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ABSTRACT 
 

Surface electromyography (sEMG) signal is one of 

the most significant biomedical signals that are widely applied 

in both medical and engineering applications. As many disabled 

and elder people have difficulty accessing current assistive 

devices which have a traditional user interface, such as joysticks 

and keyboards, more advanced hands-free human-machine 

interfaces (HMIs) are necessary. The study presented in this 

thesis was aimed to use the sEMG signals during upper-limb 

movements from the forearm muscles for the control of assistive 

devices, as known the multifunction myoelectric control system. 

Four main components have been more carefully considered. 

Firstly, pre-processing stage based on wavelet denoising 

algorithms was evaluated and the optimal parameters were 

presented. The system with this pre-processing stage improved 

both classification accuracy and robustness. Secondly, existing 

EMG feature extraction methods were evaluated and new EMG 

features based on fractal analysis were proposed. The optimal 

feature vector which consists of time-domain features i.e. 

Willison amplitude, waveform length and root mean square, as 

well as fractal features i.e. detrended fluctuation analysis and 

critical exponent analysis was suggested. Thirdly, the use of 

extended versions of linear discriminant analysis (LDA) method 

i.e. uncorrelated LDA, orthogonal LDA and orthogonal fuzzy 

neighborhood discriminant analysis were not only reducing the 

computational time but also increasing the accuracy of the 

system. Finally, the LDA classifier was used due to a robustness 



property. In this study, the proposed systems not only improve 

the classification accuracy but also increase the robustness and 

decrease the complexity. The major applications of the proposed 

systems are prosthesis and electric power wheelchair. Recent 

and future trends of both applications have also been presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ชื�อวิทยานพินธ ์ การลดสญัญาณรบกวนในสญัญาณไฟฟ้ากล้ามเนื�อ และการหาลักษณะ 
 เด่นที�เหมาะสม สาํหรับการจาํแนกรูปแบบการเคลื�อนไหวของแขน 

 ทอ่นล่าง 
ผูเ้ขียน นายองักูร ภิญโญมารค 
สาขาวิชา วิศวกรรมไฟฟ้า 
ปีการศึกษา 2554 

  
บทคดัย่อ 

 
สัญญาณไฟฟ้ากล้ามเนื� อชนิดพื� นผิว เป็นหนึ�งในสัญญาณทางชีวการแพทย์ที�

สาํคัญ ซึ�งถูกนาํไปประยุกต์ใช้อย่างแพร่หลายทั�งทางด้านการแพทย์และวิศวกรรม เนื�องจากการใช้
งานอุปกรณ์ช่วยเหลือของผู้พิการและผู้สูงอายุ โดยการใช้ส่วนเชื�อมต่อแบบเดิม เช่น คันบังคับ 
และแป้นพิมพ์ มีความยากลาํบาก ดังนั�นส่วนเชื�อมต่อระหว่างอุปกรณ์กบัผู้ใช้ที�มีประสิทธิภาพและ
ง่ายจึงมีความจาํเป็น การศึกษานี� มีวัตถุประสงค์ในการประยุกต์ใช้สัญญาณไฟฟ้ากล้ามเนื� อชนิด
พื� นผิว จากกล้ามเนื� อแขนท่อนล่าง ในท่าทางการเคลื�อนไหวแขน เพื�อควบคุมอุปกรณ์ช่วยเหลือ 
หรือที�เรียกว่า ระบบควบคุมที�ใช้สัญญาณไฟฟ้ากล้ามเนื� อหลายฟังก์ชัน โดย 4 องค์ประกอบหลัก
ที�สาํคัญของระบบควบคุมดังกล่าวถูกศึกษา ซึ�งประกอบด้วย (1) ขั�นตอนการประมวลผลเบื� องต้น 
โดยการกาํจัดสญัญาณรบกวนด้วยวิธกีารเวฟเลต็ ซึ�งพารามิเตอร์ที�เหมาะสมได้ถูกนาํเสนอ จากผล
การทดลองพบว่า ระบบควบคุมซึ�งมีการประมวลผลเบื� องต้น สามารถปรับปรุงประสิทธิภาพของ
ระบบ ทั�งด้านความแม่นยาํและการทนต่อสัญญาณรบกวน (2) วิธีการคัดเลือกลักษณะเด่นของ
สัญญาณไฟฟ้ากล้ามเนื� อที�มีการใช้งานอยู่ ได้ถูกนาํมาประเมินหาวิธีที�เหมาะสมที�สุด และมีการ
นาํเสนอวิธกีารคัดเลือกลักษณะเด่นของสญัญาณวิธใีหม่ โดยการใช้การวิเคราะห์แฟลกทลั จากผล
การทดลอง ได้มีการแนะนําวิธีการคัดเลือกลักษณะเด่นที�เหมาะสม ซึ�งประกอบด้วย วิธีการใน
โดเมนเวลา เช่น วิธีการหาแอมพลิจูดของวิลลิสนั วิธีการหาค่าความยาวของรูปแบบคลื�น วิธีการ
หาค่ารากของค่าเฉลี�ยกาํลังสองของสญัญาณ และวิธีการแบบแฟลกทลั เช่น วิธีการวิเคราะห์ความ
แปรปรวนด้วยการกาํจัดแนวโน้ม วิธีการวิเคราะห์หาค่ายกกาํลังของจุดวิกฤต (3) การลดขนาด
ของข้อมูลด้วยวิธีการประยุกต์ของการวิเคราะห์การจาํแนกแบบเชิงเส้น ถูกแนะนาํให้ใช้กับระบบ 
เช่น วิธีการประยุกต์แบบตั�งฉาก วิธีการประยุกต์แบบไม่มีความสัมพันธ์ โดยนอกจากจะลดเวลา
ในการคาํนวณลงแล้ว ยังสามารถเพิ�มความแม่นยาํของระบบด้วย (4) ตัวจําแนกด้วยวิธีการ
วิเคราะห์การจาํแนกแบบเชิงเส้น ถูกนาํมาใช้ เนื�องจากคุณสมบัติการทนต่อสัญญาณรบกวน กล่าว
โดยสรุป ระบบควบคุมที�ใช้สัญญาณไฟฟ้ากล้ามเนื� อหลายฟังก์ชันในการศึกษานี�  ได้ปรับปรุงทั�ง
เรื�องของความแม่นยาํในการคัดแยก การทนต่อสัญญาณรบกวน และความซับซ้อนของระบบ ซึ� ง
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CHAPTER 1 

Introduction 

1.1 Background and Rationale 

Surface electromyography (sEMG) signal is one of the most 

significant biomedical signals. During the last two decades, the 

sEMG signals are widely studied and applied in both medical 

and engineering applications [1, 2]. This is owing to the fact that 

the use of sEMG signals is very easy, fast and convenient [3]. In 

other words, the sEMG signals have better properties than other 

biomedical signals including electrooculography (EOG) signal 

and electroencephalography (EEG) signal by virtue of their 

higher signal-to-noise ratio (SNR) [4]. In control applications, 

the sEMG signals are known as the “myoelectric signal”. 

