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Abstract. Mixture experimental design was applied to determine the optimal mixture for 

composites between rubberwood flour (RWF) and recycled polypropylene (rPP). Experiments were 

conducted based on a D-optimal mixture design and analyzed using response surface methodology. 

Analysis of variance revealed that compositions including rPP, RWF, maleic anhydride grafted 

polypropylene (MAPP), and ultraviolet (UV) stabilizer significantly affected hardness property. 

Contour plots of the response surface demonstrated that an increase of RWF content steadily 

enhanced hardness value, but hardness property sharply decreased with an increase of rPP loading. 

An addition of the UV stabilizer in the composites showed a slight decrease of the hardness value. 

This result recommends that amount of UV stabilizer used should be minimized. With this 

experimental design, the optimal formulation of rPP/RWF composites found was 50.0 wt% rPP, 

45.0 wt% RWF, 3.9 wt% MAPP, 0.1 wt% UV stabilizer, and 1.0 wt% Lubricant. 

Introduction 

Natural fibers from maple, oak, pine, and rubberwood are reinforcement materials, which have 

been extensively popularized and used in composite industries. It was used as a replacement for 

synthetic fillers such as glass fiber, carbon fiber, and inorganic filler. Compared to these materials, 

natural fibers provide low cost, low density, recyclability, and their non-abrasive natures. A large 

amount of natural fibers (wood wastes) is generated at different processing in wood applications 

such as in sawmills and in furniture making [1]. The wastes in the form of flour, sawdust, and chips 

have primary been used as inexpensive filler in composites. In addition, an increase of plastic 

production and consumption results in plastic wastes to be the major constituent of municipal solid 

waste; however, it is a promising raw material for producing wood-plastic composites (WPCs) [2, 3]. 

The use of recycled plastics for producing WPCs would not only offer a safe and effective disposal 

of plastic wastes, but also reduces the consumption of natural resources [4, 5]. Therefore, increasing 

the use of recycled plastics by blending with wood wastes provides the chance of lessening wastes 

going to landfill, decreasing solid waste disposals, and reducing the costs of making the WPCs [1, 6]. 

Applications and end-products of WPCs, such as decking and part of cars, have made. It is 

necessary to evaluate hardness characteristic of such materials. Because the hardness property is a 

measurement of the wear resistance, and harder materials resist a better friction and wear [7]. 

Thereby, the hardness property has to be taken into account in the design of WPCs for final products. 

Nowadays, most of the experiment on composite formulations is still conducted by changing the 

contents of each composition at a time, and the other compositions are constantly fixed in order to 

investigate the effects of such specific composition. Mixture experimental design by using D-optimal 

is an important method to mediate an effect on the dependent compositions of interest [8]. It also 

decreases the number of experiments but increases the scientific information of compositions, which 

are the important values to determine the mathematical equation for improving the properties of end-

products [9, 10]. Therefore, the D-optimal mixture experimental design was applied to determine the 

model parameters in WPCs. The main purposes of present research were to investigate the effect of 

compositions and to determine the optimal mixture ratios by designing mixture experiment for 

composites from recycled polypropylene and rubberwood flour based on hardness property. 
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Experimental 

Materials 

Recycled polypropylene (rPP) pellets were purchased from Withaya Intertrade Co., Ltd 

(Samutprakarn, Thailand). Rubberwood flour (RWF) was supplied from local furniture factory 

(Songkhla, Thailand). Maleic anhydride grafted polypropylene (MAPP) was used as a coupling 

agent, manufactured by Sigma-Aldrich (Missouri, USA). It contains 8-10% of maleic anhydride. 

Hindered amine light stabilizer (MEUV008) was purchased from TH Color Co., Ltd (Samutprakarn, 

Thailand), chosen as ultraviolet (UV) stabilizer. Paraffin wax was procured from Nippon Seiro Co., 

Ltd (Yamaguchi, Japan), used as lubricant (Lub). 

