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ABSTRACT

In this thesis we study the existence of a retraction of a closed
subset of a Banach space. Then we introduce and study a three-step iterative
process with viscosity to approximate common fixed points for asymptotically
quasi-nonexpansive nonself mappings in Banach spaces. Criteria for strong con-
vergence of such iteration is given. We also introduce and study a multi-step
iterative schemes with viscosity to approximate of common fixed points of finite
family for asymptotically quasi-nonexpansive nonself mappings in Banach spaces.
Finally, weak and strong convergence theorems for such iteration in uniformly

convex Banach spaces are established under some sufficient conditions.
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CHAPTER 1

Introduction

The concept of asymptotically nonexpansive self mappings which
is a generalization of the class of nonexpansive self mappings was first introduced
in 1972 by Goebel and Kirk [5]. They proved that if C' is a nonempty closed
convex bounded subset of a uniformly convex Banach space and T is an asymp-
totically nonexpansive self mapping of C, then 7" has a fixed point. Since then,
the weak and strong convergence problem of iterative sequences (with errors) for
asymptotically nonexpansive self mappings have been studied by many authors. In
2003, Chidume et al [2] introduced the concept of asymptotically nonexpansive
nonself mappings, which is a generalization of asymptotically nonexpansive map-
pings. Similarly, the concept of asymptotically quasi-nonexpansive nonself map-
pings can also be defined as a generalization of asymptotically quasi-nonexpansive
mappings and asymptotically nonexpansive nonself mappings. These mappings
are defined as follows. Let X be a real Banach space and C' be a nonempty subset

of X.

(i) A mapping P from X onto C is said to be a retraction, if P? = P;

(i) If there exists a continuous retraction P : X — C such that Px = z for all

x € C, then the set C' is said to be a retract of X.

(iii) In particular, if there exists a nonexpansive retraction P : X — C such that

1



Pz = x for all x € C, then the set C' is said to be a nonezrpansive retract of

X.

Let T': C' — X be a nonself mapping.

(i) T is said to be an asymptotically nonexpansive nonself mapping, if there

exists a sequence {k,} C [1,00) with k, — 1 as n — oo such that

I T(PT)" e = T(PT)" || < kol —yll

for all z, y € C and n > 1.

(ii) T is said to be an asymptotically quasi-nonexpansive nonself mapping, if the
set of fixed points of mapping 7" is denoted by F(7T') which is nonempty and

there exists a sequence {k,} C [1,00) with k, — 1 as n — oo such that

IT(PT)" "z = p|| < knllz — pl]

forallz € C, pe F(T) and n > 1.

Recall that a self mapping f : C' — C'is a contraction on C' if there
exists a constant a € (0, 1) such that || f(z) — f(y)|| < af|z — y|| for all z,y € C.

In 2004, Xu [15] defined the following one viscosity iteration for
nonexpansive mappings in uniformly smooth Banach space. The Banach space X

is said to be uniformly smooth if




where the function p, : Rt — R* defined by

[z +yll + [l =yl
5 —1:lzll = 1, [lyll = ¢},

t —1
p(lz e =t

pult) = sup{!

[zl = llyll = 1}, ¢ = 0.

Theorem 1.1. Let X be a uniformly smooth Banach space, C' be a nonempty
closed convex subset of X, T : C — C a nonexpansive mapping with F(T) # 0,
and f € llg denotes the set of all contractions on C. Then {z;} defined by the
following:

Ty = tf(l't) -+ (1 — t)Tl’t, Tt € C
converges strongly to a point in F(T). If we define Q : llc — F(T) by

Qf) = P_I}émt;f € llg,

then Q(f) solves the variational inequality

(I = NHR), J(Qf) —p)) <0, f €llg,p € F(T).

In 2005, Song and Chen [12] extended Theorem 1.1 to nonex-

pansive nonself mapping in a reflexive Banach space : for ¢t € (0, 1),
= P(tf(xy) + (1 —t)Txy)

where P is nonexpansive retraction and proved that {x;} converges strongly to a
fixed point of T as t — 0.
Recently in 2011, Ayaragarnchanakul [1] constructed an itera-

tive procedure to approximate common fixed points with viscosity of two asymp-



totically nonexpansive nonself mappings:

Yo = anf(mn) + (1 — ) (Buzn + (1 - Bn)T2<PT2>n71xn)

Tpy1 = P)/nf(yn) + (1 - 7n)(5nyn + (1 - 6n)T1(PT1)nilyn)

and proved some strong convergence theorems for such mappings in arbitrary
real Banach spaces and Tripak and Kongsiriwong [13] proved weak and strong
convergence theorems of a finite family of generalized asymptotically nonexpansive
nonself mappings in uniformly Banach space.

The purpose of this thesis is to extend and to improve some
results announced by Ayaragarnchanakul [1] , define a new iteration scheme for
approximating common fixed points of a finite family of asymptotically quasi-
nonexpansive nonself mapping in Banach space, and prove weak and strong con-

vergence of new iteration scheme in a uniformly convex Banach space.



CHAPTER 2

Preliminaries

The purpose of this chapter is to explain certain notations, termi-
nologies and elementary results used throughout the thesis. Although details are
included in some cases, many of the fundamental principles of real and functional
analysis are merely stated without proof.

We first collect some basic knowledge from mathematical analysis.

Definition 2.1 - Theorem 2.14 are from [9].
Definition 2.1. Let S be a nonempty subset of R.

(i) If a real number M satisfies s < M for all s € S, then M is called an upper
bound of S and the set S is said to be bounded above.

(ii) If a real number m satisfies m < s for all s € S, then m is called a lower

bound of S and the set .S is said to be bounded below.

(iii) The set S is said to be bounded if it is bounded above and bounded below.
Thus S is bounded if there exist real numbers m and M such that S C
[m, M].

Definition 2.2. (Supremum and infimum) Let S be a nonempty subset of R.

(i) If S is bounded above and S has the least upper bound, then we will call it

the supremum of S and denote it by sup S.

(ii) If S is bounded below and S has the greatest lower bound, then we will call
it the infimum of S and denote it by inf S.

Axiom 2.1. (Completeness Axiom) Every subset S of R that is bounded above

has the least upper bound. In other words, sup S exists and is a real number.



Definition 2.3. (Convergent sequence) A sequence {s,} of real numbers is

said to converge to the real number s provided that

for each € > 0 there exists a number N such that

n > N implies |s, — s| < e.

If {s,} converges to s, then we will write lim s, = s, lims, = s, or s, — s.
n—oo
The number s is called the limit of the sequence {s,}. A sequence that dose not

converge to some real number is said to be divergent.

Definition 2.4. (Bounded sequence) A sequence {s,} of real numbers is said

to be bounded if there exists a constant M such that |s,| < M for all n.
Theorem 2.2. Convergent sequences are bounded.

Definition 2.5. (Monotone sequence) A sequence {s,} of real numbers is
called a nondecreasing sequence if s, < s,.1 for all n and {s,} is called a
nonincreasing sequence if s, > s,41 for all n. We note that if {s,} is nonde-
creasing then s, < s, whenever n < m. A sequence that is nondecreasing or

nonincreasing will be called a monotone sequence or a monotonic sequence.

Theorem 2.3. (Monotone Convergence Theorem) All bounded monotone

sequences converge.

Theorem 2.4.
(2) If {sn} is an unbounded nondecreasing sequence, then lim s, = +o00.

(73) If {sn} is an unbounded nonincreasing sequence, then lim s, = —oo.

Corollary 2.5. If {s,} is a monotone sequence, then the sequence either con-
verges, diverges to +00, or diverges to —oo. Thus lim s,, is always meaningful for

monotone sequences.
Definition 2.6. Let {s,} be a sequence in R. We define

limsup s, = lim sup{s,:n > N}
n—o0 N—o0



and

liminfs, = lim inf{s, :n > N}.

n—00 N—oo

Theorem 2.6. Let {s,} be a sequence in R.

(i) If im s, is defined [as a real number,+o00 or — oo|, then
n—oo

liminfs, = lim s, = limsup s,.
n—o0 n—oo n—o0o

(79) If liminfs, = limsup s, then lim s, is defined and
n—oo n—oo n—o0

lim s, = liminf s, = limsups,,.
n—oo n—oo n—oo

Definition 2.7. (Cauchy sequence) A sequence {s,} of real numbers is called

a Clauchy sequence if

for each € > 0 there exists a number N such that
m, n > N implies |s,, — s,| < €.

Theorem 2.7. (Cauchy Completeness Theorem) A sequence in R is con-

vergent if and only if it is a Cauchy sequence.

Theorem 2.8. (Sandwich Theorem) Let {a,},{b,} and {c,} be sequences and

ay, < b, <c, for alln € N. If lim a, = L = lim ¢,, then lim b, = L.
n—o0 n—o0 n—o0

Definition 2.8. (Subsequence) Suppose that {s,,} is a sequence. A subsequence
of this sequence is a sequence of the form {¢;} where for each k there is a positive

integer ny such that
np <ng < -+ < Ng <Ny <+ (21)

and

Thus {tx} is just a selection of some [possibly all] of the s,,’s, taken in order.



Theorem 2.9. If the sequence {s,} converges, then every subsequence converges

to the same limit.
Theorem 2.10. Fvery sequence has a monotonic subsequence.

Corollary 2.11. Let {s,} be any sequence. There exists a monotonic subsequence
whose limit 1s limsup s, and there exists a monotonic subsequence whose limit is

n—o0

liminf s,,.
n—oo

Theorem 2.12. (Bolzano-Weierstrass Theorem) FEvery bounded sequence

has a convergent subsequence.

o0
Definition 2.9. (The Cauchy Criterion for Series) We say that a series Z ,

n=1
satisfies the Cauchy criterion if its sequence {s,} of the partial sum is a Cauchy

sequence :
for each € > 0 there exists a number N such that

m,n > N implies |s, — sn| < e. (2.3)

Nothing is lost in this definition if we impose the restriction n > m. Moreover,
it is only a natural matter to work with m — 1 where m < n instead of m where

m < n. Therefore (2.3) is equivalent to
for each € > 0 there exists a number N such that

n>m > N implies |s, — sp_1| <€. (2.4)
n
Since s, — Spy_1 = Z a, condition (2.4) can be written

k=m

for each € > 0 there exists a number N such that

n
D a

k=m

n>m > N implies <e. (2.5)

Theorem 2.13. A series converges if and only if it satisfies the Cauchy criterion.

