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Chapter 2 

Methodology 

This chapter describes the statistical methods used for analyzing and forecasting 

sparkling beverages sales revenue in Southern Thailand. These methods include 

multiple linear regression model, observation-driven multiple linear regression model, 

Lee-Carter model, and Holt-Winters method. In this study, the sales revenue data are 

log-transformed to expose that statistical assumption of symmetry and variance 

homogeneously for residually are satisfied.  

2.1 Sources of data 

Business data used in this thesis was obtained from the sparkling beverages company. 

All sales revenue data was collected routinely in 14 provinces of Southern Thailand 

during years 2000 - 2006. Population data in each province were obtained from the 

2000 Thai population and housing census by the National Statistical office.  

2.2 Data management 

Data were available in computer files with records for sales revenue separated by 

flavour, package type, branch location, month, quarter and year. After correcting or 

impute data entry errors, records from years 2000 to 2006 were stored in a MySQL 

database. MySQL and Microsoft Excel programs were used to create sales revenue in 

Baht by month, quarter, year, flavour and branch location. The socio-demographic 

data is obtained from the 2000 Population Census of Thailand. All graphical and 
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statistical analyses, including the log-transformation were performed using R (R 

Development Core Team 2008). 

In this thesis a three-study path diagrams are followed: (1) sales analysis, (2) short-

term sales forecasting, and (3) long-term sales forecasting. The first path diagram 

reveals the consumption rate analysis based on cells classified by branch location and 

area (Muslim, tourist and normal), and period of time (quarterly and yearly). The 

second path diagram reveals short-term sales forecasting based on cells classified by 

period of time (monthly and season-monthly), flavour, package type, branch location 

and autoregressive terms. The third path diagram reveals long-term sales forecasting 

based on cells classified by period of time (monthly) and branch location. 

 Study 1: Sales analysis 
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Study 2: Short-term sales forecast 

 

 

 

 

 

 

 

Study 3: Long-term sales forecast 

 

 

 

Figure 1: Path diagram for studies  

2.3 Statistical methods for sales analysis 

The annual per capita consumption rate is computed using sales revenue divided by 

the number of years and 1,000 populations. Population data is obtained from the 2000 

Population and Housing Census of Thailand. Let S is sales revenue in t years and   

     is the number of population (in 1,000s of population) in branch i, flavour j, quarter 

k. The annual per capita consumption rate (      ) in branch i is thus 
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2.3.1 Multiple linear regression additive model 

The process of developing a statistical model varies depending on whether we follow 

a classical, hypothesis-driven (confirmatory data analysis) or a more modern, data-

driven approach (exploratory data analysis). The goal of either approach is a model 

which imitates, as closely as possible, in as simple a way as possible, the properties of 

the objects or phenomena being modeled. Creating a model usually involves the 

following steps (MathSoft 1997): 

1. Determine the variables to observe. In a study involving a classical modeling 

approach, these variables correspond to the hypothesis being tested. For data-driven 

modeling, these variables are the link to the phenomena being modeled. 

2. Collect and record the data observations. 

3. Study graphics and summaries of the collected data to discover and remove 

mistakes and to reveal low-dimensional relationships between variables. 

4. Choose a model describing the important relationships seen or hypothesized in the 

data. 

5. Fit the model using the appropriate modeling technique. 

6. Examine the fit using model summaries and diagnostic plots. 

7. Repeat steps 4-6 until satisfied with the model. 

This study illustrates methods for statistical modeling available to businesses. Such 

consumption rates have positively skewed distributions so it is conventional to 

transform them by taking natural logarithms. Since the consumption rates based on 
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small branch are sometime zero, it is necessary to make some adjustment to avoid 

taking logarithms of 0.  

In the modeling process, there is no one answer on how to build good statistical 

models, so we need to try different modeling technique that will, for example, allow 

us to fit nonlinear relationships, interactions, or different error structures. By 

iteratively fitting, plotting, testing, changing sometimes and then refitting, we will 

arrive at the best fitting model for our data. 

At the beginning of the simplest model is based on linear regression. Multiple linear 

regression models of log-transformed sales revenue per 1,000 population are used to 

analyze annual per capita consumption and to study the main factors including 

product preference in each market segment. Three multiple regression analysis 

models are considered in the present study.  

An additive model extends the notion of a linear model by allowing some or all linear 

functions of the predictors to be replaced by arbitrary smooth functions of the 

predictors. The standard linear regression model is a simple case of an additive model. 

