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ABSTRACT

In study suitable statistical methods have been applied for different data structures
based on hospital case records of malaria routinely reported from 1999 to 2004 in the
north-western area of Thailand including both districts bordering on Myanmar and
non-border districts. Using the appropriate statistical methods, the associated patterns

of outcomes and determinants can then be identified.

The objective of this study was to model the pattern of hospital-diagnosed malaria
incidence in north-western Thailand, and to determine precisely where malaria

incidence is high so that these areas can be targeted for treatment and prevention.

There are two parts in this study. The first study uses a conventional statistical model
to find a suitable model for forecasting monthly incidence rates of reported hospital
cases of malaria in districts of the two provinces, Mae Hong Son, and Tak, with high
risk of disease in the north-western region of Thailaﬁd. The second study uses new
methods to identify the spatial patterns and trends of hospital-diagnosed malaria
incidences based on case data aggregated by quarterly periods in 65 districts of the six
north-western provinces of Thailand. The provinces in our study comprise Lamphun,

Phrae, Nan, Chiang Rai, Mae Hong Son, and Tak.




In the first study, the model compared linear regression, Poisson regression and
negative binomial regression to forecast the districts and age groups in which
epidemics are likely to occur in the near future in order to prevent the disease by using
suitable measures. ‘Linear regression obtaining an r-squared of 61.2% for Mae Hong

| Son and 81.0% for Tak province. The Poisson model gives residual deviances of
8,135.9 for Mae Hong Son and 8,898.4 for Tak. The negative binomial model gives
residual deviances of 2,212.7 and 2,834.2, respectively. All components in the model
for each province are statistically significant at p-value < 0.05. Among the models
fitted, the best were chosen based on the analysis of deviance and the negative
binomial generalized linear model was clearly preferable. The model contains
additive effects associated with the season of the year, district, age group and the
malaria incidence rates in previous months, and can be used to provide useful short-
term forecasts. Having a model that provides such forecasts of disease outbreaks, even
if based purely on statistical data analysis, can provide a useful basis for allocation of

resources for disease prevention.

In the second study, the model compared log-normal regression models (additive and
additive plus multiplicative based on principal components) to describe these patterns.
Additive log-normal gave an r-squared of 79.1%.The additive plus multiplicative
model gave an r-squared of 81.7% .The additive plus multiplicative linear model
provides an appropriate fit to the malaria incidence rates in the north-western region
classified by districts, age-group and quarterly period. The models show trends and
spatial variations in disease incidence. According to this study, the incidence of
malaria was highest among persons aged from 5 to 39 years in border districts, but in

contrast, children aged 0-4 had highest incidence rates among those in other districts.
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Chapter 1

Introduction

1.1 Rationale for study

Malaria is a serious health problem in many tropical countries of the world. Nearly
one billion people are exposed to hyperendemic and mesoendemic malaria in
Southeast Asia (Hay et al 2004). Malaria is a disease which is deeply rooted in poor

communities and hence affects national development, particularly in Thailand.

Geographically, Thailand is located in the Southeast Asia tropical zone. The
transmission of malaria is common, particularly in the upper northern region of the
country. Malaria in Thailand is endemic in forest areas, and many cases occur along
the national borders, particularly on the border with Myanmar to the west where there
is evidence of much higher malaria incidence rates in some districts (Konchom et al

2003).

The border areas of Thailand are mostly forest-fringe foothills, especially along the
north-western border with Myanmar. There is high malaria receptivity, and
vulnerability that presents numerous problems in the control of malaria transmission.
Malaria among foreign labourers is a major obstacle to an effective control program,
although the number of reported cases has declined significantly since 2000. The
disease is localized in four main areas: the Thai-Myanmar border to the north-west,
the Thai-Lao to the north-east, the Thai-Cambodian border to the east, and the central

part of the southern peninsula.




Since 1997, more than 60% of the total malaria cases in Thailand were detected in
border provinces, and one-third of these were detected in Tak province on the Thai-
Myanmar border. The total number of cases nationwide has been decreasing every
year, while the number of cases detected in border provinces has been gradually
increasing. This indicates that the disease has become more localized along the

international borders (Konchom et al 2003).

By 1930, malaria was recognized as one of the most severe diseases in Thailand, with
mortality rates exceeding 400 cases per 100,000 populations. In 1947, the mortality
rate attributed to malaria was nearly 300 cases per 100,000 population, and
represented a major cause of premature death in rural population. In the 1‘9505,
intensified malaria control efforts using DDT significantly reduced malaria-related
deaths over the ensuing years. By 1974, mortality was 16 per 100,000 population; and
in 1994, deaths had decreased further to 1.6/100,000. In 1997, the mortality rate was
1.26/100,000, with 700 deaths. Mortality rates have been decreasing since 1987 in
spite of a fluctuation of malaria incidence over the past 15 years. The continued
decrease in mortality since 1974 has been attributed to the expansion of peripheral
health care delivery in more remote areas of the country, and the establishment of
malaria clinics providing rapid diagnosis and prompt treatment in areas of high
transmission (Prasittisuk 1985). Despite these dramatic improvements, high rates of
disease and death continue among people who reéide in the forested hill areas,
especially in economically depressed localities along the borders, which are most
often associated with limited access to public health services (Chareonviriyaphap et al

2000).




Many research models have been used to study malaria in the border provinces of
Thailand. Rattanasiri et al (2004) investigated the geographical distribution of malaria
in Thailand during 1995, 1996, and 1997 by applying a mixture model to disease
mapping, and examined the dynamic nature of malaria in Thailand during the three-
year time frame by applying a space-time mixture model. Non-parametric maximum
likelihood estimation was employed to calculate the parameters of both the mixture
model and the space-time mixture model. Applying Bayes’ theorem, the 76 provinces
of Thailand were classified into component risk levels based on the rate of malaria for
each province. Malaria occurred extensively in four provinces on the Thai-Myanmar
border, and in two provinces on the Thai-Cambodia border. Of the 76 provinces
studied, 10 showed an increasing trend over the three-year period. A combarison of
the map based on the mixture model with the map based on the traditional percentile
method indicates that the non-parametric mixture model removes random variability
from the map and provides a clearer picture of the spatial risk structure. The
advantage of the mixture model approach to disease mapping is the graphical visual
presentation of the prevalence of disease. The space-time mixture model also more
adequately investigates the dynamic nature of disease than does the percentile model.
For these reasons, the investigation of modeling and forecasting malaria incidence in

north-western Thailand were studied for this thesis.

The objective of this thesis is to model the pattern of hospital-diagnosed malaria
- incidence in North-Western Thailand, and to determine precisely where malaria

incidence is high so that these areas can be targeted for treatment and prevention.



The results of this study will provide a useful short-term forecast, utilizing a model
that produces such forecast of malaria incidence rates, as a basis for allocation of

resources for disease prevention.

1.2 Definition of incidence

The incidence of disease is the rate at which the disease is spread among persons in
the population. The prevalence of disease in a population is the number of people who
are infected divided by the number of people in the population. The numerator is
those who are ill, those who have specific symptoms of illness, or those who are have
microbiology evidence of infection but do not exhibit symptoms. The denominator

in the prevalence equation is also defined by the epidemiology researcher: It may be
the number of persons in the population, regardless of known exposure status, or it
may be persons who were exposed. In the former case, the measurement of
prevalence deﬁnes'the burden of disease in the population overall; in the latter case,
the definition gives the prevalence of disease among those exposed. Where exposure
is common, age-specific population prevalence is commonly measured. Where
exposure is rare, prevalence rates by exposure group are used more frequently.

The other commonly used measure is the incidence of disease. The incidence is the
rate at which persons acquire the disease or the rate at which the infections agent is
being transmitted throughout the population. The incidence of disease always includes
a unit of time, the number of case of malariain a given year, month or quarter, for

example.

The incidence and prevalence of disease are related to each other by the duration of

disease. In case where the duration of disease is short, the prevalence of disease will



be approximately equaled to the incidence of disease because most infections will be
relative recent. If, in contrast, the duration of the disease is long, the prevalence of
disease will include both new and former case of disease and will be a more
appropriate measure than the incidence of disease. This relationship can be described

by the equation:
Prevalence = Incidence x Duration

At any time, the incidence may be decreasing when the prevalence is rising. Such may
be the case with HIV infection in the United States and Western Europe at present,
because combined antiretroviral therapy has prolonged survival, but because of the
effect of the drugs in reducing viral load, the transmission, or incidence of new cases,

may be decreasing.

In other infectious disease that have short duration, and where infected persons
remain susceptible to re-infection, the incidence may exceed the point prevalence.
Persons may have several episodes of diarrhea or rhinovirus respiratory infection per
year that last only a few days. In these diseases, the point prevalence may be low but
the annual incidence may be quite high. It may be preferable to measure the impact of
these diseases with annual incidence rates. In contract, in malaria hyperdemic areas,
young children may receive hundreds of bites from infected mosquitoes every year. In
this situation, the annual incidence of malaria is so high that is difficult to measure.
However, a blood film will allow determination of the point prevalence of infection,
because the parasites persist in the blood for some time. Malaria prevalence data are
more useful to differentiate 'populations at very high risk or of hyperendemic foci in

an endemic area. (Nelson and Williams 2007)




1.3 Literature review

Several publications have addressed the problem of modeling and forecasting malaria

disease incidence.
Statistical modeling

McNeil and Tukey (1973) noted that two-way tables of all kinds often require
diagnosis, usually of the residuals after some simple fit such as row-plus-column or
row-times-column. The method is likely to be either one-degree-of-freedom for non-
additivity, or a diagnostic plot (for which the former is the linear regression term). Not
all diagnoses can be made at the first step. Some diagnostic plots appear as a diagonal
cross; or, when such an appearance is unclear, become converted to oppositely tilted
pictures when we look only at points with high fitted values and, separately, at those
with low fitted values. Such behaviour signals a need for a more subtle re-expression
than powers and logs, for example a re-expression such as p* ~(1— p)*. The results
showed that the appearance and treatment of such diagnoses lead to: the use of letter-
value displays and the associated plots to study the character of non-normality; the
instances of the effect of the method of fitting on the shape of the distribution of
residuals; and convenient algorithms for the iterative, recursive fitting of a variety of
additive, multiplicative, and mixed additive-multiplicative models to any kind of two-

way table.

