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CHAPTER 2 

Methodology 

This chapter describes the methodology including an overview of the statistical 

methods for data analysis aligned to the statistical models. Graphical and statistical 

analyses were carried out using R program (R Development Core Team 2008).  

This chapter presents statistical methods adopted in the three papers contained in 

Appendix. These methods include chi-squared test, Kaplan-Meier survival analysis 

and Cox proportional hazards for MDR-TB, multivariate linear regression for TB 

mortality and forecasting in Thailand and log-transformed linear regression for spatial 

and temporal variations of TB incidence in Nepal. 

2.1 Data Source and Management  

Data for first and third studies were obtained from National Tuberculosis Center 

(NTC), Nepal. The reported TB cases for each year were available in computer files 

comprising characteristics of the disease, gender, address, and the severity of the 

illness. The MDR-TB data include individual records for disease cases, gender, age, 

religion, caste, address, year, MDR-TB registration group, sputum smear conversion, 

culture conversion status and treatment outcome. These data were obtained as excel 

format which were modified and entered into computer text files suitable for data 

cleaning and analysis. 

Data for second study were provided by the Bureau of Health Policy and Strategy, 

Ministry of Public Health. The data were collected from death certificates across the 

whole country. Deaths certificate are issued by a physician or nurse when death 
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occurs in hospital and by head of village or health personnel when death occurs 

outside the hospital. This data is entered into the vital registration database that is 

maintained by Ministry of Interior. It is used by the Ministry of Public Health and 

coded cause of deaths using International Classification of Disease 10th edition (ICD-

10). These data are available in computer files with individual records for disease 

cases and fields comprising characteristics of the subject and the disease, including 

dates of sickness and diagnosis, the subject‟s age, gender, address, and the severity of 

the illness, including date of death for mortality cases. Data were thus converted to a 

flat-file format for calculating descriptive statistics and modeling.  

2.2 Variables  

The variables for the studies are as follows: 

Study I: Treatment Outcome for MDR-TB in Nepal 

Determinants: Age, gender, religion, caste, year, region and MDR-TB registration 

group.  

Outcome: Sputum smear conversion status and treatment outcome of MDR-TB cases  

Study II: Forecasting TB Mortality in Thailand using Multivariate Linear Regression 

Determinants: Gender, age, year and location 

Outcome: Number of deaths of TB 

Study III: Spatial and Temporal Variations of TB Incidence in Nepal  

Determinants: Gender, year and location 

Outcome: Number of cases of TB 
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2.3 Statistical methods  

2.4 Descriptive statistics  

The variables for the preliminary analysis are summarized by counts and percentage 

values.  

2.5 Univariate Analysis 

Pearson‟s chi-squared test and 95% confidence intervals for odds ratios are 

conventionally used to assess the association between the outcome and determinants. 

For the odds ratio, the null value is conventionally taken to be one, corresponding to 

equal risks of an outcome in two comparison groups. This corresponds to a null value 

of zero for the difference between two population proportions under the null 

hypothesis. The Pearson‟s chi-squared test gives the p-value for testing no 

relationship between the determinant and the outcome. The homogeneity test is used 

to tell if the association could be the same in different strata, small p-values providing 

evidence to the contrary (McNeil 1998a). 

A 2×2 table 

To illustrate the methods, a 2×2 contingency table is constructed as follows. Let x be 

the binary determinant and y the binary outcome coded as zero or one, and a, b, c, and 

d the cell counts (McNeil, 1998a, 1998b). 

  y 

  1 0 

x 
1 a b 

0 c d 

         n = a + b + c + d 
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The odds ratio is 

OR =
bc

ad
                                                                (2.1) 

Its asymptotic standard error is given by  

dcba
ORSE

1111
)(ln                                               (2.2) 

A 95% confidence interval is thus 

95% CI   = OR × exp ( 1.96 SE [ln OR])                       (2.3) 

Pearson‟s chi-squared statistic is defined as  

2  =  
))()()((

)( 2

dbcadcba

nbcab




                           (2.4) 

B Non stratified r2 tables 

In our first study, some of risk factors are multi-categorical, having more than two 

category levels. We use non-stratified r2 tables to compare them. For example, x is 

age group and y is treatment outcome (1: treatment success, 0: treatment failure). 

  y 

  1 0 

 1 a11 a12 

x 2 a21 a22 

 … .. .. 

 r ar1 ar2 

Thus the estimate of the odds ratio (OR) is        
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The standard error of the natural logarithm of the odds ratio is given by the same 

formula as for the 2×2 table. In general, the association is composed of rc odds 

ratios, but only (r-1) ×(c-1) of them are independent. 

