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Chapter 2 

Methodology 

This chapter describes the methodology, including an overview of the statistical 

methods for data analysis aligned to the statistical models. It presents statistical 

methods adopted in the three studies contained in Chapter 3.  

These methods include generalized linear models with Poisson and negative binomial 

distributional assumptions, and log-transformed linear regression modeling. For 

comparing various levels of a categorical determinant we prefer the method based on 

sum contrasts to compare each level with the over mean, rather than the more 

conventional treatment contrasts that compare each level with a specified referent 

level, thus facilitating the construction of thematic maps for visually displaying region 

effects. We also include methods for multivariate multiple linear regression (including 

factor analysis for reducing correlations between determinants that can mask their 

associations with outcomes), and canonical correspondence analysis. Mathematical 

derivations are not given here but are referred to in a number of textbooks and papers 

that describe the statistical theory.  

2.1 Generalized linear models 

Generalized linear models (GLMs) were formally introduced by Nelder and 

Wederburn (1972). The GLM method generalizes linear regression by allowing the 

linear model to be related to the response variable via a link function and by allowing 

the magnitude of the variance of each measurement to be a function of its predicted 



 

 

19 

value. Special cases used for our studies give rise to Poisson and negative binomial 

distributions for the count outcome. 

Poisson regression model 

Poisson regression is appropriate for fitting models where the response is a count 

(non-negative integer value). A random variable Y is said to have a Poisson 

distribution with parameter λ > 0 if it takes integer values y = 0, 1, 2, …, with 

probabilities expressed as: 
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The mean and variance of this distribution can be shown to be 

λ== )var()( YYE .                                                (2.2) 

Since the mean is equal to the variance, any factor that affects one will also affects the 

other. The Poisson regression model can be fitted by using the generalized linear 

models with the log link function (McCullagh and Nelder 1989).  

Poisson regression for rates 

Poisson regression is commonly used for modeling the number of cases of disease in a 

specific population within a certain time period by an offset term (Greene 2003). 

Suppose that 
ijqt

n is the number of observed cases in cells defined by demographic 

(age-gender) group i, region j, season q and year t, and Pij is the corresponding 

population at risk. Denoting the corresponding mean incidence rate by
ijqt

λ , we 

consider additive models of the form: 

( )ln ln( )ijqt i j q t ijPλ µ α β η γ= + + + + + .           (2.3) 
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The terms αi, βj , ηq and γ t represent demographic group, region, season and year 

effects, respectively, and are centered at 0, so that µ is a constant encapsulating the 

overall incidence rate when ln( )ijP  is an offset term. 

Adjusted incidence rates 

After fitting the model, adjusted incidence rates for each factor of interest are obtained 

by suppressing the subscripts in Equation (2.3) corresponding to the other factors and 

replacing these terms with a constant satisfying the condition that the sum of the 

counts based on the adjusted incidence rates matches the total (Swennen et al 2009). 

For Poisson regression, this is achieved simply by multiplying the incidence rates for 

the specified factor of interest by a scale constant specific to the factor. 

Overdispersion 

After fitting a generalized linear model to the data, to check the adequacy of the 

respective model, one usually computes a residual deviance for each cell. Thus, the 

deviance statistic for an observation reflects its contribution to the overall goodness of 

fit of the model. Plotting these residual deviances against corresponding quantiles for 

the normal distribution gives an indication of the adequacy of the fit of the model to 

the data. If the plot is approximately linear with unit slope, the fit is satisfactory. 

Details are given in Chapter 7 of Venables and Ripley (2002). 

Overdispersion in Poisson models occurs when the response variance is greater than 

mean. If the observed variance is greater than the mean the data are over-dispersed 

and the residual deviance plot will indicate that the model is not appropriate. Further 

details are given in Chapter 4 of Hilbe (2007). 
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Negative binomial regression model 

Negative binomial regression is a common alternative to Poisson regression models 

when dealing with over-dispersed data.  