Myoelectric control, hence, refers to as the process of 

controlling an external device by utilizing myoelectric, or 

sEMG, signals from the human muscles [2]. Additionally, the 

external devices commonly refer to as prosthesis, an electric 

wheelchair, a robot arm, or any other assistive and rehabilitation 

devices. As many disabled people have difficulty accessing 

current assistive and rehabilitation devices, which have a 

traditional user interface, such as joysticks and keyboards, more 

advanced hands-free human-machine interfaces (HMIs) are 

necessary. Hence, more attention should be paid to the 

development of myoelectric control. 

In multifunction myoelectric control systems (MMCSs), 

different patterns of sEMG signals are recognized and matched 

with the control commands. For instance, in Fig. 1, the sEMG 

signals obtained from six upper-limb movements of a forearm 

muscle show that different patterns of sEMG signals can be 

observed. Normally, MMCSs consist of three main modules [2, 

5]. The first module includes two sub-modules: sEMG signal 

acquisition and data pre-processing. The second module is an 



important module. Different patterns of sEMG signals are 

recognized and matched with the control commands in this 

module which is known as the pattern recognition. This module 

can be divided into three main sub-modules that consist of 

feature extraction, dimensionality reduction, and classification 

methods [5, 6]. The third module is a control system. It serves as 

an interface between software and hardware. In other words, the 

output commands are sent to control the 



 

 

 

Fig. 1 SEMG signals obtained from six movements of the 

flexor carpi radialis muscle. 

 

 

Fig. 2 The procedure of multifunction myoelectric control 

systems. 

 

external devices. The procedure of all MMCS modules is shown 

in Fig. 2. More attention has been paid to all MMCS modules in 

this research. The main focus, however, is aimed to improve the 

performance of sEMG pattern classification, the second module. 

More details of all modules are described in the following. 

The first module is sEMG signal acquisition and data pre-

processing. The sEMG signals are acquired from surface 

electrodes placed over the muscles. Usually, the acquisition 

process is performed together with pre-processing sEMG signals 



 

 

in order to reduce the effect of noises and improve spectral 

components of sEMG signals. This module commonly consists 

of three significant sub-modules: amplifying, sampling, and 

filtering [5]. Hence, most of recent sEMG acquisition systems 

can conduct all three sub-modules. Due to the small amplitude 

of sEMG signals, firstly sEMG signals are amplified with the 

gain of the amplifier set normally to 60dB. After amplifying 

process, continuous sEMG signals are sampled using an analog-

to-digital (A/D) converter. As a result, discrete sEMG signals 

are obtained from this process. Typically sEMG signals are 

sampled at 1000 Hz or 1024 Hz, due to the fact that the 

dominant energy of sEMG signals is concentrated in the range 

of 20-500 Hz [2] and the approximately double-rate requirement 

is a consequence of the Nyquist theorem. Subsequently, filtering 

sEMG signals are conducted using a band-pass filter with a high 

CMRR to reduce motion artifact and sEMG signal inherent 

instability, below 20 Hz, and other high-frequency random 

noises, over 500 Hz. In addition, a notch filter at 50 or 60 Hz is 

implemented. To this end, a discrete-time signal has already to 

be used in the next module, the pattern recognition. 

The second module is the recognition of sEMG patterns. 

The different patterns of sEMG signals are classified into the 

control commands. This module consists of three sub-modules: 

feature extraction, dimensionality reduction, and classification 

methods [6]. However, in some systems, the second sub-module 

can be leapt because of the small size of a feature vector [7]. 

Firstly, features are extracted from raw sEMG data in order to 

emphasize the pertinent structures in sEMG signals and reject 

noises and irrelevant signal [8]. After extraction, the feature 

vector is formed and sent to the classifier, or the classification 

method. However, the increasing of feature dimensions can 

cause a big problem for the classifier in computation [9]; 

therefore, reducing the dimensions of a feature vector can be 

conducted by using the dimensionality reduction method, before 

sent it to the classifier. A reduction of computational times in 



 

 

the classifier is an advantage while getting the similar 

classification accuracy by using a few features [10]. 

The third module is the control systems. The control 

commands are generated based on the decisions in the pattern 

recognition module. A wide variety of potential applications 

have been presented during the last two decades such as 

prosthetic limbs, assistive robots, electric wheelchairs, and 

virtual interfaces [2, 3]. Additionally to improve the quality of 

control, post-processing and feedback are performed. A majority 

voting, a popular post-processing method is often applied to 

make a smooth output and increase the classification accuracy 

[10]. In addition, the low-level and high-level feedbacks are 

used to improve the quality of user’s control and dexterity. The 

low-level feedback is a sensory feedback such as the obstacle 

avoidance and the high-level feedback is visual information 

such as command display [11]. 

 

Fig. 3 SEMG signal acquisition and data pre-processing system. 

 

1.2 Literature Review 

During the past two decades, various researches have 

conducted in the analysis of sEMG signals for measurement and 

classification of human muscle movements. An extensive 

review of the researches during recent decades has been 

presented and discussed in detail, in this section, in order to 



 

 

clarify the state-of-the-art in MMCSs. The review covers three 

main modules as mentioned in the previous section. 

 

1.2.1 EMG Signal Acquisition and Data Pre-processing 

1.2.1.1 Data Acquisition 

An overall process of sEMG signal acquisition and data 

pre-processing system is shown in Fig. 3. An overview of data 

acquisition and pre-processing was described in Section 1.1. In 

this sub-section, the recommendation and the specification of 

data acquisition and pre-processing from the literature are 

presented as the following in detail. 

• Surface electrode: A number of important properties of 

sEMG sensors are discussed. It is very clear that a bipolar 

electrode configuration has been used most frequently. 

Monopolar and array electrodes have been reported in a few 

studies. Further, for the bipolar sensor configuration, it is clear 

that the Ag/AgCl electrode is preferred [12]. An Ag/AgCl 

electrode is very stable electrically; as a result, it makes a small 

noise. The general recommendation of electrode size and inter-

electrode distance in sEMG measurement is 10 mm and 20 mm, 

respectively [12]. Throughout the literature, the most popular 

electrode size, however, is 6 mm diameter, while the most 

popular inter-electrode distance is 20 mm. A circular, or disc, 

electrode is routinely used to measure sEMG signals. Moreover, 

the user’s skin should be thoroughly cleaned with alcohol. 

• Detection mode and amplification: Two detection modes, 

generally, can be configured: monopolar and differential. As has 

been noted above that the amplitude of sEMG signals is very 

small and can range from 0 to 10 mV (peak-to-peak). Thus, it is 

necessary to amplify the sEMG signal amplitude. For the 

forearm muscle system, a differential amplifier with a gain of 

1000 has been used often [11]. Differential amplifiers with a 

gain from 1000 to 5000 have been employed for the muscles on 

or around the shoulder [13, 14]. Normally a differential 

amplifier with a 60dB gain is recommended. The specification 



 

 

of input impedance and common mode rejection ratio (CMRR) 

have been reported based on types of the sEMG instruments. To 

maximize its performance the amplifier must have a high input 

impedance and a high CMRR. Moreover, in some systems, high 

resolution data is sampled and converted from analog into 

digital data, A/D, instead of using a high gain amplifier [7]. 

