
	สนใจ		ไม่สนใจ			
	จำนวน	\%	จำนวน	\%	จำนวน	\%
60-65	38	34.23	1	0.90	39	35.14
66-70	25	22.52	1	0.90	26	23.42
71-75	22	19.82	6	5.41	28	25.23
76-80	13	11.71	1	0.90	14	12.61
มากกว่า 80	4	3.60	0	0	4	3.60
รวม	102	91.89	9	8.11	111	100

ตรรางที่ 4.61 เหตุผลที่ทำให้กลุ่งตัวอย่างสนใจบริโภคข้าวกล้องงอก

เหตุผล	เลือก	
	จำนวน	$\%$
ประโยชน์ต่อสุขภาพ	92	90.20
ชอบรสชาติและเนื้อสัมผัส	12	11.76
เพื่อรักษาโรค	33	32.35

นอกจากนี้ในกลุ่มผู้ตอบแบบสอบถามที่ไม่สนใจที่จะบริโภคข้าวกล้องงอก (ตารางที่ 4.60) ได้ให้ เหตุผลของการที่ไม่สนใจบริโภคข้าวกล้องงอก ดังแสคงในตารางที่ 4.62 โดยเหตุผลหลัก คือ ราคาแพงกว่า ข้าวปกติ คิคเป็น 44.44% ของผู้ที่ไม่สนใจทั้งหมด รองลงมา คือไม่สะควกในการซื้อ คิดเป็น 33.33% ของผู้ที่ ไม่สนใจทั้งหมด

ตารางที่ 4.62 เหตุผลที่ทำให้กลุ่มตัวอย่างไม่สนใจบริโภคข้าวกล้องงอก

เหตุผล	เลือก	
	จำนวน	$\%$
ไม่ชอบทคลองผลิตภัณฑ์ใหม่	1	11.11
ไม่นิยมบริโภคข้าวกล้องงอก	2	22.22
ไม่สะดวกในการซื้อ	3	33.33
ไม่รู้จักผลิตภัณฑ์	2	22.22
ราคาแพงกว่าข้าวปกติ	4	44.44

ในกลุ่มูู้ตอบแบบสอบถามทั้งหมด พบว่ามีผู้ที่เคยรับประทานข้าวกล้องงอกหรือผลิตภัณฑ์จากข้าว กล้องงอกทั้งหมค 63.06% (ดังตารางที่ 4.63) โคยผู้ตอบแบบสอบถามที่มีอายุอยู่ในช่วง $60-65$ ปี เป็นกลุ่มที่ เคยรับประทานข้าวกล้องงอกหรือผลิตภัณฑ์จากข้าวกล้องงอกมากที่สุด (18.92\%) รองลงมาคือผู้ที่มีอายุอยู่ ในช่วง $66-70$ ปี (18.02%) (คังตารางที่ 4.63) และจากตารางที่ 4.64 พบว่าผลิตภัมต์จากข้าวกล้องงอกที่ผู้ตอบ แบบสอบถามเคยรับประทานมากที่สุด คือ น้ำข้าวกล้องงอก (77.14\%) รองลงมา คือ ข้าวหุงสุก (48.57%) และโจ๊กข้าวกล้องงอก (18.57%) ตามลำดับ และเมื่อพิจารณาแต่ละการรับประทานผลิตภัณฑ์ตามช่วงอายุ พบว่าผู้ตอบแบบสอบถามที่มีอายุอยู่ในช่วง $60-65$ ปี มีเปอร์เซ็นต์ของงู้ที่เคยรับประทานผลิตภัณฑ์จากข้าว กล้องงอกสูงที่สุด (คังตารางที่ 4.64)

ตารางที่ 4.63 จำนวนและเปอร์เซ็นต์ของกลุ่มตัวอย่างที่เดยรับประทานข้าวกล้องงอกหรือผลิตภัณฑ์จากข้าว กล้องงอก

ท่านเคยรับประทานข้าวกล้องงอกหรือผลิตภัณฑ์จากข้าว						
อายุ (ปี)	กล้องงอกหรือไม่				รวม	
	เคย		ไม่เคย		จำนวน	\%
	จำนวน	\%	จำนวน	\%		
60-65	21	18.92	18	16.22	39	35.14
66-70	20	18.02	6	5.41	26	23.42
71-75	17	15.32	11	9.91	28	25.23
76-80	10	9.01	4	3.60	14	12.61
มากกว่า 80	2	1.80	2	1.80	4	3.60
รวม	70	63.06	41	36.94	111	100

ผลิตภัณฑ์จาก ข้าวกล้องงอก	อายุ (ปี)										รวม	
	60-65		66-70		71-75		76-80		มากกว่า 80			
	จํานวน	\%	จำนวน	\%								
ข้าวหุงสุก	11	15.71	9	12.86	7	10.0	5	7.14	2	2.86	34	48.57
น้ำข้าวกล้องงอก	17	24.29	16	22.86	13	18.57	7	10.0	1	1.43	54	77.14
โจ๊กข้าวกล้องงอก	4	5.71	4	5.71	4	5.71	1	1.43	0	0.0	13	18.57
น้ำข้าวกล้องงอก ขนิดผง	5	7.14	3	4.29	0	0.0	2	2.86	1	1.43	11	15.71
อึ่นๆ	1	1.43	0	0.0	1	1.43	0	0.0	0	0.0	2	2.85

หลังจากให้ผู้ตอบแบบสอบถามทคลองชิมผลิตภัณฑ์ข้าวกล้องงอกบรรจุกระป๋องที่ผ่านการให้ความ ร้อนด้วยไมโครเวฟ และให้คะแนนความชอบต่อลักษณะต่างๆ ของผลิตภัณฑ์ คังนี้ ลักษณะปรากฏ สี กลิ่น รสชาติ เนื้อสัมผัส และความชอบโคยรวม ผลการทคสอบทางประสามสัมผัสแสดงดังตารางที่ 4.65 โดย ผู้ตอบแบบสอบถามให้คะแนนในทุกๆปัจจัยที่ทคสอบตั้งแต่ 6.92-7.39 ซึ่งแสดงให้เห็นว่าผู้ตอบ แบบสอบถามมีความรู้สึกชอบต่อผลิตภัณฑ์ในระดับชอบปานกลาง และพบว่าผู้ตอบแบบสอบถาม 93.69% ให้การยอมรับผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปบรรจุกระป๋อง (ดังตารางที่ 4.66) นอกจากนั้นสามารถสรุป ได้ว้วผู้ตอบแบบสอบถามที่มีอายุในช่วง $60-65$ ปีให้การยอมรับผลิตภัณฑ์ข้าวกล้องงอกบรรจุกระป๋องมาก ที่สุด (31.53%) และถ้ามีผลิตภัณฑ์ชนิดนี้จำหน่ายในท้องตลาคจะมีผู้ที่สนใจซื้อ 82.57% (ดังตารางที่ 4.67) โดยผู้ตอบแบบสอบถามที่มีอายุในช่วง $60-65$ ปีสนใจที่จะซื้อผลิตภัณฑ์ข้าวกล้องงอกบรรจุกระป๋องมากที่สุด คิคเป็น 26.61% (คังตารางที่ 4.67)
ตารางที่ 4.65 ผลการทดสอบทางประสาทสัมผัสของผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปกับผู้บริโภคกลุ่ม ผู้สูงอายุ จำนวน 111 คน

ลักษณะทางประสาทสัมผัส	Mean \pm SD
ลักษณะปรากฏ	7.22 ± 1.47
สี	7.12 ± 1.44
กลิ่น	6.92 ± 1.72
รสชาติ	7.14 ± 1.69
เนื้อสัมผัส	7.15 ± 1.58
ความชอบโดยรวม	7.39 ± 1.66

ตารงที่ 4.66 จำนวนและร้อยละของตู้คอบแบบสอบกามที่ยอมรับข้าวกล้องอกบรรุุกระที่อง

อายุ (ปี)	ท่านยอมรับข้าวกล้องงอกบรรจุกระป๋องนี้หรือไม่				รวม	
	ยอมรับ		ไม่ยอมรับ			
	จำนวน	\%	จำนวน	\%	จำนวน	\%
60-65	35	31.53	4	3.60	39	35.14
66-70	25	22.52	1	0.90	26	23.42
71-75	26	23.42	2	1.80	28	25.23
76-80	14	12.61	0	0.0	14	12.61
มากกว่า 80	4	3.60	0	0.0	0	0.0
รวม	104	93.69	7	6.31	111	100

ตารางที่ 4.67 จำนวนและร้อยละของผู้ตอบแบบสอบถามที่สนใจจะซื้อข้าวกล้องงอกบรรจุกระป๋อง

อ1ยุ (ปี)	ถ้ามีการผลิตข้าวกล้องงอกบรรจุกระป๋องจำหน่าย ในท้องตลาค ท่านสนใจจะซื้อหรือไม่				รวม	
	สนใจ		ไม่สนใจ			
	จำนวน	\%	จำนวน	\%	จำนวน	\%
60-65	29	26.61	10	9.17	39	35.78
66-70	23	21.10	2	1.83	25	22.94
71-75	22	20.18	6	5.50	28	25.69
76-80	12	11.01	1	0.92	13	11.93
มากกว่า 80	4	3.67	0	0.0	4	3.67
รวม	90	82.57	19	17.43	109	100

นอกจากนั้นเมื่อมีการอธิบายเพิ่มเติมว่าผลิตภัมฑ์ข้าวกล้องงอกบรรจุกระป๋องนี้มีสาร GABA ซึ่ง เป็นสารออกฤทธิ์ทางชีวภาพที่มีประโยชน์ต่อสุขภาพพบว่าผู้ทคสอบสนใจที่จะซื้อผลิตภัณฑ์เพิ่มงึ้นจาก 82.57% เป็น 95.50% (ดังตารางที่ 4.67 และ 4.68) และมีความแตกต่างของความถี่ของผู้บริโภคที่ไม่ซื้อ ผลิตภัณฑ์ก่อนและหลังรับข้อมูล โดยค่า $\chi 2=12.25$ ($\mathrm{p}<0.05$) และการให้ข้อมูลกกี่ยวกับประโยชน์ต่อสุขภาพ มีอิทธิพลอย่างมีนัยสำคัญต่อการตัคสินใจซื้อของสู้บริโภค ค่า95\% Cl สำหรับความแตกต่างของสัดส่วนมีค่า
$0.0554-0.1966$ หมายความว่าหลังผู้บริโภคทราบข้อมูล โอกาสที่ผู้บริโภคจะเปลี่ยนใจซื้อสินค่าเพิ่มขื้น 5.94 ถึง 19.66%

ตารางที่ 4.68 จำนวนและร้อยละของผู้ตอบแบบสอบถามที่สนใจจะซื้อข้าวกล้องงอกบรรจุกระป๋องเมื่อมี ข้อมูลบ่งชี้ว่าข้าวกล้องงอกบรรจุกระป๋องมีสาร GABA

อายุ (ปี)	ถ้าข้าวกล้องงอกบรรจุกระป๋องที่ท่านได้ทดสอบ ชิม มีข้อมูลบ่งชี้ให้ท่านทราบว่ามีสารกาบา ท่านจะ ซื้อผลิตภัณฑ์นี้หรือไม่				รวม	
	$\begin{aligned} & \text { ซื้อ } \end{aligned}$		ไม่ซื้อ			
	จำนวน	\%	จำนวน	\%	จำนวน	\%
60-65	37	33.33	2	1.80	39	35.14
66-70	24	21.62	2	1.80	26	23.42
71-75	27	24.32	1	0.90	28	25.23
76-80	14	12.61	0	0.0	14	12.61
มากกว่า 80	4	3.60	0	0.0	4	3.60
รวม	106	95.50	5	4.50	111	100

บทสรุปและข้อเสนอแนะ

ส่วนที่ 1: การศึกษาสภาวะที่เหมาะสมในการเตรียมข้าวกล้อง คุณค่าทาง โภชนาการและสารออกฤทธิ์ทางชีวภาพของข้าวกล้องงอก

 มีคาร์ไบไฮเดรตเป็นองค์ประกอบหลัก โดยมีค่าตั้งแต่ 84.43-88.43\% จงค์ประกอบทางงคมีอื่นๆ ได้แก่ โปรตึน ไขมัน เถ้า และใยอานาร มีค่ตั้งแต่ $8.98-11.61 \%, 2.05-3.47 \%, 0.48-1.44 \%$ และ $1.25-5.90 \%$ ตามลำคับ และใยอาหารที่เป็นจงค์ประกอบหลักในข้าวกล้องทั้ง 4 พันโ์ คือ ใขอาหารประเกทที่ไม่ละลยยน้ำ หลังงากนำข้ววกล้องทั้ง 4 สยยันุุมเทเะให้งอก โดยใช้สกาวะตพมที่สรุปไว้ว้นข้อ 1.2 พบว่องคค์ประกอบ ทางเคมีของข้าวกล้องงอกทั้ง 4 พันรุ์ ส่วนใหม่มี่ค่าเพิ่มสูงทึ่น ยกเว้นโปรคีนที่มี่ค่าลคต่ำลง ($\mathrm{p}<0.05$) และข้าว
 เต้า ไขมัน และโปปรคีนของข้ววกล้องงอกทุกสาขพันธุ์ มี่คัตั้งแต่ $1.05-1.52 \%, 2.78-3.88 \%$ และ $4.76-7.68 \%$ ตามลำคับ

นอกจากนี้สามารถดัดแบ่งกลุ่มของข้าวกล้องทั้ง 4 สายพันธ์ ตามปริมาณอะไมโลส ได้ด้งนี้ ข้าว เหนียวดำปปลือกขาวและเหนียวหลันตันจัดอยู่ในกลุ่มข้ววหนียว ในขนะที่ข้าวช่อลุงจัคอย่่นข้าวที่มี อะไมโลสปานกลาง และข้าวเส็บนกปัตตตนีนจดอยุ่ในข้าวที่มีอะไมโลสสูง (Juliano et al., 1992)
1.2 กระบวนการที่ใช้ในการเพาะตามวิรีที่กึกษาคั้งนี้ กกรเพาะโดยการแช่ในสารละลาย กรเพาะ ในกาชนะเปิด และการเพาะในกาชนะปิด) มีผลช่วขทำให้ปริมาม GABA ในเมล็คข้าวเพิ่มสูงขึ้น วิธีกรเพาะ ที่ให้ไริมาม GABA สูงที่สุดในข้ววกล้องงอกส่วนใหญ่ คือ การแช่ในสาระลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่ pH 3 รองสงมาคือการเพาะในภาชนะปีด และการเพาะในภาชนะปีด ตามลำคับ ยกเว้นพันธุเหนียวหลัน ตันที่งะมีปริมาม GABA สูงที่สุดเมื่อเพาะในภชชนะปีด รองสงมา คือ การเพาะในภาชนะเปีดและการแช่น สารกะลาย ตามลำดับ นอกจากนี้เมื่อใช้ระยะเวกาในการเพาะที่นานนื้นจะทำใน้มมล์คข้าวกล้องงอกที่ได้มี ปริมาณ GABA ที่เพิ่มมากขึ้นในทุกๆวิีที่ไช้ในการเพาะ แต่อ่างไรก็ตามถึงงเม้ที่ระะะเวลาในการเพาะ เท่ากับ 72 ชั่วโมง จะทำให้มมล็คบ้าวมีปริมาม GABA สูงที่สุด แต่ตัวอย่างข้าวกล้องงอกที่เพาะได้มีกลิ่นไม่ พึ่งประสงค์ ซึ่งกิคจากการหมักของเชื้อุุลินทรียี และมีกรรปนเื้อนของเชื้อรา ดังนั้นสกาวะที่เหมาะสม สำหรับการเพาะ้าวกล้องทั้ง 4 สาชันธุ์ สามารกสรุปได้ด้งนี้

- ข้าวพันธุ์ช่อลุง เล็บนกปัตตานี และเหนียวดำเปลือกขาว เพาะโดยการแช่ในสารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่ pH 3 โดยใช้ตัตราส่วนข้าว: น้ำ เท่ากับ $1: 2$ และแช่ที่ถุณหภูมิ $40^{\circ} \mathrm{C}$ นาน 48 ชั่วโมง
- ข้าวเหนียวหลันตัน เพาะให้งอกในภาชนะปีด (โดยแช่ในสารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่ pH 3 โดยใช้อัตราส่วนข้าว: น้ำ เท่ากับ $1: 2$ นาน 5 ชั่วโมง หลังจากนั้นนำมาเพาะต่อในกล่อง พลาสติกที่มีฝาปิดด ที่อุณหภูมิห้อง $\left(30 \pm 2^{\circ} \mathrm{C}\right)$ นาน 48 ชั่วโมง)
1.3 กระบวนการงอกมีผลต่อปริมาณสารออกฤทธิ์ทางชีวภาพในเมล็คข้าว โดยพบว่าหลังงากนำข้าว กล้องทั้ง 4 พันธุ์ มาเพาะให้งอกตามสภาวะที่กล่าวไว้ในข้อ 2 ตัวอย่างข้าวกล้องงอกที่ไค้จะมีปริมาณของสาร ออกฤทธิ์ทางชืวภาพเพิ่มสูงขึ้น ($\mathrm{p}<0.05$) ซึ่งสารดังกล่าวได้แก่ Total phenolic, Ferulic acid, Tocolpherol และ GABA ในขณะที่ phytate มีปริมาณลคลง ($\mathrm{p}<0.05$) และสำหรับ γ-Oryzanol ตัวอย่างข้าวกล้องงอกส่วน ใหญ่มีค่าไม่ต่างข้าวกล้องก่อนเพาะ ปริมาณสารออกฤทธิ่ทางชีวภาพที่มีปริมาณเพิ่มขึ้นมากที่สุดหลังจากการ เพาะ คือ สาร GABA ข้าวพันธุ์หนียวหลันตันมีปริมาณ GABA เพิ่มขึ้นสูงที่สุค รองลงมา คือ ข้าวพันธุ์ช่อลุง เหนียวดำเปลือกขาว และเล็บนกปัตตานี ตามลำคับ นอกจากนี้เมื่อนำข้าวกล้องงอกทั้ง 4 สายพันธุ์มาแยก แบ่งเป็นส่วนต่างๆ 3 ส่วน คือ รำข้าว จมูกข้าว และเนื้อด้านในของเมล็คข้าว (ไม่มีส่วนของรำและจมูกข้าว) พบว่าในแผ่ละส่วนของเมล็คข้าวมีปริมาณ GABA ที่แตกต่างกัน $(\mathrm{p}<0.05)$ จมูกข้าวมีปริมาณ GABA สูงที่สุด โดยมีค่าตั้งแต่ 180.70-429.06 มิลลิกรัม/100 กรัมตัวอย่าง (นน.แห้ง) รองลงมา คือ รำข้าวและส่วนเนื้อด้านใน ของเมล็ดข้าว โดยมีค่าตั้งแต่ 47.41-176.61 และ 15.11-24.42 มิลลิกรัม/100 กรัมตัวอย่าง (นน.แห้ง) ตามลำดับ
1.4 จากการทดสอบกิจกรรมการต้านออกซิเดชั่นของข้าวกล้องงอกทั้ง 4 สายพันธุ์ พบว่าข้าวเหนียว คำปปลือกขาว มีฤทธิในการต้านออกซิเดชั่นสูงที่สุด รองลงมาคือ ข้าวเหนียวหลันตัน ข้าวช่อลุง และข้าวเล็บ นกปัตตานี ตามลำคับ ทั้งนี้เนื่องมาจากข้าวเหนียวคำเปลือกขาวมีปริมาณ Total phenolic สูงที่สุด
1.5 ความสามารถในการยับยั้งกิจกรรมเอนไซม์แอลฟ่า-อะไมเลสของข้าวกล้องงอกขึ้นกับระยะเวลา การเพาะ พบว่าการเพิ่มเวลาในการเพาะข้าวกล้องพันธุ์เล็บนกปัตตานีให้นานจึ้น ทำให้ศักยภาพการยับยั้ง กิจกรรมเอนไซม์แอลฟ่า-อะไมเลสเพิ่มสูงขึ้น ($48>36>24>12>$ ก่อนเพาะ) และจมูกข้าวเป็นส่วนที่สามารถ ยับยั้งอะไมเลสได้สูงสุค (98.9% ที่ปริมาณ 200 มก./มล.; IC50 ที่ 34.5 มก./มล.) เมื่อเทียบกับข้าวกล้องและ เมล็ดข้าว (ข้าวสาร) ตามลำดับ การเพาะในภาชนะเปิดมีผลทำให้ข้าวกล้องงอกมีศักยภาพในการยับยั้ง เอนไซม์แอลฟ่า-อะไมเลสดีกว่าการเพาะแบบแช่ในสารละลายบัฟเฟอร์ (pH 3)
1.6 ข้าวกล้องพันธุ์ช่อลุงและเล็บนกปัตตานีต้องใช้เวลาแช่ในสารละลาย Citric acid $-\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer ที่ pH 3 นาน 24 ชั่วโมง ในขณะที่ข้าวเหนียวคำเปลือกขาวและเหนียวหลันตันต้องใช้เวลาเพาะ 36 ชั่วโมง จึงมึความสามารถสูงสุดในการยับขั้งการกิจกรรมของเอนไซม์แอลฟ่า-อะไมเลส ความแตกต่างนี้อาจ

เนื่องจากข้าวกล้องที่เป็นข้าวเหนียว อาจมีกลไกทางชีวเคมีที่ต่างไปจากข้าวที่เป็นสายพันธุ์ข้าวเจ้า ซึ่งมี ปริมาณอะไมโลสและอะไมโลเพคตินที่แตกต่างกันทั้งในชชิงโครงสร้างและปริมาณ
1.7 ชนิคและปริมาณของวิตามินในข้าวกล้อง ข้าวกล้องงอก และผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูป
1.7.1 ชนิดและปริมาณวิตามินเปรียบเทียบระหว่างสายพันฐุ์ข้าวกล้อง

พบว่าปริมาณ วิตามินอี ของข้าวกล้องงอกลคลงเมื่อเทียบกับก่อนเพาะ ในข้าวกล้องช่อลุง และข้าวกล้องเหนียวดำเปลือกขาวที่ทำการศึกษา ทั้ง 2 สายพันฐ์ ในการเพาะแบบแช่ 48 ชั่วโมง

