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ABSTRACT

There are several statistical methods for modeling incidence rates. The association
patterns of outcome and determinant variables are identified by fitting the appropriate

model.

Typically, generalized linear models (GLMs) are preferred by statisticians for
modeling incidence rates, often with extensions to zero-inflated GLMs when the
proportion of zero counts is large. However, log-transformed incidence rates can also

be fitted well by a linear regression model.

In this thesis, suitable models for incidence rates were found after fitting GLMs and
the log-transformed linear regression model after comparing appropriate residuals

against the normal quantiles.

For application to diarrhea in Thailand, the log-transformed linear regression model
was used to impute under-reported data with the generalized estimating equations
(GEE) model to investigate regional and temporal patterns. The negative binomial
GLM with two multiplicative components was preferred for modeling TB in Nepal.
Additionally, the GLMs can fit the data just as well as Bayesian model for fitting

injury incidence rates in NSW, Australia.
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Chapter 1

Introduction

1.1 Rationale for study

The incidence rate of an adverse outcome such as disease or injury is the number of
new cases per unit population at risk in a specific period of time. In epidemiology, it
can be used to compare the relative risks of the outcome for different factors such as
age groups, regions, periods of time, exposures to occupations hazards, and other

demographic and health status determinants.

Statistical models of varying complexity are used for analyzing incidence re;tes. Since
the incidence rates in the cells comprising the sample are ratios of non-negative
valued integer counts (the number of new cases observed) and population
denominators that are regarded as fixed for purposes of statistical analysis, a Poisson
generalized linear model (see, for example, Venables and Ripley 2002, Chapter 7) is

frequently assumed as the basic model.

However, many studies (see, for example, Maul et al 1991, Lambert and Roeder 1995,
J gnsakul and Hinde 2004, Kaewsompak et al 2005, Paul and Saha 2007, Lim and
Choonpradub 2007, Sriwattanapongse et al 2008, Sriwattanapongse and Kuning 2009,
Kongchouy et al 2010) have shown that the Poisson distribution often does not fit
incidence data in practice because it assumes that the variance is equal to the mean,
and in many situations the variance is substantially greater than the mean. Thus the

standard negative binomial generalized linear model (Venables and Ripley 2002




pages 206-208), for which the variance to mean (4) ratio takes the form 1+1/6,
where the Poisson distribution arises in the limit as € tends to infinity so the over-
dispersion parameter is actually1/6, is usually preferred for analyzing incidence rates.

This over-dispersion is often the result of clustering (see, for example, Demidenko

2007).

Another feature of incidence rates is that zero cell counts occur very frequently in
practice, particularly for rare outcomes, and as a result statisticians have invented
more complex zero-inflated models to account for this preponderance of zeroes (see,
for example, Ridout et al 2001, Cheung 2002, Poston and McKibben 2003, Lewsey
and Thomson 2004 and Ugarte et al 2004). However, Warton (2005) showed that data
with many zeros does not necessarily mean zero inflation, on the grounds that the
model itself can reduce the effect of the zero-inflation on the distribution assumed by

the model.

Another problem that arises with incidence rates in practice is the presence of both
time series and geospatial correlations. For linear regression models with normally
distributed errors, these correlations can be handled using methods such as the
generalized estimating equations (GEE) approach of Zeger and Liang (1986), but such
methods have not yet been fully extended to generalized linear models (GLMs),
although Yan and Fine (2004), Evans and Li (2005), Dormann (2007) and Faraway
(2006) have developed methods for specified distributions. Other popular methods for
handling spatial correlation in incidence rates are reviewed by Dormann et al (2007)

and a Bayesian methodology described in Lawson et al (2003) is also widely used.



Generalized linear models have been further extended to handle incidence rates where
the effects of predictors are modeled as unspecified smooth functions rather than as
fixed functions, and the resulting models are called generalized additive models (see,

for example, Hastie and Tibshirani 1990, Thurston et al 2000).

Although these and other complex statistical models are now the preferred methods
used by biostatisticians for analyzing incidence rates, their advantages are offset by
(a) the difficulties of understanding and correctly applying the methods experienced
by scientists who lack an adequate knowledge of statistical theory, (b) the lack of
availability of software packages and the associated difficulties in using these
packages where they exist, and (c) the possible higher risk of bias associated with the

use of complex models rather than simpler stratified analyses (Greenland 1989).

These considerations justify an investigation of the possibility of using simpler
methods based on models for transformed incidence rates with normally distributed
errors, and this is the main focus of the thesis. Some past of this thesis reports on the
comparison of these simpler methods with those based on more complex generalized
linear models, using data from three studies. In the first study we apply the methods to
child diarrhea incidence rates in Thai provinces bordering Cambodia, where probable
under-reporting of hospital cases is an important issue that needs to be considered. In
the second study we investigate the spatial and temporal patterns of male and female
tuberculosis incidence rates in districts of Nepal, while the third study is concerned
with quarterly hospital admission rates for injuries to children aged under 15 year in

local government areas of New South Wales (NSW), Australia.