The standard error is given by  

1 1 1 1
(ln )ij

ij ij ij ij

SE OR
a b c d

                                           (2.6) 

A 95 % confidence interval is thus 

95 % CI = OR × exp ( 1.96 SE [ln OR])                      (2.7) 

Pearson‟s chi-squared statistic for independence (i.e., no association) in an r  c table 

is defined as 
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When the null hypothesis of the independence is true, this has a chi-squared 

distribution with (r-1)×(c-1) degrees of freedom.  
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2.6 Survival analysis  

Survival analysis is concerned with measuring the risk of occurrence of an outcome 

event as a function of time. It thus focus on the duration of time elapsed from when a 

subject enters a study until the event occurs, and uses the survival curves to describe 

its distribution. The outcome of interest is the time until the events occurs and the 

duration can be measured in days, weeks, months or years from the beginning of 

observed follow-up on a subject. As usual the event could be death, disease incidence 

or relapse, recovery or partial recovery, or generally any designated occurrence to 

individual. Survival analysis is also concerned with the comparison of survival curves 

for different combinations of risk factors, and uses statistical models to facilitate this 

comparison (McNeil, 1996). 

In general, survival analysis allows for the proper treatment of incomplete data due to 

subjects dropping into or out of the study. It give rise to censored (more precisely, 

right-censored) data. In fact survival data may be censored for any of the following 

reasons. 

(a) The subject withdraws from the study for any reason before experiencing the 

event (this includes what is called „loss to follow-up‟). 

(b) An intervening event occurs (such as a failure from an unrelated cause), 

prohibiting further observation on the subject. 

(c) The subject does not experience the event before the study ends (or before an 

analysis of the results is required). 
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When the event of interest occurs, the survival time is conventionally called a failure 

time (even though the event might be a „success‟, such as recovery from some 

disease). 

The Kaplan-Meier survival curve is defined as the proportion of subjects surviving 

beyond a given duration of time t. For a large population in which the survival times 

range continuously over an interval, this curve will be a smooth function of t that 

decreases from a maximum value 1 when t is 0. In practice the survival curve 

estimated from a sample of data is a step function that decreases only at the failure 

times. 

Survival function S(T): The probability that a subjects  survives longer than time t. 

    S(t) = P(surviving longer than time t ) 

        = P(T > t) 

 

 

then the survival probability at time t can be estimated as 

                                                                                                                  (2.9) 

 

          (2.10) 

 

where dj is the number of events (deaths) at time t and nj is the number alive just 

before t. 
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A useful summary of survival that can be computed directly from a survival curve is 

the median survival time. This is the survival time exceeded by 50% of the subjects, 

and is obtained simply by finding where the survival curve has the value 0.5. 

2.7 The Logrank Test 

Peto and Peto (1972) derived a p-value for testing the null hypothesis that two 

survival functions are identical, and called this test procedure the logrank test. 

 The log-rank test assesses the significance of differences between survival curves. It 

is similar to a chi-squared test for comparing two proportions, but is more complex, in 

the sense that it is based on a sum of components, where each component corresponds 

to a different failure time. 

In our first study, Kaplan-Meier survival analysis was used to determine overall times 

to sputum smear conversion, cure, and failed/died, respectively, with other outcomes 

classified in each case as censored data. 

2.8 Cox proportional Hazards 

Cox Proportional Hazard Model is one of the most popular tools used in the study 

of Survival Analysis. Mathematically, the hazard rate h=h(t) is a function of (or 

depends on) say, n independent covariates X, where X denotes the vector X1, X2, X3 … 

, Xn each of which is Xi, i = 1, 2, 3,…n, and t is time. The hazard function can also be 

written as h(t, X). This denotes that the summation of influences of one group over the 

other is a fixed proportion. 