• Sampling sEMG signals into the computer: The usable 

energy of sEMG signals is limited to a frequency range of 0 to 

500 Hz and based on the Nyquist Theorem which states that the 

sampling frequency should not be less than twice the frequency 

of the sample [15], the minimum sampling frequency should be 

set at 1000 or 1024 Hz [16]. A higher sampling rate is preferred 

to improve both data resolution and accuracy. However, in some 

studies, lower rates of sampling were employed such as 128, 

256, and 512 Hz [17, 18]. 

• Filtering of raw sEMG signals: Different kinds of noise 

may interfere the signal and may arise from various sources. 

Generally, noises in sEMG signals can be divided into four main 

types: inherent noise in electronic components used in detection 

and recording equipment, ambient noise, motion artifacts and 

the inherent instability of the sEMG signals [19, 20]. Noise 

originated from electrodes can be reduced by using Ag/AgCl 

electrode type. For other noises, sEMG signals are passed 

through a high-pass filter with a cutoff frequency of 20 Hz to 

remove motion artifacts and the inherent instability of the sEMG 

signals [21]. A low-pass filter is used to remove signals with 

unwanted frequencies above 450 or 500 Hz [22], and a notch 

filter is used to remove the ambient noise, i.e. power-line 

interference, which arises at the 50 or 60 Hz frequency [23]. 

1.2.1.2 Experiment Setup 

In the experiment setup, the role of five issues including 

sensor location, number of sensors, movement types, number of 

movements, and number of participants should be 



 

 

 

Fig. 4 The summary of sensor locations reported in the review. 

It should be noted that the muscles that have been used in less 

than three research papers are not shown in the figure. 

 

 

Fig. 5 The physiological representation of the upper-arm and 

forearm muscles [24, 25]. 

 

emphasized. Firstly, sensor location, the literature presents many 

different muscle locations for sensors notably on the head, 

forehead, face, neck, back, shoulder, upper-arm, forearm, and 

hand. The location is dependent on the disability of the target 

user. For instance, if the target user is a person with a C4 spinal 

cord injury, sensor locations on the hand, forearm, and upper-

arm are not possible. In addition, the location is also selected 

based on physiology and anatomy basis. More attention, 

however, has been paid to human upper-limb movements. 

Therefore, most popular locations in the literature are forearm 

muscles. The summary of the sensor locations, or muscle 

positions, is shown in Fig. 4. From this figure, the popular 



 

 

upper-arm muscles are biceps brachii (BB) and triceps brachii 

(TB) muscles, and the popular forearm muscles are flexor carpi 

ulnaris (FCU), extensor digitorum (ED), extensor carpi radialis 

longus (ECR), extensor carpi ulnaris (ECU), flexor carpi radialis 

(FCR) and palmaris longus (PL) muscles. In order to obtain 



 

 

 

Fig. 6 The summary of the number of sensors reported in the 

review. 

 

information from both flexor and extensor, the FCU and ED 

muscles may be useful for classifying upper-limb movements. 

The physiological representation of the upper-arm and forearm 

muscles is presented in Fig. 5. Further, reference electrodes are 

essential for furnishing a common reference for the differential 

inputs from the pre-amplifier in the sensor electrodes. To this 

end, the reference electrodes should be located as far away as 

possible from the sensors and on electrically neutral tissue. The 

reference electrode is usually placed on the wrist, for forearm 

and upper-arm locations, and other reference electrodes are 

placed on the neck and the middle of the forearm. It should be 

noted that the summary in Fig. 4 is based on sixty-one research 

papers [6, 8, 26-84]. In addition, Figs. 6-7 and Figs. 10-15, are 

also summarized from sixty-one research papers [6, 8, 26-84]. 

However, there are some papers originated from the same 

research group, in that case if the researchers implemented the 

same condition it will be counted only one time in a summary. 

Secondly, another important issue to be considered is the 

number of sensors. The number of sensors is dependent on types 

of the application. As shown in Fig. 6, one, two, three, four, six, 

eight, and sixteen channels have been used. Most MMCS 

studies used two and four channels in basic to increase the 

classification accuracy. MMCSs that used more than four 

channels are not recommended because their computational 



 

 

complexity will be expensive. In MMCS, researchers have tried 

to reduce the number of sensors as far as possible. Therefore, a 

single channel is suggested to be used and developed in future 

studies. However, a single channel may not be complex enough 

and high accuracy may not be achieved in recent classification 

algorithm. 

 

 

Fig. 7 The summary of the number of movements reported in 

the review. 

 

 

Fig. 8 Six different upper-limb movements: (a) wrist flexion, 

WF, (b) wrist extension, WE, (c) hand close, HC, (d) hand 

open, HO, (e) forearm pronation, FP, and (f) forearm 

supination, FS, as performed by participants [P24]. 

 



 

 

 

Fig. 9 The summary of movement types reported in the review. 

Note that TF is thumb flexion. TE is thumb extension. EE is 

elbow extension. EF is elbow flexion. 

 

Fig. 10 The summary of the number of participants in the 

experiment reported in review. 

 

The third and the fourth issues are the number of 

movements and movement types. The number of movements 

possible is directly dependent on the location and number of 

sensors, as discussed in two previous paragraphs, and the 

control commands are also directly dependent on the number of 

user’s movements. Hence, researchers have tried to increase the 

number of movements. However, the classification accuracy of 

a high number of movements is normally less than the 

classification accuracy of a low number of movements. The 

literature records the number of movements varying from as few 

as one to as many as nine movements as shown in Fig. 7. The 



 

 

popular number of commands is six. These different upper-limb 

movements as shown in Fig. 8 were used as the protocol to 

record sEMG signals from the participant most frequently, as 

can be observed in Fig. 9. They consist of hand close (HC), 

hand open (HO), wrist extension (WE), wrist flexion (WF), 

forearm pronation (FP) and forearm supination (FS). In general, 

human movements are extension and flexion of the body joints 

such as thumb joint, wrist joint, and elbow joint. Other 

movements are open, close, pronation, supination and deviation 

as shown in Fig. 9. The control commands of MMCSs are 

generally four directions and stop or rest command, thus the 

movements corresponding to those five commands are used 

most frequently. However, a trade-off between classification 

accuracy and number of control commands is still a challenge 

for researchers. 

Finally, the number of participants in the experiment should 

be considered. As can be seen from Fig. 10, the number of 

participants used in the experiments was reported and from 

whom data was acquired, varied considerably. In the maximum 

case, forty participants took part in the study and the 

experimental findings can therefore be regarded as reliable. 

However, many studies employ only a small, particularly a 

single subject, and often insufficient number of participants. 

Generally, in studies of sEMG pattern recognition reported in 

the literature, around ten subjects have been employed which is 

sufficient for the results to be meaningful [54, 70]. 