The negative binomial distribution for a random variable Y is the number of trials with 

fixed probability π needed for a specified number of successes θ  to occur. It thus has 

two parameters, and if the probability of success is re-expressed as λ = (1-π)/π its 

density function is 
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The Poisson model arises in the limit as the parameter ∞→θ , so the Overdispersion 

parameter is actually the reciprocal of θ. The expected value of Y is λ and its variance 

is λ + λ2/ θ.  

The conventional negative binomial model, as defined above, gives rise to a 

generalized linear model, which is described in Chapter 7 of Venables and Ripley 

(2002). This model is also called the NB-2 model in contrast to other models 

including the NB-1 model used by Jansakul and Hinde (2004) for which the variance 

is λ(1+α) where α > 0. However, these other models are not generalized linear 

models and require special software to fit them to data. 

2.2 Log-transformed linear regression model 

The conventional model for handling data where the outcome is continuous is linear 

regression, assuming independent error terms, each following an identical Gaussian 

distribution. 
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Let Y be a log-normally distributed random variable, that is, a random variable whose 

(natural) logarithm is Normal with mean µ  and variance σ
2
. This implies that the 

probability density function of ln(Y) is the density function of the normal distribution, 

namely 
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In our studies, the incidence rates generally have positively skewed distributions so it 

is conventional to transform them by taking logarithms to obtain the outcome as 
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Thus an additive linear model is fitted to the logarithms of the log-transformed 

incidence rates, namely       

         ijqt i j q t
y µ α β η γ= + + + + .                                         (2.7) 

As in Equation (2.3), µ  is a constant and αi, βj , ηq and γ t represent demographic 

group, region, season and year effects, respectively, with zero means.  

Handling zeroes 

If any count 
ijqt

n  is zero, Equation (2.6) needs to be modified to give a finite result, so 

that 
ijqt

n  is replaced by a positive value *

ijqtn . 

Various methods may be considered for this data modification. Zero counts simply 

could be omitted, and the fitted model then used to impute counts for these cases 

before refitting the model (Ardkeaw and Tongkumchum 2009). This method has 

advantages in situations where under-reporting is known or suspected. Another 
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method involves adding a constant c to all counts so that *

ijqt ijqtn n= + c.  A third 

method involves replacing the zeroes by a suitably chosen constant d without 

changing any values of 
ijqt

n  greater than 0. 

Sum contrasts 

Sum contrasts (Venables and Ripley 2002, Tongkumchum and McNeil 2009) are used 

to obtain confidence intervals for comparing adjusted incidence rates within each 

factor with the overall incidence rate. An advantage of these confidence intervals is 

that they provide a simple criterion for classifying levels of a factor into three groups 

according to whether each corresponding confidence interval exceeds, crosses, or is 

below the overall mean. 

Methods for creating geographical maps 

A thematic map is a type of map that uses different colours or shades to graphically 

display information about the underlying data representing estimated values of a 

variable at different locations on the map. The thematic map using data in regions 

might show one region in dark red to indicate that the region has high values, while 

showing another region in very pale red to indicate that the region has low values. A 

range map is a type of thematic map that displays data according to ranges set by the 

users. The ranges are shaded using colors or patterns. These types of maps are used to 

show the geographical distribution of the adverse outcome and to identify areas of 

high risk. Appropriate graphs are used for exploratory data analysis, visualizing the 

pattern of the data and highlighting possible errors in the data that could cause 

problems in further analysis.  
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Since the confidence intervals for factor-specific incidence rates obtained from a 

model divide naturally into three groups according to their location entirely above the 

mean, around the mean, or entirely below the mean, we used this trichotomy to create 

thematic maps of districts according to their estimated incidence rates. 

2.3 Multivariate multiple regression model  

Multivariate multiple regression is a logical extension of the multiple regression 

concept to allow for multiple response (dependent) variables. Multivariate regression 

estimates the same coefficients as one would obtain using separate univariate 

regression models. In addition, multivariate regression, being a joint estimator, also 

estimates the between-equation covariance. This means that it is possible to test 

coefficients across equations. 