Experimental design to optimize formulation 

Mixture experimental design was used to study the hardness property of rPP/RWF composites 

using Design Expert software (version 8.0.6, Stat-Ease, Inc., Minneapolis, USA), according to a D-

optimal design. In mixture experiments, the components are the variables of mixture, and their levels 

cannot be changed independently [11]. When interesting region for experiment is not a simplex due 

to irregular experiment region [11], D-optimal design is appropriate method to statistically evaluate 

the effect of compositions and to optimize the formulation. The rPP (x1), RWF (x2), MAPP (x3), and 

UV stabilizer (x4) were four key variables studied, while the hardness was the variable response 

obtained in the study. The intervals selected to conduct the experiment design were: 50-70 wt% rPP, 

25-45 wt% RWF, 3-5 wt% MAPP, 0-1 wt% UV stabilizer, and 1 wt% Lub. The design included 15 

formulations and 5 replications to evaluate lack of fit. Thus, the total number of runs was 20 in Table 

1.  

Table 1 Experimental compositions and response based on mixture experimental design 

Experiment   

run No. 

Mixture Proportion (wt%) Hardness 

(Shore D) 

 Experiment   

run No. 

Mixture Proportion (wt%) Hardness 

(Shore D) x1 x2 x3 x4 x5  x1 x2 x3 x4 x5 

1 63.9 29.9 4.5 0.7 1.0 73.3 (0.40)**  11 50.0 45.0 3.0 1.0 1.0 75.2 (0.19) 

2 70.0 25.0 3.0 1.0 1.0 73.2 (0.17)  12* 50.0 43.0 5.0 1.0 1.0 74.9 (0.44) 

3 50.0 43.0 5.0 1.0 1.0 74.8 (0.38)  13 60.3 35.3 3.0 0.5 1.0 74.3 (0.39) 

4 54.9 38.9 4.5 0.7 1.0 75.5 (0.40)  14 64.9 30.4 3.5 0.2 1.0 74.6 (0.10) 

5 59.5 34.5 5.0 0.0 1.0 74.6 (0.53)  15* 70.0 25.0 3.0 1.0 1.0 72.9 (0.37) 

6 55.4 39.9 3.5 0.2 1.0 74.7 (0.46)  16 51.0 45.0 3.0 0.0 1.0 76.1 (0.09) 

7 59.5 34.5 4.0 1.0 1.0 74.9 (0.60)  17* 51.0 45.0 3.0 0.0 1.0 75.8 (0.24) 

8* 59.5 34.5 5.0 0.0 1.0 75.0 (0.39)  18* 50.0 45.0 3.0 1.0 1.0 74.9 (0.33) 

9 50.0 44.3 4.3 0.5 1.0 75.3 (0.51)  19 70.0 25.0 4.0 0.0 1.0 73.6 (0.36) 

10 68.0 25.0 5.0 1.0 1.0 73.7 (0.26)  20 69.0 25.0 5.0 0.0 1.0 73.8 (0.19) 

Note; *duplicate experiments, ** the values in parentheses are standard deviations from five replications. 

Preparation of wood-plastic composites 

Before compounding, RWF was sieved through a standard sieve of 80 mesh size and dried in an 

oven at 110 
o
C for 8 h. RWF and rPP were then mixed into WPC pellets by using a twin-screw 

extruder (Model SHJ-36 from En Mach Co., Ltd, Nonthaburi, Thailand). The extruding temperature 

ranged from 130
o
C to 170 

o
C to reduce degradation of the compositions. After compounding, the 

WPC panels were also prepared. WPC pellets, MAPP, UV stabilizer, and lubricant were dry-mixed 

and added into feeder of the twin-screw extruder according to the compositions given in Table 1. The 

10 temperature zones of extruder were set to profile in range of 130-190 
o
C, while the screw rotating 

speed was controlled at 50 rpm. The samples were then extruded through a 9 mm × 22 mm 

rectangular die and cooled in atmospheric air. Consequently, the specimens were machined 

following the standard of American Society for Testing and Materials (ASTM) for hardness test. 

Composite characterization 

Hardness measurement of the composites was tested according to ASTM D2240 standard by 

using mechanical Shore D Durometer (Model GS-702G from teclock corporation, Nagano, Japan). 

