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ABSTRACT

A Bergman space HL?*(B, dv,) is a space consisting of all holomorphic

functions on the unit ball B = {z € C : |z| < 1} which are square-integrable with
I'(a+2)

respect to dv, where dv, = co(1 — |2]*)* and ¢q = (o +1)

. That is,

HL*(B,dv,) = {f: f is holomorphic on B and/ |£(2)]2 dva(z) < oo}
B

The Bergman spaces are non-zero if and only if o > —1. However

1
the reproducing kernel of each Bergman space, K (w, z) = 0= (2w is still
Tl —(z,w))*

positive-definite when —2 < o < —1. Bergman spaces can be extended to the case

—2 < a < —1 by considering them as subspaces of existing Bergman spaces as

follows,

d
HL*(B,a) = {f € HL*(B, dva,o) : zd—f € HL2(B,dUa+2)} :
z
The space HL*(B, ) = HL?*(B, dv,) when o > —1. However HL*(B, a) do exist
and non-zero when —2 < a < —1 and they are called generalized Bergman spaces.

In this research, we are interested in viewing a generalized Bergman

space in another aspect besides a subspace of an existing Bergman space.
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CHAPTER 1

Introduction

Let B = {z € C : |2| < 1} and dv, = co(l — |2|*)®, where

['a+2)
al(a+1)

Co = A Bergman space HL*(B,dv,) is a space consisting of all holo-

morphic functions on B which are square-integrable with respect to dv,. That is,
/ |£(2)]%ca(l — |2]*)*dz < oco. This space is a Hilbert space with the inner prod-

uct and the norm on HL*(B,dv,) is defined by (f, g) / f(2)g(2) dva(z) and

3
1 flle = { / |f (z)|2dva(z)} , respectively. The Bergman spaces are non-zero if and
B

1
only if @ > —1 with reproducing kernel K (w, z) = . The formula

(1 — (z,w))>+?

for the reproducing kernel is still positive-definite when —2 < a < —1 telling us

that we have a chance in extending the space to the range —2 < o < —1. In [2],

the authers extended Bergman spaces to the case —2 < « by defining
2 2 daf 2
HL (B, Oé) = f e HL (B, dva+2) . Zd— e HL (B,d'l}aJrg)
z

and called them generalized Bergman spaces.
As inner product spaces, HL?(B,«a) = HL*(B,dv,) when a > —1,
see [1]. However HL*(B,«) is non-zero for each —2 < o < —1. The norm of

f € HL*(B, «) is defined via the norm and inner product on HL?*(B, dv,.2) by

1 d 1 d

2 — - —

7 s = (MQ)(M?))HZ P+ 1 P+ — 5 (2
1

a+3

f>a+2

+ <dff>a+2



and

<f7 g>HL§ = <Pa+1f7 Pag>a+2

d
Z— +a+2
where P, f = dz—f.

a+2

The space HL?(B,«) has not been extended by using the measure
dv,, because it is an infinite measure when o < —1, especially I'(«) is undefined
when o = —1,—-2, -3, ... .

By the definition of a generalized Bergman space, the conditions for
a function f to be in HL?*(B, ) involves in being in another Bergman space with
higher parameter o, HL*(B, dv,,2). We note that o +2 > —1 when o > —2 which
makes the measure dv, o finite.

In this research, we will present another version of a generalized
Bergman space in Theorem 3.1. As well as, some equivalent conditions for a
function being in a generalized Bergman space will be given in Theorem 3.2 and
Theorem 3.3. The conditions also involve in square-integrability with respect to the

measure dv,.o. However they do not involve in the integrability of f itself but the

function f under the number operator, the gradient and the invariant gradient of f.



CHAPTER 2

Preliminaries

In this chapter, we collect some basic knowledge and notations of

operators used in this paper.

Definition 2.1. A metric space (X,d) is a nonempty set X of elements together
with a distance function d defined on X x X such that for all z,y and z in X:

(i) dz,y) =

(ii) d(x,y) =0 if and only if z =y

(iii) d(z,y) = d(y, =)

(iv) d(z, z) < d(z,y) + d(y, z).

The function d is called a metric on X.

Definition 2.2. Let (X,d) be a metric space and A C X. We say that A is
open if, for each point x € A, there is an ¢ > 0 such that B,(¢) C A, where
B.(e) ={y € X : d(x,y) < e}.

Definition 2.3. Let (2 be a non-empty open set in C. A function f: 2 — C is said
to be holomorphic on 2 if for every point z € €2, the limit

o LN = 1(2)

A—0 A

exists, where A € C. We denote the set of all holomorphic functions on €2 by H(£2).