Suppose that data are available for n observations, and the response variables are 

arranged into a matrix whose columns are p outcome variables and rows correspond 

to the n observations. The model (Mardia et al 1979) is defined in matrix form as  

Y(n × p) = X(n × q) B(q × p) + E(n × p) .    (2.8) 

In this formulation Y(n × p) is an observed matrix of p response variables on each of the 

n observations, X(n × q) is the matrix of q predictors (including a vector of 1s) in 

columns and n observations in rows, B(q × p) contains the regression coefficients 

(including the intercept terms), and E(n × p) is a matrix of unobserved random errors 

with mean zero and common covariance matrix ΣΣΣΣ. Ordinary (univariate) multiple 

regression arises as the special case when p = 1. If q−1 determinants fi
 (k)

 (k = 1, 2,…, 

q−1) are available, the model for outcome j for observation i may be expressed as  
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In this equation, ijy is the observed outcome j at observation i, jµ is the overall mean 

associated with outcome j, and )(l

jβ is the effect of factor i on outcome j. 

For each outcome, the model fitting may be assessed by plotting the residuals against 

normal quantiles (Venables and Ripley 2002), and also by using the set of r-squared 

values for the response variables to see how much of the variation in each is 

accounted for by the model.  

There are different multivariate test criteria such as Hotelling’s trace,  Wilks’ lambda, 

Pilai’s trace. And Poys’lastest root. A likelihood ratio, Wilks’ lambda, for testing the 

significance of an extra parameter is used as an equivalent form of the F statistic in 

the univariate regression model (Wilks 1932). The Wilks’ lambda can be expressed in 

terms of generalized variances in the matrices of sums of squares and cross products 

due to the factors and the residuals. We reject the null hypothesis if the likelihood 

ratio of generalized variations is too small. The F statistics are then used to test the 

significance of the factors on each response variable.  

2.4 Canonical correspondence analysis 

Assuming that the data structure comprises the Y and X matrices with rows 

corresponding to measurements of outcomes and predictors taken on the same 

occasions, canonical correspondence analysis (Ter Braak 1986) produces a two-

dimensional biplot comprising arrows of variable lengths and directions (gradients) 

emanating from a common origin representing the predictor variables, together with 
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superimposed points denoting the outcome variables. The relative lengths of the 

arrows and the angles between them are based on the correlation matrix of the 

predictor variables, and the coordinates of the points are planar projections of the 

density outcomes, computed in such a way that their positions relative to the arrows 

portray their associations with the environmental predictors. The method also 

produces coordinate scores and p-values for the overall associations based on Monte 

Carlo permutation tests. 

2.5 Factor analysis 

The objective of factor analysis is to identify underlying factors that describe the 

correlations among the variables (Mardia et al 1979, Johnson and Wichern 1998).  

Suppose that X is the n by p matrix with Xj denoting the j
th

 variable and element xij 

denoting the i
th

 observation of the j
th

 variable. Factor analysis is based on the 

correlation matrix R of X using the maximum likelihood estimation method. The 

appropriate number of common factors, m, can be determined using a chi-squared test 

on the residual correlations. Let L be the p by m matrix of factor loadings. The loading 

of variable j on common factor q is denoted by elements
)(q

jl . The total variance of Xj 

can be decomposed into two parts corresponding to communality and uniqueness. 

Communality is the proportion of the variance of Xj explained by the m common 

factors. It is the sum of squares of the loadings of the j
th

 variable contributed by all the 

factors, that is,
 

2)(2)2(2)1(
)(...)()(

m

jjj lll +++ . The unexplained variance of Xj due to the 

random errors is often called the uniqueness, ψj, indicating how distinctive the 

measure of Xj is from the remaining variables. Therefore, any variables with high 

uniqueness should be dropped from the factor analysis. In this case, the correlation 
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matrix is reproduced based on a lesser number of variables, followed by the steps 

described above.  