The simplest linear regression model takes the additive form 

Yijtk = m + bi + fj + at + qk,                  (2) 

where Yijtk is the natural logarithm of the quarterly revenue in 1000s of Baht per 1,000 

population for branch i (bi), flavour j (fj), and quarter k (qk) of year t (at), whereas m is 

the overall mean of Yijtk. Model (2) assumes that the patterns of per capita 

consumption rates vary by branch location, flavour, quarter and year. 
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2.3.2 Multiple linear regression interaction model 

Additive models stumble when there are interactions among the various terms. To 

allow for possible spatial correlations between observations on different branches at 

the same time, and also for correlations between different flavours, additional terms 

allowing for these effects may be included as determinants in the model. Since this 

additive model does not allow for different flavour preferences in different regions, 

we also consider a more general model of the form  

                           Yijtk =  m + cij + at + qk                                                                    (3) 

To allow for possible spatial correlations between observations on different branches, 

and also for correlations between different flavours, additional terms allowing for 

these effects are included as determinants in the model. In this model, cij is an 

interaction between branch and flavour. Model (3) assumes that the patterns of per 

capita consumption rates in each branch location vary each year.  

Generalizing further, we also consider the model 

    Yijtk =  m + cij + dit + qk                                                                   (4) 

Model (4) thus allows for interactions between branch-flavour (cij) and branch-year 

(dit). It means that the model allows for possible spatial correlations between 

observations on different branches, and also for correlations between different 

flavours and years. The model assumes that the patterns of per capita consumption 

rates in each branch location vary between years and flavours. After fitting the 

models, we plotted confidence intervals for parameters after back-transforming so that 

the parameter estimates were expressed in terms of the original data, that is, in 1,000 

Baht per 1,000 population. To do this, it was necessary to incorporate an additional 
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scale parameter for each factor to ensure that the mean revenue associated with each 

factor based on the fitted model matched the overall observed mean revenue. 

2.3.3 Residuals 

Residuals plot are principle tool for assessing how well a model fits the data. For 

regression models, residuals are used to assess the importance and relationship of a 

term in the model as well as to search for anomalous values. In R software, the 

function qqnorm can produce a normal probability plot, frequently used in analysis of 

residuals. 

2.4 Statistical methods for short-term sales forecasting 

2.4.1 Observation-driven multiple linear regression model 

Regression analysis is the method for estimating values of one or more response 

variables from a set of predictor variables. The purpose of regression analysis is to 

assess the effects of the predictors on the response variable(s). The model is used for 

short-term sales forecasting. Autoregressive terms were included to account for time 

series and spatial correlations. 

We fitted a multiple linear regression model to the data and compared results. Then, 

the model of log-transformed sales revenue, which contains seasonal effects and time-

lagged terms, was applied for 12-month forecasting. The predictor variables 

compressed (a) the interactions between branch and flavour, (b) month of the year, 

and (c) the (log-transformed) sales revenues in the previous four months. If t  is the 

sales revenue in branch i, flavour j, of year y, month t, s is the “season-month” 
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(January, February,…) and t  is a series of independent normally distributed errors 

with mean 0, we write  

     tttttsijt    121211112211 logloglogloglog      (5) 

where  ,   and ( 121121 ,,,  ) are parameters in the model denoting an initial 

value, a trend, and two further coefficients denoting the influence of the sales in the 

previous four months, respectively, and 121121 ,,,0    is a set of seasonal effects 

indicating how the sales revenue varied with month of the year. In this case, the high-

season months (including February, November and December) are usually affected 

the sales revenue since customers need to stock more products. Forecasts for log ht  

(h months in the future) are obtained by substituting the estimated values for the 

coefficients into the right-hand side of (5), using the forecast values themselves for 

values of h > 1. However, to obtain forecasts for ht (5) must be transformed back by 

exponentiation and the forecast is then the mean of 
1 which has a log-normal 

distribution with expected value  

                        t  =  exp                              (6) 

where   is  the mean. So, the forecast of ht  is                                          

   121211112211 loglogloglogexp   hthththtsijht              (7)   

We used associative models that used explanatory variables to predict future sales 

revenue. The model is a multiple regression model since more than one predictor 

variable is used to predict sales. 
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2.4.2 Goodness-of-fit and forecasting errors analysis 

The goodness-of-fit of the sales forecasting model is checked with such statistics as a 

r-squared and the standard error of regression relative to the mean and standard 

deviation of the response variable sales. Later, the partial explanatory power of each 

predictor variable is checked for expected sign and significance. The error terms are 

scanned for potential heteroskedasticity (serial autocorrelation of the error term) in 

order to satisfy the forecasting results. 