Booth et al (2002) investigated the Lee-Carter method of mortality forecasting, which
assumes an invariant age component. Most applications have also adopted a linear
time component. The use of the method with their Australian data is compromised by

significant departures from linearity in the time component, and changes over time in




the age component. The researchers modified the method by adjusting the time
component to reproduce the age distribution of deaths, rather than total deaths, and to
determine the optimal fitting period in order to address non-linearity in the time
component. In the Australian case the modification has the added advantage that the
assumption of invariance is better met. The modifications result in higher forecast life
expectancy than the original Lee-Carter method and official projections, and a 50%
reduction in forecast error.»The model is also expanded to take account of age-time
interactions by incorporating additional terms, but these are not readily incorporated

into forecasts.

Bi et al (2003) explored the impact of climate on the transmission of mala'ria in China.
A time series analysis was conducted using data on monthly climatic variables and
monthly incidence of malaria in Shuchen County for the period 1990-1991. The
results, using Spearman’s correlation analysis, showed that monthly mean maximum
and minimum temperature, two measures of monthly mean relative humidity, and
monthly amount of precipitation were positively correlated with the monthly
incidence of malaria in the county. Regression analysis suggested that monthly mean
minimum temperature and total monthly rainfall, with a one month lagged effect,
were significant climate variables in the transmission of malaria in Shuchen County.
Seasonality was also significant in the regression model, and there was a declining
secular trend in the incidence of malaria. The results indicate that climatic variables
should be considered as possible predictors for regions with similar geographic and

socioeconomic conditions.

Hoshen and Morse (2004) described climate as a major driving force behind malaria

transmission. Hence, climate data are often used to account for the spatial, seasonal




and inter-annual variation in malaria transmission. The researchers used a
mathematical-biological model of the parasite dynamics in Africa, comprising the
weather-dependent stages, both within vectors and within host stages. The results of
numerical evaluations of the model in both time and space show that it qualitatively
reconstructs the prevalence of infection. A process-based modeling structure has been
developed that may be suitable for the simulation of malaria forecasts based on

seasonal weather forecasts.

Jansakul and Hinde (2004) discussed the possible use of the Newton-Raphson
algorithm to obtain maximum likelihood estimates of the linear mean-variance
negative binomial regression model and of the overdispersion parameter. Constructing
a half-normal plot with a simulated envelope for checking the adequacy of a selected
linear mean-variance negative binomial model was also discussed. These procedures
were applied to analyze data from a number of embryos in an orange tissue culture
experiment in Ireland. The analysis showed that the NB1 regression model with a
cubic response function over the dose levels was consistent with the data, including

some areas where a few malaria cases were found as well as in malaria-free areas.

Kaewsompak et al (2005) studied the epidemic patterns of dengue hemorrhagic fever
and other acute febrile illnesses in Yala province in Southern Thailand. They
investigated the relationship between incidence rates in terms of their geographical
distribution, and developed a methodology that could be applied routinely to
geographical epidemiologic research for the spatio-temporal mapping of disease.
Schematic range maps and statistical models were used to investigate disease
distribution by year and location. The analytic methods used Poisson and negative

binomial distribution models. The concept of a “risk alert” is suggested as a method



for highlighting subdistricts with unexpectedly high incidence rates in a given year.
The authors found high correlations between the incidence rates for dengue fever: in
2002 there were two sub-districts with moderate risk alerts, namely KaYuBoKo (p-

value = 0.030) and KuTaBaRu (p-value = 0.042); whereas in 2003 there was just one

subdistrict with a high risk alert, KaYuBoKo (p-value = 0.003).

Gomez-Elipe et al (2007) developed a statistical model to predict malaria incidence in
an area of unstable transmission in Burundi by studying the association between
environmental variables and disease dynamics. The model used a time series of
quarterly notifications of malaria cases from local health facilities, in addition to rain
and temperature records, and the normalized difference vegetation index. An
autoregressive integfated moving average methodology was employed to obtain a
model showing the relationship between quarterly notification of malaria cases and
environmental variables. The results showed that this model is a simple and useful

tool for forecasting malaria incidence in Burundi.

Briét et al (2008) investigated developing a forecasting system which could assist in
the efficient allocation of resources for malaria control in Sri Lanka. Exponentially
weighted moving average models, autoregressive integrated moving average
(ARIMA) models with seasonal components, and seasonal multiplicative
autoregressive integrated moving average (SARIMA) models were compared on a
monthly time series of district malaria cases for their ability to predict the number of
malaria cases one to four months ahead. The addition of covariates, such as the
number of malaria cases in neighboring districts, or rainfall amounts, were assessed

for their ability to improve the predictive ability of selected (seasonal) ARIMA
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models. The results showed that the addition of rainfall as a covariate improved
prediction of selected (seasonal) ARIMA models moderately in some districts, but
worsened prediction in others. Improvement by adding rainfall was more noticeable

with longer forecasting horizons.
Correlation analysis

Gagnon et al (2002) reported a statistically significant rclationship between El Nifio
and malaria epidemics in Colombia, Guyana, Peru and Venezuela. In most of these
countries, the prevalence was highest in the wet season. However, the authors also
suggested that on an inter-annual scale, malaria was also associated with drought.
They analyzed the relationship between El Nifio Southern Oscillation events and
malaria epidemics in a number of South American countries, including Colombia,
Ecuador, French Guiana, Guyana, Peru, Suriname and Venezuela. A statistically
significant relationship was found between El Nifio and malaria epidemics in
Colombia, Guyana, Peru and Venezuela. It was found that flooding engenders malaria
epidemics in the dry coastal region of northern Peru, while droughts favor the
development of epidemics in Colombia and Guyana, and epidemics lag a drought by
one year in Venezuela. In Brazil, French Guiana and Ecuador, where malaria signal
non-climatic factors such as insecticide spraying, variations in availability of anti-
malaria drugs were not found. Population migration is likely to play a stronger role in
malaria epidemics than ENSO-generated climatic anomalies. In some South American
countries, El Nifio forecasts show strong potential for improving public health efforts

to control malaria.
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Khasnis and Nettleman (2005) concluded that global warming has serious
implications for all aspects of human life, including infectious diseases, and that the
effect of global warming on disease depends on the complex interaction between the
human host population and the causative infectious agent. From the human
standpoint, changes in the environment may trigger human migration, causing disease
patterns to shift. Crop failures and famine may reduce host resistance to infections.
Disease transmission may be enhanced through the scarcity and contamination of
potable water sources. Importantly, significant economic and political stresses may
damage the existing public health infrastructure, leaving mankind poorly prepared for
unexpected epidemics. Global warming will certainly affect the abundance and
distribution of disease vectors. Altitudes that are currently too cool to sus‘tain vectors
will become more conducive to them. Some vector populations may expand into new
geographic areas, whereas others may disappear. Malaria, dengue, plague, and viruses
causing encephalitic syndromes are among the many vector-borne diseases likely to
be affected. Some models suggest that vector-borne diseases will become more
common as the earth warms, although caution is needed in interpreting these
predictions. Clearly, global warming will cause changes in the epidemiology of
infectious diseases. The ability of mankind to react or adapt is dependent upon the
magnitude and speed of the change. The outcome will also depend on our ability to
recognize epidemics early, to contain them effectively, to provide appropriate
treatment, and to commit resources to prevention and research. A graphical display
shows the improvement of risk prediction brought about by the model used in their
study. Such a model, even if based purely on statistical data analysis, can provide a

useful basis for allocation of resources for disease prevention.
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Devi and Jauhari (2006) investigated the effect of climatic factors on malaria
incidence, with particular emphasis on capturing the essential events as a result of
climatic variability in India. Mosquito sampling and identification was performed
using WHO entomological methods, and follow-up of recognized keys and
catalogues. Data on malaria incidence and meteorological information were gathered
in a collaborative study with the District Malaria Office, and the Forest Research
Institute in Dehradun, respectively. Pearson’s correlation analysis was applied to
establish the relationship between climate variables and malaria transmission. In this
study, a higher positive correlation of association was found between monthly parasite
incidence and climatic variables (temperature, rainfall and humidity). However, the
highest significant correlation was found between rainfall and malaria inéidence (r=
0.718, p -value< 0.0001) when the data were staggered to allow a lag of one month.
Climatic variables that predict the presence or absence of malaria are likely to be the

best pattern for forecasting the distribution of the disease.
Geographical Information System (GIS)

Kleinschmidt et al (2000) concluded that a good map of malaria risk is an important
tool for malaria control in South Africa. The production of such maps relies on
modeling to predict the risk for most of the map areas, with actual observation of
malaria prevalence usually only known at a limited number of specific locations.
Estimation is complicated by the fact that there are often variations of risk that cannot
be accounted for by the known covariates, and because data points measuring malaria
prevalence are not evenly or randomly spread across the area to be mapped. The

researchers used a simple two-stage procedure to produce a map of predicted risk
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areas, using logistic regression modeling to determine the appropriate risks on a larger
scale, while employing geo-statistics to improve prediction at a local level. Malaria

_ prevalence in children under 10 was modeled using climatic, population and
topographic variables as potential predictors. After regression analysis, spatial
dependence of the model residuals was investigated. Kriging on the residual was used
to model local variation in malaria risk over and above that which is predicted by the
regression model. Results from this study were illustrated by a map showing the

improvement of risk prediction brought about by the second stage.