 

1.2.2 Pattern Recognition 

Numerous classification methods have been reported by 

researchers which have been successfully employed in MMCSs 

[31, 61, 65, 68, 70, 79]. Before movement patterns can be 

recognized, the data must be segmented, and this is one of the 

most important pre-processing stages. A segment is a sequence 

of data which is used to estimate the features it contains. If the 

duration of the segments is too short, this can result in bias and 



 

 

variance in the feature estimation. However, long duration 

segments impose high computational costs and are probably not 

appropriate for the real-time operation. The literature reveals 

that all the sEMG data segments employed in the real-time 

operation were less than 300 ms [31, 70]. Segment lengths of 

64, 128, and 256 ms, for instance, were examined. For all 

segment lengths, disjoint and overlapped segmentations can be 

applied [31, 70]. 

1.2.2.1 Feature Extraction 

Raw sEMG signals acquired from a number of electrodes 

positioned on the muscles contain a huge amount of data but 

little information. If these raw sEMG data are used as inputs in 

the classification process, the classification accuracy will be low 

and the computational time will be high. Therefore, in pattern 

recognition, raw sEMG data needs to be transformed into a 

reduced representative set of features. If the extracted features 

are carefully selected, a feature vector will contain effective and 

relevant information drawn from the whole set of raw data 

which can be used to represent the desired tasks. Generally in 

the sEMG signal analysis, feature extractions can be divided 

into three main sets: time-domain features, frequency-domain 

features, and time-frequency or time-scale features. Definitions 

of all EMG features extracted and mentioned in the literature as 

being used in MMCSs are included in [P11-P15, P24, P27, P30]. 

In MMCSs [2], time-domain and time-scale features have 

commonly been successful in recognizing muscle activities, but 

frequency-domain features have been more useful in 

determining muscle fatigue. From the point of view of class 

separation, time-scale features are better than features in time-

domain. However, as can be seen from Fig. 11, time-domain 

features have been proposed for widely used in MMCSs since a 

disadvantage of time-scale features is that they are more 

complex to compute compared to time-domain



 

 

 

Fig. 11 The summary of single feature in the review. Note that 

HOS is higher-order statistics. Comparative study refers to the 

best method compared to other methods which were evaluated 

in the paper, and fixed study refers to only selected method 

which was evaluated in the paper. 

 

and frequency-domain features, and are therefore not suitable 

for mobility devices. The problem is what a high quality feature 

is. Overall, a high quality sEMG feature space should have three 

following properties [8, 66]: 

• Maximum class separability: This ensures that the 

resulting classification accuracy will be as high as possible. 

There are two major approaches to quantifying the suitability of 

feature spaces: (1) an estimation of the classification rate by a 

classifier, and (2) using the separability measures i.e. the 

Davies-Bouldin index. 

• Robustness: This ensures that the resulting classification 

accuracy will be preserved in a noisy environment as much as 

possible. 

• Complexity: This ensures that the proposed method can be 

implemented with reasonable hardware and in a real-time 

manner. 

Because of their computational simplicity, time-domain 

features are the most popular in MMCSs. Two well-known 

time-domain features are mean absolute value (MAV) and root 

mean square (RMS) [2, 5]. However, the best time-domain 

features reported in literature are variance (VAR), histograms 



 

 

(HIST), waveform length (WL), auto-regressive coefficients 

(AR) and Cepstrum coefficients (CC) as shown in Fig. 11. Other 

commonly used time-domain features are integrated EMG 

(IEMG), zero crossing (ZC), slope sign change (SSC), Willison 

amplitude (WAMP), and regression coefficients (RC). The 

pioneers in the sEMG time-domain analysis are Hudgin et al. 

[85]. Hudgin et al. proposed multiple time-domain features that 

the classification accuracy obtained was roughly 90% for two 

sEMG channels and four upper-limb movements [85]. Even so 

time-domain features are limitedly successful because these 

methods assumed that the sEMG signals are stationary, while 

the sEMG signals are non-stationary [86-87]. In addition, most 

time-domain features are sensitive to noises [8]. However, only 

one feature per EMG channel can be obtained from most time-

domain features. Therefore, for a more powerful feature vector, 

this feature can be combined with other advanced sEMG 

features, i.e. time-scale and non-linear features, in future studies. 

Subsequently, information contained in frequency-domain is 

used. Some characteristic variables in power spectral density 

(PSD) are employed as a feature such as mean frequency (MNF) 

and median frequency (MDF) [2] where PSD is obtained from 

the traditional Fourier transforms (FT) or the fast Fourier 

transform (FFT). Afterwards, time-frequency and time-scale 

representations that correspond both time and frequency are 

proposed such as short-time Fourier transforms (STFT) and 

Wigner-Ville distribution (WVD) [26, 84]. STFT is help in 

characterizing sEMG signals in different frequency bands. Other 

two successful time-scale features are wavelet transform (WT) 

and wavelet packet transform (WPT) [66, 70]. Advantages of 

WT and WPT are that features can perform local analysis of 

sEMG signals. Moreover, they contain useful information in 

both of frequency content and time domain, and expose the 

trends of sEMG signals. WT and WPT decompose original 

sEMG signals into some multi-resolution components according 

to a basis function called “mother wavelet or wavelet function”. 



 

 

However, a high computational complexity is a major problem 

of time-frequency and time-scale features. The dimensionality 

reduction technique is investigated to solve this problem. It will 

be discussed in the next sub-section.  

From Fig. 11, the most popular single feature is WT, followed 

closely by WPT. Both features are time-scale features. The most 

popular time-domain feature is AR, followed closely by WL. 

However, in [31], for a single feature, WL outperforms the 

others including AR, and with respect to the computational time 

required for WT, WPT and AR, multiple time-domain features 

is recommended. As shown in Fig. 12, the second-order of auto-

regressive model (AR2) and RMS are proposed two times by the 

different researches. Other multiple feature sets are only 

introduced in each literature. The popular multiple time-domain 

features consist of MAV, WL, ZC and SSC, or TD set in Fig. 12 

that is introduced by Hudgin et al. [85]. In future research, more 

attention should be paid to the evaluation of multiple sEMG 

features. 



 

 

 

Fig. 12 The summary of multiple features reported in the 

review. Note that TD set is MAV, WL, ZC, and SSC. Group 1 is 

IEMG, VAR, WL, WAMP, ZC, and AR2. Group2 is IEMG, 

SSC, VAR, WL, WAMP, ZC, and AR2. 

 

 

Fig. 13 The summary of feature projection techniques reported 

in the review. Note that LVQ is learning vector quantization. 

 

1.2.2.2 Dimensionality Reduction 

In order to support the future development of embedded 

processor systems, many researchers have proposed an optional 

component, dimensionality reduction, which also supports a 

more complex implementation of the time-scale feature method 

and new, more advanced classifiers that have been proposed for 

use with MMCSs in a last few years. Dimensionality reduction 

is used to enhance the performance of MMCSs because of an 

increasing use of vector space features, especially when time-

scale features including WT and WPT are used. Dimensionality 



 

 

reduction is used to reduce a lot of features in vector spaces. The 

most popular feature reduction method is principle component 

analysis (PCA) as shown in Fig. 13. In this method, a linear-

nonlinear feature reduction composed of a 



 

 

 

Fig. 14 The summary of feature selection techniques reported in 

the review. 