Instead of checking the limit hn% flz+ )‘))\ — f(2)
A—

we can verify the holomorphicity of f by using partial derivatives with respect to

: 9,
1ts components a— and —

Oy’
We define the differential operators as follows :

o _1(o 9N 4 2_1(2 9
9. 2\dr oy oz 2\ar  'oy)

at every point z,



0
Theorem 2.1. A function f is holomorphic on ) if and only if a—i =0 on (.
Z

Example. Consider f(z) = 2™ where m € NU {0}, we compute

0, _ Ox+y)"
022 N 0z
L 0@ +y)™ i@(x + yi)™
2 Ox dy
1
= 5 (m(z +yi)™ "+ m(z +yi)" ")
= m(z+yi)™*
— mszl
and
0, _ Ox+y)"
5z 0z
_ 10 +y)™ | Oz +y)"
2 ox dy
1
) (m(z + i)™ —m(z +yi)" ")

0
Therefore 2™ is holomorphic and —z"=mz""1.

0z
Theorem 2.2. (The Maximum Principle). If ) is connected, f € H(RY), and

|f(a)| =sup|f(2)| for some a € ), then f is a constant function.
z€Q

This theorem implies that a holomorphic function defined on B does
not process a maximum or a minimum inside the ball B otherwise it is a constant

function.

Definition 2.4. The Gamma function is defined by

nln®

[(x) = nh_?olo r(x+1)(x+2)...(x +n)

Theorem 2.3. If x > 0, then

for each z € R— (Z~ U{0}).

I(x) = / t" et dt
0
and Mz+1) = z'(2).



Corollary 2.4. I'(n) = (n — 1)!  for all positive integers n.

The graph of the Gamma function

Definition 2.5. Let X be a vector space over a field F. A function || - | : X — [0, 00) is said
to be a norm on X if

(i) |lz|| =0 if and only if x =0

(i) |lcz|| = |c|||z| for any z € X and c € F

(i) lz + Il < o]l + [ly]l for any z,y € X.

A vector space equipped with a norm is called a normed linear space, or simply a

normed space. Property (iii) is referred to as the triangle inequality.

Definition 2.6. A sequence {z,} in a metric space (X,d) is a Cauchy sequence if, for

every € > 0, there exists N € N such that
d(Tm, xy) < e, forall m,n > N.

Definition 2.7. The metric space (X, d) is said to be complete if every Cauchy sequence
in X converges to an element in X. That is if d(z, ) — 0 as m,n — oo then {z,,} must

converge also in X.

Definition 2.8. A Banach space is a normed linear space which is complete in the metric

defined by its norm. That is d(x,y) = ||z — y||.

Definition 2.9. An inner product on a vector space V' is a function that associates a
complex number (u,v) with each pair of vectors v and v in V' which the following axioms

are satisfied for all vectors u, v and w in V and all scalars k.

i (u,v) = {v,u)



() (u+wv,w) = (u,w) + (v,w)

(i) (ku,v) = k(u,v)

@iv) (v,v) >0 and (v,v) =0 if and only if v =0

A vector space equipped with an inner product is called an inner product space.

So if we define ||v|| = /(v,v) then || - || is a norm on V.

Definition 2.10. A Hilbert space is an inner product space which is complete with respect

to the norm given by the inner product.

Definition 2.11. For 1 < p < oo, the LP(X, u)-space is the collection of all functions
f X — C such that

/‘ﬂmwma<m.
X

We define LP(X, i) to be the space of all equivalence classes of functions in £7(X, 1) under

the relation f ~ g if and only if f = g almost everywhere with respect to the measure .
Definition 2.12. For oo > —1, the weighted Lebesgue measure dv,, is defined by

dve(2) = ol — |2]?)%dz
where

IMNa+2)
ml(a+1)

o —

is the normalizing constant so that dv, is a probability measure on B.
For a« > —1, the Bergman space (also called weighted Bergman space)

HL?(B,dv,) consists of all holomorphic functions f in L?(B, dv,), that is
HL*(B, dve) = L*(B, dvy) N H(B).

The norm and inner product on HL?(B, dv,) are defined by

|mm:{équwaaf

mmazéfwmamaa

and

for f,g € HL?*(B,dv,).

Proposition 2.5. A Bergman space is not empty.



ﬁgﬁmf. See [1].

O

Actually we can compute directly that 2™ € HL?*(B, dv,) as follows. Since 2™ is holomor-

phic function, we have

[ 12 ()

Therefore 2™ € HL?(B, dv,) -

ca/|rmewm]2(1r2)adz
B
ca/TQm(l—r2)O‘dz

B

2m 1
ca/ 2™ (1 — ) rdrdf
o Jo

F'm+1)I'(a+1)
7l'(m + o +2)
Fa+2) I'(m+ 1)I'(a+1)
mM(a+1) 7l(m+a+2)
2I'(a+2)I'(m + 1)
ml'(m + o+ 2)
2m!I(a + 2)
nl(m 4 a +2)

2mey

Definition 2.13. Let X be an inner product space. The vectors x,y € X are said to be

orthogonal if (z,y)=0.

Definition 2.14. Let X be an inner product space. The set {ej,...,ex} C X is said to be

orthonormal if |le,|| = 1 for 1 < n < k, and (e, e,) = 0 for all 1 < m,n < k with

Definition 2.15. A maximal orthonormal set in an inner product space V is called an

orthonormal basis for V' or a complete orthonormal set of V.