Srivastava et al (2001) investigated Anopheles dirus, which is found in deep-forested
areas in India where manual surveys are very difficult because of inaccessibility. A
Geographic Information System (GIS) and a Boolean operator were used to map areas
where the species is likely to be found. Being a forest-based species, thematic maps of
forest cover, altitude, rainfall and temperature were prepared. Overlaying and
integration of thematic maps were done using Arc/Info NT and analysis by ArcView
3.1 (GIS ESRI) software. The results were validated through reported distribution and
were found to be correct. This technique can cover vast and inaccessible areas, and is
fast and easily duplicable in other parts of the world. Once the vector distribution is

known, species-specific control measures can be formulated.
Statistical modeling for malaria epidemics in Thailand

Tiensuwan et al (2000) identified risk factors causing malaria in Tak province in the
rainy season by using log-linear models. Tests of independence are used (chi-square
and Cramer's V-value tests) to find out the relationships between any two variables. In

addition, two- and three-dimensional log-linear models are used to obtain estimated
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parameters and expected frequencies for these models. Among the models fitted, the
best are chosen based on analysis of deviance. The results of this study show that
most observed variables are significantly related, with p-value < 0.05. Causes of
migration and reasons for staying overnight are highly related to personal variables.
Thus, it can be concluded that two of the risk factors for malaria are causes of
migration and reasons for staying overnight. Knowledge of prevention is also related
to personal variables. Therefore, knowledge of prevention was concluded to be a risk
factor affecting prevalence of malaria. For each set of three variables, the best model
shows interaction terms of variables that have a relationship, but there are no

interactions of three effects in these best models.
Malaria epidemics in Thailand

Konchom et al (2003) focused on the 30 provinces of Thailand situated next to
neighboring countries, which can be divided into four groups: the Thai-Myanmar
border (10 provinces), the Thai-Cambodia border (6 provinces), the Thai-Laos border
(10 provinces) and the Thai-Malaysia border (4 provinces). The purpose of the study
was to describe the pattern and trend of malaria incidence in the highly endemic
provinces along the Thai borders for the 11 years from 1991 to 2001. Analysis of
trends showed the distribution of malaria parasites to have shifted from a
preponderance of Plasmodium falciparum to Plasmodium vivax along the western
border with Myanmar, the northern border with Laos, and along the eastern border
with Cambodia; whereas since 1997, along the southern border with Malaysia the
pattern changed from a preponderance of P. vivax to P. falciparum. The results

showed a significant difference in annual parasite incidence between border and non-
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border districts, especially along the Thai-Myanmar and Thai-Cambodia borders. It is
thus evident that all border districts should pay more attention to the control of
malaria transmission and the activities of the malaria surveillance system, and that
monitoring and evaluation of the Thai Malaria Control Program needs to be

performed.

Chaveepojnkamjorn and Pichainarong (2005) used a cross-sectional study conducted
from January 2001 to June 2002 among certain migrant populations living in malaria
endemic areas in districts along the Thai-Myanmar border. They surveyed and
examined residents in Mae Fah Luang and Mae Sai districts, Chiang Rai province,
Northern Thailand. They focused on the knowledge and practice of primary malaria
prevention, aimed at identifying the association between behavioral factors in migrant
populations and malaria infection. P. vivax (51.8%) was detected more often than P.
Jfalciparum (47.7%). The proportion of malaria infections was 45.4% of the total of
421 blood examinations. The working age group (15-44 years) and males comprised
the majority of the study subjects. Two age groups (0-14 and 15-34 years), and
visiting or staying in the forest 14 days prior to the blood exam were significant risk
factors. Thai-Yai and hill tribe ethnic groups demonstrated a significant protective
factor (p-value < 0.05) compared to other Myanmar people. A poor knowledge of
primary malaria prevention (63-68%), the presence of international migration,
poverty, lack of malaria prevention resources (namely not using bed nets), and not
using a smoky fire were factors which led to failure in primary prevention and control
of malaria infections. Residence-workplace-living styles in the forest need a common

effective method of primary prevention.
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1.4 Outline of thesis

This thesis contains four chapters, including this chapter which, in addition to a
rationale for study, gives a definition of incidence and includes a literature review.

Chapter 2 is methodology. It provides a description of data including data sources,

- data management, demographié factors and an overview of the statistical methods

used to forecast malaria incidence. Chapter 3 is data analysis and models for malaria.
This chapter divides into two studies. First study is forecasting malaria in north-
western Thailand. Second study is modeling malaria incidence in north-western
Thailand. This involves characteristics of data, distribution of incidence rates and
result from fitting statistical modeling of using the models described in Cpapter 2.

Chapter 4 is conclusion and limitations.




Chapter 2

Methodology

This chapter describes the statistical methodology used in this study, and statistical
model fitting. These include linear regression models, Poisson regression models,
negative binomial regression models, additive log-normal models, additive plus

multiplicative models and principal components analysis.

Graphical and statistical analyses used programs written in R software (R

Development Core Team 2008) for most of the analysis.

2.1 Sources of data

This study is a cross-sectional survey distributed by time and area. Data used in this
study were obtained from a registry of hospital-diagnosed infectious disease cases
collected routinely in each of Thailand’s 76 provinces by the Ministry of Public
Health. The records of every case have fields comprising characteristics of the subject
and the disease, including dates of sickness and disease diagnosis, the subject’s age,
sex, and address, and the severity of the illness (including date of death for mortality
cases). This epidemiological data is called the 506 Surveillance Database. The study
data consisted of malaria cases from the databases of provincial health offices in
Lamphun, Phrae, Nan, Chiang Rai, Mae Hong Son, and Tak provinces from 1999-

2004.

In 1963, the World Health Organization (WHO) joined with the Thailand Ministry of

Public Health to set up an epidemiology project in order to conduct surveillance and

17



18

control of infectious diseases, and to develop an organization able to conduct
epidemiological surveillance of infectious diseases over time. The organization
responsible is the Bureau of Epidemiology, Department of Disease Control, Ministry

of Public Health.

The next step, the Bureau of Epidemiology was to establish epidemiology centers at
the provincial, district and sub-district levels in order to collect patient data regarding
the epidemiology of 78 infectious diseases. The epidemiology center at each level
collected data on 506 Surveillance Database patient cards, creating a standard
epidemiological infectious disease registry. Beginning in 1995, this data was
processed into a computer instead of a register book. Surveillance of the epidemiology
of infectious diseases comprised both government and private public health care.
When a patient was diagnosed with one of the infectious diseases under surveillance,
a 506 patient card was created and sent to the epidemiology center at the tambon or
district in which the patient resided. The report was then entered into the computer
program, and forwarded to the epidemiology center at a higher level. The
epidemiology units of provincial public health offices then collected and sent the 506
reports to the Bureau of Epidemiology, Department of Disease Control, Ministry of
Public Health, for processing and analysis in order to plan prevention and disease

control in particular areas.

The scope of this study is malaria cases from 1999-2004 in six provinces in north-
western Thailand. The study models the pattern of hospital-diagnosed malaria
incidence in order to determine where malaria incidence was high. The outcome
variables are defined as the incidence rate in a cell indexed by district, age group and

period, with district, age group and calendar period (allowing for a trend effect) as
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categorical determinant variables, and with reference to border and non-border
districts as intervening variables. The target population was malaria cases in the
provinces selected: Lamphun, Phrae, Nan, Chiang Rai, Mae Hong Son and Tak, all of

which have high malaria incidence rates.

2.2 Data management

After cleaning to correct or impute data entry errors the records for the provinces were
stored in an SQL database. SQL programs were used to create malaria disease counts
by month or quarter (72 months from January 1999 to December 2004 or 24 quarter
periods from January-March 1999 to October-December 2004), age group (0-4, 5-14,
15-39 and 40+ years), and district. Incidence rates were computed as the number of
cases per 1,000 residents in the district according to the 2000 Population and Housing
Census of Thailand. Since there was little evidence of a sex effect the data for the two

sexes were combined.

In this thesis a two-study path diagrams were followed: (1) Forecasting malaria in
North-Western Thailand and (2) Modeling malaria incidence in North-Western
Thailand. The first path diagram studies malaria incidence rate of an adverse event
based on cells classified by demographic variables including age group, district, and
period of time (monthly) in Mae Hong Son and Tak provinces. The second path
diagram studies malaria incidence rate based on cells classified by demographic
variables including age group, district, and period of time (quarterly) in six provinces

(65 districts): Lamphun, Phrae, Nan, Chiang Rai, Mae Hong Son and Tak provinces.
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2.3 Demographic factors

This section reviews the general demographic factors influencing malaria incidence
rates. In the study of malaria infection in Mozambique by Abellana et al (2008), it
was found that children under five years of age are at the highest risk, probably
because they have not yet developed sufficient immunity, making these early years a

particularly susceptible period.