 

PCA and a self-organizing feature map (SOFM) is utilized to 

increase the classification accuracy and reduce the 

computational time [56]. Alternatively, the linear supervised 

feature reduction method employs linear discriminant analysis 

(LDA) and its performance is said to be better than other 

feature-reduction methods including PCA and SOFM [54]. 

Finally, non-linear and fuzzy extension versions of LDA can be 

incorporated by introducing kernel learning and fuzzy 

techniques into the traditional LDA, methods known as 

generalized discriminant analysis (GDA) and orthogonal fuzzy 

neighborhood discriminant analysis (OFNDA), respectively [88-

89]. Using these methods, the computational time is reduced and 

the classification accuracy may also be improved. The methods 

mentioned above is dimensionality reduction method based on 

feature projection technique. 

There is another technique for reduction of feature 

dimension known as the feature selection. The simple 

explanation about the difference between feature projection and 

feature selection is a reduced feature set. A reduced feature set 

based on feature selection technique is obtained from the best 

features in the original feature set, same values but some 

selected features. On the other hand, instead of searching the 

best subset, feature projection tries to determine the best 

combination of the original feature set to form a new feature set, 



 

 

different values. Normally, size of new feature set is smaller 

than the original feature set for both feature projection and 

selection techniques. In feature selection techniques, the 

Euclidean distance is an easy technique that is first implemented 

and compared with PCA [6, 70]. After that many different 

distance techniques have been evaluated and applied in the 

search strategy approaches. In recent, the important distance 

criterion and search strategy method are respectively Davies-

Bouldin's index and genetic algorithm (GA), as shown in Fig. 

14. Other search strategy methods that have been evaluated are 

sequential forward selection (SFS), sequential backward 

selection (SBS), Gabor matching pursuit (GMP), and Tabu 

search (TS) [68, 90]. Currently, some powerful selection 

methods have presented a better performance over popular 

method, GA, such as particle swarm optimization (PSO), and 

ant colony optimization (ACO) [34]. 

 

1.2.2.3 Classification Methods 

The classification algorithm or classifier is the final module 

in sEMG pattern recognition. Feature extraction in vector form 

is sent to classifier and is classified into unique classes. The 

selection of classifier is important stage because the varying 

patterns over time of sEMG signals decrease the classification 

performance. The optimal classifier should be able to deal with 

varying patterns, prevent over fitting, and meet real-time 

constraint. Several different kinds of classifier have been 

mentioned in the literature as demonstrating effective 

performance in a variety of sEMG applications. Examples of 

successful types of the classifier in sEMG pattern recognition 

are: neural networks (NN), fuzzy logic-based classifier (FL), the 

neuro-fuzzy approach, the probabilistic approach, LDA and 

support vector machines (SVM). Numerous literatures firstly 

focus on the success of NN in sEMG pattern recognition, 

particularly back propagation neural networks (BPNN) [85] as 

shown in Fig. 15. The advantage of NN is its capability to 



 

 

represent both linear and non-linear relationships. Moreover, it 

learns those relationships to create models directly from input 

features. NN can meet for the real-time constraint. Many 

literatures used BPNN as a standard classifier when researchers 

would like to compare the performance of a novel classifier. 

Other types of NN architectures have been used in the field of 

MMCS such as LVQ neural network [48], radial basis function 

(RBF) neural network [83], and dynamic neural network i.e. 

time-delay neural network (TDNN) [91]. Other commonly 

classifier is FL, notably fuzzy inference systems (FIS) [49]. The 

advantages of FL are the robustness and able to discover sEMG 

patterns that is not easily detectable. Afterwards, the 

combination of NN and FL is attended as known the neuro-

fuzzy approach. Some neuro-fuzzy approaches are presented i.e. 

fuzzy ARTMAP neural network (ARTMAP) [53], fuzzy 

clustering neural network (FCNN) [61], fuzzy min-max neural 

networks (FMMNN) [13], and adaptive neuro-fuzzy inference 

systems (ANFIS) [68]. 

 

 

Fig. 15 The summary of classifiers reported in the review. Note 

that 2D CC is 2D cross-correlation and ICA is independent 

component analysis. 

 

Recently, other two classifiers, LDA [9] and SVM [31] are 

becoming significant in sEMG pattern recognition. The good 

performance in classification and the suitability for real-time 

myoelectric control are the main reasons that LDA and SVM are 



 

 

becoming the important classification techniques today. LDA 

and SVM have been successful in a great number of sEMG 

pattern recognition such as upper-limb and lower-limb 

prosthesis control, and MUAP classification. The main 

drawback of LDA is its linearity. On the other hand, simple 

SVM is based on linear decision boundaries, but SVM can 

create non-linear decision boundaries by using kernel functions 

[31]. However, both classifiers have better performance than 

NN [31, 70], and in a recent study [92], LDA showed that it is 

the most robust classifier compared to other commonly used 

classifiers. Other classifiers in EMG pattern recognition are the 

probabilistic classifiers such as hidden Markov model (HMM) 

[79, 80] and Gaussian mixture model (GMM) [65], and nearest 

neighbor classifiers such as k-nearest neighbor (KNN) [8] and 

modified maximum likelihood distance (MMLD) [78]. A 

summary of all classifiers reported in the review is presented in 

Fig. 15. 

 

1.2.3 Control System 

The first generation of sEMG control system often offers 

ON/OFF control schemes or only open/close hand control. 

Today, sEMG signals can control multifunction system. MMCS 

can control six to nine movements from one to four EMG 

channels and the performance accuracy is also higher than 90%. 

The most important application of MMCSs is the prosthesis. It 

is only commercial application of MMCSs available today. Otto 

Bock Arm is currently available myoelectric prostheses. 

Attention in most of literature during last 20 years has paid to 

develop the upper-limb prosthesis [5, 8, 28, 62, 63]. In addition, 

a number of publications have shown other potential 

applications for MMCSs such as electric power wheelchair 

control [4, 11, 17, 18], cursor mouse control [93, 94], industrial 

robot arm [95, 96], and virtual reality [97, 98], as shown in Fig. 

16. 

 



 

 

 

Fig. 16 An example of MMCS applications. 

 



 

 

CHAPTER 2 

Objectives 

2.1 Research Objectives 

The main aim of this research is to investigate all 

classification techniques for identification of upper-limb 

movements using forearm muscles recording of sEMG signals. 

The objectives of this research work are to: 

2.1.1 study, analyse, and develop a pre-processing sEMG 

signal technique based on the wavelet analysis; 

2.1.2 study and evaluate the existing sEMG features, as a 

measure of muscle activity particularly in robustness and 

redundancy point of views, and develop the class separation 

index for evaluating sEMG features; 

2.1.3 study and analyse the new fractal features, as a 

measure of low-level and equal muscle activity, and to modify 

the existing frequency-domain features, as a robust measure of 

muscle activity against noise; and 

2.1.4 study and analyse the dimensionality reduction and 

classification methods for the classification of muscle activity 

related to sEMG signal. 

 

2.2 Research Scopes 

2.2.1 Analysis and development of the wavelet denoising 

analysis techniques are based on denoising and estimation 

sEMG signal viewpoints. 