Proposition 2.6. In HL?*(B, dv,), if m # n, then (2™, 2"), = 0.



o . ; — . .
wgau. Since ZM=pmeifm — Znopne=ifn and m = n, we obtain

2 1
/zmz”dz = / / rer”ew(m*")(l — %)% drdf
B o Jo
2 1
= / ele(m")dﬁ/ P — )% dr
0 0

27 1
= / cos(m —n) +isind(m —n) dH/ (1 — )% drr
0 0

. . . B 2r pl
sinf(m —n) icosf(m n)] / PEIEL(] ) gy
m-—n m-—n o Jo

= 0.

Proposition 2.7. The set {z™} is an orthonormal basis for HL?(B, dv,).
Hgan. See [1]. O

Theorem 2.8. (Riesz Representation) If L is a bounded linear functional on a Hilbert

space H, then there exists a unique y € H such that

L(z) = (y,z) for each x € H.
|L(x)]

Moreover |L|| = ||y|| where |L| = .
x€H—{0} B4l

Consider the pointwise evaluation in B which is defined as follows. For a fixed

w € B, we define Ty, : HL*(B, dv,) — C by

Then we have that T, is a bounded linear functional on # L? (B, dvy). The Riesz represen-
tation shows that for each w € B, there exists a unique function K2 in HL?(B, dv,) such

that
Flw) = (K5 = [ FOREE) o). 1)
This will be called the reproducing formula for f in HL?(B,dv,). The function

K%(z,w) = K&(z) where z,w € B is called the reproducing kernel of HL?(B, dv,).

When « = 0, the reproducing kernel K (z,w) = K9 (z) is also called the Bergman kernel.

Proposition 2.9. For each o > —1, the reproducing kernel of HL?(B,dv,) is given by

_ 1
a 77(1 - <Z7w>)a+2.

K%(z,w)



Agan. See [4]. O

1 1
Theorem 2.10. (Holder Inequality) If p > 1 and — + — =1, then
P q

1 1
Zaibi S <Z|ai|p>p (Z“)l’q) ' .
=1 i=1 =1

Theorem 2.11. Let HL?*(B, ) be as above. Then there exists a function K(z,w),

z,w € B, with the following properties :

1. K(z,w) is holomorphic in z and anti-holomorphic in w, and satisfies

K(w,z) = K(z,w).
2. For each fixed z € B, K(z,w) is square-integrable do(w). For all F € HL*(B, a)
F(z) :/K(z,w)F(w)a(w) dw.
B

3. If F € L?*(B,«a), let PF denote the orthogonal projection of F onto the closed
subspace HL*(B, ). Then

PF(z) —/BK(z,w)F(w)a(w) dw.

4. For all z,u € B,
/ K (2, w)K (w, u)a(w) = K(z,u).
B
5. For all z € B,
|F(2)]> < K(z,2)||F||”

and the constant K(z,z) is optimal in the sense that for each z € B there exists a
non-zero F(z) € HL?(B, a) for which equality holds.
6. Given any z € B, if ¢.(-) € HL*(B, ) satisfies

F(z) = /quz(w)F(w)a(w) dw
for all F € HI*(B,a) then ¢.(w) = K(z,w).
Hgan. See [4]. 0
In C, we introduce the “number operator”’ N which is defined by

N =2—.
Zdz



It is clear that for any monomial z™, N(2") = mz™.

For a holomorphic function f in B, we write

df

Vi) = ()

and call |V f(z)| the holomorphic gradient of f at z. Similarly, we define

Vi(z) = V(f 0¢:)(0),

where ¢, is the biholomorphic mapping of B that interchanges 0 and z. Precisely, for any

point z € B — {0} and a € B,

- P(@) - 5.0
1—{(a,z)

where S, = /1 — |z|2, P.(a) = <az’ §>z and Q.(a) =a — <‘az’|§>z We call |V f(z)] the

invariant gradient of f at z.

Definition 2.16. Let X be a normed linear space. Denote by X* the set of all bounded
linear functionals on X. We call X* the dual space of X

Definition 2.17. For o > —2, we define

HL*B,a) = {f € HL (B, dvars) : Nf = z% € HL?(B, dva+2)}

with the inner product and norm

<fa g>HL§ = <Pa+1f, Pozg>a+2

Il mn 12 +2+\|f||a+2
1
a+2<f2 f>a+2+ +3< dz ff>a+2
zi+a+2
where Paf(Z) = dZaT f(Z)

Theorem 2.12. For a > —1, HL?*(B,a) = HL*(B,dv,) as inner product spaces.

gan. See [1]. 0

10



Theorem 2.13. For o > -2,
{zm F(m+a+2)}
m!I'(a+2)
is an orthonormal basis for HL*(B, ).
Hgan. See [1]. O
Lemma 2.14. If f is holomorphic in B, then
Vi) = (1= 2PV )
for all z € B.
Wgas. See [9]. 0
Lemma 2.15. If fis holomorphic in B, then
(1= [zP)INf(2)] < (1= 2PV f(2)] = V()]
for all z € B.
igas. See [9]. O
The next proposition will show that |V f(z)| is bounded on any compact
subset of B.