The rectangular specimens with dimensions of 16 mm × 16 mm × 6.5 mm were tested. The test was 

characterized at room temperature (25 
o
C). Average of five specimens was measured and calculated. 
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Results and Discussion 

Statistical analysis of response surface model 

The statistical significance of linear model was analyzed by analysis of variance (ANOVA), as 

given in Table 2. The results revealed that the model was statistically significant at 5% significance 

level, indicating by p-value less than α (α = 0.05). This result indicates that at least one of the four 

variables contributes the hardness response. For the linear mixture, variables of rPP, RWF, MAPP, 

and UV stabilizer significantly affect hardness property. In addition, the ANOVA also showed that 

lack of fit was not significant for the model. This concludes that the regression model fits the data.  

Table 2 Analysis of variance and model adequacy for hardness of rPP/RWF composites 
Response   Model   Linear mixture   Lack of fit  R

2
  Adj-R

2
  Pred-R

2
  CV % 

Hardness  <0.0001*  <0.0001*  0.0510  0.8336  0.8024  0.7663  0.53 

*P-value less than 0.05 is considered significant. 

The fit of the model was also checked by determination coefficient (R
2
), adjusted determination 

coefficient (adj-R
2
), predicted determination coefficient (pred-R

2
), and coefficient of variation (CV). 

The R
2
 value of hardness (0.8336) reveals that about 83.36% of variability in observation is 

explained by the four key compositions of composites, whereas only 16.64% of the total variability 

couldn’t be explained. A closer to 1 of R
2
 value indicates good fits [12]. Also the adj-R

2
 value of 

hardness (0.8024) is large and very close to the ordinary R
2
. This indicates that there is a less chance 

of insignificant terms included in the model [13]. The pred-R
2
 value of hardness was 0.7663 meaning 

that this model could be expected to explain about 76.63% of the variability in predicting new data. 

This result also revealed that pred-R
2
 of 0.7663 is in reasonable agreement with the adj-R

2
 of 0.8024. 

At the same time, the coefficient of variation found was 0.53%. The low value of CV indicates the 

good relative dispersion of the experimental points from the predictions of the models [14]. 

Basically, the coefficient of variation was used to measure the residual variation in the data [11]. 

Model adequacy checking 

Model adequacy checking is always necessary to verify the fitted model to ensure that it provides 

an adequate approximation [13]. Figure 1a displays a normal probability plot of residuals. The plot 

of these points is reasonably attached close to a straight line, supporting the conclusion that only rPP, 

RWF, MAPP, and UV stabilizer significantly affect. Likewise, there is no strong indication of 

nonnormality and possible presence of outliers, which is the very much  larger residual than any of 

the others [11]. The predicted hardness vs. actual hardness is also shown in Figure 1b. It illustrates 

the linear correlation between the predicted value and observation data, which was well fitted. These 

correlations verified that the model is adequate to predict the hardness value. From model adequacy 

checking, the overall predictive capability of model based on the residuals is very satisfactory. 

 

Fig. 1 (a) Normal probability plot of residuals and (b) plot of predicted versus actual hardness. 

Effect of compositions on hardness 

Significant linear model of the hardness property, affected by the WPC compositions, was 

obtained from the hardness response. The equation calculated from the regression data was: 
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Hardness = 73.74x1 + 75.82x2 + 75.12x3 + 62.02x4    (1) 

The linear equation of hardness shows positive coefficient of all the compositions, revealing the 

positive effect on the hardness property. The rubberwood flour (x2) yielded the highest positive effect 

as compared with the other compositions. The covered experimental regions of hardness property are 

shown in Figures 2a and 2b. As seen in Figure 2a, the region is triangular contour plot, in which 

three compositions (rPP, RWF, and MAPP) were placed at the corners, while the other materials 

were fixed (UV stabilizer at 0.5 wt% and Lub at 1 wt%). The clear area in triangular contour plot 

reveals the hardness values varying in range of 73.66 to 75.38 shore D. The hardness value sharply 

increased with enhancing RWF content but greatly decreased with increase of rPP loading. This is 

because of higher hardness of rubberwood filler than the weak polymer matrix [3, 7]. In addition, 

flexibility of the composites was reduced by an increase of RWF content, resulting in more rigid 