Many studies of malaria have tended to focus on explaining patients’ choice of
“provider” or “outlet.” For example, Asenso-Okyere et al (1997) found that the choice
of provider of malaria care is influenced by facility price, travel time, waiting time for
treatment, and a range of demographic factors (including education, age and sex).
Another important factor is the quality of care measured in terms of drug availability
(Goodman et al 2003). Charles et al (2005) investigated the changes in and factors
associated with recent malaria notification trends in Western Australia (WA). The
study design was a retrospective analysis of the WA Notifiable Infectious Diseases
Database consisting of enhanced surveillance questionnaires completed by attending
medical practitioners. The patients were those with cases of malaria reported between
January 1990 and December 2001. Main outcome measurement was annual
notification by demographic variables (including age, sex, occupation and place of
residence), region/country of acquisition, chemoprophylaxis used, Plasmodium
species, and outcome (There was little evidence of a sex effect on the data). From this
study, demographic factors were defined as sex, age group, occupation, residence and

migration.
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2.4 Statistical methods
2.4.1 Linear regression models

At the beginning of the simplest model is based on linear regression with the outcome
variable defined as the incidence rate in a cell indexed by district, age group, and
month, with district, age group and calendar month (allowing for a seasonal effect) as
categorical determinants. Such incidence rates have positively skewed distributions so
it is conventional to transform them by taking logarithms. Since monthly disease
counts based on small regions are often zero, it is necessary to make some adjustment

to avoid taking logarithms of 0: the method we use is to define the outcome as
" .
=In1+K— 1
y ( 7 ) ¢y

where n is the number of disease cases in the cell, P is the population at risk, and X is
a specified constant. To allow for serial correlations in successive months, lagged
incidence rates are included as additional determinants. Such an observation-driven

model with m lags could take the form:
Yijt=:u+ai+ﬂj+’7s+z:=,7kYy,t—k+8yr ¥))

where N, is a random variable denoting the reported number of disease cases in age
group i, district j and month ¢ for the region of interest and n, is the corresponding
number observed, Y, is the outcome variable specified in Equation (1) and y,, the

corresponding number observed, £, comprises a set of independent normally

distributed random variables with mean 0, and s = mod (¢, 12). In this model we

constrain the parameters so thata,= 0, #,=0 and 7, = 0. While linear time trends
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could be included in the model, they are less useful for short-term forecasting
purposes in the presence of high serial cofrelations, and are not considered in the

present study.

To allow for possible spatial correlations between observations on different districts at
the same time, and also for correlations between different age groups, additional terms
allowing for these effects may be included as determinants in the model. A simple

extension of the model (2) incorporating these effects takes the form

— m (a) (5]
Y, =p+e +16j +17, +Zk=l}/kyij,t—k +6lyij,t—-l + 52)’,',',:-1 + &y, 3)

where @

& and y\ denote the observed (transformed) incidence rates in all age

groups other than 7 and in all districts other than j, respectively.
2.4.2 Poisson regression models

A Poisson time series model can be used as a starting point. Assume that N, ,

t=1, ..., nis atime series of counts taking non-negative integer values. The

observation driven Poisson model is defined in terms of its density function, that is,

Prob(N,=n) = ’?" exp(-4,), where N, is0,1,2,3,... €))
n

Variable N, have a Poisson distribution with mean 4, and variance 4,.
Davis et al (2003) suggested observation-driven models for time series
counts N, based on the Poisson distribution with mean A, whereln(4, ) is expressed as

an additive function of determinants and lagged observations on N, . While these

models are not appropriate for disease epidemics because they express the mean of

the process at time ¢ as an exponential function of lagged observations on the same

T S pm oan e okiTay
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process and are thus numerically unstable when substantial variations occur, they

become stable when the lagged observation are replaced by logged incidence rates.

Thus if pj;; is the population in age group i and district j and A, is the mean of N , a

ijt ijt 2
suitable generalized linear model based on the Poisson distribution could take the

form:

ln(ﬂijt ) = ln(p,.j )"' HtQ, +ﬂj +17, + Z:;] YeVies t 51)’;3";)-1 + 52)’:5",’:)—1 . %)
2.4.3 Negative binomial regression models

Poisson models for disease counts are often over-dispersed due to spatial or temporal
clustering of cases (Ruru and Barrios 2003), in which case the negative binomial
distribution may be more appropriate. This distribution has an additional

parameter y and takes the form:

Prob(N,=n) = rey) (v V(&) (6)
‘ T+ )T\ r+4, ) \r+4 )

As for the Poisson model 4, is the conditional expected value of N,, but the

conditional variance of negative binomial distribution is 4, + 4 /y (Jansakul and
Hinde 2004). The parameter y is actually inversely related to the over-dispersion, so

that the Poisson model arises as the special case in the limit asy — .
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Assessment of model based on residual plots

In conventional linear regression models where errors are assumed to be independent
and normally distributed, the adequacy of the model can be assessed by plotting
residuals, obtained from the observations simply by subtracting their conditional
means, against corresponding normal scores. For count data where a generalized

linear model is fitted, (Pearson) residuals are defined by subtracting the conditional
means from the counts and then dividing by the conditional standard deviations
(Kedem and Fokianos 2002). These residuals can be plotted against scores based on
the appropriate asymptotic distribution. For Poisson-distributed models, this

asymptotic distribution is the normal distribution so normal scores can still be used.

For negative binomial time series models, the asymptotic distribution of the
standardized residuals can be derived using moment generating functions. The
moment generating function for the negative binomial distribution given by Equation

(6) is (Wackerly et al 1996)

Elexp(@ N )] = (1+—/}‘—--ﬂie"')— , (7
VA 4

From equation (7), the moment generating function for the standardized residuals is
. O(N, -2, A A 7
E(e”)=E|exp —(-———2—-)— = (1+———exp(9/,/21 +/1,2/y)) exp(—ﬁ\/_/lj/./Hﬂ,/y). (8)
JAa+A2 ]y roy

The limiting distribution of E(e*) as 4, — o is now obtained using a Taylor

expansion, as follows:
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i A ) 6’ ’ W
E@E®)=|1+2-2L(+ + +o(1/2 -0y 1+
i y 7( JAA+4 [y 24 (1+ 4 [y) o '))] exP[ g &J

( 9 9? -
' 2r(1+/1,/7)J exp(-0r)+o(1/2), ®

where o(x) is any function that tends to zero faster than x. Since the limit of

(1+x/n)™ as n—>w ise™, it follows that the limiting distribution of the Pearson

residuals has moment generating function

(1-6/\7)" exp(-64y) (10)
This corresponds to a gamma distribution with shape parameter ¥ and scale

parameter/ ; shifted to the left by \/; .
Jr

2.4.4 Additive log-normal models

We consider alternative statistical models for describing the relation between malaria
incidence and the age group, district and period factors, namely a log-normal
distribution, respectively. In each case the mean function for the selected distribution
is a specified combination of demographic factors. In the simplest case this

combination is additive, taking the form

Y, =a,+B,+7, ()

ift

where the indexes i, j and ¢ denote age-group, district, and period, respectively and

Yy 1s the natural logarithm of the incidence rate, defined as #, / Dy » the number of

cases per 1,000 population in the age-group and district.
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We also consider an alternative model with normally distributed errors for the log-

transformed incidence rate, taking the form

E[log(yy.,):l =a,+ B, +7, (12)
To allow for zero counts in this model, we replaced them by a specified constant

between 0 and 1 before log-transforming.

Since there is evidence of very much higher malaria incidence rates in districts
bordering Myanmar (Konchom et al 2003), and preliminary analysis of our data
indicates that the age distribution of incidence rates for border and non-border

districts differs substantially, we extend the model (12) to

E[tog(y,)] =au+B+7. (13)
where k=1 for border districts, k=2 otherwise. Since districts are nested within

border location, one of the &, parameters in this model is redundant, requiring a

constant to be specified, for definitions we assume,, = ,, .

' 2.4.5 Additive plus multiplicative models

Since we also wish to investigate the possibility that the trend y, varies from district to

district, we consider a further extension of model (Equation 13) to include such a

multiplicative interaction by replacing y, by &y, that is

E[log(y,)] =au+B+5,, (14)
This model, though non-linear, can be fitted by regression analysis after first
computing y, by scaling the first principal component of the covariance matrix of

residuals after fitting the model @, + 3, , giving a further district specific predictor
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factor &, . This technique appears to have been first used by Fisher and McKenzie

(1923). It was later used by McNeil and Tukey (1973) to model socio-demographic
data in regions and has been applied to spectroscopy, chromatography and other fields
to model additive mixtures of overlapping curves (Lawton and Sylvestre 1971,
Sylvestre et al 1974, Theil 1983). The method has also been used more recently for
modeling age-specific mortality rates (Good 1969, Wilmoth et al 1989, Booth et al
2002). Graphical plots against normal quantileé of deviance residuals (for the negative
binomial model) and studentized residuals (for the additive log-normal model) are
used to assess model distribution assumptions. The 95% confidence intervals for
incidence rates associated with each factor in the model after adjusting for other

factors are competed using sum contrasts.
Adjusted Incidence Rates

After fitting the model, adjusted incidence rates for each factor of interest are obtained
by suppressing the subscripts in Equations 13-14 corresponding to the other factors
and replacing these terms with a constant satisfying the condition that the sum of the

counts based on the adjusted incidence rates matches the total (Liu et al 2005).
Sum Contrasts

Sum contrasts (Venables and Ripley 2002, Tongkumchum and McNeil 2009) are used
to obtain confidence intervals for comparing adjusted incidence rates within each
factor with the overall incidence rate. An advantage of these confidence intervals is
that they provide a simple criterion for classifying levels of a factor into three gfoups
according to whether each corresponding confidence interval exceeds, crosses, or is

below the overall mean.
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2.4.6 Principal component analysis

Malaria incidence rates were obtained for each combination of 24 quarters (24 periods
from January-March 1999 to October-December 2004), 4 age groups (0-4, 5-14, 15-
39 and 40+ years), and 65 districts. Incidence rates were computed as thé number of
cases per 1,000 residents in the district according to the 2000 Population and Housing

Census of Thailand.

In order to characterize these district patterns, principal components analysis can be
used. This technique appears to have first been used by Fisher and Mackenzie (1923).
Later, McNeil and Tukey (1973) used it to model regional socio-demographic data.
Principal components analysis has since been applied to spectroscopy,
chromatography and other fields to model additive mixtures of overlapping curves

(Lawton and Sylvestre 1971, Sylvestre et al 1974, Theil 1983).

The method of principal components is based on a data matrix Y with, in our case,
dimension 65 x 24 whose columns correspond to the 24 quarter-year periods of
interest and whose rows correspond to the 65 districts. A second-moment matrix ¥ is

computed as:

V=YY (15)

pxp
where Y is a matrix with (i, j) element y; havingnrows and p columns, and Y’ is its
transpose of.