Theorem 2.14. Let {a,} be a sequence such that Zan < o0o. Then lim a, = 0.

n—00
n=0



Then we collect some basic knowledge from elementary functional
analysis. Definition 2.10 - Definition 2.20 are from [4].
The following are some basic knowledge about metric spaces and

normed spaces.

Definition 2.10. (Metric space, metric) Let X be a nonempty set. A function
d defined on X x X is called a metric on X (or distance function on X) if it
satisfies the following properties :
(M1)
(M2) d(z,y) = 0 if and only if z = y.
)

(M3) d(z,y) = d(y, z). (Symmetry)
(M4) d(z, z) < d(z,y) + d(y, z). (Triangle inequality)

d is a real-valued, finite and nonnegative.

In this case, a pair (X, d) is called a metric space.

Definition 2.11. (Convergence of a sequence, limit) A sequence {z,} in a
metric space X = (X,d) is said to converge or to be convergent if there is an
x € X such that

lim d(z,,z) =0,

n—oo

x is called the limit of {x,} and we write

lim z, =z
n—o0

or, simply,

T, — T.

We say that {z,} converges to x or has the limit x. If {x,} is not convergent, it

is said to be divergent.

Definition 2.12. (Distance) The distance d(x, A) from a point x to a nonempty
subset A of a metric space (X, d) is defined to be

d(x,A) = inf d(x a).

acA
This infimum certainly exists in R and is nonnegative. If x is already in A, then,

of course, d(z, A) = 0.
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Definition 2.13. (Ball and Sphere) Given a point zy € X and real number

r > 0, we define three types of sets:

(i) B(zo;r) = {2z € X|d(z,z0) < r}. (Open ball)

(ii) B(zo;r) ={z € Xl|d(z,zo) < r}. (Close ball)
(ili) S(zo;r) = {2z € X|d(z,z0) =1} (Sphere)
In all three cases, x is called the center and r is called the radius.

Definition 2.14. (Open set, Closed set) A subset M of a metric space X is
said to be open if it contains an open ball about each of its points. A subset K
of X is said to be closed if it complement(in X) is open, that is, K¢ = X — K is

open.

Definition 2.15. (Cauchy sequence, Completeness) A sequence {z,} in a
metric space X = (X, d) is said to be Cauchy (or fundamental) if for every € > 0
there is an N such that

(T, r,) < e forevery m,n > N.

The space X is said to be complete if every Cauchy sequence in X converges (that

is, has a limit which is an element of X).

Theorem 2.15. Let M be a nonempty subset of a metric space X = (X,d). M

15 closed if and only if the situation z, € M, x, — x implies that x € M.

Definition 2.16. (Normed space, Banach space) Let X be a vector space. A
norm ||-|| defined on X is called a norm on X if it satisfies the following properties:
(N1) [lz[} = 0
(N2) ||z =0 2=0
(N3) [|azx| = |af||l=| (Absolute homogeneity)
(N4) [l + gl < llel = Iyl (Triangle inequality)
here x and y are arbitrary vectors in X and « is any scalar. In this case, a pair
(X, || - ||) is called a normed space. Note that a complete normed space is called

a Banach space.
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Theorem 2.16. A subspace Y of a Banach space X is complete if and only if the
set 'Y 1s closed in X.

Definition 2.17. (Linear operator) Let X and Y be two linear spaces over the
same field F and T : X — Y an operator with domain D(7") and range R(T).

Then T is said to be a linear operator if
(i) T is additive : T(z +y) =Tz + Ty for all z,y € X;
(ii) 7" is homogeneous : T'(ax) = aT'z for all z € X, o € F.

Otherwise, the operator is called nonlinear. The linear operator is called a linear

functional if Y = R.

Definition 2.18. (Bounded linear operator) Let X and Y be normed space
and T : D(T) — Y a linear operator, where D(T') C X. The operator T is said to

be bounded if there is a real number ¢ such that for all x € D(T),

[ T]] < ef|]].

Definition 2.19. (Convex set) A subset C of a vector space X is said to be
conver if z,y € C'impliess M ={z € X|z=ax+(1—a)y,0<a <1} CC.
M is called a closed segment with boundary points z and y; any

other z € M is called an interior point of M.

Definition 2.20. (Fixed point) A fized point of a mapping T : C' — X of a
set C' into X is an x € C which is mapped onto C, that is, Tz = x, the image T'x
coincides with z. The set of all fixed points of T is denoted by F(T'), that is,

F(T) ={x € Clx = Txz}.

Example 2.1. Let X = [1,5] and C' = [1,2]. Define T : [1,2] — [1,5] by Tz =
22 +x — 1. We show that T has a fixed point. By definition, z is a fixed point of
T if and only if Tx = z. Therefore T has only one fixed point and F(T) = {1}.
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A fixed point theorem for asymptotically quasi-nonexpansive nonself
mapping

Here a classical theorem about fixed point of asymptotically non-
expansive nonself mapping are from [1]. We first give the definition of retraction

and then we give the definition of asymptotically nonexpansive nonself mapping.

Definition 2.21. (Retraction) Let X be a real Banach space and C' be a

nonempty subset of X.
(i) A mapping P from X onto C'is said to be a retraction, if P? = P;

(ii) If there exists a continuous retraction P : X — C such that Px = x for all

x € C, then the set C' is said to be a retract of X.

(iii) In particular, if there exists a nonexpansive retraction P : X — C such that
Px =z for all z € C, then the set C'is said to be a nonexpansive retract of

X.

Definition 2.22. (Asymptotically Nonexpansive Nonself Mapping) Let C'
be a nonempty subset of Banach space X. A mapping T : C' — X is a said to be
an asymptotically nonexpansive nonself mapping , P is nonexpansive retraction,

if there exists a sequence k,, C [0,1) with &k, — 0 as n — oo such that
IT(PT)" 2 = T(PT)" yl| < (1+ kn)llz =y,
for all z,y € C"and n > 1.

Definition 2.23. (Asymptotically Quasi-Nonexpansive Nonself Mapping)
Let C' be a nonempty subset of Banach space X. A mapping 7' : C — X is a
said to be asymptotically quasi-nonexpansive nonself mapping, P is nonexpansive
retraction, if F(T) # () and there exists a sequence k, C [0,1) with k, — 0 as
n — oo such that

IT(PT)" z —pl| < (1+ ko) ||z —p]

forallz € C,p e F(T) and n > 1. F(T) is the set of fixed points of mapping 7.
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Now, we give definitions and theorems about reflexivity, weak con-
vergence, weak compactness and lower semicontinuous. Definition 2.24 - Theorem
2.23 are from [7].

Reflexivity

Let X, X5, -+, X, be n linear space over the same field F. Then a
functional f : X x XX --xX,, — Rissaid to be an n—linear(multilinear) functional
on X = X7 x Xy x --- x X, if it is linear with respect to each of the variables

separately.

Definition 2.24. (Dual space) The space of all bounded linear functionals on
a normed space X is called the dual of X and is denoted by X*.X* is a normed

space with norm denoted and defined by

1f]l« = sup{[f(2)] : € Sx},
where Sy = {z € X : ||z|| = 1}.

Definition 2.25. (Duality pairing) Given a normed space X and its dual X*,
we define the duality pairing as the functional (-,-) : X x X* — FF such that

(x,j)y =j(x) forall z € X and j € X"

Theorem 2.17. Let X* be the dual of normed space X. Then we have the fol-

lowing :
(i) The duality pairing is a bilinear functional on X x X* :

(a) (ax + by, j) = alx,j) + b(y,j) for all xz,y € X;j € X* and a,b € F;

(b) (x,aj1 + Bj2) = afz, ji) + Bly,j2) for all x € X;j1,j2 € X* and
a,pf eF.

(ii) (x,j) =0 for all x € X implies j = 0.

(111) (x,7) =0 for all j € X* implies x = 0.
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Definition 2.26. (Natural embedding mapping) Let (X, || - ||) be a normed
space. Then (X*,|| - ||«) is a Banach space. Let j € X*. Hence for given z € X,
the equation

fe(3) = (2, ])

defines a functional f, on the dual space X*.

Define a mapping ¢ : X — X*™ by ¢(x) = f,,x € X. Then ¢
is called the natural embedding mapping from X into X**. It has the following

properties :
(i) ¢ is linear : p(ax + By) = ap(z) + Pp(y) for all z,y € X, o, 5 € F ;
(ii) @(x) is isometry : |[p(z)| = ||z|| for all x € X.

In general, the natural embedding mapping ¢ from X into X** is not
onto. It means that there may be elements in X** that can not be represented by
elements in X.

In the case when ¢ is onto, we have an important class of normed

space.

Definition 2.27. A normed space X is said to be reflexive if the natural embed-

ding mapping ¢ : X — X** is onto.

Theorem 2.18. (Jame theorem) A Banach space X is reflexive if and only if
for each j € Sx~, there exists x € Sx such that j(x) = 1.
Note that Sx» ={j € X* : ||jl]l« =1} and Sx = {x € X : ||z|| = 1}.

Theorem 2.19. A normed space X is reflexive if and only if every bounded se-

quence has a weakly convergent subsequence.

Theorem 2.20. Let C' be a nonempty closed convex subset of a reflexive strictly

conver Banach space X. Then for x € X, there exists a unique point z, € C such

that ||x — z|| = d(z, C).
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Convergence of sequences of elements in a metric space that defined
in Definition 2.11 will be called strong convergence, to distinguish it from weak

convergence.