1.7.2 ชนิคและปริมาณวิตามินเปรียบเทียบระหว่างเวลาที่เพาะข้าวกล้อง

ระยะเวลาการเพาะแบบแช่ $12,24,36$ และ 48 ชั่วโมง มีผลทำให้ปริมาณวิตามินอี ลดลงใน 48 ชั่วโมง เมื่อเทียบกับก่อนเพาะสำหรับข้าวกล้องพันธุ์ช่อลุง โดยมีค่ามิลลิกรัมวิตามินอี 100 กรัม เท่ากับ $0.72,0.86,0.70,0.57,0.63$ ที่ชั่วโมงเพาะ $12,24,36$ และ 48 ตามลำดับ
1.8 การแยกสารสำคัญที่มีฤทธิ์ต้านการอักเสบจากตัวอย่างข้าวกล้องงอกพันธุ์ช่อลุง จากการทดสอบ เบื้องต้นพบว่าสามารถแยกสารสำคัญจากสารสกัดข้าวกล้องงอกได้ 2 ชนิด สารชนิดที่ 1 แทบจะไม่มี สัญぬาณโปรตอน และค่า $\mathrm{IC}_{50}>100 \mu \mathrm{~g} / \mathrm{mL}$ สารชนิดที่ 2 น่าจะเป็น Hydroxy Phenyllactic acid ซึ่งมีค่า $\mathrm{IC}_{50}=107.7 \mu \mathrm{~g} / \mathrm{mL}$ ซึ่งงานวิจัยนี้ไม่สามารณแยกสารสกัดที่มีฤทธิ์ดีใกล้เคียงกับสารสกัดหยาบได้ อาจ เนื่องมาจากสารที่มีฤทธิ์ดีมีปปริมาณน้อย จึงไม่สามารณแยกสารสำคัญออกมาได้ หรือ ฤทธิ์ต้านการอักเสนเป็น ฤทธิ์ที่เกิคจากการเสริมฤทธิ์ของสารต่างๆในสารสกัดหยาบ อย่างไรก็ตามสามารถใช้ Hydroxy phenyllactic acid เป็น marker ควบคุมคุณภาพถึงแม้มีฤทธิ์ต้านอักเสบไม่คีมากนัก นอกจากนี้ยังพบว่า Hydroxy phenyllactic acid ฮังเป็นองค์ประกอบของ oligopeptides หลายชนิดเช่น aeruginosins ซึ่ง aeruginosins มีฤทธิ์ ขับยั้งการเกิด thrombin ป้องกันการเกิด thrombosis หรือการผิดปกติของการแข็งตัวของเลือดได้ (Nie ang Wang, 2008)
1.9 การทคสอบความเป็นพิษแบบเฉียบพลันและพิษแบบเรื้อรังของสารสกัดจากข้าวกล้องงอกพันธุ์ ช่อลุง พบว่าหลังจากการทคสอบความเป็นพิษเฉียบพลันเบื้องต้นโคยใช้ขนาดของสารสกัค (Dose) เท่ากับ 2 กรัมต่อน้ำหนัก 1 กิโลกรัมของหนูถีบจักรพบว่าเมื่อเวลาผ่านไป 7 วัน ไม่พบสิ่งผิดปกติของหนูและไม่ทำให้ หนูถีบจักรตาย ดังนั้นสารสกัคจากข้าวกล้องงอกจึงมีความปลอดภัยในสัตว์ทดลอง

สำหรับการทคสอบความเป็นพิษแบบเรื้อรัง พบว่า สารสกัคข้าวกล้องงอกที่เตรียมได้ไม่แสคงความ เป็นพิษต่อหนูขาว เมื่อได้รับในขนาคที่สูงถึง $300 \mathrm{mg} / \mathrm{kg} \mathrm{BW} / \mathrm{day}$ ซึ่งคิคเป็น 4 เท่าของปริมาณเฉลี่ยที่คนเรา จะได้รับเมื่อบริโภคข้าวงอกทุกวันๆ ละ 3 มื้อ ติคต่อกันนาน 12 สัปดาห์

ส่วนที่ 2: การพัฒนาผลิตภัณฑ์จากข้าวกล้องงอก

2.1 จากการสำรวจความต้องการของผู้บริโภคกลุ่มผู้สูงอายุต่อการพัฒนาผลิตกัมฑ์ข้าวกล้อง งอก พบว่าผู้บริโภคส่วนใหญ่ให้ความสนใจกับผลิตภัณฑ์ข้าวกล้องงอกกึ่งสำเร็จรูป/ สำเร็จรูป แต่เนื่องจาก
 เป็นทางเคือกที่ดี่จี่จช่วยตอบสนยงความต้องกรรของผู้บริโกค และเป็นการสร้างโอกาสทางการตลาคโดย ช่วขเหิ่มความหลกกหลาชของผลิคกัมต์ในท้องตตาค
2.2 ข้าวกล้องงอกสำเร็รุปปบรรุุกระข๋องที่ตตรียมโดยใช้อัตรสส่วน ข้าว: น้ำเท่ากับ $1: 1.25$ เป็นผลิคกัมต์ที่ได้ร้บับะแนนจากการทดสอบทางประสาสสัมผัสสูงที่สุค ในทุกๆปัจจัยที่ำกการทดสอบ
2.3 ผลิกกัณต์ข้าวกล้องงอกสำร็รููมมีมุดุค่าทงงโกชนาการ คังนี้ เล้า (0.35%) ไขมัน (2.49\%) โปรตีน (5.40%) และการ์โบไไยเครต (91.77\%) และในข้ววกล้องงอกสำเร็งรูปมีปริมาม GABA เท่ากับ 1.94 mg 100 g (นน.แห้ง) เมื่อบริโกคข้าวกล้องงอกสำเร็จรูปวันละ 5 กระปีอง (น้ำหนักบรรจุ 120 กรัม) จะให้
 นอกจากนี้ข้าวคล้องงอกสำเรีจรูปบรรุดกระป๋องยังมีมริมามสารประกอบฟีนอลิกทั้งหมด เท่ากับ 11.06 mg FAE/ 100 g (นน.แแ้ง) และมีกีกิกรรมกรต้านออกพิดצันที่ทดสอบด้วขวิธี DPPH, ABTS และ FRAP เท่ากับ $10.54,9.09$ และ $7.13 \mathrm{mg} \mathrm{FAE} / 100 \mathrm{~g}$ (นนน.แห้ง) ตมมลำคับ และจากกกรปรรเมินฤทริ์ต้านการอักเสบของ
 กคลงได้ นอกจากนี้แหล่งของท้าวกล้องงอกที่แตกต่างกันอาจจะมีผลต่อองค์ประกอบทางเคมีและฉดทิิทงง ชีวกพได้
2.4 วิตามินและเกลือแร่
2.4.1 ชนินและะริิมาณวิตามินของข้าวกล้อง ข้าวกล้องงอก และผลิตกัดฯ์์ข้วกล้องงอก สั่าเุดรูป

เมื่อทำให้งอกปริมานวิตมมิน อี บี บี3 และ บีส ลคลงมากทุกชนิคอย่างมีนัชสำคัญบางสถิติ เมื่อเตียบกับข้าวัั้งค้นก่อนเพาะ ซึ่งนน่าจะมาจากกระบวนการงอกต้องใช้ในการเริญเ|ติบโตของเซลล์หรือ หยไปไระห่่างกระบวนการเพาะ และประกอบกับวิธีที่ห้ในกกรเพาแบบแช่ในบัแเฟอร์ และกรงปรับค่า พีเชชกลับขึ้นไปไู่สกาพเป็นกลางงพื่อลค รสชาติกรดของผลิคกิัแต์ข้ววกล้องงอกหุงบรรุุกระี้อง โดย วิตมมินบี 3 ลคลง 0 กา 0.07 เป็น 0.05 มกก/ 100 กรัม คิดเป็นร้อยละ 28.6 และวิตามินบี 6 ลคลง จา 0.07 เป็น
 และ บี 1 มีปริมานลคลงและแต่ไม่แตกต่งกันในทงสถิติ
2.4.2 ชนินและปริมามแกลื่แนร่ของข้าวกล้อง ข้าวกล้องงอก และผลิตภัแต์ข้ววกล้องงอก สำเร์จรูป

เมื่อทียบกับข้าวกล้องพบว่าข้ววกล้องงอกมีมปริมานธาตุดคลงมากทุกธาตุตั้งแต่ $21.595 .7 \%$

 เพาะ กรรปรับพีเอชเป็นกลาง
 เทียบกับข้าวกล้อง แสคงว่ากระบวนการศลิมีผผลกระทบต่อปริมามของธาตุน้อยเนื่องงากปริมิานธาดุของ ข้าวกล้องงคกก่อนและหลังทำาลิคกัณฑ์ม่ต่งกันททงสลิคิ
2.5 ร้อยละการับขั้งต่อออนไซม่อะไมเลสากกตับอ่อนของข้าวกล้องงอกและผลิตภับฯ์ข้าว
 แบบแช่ในบัพเฌอร์ พีเอช 3 การปรับพืเองค้วยค่างให้เป็นกลาง และกระบวนผลิคผลิคกัฉพ์
2.6 การทคสอบการขอมรับของสู้บริโกกที่มี่ต่อผลิคกัมท์ที่พัพนาขึ้น ซึ่งมีูู้คอบแบบสอบถาม 91.89% มีความสนใจที่จะบริโกคข้าวกล้องงอกเพื่อประโยชน์ต่อสุขภาพ (90.20% ของผู้ที่สนใจทั้งหมด) และเพื่ยรักบาโรค (32.35% ของผู้ที่สนใจทั้งหมด) นอกจากนี้พบว่าในกลุ่มต้้ออบแบบสอบถามทั้งหมดมี้ยู่ที่ เคยรับประทนนข้ววกล้องงอกหรือผลิกกัณต์าากข้าวกล้องงอกทั้งหมด 63.06% ซึ่งผลิตภัมท์จากข้าวกล้อง งอกที่ดู้ตอบแบบสอบถมมเคงรับปรระทานมากที่สุด คือ น้ำข้าวกล้องงอก (77.14\%) รองลงมา คือ ข้าวหูงสุก (48.57%) และะจิกข้าวกล้องงอก (18.57\%) ตามลำดับ

หลังงกกให้ผู้ตอนแบบสอบกามทคลองชิมเกลิกักตท์พบว่าไู้ตอบแบบสอบกาม 93.69% ให้การ บอมรับผลิตภัณต์ข้าวกล้องงอกสำเ็็รูปบรรุุกระป๋อง โคยให้คะแนนความชอบโดยรวม ในระดับชอบปาน กลาง (คะแนนเฉลี่ง เท่ากับ 7.39) นอกจากนั้น้ามีมีลิตกกัมต์ชนิคนี้จํานน่ายในท้องตลาค จะมีผู้ที่สนใจซื้อ
 มีประโยชน์ต่อสุขภาพความสนใจซื้อจะเพิ่มงึ้น จาก 82.57% เป็น 95.50% โดยการให้ข้อมูกเกี่ขวกับ

ข้อเสนอแนะ

1. ควรมีกรรศึกษาในข้าวพื้นเมืองกาคใต้สาพพันธุุ่นๆาพิ่มเติม เพื่เป็นการิิ่มมูคค่าให้กับข้าว

2. มีกรรพัมนาผลิกกัณฑ์ไห้หลกกหลาขขึ้นเพื่ชช่วยตอบสนองต่อความต้องการของศู้บริโกคได้ ครบทุกเพศทุกวัย
3. การวิจัยที่ต้องใช้วัตุุุิบหางการเกษตรเป็นวัตถุดิบหสักในการวิขัย มักมีหลายๆปัจจัยที่

 ในส่วนของการพัผนาผลิิกัณฑ์ เนื่องจากในชั้นตอนดังกล่าวํําเป็นต้องใชัตัวอย่างข้ววจำนวนมาก ส่งผลให้ การคำนินกรรวิชัยมีความล่ช้า และส่งผลกระทบต่อค่าที่ได้จากกรรวิศราะห์ต่างง ด้วย

เอกสารอ้างอิง

กรมอนามัย. 2530 . คุณค่าทาง โกชนาการของข้าวกล้องและข้าวขาว. นนทมุรี: กรมอนามัย กระทรวง สาธารมสุข.
 มหนิทยาลัยกกตตรศาสตร์.
 ของข้าวขาวคอกมะลิ 105 (Oryza sativa, L.) สุก และผลการเก็บรักบาข้ววสารต่อการเปลี่ยนแปลง คุณภาพของข้าวสุก. วิทยานิพนธ์วิทยาาศาสตรมหาบัณติต มหาวิทยาลัยสงขลานรรินทร์
 บรรยายผึกอบรมหลักสูตรวิทยากรหหลังการเก็บกี่ยวว ม ศูนอ์วัจัยข้าวัทลุง. หน้า $1-53$.
 ฉน กองกษตรวิศวกรรมม กรมวิชกการเกษตร กุุงเทพฯ.
จรรนัย พาณิชยกุล. 2537. "แฟ้ง (starch) - การเปลี่ยนแปลงระหว่างการทำให้แป้งสุก" วารสารจาร์พา. ดบับ ที่ 11 หน้า $22-24$.
จารุตัตน์ สันเต วรนุช ศรีเจษฎารักท์ และรัชฎา ตั้งวงค์ใชย. 2550. ผลของกระบวนการแห่ต่อปริมานสาร แกมมาอะมินบบิวิิิิกแอิิดในข้ววกล้องงอก. วารสาร วิทยาศศสตร์กกษตร $38(5)$ (พิศษษ: $164-167$.
 นันทิยา วรรรนะภูิ. 2542 . การขยายพันธ์์ึืช. โอเดียนสโตร์, กรุงทพมหานคร. 447 หน้า.
 ถบับที่ 4 หน้ำ 1-5.
ประสิทธิ์ ังงกคพัพนวงศ์. 2553. โภชนาการของข้วมและนวัตกรรมการใช้าระโยชน์. วารสารคลินิกอาหาร และโภชนาการ (วคอภ). 4(1): $32-40$.
ละม้าขมาศ ฮังสุข. 2541. "คุณกาพการหูดดมมและรับประทาน" เทคโนโลยีกรรผลิตข้วหอมมะลิคุมกาพคี กรมวิชาการเกษตร กระทรวงเกบตรและสหกรณ์ กุุงเทพฯ.

วัฒนา วัชรอาภาไพบูละ์ ณัดฐา เลาหกุลจิตต์ อรพิน เกิคชชึ่น และ ทรงสิลปี พจน์ชนะชัย. 2007. ผลของ พีเอชถุณหภูมิ และเวลาการแช่ข้าวต่อคุนภาพของข้าวกล้องงอก. วารสารวิทยาศาสตร์ 38(6)(พิ|凡ษ):169-172.

สำเริง แซ่ตัน. 2550 . ข้าวพันธุ์พื้นเมืองภาคใต้ เล่ม 1. ศูนย์วิจัยข้าวพัทลุง สำนักวิจัยและพัฒนาข้าว กรมการข้าว

สมวงษ์ ตระกูลรุ่ง. 2546. ข้าวโภชนาการเพื่อสุขภาพและการใช้ประโยชน์ในอุตสาหกรรม. กรุงเทพฯ: ศูนย์ พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ สำนักงานวิทยาศาสตร์และเทคโนโลยี.

อรอนงค์ นัยวิกุล. 2547. ข้าว: วิทยาศาสตร์และเทคโนโลยี, ภาควิชาวิทยาศาสตร์และเทคโนโลยีการอาหาร คณะอุตสาหกรรมเกษตร มหาวิทยาลัยเกษตรศาสตร์. หน้า 139-197.

Abe, Y., Umemura, S., Sugimoto, K., Hirawa, N., Kato, Y., Yokoyama, N., Yokoyama, T., Iwai, J., and Ishi, M. 1995. Effect of green tea rich in gamma-aminobutyric-acid on blood-pressure of Dahl salt-sensitive rats. American Journal of Hypertension. 8(1): 74-79.

Alan, W. B. and Berry, J. S. 1997. The metabolism and functions of γ-aminobutyric acid. Plant Physiology. 115:1-5.
A.OA.C. 2000. Official methods of analysis of the association of official analytical chemist ($17^{\text {th }} \mathrm{ed}$). Washington, DC: A.O.A.C.
A.OA.C. 2005. Official methods of analysis of the association of official analytical chemist ($17^{\text {th }} \mathrm{ed}$). Washington, DC: A.O.A.C.

Asia BioBusiness. 2006. Potential world markets for innovative rice businesses in Thailand. Final report prepared for the National Innovation Agency, Thailand. Asia BioBusiness Pte Ltd, Singapore

Aslam, J., Mohajir, M. S., Khan S. A. and Khan, A. Q. 2008. HPLC analysis of water-soluble vitamins (B1, B2, B3, B5, B6) in in vitro and ex vitro germinated chickpea (Cicer arietinum L.). African J Biotech 7(14):2310-2314.

Azrina, A., Maznah, I. and Azizah, A. H. 2008. Extraction and determination of oryzanol in rice bran of mixed herbarium UKMB; AZ 6807 : MR 185, AZ 6808 : MR 211, AZ6809: MR 29. ASEAN Food Journal. 15 (1): 89-96.

Banchuen, J. 2010. Bio-active compounds in germinated brown rice and its application. PhD Thesis. Prince of Songkha University.

Barry, J. S., Alan, W. B. and Michael, D. M. 1999. Metabolism and function of gamma-aminobutyric acid. Trends Plant Sci. 4: 446-452.

Bello, M., Tolaba, M. P. and Suarez, C. 2004. Factors affecting water uptake of rice grain during soaking. Lebensm Wiss Technol. 37: 811-816.

Benjamasuttikul, S. and Naivikul, O. 2007. Pasting properties change during pre-germination process of Thai rice varieties. In Proceeding of the $4^{\text {th }}$ International Conference on Starch Technology. Queen Sirikit National Conventional Center, Bangkok. 6-7 November 2007. p 185-192.

Benzie, I. F. F. and Strain, J. J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of " antioxidant power" : the FRAP assay. Anal. Biochem. 239: 70-76.

Bernfeld, P. 1955. Amylases, α and β. Methods in Enzymology 1: 149-158.
Beta, T., Nam, S., Dexter, J. E., and Sapirstein, H. D. 2005. Phenolic content and antioxidant activity of pearled wheat fractions. Cereal Chemistry. 82(4): 390-393.

Bewly, J. D. 1997. Seed germination and dormancy. The Plant Cell. 9: 1055-1066.
Binsan, W., S., Visessanguan, W., Roytrakul, S., Tanaka, M. and Kishimura, H. 2008. Antioxidative activity of Mungoong, an extract paste from the cephalothorax of white shrimp (Litopenaeus vannamei). Food Chem. 106: 185-193.

Blake, C. 2007. Analytical procedures for water-soluble vitamins in foods and dietary supplements: a review. Anal Bioanal Chem. 389:63-76.

Boehm, O., Zur, B., Koch, A., Tran, N., Freyenhagen, R., Hartmann, M. and Zacharowski, K. 2007. Erratum: Clinical chemistry reference database for Wistar rats and C57/BL6 mice. Biol. Chem. 388: 1255-1256.

Bourne, M.C. 1982. Food Texture and Viscosity: Concept and Measurement. Academic Press. New York, N.Y.

Bown, A. W. and Shelp, B. J. 1997. The metabolism and functions of γ-aminobutyric acid. Plant Physiol. 115: 1-5.

Brand-Williams, W., Cuvelier, M. E. and Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28: 25-30.

Bruce, R.D. 1985. An up-and down procedure for acute toxicity testing. Fundamental Applied Toxicology 5: 151-157.

Buttery, R. G., Lung, L. C., Juliano, B. O. and Turnbaugh, J. G. 1983. "Cooked rice aroma and 2-acetyl-1-pyrroline". Journal of Agricultural and Food Chemistry. 31: 823-826.

Chansuwan, W. 2005. Study on iron dialyzability and affecting factors in selected varieties of rice in Thailand by using in-vitro digestion method. MSc Thesis. Mehidol University.

Charoenthaikij, P., Jangchud, K., Jangchud, A., Piyachomkwan, K., Tungtrakul, P. and Prinyawiwatkul, W. 2009. Germination conditions affect physicochemical properties of germinated brown rice flour. J. Food. Sci. 74: 658-665.

Chebib, M., and Johnston, G. A. R. 1999. The 'ABC' of GABA receptors: A brief review. Clinical and Experimental Pharmacology and Physiology. 26(11): 937-940.

Chen, M. H. and Bergman, C. J. 2005. A rapid procedure for analyzing rice bran tocopherol, tocotrienol and γ-oryzanol content. J. Food Compos Anal. 18: 319-331.

Cristina Delgado-Andrade, J., A. Rufi, n-Henares and Francisco, J. M. 2006. Study on fluorescence of Maillard reaction compounds in breakfast cereals. Mol. Nutr. Food Res. 50: 799-804.

Christensen, H. N., Greene, A. A., Kakuda, D. K. and Macleod, C. L. 1994. Special transport and neurological significance of two amino acids in configuration conventionally designated as D. J. Exp. Biol. 196: 297-305.

Chung, H. J., Ang, S. H., Cho, H. Y. and Lim, S. T. 2009. Effects of steeping and anaerobic treatment on GABA (γ-aminobutyric acid) content in germinated waxy hull-less barley. Lebensm Wiss Technol. 42: 1712-1716.

Cohen, S. A. and Michaud, D. P. 1993. Synthesis of a fluorescent derivatizing reagent, 6-Aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Anal. Biochem. 211: 279-287.

Eiammi, C., P. Tangtrakul, C, Tachpairoj and S. Soponnarit. 2004. Combination Process of Stemming and Drying for Parboiling Aromatic Rice. Thai Society of Agricultural Engineering Journal. 11(1): 2433.

Franke, A. A., Custer, L. J., Cerna, C. M. and Narala, K. K. 1994. Quantitation of phytoestrogens in legume by HPLC. J. Agri. Food Chem. 42: 1905-1913.

Fougere, F., Le Rudulier, D. and Streeter, J. G.1991. Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosal of alfalfa (Medicago sativa L.) Plant Physiol. 93: 1228-1236.

Goffman, F.D., and Bergman, C.J. 2004. Rice kernel phenolic content and its relationship with antiradical efficiency. J Sci Food Agric 84:1235-1240.

Gramito, N., Paolini, M. and Perez, S. 2008. Polyphenol and antioxidant capacity of Phaseolus vulgaris stored under extreme conditions and processed. Lebensm. Wiss. Technol. 41: 994-999.

Gunaratne, A. and Hoover, R. 2002. Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydr. Polym. 49: 425-437.

Hagiwara, H., Seki, T. and Ariga, T. 2004. The effect of pre-germinated brown rice intake on blood glucose and PAI-1 levels in streptozotocin-induced diabetic rats. Biosci. Biotechnol. Biochem. 68: 444-447.

Haraldsson, A. K., Rimsten, L., Alminger, M., Andersson, R., Andlid, T. and Aman, P. 2004. Phytate content is reduced and β-glucanase activity suppressed in malted barley steeped with lactic acid at high temperature. J. Sci. Food Agri.84: 653-662.

Hayakawa, K., Kimura, M., and Kamata, K. 2002. Mechanism underlying gammaaminobutyric acid-induced antihypertensive effect in spontaneously hypertensive rats. European Journal of Pharmacology. 438(1-2): 107-113.

Hirunpong, P and Tungjaroenchai, W. Effect of germination on contents of bioactive components in germinated brown rice of three rice cultivars. $34^{\text {th }}$ Congress on Science and Technology of Thailand. Faculty of Agro-Industry, King Mongkut's Institute of Technology Ladkrabang.