Alternatively, the matrix ¥ could be taken as the covariance matrix corresponding to
the data matrixes Y . The choice between the second-moment matrix and the

covariance matrix depends on whether it is preferable to correct the variables before

e
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or after the principal component analysis. Similarly, the choice between the
covariance matrix and the correlation matrix depends on whether it is preferable to
scale the variables before or after the principal components are computed. In practice,
these choices are influenced by the objective of the study and the application model.
For example, when the objective is simply to find common factors among the
variables of interest, a principal component analysis would preferably be based on the

correlation matrix.

In our study we have chosen to use the second-moment matrix as the basis for
modeling malaria incidence rates because the age-district-specific means contain
important information, and fitting a model using a single procedure that incorporates
these means is simpler and more direct than the alternative method of first subtracting
these means and then adding them back after fitting a model on the principal

components of the covariance matrix.

Denote by B the orthonormal (px p) matrix with elements f,, whose columns are the

scaled eigenvectors of matrix ¥ . These satisfy the constraints:

()2 ,

(BN =1 for j=12,..,p (16)
j=1

14

YBEpY=1 for k=1. (17)
j=l

The columns are ordered by descending values of the corresponding eigen values;

then the values of the p principal components for the p variables can written in

terms of an (nx p)matrix 4 as:

A=YB (18)
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where Z a,(k)a,(') =0 fork#1. (19)

=
Since B™' = B', post-multiplying both sides of equation 4=YBby B’ gives:

Y=AB'. (20)
Then, the least squares fitted model using the first m eigenvalues from ¥ = 4B' is:

¥, =al80+a PP +.....+a"p . Q1)

In this model, );y is the estimate of Y on the first m principal components, a,(") is the
i" score from the k” principal component, and S j(")is the j” coefficient of the
eigenvector from the k“ principal component.

Residuals

A measure of the discrepancy between Y and Yy is the residualse, =Y, — I?jk . These

residuals contain information where the model might fail to fit the data, so it is
worthwhile to check their behavior. Plotting the residual standard deviations for each
variable indicates lack of homogeneity. The residual covariance matrix, having

elements

1 < n n
Cp=—" (e,.j-ej)(eik—ek), (22)
n_l t=1

also provides an indication of the adequacy of the model.
Covariance matrix

Alternatively, the principal components analysis can be based on the covariance

matrix:
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Vip =@ =3)(Y =), (23)

where y is the vector of p column means. In this case the fitted model based on the

first m eigenvectors is:

I},j =p+y;+ a,(') ﬂj(') + a,(z)ﬁj(z) +oet a,('”) g (24)
where 4 is the overall mean, y, is the j* column effect (district-age effect, in our

: P
case) and z 7; =0. The constraints in equations 16 -17 also apply in this model,
j=1

P
since Z 7; = 0. Thus the number of degrees of freedom for the denominator is now
j=1

v, =(n—m)(p—m)— p . The number of degrees of freedom for the numerator is

defined as df, —df, =n+ p—-2m+1 and df, =(n—m)(p—m) .



Chapter 3

Data Analysis and Models for Malaria

The analysis in this chapter is based on graphical and conventional statistical
methods. Graphical and statistical analyses were carried out using programs written in
R software (R Development Core Team 2008) were used for most of the preliminary

analysis.

3.1 Malaria in North-Western Thailand

In this section we present a preliminary analysis and fitting a model of theitime series
of monthly malaria incidence over the period from January 1999 to December 2004.
The analysis is based on the graphical method and statistical methods. First, the
characteristics of the data are described. After that, distributions of incidence rates are
explained. Finally, we present result from fitting a model (Equations 2-3 and 5-6,
Chapter 2) to the data and finally its summary. The results presented in this section
also appear in Sriwattanapongse et al (2008) and is reproduced in Appendix II, and

the second of which has been submitted for publication.
3.1.1 Characteristics of the data

Data were obtained from a registry of hospital-diagnosed infectious disease cases
collected routinely in each of Thailand’s 76 provinces by the Ministry of Public
Health. We created malaria disease counts for specific age groups and districts, either
monthly (72 months from January 1999 to December 2004), Malaria incidence rates

were calculated based on the number of malaria cases per 1,000 residents in the

33




34

district, according to the 2000 Population and Housing Census of Thailand, for each

age group and period.

Our study aims are to find a suitable statistical model for predicting monthly
incidence rates of reported hospital cases of malaria in districts of the two border
provinces with high risk of disease in the north-western region of Thailand, based on
routinely collected data available from provincial health offices. The provinces
selected, Mae Hong Son and Tak, both border Myanmar and have high malaria

incidence rates.

Based on an individual hospital case records routinely reported in each province from
1999-2004, linear regression models of log-transformed incidence rates (Equations 2-
3, Chapter 2) were used to assess the effects of age, location and season of the year.
Autoregressive terms were included to account for time series and spatial correlations.
Given that the monthly disease counts in individual cells defined by age group and
district were often small numbers with many zero occurrences, Poisson and negative
binomial generalized linear models (Equation 4-6, Chapter 2)were more appropriate
statistical models, and could be used to identify cells with unexpectedly high disease
occurrences. Where substantial autocorrelation existed in the time series, such
episodes might thus enable public health authorities to establish strategies for

preventing outbreaks before they occur.
3.1.2 Distributions of incidence rates

During the study period from January 1999 to December 2004; 29,498 hospital cases
of malaria were reported in Mae Hong Son province and 31,658 in Tak province. The

number of cases in a month for a particular age group and district varied from zero to
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460 in Mae Hong Son and from 0 to 177 in Tak, and the corresponding maximum
disease rates were 24.7 cases per 1,000 in Mae Hong Son and 19.0 cases per 1,000 in
Tak. The time series of average monthly age-specific malaria rates per 1,000

populations at risk for all districts in each province are plotted in Figure 2.

Malaria hospital case incidence: Mae Hong Son Province
cases/1.000
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Malaria hospital case incidence: Tak Province
cases/1.000
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Figure 2: Time series of monthly disease rates for each age group in the two provinces

In Mae Hong Son the rates show a marked seasonal periodicity, and decreased from
very high levels in 1999 to around 1 case per 1,000 per month in recent years,

whereas in Tak the reported malaria rate shows a less pronounced seasonal pattern
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and decreased relatively slightly over the same period. The age patterns are similar in

each province.

Geographical Information System (GIS) has rich repertoire of powerful tools that can
aid in decision making for public health issues. It has been applied in this work for
spatial analysis of epidemiological disease surveillance, together with the use of
statistical and spatial analytical methods, in order to accomplish the purpose of this
study: to determine the highest incidence rates of malaria in the districts of the

North-Western provinces.

Malaria/1,000

l 24910 54.9 (4)
B 18.5t024.9 (4)
52t018.5 (4)
[] 09to 52 (4)

Figure 3: Average annual incidence rates for malaria in Mae Hong Son and Tak

provinces, 1999-2004

Figure 3 thus shows that how the average malaria incidence rate varied by district in

the two provinces. The lowest rates occurred in the four non-border districts (Sam
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Ngao, Ban Tak, Mueang Tak and King Amphoe Wang Chao), and the highest
occurred in the southernmost district of Tak (Umphang: 49.5 cases/1,000/year) and

Mueang Mae Hong Son in the north (31.3 cases/1,000/year).
3.1.3 Fitting a model to the data
Linear regression models

Table 1 shows the results obtained from fitting the linear regression model given by
Equation 3 to the log-transformed incidence rates for each of the two provinces. In
each case we took K = 10,000, giving reasonably linear normal scores plots. The
number of zero counts is 239 (12.4%) for Mae Hong Son province, compared with
605 (24.4%) for Tak province where the disease incidence rates are much lbwer.
Choosing the much smaller value K = 2,000 increases the r-squared for Mae Hong
Son from 0.6121 to 0.642, and also reduces the gap between the zero-valued

incidence rates and the smallest non-zero incidence rate from 0.56 to 0.14.

However, it is questionable whether choosing the smaller value of K provides a better
model for identifying unusually high disease incidence rates in future months. This
question is considered further in relation to the generalized linear models. While all
components in the model for each province are statistically significant, the lagged
incidence rates account for the largest single contribution to the r-squared statistic
(45.6% for Mae Hong Son and 74.9% for Tak), and the coefficients incorporating the
further correlations between age groups and districts are also quite substantial. The
largest residual obtained for Mae Hong Son is 2.58, corresponding to 3 cases reported
among infants below 5 in Khum Yuam district in September 2002 (incidence rate 1.7

per 1,000).