2.2.2 Evaluation of the existing sEMG features is based on 

three main criteria: maximum class separability, robustness, and 

complexity. 



 

 

2.2.3 Analysis and modification of the new fractal features 

and the existing sEMG features are based on two criteria: 

maximum class separability and robustness. 

2.2.4 Development of the class separation index is for 

evaluating the existing sEMG features and for finding the 

relationship between the proposed class separation index and the 

popular classifier. 

2.2.5 Analysis and development of the dimensionality 

reduction methods are for feature based on wavelet transform. 

2.2.6 Developments of dimensionality reduction and 

classification methods are based on maximum class separability 

and complexity. 

2.2.7 EMG signals are recorded from forearm muscles and 

upper-limb movements. 

2.2.8 EMG signals are recorded from young subjects 

between the age of 20 and 30. 

2.2.9 The performance of all techniques is evaluated using 

the computer simulation. 

 

2.3 Research Advantages 

The main advantages of using the new techniques in four 

main cascade components including pre-processing sEMG 

signals based on the wavelet analysis, feature extraction, 

dimensionality reduction, and classification methods of sEMG 

signals in the classification of upper-limb movements from 

forearm muscles are 

2.3.1 improving the control accuracy of prosthesis and 

electric power wheelchair, 

2.3.2 less sensitive to various kinds of noise and thus long 

term usage, and 

2.3.3 able to identify the small changes in the low-level and 

equal power muscle activation. 



 

CHAPTER 3 

Experiments and EMG Data Acquisition 

In this chapter, our experimental procedures for recording 

the sEMG data are described. Three different datasets are used 

as the representative sEMG signals in the research. All datasets 

have some differences in the experimental setup, for instance, 

sensor locations, the number of sensors, movement types, the 

number of movements, the number of participants, and the 

specification of sEMG signal acquisition system. However, all 

studies in this research are evaluated and investigated based on 

these three datasets. To easily understand all sEMG data used in 

each study, or paper, more details in each dataset are described 

in the following sections, as the Dataset I-III. 

 

3.1 Dataset I 

The representative sEMG signals used in this set were 

acquired from six commonly used upper-limb movements as 

mentioned in Section 1.2.1.2. Six movements consist of HC, 

HO, WE, WF, FP and FS as shown in Fig. 8. This dataset was 

used frequently in the preliminary studies. Only one subject 

volunteered to participate in this experiment. The volunteer was 

asked to perform a short dynamic movement. Two forearm 

muscles were selected: the FCR and ECR muscles. Both 

muscles are the popular muscles, as clearly shown in Fig. 4. The 

sEMG signals were recorded from the right forearm of the 

volunteer by two pairs of surface electrodes (3M red dot 25 mm 

foam solid gel). The electrodes were separated from each other 

by 20 mm. A band-pass filter of 10-500 Hz bandwidth and an 

amplifier with 60 dB gain were used. A sampling frequency was 

set at 1000 Hz using a 16-bit A/D converter (National 

Instruments, DAQCard-6024E). In the experiment, 10 datasets 

were recorded for each movement. In total, 60 datasets with 



 

 

duration of 256 ms, or 256 samples, were collected. Examples 

of measured sEMG signals for six movements and two muscles, 

FCR and ECR, are respectively shown in Fig. 1 and Fig. 17. The 

differences between patterns of all movements and muscles are 

clearly observed from such figures. 

 

Fig. 17 EMG signals obtained from six movements of the ECR 

muscle. 

 

3.2 Dataset II 

The second dataset was used to confirm the preliminary 

results. This dataset was acquired by Dr. Adrian D. C. Chan at 

the Carleton University in Canada [10]. Six movement types 

used in Dataset I were also used in this experiment, but the 

number of sensor locations increases from two to eight, and the 

number of participants in the experiment also increases from 

one to thirty. Eight sensor locations were on the seven forearm 

positions, 1-7, and the upper-arm position, 8, using the Duo-

trode Ag-AgCl electrodes (Myotronics, 6140) as shown in Fig. 

18. A common ground reference was placed on the wrist using 

Ag-AgCl Red-Dot electrode (3M, 2237). Each movement was 

performed four times throughout a trial. For every subject, there 

are four sessions and six trials in each session. In all, there are 



 

 

96 data (4 sessions×6 trials×4 times) for each movement. 

Additionally, each motion is subjected to a duration of three 

seconds. A band-pass filter of 1-1000 Hz bandwidth and an 

amplifier with 60 dB gains (Grass Telefactor, Model 15) were 

set for the acquisition system. These signals were sampled at 

3000 Hz (National Instruments, PCI-6071E) with a sampling 

duration of 120 s. In order to reduce time in recognition, sEMG 

data were down-sampled to 1000 Hz. More details of 

experiment and data acquisition are described in [10]. The 

sample of measured sEMG signals for one trial from muscle 

position 1 was shown in Fig. 19. The difference between 

patterns of all movements is also observed from this figure 

similar as in Dataset I. 

 

Fig. 18 The electrode placement used in the eight-channel 

sEMG data acquisition. Eight bipolar electrode pairs were used 

with a reference at the wrist [10]. 

 



 

 

 

Fig. 19 EMG signals obtained from six upper-limb movements 

of muscle position 1 for four times. 

 

Fig. 20 The electrode placement used in the five-channel sEMG 

data acquisition [P16]. 

 

3.3 Dataset III 

The third dataset was used to improve the performance of 

sEMG pattern recognition from six to eight movements, or six 

to eight output commands. The sEMG data were collected from 

20 normal young subjects, 10 males and 10 females. The mean 

(and the standard deviation in brackets) of the age, height, 

weight and body mass index of the male samples were 21.5 

years (0.97 years), 169.7 cm (3.72 cm), 61.0 kg (8.08 kg), 21.12 



 

 

kg/m
2
 (2.10 kg/m

2
). For the female samples these were 21.2 

years (0.79 years), 157.8 cm (6.25 cm), 48.8 kg (4.37 kg), 19.63 

kg/m
2
 (1.76 kg/m

2
), respectively. All subjects are dexterous with 

their right hands. 

The sEMG data were collected from five muscle positions 

on the right arm using the bipolar Ag/AgCl electrodes (Kendal 

ARBO, H124SG). Five pairs of disposable pre-gelled self-

adhesive surface electrodes of 24 mm diameter (circular) were 

applied to the subjects at an inter-electrode distance of 20 mm 

after suitable preparation of the skin with alcohol. The five 

muscle positions used in this experiment were: ECR, ECU, 

FCR, BB, and extensor digitorum communis (EDC) muscles, as 

shown in Fig. 20. An Ag/AgCl electrode (Red Dot 2223, 3M 

Health Care) was placed on the wrist to provide a common 

ground reference. It was also a disposable pre-gelled self-

adhesive surface electrode but its diameter was 43.1 mm. 

The sEMG signals were amplified and sampled by a 

commercial wireless sEMG measurement system (Mobi6-6b, 

TMS International B.V.). These signals were amplified with a 

gain of 19.5x and bandwidths of 20 to 500 Hz. Signals were 

sampled at 1024 Hz



 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 21 (a) The example EMG data of 56 seconds in length (b) 

The movements order and the procedure of the removed rest 

state (c) The final removed EMG data of 16 seconds in length. 