Kayahara, H. and Tukahara, K. 2000. "Flavor, health and nutritional quality of pre-germinated brown rice" presented at 2000 International Chemical Congress of Pacific Basin Societies in Hawaii, December 2000.

Horino, T., Mori, Y. and Saikusa, T. 1994. Distribution of free amino acids in the rice kernel and kernel fractions and effect of water soaking on the distribution. J. Agric Food Chem. 42: 1122-1125.

Hossaina, M. S., Singhb, A. K. and Zamanb, F. 2009. Cooking and eating characteristics of some newly identified inter sub-specific (indicaljaponica) rice hybrids. ScienceAsia. 35:320-325.

Hossam, S.E., Magdy, A.M., Mona, A.M. and Amera, T.M. 2010. Chemical evaluation of pre-germinated brown rice and whole grain rice bread. EJEAFChe 9(3):958-971.

Huang, J., Mei, L. H. and Wu, H. 2007. Biosynthesis of gamma-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. World J. Microbiol Biotechnol. 23: 865-871.

Inoue, K., Shirai, T., Ochiai, H., Kasao, M., Hayakawa, K., Kimura, M. and Sansawa, H. 2003.
Blood-pressure-lowering effect of a novel fermented milk containing gammaaminobutyric acid (GABA) in mild hypertensives. European Journal of Clinical Nutrition. 57(3): 490-495.

Ismail, A., Marjan, Z. M. and Foong, C. W. 2004. Total antioxidant activity and phenolic content in selected vegetables. Food Chem. 87: 581-586.

Ito, S. and Ishikawa, Y. 2004. Marketing of value-added rice products in Japan. FAO International Rice Year Symposium Rome http://www.hatsuga.com/DOMER/english/en/GBRRB.html

Ito, Y., Mizukuchi, A., Kise, M., Aoto, H., Yamamoto, S., Yoshihara., R. and Yokoyama, J. 2005. Postprandial blood glucose and insulin responses to pre-germinated brown rice in healthy subjects. J. Med. Invest. 52: 159-164.

Jaiboon, P., Prachayawarakorn, S., Devahastin, S. and Soponronnarit, S. 2010. Effects of Gelatinization on Textural Properties of Brown Waxy Rice. Agricultural Sci. J. 41(3/1)(Suppl.): 393-396.

Jiamyangyuen, S. 2006. Final report: The study of antioxidant content in germinated-rice and pigmentedgerminated rice. Naresuan University.

Jiranuntakul, W., Puttanlek, C., Rungsardthong, V., Puncha-arnon, S. and Uttapap, D. 2011. Microstructural and physicochemical properties of heat-moisture treated waxy and normal starches. Journal of Food Engineering. 104: 246-258.

Joye, I. J., Lambert, L., Brijs, K. and Delcour, J.A. 2011. In situ production of c-aminobutyric acid in breakfast cereals. Food Chemistry. doi:10.1016/j.foodchem.2011.04.090.

Juliano, B. O. 1971. Simplified assay for milled-rice amylase. Cereal Science. Today. 16 (10) : 334-336.

Juliano, B. O., Perdon, A. A., Perez, C. M. and Cagampang, C. B. 1974. Molecular and gel properties of starch and texture of rice product. Journal of Food Science and Technology. 1:120-126.

Juliano, B. O. 1979. The chemical basis of rice quality. Proceedings of Workshop on Chemical Aspects of Rice Grain Quality, IRRI, Manila, pp 69-90.

Juliano, B. O. and Perez, C. M. 1984. Result of collaborative test on the measurement of grain elongation of milled rice during cooking. J. Cereal Sci. 2: 281-292.

Juliano, B. O. 1985. Rice: Chemical and technology, 2nd ed., Minnesota,American Association of Cereal Chemists, 774 p.

Juliano, B. O. 1992. Structure chemistry and function of the rice grain and its fraction. Cereal Foods World. 37: 772-774.

Juliano, C., Cossu, M., Alamanni, M. C. and Piu, L. 2005. Antioxidant activity of gamma-oryzanol: mechanism of action and its effect on oxidative stability of pharmaceutical oils. Int. J. Pharm. 299: 146-154.

Jung, G. H., Park, N. Y., Jang, S. M., Lee, J. B. and Jeong, Y. J. 2005. Effects of germination in brown rice by addition chitosan/glutamic acid. Korean J. Food Preserv. 4: 538-543.

Katalinic, V., Milos, M., Kulisic, T., and Jukic, M. 2006. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chemistry. 94: 550-557.

Kayahara, H. and Tsukahara, K. 2000. Flavor Health and Nutritional Quality of Pre-germinated Brown Rice International Chemical Congress of Pacific Basin Societies in Hawaii.

Khampang, E., Kerdchoechuen, O. and Laohaka, N. 2009. Change of chemical composition of rice and cereals during germination. Agricultural Sci. J.(Suppl.) 40: 341-344.

Khatoon, N. and Prakash, J. 2007. Physico-chemical characteristics, cooking quality and sensory attributes of microwave cooked rice varieties. Food Science and Technology Research. 13(1): 35-40.

Kihara, M., Okada, Y., Iimure, T. and Ito, K. 2007. Accumulation and degradation of two functional constituents, GABA and b-glucan, and their varietal differences in germinated barley grains. Breeding Science. 57: 85-89.

Kiing, S. C., Yiu, P. H., Rajan, A. and Wong, S. C. 2009. Effect of germination on γ-oryzanol content of selected Sarawak rice cultivars. Am. J. Applied Sci. 6: 1658-1661.

Kim, Y. J., Suzuki, T., Hagiwara, T., Yamaji, I. and Takai, R. 2001. Enthalpy relaxation and glass to rubber transition of amorphus potato starch formed by ball-milling. Carbohydrate Polymer. 46: 1-6.

Komatsuzaki, N., Shima, J. and Kawamoto, S. 2005. Production of gamma-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. J. Food Microbiol.22: 497-504.

Komatsuzaki, N., Tsukahara, K., Toyoshima, H., Suzuki, T., Shimizu, N. and Kimura, T. 2007. Effect of soaking and gaseous treatment on GABA content in germinated brown rice. J. Food Eng. 78: 556560.

Kono, I and Himeno, K. 2000. Change in gamma-aminobutyric acid content during beni-koji making. Biosci Biotechnol Biochem. 64: 617-619.

Kono, Y., Kojima, A., Nagai, R., Watanabe, M., Kawashima, T., Onizawa, T., Teraoka, T., Koshino, H., Uzawa, J., Suzuki, Y. and Sukurai, A. 2004. Antibacterial diterpenes and their fatty acid conjugate from rice leaves. Phytochem. 65: 1291-1298.

Hossaina, M. S., Singhb, A. K., and Zamanb, F. 2009. Cooking and eating characteristics of some newly identified inter sub-specific (indica/japonica) rice hybrids. Science Asia. 35:320-325.

Hossam, S. E., Magdy, A. M., Mona, A. M. and Amera, T. M. 2010. Chemical evaluation of pregerminated brown rice and whole grain rice bread. EJEAFChe 9(3):958-971.

Iturriaga, L., Lopez, B. and Anon, M. 2004. Thermal and physicochemical characterization of seven argentine rice flours and starches. Food Res. Inter. 37: 439-447.

Lee, Y. R., Kim, J. Y., Woo, K. S., Hwang. I. G., Kim, K. H., Kim, K. J., Kim, J. H. and Jeong, H. S. 2007. Changes in the chemical and functional components of Korean rough rice before and after germination. Food Sci. Biotechnol. 16: 1006-1010.

Liang, J., Han, B. Z., Nout, M. J. R. and Hamer, R. J. 2009. Effect of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chem. 110: 821-828.

Liang, J., Han, B. Z., Nout, M. J. R. and Hamer, R. J. 2009. Effect of soaking and phytase treatment on phytic acid, calcium, iron and zinc in rice fractions. Food Chem. 115: 789-794.

Liu, L. L., Zhai, H. Q. and Wan, J. M. 2005. Accumulation of c-aminobutyric acid in giant-embryo rice grain in relation to glutamate decarboxylase activity and its gene expression during water soaking. Cereal Chemistry. 82: 191-196.

Liu, Q. and Yao, H. 2007. Antioxidant activity of barley seeds extracts. Food Chemistry. 102: 732-737.
Lloyd, B. J., Siebenmorgen, T. J. and Beers, K. W. 2000. Effects of commercial processing on antioxidants in rice bran. Cereal Chem. 77: 551-555.

Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.

Macfie, H. J., Bratchell, N., Greenhoff, K. and Vallis, L. V. 1989. Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. J. Sensory Studies. 4: 129-148.

Maeda, S., Shinmura, H., Nakagawa, K., Asai, T. and Morita, A. 2007. Comparison of the free amino acid content and certain other agronomic traits of germinated and non-germinated brown rice in monocultured and mixed plantings. SABRAO Journal of Breeding and Genetics. 39(2):107-115.

Maillard, M. N., Soum, M. H., Boivin, P., and Berset, C. 1996. Antioxidant activity of barley and malt: Relationship with phenolic content. Lebensmittel Wissenschaft and Technologie. 29: 238-244.

Maisuthisakula, P., Pasukb, S., and Ritthiruangde, P. 2008. Relationship between antioxidant properties and chemical composition of some Thai plants. Journal of Food Composition and Analysis. 21: 229240.

Manuswarakul, N., Krisnangura, K. and Jeyashoke, N. 2003. Oryzanol and vitamin E content in Thai rice varieties. In Proceeding of $29^{\text {th }}$ Congress on Science \& Technology of Thailand. Khon Kaen.m20-22 October, 2003.

Manna, K. M., Naing, K. M. and Pe, H. 1995. Amylase activity of some roots and sprouted cereals and beans. Food and Nutrition Bulletin. 16: 1-4.

Miller, A. and Engel, K. H. 2006. Content of γ-oryzanol and composition of steryl ferulate in brown rice (Oryza sativa) of European origin. J. Agric. Food Chem. 54: 8127-8133.

Miura, D., Ito, Y. and Mizukuchi, A. 2006. Hypercholesterolemic action of pre-germinated brown rice in hepatoma-bearing. Life Sci. 79: 259-264.

Miwako, K., Miyuki, S., Akira, Y. and Koji, Y. 1999. Manufacture of processed brown rice enriched with GABA accumulation using high pressure treatment. Part I. Accumulation of GABA in brown rice by high pressure treatment. J. Jpn Soc Food Sci. 46: 323-328.

Mohan, B.H., Malleshi, N.G. and Koseki, T. 2010. Physico-chemical characteristics and non-starch polysaccharide contents of Indica and Japonica brown rice and their malts. LWT - Food Science and Technology. 43: 784-791.

Morales-de la Pena, M., Salvia-Trujillo, L., Rojas-Grau, M. A. and Martin-Belloso, O. 2011. Changes on phenolic and carotenoid composition of high intensity pulsed electric field and thermally treated fruit juice ${ }^{-}$soymilk beverages during refrigerated storage. Food Chemistry. 129: 982-990.

Moong-ngarm, A. 2005. Phytate and its degradation products from germinated rice as antioxidant and anticancer agents. Mahasarakham University.

Moongngarm, A., and Saetung, N. 2010. Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice Food Chemistry. 122: 782-788.

Nickavar, B., Abolhasani, L. and Izadpanah, H. 2008. α-Amylase inhibitory activities of six Salvia species. Iranian Journal of Pharmaceutical Research. 4:297-303.

Nie, X., Wang, G. 2008. Total synthesis of aeruginosin 298-A analogs containing ring oxygenated variants of 2-carboxy-6-hydroxyoctahydroindole, Tetrahedron, 64: 5784-5793.

Oatway, L., Vasanthan, T. and Helm, J. H. 2001. Phytic acid. Food Reviews International. 17: 419-431.
Oh, C. H. and Oh, S. H. 2004. Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J. Med Food. 1: 19-23.

Ohtsubo, K., Suzuki, K., Yasui, Y. and Kasumi, T. 2005. Bio-functional components in the processed pregerminated brown rice by a twin-screw extruder. J. Food Compos Anal. 18: 303-316.

Okada, C., Sugiashita, T., Murakami, T., Murai, H., Saikusa, T., Horino, T., Onodera, A., Kazimoto, T., Takahashi, H. and Takahashi, T. 2000. Effect on improvement of the symptoms of mental disorder, at menopause or at middle age, through the diet including defatted rice germ rich in GABA. Journal of the Japanese Food Science and Technology. 47: 596-603.

Ong, M.H. and Blanshard, J.M.V. 1995. Texture determinants of cooked, parboiled rice. II. Physicochemical properties and leaching behaviour of rice. J. Cereal Sci. 21:261-269.

Orozco, R. F., Piskula, M. K., Zielinski, H., Kozlowska, H., Frias, J. and Valverde, C. V. 2006. Germination as a process to improve the antioxidant capacity of Lupinus angustifolus L. var. Zapaton. European Food Research and Technology. 223: 495-502.

Park, K. B. and Oh, S. H. 2007. Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract. Bioresour Technol. 98: 1675-1679.

Prakash, M., Ravi, R., Sathish, H. S., Shyamala, J. C., Shwetha, M. A. and Rangarao, G. C. P. 2005. Sensory and instrumental texture measurement of thermally processed rice. J.sensory studied. 20: 410-420.

Prasert , W. and Suwannaporn, P. 2009. Optimization of instant jasmine rice process and its physicochemical properties. Journal of Food Engineering. 95: 54-61.

Ravindean, V., Ravindran, G. and Sivalogan, S. 1994. Total phytate phosphorus contents of various foods and feedstuffs of plant origin. Food Chem. 50: 133-136.

Rice-Evans, C.A., Miller, N.J. and Paganga, G. 1997. Antioxidant properties of phenolic compounds. Trends in Plant Science. 2: 152-159.

Richard, A. G., Atticus, H. H. and David, M. J. 2000. GABA potentiation a logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology. 39: 1483-1494.

Rimsten, L. 2003. Extractable cell-wall polysaccharides in cereals, with emphasis on β-glucan in steeped and germinated barley. PhD Dissertation. Swedish University of Agricultural Science.

Saikusa, T., Horino, T. and Mori, Y. 1994. Accumulation of γ-amino-n-butyric acid (GABA) in the rice germ during water soaking. Biosci. Biotech. Biochem. 58: 2291-2292.

Sanders, J. P. M. 1996. Starch manufacturing in the world. In Advanced Post Academic Course on Tapioca Starch Technology. AIT Center. Bangkok.

Sawaddiiwong, S., Jongjareonrak, A. and Benjakul, S. 2008. Phenolic content and antioxidant activity of germinated brown rice as affected by germination temperature and extraction solvent. In Proceeding of 34 th Congress on Science and Technology of Thailand of Thailand. Bangkok. 31 October-2 November. 2008.

Shelp, B. J., Bown, A. W. and Malean, M. D. 1999. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 4: 446-452.

Singha, N., Kaura, L., Sandhua, K.S., Kaura, J. and Nishinari, K. 2006. Relationships between physicochemical, morphological, thermal, rheological properties of rice starches. Food Hydrocolloids. 20: 532-542.

Sirisoontaralak, P. and Noomhorm, A. 2007. Change in physicochemical and sensory-properties of irradiated rice during storage. Journal of Stored Products Research. 43: 282-289.

Slinkard, K. and Singleton, V. L. 1977. Total phenol analysis: automation and comparison with manual methods. Am. J. Enol. Viticult. 28: 49-55.

Soponronnarit, S., Chiawwet, M., Prachayawarakorn, S., Tungtrakul, P. and Taechapairoj, C. 2008. Comparative study of physicochemical properties of accelerated and naturally aged rice. Journal of Food Engineering. 85: 268-276.

Su, Y. C., Wang, J. J. and Lin, T. T. 2003. Production of the secondary metabolites gamma-aminobutyric acid and monacolin K by Monascus. J. Ind. Microbiol. Biotechnol. 30: 41-46.

Sumrerath, P., Thanapornpoonpong, S. and Vearasilp, S. 2008. Modifying Cooking Quality of Khao Dawk Mali 105 Rice by Radio Frequency Agricultural Sci. J. 39, 3 (Suppl.): 354-358.

Sungsopha, J, Moongngarm, A. and Kanesaboo, R. 2009. Application of germination and enzymatic treatment to improve the concentration of bioactive compounds and antioxidant activity of rice bran. J. Basic. Appli. Sci. 3: 3653- 3662.

Sunte, J., Srijesdaruk, S. and Tangwongchai, R. 2007. Effect of soaking and germinating process on gamma-aminobutyric acid (GABA) content in germinated brown rice (Hom mali 105). Agricultural Sci. J. (Suppl). 38: 103-106.

Tadashi, O. 2000. Effect of the Defatted Rice Germ Enriched with GABA for Sleeplessness, Depression, Autonomic Disorder by Oral Administration. Journal of the Japanese Society for Food Science and Technology. 47(8): 596-603.

Tewtrakul, S., Wattanapiromsakul, C. and Mahabusarakam, W., 2009. Effects of compounds from Garcinia mangostana on inflammatory mediators in RAW264.7 macrophage cells. Journal of Ethnopharmacology. 121: 379-382.

Tsukahara, K. 2004. What is Germinated brown rice (GBR). Retrieved on June 18, 2007 from :http://hatsuga.com/Domer/English/en/main.html.

Tian, S., Nakamura, K. and Kayahara, H. 2004. Analysis of phenolic compounds in white rice, brown rice and germinated brown rice. J. Agric. Food Chem. 52 : 4808-4813.

Toshio, N., Tsuneo, M., Kazuko, K., Takashi, H., Yotaro, A. and Masashi, O. 2004. γ-Aminobutyric acid (GABA) -rich Chlorella depresses the elevation of blood pressure in spontaneously hypertensive rats (SHR). Nippon Nogeikagaku Kaishi. 74: 907-909.

Udomrati, S., Poolkasorn, K., Potisate, S. and Charoenrein, S. 2003. Effects of Water Content on Gelatinization of Various Rice Flours. Proceedings of $41^{\text {th }}$ Kasetsart University Annual Conference: Agro-Industry. Thailand.

Vadivel, V., Stuetz, W., Scherbaum, V. and Biesalski, H. K. 2011. Total free phenolic content and health relevant functionality of Indian wild legume grains: Effect of indigenous processing methods. J. Food Compos. Anal. doi:10.1016/j.jfca.2011.04.001.

Varanyanond, W., Tungtrakul, P., Surojanametakul, V., Watanasiritham, L. and Luxiang, W. 2005. Effects of water soaking on γ-aminobutyric acid (GABA) in germ of different Thai rice varieties. Kasetsart J. (Nat. Sci.) 39: 411-415.

Veluppillai, S., Nithyanantharajah, K., and Vasantharuba, S., Balakumar, S. and Arasaratnam, V. 2009. Biochemical Changes Associated with Germinating Rice Grains and Germination Improvement. Rice Science. 16(3): 240-242.

Watchraparpaiboon, W., Laohakunjit, N., Kerdchoechuen, O. and Photchanachai, S. 2007. Effects of pH, temperature and soaking time on qualities of germinated brown rice. Agricultural Sci. J. (Suppl). 38: 169-172.

Wijngaard, H. H., Ulmer, H. M., Neumann, M. and Arendt, E. K. 2005. The effect of steeping time on the final malt quality of buckwheat. J. Inst. Brew. 111: 275-281.

Xu, B. and Chang, K.C. 2008. Effect of soaking, boiling and steaming on total phenolic content and antioxidant activities of cool season food legumes. Food Chem. 110:1-13.

Yang, Y. and Tao, W.-Y. 2008. Effect of lactic acid fermentation on FT-IR and pasting properties of rice flour. Food Research International. 41: 937-940.

Zajacz, A., Gyemant, G., Vittori, N. and Kandra, L. 2007. Aleppo tannin: structural analysis and salivary amylase inhibition. Carbohydrate Research. 342:717-723.

Zhang, L., Hu, P., Tang, S., Zhao, H. and Wu, D. 2005. Comparative studies on major nutritional components of rice with a giant embryo and a normal embryo. J. Food Biochem. 29: 653-661.

Zhou, Z., Robards, K., Helliwella, S. and Blanchard C. 2003. Effect of rice storage on pasting properties of rice flour. Food Research International. 36 : 625-634.

การเผยแพร่ผลงานทางวิชาการ

1. ผลของกระบวนการงอกต่อปริมาณสารแกมมาอะมิโนบิวเทอริกออิิดในข้าวกล้องพันธุ์ภาคใต้

(Effect of germinating processes on gamma-aminobutyric acid of Southern Thailand grown brown rice varieties) โดย ไพบูลย์ ธรรมรัตน์วาสิก ${ }^{1}$ และ สุนันทา ชูแก้ว ${ }^{1}$
${ }^{1}$ สถานวิจัยผลิตภัณฑ์เสริมอาหารและอาหารเพื่อสุขภาพ คณะอุตสาหกรรมเกษตร มหาวิทยาลัยสงขลานครินทร์
ในการประชุมวิชาการพืชสวนแห่งชาติ ครั้งที่ 8 ภายใต้หัวข้อ "พืชสวนไทยบนเส้นทางสู่ความยั่งยืน" ใน วาระพิเศษร่วมฉลองในโอกาสที่มหาวิทยาลัยแม่โจ้ครบรอบ 75 ปี ณ ศูนย์การประชุมนานาชาติ โรงแรมดิเอ็มเพรส จังหวัดเชียงใหม่ วันที่ $6-9$ พฤษภาคม 2552
(ตามรายละเอียดในเอกสารแนบ)

ผลของกระบวนการงอกต่อปริมาณสารแกมมาอะมิโนบิวเทอริกเอซิดในช้าวกล้องพันธุ์ภาคใต้

Effect of germinating processes on gamma-aminobutyric acid of Southern Thailand grown brown rice varieties

ไพบูลย์ ธรรมรัตน์วาสิก"และ ชุนันทา ชูแก้ว"
Paiboon Thummarutwasik' and Sunantha Chukaew'

Abstract

Effects of germinating processes on gamma-aminobutyric acid (GABA) of Southern Thailand grown brown rice varieties including black glutinous cv. Niaw Dam Peuak Khoa, non-glutinous cv. Chor Lung and Leb Nok Pattani were investigated. Brown rice was germinated in three various methods; 1) the brown rice was soaked in buffer solution with different $\mathrm{pH}(2.0-5.0)$ and temperature (30,40 and $50^{\circ} \mathrm{C}$); 2) and 3) the brown rice was soaked in buffer (pH 3.0) for 5 h then germinated at ambient temperature in open and close vessel respectively. Germination time was $12,24,36,48$ and 72 h then all samples were determined the GABA content. For method one, the highest GABA content of Niaw Dam Peuak Khoa, Chor Lung and Leb Nok Pattani was 94.39, 81.66 and $80.82 \mathrm{mg} / 100 \mathrm{~g}$, respectively when soaking brown rice in buffer solution at $40^{\circ} \mathrm{C}, \mathrm{pH} 3.0$ for 72 h . GABA content of brown rice germinated for 72 h in open vessel was $80.23,80.37$ and $87.00 \mathrm{mg} / 100 \mathrm{~g}$ in Niaw Dam Peuak Khoa, Chor Lung and Leb Nok Pattani, respectively. GABA contents of germinated brown rice; Niaw Dam Peuak Khoa, Chor Lung and Leb Nok Pattani in the closed vessel method were higher than the open vessel, which are 107.56, 94.65 and $107.24 \mathrm{mg} / 100 \mathrm{~g}$, respectively. However, GABA content in germinated brown rice increased as germination time increased in all treatments.