Table 1: Results from fitting linear model to log-transformed incidence rates

Determinant Mae Hong Son
Coefficient St. Error Coefficient St. Error
Constant -0.349 0.108 -0.498 0.094
Age Group: 0-4 0 - 0 -
5-14 0.226 0.051 0.086 0.034
15-39 0.402 0.056 0.186 0.036
40+ 0.201 0.050 0.112 0.039
District: 1 0 - 0 -
2 -0.239 0.068 0.022 0.051
3 -0.474 0.080 -0.018 0.051
4 -0.056 0.066 0.609 0.073
5 -0.230 0.068 0.704 0.081
6 -0.032 0.066 0.248 0.056
7 -0.194 0.067 0.325 0.060
8 0.913 0.094
9 0.113 .0.052
Month: January 0 - 0 -
February 0.586 0.089 0.256 0.060
March -0.214 0.088 -0.162 0.060
April 0.306 0.090 0.202 0.062
May 0.570 0.085 0.186 0.058
June 1.107 0.084 0.735 0.058
July 0.675 0.089 0.574 0.059
August 0.021 0.090 0.338 0.060
September -0.088 0.087 0.081 0.058
October -0.090 0.087 -0.134 0.058
November 0.136 0.086 0.060 0.058
December 0.508 0.085 0.122 0.057
Autoregressive Lag:1: J, 0.224 0.026 0.291 0.024
2: 7, 0.091 0.024 0.146 0.021
3: 7, 0.075 0.022 0.113 0.020
Other Age Groups: 6, 0.341 0.034 0.172 0.028
Other Districts: &, 0.211 0.036 0.148 0.031
r-squared statistic 0.6121 0.8099

However, this residual does not show up as an outlier on the normal scores plot, and the
numbers of cases reported in the same district and age group in the following months

were small (0, 1, 1, 2, and 1, respectively). But in Tak province the highest residual of
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2.46, corresponding to 16 cases that occurred among infants below 5 years of age in
Phop Pra district in February 2001 (incidence rate 2.7 per 1,000), heralded a small

epidemic comprising 5, 6, 17, 16, and 13 cases in the following five months.
Poisson and negative binomial models

Turning to the Poisson and negative binomial regression models given by Equations
(5) and (6), Figure 4 shows plots of Pearson residuals versus corresponding (normal
or gamma) scores. The Poisson model gives residual deviances of 8,135.9 for Mae
Hong Son and 8,898.4 for Tak. The negative binomial model gives residual deviances
0f2,212.7 and 2,834.2, respectively, so the negative binomial model is clearly
appropriate. Some care is needed with the choice of the constant K, because with
lagged incidence rates needed to account for substantial correlations between adjacent

cells, values for K outside a certain range make these models numerically unstable.

For the Poisson model the sum of the predicted disease counts equals the sum of the
observed counts. However, when the negative binomial model is fitted using
maximum likelihood rather than moment estimators this constraint is not necessarily
satisfied, and satisfying this requirement could govern the choice of K. We found that
choosing K = 10,000 gives sums of predicted disease counts that are reasonably close

to the observed sums.

Table 2 and Table 3 give the results obtained from fitting the Poisson and negative
regression model given by Equations (5) and (6) to the malaria disease counts for each
of the two provinces. For negative binomial model, the dispersion parameter estimates

(y) are 3.521 for Mae Hong Son and 3.725 for Tak.




Table 2: Results from fitting Poisson models to malaria disease counts
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Determinant Mae Hong Son Tak
’ Coefficient St. Error Coefficient St. Error
Constant 0.234 0.047 -0.977 0.057
Age Group: 0-4 0 0 0 0
5-14 0.060 0.025 0.038 0.020
15-39 0.124 0.024 0.015 0.019
40+ | -0.015 0.026 -0.023 0.024
District: 1 0 0 0 0
2]  -0.150 0.027 0.180 0.056
3] -0.402 0.036 0.130 0.065
4| -0.091 0.018 0.979 0.047
5| -0.134 0.021 1.096 0.050
6| -0.121 0.020 0.602 0.040
71 -0.126 0.026 0.807 0.045
8 1.214 0.057
9 0.619 0.051
Month: January 0 0 0 0
February 0.249 0.037 0.224 0.032
March | -0.375 0.043 -0.416 0.038
April 0.148 0.042 0.147 0.038
May 0.556 0.034 0.324 0.033
June 1.052 0.030 0.889 0.028
July 0.580 0.032 0.562 0.028
August | -0.174 0.034 0.294 0.029
September | -0.192 0.035 0.044 0.029
October |  -0.197 0.037 -0.084 0.031
November 0.046 0.035 0.210 0.030
December 0.259 0.035 0.255 0.030
Autoregressive Lag: 1: y, 0.391 0.014 0.509 0.020
2y, 0.101 0.012 0.142 0.019
x 3: 7, 0.032 0.010 0.087 0.024
Other Age Groups: 6, 0.201 0.016 0.050 0.017
Other Districts: 6, 0.156 0.014 0.161 0.016
Residual Deviance 8,898.4

The largest Pearson residual obtained for Mae Hong Son is 8.09, corresponding to 52

cases reported among young adults in Mae Sariang district in January 2002. Since 385

(=32+36+18+78+168+53) further cases were reported in the same district and age
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group in the following six months (32, 36, 18, 78, 168, and 53, respectively), and a
further 203 cases were reported in the six months (47, 18, 18, 38, 53, and 29,

respectively) after that, this particular outlier heralded a large epidemic.

Table 3: Results from fitting negative binomial models to malaria disease counts

Determinant Mae Hong Son Tak
Coefficient St. Error | Coefficient St. Error
Constant 0.098 0.101 -1.357 0.120
Age Group: 0-4 0 0 0 0
5-14 0.043 0.049 0.010 0.044
15-39 0.149 0.050 0.092 0.043
40+ | -0.039 0.048 0.084 0.048
District: 1 0 0 0 0
2| -0.141 0.060 0.225 0.080
3] -0430 0.074 0.173 0.087
4| -0.069 0.053 1.036 0.091
5| -0.161 0.057 1.140 0.101
6| -0.029 0.054 0.592 0.072
71 -0.092 0.058 0.833 0.080
8 1.312 0.117
9 0.603 0.079
Month: January 0 0 0 0 p
February |  0.530 0.080 0.239 0.074
March | -0.287 0.084 -0.400 0.078
April 0.225 0.085 0.142 0.079
May | 0.548 0.076 0.246 0.073
June 1.153 0.073 0.914 0.069
July| 0.661 0.077 0.627 0.070
August | -0.049 0.080 0.372 0.071
September | -0.128 0.078 0.008 0.070
October |  -0.140 0.080 -0.228 0.071
November 0.041 0.080 0.032 0.071
December 0.428 0.077 0.081 0.071
Autoregressive Lag: 1: 7, 0.292 0.027 0.412 0.032
2: 7, 0.090 0.024 0.168 0.028
3y 0.069 0.022 0.145 0.026
Other Age Groups: 6, 0.284 0.033 0.121 0.036
Other Districts: 5, 0.161 0.032 0.247 0.038
Dispersion: |  3.521 0.181 3.725 0.188
Residual Deviance 2,212.7 2,834.2
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The present study introduced a methodology to develop malaria social risk categories
in the study area. The results provide valuable information for planning precautionary
measures and in controlling the spread of malaria. The influence of these factors was
obtained in quantitative terms using the Information Value method in the GIS
environment. It was found that built-up areas have the highest incidence and hence

constitute the highest risk zones.
3.2.4 Fitting a model to the data
Additive log-normal models

Additive log-normal models of the form (Equation 11, Chapter 2) and (Equation 12,
Chapter 2) were fitted to the data with residuals plots shown in the top paﬁel of Figure

6. We need to transform the data (observation: y ) by using log-transformation for all

observations. Not only replace zero counts by 0.25 but also add 0.25 for non-zero

counts. In other word we use log(y +0.25)to replace y .

First of all, malaria incidence rates in age group, district, and quarter were fitted by
negative binomial model. The residuals plot for the negative binomial distribution
clearly indicates that this model does not fit the data (Figure 6), so in further analysis
we used log normal models (Equations 1 1;1 3, Chapter 2) to fit malaria incidence

rates.

Figure 7 gives the results obtained from fitting the additive log-normal model give by

equation 12 in chapter 2.1t quite fit well.

Figure 7 shows confidence intervals for adjusted incidence rates by age group, trend
and district after fitting model (Equation 13, Chapter 2). The sum contrasts (Venables

and Ripley 2002, Tongkumchum and McNeil 2009) was used to obtain confidence
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intervals for comparing adjusted incidence rates within each age group, district and
trend with the overall incidence rate. The dotted line denotes the overall annual mean
malaria incidence. In age group, Its constrains, o, = @, , first age group (0-4 years)
effect in border district equal to last age group (equal or more than 40 years) effect in
non-border district. Malaria incidence rates substantially decrease from very highest

level in April- June 1999 quarter to October-December 2004 quarter.
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Figure 7: Diagnostic residual plots for negative binomial (top left) and log-linear

(top right) models, and plots of counts and incidence rates for the log-normal model

(lower panels) for malaria incidence rates in North-Western Thailand
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Additive plus multiplicative models

Figure 8 shows malaria incidence rates for each district based on model (Equation 14,
Chapter 2) after adjusting for age group and trend. The district specific incidence rates
(denoted by the parameter B in the model) are plotted against the parameter § , which
indicate the extent to which each district follows the prevailing trend and is thus

labeled the “district trend amplitude”. This model gave an r-squared of 81.70%.

Annual Malaria Incidence/1 000 by each factor, adjusted for the other two factors
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1 | Mueang Lamphun 14 | Song 27 | Santi Suk 40 | Mae Sai 53 | Mae Sariang
2 | Mae Tha 15 | Wang Chin 28 | BoKluea 41 | Mae Suai 54 | Mae La Noi
3 | Ban Hong 16 | Nong Muang Khan 29 | Song Khwae 42 | Wiang Pa Pao 55 | Sop Moei
4 | Li 17 | Mueang Nan 30 | Phu Phiang 43 | Phaya Mengrai 56 | Pang Mapha
5 | Thung Hua Chang 18 | Mae Charim 31 | Chaloem Phra Kiat 44 | Wiang Kaen 57 | Mueang Tak
6 | PaSang 19 | Ban Luang 32 | Mueang Chiang Rai 45 | Khun Tan 58 | Ban Tak
7 | Ban Thi 20 | NaNoi 33 | Wiang Chai 46 | Mae Fah Luang 59 | Sam Ngao
8 | Wiang Nong Long 21 | Pua 34 | Chiang Khong 47 | Mae Lao 60 | Mae Ramat
9 | Mueang Phrae 22 | Tha Wang Pha 35 | Thoeng 48 | Wiang Chiang Rung 61 | Tha Song Yang
10 | Rong Kwang 23 | Wiang Sa 36 | Phan 49 | Doi Luang 62 | Mae Sot
11 | Long 24 | Thung Chang 37 | PaDaet 50 | Mueang Mae Hong Son 63 | Phop Phra
12 | Sung Men 25 | Chiang Klang 38 | Mae Chan 51 | Khun Yuam 64 | Umphang
13 | Den Chai 26 | NaMuen 39 | Chiang Saen 52 | Pai 65 | Wang Chao

Figure 8: Age group, trend and district components of malaria incidence in North-

Western Thailand 1999-2004: additive model
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Districts with a confidence interval lower bound higher than the mean in Figure 8
were categorized as having a higher than average incidence, while districts with a
confidence interval upper bound less than the mean were categorized as having a

lower than average incidence.