Definition 2.28. (Strong convergence) A sequence {x,} in a normed space
X is said to be strongly convergent (or convergent in the norm) if there is an

z € X such that

lim ||z, —z|| = 0.
n—oo
That is written
lim z,, =z
n—oo
or simply
Tn, — L.

x is called the strong limit of {x,}, and we say that {x,} converges strongly to

x.

Weak Convergence and Weak compactness
We are now in a position to define weakly convergence and weakly

compact.

Definition 2.29. (Weak convergence) A sequence {z,} in a normed space X
is said to converge weakly to z € X if f(x,) — f(x) for all f € X*. In this case,

we write z,, — = or weak- lim xz,, = z.
n—oo

Theorem 2.21. Let {x,} be a sequence in a Banach space X. Then we have the
following :

(i) x, — z (in X ) implies {x,} is bounded and ||z|| < liminf ||z,||.
n—oo

(i) x, =z in X and f, — f in X* imply f,(z,) = f(z) in R.
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Definition 2.30. (Weak topology) The weak topology on X is the topology

with the fewest open sets.

Definition 2.31. (Compact in the weak topology) A subset C' of a normed
space X is said to be compact in the weak topology. For every sequence {z,},

there exists a subsequence {z,,} converges weakly in C.

Definition 2.32. (Weak compactness) A subset C' of a normed space X is said

to be weakly compact if C' is compact in the weak topology.

Theorem 2.22. If X is a Banach space. Then X is reflexive if and only if every

closed convex bounded subset of X is weakly compact .

Definition 2.33. (Lower semicontinuous) Let X be a topological space and

f: X — (—o0,00] a proper function. Then f is said to be lower semicontinuous

(l.s.c.) at xy € X if

f(zo) <liminf f(z) = sup inf f(x),

=0 VeU,, €V
where U,, is a base of neighborhoods of the point zy € X. f is said to be lower
semicontinuous on X if it is lower semicontinuous on each point of X, i.e., for
each r € X

T, — ¢ = f(r) < liminf f(z,).

n—o0

Note that f is said to be proper if there exists € X such that f(x) < occ.

Theorem 2.23. Let C' be a weakly compact convex subset of Banach space and
f:C — (—o00,00] a proper lower semicontinuous convex function. Then there

exists xo in domain of f such that f(xzo) = inf{f(x) : z € C}.

Finally, we give other definitions, theorems and lemmas which are

used throughout the proof of this thesis (Definition 2.32 - Lemma 2.26).

Definition 2.34. [14](Completely continuous) Let X be Banach spaces and
C be a nonempty subset of X. A mapping T : C' — X is said to be completely
continuous if, for any sequence {z,} in C such that x,, — z , we have ||Tz, —

Tx| — 0.
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Definition 2.35. [14](Demiclose) Let X be a Banach space. A mappings T'
with domain D and Range R in X is said be demiclosed at 0 if, for any sequence
{z,} in D such that {z,,} converges weakly to x € D and Tx,, converges strongly

to 0 imply Tz = 0.

Definition 2.36. [14](Demicompactness) Let X be Banach spaces and C be a
nonempty subset of X. A mapping T': C' — X is said to be demicompact if, for
any sequence {x,} in C such that ||z, — Tx,|| — 0, there exists a subsequence

{xy,} of {x,} and = € C such that ||z,, — 2| — 0.

Definition 2.37. [14](Opail’s property) A Banach space X is said to satisfy
Opail’s property if for any distinct elements x and y in X and for each sequence

{z,,} weakly convergent to z,
liminf ||z, — 2| < liminf ||z, —y|.
n—oo n—o0

Definition 2.38. [13] Let X be a Banach space and let C' be a subset of X. For

i =1,2,3,--+ k, let {T;} be a family of nonself mappings from C' to X with a

nonempty set F' of common fixed points. We say that {7} satisfies condition (A)
if there exists a nondecreasing function f : [0,00) — [0,00) with f(0) = 0 and

f(t) > 0 for all t € (0,00) such that

k
1
23" e = Tiall > f(d(r, F),
i=1
for all x € C, where d(z, F) = inf{||z — p|| : p € F'}.

Lemma 2.24. [1] Let {a,},{b,} and {0,} be sequences of nonnegative real num-

bers satisfying the inequality
ani1 < (14 6,)a, + b, forall n.
[fZén < o0 and an < 00, then
n=1 n=1

(i) lim a, < oo exists.
n—oo
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(ii) If {a,} has a subsequence converging to zero, then lim a, = 0.
n—oo

Lemma 2.25. [10] Let X be a Banach space and let C' be a nonempty closed
convex subset of X which satisfies Opial’s condition and let {x,} be a sequence
in X. Let u,v € X be such that nhjglO |xn — ul| and nhjEO |lzn — || exist. If {xn,}
and {x,, } are subsequence of {x,} which converge weakly to u and v, respectively,

then u = v.

Lemma 2.26. If C is a nonempty closed subset of a real Banach space X, x € X
and d(xz,C) =0, then z € C.

Proof. Let C be a nonempty closed subset of a normed space X, z € X and

d(xz,C) = 0, that is, ingd(x,y) = 0. Using Theorem 2.15, we will show that
ye

x € C. That is we construct a sequence {y,} € C such that y, — x as n — oc.

For n € N we get that
inf d(x,y) < inf d( )+1
g dlwy) <t dlo ) +

Thus by definition of infimum, we obtain that for each n € N, there exists y,, € C
such that

1
= inf d d n inf d(x, —.
0= inf d(,y) < d(z,y) < inf d(z,y) + ~
By the sandwich theorem we have

lim d(z,y,) = 0.

n—o0

This means that y,, — x. Since C' is closed, y,, € C' and y,, — x, by Theorem 2.15

we have z € C. ]

Lemma 2.27. Let C' be a nonempty closed subset of a Banach space X and
T : C — X be an asymptotically quasi-nonexpansive nonself mapping with the

fized point set F(T) # (. Then F(T) is a closed subset in C.

Proof. Assume that T : C' — X is an asymptotically quasi-nonexpansive nonself

mapping with respect to {k,}. Let {p,} be a sequence in F/(T') such that p, — p
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as n — o0o. Since C' is closed and {p,} is a sequence in C, we must have p € C.

Since T': C' — X is asymptotically quasi-nonexpansive, we obtain

Taking limit as n — oo and using the continuity of the norm, we obtain ||Tp—p|| <

0 , which implies that Tp = p. The proof is complete. ]

Lemma 2.28. Let C be a nonempty closed subset of a Banach space X
and T : C' — X be an asymptotically quasi-nonexpansive nonself mapping with the

fized point set F(T) # 0. If x,, — x, then d(x,, F(T)) — d(x, F(T)).

Proof. Let z, — x. We will prove that lim d(z,,C) = d(z,C). By the triangle

n—oo

inequality, for each n € N, we obtain
d(z,,C) < d(z,C) + d(xp, ).
From this, for each n € N, we get
d(x,,C) —d(z,C) < d(zp,x). (2.6)
Similarly, for each n € N, we can obtain that
d(z,C) < d(x,,C) + d(xp, x),
so, for each n € N, we get
—d(zp,z) < d(z,,C) —d(x,C). (2.7)

From (2.6) and (2.7), we get

|d(z,,, C) — d(z,C)| < d(zp, ). (2.8)
Since x, — z, lim d(x,,x) = 0. From this, (2.8) and the sandwich theorem we
n—oo
get
lim |d(x,,C) —d(z,C)| = 0.
n—o0
Hence lim d(z,,C) = d(z,C), as desired. O

n—oo



CHAPTER 3

Banach Retraction

In this chapter, the existence of the Banach retraction of mapping
is studied. At first of this chapter, some preliminary definitions and theorems
which are used throughout the proof that when the mapping has a retraction are
presented. Then we prove the theorem that confirms the existence of a retraction
of a closed subset of a Banach space.

Uniform convexity

The strict convexity of a normed space X says that the midpoint
r+vy

of the segment joining two distinct points z,y € Sy with ||z —y|| > € > 0

does no lie on Sy ,that is,

r+y

< 1.
1=

Tty

In such spaces, we have no information about 1 — || ||, the distance of mid-

points from the unit sphere Sy. A stronger property than the strict convexity

that provides information about the distance 1 — ||Ty|| is uniform convexity.

Definition 3.1. (Uniform convexity). A Banach space X is said to be uni-
formly convex if for any € € (0, 2], the inequalities ||z|| < 1, |ly|| < 1 and ||[z—y|| > €
imply there exists a § = §(e) > 0 such that ||#|| <1-6.

This says that if 2 and y are in the closed unit ball By = {x € X :
|z|]| < 1} with || — y|| > € > 0, the midpoint of = and y lies inside the unit ball

By at a distance of at least 0 from the unit sphere Sy.
Example 3.1. Every Hilbert space H is uniformly convex space.

Proof. By the parallelogram law, we have
Iz +ylI? = 2(|l=[* + [lyl1*) — [l — y||* for all 2,y € H

20
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Assume z,y € By with z # y, and ||z — y|| > € for € € (0, 2], we get

lz+yl1* = 2012 ]1* + Iy lI*) = ll= =yl

<2(1+1) = flz —y|*

§4_€27
T4y, &
Thus ||T|| <1- 75 it follows that
Tty
<1-96
1 <1s

2
where 0 =1 —14/1 — % Therefore, H is uniformly convex. O

Example 3.2. The space l; and [, are not uniformly convex.
Proof. Let x = (1,0,0,0,...),y = (0,—1,0,0,...) € l; and e = 1. Then

lzlli =1Lyl =1z —yli=2>1=¢

T+y
2
[ is not uniformly convex.

Similarly, if we let z = (1,1,1,0,0,...),y = (1,1,-1,0,0,...) € I

Tr+y
2

However, || |1 = 1 and there is no 6 > 0 such that || |1 <1—4. Thus

and € = 1, then
HxHoo =1, ||y||oo =1, ||J7 - ylloo =2>1=¢.
Tty . :
Because ||T||OO = 1,1, is not uniformly convex. ]

From the definition of uniform convexity, we can derive some theo-

rems as follows :
Theorem 3.1. Every uniformly convex Banach space is strictly convex.