Key words: gamma-aminobutyric acid (GABA), brown rice, Southern Thailand rice varieties

บทคัดย่อ

ผลของกระบวนการงอกต่อปริมาณแกมมา-อะมิโนบิวเทอริกเอชิด (GABA) ในข้าวกล้องพันธุ์ภาคใต้ 3 พันธุ์ คือ ข้าว เหนียวดำเปลือกชาว และป้าวเจ้า พันธุ์่อลุง และเล็บนกปัตตานี โดยใช้วิธีการทำให้งอกที่แตกต่างกัน 3 วิธี คือ 1) แช่ใน สารละลายบัฟเฟอร์ที่ความเป็นกรด-ด่างต่างๆ (2.0-5.0) แช่ที่อุณหภูมิ $30,40,50$ องศาเซลเซียส วีธีที่ 2) และ 3) แช่ใน สารละลายบัฟเฟอร์ pH 3.0 เป็นเวลา 5 ชั่วโมง จากนั้นเพาะที่คุณหภูมิห้อง $\left(30^{\circ} \mathrm{C} \pm 2\right)$ ในภาชนะเปิด(2) และในภาชนะปิด(3) ตามลำดับ ทุกชุดการทดลองมีระยะเวลาในการงอก $12,24,36,48$ และ 72 ชั่วโมง ผลการทดลองพบว่าการแช่ในสารละลาย บัพเฟ้ร์ pH 3.0 จุณหภูมิ 40 องศาเซลเซียส เวลา 72 ชั่วโมง ให้ปริมาณ GABA ชูงสุด ในข้าวเหนียวดำเปลีอกขาว ชอลุง และ เล็บนกบัตตานี มีค่าเท่ากับ $94.39,81.66$ และ 80.82 มิลลิกรัมต่อ 100 กรัมตัวอย่างตามลำดับ สำหรับการเพาะที่จุณหภูมิห้อง ในภาชนะเปิด พบว่าระยะเวลาการเพาะ 72 ชั่วโมงให้ปริมาณ GABA สูงที่สุด มีค่าเท่ากับ $80.23,80.37$ และ 87.00 มิลลิกรัม ต่อ 100 กรัมตัวอย่าง ในข้าวเหนียวดำเปลือกขาว ช่อลุง และเล็บนกปัตตานี ตามลำดับ ปริมาณ GABA ของเหนียวดำเปลือก ขาว ช่อลุง และเล็บนกปัตตานี เพาะที่อุณหภูมิห้องในภาชนะปิด มีค่าสูงกว่าตัวอย่างที่เพาะในภาชนะเปิด ซึ่งมีค่าเท่ากับ 107.56, 94.65 และ 107.24 มิลลิกรัมต่อ 100 กรัมตัวอย่าง ตามลำดับ ปริมาณ GABA ในข้าวกล้องงอกมีค่าเพิ่มขึ้นเมื่อ ระยะเวลาในการทำให้งอกที่นานขึ้นในทุกชุดการทดลอง
คำสำคัญ: แกมมา-อะมิโนบิวเทอริกเอซิด, ข้าวกล้อง, ข้าวพันโุ์กาคใต้

Introduction

Functional food is commonly used to describe natural or processed foods containing compounds that provide health or performance benefits beyond basic nutrition. Brown rice grains contain nutritional components, such as dietary fiber, essential amino acids, minerals, proteins, vitamins (B and E) and phytochemicals. Germination process can increase nutrients especially gamma-aminobutyric acid (GABA) in rice grain. GABA is a

[^5]non-protein amino acid and primarily produced from α-decarboxylation of L-glutamic acid, catalyzed by enzyme glutamate decarboxylate (GAD) (Obtsubo et al., 2005). GABA is a neurotransmitter in the brain and the spinal cord of mammals. Several researches report that GABA has the benefit for human health such as lower hypertension, promote the sleepiness and inhibited cancer cell proliferation. (Komatsuzaki et al., 2007). Therefore, this study aimed to investigate the effect of germination condition on the GABA content in southern Thailand grown brown rice. The results from this study may increase value to southern Thailand grown brown rice.

Materials and methods

1. Rice sample

Three varieties of Southern Thailand grown brown rice, c.v. Niaw Dam Peuak Khoa, Chor Lung and Leb Nok Pattani, was provide by Rice Research Center, Phattalung, Thailand. The brown rice grains in this research were harvested in 2008. After harvesting, the paddies were milled, sealed in plastic bag under vacuum condition and kept in the refrigerator (temperature $4-8^{\circ} \mathrm{C}$) throughout the study.

2. Optimization of soaking conditions on GABA content

2.1 Effect of soaking solution on GABA content

To determine effect of soaking solution, all brown rice varieties were soaked in buffer solutions at various pH ($\mathrm{pH} 2.0,3.0,4.0$ and 5.0), using grain-to-solution ratio of $1: 2 \mathrm{w} / \mathrm{v}$, for 24 hrs at room temperature. After soaking, the buffer solutions were drained and the rice grains were washed with distilled water before drying at $50^{\circ} \mathrm{C}$ for 3 hrs . GABA content was analyzed according to Varanyanond et al., (2005). The buffer solution which gave the highest amount of GABA was selected for study in the next part.
2.2 Effect of soaking temperature on GABA content

To determine effect of soaking temperature, the brown rice was steeped in the selected buffer solution at various temperatures (30,40 and $50^{\circ} \mathrm{C}$) for 24 hrs . After draining the soaking solutions, the rice grains were washed with distilled water and were dried at $50^{\circ} \mathrm{C}$ for 3 hrs . GABA content was analyzed according to Varanyanond et al., (2005). The soaking temperature which gave the highest GABA content was selected for further study.

3. Effect of germination process and germinating time on GABA content

To evaluate germination process and germinating time, the brown rice was germinated in three various methods. First is soaking method (1); the brown rice was soaked in the selected buffer solution at selected temperature from previous study (2.1 and 2.2) for $12,24,3648$ and 72 hrs . The other methods were open vessel (2) and close vessel (3); the brown rice was soaked in the selected buffer solution at room temperature for 5 hrs (equilibrium point of moisture content). After soaking, the buffer solution was drained. The rice grains were washed with distilled water and were wrapped with cheesecloth to maintain moisture level before germinating in open and close vessel for $12,24,36,48$ and 72 hrs at room temperature. All germinated brown rice was dried at $50^{\circ} \mathrm{C}$ for 3 hrs and analyzed for GABA content according to Varanyanond et al., (2005).

Results and discussion
 1. Optimization of soaking conditions on GABA content
 1.1 Effect of soaking solution on GABA content

Soaking the brown rice in different pH buffer solution for 24 hrs resulted GABA contents in the different amount as shown in Table 1. The highest value of all samples was found when soaking in the buffer solution at pH 3.0 . Furthermore GABA content at pH 3.0 was significant different ($\mathrm{p} \leq 0.05$) comparing with other pH values. GABA is synthesized from glutamic acid and catalyzed by enzyme glutamate decarboxylate (GAD). The optimum pH of GAD is about 5.5 (Shelp et al, 1999). However, the optimum pH of GAD in rice grain depends
on varieties and cultivating area. This research found that optimal pH buffer solution for Southern Thailand grown brown rice, c.v. Niaw Dam Peuak Khoa, Chor Lung and Leb Nok Pattani, was pH 3.0.

Table 1 Effect of soaking solution on GABA content in Southern Thailand grown brown rice

Soaking	GABA content (mg/100 g dry basis)		
solution (pH)	Niaw Dam	Chor Lung	Leb Nok
2.0	$10.13^{\mathrm{a}} \pm 3.26$	$18.51^{\mathrm{a}} \pm 1.23$	$12.94^{\mathrm{a}} \pm 0.50$
3.0	$28.91^{\mathrm{c}} \pm 0.67$	$28.62^{\mathrm{c}} \pm 0.25$	$34.72^{\mathrm{d}} \pm 0.21$
4.0	$21.22^{\mathrm{b}} \pm 0.16$	$25.97^{\mathrm{b}} \pm 0.38$	$26.09^{\mathrm{c}} \pm 0.88$
5.0	$18.76^{\mathrm{b}} \pm 0.40$	$17.17^{\mathrm{a}} \pm 0.80$	$18.09^{\mathrm{b}} \pm 0.59$

${ }^{2}$..... $=$ Mean with difference superscripts in the same column are significant difference ($p<0.05$).

Table 2 Effect of soaking temperature on GABA content in Southern Thailand grown brown rice

Soaking temperature $\left({ }^{\circ} \mathrm{C}\right)$	GABA content (mg/100 g dry basis)		
	Niaw Dam	Chor Lung	Leb Nok
30	$21.57^{\mathrm{b}} \pm 0.20$	$23.74^{\mathrm{b}} \pm 0.09$	$15.32^{\mathrm{b}} \pm 0.59$
40	$23.90^{\mathrm{c}} \pm 0.42$	$32.52^{\mathrm{c}} \pm 0.05$	$24.20^{\mathrm{c}} \pm 0.08$
50	$11.75^{\mathrm{a}} \pm 0.13$	$6.72^{\mathrm{a}} \pm 0.32$	$7.90^{\mathrm{a}} \pm 0.06$

1.2 Effect of soaking temperature on GABA content

The result of soaking the brown rice in buffer solution pH 3.0 at various temperatures (30, 40 and $50^{\circ} \mathrm{C}$) for 24 hrs was shown in Table 2. The result showed that GABA content was the highest and significantly different ($p \leq 0.05$) when soaking brown rice varieties in buffer solution at $40^{\circ} \mathrm{C}$. According to Saikusa et al. (1994) reported that highest GABA content was observed after soaking rice germ in distilled water at $40^{\circ} \mathrm{C}$. The amounts of GABA in each variety, c.v. Niaw Dam Peuak Khoa, Chor Lung and Leb Nok Pattani, were 23.90, 32.52 and $24.20 \mathrm{mg} / 100 \mathrm{~g}$, respectively.

2. Effect of germination process and germinating time on GABA content

Table 3 Effect of germination process and germinating time on GABA content of Southern Thailand grown brown rice

Type	$\begin{aligned} & \text { Time } \\ & \text { (hrs) } \end{aligned}$	GABA content (mg/100 g dry basis)		
		Soaking	Open vessel	Closed vessel
Niaw Dam Peuak Khoa	12	$5.93{ }^{\text {a }} \pm 0.64$	$17.10^{\text {aB }} \pm 0.37$	$18.32^{a C} \pm 0.48$
	24	$26.04{ }^{\text {bC }} \pm 0.54$	$20.47^{\text {bA }} \pm 0.16$	$21.15^{\text {b8 }} \pm 0.16$
	36	$44.76{ }^{\text {cc }} \pm 0.50$	$24.83{ }^{\mathrm{CA}} \pm 0.18$	$32.60{ }^{\text {cB }} \pm 0.69$
	48	$52.07{ }^{\text {dC }} \pm 0.61$	$47.46{ }^{\text {dB }} \pm 0.48$	$45.60{ }^{\mathrm{dA}} \pm 0.33$
	72	$94.39^{\text {eB }} \pm 0.07$	$80.23{ }^{\text {AA }} \pm 0.61$	$107.56^{\text {ec }} \pm 0.01$
Chor Lung	12	$14.94{ }^{\text {af }} \pm 0.60$	$16.76{ }^{\text {a8 }} \pm 0.08$	$17.48^{\mathrm{ab}} \pm 0.34$
	24	$27.17^{\text {bC }} \pm 0.53$	$18.84{ }^{\text {bA }} \pm 0.10$	$20.66{ }^{\text {b8 }} \pm 0.13$
	36	$44.4{ }^{\text {c }} \pm 0.50$	$27.76{ }^{\text {cA }} \pm 0.68$	$28.85{ }^{\text {c8 }} \pm 0.06$
	48	$65.64{ }^{\text {dC }} \pm 0.04$	$35.97{ }^{\text {dA }} \pm 0.42$	$42.66{ }^{\text {dB }} \pm 0.65$
	72	$81.66^{88} \pm 0.09$	$80.37^{\text {A }} \pm 0.50$	$94.65{ }^{\text {eC }} \pm 0.20$
Leb Nok Pattani	12	$17.09^{\text {aA }} \pm 0.74$	$16.75{ }^{\text {aA }} \pm 0.36$	$17.76^{\text {af }} \pm 0.43$
	24	$21.15{ }^{\text {b8 }} \pm 0.01$	$19.24{ }^{\text {bA }} \pm 0.28$	$22.40^{\mathrm{bC}} \pm 0.46$
	36	$40.52^{\text {cc }} \pm 0.27$	$23.27^{\text {cA }} \pm 0.04$	$25.79^{\text {cB }} \pm 0.13$
	48	$46.63{ }^{\text {dC }} \pm 0.58$	$29.22^{\text {da }} \pm 0.55$	$31.34{ }^{\text {d8 }} \pm 0.65$
	72	$80.82^{\text {A }} \pm 0.39$	$87.00^{\text {e8 }} \pm 0.59$	$107.77^{\text {eC }} \pm 0.74$

[^6]Table 3 indicated that GABA content of all treatment increased greatly during germination period. The highest GABA content of all treatments was occurred within 72 hrs germinating time. However, germination process affected the total amount of GABA, the highest GABA content was observed in closed vessel method after germination for 72 hrs . The resuits indicated that GABA content of this method showed significantly different higher than other two methods. Komatsuzaki et al. (2007) reported the germinated brown rice in closed vessel shows significantly higher GABA content than that of germination by soaking treatment.

Conclusion

The optimum soaking condition to maximize GABA content of Southern Thailand grown brown rice, c.v. Niaw Dam Peuak Khoa, Chor Lung and Leb Nok Pattani was soaking the rice grains in buffer solution pH 3.0 at $40^{\circ} \mathrm{C}$. GABA content in closed vessel germination was observed higher than open vessel for all rice varieties. GABA content of all treatments increased greatly.

Acknowledgments

This research was supported the finances from The Thailand Research Fund (TRF). The authors gratefully thank Phattalung Rice Research Center, Thailand for their kindly providing the brown rice throughout the experiment.

References

Komtsuzaki, N., Tsukahara, K., Toyoshima, H., Suzuki, T., Shimizu, N. and Kimura, T. 2007. Effect of soaking and gaseous treatment on GABA content in germinted brown rice. Journal of Food Engineering. 78, 556-560.
Obtsubo, K., Suzuki, K., Yasui, Y. and Kasumi, T. Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. Journal of Food Composition and Analysis 18: 303-316.

Saikusa, T., Horino, T. and Mori, Y. 1994. Accumulation of γ-aminobutyric acid (GABA) in the rice germ during water soaking. Bioscience Biotechnology and Biochemistry. 58(12): 2291-2292.
Shelp, B. J., Bown, A. W. and Mclean, M. D. 1999. Metabolism and functions of gamma-aminobutyric acid. Trends in Plant science. 4(11): 446-452.

Varanyanond, W., Tungtrakul, P., Surojanametakul, V., Watanasiritham, L., and Luxiang, W. 2005. Effects of water soaking on γ-aminobutyric acid (GABA) in germ of different Thai rice varieties. Kasetsart J. (Nat. Sci.). 39: 411-415.
2. ศักยภาพของข้าวกล้องงอกของไทยในการต้านภาวะเบาหวาน (Potential Anti-diabetes of Pregerminated Brown Rice of Thai Variety) โดย อโนชา ตั้งโพธิธรรม ${ }^{1}$ และ อมรรัตน์ ทองน้อย ${ }^{2}$ 'ภาควิชาชืวเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ และ ${ }^{2}$ นักศึกษาบัณฑิตศึกษา สถานวิจัยผลิตภัณฑ์เสริม อาหารและอาหารเพื่อสุขภาพ มหาวิทยาลัยสงขลานครินทร์

ในการประชุมวิชาการข้าวแห่งชาติ ครั้งปฐมถกษ์ "ขับเคลื่อนงานวิจัยข้าวไทยสู่นวัตกรรม" $14-16$ ธันวาคม 2553 ณ. อาคารสารสนเทศ 50 ปี มหาวิทยาลัยเกษตรศาสตร์ บางเขน (The $1^{\text {st }}$ National Rice Research Conference "Moving Rice Research Towards Innovation" 14-16 December 2010 Bangkok, Thailand)

ศักยภาพของข้าวกล้องงอกของไทยในการต้านภาวะเบาหวาน

Potential Anti-diabetes of Pre-germinated Brown Rice of Thai Variety อโนชา ตั้งโพธิธรรม' และ อมรรัตน์ ทองน้อย ${ }^{2}$ 'ภาควิชารีวคมี คณะวิทยาศาสตร์ มหาวิทยาลัชสงชดานครินทร์
${ }^{2}$ นักึึกษาบัมติตศึกษา สถานวิจัยผลิตภัญต์เสริมอาหารและอาหารเพื่อสุบภาพ มหาวิทยาลัยสงขลานครินทร์ บทคัดย่อ

ข้าวกล้องงอกเป็นผลิตภัณฑ์จากการบ่มหมักในระยะเวลาพอเหมาะเพื่อเพิ่มคุณค่าทางโภชนาการ ขณะงอก มีกระบวนการทางชีวเคมีเกิดขึ้นมากมาย เช่น การสลายคาร์โบไฮเครตเป็นพลังงาน การสังเคราะห์สารชีวโมเลกุลที่ เกี่ยวข้องกับการเจริญของเอ็มบริโอ งานวิจัยนี้ศึกษาศักยภาพในการต้านเบาหวานของข้าวกล้องงอกสายพันธ์เล์บนก ปัตตานี จากศูนย์วิจัยย้าวจังหวัคพัทลุง ในหลอคทคลองว่ายับยั้งเอนไซม์ย่อยคาร์โบไฮเดรต แอลฟ่า-อะไมเลสหรือไม่ โดยนำข้าวที่กระเทาะเปลือก แช่ในน้ำกลั่น ($1: 2 \mathrm{~g} / \mathrm{mL}$) 5 ชม.ในที่มืด กรอง ล้างให้สะอาด บ่มในตู้ ปิคมืคที่ อุณหภูมิห้องภายใต้ความชื้นสูงเก็บตัวอย่างที่ $12,24,36$ และ 48 ชั่วโมง ล้าง อบที่ $50^{\circ} ซ 3$ ชม. เก็บ 4° ซในภาชนะปัด สนิท การวิเคราะห์นำตัวอย่างแต่ละช่วงเวลาการงอก และวัตถุดิบมาแยกเป็น 3 ส่วนคือ ข้าวกล้อง จมูกข้าว และ ช้าวสาร บดละเอียด สกัคค้วย 0.02 M phosphate buffer $\mathrm{pH} 6.9-0.15 \mathrm{M} \mathrm{NaCl}$ บ่มกับอะไมเลสจากน้ำลาย 30^{\prime} ตรวจ การยับขั้งกิจกรรมเอนไซม์ โดยใช้น้ำแป้งเป็นซับสเตรต (Bernfeld 1955) คำนวณ \%ขับยั้งและปริมาณตัวอย่างที่ให้ 50% ยับยั้ง $\left(\mathrm{IC}_{50}\right)$ พบว่าสารสกัคจมูกข้าว ข้าวกล้อง และข้าวสาร ที่เวลางอกต่างๆ เทียบกับก่อนเพาะที่เวลางอกนานมี \%ยับยั้งสูงสุด และจมูกข้าวมีการยับยั้งสูงกว่าข้าวกล้อง และข้าวสาร ตามลำดับ ผลการวิจัยนี้บ่งชี้ถึงศักยภาพการใช้ ประโยชน์ จากข้าวกล้องงอกลคการดูดซึมกลูโคสสู่เลือคจากการชะลอการย่อยคาร์โบไฮเครตด้วยเอนไซม์อะไมเลส

ขอขอบถุณ โครงการ "การศึกษาคุณค่าทางโภชนาการและทางยาของข้าวงอกเพื่อเป็นส่วนประกอบในผลิตภัณฑ์เสริมอาหาร และอาหารเพื่อสุขภาพ" สถานวิจัยผลิตกัณพ์เสริมอาหารและอาหารเพื่อสุขภาพ คณะถุตสาหกรรมเกษตร มหาวิทยาลัยสงขลานครินทร์ ผู้สนับสนุนทุนวิจัย

\square

ตารางค่าวิเคราะห์ทางเคมี

การแช่ (ชั่วโมง)	ปริมาณความชื้น (\%)			
	ช่อลุง	เหนียวดำเปลือกขาว	เล็บนกปัตตานี	เหนียวแดงหลันตัน
0	12.51 ± 0.01	13.25 ± 0.02	12.89 ± 0.04	11.30 ± 0.33
1	30.53 ± 1.26	32.63 ± 0.05	25.47 ± 0.40	30.21 ± 0.88
2	34.03 ± 2.92	37.71 ± 0.96	30.66 ± 0.89	32.69 ± 2.44
3	33.89 ± 1.05	36.29 ± 0.50	32.33 ± 1.73	34.57 ± 0.67
4	35.64 ± 0.44	44.60 ± 0.06	31.66 ± 0.05	34.78 ± 1.08
5	34.39 ± 0.48	44.00 ± 0.54	31.70 ± 0.01	36.42 ± 1.62
6	34.65 ± 0.40	44.06 ± 1.62	33.06 ± 1.18	36.33 ± 0.89
7	34.74 ± 0.39	45.60 ± 0.29	33.64 ± 1.33	36.62 ± 0.75
8	33.83 ± 1.09	48.87 ± 0.19	34.95 ± 0.75	37.34 ± 0.59
9	34.05 ± 0.31	42.51 ± 1.24	35.61 ± 0.77	37.80 ± 1.90
10	36.41 ± 2.83	44.91 ± 0.59	33.71 ± 1.03	38.11 ± 0.49
11	34.46 ± 0.32	45.63 ± 0.21	36.17 ± 0.65	37.65 ± 1.16
12	37.03 ± 3.73	42.66 ± 1.30	36.29 ± 0.86	39.08 ± 0.19
13	36.03 ± 1.11	43.39 ± 0.95	36.53 ± 1.30	38.91 ± 0.55
14	35.64 ± 0.94	46.17 ± 1.63	36.88 ± 1.09	40.55 ± 0.51
15	35.2 ± 0.90	44.83 ± 0.30	35.66 ± 0.93	39.17 ± 0.44
16	36.1 ± 0.90	44.85 ± 1.23	36.56 ± 1.22	39.49 ± 0.68
17	36.34 ± 0.04	45.72 ± 0.79	36.29 ± 0.39	39.49 ± 1.15
18	37.2 ± 1.32	46.19 ± 0.66	36.33 ± 0.58	38.94 ± 0.16
19	36.45 ± 0.27	45.13 ± 0.65	36.40 ± 0.35	39.56 ± 0.59
20	36.97 ± 0.69	44.15 ± 1.53	37.04 ± 0.35	41.11 ± 0.71
21	36.93 ± 0.13	45.94 ± 1.22	37.35 ± 0.48	41.12 ± 0.58
22	35.97 ± 0.98	45.39 ± 1.72	37.64 ± 0.48	39.73 ± 0.67
23	35.91 ± 0.66	45.19 ± 0.40	38.27 ± 0.98	41.11 ± 0.64
24	37.34 ± 0.30	44.78 ± 0.09	37.96 ± 0.07	40.19 ± 0.60