Figure 9 shows a thematic map based on this classification, with the district specific
trend effects also shown on the map. Note that (Figure 8) no districts have confidence
intervals crossing the mean, so the districts are classified into just two groups: (1)

higher than average and (2) lower than average.
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Figure 9: District components of malaria incidence in North-Western Thailand 1999-
2004 based on additive plus multiplicative model. The district trend amplitude is

defined in the model as the extent to which a district follows the overall trend
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Figure 10 shows a substantial difference in annual malaria incidence between districts
bordering Myanmar and other districts. Malaria incidence trend in each district were
district parameter estimate ( 8 ) from model in equation (14). While most districts
show a downward trend in malaria incidence over the 6 year period, and for two

districts this trend is very high (Thung Hua Chang in Lamphun and Wang Chao in

Tak), two districts (Mueang Lamphun and Ban Hong in Lamphun) show no trend, and

one district (Li in Lamphun) shows an increasing trend.

UTM(km)-North

300 400 500 600 700 800
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Figure 10: Malaria incidence in North-Western border provinces of Thailand: 1999-2004

3.3 Summary for Malaria in North-Western Thailand

We have shown that malaria is a serious health problem in Mae Hong Son and Tak.

The negative binomial generalized linear model provides a appropriate fit to age-
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group, districts, and month. The probability plot (Figure 4) in this study was shown as
an instrument for verifying the distributional assumption of a model and an effective
way in capturing any unexpected increase in malaria counts. It also provides
information for malaria prevention. We found that the prevalence of malaria was high
among aged 15-39 years. In contrast, Kaewsompak et al (2005) used the negative
binomial distribution to model the incidence rate of commonly occurring acute febrile
illnesses in subdistricts of Yala province between 2002 and 2003 and found the
relationship between geographic locations, age, time effect, and malaria incidence.
The prevalence of malaria was high among people aged 39 years old or more and
between April and December. It is also different from Kleinschmidt and Sharp (2001),
who suggested that the malaria was more prevalent among children under 1’5 years
old. The differences may be due to (a) the transmission patterns, the climate, living
condition and living density in which may be very different from other tropical areas,
(b) the immune status and genetic background, and (c) the range of age groups. Such
as age shift is supported by our study, and also clearly evidenced in several other
recent studies. From 1990 to 1996, malaria rates were the highest in the 15 to 34 years

old.

According to this study, the malaria transmission rate in Mae Hong Son and Tak
provinces during the study period was relatively high from May to September. That
period largely overlaps with the rainy season, suggesting that this may be associated
with a high risk of malaria. A study by Gagnon et al (2000) also reported a
statistically significant relationship between El Nifio and malaria epidemics in
Colombia, Guyana, Peru, and Venezuela. In most of these»countn'es, the prevalence

was the highest in the wet season. However, they also suggested that on an inter-
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annual scale, malaria was also associated with drought. The high malaria incidence in
Mae Hong Son is in Mueang Mae Hong Son and Mae La Noi which is explained by
these geographical location and significant social economic status. For Tak is the high
malaria incidences are in Umphang and Tha Song Yang due to their location.
Umphang is extremely vulnerable to natural deep forest area such as Thu Yai
Nareasuan (Srivastava et al 2001) because of (a) the mass migration of refugees in
response to civil disturbances; (b) the influx of workers to areas undergoing rapid
urbanization and development (Chaveepojnkamjorn and Pichainarong 2005), and (c)
the development of the tourist industry. To gain more understanding factors associated
with the risk of malaria, further studies should be undertaken to examine th’e
relationships between climate variables including rainfall, humidity, temperature and
geographical location and malaria on both regional and global scales (Zhou et al

2004).

In addition, additive log-normal and additive plus multiplicative were fitted incidence
rates by age group, district and quarter period in north-western Thailand. Tiensuwan
et al (2000) use log-normal liner model to identified risk factors causing malaria in
Tak province in the raining season, two-and- three-dimension log-linear model are
used to obtain estimated parameter and expected frequencies. Among the models
fitted, the best models chosen base on analysis of deviance. Furthermore, the additive
plus multiplicative linear model provides an appropriate fit to the malaria incidence
rates in the north-western region classified by districts, age—groupl and quarterly
period. The probability plots of residuals against normal quantiles indicate that the
negative binomial model does not provide a satisfactory fit but a linear model for log-

transformed incidence rates does, provided the zero counts are replaced by 0.25.
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However, it should be noted that for the models given by Equations 12-14 the
estimated standard errors for the parameters within each factor are the same and thus
do not depend on the number of cases or the‘population at risk within each cell. This
is because the data to which the models are fitted only comprise incidence rates within
each cell, in contrast to the alternative negative binomial model, which takes into
account both the number of cases and the population at risk in each cell. It is possible
to extend the log-normal model to take these factors into account by using a weighted

linear model (Faraway 2002), but this is beyond the scope of the present study.

According to north-western Thailand study, the incidence of malaria was highest
among persons aged between 5 and 39 years in border districts, but in contrast,
children aged 0-4 had highest incidence rates among those in other districts. From this
study, malaria trends for most districts in the six provinces showed a consistent
decreasing trend, with a seasonal pattern peaking in the April-June quarter. As
remarked by Khasnis and Nettleman (2005), the ability of mankind to adapt is
dependent upon the magnitude and speed of change, and glso depends on recognizing
epidemics early, containing them effectively, providing appropriate treatment, and

committing resources to prevention and research.

Malaria incidence was predicted by means of a model containing district, age group
and period variables as factors. The results are illustrated by a thematic map showing

both the districts with high incidence rates and the trend in each district.




Chapter 4

Conclusions and Limitations

All of the methods in this thesis have involved modeling malaria incidence.
Populations at risk and malaria incidence rates are linked in geographical entities that
become the units of analysis. These studies have produced a more detailed map of the
distribution of malaria in parts of north-western Thailand. They have also given us a
clear idea of the factors associated with malaria incidence in these areas, and how

malaria incidence rates in different areas have an area has changed over time.

4.1 Research methodology

The objective of this thesis is to investigate the epidemic patterns of hospital-
diagnosed malaria incidence by month, district and age-group in north-western
Thailand, and to determine precisely where malaria incidence is high. The scope of
this study is malaria cases from 1999-2004 in six provinces in north-western
Thailand. The study models the pattern of hospital-diagnosed malaria incidence in
order to determine where malaria incidence was high. The outcome variables are
defined as the incidence rate in a cell indexed by district, age group and period
(monthly or quarterly). The determinant variables are defined as category variable as
demographic factors: age group, district and period factor (monthly or quarterly). The
district factor was referenced to border and non-border districts as intervening
variables. The target population was malaria cases in the provinces selected:
Lamphun, Phrae, Nan, Chiang Rai, Mae Hong Son, and Tak, ail of which have high

malaria incidence rates.

56




57

This study design is a cross- sectional survey distributed by time and area. The
simplest model is based on linear regression with the outcome variable defined as the
incidence rate in a cell indexed by district, age group, and month, with district, age
group and calendar month or quarter (allowing for a seasonal effect) as categorical
determinants. Data collect used in the current study are taken from a registry of
hospital-diagnosed infectious disease cases collected routinely by the Ministry of
Public Health. For each year after 1998, these data are available in computer files with
a record for each case and fields comprising characteristics of the subject and the
disease, including dates of sickness and disease diagnosis, the subject’s age, gender,
and address, and the severity of the illness including date of death for mortality cases.
After cleaning to correct or impute data entry errors the records. Next step, we create
malaria disease counts by age group, district and month or quarter,. Incidence rates
were computed as the number of cases per 1,000 residents in the district according to
the 2000 Population and Housing Census of Thailand. Since there is little evidence of

a gender effect the data for the two sexes were not combined.

First of all, we will try to fit linear regression, Poisson and negative binomial
regression models for malaria disease counts by age group, district and month in Mae
Hong Son and Tak provinces. Later, we will try to fit additive log-normal models and
additive plus multiplicative models for malaria incidence rate by age group, district
and quarter in six provinces. We hope to be able to use these models to forecast the
districfs and age groups where epidemics are likely to occur in the near future.

Among the models fitted, the best are chosen based on residual deviance.
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4.2 Conclusions
4.2.1 Modeling malaria incidence

In brief, the negative binomial generalized linear model provides a appropriate fit to
age group, districts, and month in Tak and Mae Hong son provinces; whereas, the
additive plus multiplicative linear model provides an appropriate fit to age-group,

districts and quarterly period in six provinces.

Second, the probability plot in study of malaria counts in Mae Hong Son and Tak
provinces shown that the distributional assumption of a model verified and an
effective way in capturing any unexpected increase in malaria counts. Also it provides
information for malaria prevention. In addition, the probability plots of residuals
against normal quantiles in six provinces indicate that the negative binomial model
does not provide a satisfactory fit but a linear model for log-transformed incidence

rates does fit malaria incidence rates in six provinces.

Finally, the estimated standard errors for the parameters within each factor in models
are the same; therefore, its do not depend on the number of cases or the population at
risk in each cell. The data in six provinces which the models are fitted only comprise
incidence rates within each cell, in contrast the negative binomial model, which takes

into account both the number of cases and the population at risk in each cell.
4.2.2 Malaria incidence rates

First of all, we found that the prevalence of malaria was high among aged 15 to 39
years old in Mae Hong Son and Tak provinces. According to six provinces study, the
incidence of malaria was highest among persons aged between 5 and 39 years in

border districts, but in contrast, children aged 0-4 had highest incidence rates among
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those in other districts. This is because in border districts are work place for worker

from Myanmar migrant.