composites [15, 16]. The enhancing addition of MAPP (from 3 wt% to 5 wt%) unaffected the 

hardness property as shown in the contour plot (Figure 2a). Generally, addition of the coupling agent 

to the composites increases the hardness with MAPP concentration. This is due to both stronger 

coupling between the RWF and rPP and better dispersion of the wood flour into the plastic matrix 

with minimum voids [3, 15, 16]. Furthermore, the effect of UV stabilizer addition is also exhibited in 

the contour plot (Figure 2b), in which two compositions fixed were the rPP at 59.8 wt% and the Lub 

at 1 wt%. The area in triangular contour plot presents the hardness values varying in range of 74.2 to 

74.8 shore D. The hardness value of rPP/RWF composites slightly reduced with increasing addition 

of the UV stabilizer. This decrease is attributed due to the negative interaction of mixtures (namely 

wood flour and UV stabilizer) [3]. In the previous work, Homkhiew et al. [3] found that composites 

containing 45 wt% RWF and 1 wt% UV stabilizer showed a higher decrease of hardness value than 

composites with 25 wt% RWF and 1 wt% UV. 

 

 

Fig. 2 Triangular contour plots for effects of the compositions on hardness (a) fixed UV stabilizer at 

0.5 wt%, Lub at 1 wt% and (b) fixed rPP at 59.8 wt%, Lub at 1 wt%. 

Optimal formulation of hardness 

An optimal formulation of rPP/RWF composites was conducted to obtain maximum of the 

hardness value. It was generated by the software, which was produced, analyzed, and presented as a 

graphical optimization. The optimized point of mixture ratio on desirability and overlay plot is 

represented in Figures 3a and 3b, respectively. The desirability plot shows a point that maximizes the 

desirability function to be 0.887, revealing satisfactory value. The desirability level is close to 1, 

indicating a good hardness response. The obtained desirability exhibited that this point can represent 

the desired formulation. Likewise, the overlay plot in Figure 3b shows the point of optimal 

formulation, which is the same point with the desirability plot. The optimal formulation found was 

50.0 wt% rPP, 45.0 wt% RWF, 3.9 wt% MAPP, 0.1 wt% UV stabilizer, and 1.0 wt% Lub. Besides, 

to confirm the accuracy of the model and predicted response, a measurement of the closeness of 

hardness response obtained from the predicted value and observed result was also validated in Table 
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3. This result confirmed that the predicted hardness value was not significantly different from the 

measured value. Concluding that the earlier propose formulation of rPP/RWF composites for the 

hardness property is reasonable and can be well applied in the WPC industries. 

 

Fig. 3 (a) Desirability plot and (b) overlay plot of hardness for the optimal formulation. 

Table 3 Predicted and observed responses with optimized formulation 

Mixture component proportion (wt%)  Hardness (Shore D) 

x1  x2 x3  x4 x5  Predicted Observed 

50.0 45.0 3.9 0.1 1.0  75.73 75.56 (0.40)* 

* The value in parentheses is standard deviation from five replications. 

Conclusions 

Mixture experimental design, response surface, and optimization methods were applied to 

determine the optimal formulation based on maximum of the hardness property. Analysis of variance 

demonstrated that the compositions including rPP, RWF, MAPP, and UV stabilizer significantly 

affected the hardness property. Model adequacy checking also revealed that the overall predictive 

capability of model based on the residuals was very strong. From the contour plots, the hardness 

value sharply enhanced with increasing RWF content but greatly reduced with increase of rPP 

loading. This is due to the polymer matrix to be a considerably lower hardness than the rigid 

rubberwood filler [3, 7]. The addition of the UV stabilizer in the composites showed the negative 

effect, which slightly decreased the hardness value. This result is attributed due to the negative 

interaction of mixtures [3]. The optimal formulation of rPP/RWF composites using D-optimal 

mixture design based on maximum hardness value was found to be 50.0 wt% rPP, 45.0 wt% RWF, 

3.9 wt% MAPP, 0.1 wt% UV stabilizer, and 1.0 wt% Lub with the desirability function to be 0.887. 
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