 น้ำกลั่นที่ตุดหภูมิห้อง นาน 24 ชั่วโมง

การแช่ (ชั่วโมง)	ปริมาณ GABA (มิลลิกรัม/100 กรัมตัวอย่าง, นน.แห้ง)			
	ช่อลุง	เล็บนกปัตตานี	เหนียวคำเปลือกขาว	เหนียวแคงหลันตัน
0	8.99 ± 0.97	6.45 ± 1.45	8.43 ± 0.40	4.05 ± 0.01
1	9.91 ± 1.09	7.13 ± 1.28	9.99 ± 0.18	4.06 ± 0.02
2	9.97 ± 1.07	7.37 ± 1.22	11.46 ± 0.31	3.95 ± 0.05
3	9.57 ± 1.52	8.67 ± 1.28	11.39 ± 0.61	4.65 ± 0.03
4	6.96 ± 1.17	10.13 ± 1.45	12.51 ± 0.67	4.49 ± 0.03
5	12.85 ± 0.57	9.24 ± 1.20	15.26 ± 0.58	4.39 ± 0.01
6	12.73 ± 0.57	7.89 ± 1.60	18.12 ± 0.06	6.14 ± 0.05
7	13.49 ± 0.84	9.16 ± 1.35	16.71 ± 0.64	8.65 ± 0.01
8	17.60 ± 0.64	10.22 ± 1.42	19.82 ± 0.05	6.23 ± 0.06
9	16.51 ± 0.56	10.80 ± 1.35	15.68 ± 0.06	8.21 ± 0.05
10	18.36 ± 0.69	11.29 ± 1.49	16.13 ± 0.42	11.52 ± 0.08
11	18.60 ± 0.61	12.11 ± 1.60	20.23 ± 0.21	10.92 ± 0.03
12	19.36 ± 0.56	10.73 ± 0.99	17.11 ± 1.15	10.42 ± 0.06
13	21.99 ± 0.35	11.46 ± 0.69	17.12 ± 0.91	8.09 ± 0.04
14	30.18 ± 0.42	13.16 ± 0.25	17.31 ± 0.59	8.43 ± 0.01
15	25.11 ± 0.35	13.74 ± 0.35	17.70 ± 0.67	7.66 ± 0.03
16	27.18 ± 0.47	15.25 ± 0.30	18.73 ± 0.21	8.64 ± 0.06
17	23.71 ± 0.43	13.29 ± 0.48	19.53 ± 0.24	8.61 ± 0.04
18	22.61 ± 1.26	13.29 ± 0.33	18.50 ± 0.54	8.85 ± 0.04
19	23.45 ± 1.05	14.25 ± 0.37	20.20 ± 0.41	8.57 ± 0.04
20	25.13 ± 1.17	16.55 ± 0.31	21.91 ± 0.63	10.45 ± 0.04
21	24.54 ± 1.03	17.74 ± 0.24	19.47 ± 0.48	10.58 ± 0.04
22	19.68 ± 1.19	16.98 ± 0.15	19.33 ± 0.15	9.74 ± 0.03
23	21.25 ± 0.93	19.22 ± 0.11	17.70 ± 0.84	11.77 ± 0.04
25	25.92 ± 0.36	17.25 ± 0.22	20.12 ± 1.26	$11.37 \pm 0.0 .05$

ตารางที่ ข-3 ปริมาณวิตามินของข้าวกล้อง ข้าวกล้องงอก และผลิศภัมฑ์ข้าวกล้องงอกสำเร็จรูป ของข้าว พันธุ์ช่อลุง

วิตามิน	มิลลิกรัม/ 100 กรัม ตัวอย่าง		
	ข้าวกล้อง	ข้าวกล้องงอก	ผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูป
Fat Soluble Vitamin			
E	$0.69 \pm 0.0100^{\mathrm{a}}$	$0.04 \pm 0.0000^{\mathrm{b}}$	$0.03 \pm 0.0000^{\mathrm{b}}$

Water Soluble Vitamin

B1	$0.39 \pm 0.0651^{\mathrm{a}}$	$0.03 \pm 0.0115^{\mathrm{b}}$	$0.01 \pm 0.0025^{\mathrm{b}}$
B3	$0.99 \pm 0.0025^{\mathrm{a}}$	$0.07 \pm 0.0030^{\mathrm{b}}$	$0.05 \pm 0.0000^{\mathrm{c}}$
B6	$0.29 \pm 0.2900^{\mathrm{a}}$	$0.11 \pm 0.1100^{\mathrm{b}}$	$0.02 \pm 0.0190^{\mathrm{C}}$

2.... $=$ ค่าเฉลี่ยในแนวนอนที่ตามค้วยอักษรที่แตกต่างกัน มีความแตกต่างกันทางสถิติ ($\mathrm{p}<0.05$) จากการสกัด 3 ครั้ง ของข้าวรุ่นที่ 2

การวิเคราะห์องค์ประกอบทางเคมี ปริมาณอะไมโลส และแกมมาอะมิโนบิวทิริกแอซิด (GABA)

1. การวิเคราะห์ปริมาณความชื้น (AOAC, 2000)

อุปกรณ์

1. เครื่องบคผสมตัวอย่าง (Blender)
2. ตู้อบไฟฟ้า ยี่ห้อ Memmert รุ่น D-91126 ประเทศสหรัฐอเมริกา
3. ภาชนะหาความชื้น (ถ้วยอะลูมิเนียมพร้อมฝา)
4. โลคูคความชื้น
5. เครื่องชั่งไฟฟ้าทศนิยม 4 ตำแหน่ง ยี่ห้อ Mettler Toledo รุ่น AL 204 ประเทศ สวิตเซอร์แลนด์

วิธีการ

1. อบถ้วยอะลูมิเนียมพร้อมฝา ในตู้อบไฟฟ้าที่อุณหภูมิ $100-105$ องศาเซลเซียสนาน 3 ชั่วโมง วางให้เย็นในโถดูดความชื้น ชั่งน้ำหนักแล้วนำไปอบซ้ำเป็นเวลา 30 นาทีจนทราบน้ำหนักที่ แน่นอน
2. ชั่งตัวอย่างให้ได้น้ำหนักที่แน่นอน ประมาณ $1-2$ กรัม ใส่ลงในถ้วยอะลูมิเนียม เกลี่ยตัวอย่าง ให้กระจายทั่ว
3. นำไปอบในตู้อบไฟฟ้าที่อุณหภูมิ 100 ± 5 องศาเซลเซียส ค้างคืน นำออกมาวางให้เย็นใน โถดูคความชื้นนาน 30 นาที แล้วชั่งน้ำหนัก นำไปอบซ้ำครั้งละ 30 นาที จนได้น้ำหนักที่ แน่นอนชั่งทั้งสองครั้งติดต่อกันไม่เกิน $1-3$ มิลลิกรัม แล้วนำค่าที่ได้ไปคำนวณปริมาณ ความชื้นจากสูตร

การคำนวณ

$\mathrm{W}_{1}=$ น้ำหนักตัวอย่างก่อนอบ (กรัม)
$\mathrm{W}_{2}=$ น้ำหนักตัวอย่างหลังอบ (กรัม)

2. การวิเคราะห์ปริมาณโปรตีนโดยวิธี Kjeldahl (AOAC, 2000)

 จุปกรณ์1. หลอดย่อยโปรตีน (Kjeldahl tube)
2. เครื่องชั่งไฟฟ้าทศนิยม 4 ตำแหน่ง ยี่ห้อ Mettler $\begin{array}{lllll}\text { Toledo รุ่น AL } & 204 & \text { ประเทศ }\end{array}$ สวิตเซอร์แลนด์
3. อุปกรณ์ย่อยและกลั่นโปรตีน ยี่ห้อ FOSS TECATOR รุ่น 2006 และ 2200 ตามลำดับ ประเทศสวีเดน
4. ขวครูปชมพู่ ขนาค 250 และ 500 มิลลิลิตร
5. ขวดปรับปริมาตรขนาด 100 มิลลิลิตร
6. ปีเปตต ขนาด 5 และ 10 มิลลิลิตร
7. บิวเรต ขนาค 25 มิลลิลิตร
8. กระดาษกรอง
9. กระบอกตวงขนาค 20 และ 50 มิลลิลิตร

สารเคมี

1. กรดซัลฟูริกเข้มข้น
2. สารเร่งปฏิกิริยาใช้คอปเปอร์ซัลเฟต 1 ส่วนผสมกับ โพแทสเซียมซัลเฟต 9 ส่วน
3. โซเดียมไฮครอกไซด์เข้มข้นร้อยละ 40 และร้อยละ 20
4. กรดบอริกเข้มข้นร้อยละ 4
5. กรดไฮโดรคลอริกความเข้มข้นมาตรฐาน 1 นอร์มัล เตรียมโดยชั่งโซเดียมเทตราบอเรต (Borax) ให้ได้น้ำหนักแน่นอน (4 ตำแหน่ง) 4 กรัม ใส่ลงในขวดรูปชมพู่ขนด 250 มิลลิลิตร ละลายด้วยน้ำกลั่นปริมาณ 50 มิลลิลิตร ทำซ้ำ 3 ขวด แต่ละขวคเติม 2-3 หยด ของ เมทิลเรด (อินดิเคเตอร์) แล้วไตเตรตกับสารละลายกรดไฮโครคลอริกที่เตรียมไว้ สีของ สารละลายจะเปลี่ยนเป็นสีชมพูที่จุดยุติสามารถคำนวณความเข้มข้นที่แน่นอนของกรคไฮโคร คลอริกจากสูตร

$$
\begin{aligned}
& \text { ความเข้มข้นของสารละลายไฮโดรคลอริก }=\frac{\mathrm{W}_{1}}{\mathrm{~W}_{2} \times 0.1907} \\
& \mathrm{~W}_{1}=\text { น้ำหนักของโซเคียมเทตราบอเรต (กรัม) } \\
& \mathrm{W}_{2}=\quad \text { ปริมาตรของสารละลายกรคไฮโดรคลอริกที่ใช้ไตรเตรท (มิลลิลิตร) } \\
& \text { กรัมสมมูลของโซเดียเทตราบอเรต }=190.72
\end{aligned}
$$

6. อินคิเคเตอร์ เตรียมโดย ก. ชั่ง 0.125 กรัม เมทธิลเรด และ 0.2 กรัม เมทิลีนบลู (Methylene blue) ละลายในเอทานอล 100 มิลลิลิตร ข. ชั่ง 0.1 กรัมโบรโมครีซอลกรีน (Bromocresol green) ละลายในน้ำกลั่นและปรับปริมาตรเป็น 100 มิลลิลิตร นำมาผสมกันในอัตราส่วน ก: ข เท่ากับ $5: 1$
วิธีการ
7. ชั่งตัวอย่างบนกระดาษกรองให้ได้น้ำหนักแน่นอน (4 ตำแหน่ง) ประมาณ $1-2$ กรัม ห่อให้ มิคชิดลงในขวคย่อยโปรตีน
8. เติมสารเร่งปฏิกิริยา 5 กรัม และกรคซัลฟูริกเข้มข้น 20 มิลลิลิตร
9. นำไปย่อยที่อุณหภูมิ 300 องศาเซลเซียส เป็นเวลา 30 นาที และย่อยที่อุณหภูมิ 400 องศา เซลเซียส จนได้สารละลายใส แล้วตั้งทิ้งให้เย็น
10. เติมน้ำกลั่น 20 มิลลิลิตรในหลอดย่อยโปรตีน
11. ต่อหลอดย่อยโปรตีนในส่วนของเครื่องกลั่นโปรตีน และวางขวดรูปชมพู่ที่เติมกรดบอริก ปริมาตร 40 มิลลิลิตรแล้ววางที่ตำแหน่งรับสารละลายของเครื่องกลั่น โดยให้ปลายจุ่มใน สารละลายกรดบอริก เติมอินดิเคเตอร์ 2 หยด ทำการกลั่นโปรตีนตามโปรแกรมที่ตั้งไว้ ปริมาตรสารละลายโซเดียมไฮดรอกไซด์ร้อยละ 40 ปริมาณ 50 มิลลิลิตร และกลั่นเป็นเวลา 4 นาที
12. ไตเตรทของเหลวที่กลั่นได้ด้วยสารละลายกรดไฮโดรคลอริกมาตรฐานจนกระทั่งสารละลาย เปลี่ยนจากสีเขียวอมฟ้าเป็นสีชมพูที่จุคยุติ นำข้อมูลที่ได้ไปคำนวณปริมาณไนโตรเจน หรือ ปริมาณโปรตีน
13. ทำ blank โดยใช้กระดาษกรองไม่ใส่ตัวอย่างแล้วทำตามข้อ 2-6

การคำนวณ

ปริมาณไนโตรเจนทั้งหมด (ร้อยละ) $=\frac{1.4007 \mathrm{xNx}(\mathrm{Vs}-\mathrm{Vb})}{\mathrm{W}}$
ปริมาณโปรตีนทั้งหมด (ร้อยละ) $=\frac{1.4007 \mathrm{xNx}(\mathrm{Vs}-\mathrm{Vb}) \mathrm{xF}}{\mathrm{W}}$

$\mathrm{N}=$ ความเข้มข้นของสารละลายกรดไฮโครคลอริกมาตรฐาน (นอร์มอล)
$\mathrm{V}_{\mathrm{s}}=$ ปริมาตรของสารละลายกรดไฮโครคลอริกที่ใช้ไตเตรทตัวอย่าง (มิลลิลิตร)
$\mathrm{Vb}=$ ปริมาตรของสารละลายกรดไฮโดรคลอริกที่ใช้ไตเตรทแบลงค์ (มิลลิลิตร)
$\mathrm{w}=$ น้ำหนักตัวอย่าง(กรัม)
$\mathrm{F}=$ แฟกเตอร์ (เท่ากับ 5.95)

3. การวิเคราะห์ปริมาณไขมันโคยวิธี Soxhlet Extraction Method (AOAC, 2000)

 ฉุปกรณ์1. อุปกรณ์ชุดสกัดไขมัน (Soxhlet apparatus) ยี่ห้อ Selecta รุ่น 6003286 ประเทศสเปน
2. หลอดใส่ตัวอย่าง (Extraction thimble)
3. เครื่องบคผสมตัวอย่าง (Blender)
4. ตู้อบไฟฟ้า ยี่ห้อ Memmert รุ่น D-91126 ประเทศสหรัฐอเมริกา
5. โถดูคความชื้น
6. เครื่องชั่งไฟฟ้าทศนิยม 4 ตำแหน่ง ยี่ห้อ Mettler Toledo รุ่น AL 204 ประเทศ สวิตเซอร์แลนด์
7. เครื่องระเหยสุญญากาศ ยี่ห้อ EYELA รุ่น SB-1000 ประเทศญี่ปุ่น

สารเคมี

ปิโตรเลียมอีเทอร์

วิธีกีาร

1. อบขวคก้อนกลมในตู้อบไฟฟ้าที่อุณหภูมิ $100-105$ องศาเซลเซียส นาน 3 ชั่วโมง วางให้เย็น ในโถดูดความชื้น ชั่งน้ำหนักแล้วนำไปอบซ้ำเป็นเวลา 30 นาที จนทราบน้ำหนักที่แน่นอน (4 ตำแหน่ง)
2. นำตัวอย่างที่ผ่านการหาความชื้นแล้วมาชั่งให้ได้น้ำหนักที่แน่นอน (4 ตำแหน่ง) ประมาณ $2-3$ กรัม ในกระดาษกรอง ห่อให้มิดชิดแล้วใส่ลงในหลอดสำหรับใส่ตัวอย่าง คลุมด้วยสำลี เพื่อให้สารทำละลายมีการกระจายอย่างสม่ำเสมอ
3. นำหลอดตัวอย่างใส่ลงในซอคแลต
4. เทปิโตรเลียมอีเทอร์ในขวดก้อนกลม ปริมาตร 250 มิลลิลิตร
5. ประกอบหลอคใส่ตัวอย่าง และขวคก้อนกลมเข้ากับเครื่องสกัคไขมันแล้วทำการสกัดไขมัน 14 ชั่วโมง โดยปรับความร้อนให้หยคของสารทำละลายกลั่นตัวจากอุปกรณ์ควบแน่น ด้วย อัตรา 150 หยคต่อนาที
6. เมื่อครบ 14 ชั่วโมง นำหลอคใส่ตัวอย่างออกจากซอคแลต แล้วระเหยตัวทำละลายออกด้วย เครื่องระเหยแบบสุญญากาศ
7. นำขวดหาไขมันไปอบที่อุณหภูมิ $80-90$ องศาเซลเซียส จนแห้ง ทิ้งให้เย็นในโถดูดความชื้น
8. ชั่งน้ำหนักแล้วอบซ้ำครั้งละ 30 นาที จนกระทั่งผลต่างของน้ำหนัก 2 ครั้งติดต่อกันไม่เกิน $1-3$ มิลลิกรัม

การคำนวณ

```
ปริมาณไขมัน \((\) ร้อยละ \()=\) น้ำหนักไขมันหลังอบ x 100
    น้ำหนักตัวอย่างเริ่มต้นก่อนอบ
```


4. การวิเคราะห์ปริมาณเล้า (AOAC, 2000)

จุปกรณ์

1. เตาเผา (muffle furnace) ยี่ห้อ Ney รุ่น Vulcan3-1750 ประเทศสหรัฐอเมริกา
2. ถ้วยกระเบื้องเคลือบ (porcelain crucible)
3. โถคูคความชื้น
4. เครื่องชั่งไฟฟ้า ทศนิยม 4 ตำแหน่ง ยี่ห้อ Mettler Toledo รุ่น AL 204 ประเทศ สวิตเซอร์แลนด์

วิธีการ

1. เผาถ้วยกระเบื้องเคลือบในเตาเผาที่อุณหภูมิ 550 องศาเซลเซียส เป็นเวลาประมาณ 3 ชั่วโมง ปิดสวิตซ์เตาเผาแล้วรอประมาณ $30-45$ นาที เพื่อให้อุณหภูมิภายในเตาเผาลดลงก่อน แล้วนำ ออกจากเตาเผาใส่ในโถดูคความชื้น ปล่อยให้เย็นจนถึงอุณหภูมิห้องแล้วชั่งน้ำหนัก
2. เผาซ้ำอีกครั้งครั้งละประมาณ 1 ชั่วโมงและกระทำเช่นข้อ 1 จนได้ผลต่างของน้ำหนักทั้ง 2 ครั้ง ติดต่อกันไม่เกิน $1-3$ มิลลิกรัม
3. ชั่งน้ำหนักตัวอย่างให้ได้น้ำหนักแน่นอน (4 ตำแหน่ง) ประมาณ 1 กรัม ใส่ในถ้วยกระเบื้อง เคลือบที่ทราบน้ำหนักแน่นอนแล้ว นำไปเผาในตู้ควันจนหมดควัน แล้วจึงนำเข้าเตาเผา อุณหภูมิ 550 องศาเซลเซียส และกระทำซ้ำเช่นเดียวกับข้อ $1-2$

การคำนวณ

$$
\text { ปริมาณเถ้า }(\text { ร้อยละ })=\frac{\text { น้ำหนักตัวอย่างหลังเผา } \times 100}{\text { น้ำหนักตัวอย่างเริ่มต้น }}
$$

5. ปริมาณคาร์โบไฮเดรตทั้งหมด

```
คาร์โบไฮเครตทั้งหมด \((\%)=100-\) ปริมาณโปรตีน-ปริมาณไขมัน - ปริมาณความชื้น - ปริมาณเถ้า
```


6. การวิเคราะห่เยื่อใยอาหาร (Dietary fiber) โคยวิธี Enzymatic gravimetric (AOAC,2000) ถุปกรณ์

1. Test tube (หลอด centrifuge) ขนาด 50 ml จำนวน 12 หลอด
2. Magnetic bar ขนาค $15 \times 16 \mathrm{~mm}$ จำนวน 12 ชิ้น
3. Hot plate \& stirrer
4. Thermometer ช่วงอุณหภูมิ $0-150^{\circ} \mathrm{C}$ หรือ $0-100^{\circ} \mathrm{C}$
5. Glass filter Crucible Porosity No. 2 ขนาด 20 ml (Pyrex No. 22940 ASTM $40-60 \mu \mathrm{~m}$)
 celite น้ำหนักแน่นอน 0.5 g . อบที่อุณหภูมิ $130^{\circ} \mathrm{C}$ จนน้ำหนักคงที่ ($\geq 1 \mathrm{hr}$.) ทำให้เย็นแล้ว เก็บใน desiccator จนกว่าจะใช้)
6. Porcelain crucible (filter crucible) Porosity No. 2 ขนาด 30 ml
7. Beaker ขนาด 600 ml .12 ใบ
8. Rubber politeman
9. Desiccator
10. Oven
11. Muffle Fernance
12. เครื่องวิเคราะห์โปรตีน

สารเคมี

1. Enzyme
1.1 C-Amylase heat stable (sigma A3306)
1.2 Protease (Sigma A9913)
1.3 Amyloglucosidase (sigma P3910)
2. Petroleum ether (de-fat)
3. Methanol (de-sugar)
4. Phosphate buffer $0.08 \mathrm{M}, \mathrm{pH} 6.0$
5. Sodium hydroxide solution, 0.275 N
6. Hydrochloric acid solution, 0.325 N
7. 95% ethanol (v/v) Technical grade
8. 78% ethanol
9. Acetone (AR)
10. Celite
11. Deionized water (DI)
12. สารเคมีที่ใช้ในการวิเคราะห์โปรตีน