Proof. Let X be a uniformly convex Banach space with x # y and x,y € S, where
S; is a unit sphere of Banach space. For € € (0,2], it follows from Definition 3.1

that X is strictly convex. If e > 2, it does not satisfy the condition of strictly
el + 1yl oz +y
2

space is strictly convex. ]

convex because 1 = > | ||. Therefore uniformly convex Banach



22

Theorem 3.2. Let X be a Banach space. Then the following are equivalent:
(i) X is uniformly convex;

(ii) For two sequences {x,} and {y,} in X, if |x,]| < 1, |lynll < 1 and lim ||z, +
n—oo

Yol = 2, then lim ||z, — || = 0.
n—o0

Proof. (i) = (ii). Suppose X is uniformly convex. Let {z,} and {y,} be two
sequences in X such that ||z,|| <1, ||y,|] < 1 for all n € N and TLILHOlO |0+ ynll = 2.
Suppose to the contrary that nh_}ralo |€n — ynl| # O that is there exists € > 0 such
that for all N there exists ny > N such that

”mnw - ynNH > €.

Since X is uniformly convex, there exists § > 0 such that

[Ty + Ynyll < 2(1 = 6). (3.1)
By assumption, we know that lim ||z, + y,|| = 2, and from (3.1) we obtain
n—o0
2 <2(1-9),

which is a contradiction. Therefore lim ||z, — y,|| = 0.

n—oo
(17) = (7). Suppose (i7) holds. If X is not uniformly convex that is there exists
¢ € (0,2] such that for all 6 > 0 such that

el < Lyl < Lz =yl = e but |z +yl| > 21 -9),
and then we can find sequences {x,} and {y,} in X such that
(1) lall < L flynll < 15
.. 1
(@) llzn +all > 201 2
(i) [l — g0l >

Clearly ||z,,—yn|| > €, which contradicts to the hypothesis that lim ||z,+
n—oo

Yn|| = 2. Thus, X must be uniformly convex. [
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Next we show the important result for the class of uniformly convex

Banach spaces.
Theorem 3.3. FEvery uniformly convex Banach space is reflexive.

Proof. Let X be uniformly convex Banach space. Let Sx» = {j € X* : ||j|| = 1}
be a unit sphere in X* and f € Sx-. Assume that {z,} is a sequence in Sy such
that nh—>nolo f(z,) = 1. We claim that {x,} is a Cauchy sequence. Assume {z,} is
not a Cauchy sequence, that is, there exists ¢ > 0 such that for all NV there exists
nj,n, > N such that ||z,, — z,,|| > e Since X is a uniformly convex Banach

Tp, + X
space, we have there exists § > 0 such that ||n]Tnk|| < 1— 4. We see that

—I—nk

e < e "'“H<1—5,

since lim f(x,) = 1, which is a contradiction. Hence {z,} is Cauchy. Thus there
n—oo

exists a point x in X such that lim z,, = x because X is a Banach space. Now,

n—oo
by continuity of || - ||, we see that
el = I lim | = lim [l = 1.
So x € S,. By Theorem 2.18, we conclude that X is reflexive. O

We now introduce a useful property.

Definition 3.2. (Kadec - Klee property). A Banach space X is said to have
the Kadec - Klee property for every sequence {z,} in X that converges weakly to

x where also ||z,|| = ||z, then {z,} converges strongly to .
The following result has a very useful property:

Theorem 3.4. Every uniformly convex Banach space has the Kadec - Klee prop-

erty.

Proof. Let X be a uniformly convex Banach space. Let {x,} be a sequence in X

such that z, — = € X and ||z,| — ||z||. We claim that z,, — . If z =0 , then
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lim ||z,|| = 0, that is , for all € > 0, there exists N such that n > N implies
n—oo
||z, || — 0] <€, that is ||z,|| < € which yields that lim z, = 0.

n—o0

Assume that x # 0. We are going to show that lim z, = x. We

n—oo
prove this by contradiction, suppose that lim x, # = and ||x,|| # 0. We can show
n—oo
that lim ——,where ||z,|| # 0 and ||z|| # 0. Then there exists ¢ > 0, for

n—oo || nH || I

all N such that there exists n; > N such that

T,

lzall || |

Since X is uniformly convex, there exists § > 0 such that

1, .

sl | <1-4. (3.2)

2 el Tl

Taking limit infimum as ¢ — oo both sides, we have

hm mf —|| me Tl || < (3.3)
Since z, — z and ||z, || — ||z||, we claim that ” — ﬁ Let f € X* and
a:m x
€ > 0, there exists IV such that
ikl
£(2) - F@)] < L

and

for all n > N.
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Now we consider

() = Fl = | H;an(m " H71Hf<x>\

[zl @) = el f@)

EIEA]
2l @) = el @) + 2l f @) = 2l f @)
]
[ell =zl @) + leall(Fa) = £
Tzl
el = lzalll A lall - Jzalllf ) — £()]
ST el el
<§+§:@ (3.4)

for all n > N. Thus we can conclude that f(x—") — f(Hi—”) Since f € X* was

, 1 .

arbitrary, we have —"— — 1t follows that —( Tne g i) — i,

[ n, [EdN 2 o ll ] ]l
Theorem 2.21, we have

oy
ol < hmmf—|| T+l <1
HH 2 Tl T HH

which is a contradiction. Therefore {z,} converges strongly to x € X. O

Metric projection
Let X be a normed space and C' be a nonempty subset of X. Let

r € X and yy € C, we say that yg is a best approximation to x if
|z = yoll = d(z, C).

Let Po(xz) = {y € C : ||z —y|| = d(z,C)} denote the (possibly
empty) set of all best approximations from x to C' which is called the metric pro-
jection onto C' such that we define a mapping Pr from X into the power set of
C. We can call metric projection mapping which are the nearest point projection

mapping, proximity mapping and best approximation operator.
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Lemma 3.5. The set of best approzimation is convex if C' is convew.

Proof. Let C be a convex set and Po(z) = {y € C : |[x—y|| = d(z,C)} is the set of
all best approximation from X to C. Let a,b € Po(x), we have a,b € C, ||z —a|| =
d(z,C) and ||x—0b|| = d(x,C). We claim that Aa+(1—\)b € Pc(x) for all A € [0, 1].
Since a,b € C and C' is convex,that is for A € [0, 1], we get Aa + (1 = A\)b € C .
To complete the proof, we show that ||z — (Aa + (1 — A\)b)|| = d(z,C). Clearly,
|z—(Aa+(1=A)b)|| > d(z,C). Then we claim that ||z —(Aa+(1=\)b)|| < d(z,C).

|z —(Aa+ (1 =XN)b)| = [[Ax+ (1 =Nz — (Aa+ (1 + A)b)||
=AMz —a) + (1 = A)(z = )|
< Az —all + (1 =Nz b
= M(z,C) + (1 = Nd(z,C)
=d(z,C).
Thus Aa + (1 — A\)b € Po(z). That is the set of best approximation is convex. [

We say C'is the proximal set if each x € X has at least one best
approximation in C'.

Some results on proximal sets as follow :

Theorem 3.6 (The existence of best approximation). Let C' be a nonempty
weakly compact convex subset of a Banach space X and x € X. Then x has a best

approzimation in C, that is, Po(x) # .
Proof. We define the function f : C' — R* by
f) =llz—yll, yeC
Let {a,} be a sequence in C such that a,, — a.
£(a) = [l — afl < liminf & — a,| = lmin f(a,).

Thus f is lower semicontinuous. Since C' is weakly compact, by Theorem 2.21,

there exists ag € C such that ||z — ag| = ing |z — vyl O
=
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Theorem 3.7 (The uniqueness of best approximation). Let C' be a nonempty
convex subset of a strictly convex Banach space X. Then for each x € X, C has

at most one best approximation.

Proof. We prove this by contradiction. Let y;,y> be elements in C' which are

best approximations to x in X. Since C' is convex, by Lemma 3.5, set of best

. . . Y1+ Y2 . . .
approximations is convex. Therefore is also a best approximation to x.

Let r = d(z,C'), then

Y1+ Y2
r=llz =l = lle =gl = [z - =
Since
Y1+ Yo
r= e - 220
_yrt_n r_ Y
2r = |[(x —y1) + (z — ya) ], (3.5)
and
|z =yl + |z =yl =7+ 7 =2r. (3.6)

From (3.5) and (3.6), we get
[ =yl + lz = w2l = [z —91) + (z = y2)[].
By the strict convexity of X, we obtain
(r —y) =alr —p); a=0
Taking the norm in both sides, we have

[ = gall = allz =yl

r=ar

Thus a = 1. From this, we can conclude that y; = y». O]
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Banach Ratraction.

Let C be a nonempty subset of a topological space X and D a
nonempty subset of C. Then a continuous mapping P : C' — D is said to be a
retraction if Pz = x for all x € D, that is, P? = P. If there exists a continuous
retraction P : X — C such that Px = x for all z € C, then the set C is said to
be a retract of X.

Theorem 3.8. Fvery nonempty closed convexr bounded subset C' of a uniformly

convexr Banach space X is a retract of X.