Proposition 2.16. Suppose oo > —1 , 0 < r < 1. Then there exists a positive constant C

such that
d,
VA = | )| < Nl

for all f € HL?*(B,dv,) and all z € B, with |z| <.
Hgan. See [9]. 0

Proposition 2.17. Suppose o is real and / |£(2)|(1 = |2]*)*dz < co. Then
B

24«
/fOSO ) dva(2 /f ‘1_ . CJ>’)2 ey Wal2)

where ¢ is any automorphism of B and a = ¢(0).

11



ﬁgﬁmf. See [9].

Theorem 2.18. Suppose c is real and t > —1. Then the integral

Jet(z) = /B (1~ Jwl) dw zeB

|1 _ <Z, w>‘t+c+2

has the following properties.
If ¢ >0, then
Jet(2) ~ (1= [2*)7°

as |z| —17.
a o
wgau. See [9].

Theorem 2.19. If o > —1 and / 1F(2)|(1 = |2]*)*dz < oo, then
B

_ f(w)
1) = [ G e e
for all z € B.
Wgas. See [9].

Theorem 2.20. The kernel

1 1 dt
L(Z’“’):/o [(1—t<z,w>>ﬁ+2‘1 T

satisfies

C
Lzw|l < ——reo—
R e e
or any z,w € B and C' is some positive constant independent of z and w.
y P 4

ﬁgq;{ Consider the kernel

Lz w)| < /0
_ /01 1
N 11—<z,1w>|6+1/0

(1= (z,w))"*!
(1 —t{z,w))B+2

1
(1—t(z,w))P¥2
1— (1 —t{z,w))*2

=il w2 |12
(1= (zw)P T 1 — (1 —t{z,w))"+?
(1 —t{z,w))B+2 t

1
1|y

t
1

is continuous on [0, 1], we can choose

Sincef(t) = ‘

dt.

12



_ (1 — <Z7w>)6+1
A= 000 | ez wyypee | TS
A U1 — (1= t{z,w))+?2
L < : dt.
R e s
1—(1—t 2
Since ¢(t) = ' ( t<z7w>) is continuous on (0, 1] and
1—(1— B+2
i 1= OO (54 92,
t—0 t

1—=(1—=t¢ a+2
( (2, w)) dt. Therefore we obtain

1
wecanlet C = A max
0 0<t<1

C

(A= (D =

1Lz, w)| < |

O]

Theorem 2.21. Fix two real parameters a and b and define two integral operators T' and

o (1~ )
T1) = (1= ) | s ) du

and
~wl2)
$#6) = (- kP [ o e

Then for —oo <t < oo and 1 < p < oo the following conditions are equivalent:
a). T is bounded on LP(B,duv,).

b). S is bounded on LP(B,duv;).

c) —pa<t+1<pb+1).

figan. See [9]. O

13



CHAPTER 3

Main Results

We recall that for > —2, a generalized Bergman space is defined by
d
HL*B,a) = {f € HL*(B, dvao) : zd—J; € HLQ(B,dua+2)} .

The space HL?(B, o) = HL?*(B, dv,) when o > —1. However HL?*(B, a) does exist and
non-zero when —2 < o < —1.

In this chapter, we will present another aspect of a generalized Bergman space.
We start with viewing a generalized Bergman space as a dual space of other spaces. Then
we will give necessary and sufficient conditions for a function being in a generalized

Bergman space.
Theorem 3.1. Suppose o, 5 > —2 then

(HL*(B,a))" = HL*(B, )
(with equivalent norms) under the integral pairing

bz = [ Praf Pl 1a(2)

where v =

ﬁgﬂuf. For each g € HL*(B, ), we define T, : HL?*(B, o) — C by

Ty(f) = <f,g>HL3-

Next, we will prove that T, € (HL*(B, a))*.

14



Consider |T,(f)| =

IN

By Theorem 2.10,

T4 (f)]

We compute

(524

+ f(2),

IN

Nf(z)
v+3

‘<f, 9 HL

|<737+1fv P79>7+2‘

[ Pr Pl - s

Cy+2

49(2)

eri / (1 =) B[Py ()1 — |o2) F

=

croa [0~ 1P F Praas s

([t W)\)zdzf

croa ([ Praf @R o220z
(et rea)’

Cy2l| Py f(2) latallPyg ()l 42

NI

Cy2 ((Py41f(2), Py1f(2))at2(Pr9(2), Prg(2)) 12)

e ({22 4 0. 218D f(2)>a+2> :

N|—=

¥+3 v+ 3

Ng(2) Ng(2) :
) << o +g(2), o +g(z)>ﬁ+2) )

a+2

dz.

e )> _ <Nf(Z)’Nf(2)>a+2+<Nf(2)’f(z)>a+2

Ty +2 * g<z>>ﬁ+2 - <];[g+(22)’ ]X?F(ZQ) >5+2 i <Jjg+(z)7g(z)>6+2

15



Nf(z)

Then we multiply < 513

+1E) G @) with (B85 4 g(2), 255 4+ 9(2) )

B+2

The quantity is equal to the 16 terms showed below.