วิธีการ
ขั้นตอนการเตรียมตัวอย่าง

1. เตรียมตัวอย่างตามคู่มือวิธีปฏิบัติงานเรื่องการรับและเตรียมตัวอย่างทางเคมี (AIL-T01WiO1)
2. ตัวอย่างที่มีลักษณะเปียก ต้องผ่านการอบแห้งก่อน โดยชั่งตัวอย่างให้ได้น้ำหนักที่ แน่นอนประมาณ 50 กรัมใส่ plate ที่อบ หาน้ำหนักคงที่แล้ว นำตัวอย่างมาอบแห้งที่ $60^{\circ} \mathrm{C}$ ข้ามคืน หาน้ำหนักหลังอบเป็นเปอร์เซ็นต์ของแข็งทั้งหมค
3. ตัวอย่างที่มีปริมาณไขมันเกิน 5 เปอร์เซ็นต์ต้องผ่านการสกัดไขมันก่อน โดยนำตัวอย่างที่ ผ่านการอบแห้งมาสกัดไขมันโดยชั่งตัวอย่างประมาณ 5 กรัม (น้ำหนักแน่นอน) ใช้ Petroleum Ether ครั้งละ 20 มิลลิลิตร ใส่ในตัวอย่าง กวนผสมแล้วทิ้งให้ตกตะกอน ดูด เอา Petroleum Ether ออกจากบีกเกอร์ การสกัคซ้ำ 2 ครั้ง หากสารสกัดขังมีสีเหลืองอยู่ให้ สกัคอีกครั้ง แล้วดูคเอาสารสกัดออก นำตัวอย่างที่เหลือไปอบแห้งที่ 60 องศาเซลเซียส นาน 5 ชั่วโมง วางให้เย็นในโถดูดความชื้น ชั่งน้ำหนัก คำนวณหาเปอร์เซ็นต์ไขมัน/ เปอร์เซ็นต์ของแข็ง
4. หากตัวอย่างมีปริมาณน้ำตาลสูงกว่า 10% หรือตัวอย่างมีลักษณะเหนียวหลังอบแห้ง ให้ สกัดน้ำตาลออกโดยใช้ Methanol สกัดครั้งละ 20 มิลลิลิตร 3 ครั้ง ใช้ตัวอย่างที่ผ่านการ สกัดไขมันโดยเติม Methanol แล้วกวนผสมรอให้กากตกตะกอน คูคเอาสารละลายออก ทำซ้ำอีก 2 ครั้ง นำตัวอย่างที่ผ่านการสกัดไปอบแห้งที่ $60^{\circ} \mathrm{C}$ ไม่ต่ำกว่า 5 ชั่วโมง วางให้ เย็นใน desiccator ชั่งน้ำหนักคำนวณหาเปอร์เซ็นต์น้ำตาลเปอร์เซ็นต์ของแข็ง
5. นำตัวอย่างที่ผ่านการสกัดมาบคโคยใช้โกร่งบด จนละเอียดเป็นผง

ขั้นตตนการวิเคราะห์ตัวอย่าง

1 ชั่งตัวอย่างน้ำหนักแน่นอน 0.5 กรัม ลงในหลอด centrifuge ขนาด 50 ml . จำนวน 4 หลอค น้ำหนักตัวอย่างที่ชั่งไม่ควรห่างกันเกิน 20 มิลลิกรัม ใส่ magnetic bar ลงไปในแต่ ละหลอดและใส่ลงในหลอดเปล่าจำนวน 2 หลอคเพื่อใช้เป็น Blank
2. เติมฟอสเฟตบัฟเฟอร์ $\mathrm{pH} 6.0 \pm 0.2$ ลงไป 25 ml . ทุกหลอด ตรวจสอบ pH โคยใช้ pH meter ปรับ pH ให้ได้ 6.0 ± 0.2 โดยใช้ 0.275 N NaOH หรือ 0.225 N HCI
3. เติม α-amylase heat - stable $50 \mu \mathrm{l}$. ปีดฝาแล้วหุ้มด้วย Aluminium foil ที่ฝาอีกครั้งวาง ใน water bath ที่อุณหภูมิ $100^{\circ} \mathrm{C}$ นาน 15 นาที โดยใช้ hot plate \& stiree เริ่มจับเวลา เมื่ออุณหภูมิอยุ่ในช่วง $95-100^{\circ} \mathrm{C}$ เปีด stirrer เพื่อเขย่าตัวอย่าง
4. เมื่อครบเวลายกออกจาก water bath แล้ววางให้เย็นที่อุณหภูมิห้องหรือแช่น้ำ
5. เติม 0.275 N NaOH 5 ml . ปรับ pH ให้ได้ 7.5 ± 0.1 ตรวจสอบโคยใช้ pH meter
6. เติมสารละลาย protease 50μ l. วางใน water bath ที่ 60 องศาเซลเซียส นาน 30 นาที เริ่ม จับเวลาเมื่ออุณหภูมิอยู่ในช่วง $60 \pm 2^{\circ} \mathrm{C}$ เปิด stirrer เพื่อเขย่าตัวอย่าง
7. เมื่อครบเวลายกออกจาก water bath แล้ววางให้เย็นที่อุณหภูมิห้องหรือแช่น้ำ
8. เติมสารละลาย 0.325 N HCl 5 ml . ปรับ pH ให้ได้ 4.5 ± 0.2 ตรวจสอบ pH โดยใช้ pH meter
9. เติม amyloglucosidase $100 \mu \mathrm{l}$ วางใน water bath ที่ $60^{\circ} \mathrm{C}$ นาน 30 นาที เริ่มจับเวลาเมื่อ อุณหภูมิอยู่ในช่วง $60 \pm 2^{\circ} \mathrm{C}$ เปิด stirrer เพื่อเขย่าตัวอย่าง
เมื่อครบเวลายกออกจาก water bath ในกรณีที่วิเคราะห์เป็น total dietary fiber นำตัวอย่าง จากหลอด centrifuge ใส่ในปีกเกอร์ขนาด 600 ml แล้วชะตัวอย่างในหลอคและฝาด้วย 95% Ethanol 225 ml . วางไว้ให้ตกตะกอนที่อุณหภูมิห้อง 1 คืน
11. นำตะกอนมากรองผ่าน fritted Glass Crucible ที่เตรียมไว้ โดยต่อกับ Aspirator ชะ celite บริเวณผิวหน้าของ fritted Glass Crucible ด้วย 78% Ethanol ก่อนการกรองตัวอย่าง
12. ชะล้างตะกอนโดยใช้ $78 \% \mathrm{Ethanol}$ ครั้งละ 20 ml . 3 ครั้ง แล้วชะด้วย 95% Ethanol ครั้ง ละ 10 ml 2 ครั้ง แล้วล้างด้วย acetone ครั้งละ 10 ml 2 ครั้ง ในระหว่างการล้างตะกอน ให้ชะตัวอย่างออกจากบิกเกอร์ให้หมด โดยใช้ rubber politeman ขัด หากมีตะกอน เกาะติดเป็นก้อนกรองได้ยากให้ใช้ spatula เขี่ยบริเวณผิวหน้าของ celite
13. นำตะกอนที่ได้ไปอบที่ $100-105^{\circ} \mathrm{C}$ ข้ามคืน วางให้เย็นใน desiccator ชั่งน้ำหนักหลังอบ - นำตัวอย่างไปหาโปรตีน 2 หลอด และ Blank 1 หลอด ตามขั้นตอนการวิเคราะห์ โปรตีน ปริมาณโปรตีนในตัวอย่าง

$$
\text { ปริมาณโปรตีน }=0.014007 \times[\mathrm{HCI}] \times(\text { ปริมาตร } \mathrm{HCI}-\text { Blank }) \times 6.25
$$

- นำตัวอย่างไปวิเคราะห์เถ้า 2 หลอด และ Blank 1 หลอด ตามขั้นตอนการวิเคราะห์ เถ้าโดยเผาที่ $525^{\circ} \mathrm{C}$ นาน 5 ชั่วโมง
ปริมาณเถ้าในตัวอย่าง $=$ น้ำหนักเถ้าหลังเผา - น้ำหนักถ้วย

14. ในกรณีที่วิเคราะห์ Insoluble dietary หลังจากย่อย (9) กรองตะกอนผ่าน fitted Glass Crucible แล้วล้างตะกอนด้วยน้ำ DI อุณหภูมิ $70^{\circ} \mathrm{C}$ ที่ปริมาตร 10 ml .2 ครั้ง ส่วน ของเหลวที่เหลือนำไปวิเคราะห์ Soluble dietary
15. นำตะกอนที่กรองได้มาล้างด้วย 95% Ethanol ครั้งละ 10 ml . ครั้ง แล้วล้างค้วย acetone 10 ml . 2 ครั้ง
16. นำตัวอย่างที่ได้วิเคราะห์ตามขั้นตอนที่ (13)
17. ในกรณีที่วิเคราะห์ Soluble dietary fiber นำของเหลวที่ได้จากการกรองเอาตะกอนออกใน ขั้นตอน (14) มาตกตะกอนโดยใช้ 95% Ethanol 225 ml . แล้ววางให้ตกตะกอนที่ อุณหภูมิห้อง 1 คืน แล้วทำการวิเคราะห์ตามขั้นตอน (11) - (13)

ตารคำนวณผล

Residue Protein $=$ น้ำหนักตัวอย่างที่เหลือหลังการย่อย (วิเคราะห์โปรตีนต่อ) g
Residue Ash $=$ น้ำหนักตัวอย่างที่เหลือหลังการย่อย (วิเคราะห์เถ้าต่อ) g
P $\quad=$ ปริมาณโปรตีนจาก Residue Protein
A $=$ ปริมาณเถ้าจาก Residue Ash
B
$=\frac{\mathrm{BR}_{1}+\mathrm{BR}_{2}}{2}$
- BP - BA
$\mathrm{BR}_{1} \quad=\quad$ Residue Protein Blank (g)
$\mathrm{BR}_{2} \quad=\quad$ Residue Ash Blank (g)
BP $=$ ปริมาณโปรตีน จาก Residue Protein Blank
BA $=$ ปริมาณเถ้า จาก Residue Ash Blank
7. การวิเคราะห์ปริมาณอะไมโลส (Juliano, 1971)

อุปกรณ์

1. เครื่อง spectrophotometer
2. เครื่องกวนแม่เหล็กไฟฟ้า
3. เครื่องชั่งไฟฟ้าทศนิยม 4 ตำแหน่ง
4. เครื่องสับผสม (blender)
5. ตะแกรงร่อนขนาด 100 mesh
6. ขวคปรับปริมาตรขนาด 100 มิลลิลิตร

แารเคมี

1. เอทานอลร้อยละ 95
2. โซเดียมไฮดรอกไซด์เข้มข้น 1 โมลาร์
3. กรดอะซิติกเข้มข้น 1 โมลาร์
4. สารละลายไอโอดีน (ไอโอดีน 0.2 กรัม และโปแตสเซียมไอโอไดด์ 2.0 กรัม ในสารละลาย 100 มิลลิลิตร
5. อะมิโลสบริสุทธิ์

วิธีการ

ธารละลายมาตรฐานอะมิโลส

1. ชั่งอะมิโลสบริสุทธิ์ 0.04 กรัม ลงในขวดปรับปริมาตรขนาด 100 มิลลิลิตร
2. เติม 95% Ethanol ปริมาตร 1 มิลลิลิตร เขย่าเบาๆ
3. เติม 1 M NaOH ปริมาตร 9 มิลลิลิตร
4. กวนของเหลวในขวดด้วยเครื่องกวนแม่เหล็กไฟฟ้านาน 10 นาที
5. นำแท่งแม่เหล็กออกและล้างส่วนที่ติดมากลับไปในขวดด้วยน้ำกลั่นแล้วปรับปริมาตรเป็น 100 มิลลิลิตร เขย่าให้ละลายเข้ากัน

กราฟมาตรฐาน

1. ปิเปตสารละลาย ปริมาตร $1,2,3,4$, และ 5 มิลลิลิตร ลงในขวดปรับปริมาตรขนาด 100 มิลลิลิตร
2. เติมน้ำกลั่นประมาณ 70 มิลลิลิตร
3. ปีเปต 1 M Acetic acid ปริมาตร $0.2,0.4,0.6,0.8$ และ 1.0 มิลลิลิตร ใส่ลงในขวคที่มี สารละลายมาตรฐานตามลำคับ
4. ปีเปตสารละลายไอโอดีน 2 มิลลิลิตร
5. ปรับปริมาตรด้วยน้ำกลั่นให้ได้ 100 มิลลิลิตร เขย่าและตั้งทิ้งไว้ 20 นาที
6. วัคค่าการดูดกลืนแสงที่ความยาวคลื่น 620 นาโนเมตร

ตัวอย่ง

1. บคเมล็คข้าวค้วยเครื่องสับผสม แล้วร่อนผ่านตะแกรง
2. ชั่งตัวอย่าง 0.1000 กรัม ใส่ในขวดปรับปริมิาตรขนาค 100 มิลลิลิตร
3. เติมสารตาบบั้นตอนการเตรยมสสรระลายมาตรฺานอะมิถส ข้อ $2-5$

วิกระะหัตัวอย่าง

1. ปีเปตสารละลายากการเตรียบตัวอย่งปงิิมาตร 5 มิลลิลิตร ลงในขวคปรับปริมาตรงนาค 100 มิลลิลิคร
2. เติบน้ำกลั่นประมาม 70 มิลลิดิทร
3. ปีปปต 1 M Acetic acid ปริมาตร 1 มิกลิลิคร
4. ปีเปปต Iodine solution ปริมตตร 2 มิลลิลิติร
5. ปรับปริมาตรด้วยน้ำกลั่นให้ได้ 100 มิลลิลิตร เข่ย่นเละตั้งกิ้งใว้ 20 นาที
6. ทำแบลงค์เชนเดียวกับการวิคราะห์ตัวอย่งแต่ไม่ไส่สารตัวอย่าง
7. วัคความเเ้มสีของสารละลายโดยใชช เรื่อง microplate reade วัคค่ำกรดูดกลืนแสสงที่ความ ยาวคลื่น 620 นาโนมตตร
8. นำค่าการดุคกลืนนเสงที่ได้ไปหาปริมาณอะมิโลส โคยเทียบจากกรรฟมาตรรงน

8. การวิเคราะห์แกมมาอะมิโนบิวทิริกแอซิด (GABA)

จุปกรณ์

1 เครื่อง HPLC รุ่น Agilent 1200
2 เครื่องชั่งไฟฟ้าทศนิยม 4 ตำแหน่ง
3 เครื่องเขย่าสาร (shaker)
4 เครื่อง centrifuge
5 เครื่องอบลมร้อน (Hot air oven)

สารเคมี

1. Sulfosalicylic acid
2. Sodium hydrogen carbonate
3. 4-dimethylaminoazobenzene-4-sulfonyl chloride
4. Acetonitrile
5. Ethanol (absolute)
6. 4-Aminobutyric acid
7. Sodium acetate
8. Acetic acid
9. Tetrahydrofuran
10. Water (HPLC grade)

การเตรียมข้าวกล้องงอก

1. ชั่งข้าวตัวอย่างละ 10 กรัม ใส่ภาชนะ
2. เติมน้ำในอัตราส่วนข้าวต่อน้ำเท่ากับ $1: 2$ วางทิ้งไว้ที่อุณหภูมิห้อง
3. เมื่อครบเวลาที่ต้องการของแต่ละตัวอย่าง ทำการเก็บตัวอย่างโคยนำเทน้ำทิ้ง ล้างข้าวให้สะอาด อีกครั้ง จากนั้นนำตัวอย่างไปอบแห้งที่อุณหภูมิ 50 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง
4. ทำการเก็บตัวอย่างไว้ในภาชนะที่ปิดสนิท และเก็บที่อุณหภูมิ 4 องศาเซลเซียส เพื่อรอนำไป วิเคราะห์
5. นำตัวอย่างที่เก็บไว้ในข้อ 4 มาบดค้วยเครื่องบดอาหาร
6. ร่อนผ่านตะแกรงขนาด 0.25 ไมครอน เพื่อให้ตัวอย่างแต่ละตัวมีขนาคเท่ากัน

การเตรียมตัวอย่างสำหรับวิเคราะห์ด้วยเครื่อง HPLC
การสกัด

1. ชั่งตัวอย่างข้าว 0.25 กรัมใส่หลอคทคลอง
2. เติมน้ำ 1.8 มิลลิลิตร เขย่าที่อุณหภูมิห้องความเร็ว 300 rpm เป็นเวลา 1 ชั่วโมงครึ่ง
3. เติม 3% sulfosalicylic acid ปริมาตร 0.2 มิลลิลิตร ผสมให้เข้ากัน นำไปปั่นเหวี่ยงที่ความเร็ว รอบ $4,500 \mathrm{rpm}$ เป็นเวลา 10 นาที
4. ปิเปตส่วนใสออกมา(ประมาณ 1 มิลลิลิตร) เก็บไว้ในหลอด eppendorf รอนำไปทำการทดลอง ต่อ

การทำอนุพันธั

1. นำตัวอย่างที่ได้จากการสกัด(ส่วนใส) ปิเปตมา 50 ไมโครลิตร
2. เติมสาร $100 \mathrm{mM} \mathrm{NaHCO}_{3}$ ปริมาตร 50 ไมโครลิตร
3. เติม 4 mM 4-dimethylaminoazobenzene-4-sulfonyl chloride ใน Acetonitrile ปริมาตร 200 ไมโครลิตร
4. ผสมให้เข้ากัน นำไปบ่มที่อุณหภูมิ 70 องศาเซลเซียส 10 นาที
5. เติม Ethanol (HPLC grade) ปริมาตร 250 ไมโครลิตร ผสมให้เข้ากัน
6. เติม $25 \mathrm{mM} \mathrm{PO}_{4}$ buffer pH 6.8 ปริมาตร 250 ไมโครลิตร
7. ผสมให้เข้ากัน ปั่นเหวี่ยงที่ 4500 rpm เป็นเวลา 10 นาที กรองโคยใช้ตัวกรอง $\mathrm{NYLON} 0.45 \mu \mathrm{~m}$ ใส่ขวด vial สำหรับเตรียมนำไปวิเคราะห์ HPLC

การเตรียมอนุพันธุ์ Blank

1. ใช้สาร 0.3% sulfosalicylic acid และ สารมาตรฐานใช้สาร4-Aminobutyric acid (GABA) แทน ตัวอย่าง จากนั้นเตรียมแบบเดียวกับขั้นตอนการเตรียมตัวอย่าง

การเตรียมสาร mobile phase สำหรับวิเคราะห์ HPLC

1. การเตรียม 25 mM Sodium acetate pH 6.8

เตรียมโคย ชั่งสาร Sodium acetate 3.4007 กรัมเติมน้ำ (water HPLC) ปรับ pH ค้วย acetic acid เข้มข้น ให้มีค่า pH 6.8 จากนั้นเติม Tetrahydrofuran 10 มิลลิลิตร ปรับปริมาตรเป็น 1 ลิตร และกรอง
2. Mobile phase

ใช้ 25 mM Sodium acetate pH 6.8 และ Acetonitrile ในอัตราส่วน $65: 35$ อัตราการไหล 0.5 มิลลิลิตรต่อนาที วิเคราะห์ที่ค่าความยาวคลื่น 465 นาโนเมตร
3. Column

คอลัมน์ที่ไช้คือ SUPERCOSIL ${ }^{\mathrm{TM}} \mathrm{LC}-\mathrm{DABS}$ ฉีดตัวอย่างปริมาตร 5 ไมโครลิตร

อบแห้งที่อุณหภูมิ 50 องศาเซลเซียส
นาน $3-4$ ชั่วโมง

ภาคผนวก จ

การเตรียมสารละถายบัฟเฟอร์ที่ใช้ในการแช่ตัวอย่างข้าวกล้องงอก

1. การเตรียมสารละลาย pH 2.0

ใช้วิธีการเตรียมของ Clark and Lubs solution (pH 1.0-2.2)
ขั้นตอนการเตรียม

1. เตรียมสารละลาย 0.2 M KCl

ชั่งสาร KCl 14.919 กรัม ปรับปริมาตรด้วยน้ำกลั่นเป็น 1 ลิตร
2. เตรียมสารละลาย 0.2 M HCl
3. เตรียมสารละลาย pH 2.0

ปิเปตสารละลาย 0.2 M KCl ปริมาตร 250 ml ลงในขวดปรับปริมาตร ทำการเติม สารละลาย 0.2 M HCl ปริมาตร 65 มิลลิลิตร
4. วัคค่า pH จะได้ $\mathrm{pH}=2.0$

2. การเตรียมสารละลาย pH 2.5

ใช้วิธีการเตรียมของ Glycine- HCl buffer solution ($\mathrm{pH} 2.2-3.6$)
ขั้นตอนการเตรียม

1. เตรียมสารละลาย 0.2 M Glycine

ชั่งสาร Glycine $\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{NO}_{3}\right) 15.01$ กรัม ปรับปริมาตรด้วยน้ำกลั่นเป็น 1 ลิตร
2. เตรียมสารละลาย 0.2 M HCl
3. เตรียมสารละลาย pH 2.5

ปิเปตสารละลาย 0.2 M KCl ปริมาตร 250 ml ลงในขวดปรับปริมาตร ทำการเติม สารละลาย 0.2 M HCl ปริมาตร 36 มิลลิลิตร
4. วัดค่า pH จะได้ $\mathrm{pH}=2.5$
3. การเตรียมสารละลาย $\mathrm{pH} 3.0,3.5,4.0,4.5,5.0,5.5,6.0$

ใช้วิธีการเตรียมของ Citric acid- $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer solution (pH 2.2-3.6)
ขั้นตอนการเตรียม

1. เตรียมสารละลาย 0.1 M Citric acid monohydrate $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} \cdot \mathrm{H}_{2} \mathrm{O}, 210.14 \mathrm{~g} / \mathrm{mol}\right)$
2. เตรียมสารละลาย $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}\left(\mathrm{Na}_{2} \mathrm{HPO}_{4} .2 \mathrm{H}_{2} \mathrm{O}, 178.05 \mathrm{~g} / \mathrm{mol}\right)$
3. เตรียม pH โดยใช้สารละลาย X (ข้อ 1) และสารละลาย Y (ข้อ 2)

pH	$\mathrm{X}=0.1 \mathrm{M}$ Citric	$\mathrm{Y}=0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$
	(ml)	(ml)
3.0	794.5	205.5
3.5	696.5	303.5
4.0	614.5	385.5
4.5	545.7	454.3
5.0	485.0	515.0
5.5	431.2	568.8
6.0		631.5

[^7]
ภาคผนวก ฉ

การศึกษาการส่งผ่านความร้อนในผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูป

1. ผลิตภัณฑ์ข้าวกล้องสำเร็จรูปบรรจุถุงรีทอร์ทเพาซ์

การศึกษาการส่งผ่านความร้อนในผลิตภัณฑ์ข้าวงอกบรรจุถุงเพื่อกำหนคกระบวนการม่าเชื้อ ทำการศึกษาในหม้อม่าเชื้อความดันสูง ขนาค 1 ตะกร้า ผลการศึกษาแสคงดังตารางต่อไปนี้

ขนาดบรรจุภัณฑ์	ผลิตภัณฑ์	กระบวนการ	ค่า F_{0}
$140 \times 60(\mathrm{~mm})$	ข้าวกล้องงอกบรรจุถุง	$118{ }^{\circ} \mathrm{C} / 15$ นาที	$3.25(\mathrm{~F})$

Note: - การหุงข้าวงอก ข้าวงอก: น้ำ เท่ากับ $1: 0.5$ และ $1: 0.75$

- ความชื้นของข้าวงอกสุก $48.14-53.71 \%$

F = Formula Method .

