Chapter 2

Theory and Methods

In this chapter we describe the statistical theory and methods used for the analysis of
banking shares prices in Thailand. These methods include basic methods for the
analysis of data, including analysis of variance, data transformation, and principal
components analysis, methods for time series analysis, and methods used in the
modeling of market variables with stochastic volatility, including the generalized

autoregressive conditional heteroskedacity (GARCH) model.

2.1 One-way Analysis of Variance (anova)

Considering the analysis of data in which the outcome is continuous and the
determinant is categorical, this leads to a procedure called the analysis of variance
(anova). We test the null hypothesis that the mean outcome is the same for each
determinant level by computing a statistic called the F-statistic and comparing it with
an appropriate distribution to get a p-value. Suppose that there are n;observations in
sample j (j =1, 2, ..., ¢) denoted by y;; fori =1, 2, ..., n; . The F-statistic is defined as

(So=SD/(c-1
S, /(n—c)

where S is the sum of squares of the data after subtracting their overall mean, while S
is the sum of squares of the residuals obtained by subtracting the sample mean from
each of the ¢ samples. The p-value is obtained as the upper tail area of the ¥

distribution with c—1 and n—c degrees of freedom (McNeil, 1996, page 67).
This procedure is based on two important statistical assumptions as follows:

(a) The standard deviations are the same in each of the ¢ groups (also called

the variance homogeneity assumption);
(b) The errors are independent and normally distributed.

We use box plots for assessing the assumption in (a) and we use normal scores plots of
residuals (see, for example McNeil, 1996, page 45) for checking the normality

assumption in (b). We also use Levene's test (see, for example, Brown and Forsythe,



1974) to test the variance homogeneity hypothesis. To check the independence

assumption in (b), we use time series analysis, described in the next section.

It is useful to show the differences in the means by plotting confidence intervals. A
measure of the difference between the means is given by the root-mean-squared
difference, defined as the square root of the average of the squared difference between

pairs of sample means, that is

rms =

Note that when ¢ = 2, rms is just the magnitude of the difference between the sample

means, | y, — ¥, |. In this case one-way anova reduces to the two-sample t-test.

2.2 Data Transformation

If the statistical assumptions of variance homogeneity and normality are not satisfied,
it might be that the data need to be transformed. The most common data
transformation is to take logarithms, such as base 2 or base 10 or natural (base ¢)
logarithms. The base for the logarithmic transformation does not affect the shape of
the resulting distribution. It just affects the scale. Other common transformations

include square roots, cube roots, and reciprocals.

Making an transformation of the data changes their skewness and kurtosis. The
kurtosis is a measure of the extent to which the tails of the distribution are stretched,

and should be 0 for a normal distribution.

Making a data transformation can also satisfy the variance homogeneity assumption,
by removing the relation between the standard deviations and the means of groups of
variables. For time series data, we can plot the standard deviation against the mean as
a scatter plot, where each point is based on the data within a period such as a month or
a quarter or a year. Then, after transforming the data, the objective is to remove the

relation between the standard deviation and the mean.
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2.3 Principal Components Analysis

One approach to handling the risk arising from groups of highly correlated market
variables is principal components analysis. This takes historical data on related
movements in the market variables and attempts to define a set of components or

factors that explain the movements.

Principal components analysis is one of the simplest of the methods used in multivariate
statistical analysis. The object of the analysis is to take p variables X, X5, ..., X,,, and
find combinations of these to produce indices Z, Zy, ..., Z, that are uncorrelated. The
lack of correlation is a useful property because it means that the indices are measuring

different ‘dimensions’ in the data.

A principal components analysis starts with data on p variables for n cases. The first

principal component is then the linear combination of the variables X1, X, ..., X,
Zi=anXy+ apXo+ a1 X,
that varies as much as possible for the individuals, subject to the condition that
al +al, +...+a,2p =1

Thus the variance of Z, , var(Z)), is as large as possible given this constraint on the
constants ay;. The constraint is introduced because if this is not done then var(Z,) can

be increased by simply increasing any one of the ay; values. The second principal
component,

Zr= anX)+ anX;+ cHap X[, ,
is such that var(Z,) is as large as possible subject to the constraint that

2 2 2 _
aytay+..+a,, =1

and also to the condition that Z; and Z, are uncorrelated. The third principal

component,

Zs= anXi+ aznXo+ .. a3 p X}7 s

is such that Var(Zs) is as large as possible subject to the constraint that
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2 2 2
ay tapt..+a;, =1

and also that Z3 is uncorrelated with Z, and Z;. Further principal components are
defined by continuing in the same way. If there are p variables then there can be up to

p principal components.