K

AL (N f(2), Nf(2))aya (N9(2), Ng(2)) g4n
+A2 (Nf(2), Nf(2))ay2 (N9(2),9(2)) 512
+A3(Nf(2), Nf(2))aya (9(2), Ng(2)) 510
+AL (Nf(2), Nf(2)) g (9(2), 9(2)) 5 1o
+A5 (Nf(2), [(2)) e (N9(2), Ng(2)) 12
+A46 (N f(2), f(2)) a2 (N9(2),9(2)) g1
+A7(N[(2), f(2))ar2 (9(2): N9(2)) g 1o
+As (Nf(2), f(2)at2 (9(2), 9(2)) g1
+A49 (f(2), Nf(2)) a2 (N9(2), Ng(2)) g10
+A410 (f(2), Nf(2)) s (N9(2),9(2)) 512
+A1 (F(2), Nf(2)) a2 (9(2), N9(2)) g1
+A12 (f(2), Nf(2)) 42 (9(2), 9(2)) g1
+A13 (£(2), f(2))at2 (N9(2), N9(2)) g12
+A14 (£(2), [(2) oy (N9(2),9(2)) g1
+A15 (f(2), f(2)) g2 (9(2), Ng(2)) g1
+A16 (£(2), (2))at2 (9(2):9(2)) g ya
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1
where A; = ,

(Y+3)(v+3) (v +2)(v+2)
1
Ay = Ag= ,
? ST (43 (v +3)(y+2)
1
A =
! (y+3)2°
1
A = Ag =
° YT (3 (22
1
1
Ag = App =
A 1
13 — <7+2>27
1
Ay = A=
14 15 CED) and
A16 =1

By the definition, we have

1% = <Nf <Z),Nf<z)>a+2+<Nf(z)’f(z>>a+z

and

17



We compute

£ 1172 HQII%L% = Bi(Nf(2), Nf(2))a12 (Ng(2), Ng(2)) 515
+By (Nf(2), Nf(2))are (N9(2),9(2)) 12
+B3 (Nf(2), Nf(2))ar2 (9(2); N9(2)) g1
+By (Nf(2), Nf(2))ar2(9(2):9(2)) g1
+B5 (Nf(2), f(2))aya (N9(2), Ng(2)) 12
+Bs (Nf(2), f(2))aya (N9(2):9(2)) g1
+B7 (N f(2); f(2))aya (9(2), N9(2)) 12
+Bs (Nf(2), [(2))aya (9(2),9(2)) 12
+By (f(2), Nf(2))aya (N9(2), N9(2)) 19
+B10 (f(2); Nf(2))aya (N9(2),9(2)) 512
+B11 (f(2), Nf(2))aya (9(2); N9(2)) 12
+B12 (f(2), Nf(2)) g2 (9(2), 9(2)) g 1o
+B13 (f(2), f(2))asa (N9(2), Ng(2)) 12
+B14 (f(2), (2) oy (N9(2),9(2)) g 1o
+B15 (f(2), [(2)at2 (9(2), Ng(2)) 1o

+B16 (f(2), [(2))ay2 (9(2), 9(2)) g 42 5 G.1)

18



where

1
Bl = et @ G
1
B = Gt (B3
B — 1
5T (a+2)(e+3)(B+2)
1
By = (a+3)(a+2)’
1
Y = GGt oB+e)
1
Bs = (a+3)(B+3)’
1
Br = (a+3)(B+2)’
1
Bs = (a+3)"’
Be — 1
P (@+2)(B+2)(B+3)
1
Po = i)
1
b= GG
1
Bz = (a+2)’
B _ 1
N CEDICEE
1
By = (B+3)
1
B15 = (/8—|—2) and



Let M = min B; , N = max A;. Then multiply the quantity K with M, we obtain

(

M

N

)K -

N

ML NI, N ) g (NG, Ng(2)

J‘j\;‘? (NFf(2), Nf(2)) g (Ng(2),9(2)) 1o

M N T, Nz (902, No()

_l’_

+M/\1;14 (Nf(2), Nf(2)ara(9(2):9(2)) g2

+Ava5 (NF(2), f(2))ara (N9 (2), Ng(2)) g4

F 2 N FE), 1)) s (N9(2), 92D

+/\/,/t\‘;17 <Nf(z)7 f(z)>a+2 <g(2), Ng(z)>6+2

—|-‘/\/./l\?18 <Nf(2’), f(Z)>a+2 <g(2)79(5)>6+2

+Mj\fA9 <f(Z), Nf(z)>a+2 (Ng(z), Ng(z)>5+2

+Mjfl° (F(2), NF(2))ay2 (N9(2),9(2)) 42

A8 (), NS ) sz (902, No (o))