ผลทดสอบทางการม่าเชื้อ (Sterility Test)

ขนาดบรรจุภัณฑ์	ผลิตภัณฑ์	ผลการตรวจสอบ
$140 \times 60(\mathrm{~mm})$	ข้าวกล้องงอกบรรจุถุง	ไม่พบการเจริญของเชื้อ

(ตามรายละเอียดในเอกสารแนบ)

AGRO-INDUSTRY DEVELOPMENT CENTER FOR EXPORT (ADCET)
AD EEI
FACULTY OF AGRO-INDUSTRY, PRINCE OF SONGKLA UNIVERSITY
hat Yai, SONGKHLA, 90112, THAILAND
Tel: 66-74-286391, 286310 Fax: 66-74-213008, 558866
e-mail : adcet.psu@hotmail.com website : adcet.psu.ac.th

รายงานผลทดสอบ

เลขที่ใบขอรับบริการ $0412 / 53$
เลขที่ใบรายงานผลทดสอบ M10127/2010
วันที่รับตัวอย่าง 21 กันยายน 2553
ชื่อผู้ขอรับบริการ โครงการโภชนาการข้าวงอก (รศ.ไพบูลข์ โรรมรัตน์วาสิก)
ที่อยู่ คณะจุตสาหกรรมเกษตร มหาวิทยาลัยสงขลานครินทร์ ต.คอหงส์ อ.หาคใหญ่ จ.สงขลา
ชื่อ/ชนิดของตัวอย่าง : ข้าวงอก

รายงานผลทตสอบ :

ชื่อ/รหัสตัวอยาง	รายการทดสอบ	วิธีทคสอบ	ผลทคสอบ (หน่วย)
1. ข้าวงอก $\mathrm{pH}=3.5$ อากาศภายในถุง $=10.5 \mathrm{ml}$	Aerobe $35^{\circ} \mathrm{C}$ Anaerobe $35^{\circ} \mathrm{C}$ Aerobe $55^{\circ} \mathrm{C}$ Anaerobe $55^{\circ} \mathrm{C}$	BAM 2001 BAM 2001 BAM 2001 BAM 2001	Negative Negative Negative Negative
	Total Coliform จากการบ่ม $35^{\circ} \mathrm{C}$ จากการบ่ม $55^{\circ} \mathrm{C}$	BAM 2002 BAM 2002	$\begin{aligned} & <3 \mathrm{MPN} / \mathrm{g} \\ & <3 \mathrm{MPN} / \mathrm{g} \end{aligned}$
	Yeast \& Mold count จากการบ่ม $35^{\circ} \mathrm{C}$ Yeast \& Mold count จากการบ่ม $55^{\circ} \mathrm{C}$	BAM 2001 BAM 2001	$\begin{aligned} & <10 \mathrm{CFU} / \mathrm{g} \\ & <10 \mathrm{CFU} / \mathrm{g} \end{aligned}$

- รายงานนี้รับรองผลเฉพาะตัวอย่างที่ตรวจวิเคราะห์/ทดสอบเท่านั้น
- ห้ามคัดถ่ายรายงานผลแต่เพียงบางส่วน โดยไม่ไต้รับอนุญาตเป็นลายลักษณ์ยักษร

รายงานผลการทดสอบตามหนังสือเลขที่ $\operatorname{ADCET} / 0756 / 2553$ ลงวันที่ 8 เคือนตุลาคม พ.ศ 2553

2. ผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปบรรจุกระป๋อง

Heat penetration a study on rice product was conducted at steam-still retort (I-crate) $\mathfrak{t} 0$ establishes the schedule process. The results of study are shown as following.

Can size	Product	Process	ค่า $\mathrm{F}_{\mathbf{0}}$
$307 \times 113(2$-pcs $)$	Germinated Brown Rice	$118{ }^{\circ} \mathrm{C} / 45$ นาที	$4.4(\mathrm{~F})$

Note: - Cooked rice was consisted of rice: water 1: 1.25 (35.09 \% moisture), 1: 1.50 (40.92% moisture), 1: 1.75 (44.18 \% moisture)

- $1: 1.25$ (35.09% moisture) was the worst in heat penetration study.
- F = Formula Method. ผลทดสอบทางการม่าเชื้อ (Sterility Test) ตามรายละเอียดในเอกสารแนบ

AGRO-INDUSTRY DEVELOPMENT CENTER FOR EXPORT (ADCET)

FACULTY OF AGRO-NDDUSTRY, PRINCE OF SONGKLA UNIVERSITY
HAT YAI, SONGKHLA, 90112, THAILAND
Tel: 66-74-286391, 286310 Fax: 66-74-213008 e-mail : adcet.psu@hotmall.com

รายงานผลทดสอบ

เลขที่ไบขอรับบริการ $0650 / 53$
เลขที่ใบรายงานผลทดสอบ M10004/2011
วันที่รับตัวอย่าง 28 ธันวาคม 2553
ชี่อผู้ขอรับบริการ โครงการโภชนาการข้าวงอก (อ.ไพบูลย์)
ที่อยู่ ศูนย์พัฒนาอุตสาหกรรมเกษตรเพื่อการส่งออก คณะจุตสาหกรรมเกษตร มหาวิทยาลัยสงขลานครินทร์
ชื่อ / ขนิดของตัวอย่าง : ข้าวกล้องงอกบรรจุกระป่อง

รายงานผลทดสอบ :

ชื่อ/5หัสตัวอย่าง	รายการทดสอบ	วิธีทดสอบ	ผลทดสอบ (หน่วย)
1.ข้าวกล้องงอกบรรจุกระป๋อง$\begin{aligned} & \mathrm{Vac}(\mathrm{inHg})=3.7 \\ & \mathrm{HS}(\mathrm{~mm})=7.7 \\ & \mathrm{pH}=3.87 \end{aligned}$	Aerobe $35^{\circ} \mathrm{C}$ Anaerobe $35^{\circ} \mathrm{C}$ Aerobe $55^{\circ} \mathrm{C}$ Anaerobe $55^{\circ} \mathrm{C}$	BAM 2001 BAM 2001 BAM 2001 BAM 2001	Negative Negative Negative Negative
	Total Coliform จากการบ่ม $35^{\circ} \mathrm{C}$ จากการบ่ม $55^{\circ} \mathrm{C}$	BAM 2002 BAM 2002	$\begin{aligned} & <3 \mathrm{MPN} / \mathrm{g} \\ & <3 \mathrm{MPN} / \mathrm{g} \end{aligned}$
	Yeast \& Mold count จากการบ่ม $35^{\circ} \mathrm{C}$ จากการบ่ม $55^{\circ} \mathrm{C}$	BAM 2001 BAM 2001	$\begin{aligned} & <10 \mathrm{CFU} / \mathrm{g} \\ & <10 \mathrm{CFU} / \mathrm{g} \end{aligned}$
	Total viable count จากการบ่ม $35^{\circ} \mathrm{C}$ จากการบ่ม $55^{\circ} \mathrm{C}$	BAM 2001 BAM 2001	$\begin{aligned} & <10 \mathrm{cFU} / \mathrm{g} \\ & <10 \mathrm{CFU} / \mathrm{g} \end{aligned}$

- รายงานนี้รับรองผลเฉพาะตัวอย่างที่ตรวจวิเคราะห่/ทดสอบเท่านั้น
- ห้ามคัดถ่ายรายงานผลนต่เพียงบางส่วน โดยไม่ได้รับอนุญาตเป็นลายลักษณ์อักษร

รายงานผลการทดสอบตามหนังสือเลขที่ $A D C E T / 0050 / 2554$ ลงวันที่ 25 เดือนมกราคม พ.ศ 2554

ตัวอย่างแบบสอบถาม: กรพัฒนาผลิตภัณฑ์จากข้าวกล้องงอกเพื่อเป็นอาหารสำหรับผู้สูงอายู

 กล้องงอกเป็นส่วนประกอบหลัก ทุกคำตอบจะเป็นประโยชน์ในการปรับปรุงพัมนาผลิตกัณต์ต่อไป ขอขอบพระคุมที่ให้ความร่วมมีอ

 (Gamma-aminobutyric acid) ที่มีปริมานเพิ่มขึ้นมากกว่าดิมเมื่อทำป็นข้าวกล้องงอก ซึ่งสารนี้เ็นสื่อ ประสาทที่ช่วยรักยาสบดุลในสมองปื้องกันการทำลยสมอง ทำให้สมองผ่อนคลาย ปืองกันการเิคคอักไซ เมอร์ กคความคันโโิิิต ลคน้ำหนัก ช่วชให้สุขกาพผิวพรรมดี

กรุณใส่ส่ศรื่องหมาย \checkmark ใน () หน้าข้อที่ที่นเลือก
ช่วนที่ 1: ข้อมูลกี่ยวกับพๆติกรรมกรบบริ่คณ

1. ท่นรู้อ้ก้าววกล้องงยกหรือไม่
() รูจัก
() ไม่รู้จัก
() ไม่แน่ใจ
2. ท่านเคยรับประทานผลิตภัณฑ์อาหารที่มีข้าวกล้ององกเป็นส่วนประกอบหรือไม่
() เคย [กรุณาไปทำต่อข้อ 3]
() ไม่เคย [กรุณาทำไปต่อข้อ 6]
3. ผลิตภัณฑ์อาหารที่มีข้าวกล้องงอกเป็นส่วนประกอบที่ท่านเคยรับประทานคือผลิตภัณฑ์ประเภท ใด (เลือกตอบได้มากกว่า 1 ข้อ)
() ข้าวต้ม / โจ๊กสำเร็จรูปหรือกึ่งสำเร็งรูป
() เครื่องดื่มแบบที่บรรจุขวด/ กล่อง/กระป๋อง
() ซุปสำเร็จรูปหรือกึ่งสำเร็จรุป
() ขนมหวาน เช่น ไอศกรีม เค้ก ขนมหวานไทยๆ
() ผลิตภัณฑ์เบเกอรี่
() ผลิตภัณฑ์เส้นและแผ่น เช่น เส้นก๋วยเตี๋ยวขนาคต่างๆ ขนมจีน เกี่ยมอี่ แง้งแผ่น () อื่นๆ โปรดระบุ.
() เครื่องดื่มแบบชงคื่ม
() ข้าวกล้องงอกหุงสุก
() อาหารเช้าธัญืืช
() อาหารขบเคี้ยว
4. ความถี่ในการบริโภคผลิตภัณฑ์อาหารที่มีข้าวกล้องงอกเป็นส่วนประกอบ
() $1-2$ ครั้ง/ สัปดาห์
() มากกว่า 3-7/สัปดาห์
() 1-3 ครั้ง / เดือน
() น้อยกว่า 1 ครั้ง / เดือน
5. สาเหตุสำคัญที่ทำให้ท่านเลือกรับประทานผลิตภัณฑ์อาหารที่มีข้าวกล้องงอกเป็นส่วน ประกอบ คือข้อใด (กรุณาเลือกตอบ 2 อันดับแรก โดย 1 คือ สำคัญมากที่สุด และ 2 คือ สำคัญ เป็น อันดับสอง)
() รสชาติดี/ ผลิตภัณฑ์น่าสนใจ
() เพื่อความงาม
() เพื่อรักษาโรค
() เพื่อป้องกันโรค / เพื่อสุขภาพที่แข็งแรงสมบูรณ์
() เพื่อชะลอความแก่
() อื่นๆ โปรดระบุ.
6. สาเหตุสำคัญที่ทำให้ท่านไม่เคยรับประทานหรือเลิกรับประทานอาหารที่มีข้าวกล้องงอกเป็น ส่วนประกอบ คือข้อใด เลือกตอบเพียง 1 ข้อ (หากไม่เลิกรับประทานให้ข้ามไปตอบข้อต่อไป)
() ผลิตภัณฑ์ไม่มีความหลากหลาย
() เบื่อ
() รับประทานแล้วไม่รู้สึกดีขึ้น
() กลัวรสชาติไม่ดี
() ไม่คุ้มค่ากับราคาของผลิตภัณฑ์
() ไม่เชื่อว่าให้ผลดีจริงตามคำกล่าวอ้าง
() ผลิตภัณฑ์อยู่ในรูปแบบที่ไม่สะดวกในการรับประทาน
() ไม่กล้าลอง
() สีสัน/รูปแบบภาชนะบรรจุของผลิตภัณฑ์ไม่คึงดูด
() อื่น ๆ โปรคระบุ

ช่วนที่ 2: ข้อมูลในการพัฒนาผลิตภัณฑ์จากข้าวกล้องงยก

หากมีการพัฒนาผลิตภัณฑ์ใหม่โดยใช้ข้าวกล้องงอกเป็นส่วนประกอบหลัก ให้ท่านแสดงความ คิดเห็นเกี่ยวกับผลิตภัณฑ์ดังต่อไปนี้
7. หากมีการพัฒนาผลิตภัณฑ์อาหารโดยใช้ข้าวกล้องงอกเป็นส่วนประกอบหลัก ท่านคิดว่าควร ปรับปรุงด้านใด (กรุณาเลือกตอบ 2 อันคับแรก โดย 1 คือ สำคัญมากที่สุด และ 2 คือ สำคัญเป็น อันดับสอง)
() คุณค่าทางโภชนาการที่เหมาะสมกับตู้สูงอายุ
() รสชาติให้มีความอร่อย แปลกใหม่และหลากหลาย
() เนื้อสัมผัสให้เหมาะสำหรับผู้สูงอายุ
() สีสัน/รูปแบบภาชนะบรรจุของผลิตรัณฑ์ที่คึงดูด
() ผลิตภัณฑ์อยู่ในรูปแบบสามารถใช้รับประทานได้ง่าย
() อายุการเก็บที่เหมาะสม
() อื่นๆ โปรดระบุ.
8. ถ้าต้องการปรับปรุงคุณค่าทางโภชนาการ ท่านต้องการให้เพิ่มหรือลดสารอาหารชนิดใด ร่วมกับการใช้ข้าวกล้องงอก (เลือกตอบเพียงข้อเคียว)
() เสริม DHA (กรดไขมันที่มีความสำคัญต่อการพัฒนาสมองและระบบสายตา ได้จาก น้ำมันสกัคจากผลิตภัณฑ์ทางทะเล)
() เสริมโปรไบโอติก (จุลินทรียี่ที่มีประโขชน์ เช่นเดียวกับโยเกิร์ต)
() เสริมใยอาหาร/พรีไบโอติก
() เสริมวิตามินต่าง ๆ
() เสริมเกลือแร่ เช่น แคลเซียม
() ลคไขมัน
() ลดค่าพลังงาน เช่น ลคน้ำตาล
() เสริมสารต้านอนุมูลอิสระ
() อื่นๆ โปรคระบุ

9．หากจะมีการพัฒนาผลิตภัณฑ์โดยใช้ข้าวกล้องงอกเป็นส่วนประกอบ ท่านสนใจพัฒนา ผลิตภัณฑ์ใดมากที่สุด（เลือกตอบ 2 อันดับเรก โดย 1 คือ สนใจมากที่สุด และ 2 คือ สนใจเป็น อันดับสอง）
（ ）ข้าวกล้องงอกสำเร็จรูป／กึ่งสำเร็จรูป［กรุณาไปทำต่อข้อ 10］
（ ）ข้าวต้ม／โจ๊ก［กรุณาไปทำต่อข้อ 13］
（ ）ผลิตภัณฑ์เส้นและแผ่น［กรุณาไปทำต่อข้อ 16］
（ ）อาหารเช้าจากธัญพืช［กรุณาไปทำต่อข้อ 17］
（ ）ซุปข้น［กรุณาไปทำต่อข้อ 20］
（ ）ผง／เกร็ดข้าวกล้องงอกสำหรับเติมในอาหารหรือเครื่องดื่ม［กรุณาไปทำต่อข้อ 22］
（ ）ขนมหวานไทย［กรุณาไปทำต่อข้อ 23］
（ ）ขนมขบเคี้ยว［กรุณาไปทำต่อข้อ 25］
（ ）ผลิตภัณฑ์เบเกอรี่［กรุณาไปทำต่อข้อ 26］
（ ）อื่น ๆโปรดระบุ．

ロロロロロロロロロロ

ข้อ 10－12 สำหรับท่านที่เลือกตอบข้าวกล้องงอกสำเธ็จรูป／กี่งสำเร็จรูป

10．ท่านคิดว่าผลิตภัณฑ์จากข้าวกล้องงอกควรมีรูปแบบลักษณะอย่างไร
（ ）ข้าวสวยพร้อมรับประทาน
（ ）ข้าวกึ่งสำเร็จรูป（ผู้บริโภคจะต้องเตรียมเอง เช่น เติมน้ำร้อนจึงจะรับประทานได้）
（ ）ข้าวผัด
（ ）อื่นๆ โปรดระบุ
11．ท่านคิดว่าข้าวกล้องงอกสำเร็จรูป／กึ่งสำเร็จรูปควรมีส่วนผสมของวัตถุคิบอื่นๆ อีกหรือไม่ （ ）ควรมี
（ ）ไม่ควรมี［กรุณากลับไปที่ข้อ 9］
๙ำหรับผู้เก็บข้อมูล
\square
\square
\square
12. ท่านคิดว่าวัตถุดิบที่เหมาะสมที่จะนำมาใช้เป็นส่วนผสมในข้าวกล้องงอกสำเร็จุุป/ กึ่ง สำเร็จุูป (กรูณาเรียงลำดับ $1-3$ โดย 1 คือ צอบมากที่สุด, 2 คือ צอบเป็นอันดับที่สอง และ 3 คือ ชอบเป็นอันดับที่สาม)
() ข้าวสาร/ ข้าวกล้อง
() เนื้อปลา
() ต้นหอม / ผักชี
() ข้าวโพค
() โปรตีนเกษตร
() คะน้า
() ผักโขม
() ข้าวบาร์เล่ย์
() เต้าหู้
() บล็อคโคลี่
() ข้าวฟ่าง
() เนื้อวัว
() ขิง
() ปลาหมึก () เห็ดหอม
() กุ้ง
() สาหร่าย
() ผักกาดขาว
() ผักหวาน
() ข้าวโพคอ่อน

[กรุณuากลับไปที่ข้อ 9]

ข้อ 13-15 สำหธับท่านที่เลือกตอบข้าวตัม / โจ๊ก

13. ท่านคิคว่าข้าวต้ม/ โจ๊ก ที่ทำมาจากข้าวกล้องงอก ควรมีรูปแบบลักษณะอย่างไร
() โจ๊๊สำเร็จรูป
() โจ๊กกึ่งสำเร็จรูป
() ข้าวต้มสำเร็จรูป
() ข้าวต้มกึ่งสำเร็จรูป
14. ท่านคิดว่าข้าวต้ม/ โจ๊ก ที่ทำมาจากข้าวกล้องงอกควรมีส่วนผสมอื่นๆด้วอหรือไม่
() ควรมี
() ไม่ควรมี [กรุณากลับไปที่ข้อ 9]
() ถั่วเขียว
() ถั่วเหลือง
() เมล็คอัลมอล
() เมล็คเกาลัด
() เมล็คแปะก๊วย
() เผือก
() มันเทศ
() อื่นๆ
() มันฝรั่ง

เมลักาลั
\qquad
15. ท่านคิดว่าวัตถุดิบที่เหมาะสมที่นำมาใช้เป็นส่วนผสมในข้าวต้ม/ โจ๊ก (กรุณาเรียงลำดับ 1 3 โดย 1 คือ ชอบมากที่สุด, 2 คือ ชอบเป็นอันดับที่สอง และ 3 คือชอบเป็นอันดับที่สาม)
() งาดำ/งาขาว
() ไข่
() แครอท
() ถั่วลันเตา
() ลูกเดือย
() เนื้อหมู
() ฟักทอง
() ถั่วแคง
() ข้าวโอ๊ต
() เนื้อไก่
() ตำลึง
() เม็คบัว
() ข้าวสาร/ ข้าวกล้อง
() เนื้อปลา
() ต้นหอม / ผักชี
() ถั่วเขียว
() ข้าวโพค
() โปรตีนเกษตร
() คะน้า
() ถั่วเหลือง
() ข้าวบาร์เล่ย์
() เต้าหู้
() ผักโขม
() มันฝรั่ง
() เนื้อวัว
() บล็อคโคลี่
() เมล็คอัลมอล
() ปลาหมึก
() ขิง
() เมล็คเกาลัด
() เห็ดหอม
() เมล็คแปะก๊วย
() สาหร่าย

[กรุณากลับไปที่ข้อ 9]

ข้อ 16 สำหรับท่านที่เลือกตอบผลิตกัณท์เสั้นและแผ่น
16. ผลิตภัณฑ์เส้นและแผ่นชนิดใดที่ท่านคิคว่าควรเสริมข้าวกล้องงอกลงไปด้วย (กรุณาเรียงลำดับ $1-2$ โดย 1 คือ ชอบมากที่สุด และ 2 คือ ชอบเป็นอันดับที่สอง)
() เส้นก๋วยเตี๋ยว
() เส้นเล็ก/เส้นจันทน์
() เส้นหมี่
() บะหมี่เหลือง/บะหมี่หยก
() ขนมจีน
() เส้นก๋วยจั๊บ
() เกี่ยมอี่
() แป้งแผ่น
() อื่นๆ โปรดระบุ......