Proof. Let X is a uniformly convex Banach space and x € X. By Theorem
2.22, Theorem 3.3 and Theorem 3.5, x has a best approximation in C', that is,
Pco(x) # 0. From this, Theorem 2.20, Theorem 3.1 and Theorem 3.7, we get,
C' has the unique best approximation. That is, Po(-) is a single-valued metric
projection mapping from X onto C. It remains to show that Pc is continuous.
We prove this by contradiction. Let Pg is not continuous. There exists sequence
{z,} in X with nango x, = v € X such that nango Po(z,) # Po(x) that is there

exists € > 0, for all N such that there exists n > N and
|1 Po(xn) = Po(x)]| = €
Since
|d(zn, €) — d(x, ) = | inf ||z, —yl| — inf [lz —y[l] < llzn — 2l
we have, by Theorem 2.20,
llzn = Po(zn)ll = llz — Po(@)|]| < [lzn — |-

This implies that

Tim e, — Po(e,)]| = lla = Peo)]. (37)
Since { Pc(z,)} is bounded in C' by (3.7), there exists a subsequence {Po(x,,)} of
{Pc(x,)} such that weak — lim Po(z,,) = z € C. Note

1—00

weak — lim (z,,, — Po(xy,)) = — 2. (3.8)

1—>00
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By Theorem 2.21, we have
[ = z[} < lim inf [lz,, — Po(zn,)|| = llz = Po(2)]-

This implies z = Po(z) by definition of the function Pc. From (3.7) and (3.8)

weak — lim (z,,, — Po(z,,)) = t— Po(z) and  lim ||z, — Po(x,,)|| = ||z — Po(2)]].
1— 00

1—00

Since X is uniformly convex, X has the Kadec-Klee property. So

lim (z,,, — Po(x,,)) = ¢ — Po(x),

1—00

which implies that lim Po(z,,) = Pc(z) which is a contradiction. Therefore Pp

1—00

is continuous. [



CHAPTER 4

Main Results

The propose of this chapter is to introduce and to study iterative
schemes for a viscosity approximation common fixed points for three-steps and
a finite family of asymptotically quasi-nonexpansive nonself mappings in Banach
spaces. The convergence theorems in Banach spaces are proved in Section 4.1
and weak and strong convergence theorems of the iterative schemes in a uniformly
convex Banach space are also proved in Section 4.2.

Let X be a real Banach space and let C' be a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction. A mapping
f: C — C is called a contractive mapping if there exists a constant « € [0, 1)

such that

1 () = FWIl < allz = yl],

for all z,y € C. For i = 1,2,3, let T; : C' — X be an asymptotically quasi-
nonexpansive nonself mapping such that the fixed point set F/(71)NF(Ty)NF(T3) #
(). Let f: C — C be a contractive mapping. We are interested in sequences in

the following process. For z; € C' and n > 1, define the sequences {x,}, {y,} and
{zn} by

Zn = Planf(xy) + (1= an)(bpn + (1 = by)T3(PT3)" txy,))
Yn = Pleaf(zn) + (1 —cp)(dnzn + (1 — d,)To(PTy)" ' 2,)) (4.1)

Tpy1 = P<€nf(yn> + (1 - en)<gnyn + (1 - gn)Tl(PTl)nilyn»

where {a,}, {bn},{cn},{dn}, {en} and {g,} are appropriate sequences in [0, 1].

30
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4.1 Convergence Theorems in Banach Spaces

In this section, we established strong convergence theorems in Banach
spaces of the iterative sequence {z,} defined in (4.1) converges to a common
fixed point of T;(i = 1,2,3). At the end of this section, we proved some strong
convergence theorems of finite family of {T; : C' — X,i = 1,2,3,...,k} where

each T; is an asymptotically quasi-nonexpansive nonself mapping.

Theorem 4.1. Let X be a real Banach space, and let C' be a nonempty closed
convexr nonexpansive retract of X with a nonexpansive retraction P. For i =
1,2,3, let T; : C'— X be an asymptotically quasi-nonexpansive nonself mapping

with respect to {hf;")} such that F(Ty) N F(Tz) N F(T3) # 0 and Zh” < 0
n=1

where h,, = max{hgn),hgn),hén)}. Let f : C = C be a contractive mapping and
let {an},{bn},{cn},{dn},{en} and {g,} be sequences in [0,1] such that Zan <

n=1

00,ch < 00 and Zen < 00. Then, the iterative sequence {x,} defined in
n=1 n=1

(4.1) converges strongly to a common fized point of Ty, Ty and Tj if and only if

n—oo
Proof. We first prove the necessity. Assume that {z,} converges strongly to a

common fixed point of T , 75 and T3, that is, there exists x € F(T1)NF(Ty)NF(T3)

such that

lim ||z, —z| = 0.

—00
From this, we have

liminf ||z, — x| = 0.

n—00

We see that
d(x,, F(Th) N F(Ty) N F(T3)) = inf d(zp, %) < ||z, — |

@* €F (T )NF (T2)NF(T3)
for all n. Taking limit infimum as n — oo and using the sandwich theorem, we
obtain that
liminf d(z,, F(T1) N F(T3) N F(T3)) =0,

n—oo
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as desired. Now we prove the sufficiency. Assume that T; : C' — X is an asymp-

totically quasi-nonexpansive nonself mapping with respect to {hf")} fori=1,2,3.

Let p € F(Ty) N F(Ty) N F(T3). Note that T;(PT;)" 'p = p. By assumption, we

have
120 — 1|
yn — 2l

IN

IN

IN

IN

IN

IN

1P(anf(x0) + (1 = an) (bawn + (1 = b)) T5(PT3)" '2,)) — Pp|
lanf (20) + (1= a,) (b + (1 = b)) T5(PT3)" ') = |

lanf (20) = anp + (1 = an) (buwn + (1= b)) To(PTs)" "2, — p)|
lan(f(2a) = p) + (1 = @n) (ba(@ — p)

+(1 = bp) (T5(PT3)" 'y — p))|

| f (@) = pll + (1= an)balln — p|

+(1 = an)(1 = by) | T5(PT5)" 2 — |

an| f(za) = FP)I| + anll £ (p) = pll

+(1 = an)bullzn — pll + (1 = a) (1 = by) (1 + h§Y) ||z — p
ana|lzn, — pll + anll f(p) — pll + (1 — an)by |z, — pl|

+(1 = an)(1 = by)l|zn = pll + (1 = @) (1 = bp) S [l — p
(1= (1= a)an + h§") |20 = pll + anll £(p) = p

(1 + ha)llzn = pll + anll f(p) — pl| (4.2)

1P(cnf(2a) + (1 = cn)(dnzn + (1 = du) To(PT2)" " 20)) — Ppl|
lenf () + (1 = ca)(dnzn + (1 = du) Ta(PT3)" " 20) —

lenf (2n) = enp + (1 = ) (dnzn + (1 = du) To(PT2)" " 20 — p)|
len(f (zn) = p) + (1 = cn)(dn(z0 — p)

+(1 = da)(To(PT)" " 20 — p))|

Cnll f(zn) = pll + (1 = cn)dnllzn — p

+(1 = ) (1 = do)IT2(PT2)" 2 —
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eallf(z0) = O + eallF () = pll + (1 = ca)d| 20 — pl]
+(1 = ea) (1 = dn) (1 + 15V) 120 — p

entt]| 20— pll + call £(0) = pll + (1 = ca)dallzn —

(1= en) (1= do)lzn = pll + (1= cn) (1 = dn)h5" | 20 = pl|
(1= (1= a)en + h5)l|zn — pll + call £(2) — 1

(1 + )20 = Il + call f(p) = 2l (4.3)

1P (enf(yn) + (1 = €n)(gntn + (1 — ga)T1(PT1)" 'yn)) — Pp|
lenf (n) + (1 = en)(gntn + (1 — go) T2 (PT1)" ) — 1

lent (yn) = enp + (1 = €)(gnyn + (1 = gn) T1(PT1)" 'y — p)|
len(f(yn) —p) + (1 = €4)(gn(Yn — p)

+(1 = gn) (T (PT)" = )

enll f(yn) — pll + (1 = en)gnllyn — pl|

+(1 = en)(1 = g) | T (PTY)" "y — p

enll £ (yn) = F )| + enll £(p) = pl

+(1 = en)gnllyn =PIl + (1 = €2)(1 = ga) (1 + B |lyn — |
enal[yn — pll +enll f() — pll + (1 — €n)gnllyn — pll

(1= en) (1= ga)llym — pll + (1 = ea) (1 = ga) B = pll
(1= (1= a)en + h™)lyn — pll + eall f(2) — 1l

(1 + ho)llyn — pll + enll f(p) — pl|- (4.4)

Substituting (4.2) into (4.3), we obtain

lyn —p|| <

(
(
(
(
(

L+ R ) (1 + ho) |2n — pll + anll f(p) — pll) + call f(p) — pll
L+ hp) (L4 ho)|l2n — pll + (1 + hn)an || f(p) — pll + call f(p) — 2l

L+h )QHZEH _pH + (an + anhy + Cn)”f(p) _pH

n
n

L4 ho(2+ ho))||lzn — pll + (an + anhs + ¢)|| f(p) — Pl

L+my)||lzn — pll + sn (4.5)
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where m,, = h,(2+h,,) and s,, = (a,+a,h,+c,)|| f(p) —pl. Since Z h, < 00, we
n=1

have that {2+ h,,} and {1+ h,} are bounded. Thus Zmn < oo and Z Sp < 00
n=1 n=1

because Z a, < oo and Z ¢, < 00. Substituting (4.5) into (4.4), we have
n=1 n=1

[Zni1 = pl < (U4 Ba)((1+ ho)?[|Jz = pll + 50) + enll f(p) = p
= (1+hn)3”xn—p” + (1 + hy)sn + el f(p) — pll
= (L+tn)|lwn — pll +un (4.6)

where t, = (14 h,)? — 1 and u,, = (1 + h,)s, + e[ f(p) — p||. Since Zhn <

n=1

o0 oo o0 oo
oo,Zen < oo and an < 00, then Ztn < oo and Zun < 00. Hence
n=1 n=1 n=1 n=1
Lemma 2.24 implies that lim ||z, — p|| exists. Thus ||z, — p|| is bounded. Let
n—oo

L = sup ||z,, — p||. We can rewrite (4.6) as
n

st = pll < 20— pll + Lta +1w, for n>1 (4.7)