Under the proportional hazards assumption: 

 ii xthx
i

th  exp)()( 0                                       (2.11) 
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The left-hand side of the equation says that the hazard is influenced by time and the 

covariates. The right-hand side of the equation contains h0(t), which is the baseline 

hazard function when all the Xi are zero. This baseline hazard function is multiplied 

by e to the power of the summation of all the covariates weighted by the estimated 

coefficients, βi. 

Consequently, 
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                                               (2.12) 

The left-hand side is the proportion, or ratio, between the hazard of the group with 

exposure of X against the baseline hazard. The right-hand side is the exponentiation of 

the sum of products of estimated coefficients and the covariate vector, Xi, which is 

now independent of time, i.e. assumed constant over time. Thus e
βiXi 

 is the increment 

of the hazard, or hazard ratio, due to the independent effect of the i
th

 variable. Cox 

(1972) suggested this model. It is called the proportional hazards model, because the 

relative risk of an event for two subjects depends only on their determinants, and not 

on their duration of survival. 

Both univariate and multivariate Cox proportional hazards models were used to 

generate estimates of the associations between demographic factors and treatment and 

the time to cure, with other outcomes censored in the first study.  

2.9 Regression analysis 

Regression analysis is the method for estimating values of one or more response 

variables from a set of predictor variables. The purpose of regression analysis is to 

assess the effects of the predictors on the response variable(s). 
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2.9.1 Log-transformed linear regression model 

The conventional model for handling data where the outcome is continuous is linear 

regression, assuming independent error terms, each following an identical Gaussian 

distribution. 

Let Y  be a log-normally distributed random variable, that is, a random variable whose 

(natural) logarithm is Normal with mean µ and variance σ
2
. This implies that the 

probability density function of ln(Y) is the density function of the normal distribution, 

namely 
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In our third study, the incidence rates of TB generally have positively skewed 

distributions so it is conventional to transform them by taking logarithms to obtain the 

outcome as 
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Thus an additive linear model is fitted to the logarithms of the log-transformed TB 

incidence rates, namely       
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In this model, P is the corresponding population at risk in 1000s and the terms i and 

j  represent super-districts and gender- year effects that sum to zero so that   is a 

constant encapsulating the overall incidence. 
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Graphical assessment of normality  

A scatter plot of standardized residuals versus their normal scores is commonly used 

to assess normality of errors in a linear regression model. If these errors are normally 

distributed, then the standardized residuals should match the normal scores. The plot 

should then resemble a nearly straight line with intercept zero and slope one.  

Homoskedasticity 

A scatter plot of the standardized residuals against the fitted response variable can be 

used to check the homoskedasticity assumption. If the dots on the plot are randomly 

scattered evenly within a horizontal band around zero, then the homoskedasticity 

assumption is plausible.  

Sum contrasts 

Sum contrasts (Venables and Ripley 2002, Tongkumchum and McNeil 2009) are used 

to obtain confidence intervals for comparing adjusted incidence rates within each 

factor with the overall incidence rate. An advantage of these confidence intervals is 

that they provide a simple criterion for classifying levels of a factor into three groups 

according to whether each corresponding confidence interval exceeds, crosses, or is 

below the overall mean. 

Methods for creating geographical maps 

A thematic map is a type of map that uses different colours or shades to graphically 

display information about the underlying data representing estimated values of a 

variable at different locations on the map. The thematic map using data in regions 

might show one region in dark red to indicate that the region has high values, while 

showing another region in very pale red to indicate that the region has low values. A 
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range map is a type of thematic map that displays data according to ranges set by the 

users. The ranges are shaded using colors or patterns. These types of maps are used to 

show the geographical distribution of the adverse outcome and to identify areas of 

high risk. Appropriate graphs are used for exploratory data analysis, visualizing the 

pattern of the data and highlighting possible errors in the data that could cause 

problems in further analysis.  

Since the confidence intervals for factor-specific incidence rates obtained from a 

model divide naturally into three groups according to their location entirely above the 

mean, around the mean, or entirely below the mean, we used this trichotomy to create 

thematic maps of districts according to their estimated incidence rates. 