[กรุณากลับไปที่ข้อ 9]

ข้อ 17-19 สำหรับท่านที่เลือกตอบอาหางเช้าจากธัญพีช

17. ท่านคิคว่าในกล่องของอาหารเช้าจากธัญพืชที่มีข้าวกล้องงอกเป็นส่วนประกอบควรผสม วัตดุคิบอื่นๆด้วยหรือไม่
() ควรมี
() ไม่ควรมี โกรุณไปปทำต่อข้อ 19]
18. วัตถุคิบที่ท่านเห็นว่าควรมีในซอง/ ถุงของอาหารเช้าจากธัญหืชที่มีข้าวกล้องงอกเป็น ส่วนประกอบ (กรุณาเรียงลำดับ $1-3$ โดย 1 คือ ชอบมากที่สุด, 2 คือ ชอบเป็นอันดับที่สองและ 3 คือชอบเป็นอันดับที่สาม)
() งาดำ/งาขาว
() มะละกอ
() ถั่วสันเตาอบกรอบ
() ลูกเดือย
() สับปะรด
() ถั่วแคง
() ข้าวโอ๊ต
() เนื้อมะพร้าว
() เม็คบัว
() เมล็ดทานตะวันอบแห้ง
() สตรอเบอรี่
() ถั่วเขียว
() ข้าวโพค
() กี่ี่
() ถั่วเหลือง
() ข้าวบาร์เล่ย์
() ลูกเกด
() มันฝรั่ง
() ข้าวฟ่าง
() ลูกตาล
() เมล์คอัลมอลต์
() จมูกข้าวสาลี
() แอปเปิ้ล
() เมล็คเกาลัด
() เมล็ดแปะก๊วย
() เผือก
19. ผลิตภัมฑ์อาหารเช้าจากธัญพืชที่มีข้าวกล้องงอกเป็นส่วนประกอบควรมีรสชาติใด (เลือกตอบเพียง 1 ข้อ)
() ไม่แต่งกลิ่นรส
() ช็อกโกแล็ต
() กแฟ
() ประเภทถั่ว
() วานิลลา
() ผลไม้จำพวกเบอร์ร่ เช่น สตอร์เบอร์รี่, เชอรี่, บลูเบอร์รี่, แกรนเบอร์รี่
() ผลไม้อื่นๆ เช่น พีช, แอปเปิ้ล, กีวี, กล้วย, มะม่วง, ส้ม, สับปะรด
() อื่นๆ โปรดระบุ \qquad
[กรุณากลับไปที่ข้อ 9]
20.ท่านคิดว่าซุปข้นจากข้าวกล้องงอกควรมีส่วนผสมของวัศถุคิบอื่นๆ อีกหรือไม่
() ควรมี
() ไม่ควรมี[กรุณากลับไปที่ข้อ 9]
20. ท่านคิดว่าวัตถุดิบที่เหมาะสมที่จะนำมาใช้เป็นส่วนผสมในซุปข้น (กรุณาเรียงลำดับ $1-3$ โดย 1 คือ ชอบมากที่สุด, 2 คือ ชอบเป็นอันดับที่สองและ 3 คือชอบเป็น อันดับที่สาม)
() งคคำ/งาขาว
() ไข่
() แครอท
() ถั่วลันเตา
() ลูกเดือย
()) เนื้อหมู/ไก่
() ฟักทอง
() ถั่วแดง
() ข้าวโอ๊ต
() เนื้อวัว
() ตำลึง
() เม็ดบัว
() ข้าวสาร/ ข้าวกล้อง () อาหารทะเล
() ต้นหอม/ผักชี
() ถั่วเขียว
() ข้าวโพค
() โปรตีนเกษตร
() คะน้า
() ถั่วเหลือง
() ข้าวบาร์เล่ย์
() เต้านู้
() ผักโขม
() มันฝรั่ง
() ข้าวฟ่าง
() บล์อคโคกี่
() เมล็คอัลมอลต์
() จมูกข้าวสาลี
() ขิง
() เมล็คเกาลัด
() เห็ด
() เมล็คเปะก๊วย
() สาหร่าย
() เผือก
[กรุณากลับไปไี่ข้อ 9]

ข้อ 22 สำหรับท่านที่เลือกผง/เกร็ดข้าวกล้องงอกสำหธับเติมในอาหาร หรือเดรื่องดี่ง
22. ท่านคิคว่าผลิศภัณฑ์ผง/กร็คข้าวกล้องงอกสำหรับเติมในอาหารหรือเครื่องคื่มควรมีรสชาติ แบบใด (เลือกตอบเพียง 1 ข้อ)
() ไม่แต่งกลิ่นรส
() ช็อกโกแล็ต
() วานิลลา
() กแฟ
() ประเภทถั่ว
() รสน้ำผึ้ง

() พลไม้่ื่นา เช่น พืช, แอบเปิ้ล, กีวี, กล้วข, มะม่วง, ส้ม, สับปะรด
() อื่นๆ โปรคระบุ \qquad
[กรุณากลัuไปที่ข้อ 9]

$\sum \sum \sum \sum \sum \sum \sum \sum \sum$

ข้อ $23-24$ สำหธับท่านที่เลือกตอบขuงไทย

23. ท่านคิคว่าไูปแบบของงนมไทยที่มีข้าวกล้องอกเป็นส่วนประกอบควรมีลักษมะแบบใด
() ชนมสัเาร็จรุปมร้อมบริโคค

24. ขนมไทชชนิดใดีี่านนคิด่าควรนำข้าวกล้องงอกมาใช้เป็นส่วนประกอบ (กุุมา เรีงจำดับ $1-3$ โดย 1 คือ ชอบมากีีุุ่ด, 2 คือ ชอบเันอันดับที่สองและ 3 คื่ชชอบเปนอันลับ ที่สาม)
() ขนมลัววขฟ
() ข้วาหมาก
() ขนมตาล
() ลอดช่อง
() ขนมลังแตก
() ขนมขึ้หนุ
() ขนมน้ำคอกใม้
() ขนมสากี่
() ขนมัั้น
() ขนมตรก
() ขนมกลีบลำควน
() ขนมมุยฝ้าย
() ขนมรังืึ้ผู้
() ขนมว้วย
() ขนมเปียกปุม
() ขนมกล้วยย ขนมฟักทตง
() อื่นๆ โปรตระบุ......

[กรุณากลัuไปที่ข้อ 9]

ข้อ 25 สัาหรับท่านที่เลือกตอบขนมขบเดี้ยว

25. ผลิคักมฑ์ขนมขบเคี้ยวประเกทใดที่ท่านคิคว่าควรใช้ข้ววกล้องงอกเป็นส่วนประกอบ (กรุณเรียงต๋าจับ $1-3$ โดย 1 คือ ชอบมากที่รุด, 2 คือ ชอบเป็นอันดับที่สองแเละ 3 คือชอบเปนนับนับที่สาม)
() ข้ววกรี้อบกุ้ง / ปลา
() แป้งข้วโโนคอบกรอบ เช่น คอนเ่
() สเนคบาร์
() ขนมแเ้้งข้วอบกรอบ เช่น ชินมัย โดโซะ
() ข้วววัง
() ขนมดอกจอก
() ขนมอบกรอบ เช่น ป๊อกกี้, เวฟอร์, บิกกิติ, แครกกกอร์
() ข้าวกกรียบบา
() ทองม้วน/ทจงพับ
() ข้าแเต๋น/นาเเ็็ด

ศำหรับผู้เก็บข้อมูล

（ ）ครองแครง
（ ）ปั้นสิบ
（ ）อื่นๆ โปรดระบุ．．．．．
［กรุณากลับไปที่ข้อ 9］
ロロロロロロロロロロ
ข้อ $26-27$ สำทธับท่านที่เลือกตอบผลิตกักบท์เบเกอรี่
26．ผลิตภัณฑ์เบเกอรี่ชนิดใดที่ท่านคิดว่าควรเสริมข้าวกล้องงอกลงไปด้วย （ กรุณาเรียงลำดับ $1-3$ โดย 1 คือ ชอบมากที่สุด， 2 คือ ชอบเป็นอันดับที่สองและ 3 คือชอบเป็นอันดับที่สาม）
（ ）เค้ก
（ ）พาย
（ ）ขนมปังปอนด์
（ ）แพนเค้ก
（ ）คุกกี้
（ ）ขนมปังกรอบ
（ ）โดนัท
（ ）อื่น ๆ โปรดระบุ
．．

27．ท่านคิดว่ารูปแบบของผลิตภัณฑ์เบเกอรี่ที่มีข้าวกล้องงอกเป็นส่วนประกอบควรมีลักษณะแบบใด
（ ）สำเร็จรูปพร้อมบริโภค
（ ）แป้งผสมสำเร็จรูป（ผู้บริโภคจะต้องนำไปเตรียมเอง）

［กรุณากลับไปที่ข้อ 9］

ส่วนที่ 3：ข้อมูลส่วนตัวของผู้ตอบแบบสอบถาม
28．เพศ
（ ）ชาย
（ ）หญิง

29．ศาสนา
（ ）พุทธ
（ ）คริสต์
（ ）อิสลาม
（ ）อื่นๆโปรดระบุ \qquad

30．อายุ
（ ） $60-65$ ปี
（ ）66－70 ปี
（ ）71－75 ปี
（ ）76－80 ปี
（ ） 80 ปีขึ้นไป
31. การศึกษา

สำหรับผู้เก็บข้อมูล
() ประถมศึกษา
() ปวช./ปวส./ มัธยมศึกษา
() อนุปริญญาหรือเทียบเท่า
() ปริญญาตรี
() สูงกว่าปริญญาตรี
() อื่นๆ โปรดระบุ
!.
\qquad
32. รายได้ของครอบครัวต่อเดือน
() น้อยกว่า 10,000 บาท
() $10,000-30,000$ บาท
33. จำนวนสมาชิกในครอบครัว (นับรวมตัวท่านด้วย)
() 1 คน
() 2 คน
34. ท่านมีประวัติเจ็บป่วยจากโรคต่างๆเหล่านี้หรือไม่ (ตอบได้มากกว่า 1 ข้อ)
() ไม่มี
() โรคเบาหวาน
() โรคไขมันในเลือดสูง
() โรคความดันโลหิตสูง
() โรคหัวใจและหลอดเลือด
() โรคไต
() โรคกระดูกและข้อ เช่น โรคเก๊าท์ โรคกระคูกพรุน
() โรคที่เกี่ยวกับระบบทางเดินอาหาร เช่น ท้องอืค ท้องผูก ท้องเฟ้อ
() อื่นๆ โปรดระบุ.
35. ท่านมีและใช้ฟันปลอมในการรับประทานอาหารหรือไม่
() ไม่มี
() มีและใช้ในการรับประทานอาหาร
() มีแต่ไม่ใช้ในการรับประทานอาหาร โปรดระบุเหตุผล.

แบบสอบถามทางประสาทสัมผัสของผลิตภัณฑ์ข้าวกล้องงอกสำร็จรูป

แบบทดสอบนี้เป็นส่วนหนึ่งของโครงการ "การพัฒนาผลิตรัณฑ์อาหารจากข้าวกล้องงอก" โดย ผลิตภัณฑ์ที่นำมาทดสอบ คือ ผลิตภัณฑ์ข้าวกล้องงอกสำเร็จรูปบรรจุอยู่ในถุงที่สามารถม่าเชื้อได้ (retort pouch) ซึ่งท่านสามารถเปิดถุงและรับประทานข้าวได้ทันที หรือสามารถนำไปอุ่นให้ร้อนก่อนรับประทาน โดยไช้ไมโครเวฟ

กรุณาทคสอบตัวอย่างจากซ้ายไปขวา (โปรดระบุรหัสตัวอย่างลงในแบบสอบถาม) และให้คะแนน ตามระดับความชอบที่ท่านมีต่อผลิตภัณฑ์ ตั้งแต่ $1-9$ คะแนน $(1=$ ไม่ชอบมากที่สุด. $5=$ เฉยๆ, $9=$ ชอบ มากที่สุค)

ลักษณะทางประสาทสัมผัสที่ทดสอบ	รหัสตัวอย่าง			
- ลักษณะปรากฏ (ความแตกของเมล์คข้าว/ความ ร่วน/การเกาะตัวกันของเมล็คข้าว) - สี - กลิ่น - รสชาติ - ลักษณะเนื้อสัมผัส (ความเหนียว/ความแข็ง/การ เกาะกลุ่มกันของเมล็ดข้าว) - ความชอบโดยรวมที่มีต่อตัวอย่าง			\qquad	

ข้อเสนอแนะ \qquad
\qquad
\qquad
\qquad
ขอบคุณสำหรับความร่วมมือค่ะ

ภาคผนวก ญ-1

ใบชี่แจงข้อมูลและการแสดงความยินยอมเข้าร่วมการทดสอบทางประสาทสัมผัสของผลิตภัณฑ์ ข้าวกล้องงอกบรรจุกระป๋อง

ใบยินยอมการเป็นอาสาสมัคร

(Consent form)

ในระหว่างวันที่ $17-25$ มีนาคม 2554 นี้ ท่านจะได้รับตัวอย่างข้าวกล้องงอกบรรดุกระป๋องเพื่อ ทดสอบชิมจำนวน 1 ตัวอย่าง โดยจะใช้เวลาในการทดสอบชิมคิดเป็นเวลาไม่เกิน 20 นาที โดยประมาณ ผลิตภัณฑ์ข้าวกล้องงอกบรรจุกระป๋องที่ท่านได้ทคสอบชิมนั้นเป็นผลิตภัณฑ์ที่ทางผู้จัคการทดสอบได้ ผลิตขึ้นเองอย่างถูกสุขลักษณะ ท่านสามารถสอบถามรายละเอียคของการวิจัยครั้งนี้ได้จาก นางสาววรพนิต จันทร์สุวรรณ์ ผู้วิจัย และถ้าท่านมีเหตุผลใดๆที่ทำให้ท่านไม่อาจทคสอบชิมต่อได้ท่านสามารถยกเลิกการ ทคสอบได้ทุกขณะที่ท่านต้องการ

ข้าพเจ้าได้รับข้อมูลตามที่ต้องการและยินดีเข้าร่วมการทคสอบทางประสาทสัมผัสของผลิตภัณฑ์ ข้าวกล้องงอกบรรจุกระป๋อง
\qquad
\square

วันที่

ตัวอย่างแบบสอบณมม: การยอมรับของงู้บริโภคต่อข้าวกล้องงอกบรรจุกระป๋อง

ค๋ทที้เง้ง

แบบสอบถามหุดนี้เป็นส่วนหนึ่งของโครงการ "การึึกษทคุดค่าทางโกชนาการและทางยาของข้าว
 เสริมอาหารและอาหารืื่อสุขกาพ มหาวิทยาลัยสงขงสานครินทร์ มีวัตถุประสงค์เพื่อทคสอบการยอมรับของ ผู้มริโกคต่อข้าวกล้องงอกบรรุุกระฟ๋อง ซึ่งทีมู้้วิจัยใคร่ขอความกรุมาและความร่วมมือจากท่านในการ ตอบแบบสอบถามให้สมบูรณ์โดยแบบสอบถามแเ่งเป็น 3 ส่วน คังนี้

> ส่วนที่ 1 พฐติกรรมกรรบริโกคข้าวกล้องงอกบรรรุกระข้อง
> ส่วนที่ 2 การประเมินการยอมรับข้ววกล้องอกกบรรุุกระป๋อง
> ส่วนที่ 3 ข้อมูลทั่วไปขของผู้ตอบแบบสอบถม
 ท่านที่เีืยสละเวลาในการตอบแบบสอบถามในครั้งนี้เปีนอย่างสูง

ส่วนที่ 1 พฤติกรรมการบริโภคข้าวกล้องงอก

คำจำกัดความ

ข้าวกล้องงอก หมายถึง ข้าวกล้องที่ผ่านกระบวนการทำให้งอก ทำให้มีคุณค่าทางโภชนาการ เพิ่มขึ้นตลอดจนมีสารออกฤทธิ์ที่มีประโยชน์ต่อสุขภาพ

1. ท่านเคยรู้จักหรือทราบข่าวสารเกี่ยวกับ "ข้าวกล้องงอก" มาก่อนหรือไม่
(คย (ทำต่อข้อ 2)

○ ไม่เคย (ข้ามไปทำข้อ 3)
2. ท่านรู้จักหรือรับทราบข่าวสาร "ข้าวกล้องงอก" จากที่ใดบ้าง (เลือกตอบได้มากกว่า 1 ข้อ)
(หนังสือพิมพ์/วารสาร
() โทรทัศน์
O วิทยุ

- อินเตอร์เน็ต
(า)นแสดงนิทรรศการ
(คำบอกเล่าของบุคคล

O อื่นๆ (Iปรดระบ)
3. ท่านมีความสนใจที่จะบริโภค "ข้าวกล้องงอก" หรือไม่
(สนใจ (ทำต่อข้อ 4)
(ไม่สนใจ (ข้ามไปทำข้อ 5)
4. เหตุผลที่ทำให้ท่านสนใจที่จะบริโภค "ข้าวกล้องงอก" (เลือกตอบได้มากกว่า 1 ข้อ)
(ประโยชน์ต่อสุขภาพของข้าวกล้องงอก
(เพื่อรักษาโรค

- ชอบรสชาติและเนื้อสัมผัส
\square

\square
\square

O อื่นๆ (โปรคระบุ)
5. เหฑุผลที่ทำให้ท่านไม่สนใจที่จะบริโรค "ข้าวกล้องงอก" (เลือกตอบได้มากกว่า 1 ข้อ)

O ไม่ชอบทดลองผลิศภัณฑ์ใหม่
(ไม่มั่นใจในคุณค่าทางโภชนาการ
(ไม่รู้จักผลิตภัณฑ์
(O) ราคแพงกว่าข้าวปกติ

(- ไม่นิยมบริโภคข้าวกล้อง
(ไม่สะควกในการซื้อ
(O) รสชาติและเนื้อสัมผัสไม่ดี

○ อื่นๆ (โปรดระบุ)
6. ท่านเคยรับประทาน "ข้าวกล้องงอกหรือผลิตภัณฑ์จากข้าวกล้องงอก" หรือไม่
O เคย (ทำต่อข้อ 7)
O ไม่เคย (ข้ามไปทำส่วนที่
2)
7. ท่านเคยรับประทานข้าวกล้องงอกในรูปแบบใด (เลือกตอบได้มากกว่า 1 ข้อ)
(ข้าวหุงสุก

- โจ๊กข้าวกล้องงอก
(- น้ำข้าวกล้องงอก
(-) น้ำข้าวกล้องงอกชนิดผง
○ อื่นๆ (โปรดระบุ)

बำหรับผ้เก็บข้อมูล
 \square
 \square

 日

ส่วนที่ 2 การประเมินการยอมรับข้าวกล้องงอกบรรจุกระป๋อง

ข้าวกล้องงอกบรรจุกระป๋อง

ข้าวกล้องงอกบรรจุกระป๋อง ทำมาจากข้าวกล้องพันธุ์ช่อลุง ที่ผ่านการทำให้งอกแล้ว จากนั้นนำมา หุงโดยใช้อัตราส่วนข้าวต่อน้ำที่เหมาะสม บรรจุใส่กระป๋องและนำไปม่าเชื้อโดยใช้ความร้อน ทำให้ ผลิตภัณฑ์นี้สามารณก็บได้นานกว่า 1 ปี และเป็นผลิตภัณฑ์สำเร็จรูปที่สามารณเปิดรับประทานได้ทันที หรือสามารถนำมาอุ่นให้ร้อนโดยแช่ในน้ำร้อนประมาณ $3-5$ นาที หรืออุ่นโดยใช้ไมโครเวฟนำรับประทาน ได้อย่างสะควก

ในส่วนที่ 2 ท่านจะได้ทดสอบตัวอย่างข้าวกล้องงอกบรรจุกระป๋อง

1. การประเมินตัวอย่างข้าวกล้องงอกบรรจุกระป๋อง

กรุณาประเมินและชิมตัวอย่างข้าวกล้องงอกบรรจุกระป๋อง แล้วให้คะแนนตามความชอบ โดยทำ เครื่องหมาย \checkmark ลงในช่องคะแนนความชอบที่ตรงกับความรู้สึกของท่านในลักษณะต่างๆ คังนี้
$>$ ลักษณะปรากฏ หมายถึง ลักษณะที่ท่านสามารถประเมินได้จากการมองดูเช่น สี การจับกัน ของเมล็คข้าว และการแตกของเมล์คข้าว
$>$ สี หมายถึง สีที่ท่านมองเห็น
$>$ กลิ่น หมายถึง กลิ่นที่ท่านได้รับเมื่อดม
$>$ รสชาติ หมายถึง รสชาติที่ท่านได้รับเมื่อรับประทานข้าวกล้องงอก
$>$ เนื้อสัมผัส หมายถึง ลักบณะที่ท่านประเมินได้ขณะรับประทานข้าวกล้องงอก เช่น ความ นุ่มความแข็ง และความเหนียวของเม็คข้าว
$>$ ความชอบโดยรวม หมายถึง ความชอบที่ท่านประเมินจากทุกๆลักษณะของตัวอย่างโดยรวม

ลักษณะที่ทดสอบ ตะแนนความชอบ	ไม่ชอบ มากที่สุด	ไม่ชอบ มาก	ไม่ชอบ ปานกลาง	ไม่ชอบ เล็กน้อย	เฉยา	$\begin{aligned} & \text { ชอบ } \\ & \text { เล็กน้อย } \end{aligned}$	ชอบปาน กลาง	ชอบมาก	ชอบมาก ที่สุค
ถักษณะปรากฏ									
สี									
กลิ่น									
รสชาติ									
เนื้อสัมผัส									
ความชอบโดยรวม									

1. เพศ
(ชาย
หญิง
2. ศาสนา
0 ทุตร
O อิสกาม
O คริสต์
อ อื่นๆโปรดระบุ.
3. อายุ
○ $60-65$ ปี
○66-70 ปี
○71-75 ปี
○ $76-80$ ปี
80 ปีขึ้นไป
4. สถานภาพ
(โสด
O สมรส
O หย่า / หม้าย / แยกกันอยู่
5. การศึกษาขั้นสูงสุดที่ได้รับหรือกำลั่งศึกษาอยู่
(ไม่ได้เข้าศึกษาตามระบบ
(ประถมศึกษา
(มัธยมศึกษา
〇 ปวช.
(ปวส. / อนุปริญญา
(ปริญญาตรี
O สูงกว่าปริญญาตรี
6. จำนวนสมาชิกในครอบครัวของท่าน (รวมตัวท่านด้วย)

7. รายได้ของครอบครัวท่านต่อเดือน
(ไม่เกิน 10,000 บาท
($10,000-30,000$ บาท
($30,001-50,000$ บาท
O $50,001-100,000$ บาท
(มากกว่า 100,000 บาทขึ้นไป

ธำหรับผู้เก็บข้อมูล

\qquad

ขอบคุณทุกๆท่านสำหรับความร่วมมือ

[^0]: ที่มา: ควงจันทร์ เยงสวัสคิ์ (2547) และกรมอนามัย (2530)

[^1]: * Mean \pm SD ของการวิเคราะห์ 3 ซ้ำ
 a. b, c...... ค่าเฉลี่ยในแนวตั้งที่ตามด้วยตัวอักษรที่แตกต่างกัน มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติที่ $p<0.5$

[^2]: ** Mean \pm SD ของการวิเคราะห์ 12 ซ้ำ
 ๑.,.c, ค... ค่าเฉลี่ยในแนวตั้งที่ตามด้วยตัวอักษรที่แตกต่างกัน มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติที่ $\mathrm{p}<0.5$

[^3]: ** Mean \pm SD ของการวิเคราะห์ 3 ช้ำ (ซ้ำละ 10 เม็ด)
 2.b.c.... ค่าเฉลี่ยในแนวตั้งที่ตามด้วยตัวอักษรที่แตกต่างกัน มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติที่ $p<0.5$
 ${ }^{\text {Ns }}$ ค่าเฉลี่ยในแนวตั้งไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติที่ $\mathrm{p}>0.5$

[^4]: * Mean $\pm \mathrm{SD}$ ของการคนที่ร่วมทคสอบ 30 คน
 a, b ตัวอักษรที่แตกต่างกันในแนวนอน แสดงว่ามีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ $(p<0.05)$

[^5]:

 - paiboon.th@gmail.com, sununta199@hotmail.com
 'Nutraceutical and Functional Food Research and Development Center, Faculty of Agro-industry. Prince of Songkla University, Hat Yat, Songkhla 90112

[^6]: ${ }^{2 . b} . . .=$ Mean with difference superscripts in the same column are significant difference, comparing within a same variety ($p<0.05$).
 ${ }^{A B . .}=$ Mean with difference superscripts in the same row are significant difference, comparing within a same variety ($p<0.05$).

[^7]: ** คิดปริมาตรรวม 1000 ml