2.5 Statistical methods for long-term sales forecasting 

2.5.1 Lee-Carter model 

For long-term sales forecasting, we modify the Lee-Carter model. Let it be the 

logarithm of the sales for branch i (where i = 1,.., 20) at month t (where t =1,…, 60), 

the  Lee-Carter model with principal component is 

                           ittiiit cba log ,                                                                                  (8)  

where  ai is the average sales by branch which is constant over time 

bi is the changes in the sales at branch i in response to changes in ct over time 

ct  is the temporal trend of sales changes over time 

εit is a vector of error terms.  

To obtain a unique solution, we impose that the branch-specific impact is sum to 

unity, and that the sum of the time trend index parameters is equal to zero. So, the 

constraints are:  

                                                   ,                                                                                             (9) 1 ib 0 tc
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We have extended the Lee-Carter model by including more than one principal 

component in the model, fitting time-space components, and involving continuous 

variables as predictors in the model. The modification of the Lee-Carter model with 

the first few components is also discussed in a study of Australian mortality rates by 

Booth (2002).  

Lee-Carter model with 2 components extension can be written as 

            ittitiiit cbcba  2211log                                             (10) 

Lee-Carter model with 3 components extension can be written as 

                           ittititiiit cbcbcba  332211log                                            (11) 

We estimate the average sales (ai) by                                                                                                                                                                                               

                                                                                                                                                             (12) 

For bi and ct parameters, we estimate using the singular value decomposition (SVD) 

method that is given in (14). Then we forecast ct using Holt-Winters exponential 

smoothing method that is given in (15). 

Let h be the 24 months in the future, the monthly sales prediction for Lee-Carter 

model with 3 components extension is thus obtained from                                                                                

                      htihtihtihtiihti cbcbcba   ,131211,
ˆˆˆˆlog                      (13)    

2.5.2 Least squares method 

In order to find a least squares solution to the Lee-Carter equation we use a close 

approximation, suggested by Lee and Carter (1992), to the singular value 

decomposition method, assuming that the errors are homoschedastic. 
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The singular value decomposition takes an pn matrix X and decomposes it into two 

orthogonal matrices and a diagonal matrix. The elements of the diagonal matrix are 

the singular values of X. The squares of the singular values of X are the eigenvalues 

of  . To obtain the singular value decomposition in R software, use the svd 

function, which returns a list in which the first component is the vector of singular 

values, the second component is the orthogonal matrix V, and the third component is 

the orthogonal matrix U. The singular value decomposition can be used as a 

numerically stable way to perform many operations that are used in multivariate 

statistics. One such operation is estimating the rank of a matrix X (MathSoft 1997). 

In this case, the singular value decomposition was applied to the average sales over 

time t for each branch x for the estimation of parameters (bi and ct).                                                                                                                                     

                        ,                               (14)     

where D is a diagonal matrix containing singular values and both U and V are 

orthogonal matrices. The parameters bi1, bi2, bi3 are set equal to the first, second and 

third column of U respectively, and the ct1, ct2, ct3 values are set equal to the product 

of the first, second and third column of V and the leading singular value d1, d2, d3 

respectively along with the normalizations given in (9). In order to make more 

accurate in the forecasting results, we adjust bi1, bi2, bi3 by comparison with an 

average of the last 12 months observation data.    

2.5.3 Holt-Winters exponential smoothing method 

Since the historical data series are seasonal with linear trend, we forecast ct1, ct2, ct3 

values for up to 24 months ahead as well as their 95% prediction intervals (an 

estimate of an interval in which future observations will fall, with a certain 

VUDaiit
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probability, given what has already been observed) by using Holt-Winters exponential 

smoothing with additive seasonality forecasting method. The Holt-Winters prediction 

function (for time series with period length p) is  

                               ,                 (15)  

where          is the forecast value at month t+h. 

           (at, bt, st) are vectors containing the estimated values for the level, trend and 

seasonal components respectively, given by   

                               at     = α (Ct - st-p) + (1- α) (at-1+ bt-1)  

                    bt     = β (at – at-1) + (1- β) bt-1  

                    st     =  (Ct - at ) + (1- ) st-p 

In order to study the forecast performance of Lee-Carter model, we compare the 

forecasting results using Lee-Carter model with the results from separate forecasts. 

For the separate forecasts, the sales in each branch location are forecasted separately 

using Holt-Winter exponential smoothing method. 

2.5.4 Forecasting performance analysis 

As a measure of fitting and forecast accuracy of each model and compare with 

separate forecasts by branch. MSE, MAD and MAPE can be computed from 

                                                                                                                                                              (16) 

MSE is used to measure variance of forecast error. MAD is used to measure average 

absolute deviation of forecast from actual. MAPE is used to measure absolute error as 

a percentage of the forecast and measures deviation as a percentage of actual data. 

The resulting value is multiplied by 100 to obtain the forecasting percentage error.  
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