+— V(@ NF(2))ar2(9(2), 9(2)) 51

+Mffhg (F(2), F(2) a2 (N9 (2), N9(2)) 19

PR 1), 12D ara (NG040

+Mj\1;’115 <f(Z), f('z)>oz+2 <g(z), Ng(2)>5+2

Mj\x;l16 <f(2)7 f(2)>a+2 <g(z), g(z)>6+2 )

+

A
Compare (3.1) and (3.2) term-by-term, we have that A’/lN, L<M< B

(3.2)

20



for all 7. That is,

IN

T,(f) c7+2<<Nf ©) 4 s, A O f<z>>

v+3

Ng(z) 1
(345 190 325 o)
N

2 2 1
M(HQHHL%HJCHHLg)Q

N
= llolazzllfllars-

IN

Therefore T, is a bounded functional on HL?*(B,a) with ||T,| < K%aﬁ\|g\|HL% where
K, o p is a positive constant depending on c,,cg and c¢,. The map T is linear because of
the linearity of the inner product. Thus we can define L : HL?(B, ) — (HL?*(B,a))* by
L : g+~ T, Then we have L is an injective map.

Conversly, let F € (HL?*(B,a))*. By Riesz representation, there exists some
h € HL*(B,«a) such that F(f) = (f, h) gz for all f e HL*(B,«). We will show that for
each F € (HL?*(B, a))* there exists g € HL?(B, 3) such that

F(f)={f.9)urz  forall f € HL*(B,a).

Consider

E(f) = (fihuez

= (Pa-l—lf, Pozh>a+2

N N
——f+fi—sh+h
a+3 a+ 2 a2

N N N N
— (Gt (i) +(hatsh)
a+3"a+2 /., a+3 at2 a+2 /40
+

<f7h>a+2
N N N N
) () ()
vH3Ty+2 v+2 +3 v+2 +2 v+2
+(f, AR} 4,
— <Nf+f,NAh+Ah>
v+3 v+ 2 Y2

= <7)7+1 /5 P’yAh>7+2

= ([, Ah) 12
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(v+m+3)(y+m+2)(y+m+1)...(y+4)

(a+m+3)(a+m+2)(a+m+1).(a+4)
g € HL?*(B,a) C HL?*(B,p) if B > a. Therefore there exists g € HL*(B,3) such

that F'(f) = (f,g>HLg{, for all f € HL?*(B,«). Therefore the map L : HL?*(B,3) —

where A = . Let ¢ = Ah. Then, we also

(HL?*(B,«a))* is one-to-one and onto. By the Riesz representation, we also have

1L = Flllzz,

Without eliminating of the constant k£, we may say that this is an “essentially “isomorphism.
Alternatively, we can say that this is an isomorphism under equivalent norm.

The condition 5 > « restricts us to say that this theorem is valid only for
8 > a > —2. However the transitivity of “="(which we mean an isomorphism) allows us

to manipulate the numbers «, 3 which make the theorem to be valid for all o, 5 > —2. O

In the next theorem, we will show some equivalent conditions for a function

being in a generalized Bergman space.

Theorem 3.2. Suppose o > —2, and [ is holomorphic in B. Then the following conditions
are equivalent:

(a). f€ HL*(B, )

(b). |Vf(2)| € L2(B,dvass) and |Sf(2)] € L2(B, dvays)

(c) (L= 12P)IVf(2)] € L*(B,dvay2) and (1—|2[*)|Sf(2)| € L*(B, dva+2)

(). (1= [2P)INF(2)| € L2(B,dvass) and (1= |s2)IN2f(2)] € L(B, dvasa).

Where Sf(z) = Vz%f(z) and Sf(z) = %z%f(z)

ﬁgﬁmf. The proof can be adjusted from that of Theorem 2.16 in [9 ] as follows. To

show (a) implies (b), we assume that f € HL?*(B, «). That is, f € HL*(B,dv,+2) and
d
zd—f € ’HL2(IB, dvai2). For B> a+2, g€ HL*(B, dvg), and Proposition 2.16, there exists
z
a constant ¢ > 0 such that

d 2

Vg(O)* = |--9(0)

< (cllgllp)?

= ¢ [ lotw)Pvs(w)
= & [ lo) dos(o).
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Let g = f o ¢, and by Proposition 2.17, we obtain

Vg(0)2 = [Vfop(0))F < ¢ / V£ 0 a(w) 2 dvp ()
B

|f(w)[*(1 — ||

2)ﬁ+2

B 1= (z,w)2F2)

Since Vf(z) = V(f 0 ¢.)(0), we obtain
|f(w)P(1 — |27+

1 (2 w) PP+

ViG)P <

An application of Fubini’s theorem and Theorem 2.18 give

dvg(w).

dvg(w).