Note that the example data is from the fourth trial of the first 



 

 

session in the first day of Subject 1 with the ECR muscle [P16]. 

 

Fig. 22 Eight upper-limb movements and a rest state [P16]. 

 

with a high resolution of 24 bits. The raw EMG signals were 

less likely to be contaminated by all kinds of noises, i.e., 

movement artifacts, powerline interferences, and electrical 

noises from electronic equipments as we can observe in Fig. 

21(a). 

The sEMG data were collected as the volunteers performed 

eight commonly used distinct upper-limb movements including 

forearm pronation (M1), forearm supination (M2), wrist 

extension (M3), wrist flexion (M4), wrist radial deviation (M5), 

wrist ulnar deviation (M6), hand open (M7), and hand close 

(M8) as shown in Fig. 22. Within each trial, the subject 

maintained each movement for two seconds in duration and 

separated each movement by a two-second period rest state (R) 

to avoid a transitional stage (i.e., during movement changes). 

Moreover, thirteen-second rest periods were also introduced at 

the start and the end of each trial to give a preparation time for 

the subject and to avoid any incomplete data recording that 

could be cutoff before an action is finished. Thus each trial 

contains a 56-second period in length. Each day, each subject 

completed three sessions, with five trials in each session. The 

order of movements was randomized in each session. Moreover, 

to study the fluctuation of the sEMG signal, these three sessions 



 

 

per day were employed on four separate days. In total, 60 

datasets with duration of two seconds were collected for each 

movement from each subject. However, to render easier 

processing all rest states were removed before an extraction step 

was performed. This is presented in Fig. 21(b). Hence, each trial 

comprised 16 seconds or 16,384 samples in length, as shown in 

Fig. 21(c). 



 

 

CHAPTER 4 

Results and Discussion 

This thesis is based on the papers, which are referred to in 

the text by P letter and their Arabic numerals. The study 

presented in this thesis was aimed to classify the sEMG signals 

during upper-limb movements for the control of assistive 

devices, notably prosthesis and intelligent wheelchair. The 

research study can be divided into four main components: 

 

4.1 Pre-processing sEMG Signals Using Wavelet 

Analysis 

The sEMG signals that originate in various muscles and 

activities are definitely contaminated by various kinds of noise. 

This becomes a major problem to extract certain features and 

thus the reach to high accurate recognition. Therefore, in the last 

decade, many researchers have an interest in developing the 

better techniques and improving the existing methods to reduce 

noises and estimate the useful sEMG information. In this 

research, the denoising and estimation of sEMG signals are 

based on wavelet analysis. Throughout the extensive reviews, 

most wavelet-based denoising methods have been proposed and 

evaluated for the sEMG signals in signal denoising viewpoint 

[P1, P2]. The application of wavelet-based denoising methods 

requires the selection of five processing parameters.  

The suggestion of five wavelet denoising parameters in a 

compromise between two points of view, signal denoising and 

signal estimation, is presented in the following. 

(1) The type of wavelet basis function [P3-P6]: 

Daubechies2, Daubechies7, Symlets2, Symlets5, Coiflet4, 

BiorSplines5.5 and ReverseBior2.2. 



 

 

(2) The decomposition level j [P3-P6]: 4. 

(3) The threshold rescaling method [P7]: Level dependent 

for N (wavelet coefficient length) and first-level/level dependent 

for σ (standard deviation of noise). 

(4) The threshold selection rule [P7, P10]:  

- Global scale modified universal method ( 22 2log( )J
THR Nσ

−
= ), 

and  

- Weighted universal method ( 2log( )THR w Nσ= ) at w = 0.55. 

(5) The thresholding function [P8-P9]: Adaptive denoising 

shrinkage method (
2.1

2

1 j j

j

j j j cD THR

THR
cD cD THR

e
= − +

+

, where cD is the 

wavelet’s detail coefficients). 

4.2 Evaluations of Commonly Used EMG Feature 

Extraction 

To be successful in classification and recognition of sEMG 

signals, three main cascaded modules should be carefully 

considered that consist of data pre-processing, feature 

extraction, and classification methods, particularly the selection 

of an optimal feature vector. Feature extraction is a method to 

extract the useful information that is hidden in sEMG signals 

and remove the unwanted sEMG parts and interferences. 

Appropriate features will directly approach high classification 

accuracy. Three properties have been suggested to be used in the 

quantitative comparisons of their capabilities that consist of 

maximum class separability, robustness, and complexity. 

Although many researches have mainly tried to explore and 

examine an appropriate feature vector for numerous specific 

sEMG signal applications, there have a few works which make 

deeply quantitative comparisons of their qualities, particularly in 

robustness and redundancy points of view. In this research, both 

viewpoints are focused. A number of features are robust across 

different kinds of noise, thus intensive data pre-processing 

methods shall be avoided to be implemented [P11-P12]; and 



 

 

most of time-domain and frequency-domain features are 

superfluity and redundancy, thus the reduction of computational 

time caused by redundant features can be achieved [P13]. 

However, evaluating sEMG features in class separability 

viewpoint is still done using the modification of class separation 

index, namely RES index [P14-P15]. 

The suggestion of the optimal features based on three 

viewpoints is presented in the following. 

(1) Maximum class separability without feature redundancy 

[P13-P15]: Mean absolute value (MAV) from energy 

information method, waveform length (WL) from complexity 

information method, Willison amplitude (WAMP) and slope 

sign change (SSC) from frequency information method, auto-

regressive (AR) coefficients from prediction model method, and 

multiple trapezoidal windows (MTW) from segmenting method. 

All features are calculated in the time-domain. EMG features 

based on frequency domain are not recommended in the sEMG 

signal classification. 

(2) Robustness [P11-P12]: WAMP, SSC, root mean square 

(RMS) and mean frequency (MNF) for the tolerance of white 

Gaussian noise and power-line interference. 

(3) Complexity: All time domain features or time-scale 

features with dimensionality reduction technique. 

4.3 Investigations of Novel and Modified EMG 

Feature Extraction 

Major properties of sEMG signals are complexity, 

randomness, non-stationarity and non-linearity. However, most 

of traditional and existing sEMG features, consisting of time 

domain, frequency domain, and time-frequency/time-scale 

domain introduced above, are calculated based on linear or 

statistical analysis. Hence, such methods cannot extract the real 

hidden information in the sEMG data. From these limitations 

and disadvantages, in this research, an extraction of the 



 

 

properties that is hidden in the complexity of the sEMG signals 

by using the non-linear analysis is gaining an interest. Two 

fractal analysis methods, namely the detrended fluctuation 

analysis (DFA) [P16-P18] and the critical exponent analysis 

(CEA) [P19-P21], have been proposed as the useful sEMG 

features. Both fractal features are better than other existing 

nonlinear methods, including the Higuchi’s method. On the 

other hand, some traditional sEMG features are modified in 

order to improve a robustness performance, particularly for 

frequency-domain features [P22-P23]. However, their 

classification performance is poor. Therefore, these features are 

not recommended to be used in the optimal feature vector. 