2.9.2  Multivariate linear regression 

Multivariate linear regression is the extension of multiple linear regression to allow 

for several correlated outcome variables. Multivariate regression estimates the same 

coefficients as one would obtain using separate univariate regression models (Mardia 

1979). In addition, multivariate regression, being a joint estimator, also estimates the 

between-equation covariance. This means that it is possible to test coefficients across 

equations. 

Suppose that data are available for n observations, and the response variables are 

arranged into a matrix whose columns are p outcome variables and rows correspond 

to the n observations. The model (Mardia et al 1979) is defined in matrix form as  

Y(n  p) = X(n  q) B(q  p) + E(n  p) .    (2.16) 

In this formulation Y(n  p) is an observed matrix of p response variables on each of the 

n observations, X(n  q) is the matrix of q predictors (including a vector of 1s) in 
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columns and n observations in rows, B(q  p) contains the regression coefficients 

(including the intercept terms), and E(n  p) is a matrix of unobserved random errors 

with mean zero and common covariance matrix . Thus, the error terms associated 

with different response variables may be correlated.  

In our second study, each response variable (TB mortality) for each gender and region 

is assumed to follow its own regression model, so that  

 (2.17)                                            

where  yxt is the log-transformed central death rate (per 100,000) in age group x and 

year t, ax  is the level of the age-specific mortality rate, bx describe annual increase of 

the age-specific mortality rate and t is the year.  

Note that the model for each response variable takes the same form as that given by a 

univariate model for this response based on the common determinants. The 

coefficients and their standard errors given by the two methods are precisely the same, 

but the multivariate method also gives the covariances between the estimated 

parameters. This model has the additional advantage is that it takes account of 

correlations between data in different age groups.   

Handling zeroes 

If any count mxt is zero, Equation (2.17) needs to be modified to give a finite result, so 

that mxt is replaced by a positive value mxt.  

Various methods may be considered for this data modification. Zero counts simply 

could be omitted, and the fitted model then used to impute counts for these cases 

before refitting the model (Ardkeaw and Tongkumchum 2009). This method has 

advantages in situations where under-reporting is known or suspected.  

tbamy xxtxxt  )log(
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Another method involves adding a constant c to all counts so that xtxt mm *  + c.  A 

third method involves replacing the zeroes by a suitably chosen constant d without 

changing any values of mxt greater than 0.  

2.9.3 Factor analysis 

Factor analysis is a mathematical model that tries to explain the correlation between a 

large set of variables in terms of a small number of underlying factors. A major 

assumption of the analysis is that it is not possible to observe these factors directly: 

the variables depend upon the factors but are also subject to random errors (Mardia et 

al 1979).  

In our second study, factor analysis is performed on the age groups with the aim of 

substantially reducing correlations between them that could mask their associations 

with the outcome variables. Each factor identifies correlated groups of variables. 

Ideally each group (which must contain at least two variables to contribute to the 

factor analysis) contains variables with small correlations with variables in other 

groups. To achieve this, any variable uncorrelated with all other variables is omitted 

from the factor analysis. Each factor comprises weighted linear combinations of the 

variables, and these factors are rotated to maximize the weights of variables within the 

factor group and minimize the weights of variables outside the group. The resulting 

weights are called “loadings”. Variables omitted from the factor analysis due to low 

correlation with all other variables (high “uniqueness”) are treated as separate 

predictors, so predictors include single variables as well as factors.  

In particular, the multivariate linear regression can be extended to factor analysis 

model by involving the weight sum of factors to data covariance matrix and 
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minimizing the correlations between the factors for specified number of factors 

(substantially less than the number of variables). The factor model formulation with p 

common factors is:  

          (2.18) 

where         is the loadings and        is the factors. We used the covariance matrix of 

estimated slopes in the regression model to fit the factor model. 

The number of factors selected was based on obtaining an acceptable statistical fit 

using the chi-squared test, and these factors were fitted using maximum likelihood 

with promax rotation in preference to varimax, which requires the rotation to be 

orthogonal (Browne 2001, Abdi 2003). 
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