/\vf (2)]? dvaya(z) < / ~ Il 6+2/|1—

50572) dvg(w) dva42(2)

(1-— B+2 2
— // g _!Z\Z 5 |2|{5(+22| dvg(w) dva2(2)

(1— |2[2)8+2 5
— // 1 |z|z o |2|!(};(+22| dvas2(2) dvg(w)

B |f ’2 (1—|2]?) yatB+d
B ‘1 (z,w)|2(B+2)

IN

S / ) P w22 du
B

= %’02”in+2 < 0.

Thus |V f(2)| € L2(B, dvais).

d
Let g = zd—f(z) o ¢, and by Proposition 2.17, we obtain
z

2
c/
B

df

Va(O)P = V22 (2) 0 6.(0) )

IN

dz dvg(w)

& /B F)[A(1 = [w]2)*=5+2 dug(w)

2

Vzd—(z) o p.(w)| dvg(w)

_ ’2‘2),6’+2

df
e v w)P
B |1 (zw)P0+2)
e df, . df
Since Vz%(z) = V(za 0 ;)(0), we have that
df
g P, e w)Ra - )
Vz—(z) Sc/ w
dz B 1= (zw) 02

dvg(w).

dvg(w).
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Again, an application of Fubini’s theorem and Theorem 2.18 imply

2 |w—( )|2
VZ%(Z) dvasa(z) < /02(1—|Z!2)B+2/BI1(gfuw>l2(,8+2)d”ﬂ(w)d”a+2(z)

A

(1 e
N // 11— (z,w) |2(6+2) d“ﬁ(w) dva42(2)

d
L )2 )
_ // 11—zw|2<5i2> dvasa(z) dvg(w)

df (1 Jz[?)oto
2 ar o
= c /B]wdw(w) T <Z7w>|2(6+2)dzdv5(w)

IN

2 ﬂwz_U}Qa—ﬂva
@ [ g )= o) dosf)

df

) 2 2ya+2

- 4 - d

et [ JwSh @B~ )+ du
df

= CﬂCQHZ*HaH < o0.

- - d
Thus |Sf(z)| = |Vzd—£(z)| € L*(B, dvayz) . This proves that (a) implies (b). Lemma 2.14

and Lemma 2.15 show that (b) implies (c), and (c) implies (d).
To prove (d) implies (a), we assume that f is a holomorphic function in B such
that the function (1 — |z|?)|N f(z)| belongs to L?*(B,dva,2). Let 3 be a sufficiently large

positive constant that 5 > «. Then by Theorem 2.19, we obtain

Nf(z) = /E %dvg(w), for any z € B.
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Since N f(0) = 0, we have

Nf(z) = Nf(z)=Nf(0)

= NJ) = [ Niw)dusw)
= [ =gt - [N

= [ (G 1) o

t2"

LN F(tz) > nan
N at = Y -

n=1

and

1

0

It follows that

LN f(t2)

re- o= [ a [ s (gt 1)
- [ /(1—tz1w>)5+2_1)d

= / N f(w)L(z,w)dvg(w).
From equation (2.2) of Theorem 2.20, we get

(1 — [w)?[N f(w)]
B (1= (z,w)7H!

1f(z) = fO) <C dvg_1(w).

If 8 is so large that
2<a+3<20pB+1),
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then Theorem 2.21 implies
156 = 1O dviat)
2
[ / (- ’w\2>\Nf(w)dUﬁl(w)] Lol
B L/B

(1= (z,w)) |+

- 2
- [zt /B<1—|w\2>wf<w>rdvﬁ1<w>} o)

L(1—=12?) (1 = (z,w)) |7+

Lol et [ s (= [N fw)|du(w) ]
_ /Bc (1 [2?) /13(1 e e e TIE LS }dva_i_g(z).

IA

It follows that

/|f 0) 2dva 42 (2) <K/1—|z\ N £(2)Pdvasa(2).

2
where K = <C'05> .
Cp—1

Thus if (1—2|?)|Nf(2)|? € HL*(B, dvsi2) then / | (2) = £(0)|?dvgsa(z) <
k < oo which implies f(z) — f(0) € HL*(B, dva,z), and hEnce f € HL*(B, dvayio).
Similarly if (1 — [2|?)|N?2f(2)]? € HL*(B, dvas2) that is (1 — |z]?)|N(Nf(2))| €
HL*(B, dvaiz2), then Nf € HL?*(B, dv,i2). This completes the proof of the theo-

rem. -

Theorem 3.3. Suppose o« > —2, N is a positive integer, and f is holomorphic in B. Then
f € HL*(B,«) if and only if the functions

oNf oN  df
_L2\N _ N

-1 L) and (1 e 22T
all belong to L*(B, dva.io).

ﬁgw{. (=) The case K = 1 follows from the equivalence of (a) and (c¢) in Theorem 3.2.