The factor loadings obtained may not be readily interpretable and thus may need to be 

rotated to simplify their interpretation. That is, each variable contributes highly on a 

single factor and loads a smaller amount on the other factors. Each factor summarizes 

a general characteristic of a group of variables. Two basic types of factor rotation are 

orthogonal and oblique. Orthogonal rotation (for example, varimax) yields 

independent factors (Kaiser 1959) whereas oblique rotation (for example, promax) 

allows factors to be correlated (Hendrickson and White 1964).  In practice it is 

desirable to try several methods to achieve a simple structure of factors. 

Denoting the factor q by F
(q)

, each F
(q)

 is a weighted linear combination of the scaled 

variables and the estimated values of F
(q)

 are called factor scores, )(q

if (i = 1, 2, ..., n). 

The scores can be determined by the weighted least squares method. Each score i for 

factor q is the sum of the rotated loadings of Xj on F
(q)

 multiplied by the 

corresponding standardized values of Xj. The formula is 
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where 
)(~ q

jl is the rotated loading of variable j on common factor q, jx and js are the 

mean and standard deviation of variable j, respectively. These common factors are 

often used as inputs to subsequent applications such as regression analysis and cluster 

analysis. Some important studies using this method include those reported by 

Kuppusamy and Giridhar (2006),  Ouyang et al (2006), Senthamarai and Nagarajan 

(2008), Amiri and Nakane (2009), Boyacioglu et al (2009)and Sangun  et al (2009). 
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2.6 Model assumptions 

Data transformation  

Many statistical procedures assume that the variables are normally distributed. A 

significant violation of the assumption of normality can seriously increase the chances 

of the researcher committing either a Type I or II error (depending on the nature of the 

analysis and the non-normality). There are a great variety of possible data 

transformations, from adding constants to multiplying, squaring or rising to a power, 

converting to logarithmic scales, inverting and reflecting, taking the square root of the 

values, and even applying trigonometric transformations such as sine wave 

transformations.  

Logarithmic transformations are actually a class of transformations, rather than a 

single transformation. In brief, a logarithm is the power (exponent) a base number 

must be raised to in order to get the original number.Any given number can be 

expressed as y to the x power in an infinite number of ways. It was used when (a) 

the variances are not equal (heterogeneity of variances) ,(b) standard deviations are 

proportional to the means (CV's are equal) or (c)when the data is positively skewed. 

There are good reasons to consider a range of bases (Cleveland 1984) argues that base 

10, 2, and e should always be considered at a minimum).For example, in cases where 

there are extremes of range base 10 is desirable, but when there are ranges that are 

less extreme, using base 10 will result in a loss of resolution, and using a lower base 

(e or 2) will serve (higher bases tend to pull extreme values in more drastically than 

lower bases). 
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Osborne (2002) concluded when using count variables researchers should use the 

square root of the counts in the analyses, which takes care of count data issues in most 

cases. Proportions require an arcsine-root transformation. In order to apply this 

transformation, values must be between 0 and 1.A square root of the values is taken, 

and the inverse sine (arcsine) of that number is the resulting value. However, in order 

to use this variable in an analysis, each observation must be weighted by the number 

in the denominator of the proportion.  

Moreover making inferences about the results from the statistical models, it is 

necessary to check the model assumptions of normality and homoskedasticity. If these 

assumptions are not plausible, the results may not be valid and may lead to incorrect 

conclusions. Graphical methods are often used to check these assumptions.  

Graphical Normality  

A scatter plot of standardized residuals versus their normal scores is commonly used 

to assess normality of errors in a linear regression model. If these errors are normally 

distributed, then the standardized residuals should match the normal scores. The plot 

should then resemble a nearly straight line with intercept zero and slope one.  

Homoskedasticity 

A scatter plot of the standardized residuals against the fitted response variable can be 

used to check the homoskedasticity assumption. If the dots on the plot are randomly 

scattered evenly within a horizontal band around zero, then the homoskedasticity 

assumption is plausible.  

 