The suggestion of the optimal parameters for each feature is 

presented in the following. 

(1) DFA method: the minimum box size is approximately 

four, the maximum box size is one-tenth of the signal length, the 

box size increment is based on a power of two, and the quadratic 

polynomial fits is used in the fitting procedure. 

(2) CEA method: the step size of the moment exponent is 

0.01. 

 

4.4 Dimensionality Reduction and Classification 

Methods 

Two last important components in the procedure of sEMG 

signal classification are dimensionality reduction and 

classification methods. For dimensionality reduction, attention 

has been paid to the application of wavelet coefficient features 

[P24-P25]. The usefulness of extraction of the EMG features 

from multiple-level wavelet decomposition of the EMG signal is 

investigated. The results show that most of the EMG features 

extracted from reconstructed sEMG signals of the first-level and 

the second-level detail coefficients yield the improvement of 

class separability in feature space. For classification methods, 



 

 

only linear discriminant analysis (LDA) classifier is focused due 

to a robustness property. 



CHAPTER 5 

Concluding Remarks 

5.1 Conclusions 

Noises contaminated in the sEMG signals are an 

unavoidable problem during recording data. Moreover, noises 

are a main problem in the analysis of sEMG signal both in 

clinical and engineering applications. Random noises that have 

their frequency components fall in the energy band of the sEMG 

signal are the major problem. Conventional filters do not 

effectively remove random noises but the wavelet denoising 

algorithm is not problematical in this way. Hence, numerous 

wavelet denoising methods have been proposed during the last 

decade [P1-P2]. Five wavelet denoising parameters that were 

optimized [P3-P10] can be useful to apply for many sEMG 

applications. The pre-processing stage based on the wavelet 

denoising algorithm is recommended to be implemented in the 

analysis of sEMG signal, especially in multifunction 

myoelectric control system. 

After the pre-processing stage, the selection of an optimal 

feature vector is an important one to be successful in 

classification of sEMG signals. Appropriate features will 

directly approach high classification accuracy. Three properties 

have been used in the quantitative comparisons of their 

capabilities. The optimal features based on one of three criteria 

are presented i.e. waveform length (WL) and auto-regressive 

(AR) coefficients in maximum class separability viewpoint 

[P13-P15] or Willison amplitude (WAMP) in robustness 

viewpoint [P11-P12]. However, the optimal feature vector 

should be selected for the specific application. Furthermore, the 

modification of class separation index, namely RES index is 

recommended to be used in the evaluating EMG features [P14-

P15].  



However, most of traditional and existing sEMG features 

are calculated based on linear or statistical analysis, whereas 

major properties of sEMG signals are complexity, randomness, 

non-stationarity and non-linearity. Therefore, such methods 

cannot extract the real hidden information in the sEMG data. 

Two fractal analysis methods, namely the detrended fluctuation 

analysis (DFA) [P16-P18] and the critical exponent analysis 

(CEA) [P19-P21], have been recommended to combine with 

other recommended time-domain features such as WL, AR and 

WAMP in order to make a more powerful feature vector. Both 

DFA and CEA extract the properties that are hidden in the 

complexity of the sEMG signals. Moreover, modified mean and 

median frequency (MMNF and MMDF) are useful frequency-

domain features that can be added into the feature vector in 

order to improve a robustness performance [P22-P23]. 

For dimensionality reduction, if the wavelet coefficients are 

used as the EMG features, only features extract from the 

reconstructed sEMG signals of the first-level and the second-

level detail coefficients are suggested instead of extract from all 

wavelet coefficients [P24-P25]. On the other hand, if all wavelet 

coefficients were used, feature projection method should be 

applied before performing classification. For classification 

method, linear discriminant analysis (LDA) is recommended to 

be used as a classifier due to the high performance in 

classification of the sEMG signal, the robustness in a long-term 

effect usage, and the low computational cost [P7-P10, P13, P16, 

P22]. 

 

5.2 Recommendations for Future Study 

5.2.1 Pre-processing sEMG Signals Using Wavelet Analysis 

(1) Developing a new robust wavelet denoising method 

which the performance does not depend on the distribution of 

sEMG signals and noises should be done. It should be noted 

that, at low-level movements, the sEMG signals have the 



Laplace distribution, whereas at high-level movements, the 

sEMG signals have the Gaussian distribution [99].  

(2) In the analysis of intramuscular EMG signal, the re-

evaluating wavelet denoising parameters should be done 

because the purpose in interpretation is different [100]. 

 

5.2.2 Evaluations of Commonly Used EMG Feature 

Extraction 

(1) The evaluation of EMG features in the classification of 

sEMG signals obtained from the elderly or the disabled peoples 

should be done. The optimal feature vector may be changed due 

to the low-level of sEMG signals (different distribution and 

noises) [101]. 

(2) The evaluation of EMG features in the classification of 

sEMG signals recorded from the subject on many consecutive 

days (i.e. 21 days [92]) should be done. The optimal feature 

vector may be changed due to the fluctuation of sEMG signals. 

(3) The evaluation of EMG features in robustness viewpoint 

should be re-tested with the mixed noises (such as the 

combination between white Gaussian noise and power-line 

interference). In addition, other kinds of noise i.e. movement 

artifacts should be used in the evaluating robust EMG features. 

 

5.2.3 Investigations of Novel and Modified EMG Feature 

Extraction 

(1) DFA should be better in the classification of sEMG 

signals from bi-functional movements (i.e. forearm pronation 

and supination) of low-level and equal power as compared to 

other successful and commonly used EMG features based on 

magnitude and other fractal techniques (More details in 

Appendix A). 

(2) Variance fractal dimension (VFD) is one of the most 

significant fractal analysis methods that can be implemented for 

real-time systems. VFD should be tested its performance in the 

classification of sEMG signals. It can be applied not only for the 



feature classification but can be applied as a segmentation 

method and a signal-to-noise ratio (SNR) estimator (More 

details in Appendix B). 

 

5.2.4 Dimensionality Reduction and Classification Methods 

(1) The extended versions of LDA i.e. uncorrelated linear 

discriminant analysis (ULDA), orthogonal linear discriminant 

analysis (OLDA) and orthogonal fuzzy neighborhood 

discriminant analysis (UFNDA) should be evaluated their 

performance compared with a baseline system (without feature 

projection) and principle component analysis (PCA), the most 

popular used EMG feature projection (More details in Appendix 

C). In addition, a combination between advanced linear and 

non-linear methods should be done. 

(2) For classification method, the LDA classifier should be 

employed as a classification method due to a robustness 

property, notably in the long-term use of sEMG pattern 

classification (More details in Appendix D). Most of related 

works on the sEMG signal classification focus on the improving 

accuracy. On the other hand, several researches focus on 

increasing the number of classified movements and reducing the 

number of electrode placements. However, for realizing 

practical applications of MMCS, the effect of long-term usage 

or reusability is one of the challenging issues that should be 

more carefully considered, whereas only a few works have been 

investigated this effect in recent. 
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