In order to use the results of a principal component analysis components are derived.
However, it is useful to understand the nature of the equations themselves. In fact a
principal components analysis just involves finding the eigenvalues of the sample

covariance matrix (Manly, 1994: page 78-79)
2.4 Time Series Analysis

A time series is a group of numerical data sequentially in time. A time series is stationary if
its statistical properties do not change with time. It is unlikely that a stationary time series
will repeat itself exactly, but the series is repeatable in a probabilistic sense. Another way
of looking at this is to say that the character of the series persists as you move forward or
backward in time, and the only aspect that changes is the sampling error, which does not
contain useful information. These sampling fluctuations could be relatively large compared
to the persistent characteristic. These ideas lead to the sinusoid (the simplest function that
repeats itself) and to the idea of measuring the amount of periodicity or repeatability in a
time series by finding its covariance or correlation with a sine wave having a given period.
A sinusoid is characterized by the property that talking a linear transformation of its
argument only shifts its frequency and its phase or position relative to some origin. The

cosine function is just a sine function whose argument is shifted by 7/2, that is
cos (x) = sin(x + /2)

Since sinusoidal functions are periodic it is natural to use them as a basis for
approximating a stationary time series. This basis comprises sinusoidal waves with
different frequencies each defined on the time interval spanned by the data. The first
component appears exactly once on this time interval, the second comprises two
repeated sinusoids, the third three sinusoids, and so on. These components are also
called harmonics. The functional form for the /™ harmonic is a cosine wave with some
phase ¢, that is, cos{2mj(+~1)/n+¢}, t=1, 2, ..., n. Using the mathematical theory of

Fourier analysis any function defined at n equispaced points on a finite interval may be
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represented exactly by a constant plus #—1 harmonics. The number of different
frequencies in these components, m, is (n—1)/2 or n/2 (depending on whether » is odd

or even) since there is a sine and a cosine harmonic at each frequency. If # is even this

Fourier representation takes the form
y(t) = ag+ 2[ajcos{2mj(t-1)/n} + b;sin{2nj(t—1)/n}1+an, cos {n(+—1)}

where the summation is from j=1 to j=m—1. (Since sin{m(z—1)} is O for all integers ¢, in
this case there is no sine harmonic at the highest frequency.) A similar formula applies
if n is odd. Using the fact that a linear combination of a sine function and a cosine

function at the same frequency may be expressed as a single sinusoid with some phase

¢, an alternative formula for the Fourier representation is
y(t) =ag+ Y Aj COS{Zﬁj(t—l )/n+¢,}

where the amplitude A;=\(a;” + b;*) and the summation is from 1 to .

This Fourier representation is similar to linear regression analysis, where the
sinusoidal components play the role of determinants or predictor variables. Since the
number of parameters is exactly equal to number of data values, there is no residual
error: the regression model provides a perfect fit to the data. Moreover it may be
shown that the sum of products of sine and/or cosine harmonics over the range of
frequencies is zero, which means that these harmonics are statistically uncorrelated
with each other. Consequently each Fourier coefficient (a; or b;) is the regression
coefficient of the time series y, on the corresponding harmonic. The formulas for these

coefficients (for n even) are as follows.
ao = X y(®)/n, am= 3 (=1)"'y(®)n
aj = (2/n)2y(t) cos{2mj(t-1)/n}
bj = (2/n) Xy(®) sin{2mj(t—=1)/n}

we can see from these formulas that each Fourier coefficient may be interpreted as a

covariance between the data and a sinusoid at the given frequency.

The periodogram of a time series {I;, j =1, 2, ..., m}is defined in terms of the

amplitudes of the harmonics in the Fourier representation as
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The multiplier n/2 ensures that the i periodogram value is equal to the component of
the variance in the data accounted for by a sinusoidal function with frequency j/n.

since the sinusoidal terms are uncorrelated with each other, it follows that

{0 -2y =3 I;
This formula is known as Parseval’s theorem.

This relation is just an analysis of variance for a time series. So the sum of the
periodogram ordinates is equal to the total squared error of the data, and consequently the
periodogram shows how much of the squared error of the data is accounted for by the
various harmonics. For this reason it is useful to graph the scaled periodogram, obtained
by dividing the periodogram by its sum. The scaled periodogram thus shows what
proportion of the squared error is associated with each harmonic. Note that the frequency
J/n is expressed in terms of the number of cycles per unit time. Since the values of j are 1,
2, ..., m, the lowest frequency is 1/n, corresponding to a period equal to the whole range of
the data, and the highest frequency is close to 0.5 (exactly 0.5 if n is even), corresponding

to cycles of length 2 with the data oscillating from one value to the next.
Autoregression

The periodogram and its logarithm may be used to investigate the character of a time
series. Another useful graphical tool is the correlogram, or sample autocorrelation
function, which comprises the set of estimated correlation coefficients between the
series and itself at various spacings. Thus the (auto)correlation coefficient at spacing

(or lag) s may be estimated from the formula

r, =E{y(t)—§}{y(t+s)—§)} ib’(ﬂ‘ﬁz

and the correlogram is a graph of the series (r5, s = 1, 2, ...S5) against the spacing s.
Since the number of terms used to calculate the correlation coefficient at lag S is n—s
where 7 is the length of the time series, the maximum spacing S should be
busstantially less the n. According to statistical theory, when the sample size n is large
the standard error of a correlation coefficient is approximately normally distributed

with standard deviation 1/\n, which tends to O as n gets large. This means that as the
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length of an observed time series increases, the sample autocorrelation function of a
stationary time series stabilizes, approaching a smooth curve. For a white noise
process the theoretical correlation between observations at different spacing is zero, so
you would expect the graph of its sample autocorrelation function to approach the

horizontal axis r =0 as n gets large.