We prove the case K = 2, by assuming f € HL?*(B,«) that is f € HL*(B, dvai2) and

d
z—f(z) € HL*(B, dva.2). By using Theorem 3.2, the condition (a) implies (c) gives
z

(1—|2?) gz(z) and (1 — |z/?) 882 <zi(z)> are in L?(B, dva,2) and hence
af |2 o
L0122 ()] dunia) = [5G duarae) <o
and )
0 d 0 d
La=1P2 | o) dvasal) = [ |25 ) dtnsa(z) < o0
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0 0 ( d
So each function —f(z) and — <zf(z) are in HL?(B, dvay4). It follows from the con-

0z 0z \ dz
2 2
dition (@) implies (c) in Theorem 3.2 that (1 — |z|?) % and (1—z|?) % (zjﬁ(z)) ‘

(2)

are in L?(B, dv,14) and hence

/ (1 |22
B
2 2
/B 1= 122 LoD )] dvaga(z) = /B (1 |2
0 ,0?

8zzdz(z)
Therefore each the functions (1—|z\2)2—f(z) and (1—|z|?) —z%(z) are in L2(B, dvg.y2).
022 0z dz ’

0° ?
L dvgy2(z) < 00

5, %)

2 2
duasa() = [ (- 1P 5L )

and

2

2
o4 dvg42(z) < o0.

6zzdz (2)

We use the same technique to the case k = 2 as follows.
d

The case K = 3, assume f € HL?(B,«) that is, f € HL?*(B,dvas2) and zdi(z) €
z

of

HL*(B, dvay2). By using Theorem 3.2, the condition (@) implies (c) gives (1—|z|?) 5 (2)
z

2

da(2) = /B
o df, \|?

L= 1R o) dvasate) = [
0’ f 0 df

So each function a—(z) and —z—(2) are in HL*(B, dva+4). It follows from the con-

22 0z dz o > af
. . . o 2 = J e A
dition (a) — (c) in Theorem 3.2 that (1 — |2|°) 522 (2) 8szz(z)

L?(B, dva+4) and hence
2
dva+4(2) :/
B

La-tpr
o) = /

[a-1P? e i)
B

2 2

g;;(z) and (;)ZQZ:Z(,Z) are in HL?(B,dvay6). Again the condition
O3f 03 df

. , e |9 B df

(a) — (c) in Theorem 3.2 gives (1 — |z|?) 523 (2) 8z3zdz(z)

are in L?(B, dv,2) and hence

fa-ispp

2
dvg+4(2) < 00

of
&(2’)

of
&(2)

and
2

0.4 dvgt4(z) < o0.

&Z%(Z)

and (1 — |z]?) are in

2

2
of dvg+6(2) < 00

82
@(z) /

@(z)

and
2

2
o 4 dvg+6(2) < o0.

g T (2)
“dz 822zdz i

82
022

So each function

and (1 — |z|?) are in

L?(B, dv,16) and hence

Ja-ipy

2

3
o°f AV ya < 00

83
2l !

2
duassl2) = [(1=1P)° |55
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and

& _df 2| & df
1- Y o = [1- =z Y o .
L0127 | oL o) dvare) = [ -1 [ L o) dasa(z) < o0
3 3
Therefore each function (1 — |z|2)3g‘§(z) and (1 — [z|?)3 532?( ) are in L2(B, dvg2).
z
There if we assume f € HL?*(B,a). We have f € HL?*(B,dv,,2) and zﬁ(z) €

dz
HL*(B, dva,2). By using the condition (a) implies (c) in Theorem 3.2 repeatedly, we

have the following conclusions

of 2 df 2

az( ) € HL (]B d’l)a+4) and & < df( )> € HL (]B, d’l}a+4)
9% f 0? f

@(Z) € HLQ(B,d’Ua+6 and (97 ( df ) S HL2 (B dva+6)
o°f 2 f 2

823( ) € HL (B dva+8 and 823 < df ) eHL (B dva+g)

8k—1f ) ok—1 df )

W(Z) € HL (B,dva+2k) and W <Zdz(z)> € HL (B,d’l}a+2k)

0 f k oF ( df

@(z) € HL"(B, dvaqo(ks1)) and @ (z z( )) € HLQ(B,dvaH(kH)).

ak—i—lf okt df _
Hence (1 — |2|?) Es, (2)| and (1 — |2]?) 82’”12:@('2) are in L?(B, dvyyo(k+1)) such
that
oL f 2yanra | 0TS
fa-ipy &Hﬂ)d%mmM@:A@—M)+ 00 (2)| o) < oo
and
oF+1 df
L= 12| ()] dvasaen (2
ok+1 df
= /B(l |2]?)2k+2 azk+1z£(z) dvg42(2) < oo.
k+1 k+1

Therefore each function (1 — |z|?)*+! ?}z’ﬁr{ (2)| and (1 — |z|?)F+1 gzkﬂ z%(z) are in

L2 (E, dva+2).
(<) The converse is also true because of implication (¢) — (a) in Theorem 3.2. We can

follow the previous parts conversely, then we prove this theorem. O
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