Now, for any positive integers m, n > 1, p € F(T})NF(T3) N F(T3) and induction,

we have
n+m—1 n+m—1
|#nim =Pl < llwn —pll+L Y tit Y u (4.8)
1=ng 1=ng

By (4.7) and taking infimum over p € F(Ty) N F(Ty) N F(T5), we obtain

The assumption liminf d(x,, F(11)NF(Ty)NF(T3)) = 0 implies that there exists
n—oo
a subsequence of {d(x,, F(T\) N F(Ty) N F(T3))} converging to zero. This result

o

together with the fact Z(Ltn + u,,) < oo and Lemma 2.24,we have
n=1
lim d(z,, F(T\) N F(Ty) N F(T3)) = 0. (4.9)

n—oo
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We now show that {z,} is a Cauchy sequence in X. Let € > 0. By (4.9) and two

facts that Ztn < 0o and Zun < 00, there exists ng such that, for n > ng, we

n=1 n=1
have

€

S ()

d(zn, F(T}) N F(Ty) N F(Ty)) < é S ti< ?)(L—irl) Z wp <

1=ng i=ng
By the first inequality of (4.10) and the definition of infimum, there exists
po € F(1T1) N F(Ty) N F(T3) such that
€
5
By combining (4.7), (4.10) and (4.11), we have

|20y — poll < (4.11)

[Zngtm = Tnoll < N%ng4m = poll + l[2ne = poll

nog+m—1 no+m—1
< 2any —poll L Y it D w
i=ng i=ng
< € 4 € X €
J— J— —_— = 6,
3 3 3

which implies that {x,} is a Cauchy sequence in X. But X is a Banach space,
so there must be some ¢ € X such that z,, — ¢. Since C is closed and {z,} is a
sequence in C'; we have that ¢ € C. Since ) # F(Ty) N F(T3) N F(T3) C C and

T, — q by Lemma 2.28, we have

0= lim d(z,, F(T)) N F(Ty) N F(T3)) = d(q, F(Ty) N F(Ty) N F(T3)).

n—oo
Form this and since F'(T1) N F(T2) N F(T3) is closed, so g € F(T1) N F(Ty) N F(T3)
by Lemma 2.26. Therefore {x,} converges strongly to a common fixed point of T3

, Ty and T3 as desired. ]
If Ty =T, = T3 =T, then the iterative sequences in (4.1) become
Zn = Planf(z,) + (1 —an)(bpzn + (1 —b,)T(PT)" 'a,))
Yn = Pleaf(zn) + (1 —co)(dpzn + (1 —d,)T(PT)" '2,)) (4.12)
Tapr = Plenf(yn) + (1= €)(gnt + (1 = g) T(PT)" 'yn)), n > 1.

We then have the following result for fixed point of a single asymp-

totically qausi-nonexpansive nonself mapping.
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Corollary 4.2. Let X be a real Banach space and let C' be a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction. Let T :
C — X be an asymptotically quaﬁ—nonempansive nonself mapping with respect to
{h,} such that F(T) # 0 and Zhn < 00. Let f: C — C be a contractive
mapping and let {a,},{b,}, {cn}fz{ldn}, {en} and {g,} be sequences in [0, 1] such
that Zan < 00, ch < oo and Zen < 00. Then the iterative sequence {z,}

n=1 n=

n=1 1
defined in (4.12) converges strongly to a fized point of T if and only if
lim inf d(z,,, F(T)) = 0.

n—oo

Corollary 4.3. Let X,C,T;(i = 1,2,3) and the iterative sequence {x,} be as in
Theorem 4.1. Suppose that conditions in Theorem /.1 hold and

(i) the mapping T;(i = 1,2,3) is asymptotically reqular in x,, that is,

liminf ||z, — T;z,|| =0, i =1,2,3;
n—oo

(ii) liminf ||z, —T;z,|| = 0 implies that liminf d(z,,, F(T\)NF(Ty)NF(T3)) = 0.
n—oo

n—o0

Then the sequence {x,} converges strongly to a common fixed point of Ty, Ts and

Ts.
Proof. Since T is asymptotically regular in z,
liminf ||z, — Tiz,|| =0; i=1, 2, 3.
n—oo

From (ii), liminf ||z, — Tjz,|| = 0. By Theorem 4.1, we see that the sequence {x,,}
n—oo

converges to a common fixed point p of 77, T; and Ts. n
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Theorem 4.4. Let X, C, T;(i = 1,2,3) and the iterative sequence {x,} be as in
Theorem 4.1. Suppose that conditions in Theorem 4.1 hold. Assume further that
the mapping T;(i = 1,2,3) is asymptotically reqular in x, and satisfies condition
(A). Then the sequence {x,} converges strongly to a common fized point of Ty, Ty

and Tj.

Proof. To apply Theorem 4.1, we prove that lim inf d(x,,, F(T1)NF(Ty)NF(T3)) =
n—oo
0. Since {T},i = 1,2,3} satisfies condition (A), there exists a nondecreasing

function f : [0,00) — [0,00) with f(0) =0 and f(¢) > 0 for all ¢ > 0 such that
13
3 2 llwn = Tl = fld(wn, F(T) 0 F(Ty) 0 F(T3),
i=1

for all n > 1. Since each T} is asymptotically regular in x,, for i = 1,2, 3,

lim inf f(d(z,, F(T}) N F(T3) N F(T3))) < 0.

n—oo

Since f :[0,00) — [0,00), we have that

liminf f(d(zn, F(T}) N F(T) N F(T3))) = 0 (4.13)

n—oo

We claim that liminf d(x,,, F(Ty) N F(Ty) N F(T3)) = 0. Suppose not, that is

n—oo

liminf d(z,, F(T})NF(Ty) N F(T3)) % 0.

n—o0

From this and f : [0,00) — [0, 00), we get

lim inf d(z,, F(T)) N F(Ty) N F(T3)) = L > 0.

n—o0

Since liminfd(x,,, F(T1) N F(T3) N F(T3)) = L > 0, thus for all ¢ = L > 0, there

n—o0

exists V7 € N such that N > N; implies

L
| inf d(z, F(T) N F(Ty) O F(Ty) — L] < <

From this we get

2L 4L
? < II>1]de(l‘n, F(Tl) N F(TQ) N F<T3)) < ?, for all N > Nl,
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That is

2L
? < d(l‘n, F(Tl) N F(Tg) N F(Tg)), for all n Z N > Nl-

Since f is nondecreasing,

f(%> < fld(z,, F(I) N F(Ty) N F(T3))), forall n>N > Ni.

=
d
I

1£l]f\[f(d(xn’ F(Tl) N F(TQ) N F(Tg))), forall N > N

IN

Jim inf{ f(d(w,, F(T) 0 F(T3) N F(T3)) 50> N}

= hrfr_l)iogf{f(d(i’?n; F(T) N F(Tz) N F(T3))).
Since f(t) > 0 if ¢ > 0, we have

0< f(%) < liminf f(d(x,, F(T\) N F(Ty) N F(T3))),

n—o0

which contradicts (4.13). Hence liminf d(z,, F(T1) N F(Tz) N F(T3)) = 0. We
n—oo

see that {x,} converges strongly to a common fixed point p of T3, T and T3, by

Theorem 4.1, as desired. ]

If for i = 1,2,3, T} is a self mapping, then the iterative sequences

(4.1) become

Zn = anf(xy) + (1 —ap)(byx, + (1 = by)Ts2,)
Un = cuf(zn) + (1 —cy)(dnzn + (1 —dp)Th2zy) (4.14)

Ipy1 = enf(yn) + (1 - en)(gn?/n + (1 - gn)len)a n =1

We have the following theorem for common fixed points of three

asymptotically quasi-nonexpansive self mappings.
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Corollary 4.5. Let X be a real Banach space and let C' be a nonempty closed
conver subset of X. For i1 =1,2,3, letT; : C — C" be an asymptotically quasi-
nonexpansive self mapping with respect to {h(n)} such that F(T\)NF(Ty)NF(T3) #
0 and Zh < 0o where hy, = maz{h{™,h$” RSV, Let f: C — C be a contrac-

n=1

tive mappz'ng and let {an} {bn},{cn}, {dn} {en} and {gn} be real sequences in [0, 1]
such that Zan < 00 ch < o0 and Zen < 00. Then the iterative sequence

n=1

{z,} deﬁned in (4.14) converges stmngly to a common fixed point of Ty, Ty and Tj
if and only if liminf d(x,,, F(Ty) N F(T3) N F(T3)) = 0.
n—oo

Now, we introduce a new iteration process for a finite family {7; :
C — X,i=1,2,3,...,k} of asymptotically quasi - nonexpansive nonself mapping
as follows :

Let X be a real arbitrary Banach space and let C' be a nonempty
closed convex nonexpansive retract of X with P as a nonexpansive retraction. For
1=1,2,3,....,k, let T; : C — X be an asymptotically quasi-nonexpansive nonself
mapping such that F' = N, F(T;) # (. We are interested in sequences in the
following process. For z; € C, fixed k¥ € N and n > 1, The iteration scheme is

defined as follows :

T = Plof” fyg—ny) + (1 —af™) By ) + (1= B T(PT) 1y )]
(n) (n) (n) (n) () ()
Yiey = PlaginfWeie) (10— agly)(Brlyyete +
(1= Bl ) Tty (PT-1)" L))
Yinls = Plogls fuils) + (0 —all ) (B0 o s + (4.15)

(1= B o) T (PTo)" )]

y) = PladYf™) + (1= o) (B9 + (1 - B8 To(PTR) ™))

w" = Pl fy”) + (1= )8y + (1= B TUPT)" g )]

where y[()n) = x,, for all n, {agn)} and {f'}, n=1,2,3,...and i = 1,2,3, ..., k are

appropriate sequences in [0, 1].
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Theorem 4.6. Let X be a real arbitrary Banach space and let C' be a nonempty
closed convexr nonexpansive retract of X with a nonexpansive retraction P. For
1=1,2,3,....k, let T; : C"— X be an asymptotically quasi nonexpansive nonself

mapping with respect to {h\"™} such that F = Nf_,F(T}) # 0 and Z hy,, < o0 where
n=1

hy, = 1H<1a<}§c{h§n)} Let f : C— C be a contractive mapping and let {agn)} and

{Bl(n)} be sequences in [0, 1] such that Zocgn) <oo foralln=1,2,3,... and i =

n=1
1,2,3,....,k. Then the iterative sequence {z,} defined in (4.15) converges strongly
to a common fixed point of {T;,1 =1,2,3,...,k} if and only if liminf d(z,,, F') = 0.
n—oo

Proof. For the necessity, we assume that {x,} converges to a common fixed point
of {T;,i=1,2,3,...,k} , that is, there exists p € F such that lim |z, — p|| = 0,
n—oo

so liminf ||z, — p|| = 0. We have, by definition of distance function,
n—oo

d(x,, F) = inf ||z, — p*|| < ||z, — p||.