Based on the normal distribution, which has 95% of its probability within 1.96
standard deviations of its mean, a 95% confidence interval for the autocorrelation at
lag s ranges from —1.96/N(n—s) to 1.96/(n—s). In contrast, the periodogram values of a
white noise process, being exponentially distributed with constant standard deviation,
do not settle down as the length of the series increases. Instead they become more

densely packed. Ljung & Box (1978) suggested using the statistic

2
Py

O=n(n+ 2)§:

s=1 =8
where m is a specified integer substantially less than the series length n, to test the
hypothesis that a time series is a sample from a white noise process. If it is necessary
to fit a linear model involving p parameters to transform the series to a white noise
process, where these parameters are estimated from the data, then Q is distributed

approximately as a chi-squared distribution with m—p degrees of freedom.

ARMA(1,1) model

A time series model takes the general form

x;=s +y, where x,, =1, 2, ..., n, is the series of observations, s, is a signal and y, is
the residual (noise) series. The signal is usually modeled as the sum of a small number

of sinusoidal components, that is
si=cCc+ Zj A_,' COS(27l'j t/ﬂ+¢j),
where c is a constant. The A; are called Fourier coefficients. A simple specification for

the noise, is a first-order autoregressive-moving-average, or ARMA (1,1) process, that

is (see, for example, Box and Jenkins, 1976),

yi= a1y + 2+ b1z,
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where {z,} is a sequence of independent errors with mean 0 and constant standard
deviation oz (white noise). The model is stationary, that is, its statistical properties do

not change with time, if -1 < g; < 1. It may be shown that the standard deviation of y,

is given by

stdev(y) = 0,4/(1+b2)/(1-al).
The Ljung-Box test (Ljung & Box, 1978), may be used to assess the goodness-of-fit of
the model. For further details see, for example, Chatfield (1989).

GARCH model

The volatility of a stock, o, is a measure of our uncertainty about the returns provided
by the stock.
Define o, as the volatility of a market variable on day », as estimated at the end of day
n—1. The square of the volatility on day n, 0‘,,2, is the variance rate.
The standard approach to estimate o, from historical data. Suppose that the value of the
market variable at the end of day i is S;. The variable u; is defined as the continously
compounded return during day i (between the end of day i—1 and the end of day i)

u, =ln——

i-1

An unbiased estimate of the variance rate per day, 0,7, using the most recent m

observations on the u; is

0-:: 1 Z(un—i_;)z

m—1

where i is the mean of the u;’s

1 m
U=— Zun-l
m i=t

It is appropriate to give more weight to recent data, so that.

2 2
O, —zaiun—i

i=1
The exponentially weighted moving average (EWMA) model is particular case of this
model where the weights, ¢, decrease exponentially as we move back through time.

Specifically, 04.;= Ao; where A is a constant between zero and one.
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It turns out that this weighting scheme leads to a particularly simple formula for

updating volatility estimates, for large m so that
On® = A% net + (1-M)if g

We assume that u, has mean 0 and follows the model
Uy = Oy wy

where {w;} is a series of independent, standardised normal random variables (that is,
white noise). The series { 0;} is called the volatility of the series {u,}.
A GARCH (1,1) model can be written in the form
ol= 0+ oy + BoP
where ¢, 3 and o are parameters to be estimated from the data.
Given a series {u,}observed on » consecutive trading days, the likelihood is

z 1
=1 27L'O'I

exp(~J5u; [0} )

Taking logarithms, the estimates of the parameters are now obtained by substituting

for 0; and then maximising the expression

> [2in(,)~(u /o, Y]

=1
A special case of the GARCH (1,1) model, the exponentially weighted moving
average (EWMA) model, arises when @ = 0. In this case only the two parameters &

and [ need to be estimated.

Engle & Mezrich (1996) suggested simplifying the estimation procedure using
variance targeting. In this method, the process u; is assumed to have lon g—rubn variance
V, so taking long-run expected values gives V= @ +aV+ §V, from which w0 =

(1—-a ~P)V. Again only the two parameters ¢ and 3 need to be estimated.

In either case the method involves starting with initial estimates, say o =0.05 and 3=
0.9, putting w =0 or (1-a—Lf)V, and maximising the log-likelihood subject to

constraints 0 < ¢< 1,0< < 1,and ¢ +f< 1.