Second, the malaria transmission rate in Mae Hong Son and Tak during the study
period was relatively high from May to September. Although, malaria trends for most
districts in the six provinces showed a consistent decreasing trend, with a seasonal

pattern peaking in the April-June quarter.

Finally, the highest malaria incidence rates in Lamphun province is Thung Hua Chang
district, Phrae province is Den Chai district, Nan province is Song Khwae district,
Chiang Rai province is Mae Fah Luang district, Mae Hong Son province is Mueng

Mae Hong Son district and Tak province is Umphang district.

All in all, we present maps of malaria prediction risk by use of additive plus
multiplicative regression models to determine approximate risk on a larger scale and
we employ geo-statistical approaches to improve prediction at a local level. Malaria
prevalence was predicted by means of a model which used district, age group and
quarterly period variables as potential predictors. After the analysis, spatial
dependence of model local variation in malaria risk over and above that which is
predicted by the regression model was used. The method is illustrated by a map
showing the improvement of risk prediction brought about by the model. The
advantage of this approach is shown in the context of development of methodology
and R-software. This thesis introduced a new methodology to develop malaria risk
categories in the area. A thematic map showed both the districts with high incidence

rates and the trend in each district.
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4.3 Discussion

According to this study shown that malaria is a serious health problem in Mae Hong
Son and Tak provinces which along border Myanmar. The negative binomial
generalized linear model provides a suitable fit to age-group, districts, and month.
Kaewsompak (2005) used the negative binomial distribution also to model the
incidence rate of commonly occurring acute febrile illnesses in subdistricts of Yala
province between 2002 and 2003 and found that the relationship between geographic
locations, age, period effect and malaria incidence. Furthermore, Ruru and Barrios
(2003) used Poisson and Classical Regression to fit malaria incidence. Poisson
regression and classical regression are comparable based on the mean absolute
percentage error. In short, additive plus multiplicative linear model provides an
appropriate fit to the malaria incidence rates in north-western Thailand
(Sriwattanapongse and Kuning 2009). Gomez-Elipe et al (2007) showed that a time
series of quarterly notifications of malaria cases from local health facilities (rain,
temperature records, and the normalized difference vegetation index) model is a

simple and useful tool for forecasting malaria incidence in Burundi.

The prevalence of malaria in Mae Hong Son and Tak provinces was high among
people aged 39 years old or more between April and December. It is also different
from Kleinschmidt and Sharp (2001), who suggested that the malaria was more
prevalent among children under 10 years old in Mali, West Africa. The differences
may be due to (a) the transmission patterns, the climate, living condition and living
density in which may be very different from other tropical areas, (b) the immune
status and genetic background, and (c) the range of age groups. Such as age shift is

supported by our study, and also clearly evidenced in several other recent studies.
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According to this study, the malaria transmission rate in Mae Hong Son and Tak
provinces during the study period was relatively high from May to September. That
period largely overlaps with the rainy season, suggesting that this may be associated
with a high risk of malaria. A study by Gagnon et al (2000) also reported a
statistically significant relationship between El Nifio and malaria epidemics in
‘Colombia, Guyana, Peru, and Venezuela. In most of these countries, the prevalence
‘was the highest in the wet season. However, they also suggested that on an inter-

annual scale, malaria was also associated with drought.

The high malaria incidence in Mae Hong Son province is in Mueang Mae Hong Son
and Mae La Noi which is explained by these geographical location and significant
social economic status. For Tak province is the high malaria incidences are in
Umphang and Tha Song Yang due to their location. Umphang is extremely vulnerable

to natural deep forest area such as Thung Yai Naresuan.

Malaria in Thailand is forest-related and most prevalent along the international
borders, especially on the Thai-Myanmar border, especially on the Thai-Myanmar
border where young men working in or near forests are at high risk (Sriwattanapongse
et al 2007). This is because of (a) the mass migration of refugees in response to civil
disturbances; (b) the influx of workers to areas undergoing rapid urbanization and
development (Chaveepojnkamjorn and Pichainarong 2005), and (c) the development
of the tourist industry. Taking the Tak Province for example, it is estimated that nearly
a third of its population are refugees, migrants, or displaced populations. Because of
the large border-crossing population movement, it may not be surprising that Tak is
one of the most malaria endemic provinces in Thailand. To gain more understanding

factors associated with the risk of malaria, further studies should be undertaken to
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examine the relationships between climate variables including rainfall, humidity,
temperature and geographical location and malaria on both regional and global scales
(Zhou et al 2004). In my opinion, malaria transmissions may depend on meteorological

and environmental factors.

According to study malaria in six provinces, the incidence of malaria was highest
among persons aged between 15 and 39 years in border districts; but in contrast,
children aged 0-4 had the highest incidence rates among those in non-border districts.
This is because in border districts, malaria trends for most districts in the six
provinces showed a consistent decreasing trend, with a seasonai pattern peaking in the
April-June quarter. As remarked upon by Khasnis and Nettleman (2005), the ability of
mankind to adapt is dependent upon the magnitude and speed of change; it also
depends on recognizing epidemics early, containing them effectively, providing

appropriate treatment, and committing resources toward prevention and research.

Chaveepojnkamjorn and Pichainarong (2004) study malaria infection among the
migrant population along the Thai-Myanmar border area. The results showed that the
study subjects were predominantly Thai-Yai and Myanmar, and revealed that

residence located in the forest increased the risk of malaria infection.

In my view, malaria epidemic in border district due to foreign labor from Myanmar
influx to work place in border district. Along the Thai-Myanmar border, it is
estimated by the World Health Organization (WHO) Border Health Program (World
Health Organization Thailand 2005) that at the end of 2004, there were
approximately 120,000 registered refugees living in camps, 400,000 registered

migrant workers, and another 500,000 undocumented workers.
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The maps of malaria prediction risk use regression modeling to determine
approximate risk on a larger scale, and employ geo-statistical approaches to improve
prediction at a local level. Malaria incidence was predicted by means of a model
containing district, age group and period variables as factors. In my view, geo-

statistical are important tools malaria control in order to treatment and prevention.

4.4 Strengths of this study

The results of this study provide a model that can produce useful short-term forecasts
of malaria incidence rate in north-western Thailand. There is evidence of much higher
malaria incidence rates in districts bordering Myanmar; the incidence rates between
border and non-border districts differ substantially. One main advantage o‘f this study
is that the model is able to separately consider data from border and non-border

districts.

The important result is provided valuable information for planning precautionary
measures and in controlling the spread of malaria. It was found that built-up areas
have the highest incidence and constitute the highest risk zones. This study found that
border district areas have affect on malaria epidemics. The map of malaria prevalence
predicted risk in north-western border provinces of Thailand can be used by the
Public Health Department as a base map for applying preventive measures to control
the malaria outbreak. This will help in focussing the preventive measures being
according to priority in high, average and low zones and help in saving time and

money.
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4.5 Limitations and suggestions for further study
The methods used to estimate malaria incidence from malaria transmission risk

provide a limitation guide in forecasting malaria cases in any given area because:

The delimitation of only four categories of age group (0-4, 5-14, 15-39, and 40+)
provides a fine model; a particular change in age group category may reveal a

different range of malaria incidence.

The model to determine malaria transmission was based on a six provinces. Other
provinces such as Chiang Mai, Lampang and Phayaq were not included in this study
because their data is not sufficient and more missing. Particularly, Chiang Mai is a big
city in north-western and many border districts. Ministry Public Health reﬁort that it is

high risk of malaria such as Chiang Dao district.

The studies used to derive basic incidence rates within categories of endemicity,
district and age group were primarily conducted during 1999-2004. If a study were to
be conducted for a period longer than six years, the resulting model would be less

prone to forecasting error.

Further study, climatic variable was included in model. Bi et al (2003) indicate that
climatic variables should be considered as possible predictors for regions with similar
geographic and socioeconomic conditions. Climatic variables that predict the presence
or absence of malaria are likely to be the best pattern for forecasting the distribution
of the disease (Devi and Jauhari 2006). Briét et al (2008) showed that &1e addition of
rainfall as a covariate improved prediction of selected (seasonal) autoregressive

integrated moving average (ARIMA) models moderately in some districts, but
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worsened prediction in others. Improvement by adding rainfall was more noticeable

with longer forecasting horizons.

Further study is also needed in order to fully understand the behavior of the model.
Applying it on simulated data derived from known tessellation designs would reveal
whether the model is able to correctly capture the diﬁaent spatial processes. Model
comparison between a stationary model and a model which is based on random
tessellations will show if parsimony is preferred over complexity. The tessellation-
based model was applied in mapping malaria prevalence data in other parts of
Thailand (Beil et al 2006). The non-stationary features present in malaria data

observed over large areas has never been addressed previously.

Local characteristics such as human activities, meteorological patterns, and land use
or malaria interventions can alter spatial correlation in different parts of the region. It
is more likely to think of it as a mixture of spatial processes affecting large areas,
rather than as a single process. Ignoring non-stationary features may partly explain
differences between the various malaria maps produced so far. Proper modeling of the
spatial process will lead to more accurate parameter estimation and prediction. A
random tessellation approach allows the data to decide on the number of tiles, and
thus determines the spatial processes. As long as we have a large amount of data,
inferences are driven by the data rather than by prior specifications. Maps of the
spatial covariance parameters can be useful for controlled interventions. Regions
where the spatial correlation reduces rapidly over short distances may indicate local
unmeasured factors which influence malaria risk. Without additional information the
model will not be able to find causal explanations. It will only identify the areas

which have geographical dependencies over larger or shorter distances.
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