(@, F) = inf Jlzn —p"|| < llzn —pl

By taking limit infimum as n — oo and using the sandwich theorem , we have
liminf d(z,, F) = 0, as desired. Now, we prove the sufficiency. Assume that
n—oo

T; : C'— X is an asymptotically quasi-nonexpansive nonself mapping with respect

to {hgn)} for i = 1,2,3,...,k. Let p € F and o, = max{al(n)}. Note that

1<i<k
T;(PT;)"'p = p. By assumption, we have
™ = pll = 1Pl f(@a) + (1= a{) (B2 + (1 = BT (PT)" 2,)] — Bl
< lad™ fza) + (1= o) (B2, + (1= B TU(PT)  2,) —
< o) f(@a) = pll + (1 = a{)B |z — pll + (1 = a{”)(1 - )
T (PT)" @ — |
< o{"allz, — pll + (1 — )8 ||z — pll + (1 = ") (1 = )|z — ]
+(1 = a{)(1 = BB 20 — pll + oI (p) — p
< (- (=)l + hy)lz, — pll + anll £(0) — pl
< (1 + hy)llzn = pll + aall f () — 2|
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-1

Assume that ||y — pll < (1+ k)|, —pl + > (1+ ha) ol £(p) — ]| holds for
1=0

some 1 <[ <k —2. Then

Iyl =l = I1Plal )y Fu™) + (1= o)) (B u™

+(1 5@H>ﬂ+mpn+o"1<“n—fjn
lafly Fu™) + (1= all ) B0y

+(1 /3(l+1 )Ty (PTasn)" " y™) = pl

o I ™) = pll + (1= o)) BEY ™ = pl

+(1 = a1 = B DI T (PTeny)" y™ = pl

ailyally™ = pll + (1 = afl)BE Iy = ol

(n) n (n) (n) (n)
+(1 —ap )1 - 5(z+1))“yz = pll + (1 =o)X = Bty
umm—pW+¢ﬁJU@»—m

(1= (1= a)af)y +ha)ly™ = pll + anll £(p) — pl
-1

(L4 o) (L + ) |z — pll + (L4 ha) D (14 b ol £ (p) — pll

=0

IN

IN

IN

IN

IN

+au| f(p) — pll

l
= (1+ hn)l+1|’xn —pll + Z(l + hn)ioanf(p) dl

i=0
Thus, by induction, we have

i—1

Jj=0

foralli=1,2,3,....,k — 1. Now, by (4.16), we obtain

|z —pl < 1Pl F) ) + (1= af™) (B

+0—BWHHPHW*%QUH—BM
o™ £y 1)) + (1 — o) By
+(1 = BN T(PT)" ) — |
ol i) — ol + = o) BNy — pll

IN

IN
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+(1 = o) (1 = BTL(PT)" Yy 1)) — bl

< aallfyy) = pll + @ = o) By — ol
+(1 = a1 = BNy = pll + (1= o™ = B Ryl -
+a\" | f(p) — pll
< (1= (1 =) + h)[yg-ryo — ol + anllf() = pl
k—2
< (L4 ha) (X4 7)) = pll A+ (L4 7)Y (L + o) | £(p) = pl
=0
+aou, || f(p) — D
_ k — 7
= (14 ha) |z —pll + D (1 + ha) il £(p) — pl. (4.17)

1=0

Let s, = (14+h)* P+ (1 +h)*2+...+ (1 +h,) + 1. Since Zhn < o0, the
n=1

sequence {h,} converges to 0 and hence there exists a constant ny > 0 such that

0 < h, <1 for all n > ng. Then for any n > ng,

hon

)k (1+hn)k‘2+---+(1+hn)+1
hn)k

sp, = (1+
(1+

h
() + (2 + o+ (D1

[k k A A

- (J e (o) (G oe (o

< (Y (Y (MY (F): since 0<hy <1
= 1 2 3 A

= 2" 1.

Then there exists a positive constant C' such that s, < C for all n > 1. Now, we

can rewrite (4.17) as
[2n41 = pll < (1 +tn)[lzn — pll + Mo, (4.18)

o o
where t, = (1+h,)*—1and M = C||f(p)—p||. Since Z hy, < oo, then Ztn < 00.
n=1 n=1
Lemma 2.24 implies that lim ||z, — p|| exists. Thus ||z, — p|| is bounded. Let
n—o0

L = sup ||z, — p||. We can rewrite (4.18) as
n>1

|lens1 — ol < ||z —pl| + Lty + Ma,, for n>1. (4.19)
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Now, for any positive integers m,n > 1, p € F' and induction, we have

n+m—1 n+m—1
[Znsm = pll < [lzn —pll +L DY i+ M > s (4.20)

By (4.19) and taking infimum over p € F', we obtain
d(xps1, F) < d(z,, F) + Lt, + Ma,.

The assumption liminf d(z,, F) = 0 implies that there exists a subsequence of
n—o0

{d(z,, F)} converging to zero. This result together with the fact Z(Ltn +u,) <
n=1
oo, and Lemma 2.24, we have

lim d(z,, F') =0. (4.21)

n—oQ

We claim that {x,} is Cauchy in X. Let € > 0 be given. From (4.21), Ztn < 00

n=1
and Z o, < 00, there exists ng such that for n > ngy, we get
n=1
d(z,, F) < E, iti <—°  and iai << (4.22)
6 i=ng 3(L + 1) i=n 3

The first inequality of (4.22) and the definition of infimum, there exists z; € F
such that

€
|Tn, — 21]| < 5 (4.23)

Combining (4.20), (4.22) and (4.23), we have

[Znotm = T | < N Tng4m = 21l + [0y — 21

no+m—1 no+m—1

<2an, —all+L Y L+M Y o

§2||In0_zl”+Liti+Miai

i=no i=no

<€+E+€
— — — =€
3 3 3 ’

which implies that {z,} is a Cauchy sequence in X. But X is a Banach space,

so there must be some ¢ € X such that z,, — ¢. Since C is closed and {z,} is
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a sequence in C', we have that ¢ € C. Since ) # F C C and z,, — ¢ by Lemma
2.28, we have
0= lim d(z,, F) =d(q, F).

n—o0

From this and since F is closed, so ¢ € F by Lemma 2.26. Therefore {z,}

converges to a common fixed point of {7;,7 = 1,2,3,...,k}, as desired. O

Corollary 4.7. Let X,C,T;(i = 1,2,3,...,k) and the iterative sequence {x,} be

as in Theorem 4.6. Suppose that conditions in Theorem 4.6 hold and
(i) the mapping T;(i = 1,2,3, ..., k) is asymptotically reqular in x,, that is

liminf ||z, — Tiz,|| =0, 1 =1,2,3,...,k;
n—oo
(i) liminf ||z, — Tyx,|| = 0 implies that liminf d(z,, F) = 0.
n—oo n—oo
Then the sequence {x,} converges strongly to a common fized point of {T;,i =

1,2,3,.... k}.

Theorem 4.8. Let X,C,{T;,i =1,2,3,...,k} and the iterative sequence {x,} be
as in Theorem 4.6. Suppose that conditions in Theorem 4.6 hold. Assume further
that the mapping {T;,i = 1,2,3,...,k} is an asymptotically reqular and satisfies

condition (A), then {x,} converges strongly to common fized point of the family

of mappings.

Proof. Since {T},i = 1,2,3,...,k} satisfies condition (A), there exists a nonde-
creasing function f : [0, 00) — [0, 00) with f(0) = 0 and f(¢) > 0 for all £ € (0, c0)

such that .
1
22 len = Tiza|| > f(d(zn, F)),
i=1
for all n > 1. Since each T is asymptotically regular in x,, for s =1,2,3,...,k,

liminf f(d(z,, F)) < 0.

n—o0

Since f : [0,00) — [0, 00), we have that

liminf f(d(z,, F)) =0 (4.24)

n—oo
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We claim that lim inf d(x,, F') = 0. We prove this by contradiction, assume that

n—oo

liminf d(x,,, F) # 0.

n—oo

From this and f : [0,00) — [0, 00), we have

liminfd(x,, F) = L > 0.

n—o0

Since liminfd(z,, F) = L > 0, for all e = L > 0, there exists N; € N such that

n—oo
N > N; implies
: L
| inf d(zn, F) - L <+

From this we get

k—1)L k+1)L
DL o d, 7)< FEDE ol N> v
k n>N k
That is
— 1)L
% <d(z,, F), forall n>N > Nj.

Since f is nondecreasing,

D8 < e, B, foran nz N>

We get

f(T) < inf f(d(x,, F)), forall N > N;
< ]\}1_r>n inf{f(d(z,, F)) ;n> N}

= liminf f(d(x,, F)).

n—oo

Since f(t) > 0 if ¢ > 0, we have

(k—1)L

0<f(—

) < liminf{f(d(x,. F)).

which contradicts (4.24). Hence liminf d(x,, F') = 0. We see that {x,} converges
n—oo

strongly to a common fixed point of {T;,7 = 1,2,3,...,k}, by Theorem 4.6, as

desired. O
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4.2 Convergence Theorems in Uniformly Convex Banach

Spaces

At the beginning of the section, we restate some results in section 4.1
by using Theorem 3.8 in Chapter 3 and then establish some weak and strong con-
vergence theorems for the iterative scheme (4.15) for a finite family of asymptoti-
cally quasi-nonexpasive nonself mapping from C to X by removing the condition
ligg iorolf d(x,, F') = 0 from theorems obtained in section 4.1.

Now we restate some results in section 4.1 by using Theorem 3.8 in

Chapter 3 in the uniformly convex Banach space.

Corollary 4.9. Let X be a uniformly convex real Banach space, and let C be a
nonempty closed convex bounded subset of X and suppose that a retraction map P :
X — C is nonexpansive. Fori=1,2,3, letT; : C'— X be an asymptotically quasi-
nonezxpansive nonself-mapping with respect to {hgn)} such that F(Ty) N F(T3) N
F(T3) # 0 and ih” < 0o where hy, = max{h\™ h{" M}, Let f: C — C be
a contractive mgzz)zl)mg and let {an} {bn},{cn}, {dn} {en} and {g.} be sequences
in [0, 1] such that Zan < 00 ch < oo and Zen < oo. Then, the iterative

=1 n=1
sequence {x,} deﬁned in (4.1) converges strongly to a common fixed point of Ty, Ty

and T3 if and only if

n—oo

Corollary 4.10. Let X,C,T;(i = 1,2,3) and the iterative sequence {z,} be as in
Theorem 4.9. Suppose that conditions in Theorem 4.9 hold and

(i) the mapping T;(i = 1,2, 3) is asymptotically regular in x,, i.e.,

liminf ||z, — T;z,|| =0, ¢ =1,2,3;

n—oo

(i1) liminf ||z, —Tiz,|| = 0 implies that liminf d(x,,, F(T1)NF(T2)NF(T3)) = 0.
n—oo

n—oo
Then the sequence {x,} converges strongly to a common fized point of T1,T, and

T5.
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Corollary 4.11. Let X, C, T;(i =1, 2, 3) and the iterative sequence {x,} be as
in Theorem 4.9. Suppose that conditions in Theorem 4.9 hold. Assume further that
the mapping T;(i = 1,2,3) is asymptotically reqular in x, and satisfies condition
(A) Then the sequence {x,} converges strongly to a common fized point of Ty, Ty

and Tj.

Corollary 4.12. Let X be a uniformly convexr real Banach space, and let C
be a nonempty closed convex bounded subset of X and suppose that a retrac-
tion map P : X — C' is nonexpansive. For v = 1,2,3,...,k, let T; : C — X
be an asymptotically quasi- nonexpansive nonself mapping with respect to {h(")}

such that F = NF_ F(T;) # 0 and Zh < oo where h, = 1n<1?<)§€{h( )} Let
f:C — C be a contractive mapping ar;bdl let {a§">} and {5} be sequences in [0, 1]
such that iagn) < oo foralln=1,2,3,... and 1 =1,2,3,....k Then the itera-
tive sequer?c:el {z,} defined in (4.15) converges strongly to a common fixed point of

{T;:i=1,2,3,....k} if and only if liminf d(x,, F) = 0.
n—oo

Corollary 4.13. Let X be a uniformly convex real Banach space, and let C be
a nonempty closed convexr bounded subset of X and suppose that a retraction
map P : X — C is nonexpansive. For i = 1,2,3,...,k, let T; : C — X be
an asymptotically quasi- nonempansive nonself mapping with respect to {h n) } such

that F = nf_ F(T, )%@anth < oo where hy, —max{h N Let f:C—C

be a contractive mapping and let {a(n)} and {6( } be sequences in [0, 1] such that
Zain < oo foralln=1,2,3,... and i = 1,2,3, ...,k and the iterative sequence
?Zi} defined in (4.15). If{T; : i = 1,2,3,...,k} is asymptotically reqular and
satisfies condition (A), then {x,} converges strongly to common fized point of the
family of mappings.

Now, we let X be a real Banach space, and C be a nonempty

closed convex bounded subset of X. For each 1 = 1,2,3,...,k, we let T; be an

asymptotically quasi-nonexpasive nonself mapping from C' to X with respect to
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{hl(-n)} such that Z hl(n) < 00. Let F' denotes the set of common fixed points of
n=1

{T;:i=1,2,3,...,k} and assumes that F # 0. Let {a!"”} and {8} be sequences
in [0, 1] and Z ol < oo and let z; be arbitrary element in €' and {z,} be the
n=1

sequence defined in (4.15) . In order to prove our theorems, we need the following

lemma:

Lemma 4.14. Let C be a nonempty closed and convex subset of uniformly con-
vexr Banach space X and {T;,i = 1,2,3,...,k} a finite family of asymptotically
quasi-nonexpansive nonself mapping from C to X with respect to {hgn)} such that
ihE“) < oo foralli=1,2,3,..,k. Let {a,} C [0,1 — 0] for some ¢ € (0,1) and
Z;umes that F # 0 and let z1 be arbitrary element in C and {x,} be the sequence

defined in (4.15), then lim ||z, — p|| exists for allp € F.
n—oo

— (n) _ (n)

Proof. Let p € F,h, = glzaé}%{hz } and «, = lnglfaﬁ{ai } for all n. By proof of

Theorem 4.6 and Lemma 2.24, it follows that lim ||z,, — p|| exists for all p € F.
n—oo

]

Theorem 4.15. Let C' be a nonempty closed and convex subset of uniformly con-
vexr Banach space X and {T;,i = 1,2,3,...,k} a finite family of asymptotically
quasi-nonexpansive nonself mapping from C to X with respect to {hg")} such that
ihl(n) < oo foralli=1,2,3,....k. Assumes that F # () and let x| be arbitrary
Zl:elment in C'" and {x,} be the sequence defined in (4.15),and {a,,} C [6,1 — ¢]

for some § € (0,1). If Tj is completely continuous for some j = 1,2,3,... k,

lim ||z, — Tix,|| = 0 for all i = 1,2,3,....,k and I — T; is demiclosed at zero
n—oo
for all 1 = 1,2,3,...,k, then {z,} converges strongly to a common point of

{Tii=1,2,3,....k}.

Proof. Let p € F, then lim ||z, — pl|| exists as proved in Lemma 4.14 and hence
n—oo
{z,} is bounded. By assumption, lim |z, — T;x,|| = 0 for each i = 1,2,3, ...k,
n—oo
we have that {T;z,} is bounded for each i = 1,2, 3, ..., k. Assume without loss of

generality that T} is completely continuous. Then there exists an element ¢ € C
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and a subsequence {711,,} such that ||Tiz,; —¢|| — 0 as j — oo. Since
[0, = gl < [l2n; = Taan, [l + [ Thzn, = qll;

we have lim ||z,, —¢|| = 0. Since each I — T; is demiclosed at zero for each
j—00

i=1,2,3,...,k, sowe have that (I —T;)q = 0, that is T;q¢ = q. Thus ¢ € F. Since

lim ||z, — ¢|| exists and hence equal to zero. Then {z,} converges strongly to a

n—oo

common fixed point of {T;;i =1,2,3, ..., k}. ]

Theorem 4.16. Let C' be a nonempty closed and convex subset of uniformly con-
vex Banach space X and {T;,i = 1,2,3,...,k} a finite family of asymptotically
quasi-nonexpansive nonself mapping from C to X with respect to {hg")} such that

Zhin) < oo for all i = 1,2,3,....,k. Assumes that F # () and let x, be ar-
n=1

b;fmry element in C' and {x,} be the sequence defined in (4.15) and {a,} C
(0,1 — 0] for some § € (0,1). If T; is demicompact for some j = 1,2,3,... k,

lim ||z, — Tix,|| = 0 for all i = 1,2,3,....,k and I — T; is demiclosed at zero
n—oo
for alli=1,2,3,... k, then {x,} converges strongly to a common fized point of

{Tii=1,2,3,....k}.

Proof. Let p € F. Then lim ||z, — p|| exists as proved in Lemma 4.14 and hence
n— o0

{z,} is bounded. Assume without loss of generality that 77 is demicompact.

Then there exists an element ¢ € C' and a subsequence {x,,} of {z,} such that

Tn.

, — q. By assumption, lim |z, — Tjz,| = 0, and I — T; is demiclosed at
n—oo

zero for all i = 1,2,3,... k, we have (I — T;)q = 0, that is, T;¢ = ¢. Thus
q € F. By Lemma 4.14, {x,} converges strongly to ¢, a common fixed point of
{T;;1=1,2,3,..., k}. O

Theorem 4.17. Let C be a nonempty closed and convex subset of uniformly con-
vexr Banach space X and {T;,i = 1,2,3,...,k} a finite family of asymptotically
quasi-nonexpansive nonself mapping from C to X with respect to {hgn)} such that

Zhl(n) < oo foralli=1,2,3,....k. Assumes that F # () and let x| be arbitrary

n=1
element in C and {z,} be the sequence defined in (4.15) and {a,} C [§,1 — ¢]
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for some 6 € (0,1). If X satisfies Opial’s property, lim |z, — Tiz,|| = 0 for all
n—oo

i=1,2,3,....k and I —T; is demiclosed at zero for allt =1,2,3,... k, then {z,}

converges weakly to a common fized point of {T;;i =1,2,3,....k}.

Proof. Let p € F'. Then nh_)ngO ||zn, — p|| exists as proved in Lemma 4.14 and hence
{z,} is bounded. By Theorem 3.3 and Theorem 2.19, there exists a subsequence
{xn,} of {z,} converging weakly to some ¢ € C. Since nh_}r{)lo |zn — Tixy|| = 0 and
I—T; is demiclosed at zero for all i = 1,2, ..., k, so we have T;q = ¢q. Thus q € F.To
complete the proof, let {z,, } be another sequence of {x,} that converges to weakly
to some r € C. Similarly proof as above, we can prove that r € F. By Lemma

2.25, g = r. Therefore {z,} converges weakly to a common fixed point in F. [
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