1.2 Literature review

This review covers selected samples of relevant material from the statistical literature
classified by topic (modeling over-dispersion, log-linear models, zero-inflated
models, handling correlated data, generalized additive models, and Gaussian models

for log-transformed incidence rates) in chronological order.

Modeling over-dispersion

Although the Poisson distribution continues to hold a central place in the analysis of
incidence rates, Lawless (1987) was one of the first to investigate in detail extensions
of the Poisson regression model that take account of extra-Poisson variation. This
paper investigated negative binomial regression models and the efficiency and

robustness properties of their properties.

Maul et al (1991) applied both the Poisson model and the more general negative
binomial model to analyse quantal assays such as the toxic effect of sodium bromide

on reproduction of the plankton species daphnia magna.

Lambert and Roeder (1995) introduced a convexity plot for graphing over-dispersion
and relative variance curves, and developed relative variance tests that help to
understand the nature of the data. In this paper they claimed that their convexity plots

are superior to the score tests commonly used to detect over-dispersion.

Lee (1996) analyzed over-dispersed paired count data for comparing two treatments,
using specific Poisson, mixed, and semi-parametric models. The conclusion from this
investigation was that the semi-parametric model gives larger standard errors than the

other two models.



Jansakul and Hinde (2004) used negative binomial models to analyze the number of
embryos from an orange tissue culture experiment. They found that that the negative
binomial regression model with a cubic response functions over the dose levels was
consistent with these data. They considered both the standard form of the negative
binomial model with variance-mean ratio of the form 1+ /0 and an alternative model
with ratio 1+ for > 0 that requires use of the Newton-Raphson algorithm to obtain

maximum likelihood estimates.

Kaewsompak et al (2005) studied epidemic patterns of dengue hemorrhagic fever and
other acute febrile illnesses in Yala province in southern Thailand. They used Poisson
and negative binomial distribution models to investigate relations between the
incidence rates in terms of geographical patterns. They then developed a methodology
that may be applied routinely to geographical epidemiologic research for the spatio-
temporal mapping of disease. Schematic range maps and statistical models were used

to investigate their distribution by year and location.

Log-linear models

Traditional statistical log-linear models describe patterns in contingency tables of
cross-classified counts and are described in detail by Bishop et al (1975) and by
Fienberg (1980). Since the population denominator is not taken into account in these
models they are not directly appropriate for the analysis of incidence rates with
variable populations at risk. Moreover, because these log-linear models focus on the
associations between factors without necessarily focusing on the dependence of the
outcome on its determinants, alternative generalized linear models based on the

multinomial distribution (Venables and Ripley 2002, pages 199-205) are more




appropriate in many situations. However, log-linear models can still be used to

examine risk factors for adverse outcomes.

For example, Tiensuwan et al (2000) used a log-linear model to identify the risk
factors causing malaria in Tak province in northern Thailand in the rainy season for a
case study of 1067 malaria patients, from whom 12 variables were recorded. They
concluded that lack of knowledge of prevention was the main risk factor for disease in
this population. Tiensuwan et al (2005) subsequently used a similar method to analyse
risk factors for cancer incidence among patients admitted to National Cancer Institute

in Thailand.

Zero-inflated models

Cheung (2002) investigated the impact of foetal growth and postnatal somatic growth
on the ability of children aged 22 months to build a tower with three cubes, using data
from a birth cohort of 16,955 in Britain. A negative binomial distribution fitted to the
numbers of cubes built in cells with demographic determinants was fitted by a
negative binomial distribution but found to contain an excessive proportion of zeros.

However, the zero-inflated negative binomial distributed provided a satisfactory fit.

Poston and McKibben (2003) analyzed the average number of children ever born to
women in the US, concluding that zero-inflated Poisson and negative binomial
regression models are statistically appropriate for modeling fertility in low fertility

populations, especially when there are many women in the society with no children.

In a cohort study of four data sets with dental caries outcomes in New Zealand,

Lewsey and Thomson (2004) also used zero-inflated Poisson and negative binomial
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regression models. The zero-inflated Poisson model was a poor fit for all four data

sets, whereas the zero-inflated negative binomial model fitted well in each case.

In a study of regional patterns of brain cancer deaths in the Navarra region of Spain,
Ugarte et al (2004) used a Poisson model to estimate the relative risks in different

areas of the region, and also found justification for a zero-inflated Poisson model.

Despite the popularity and claimed benefits of zero-inflated regression model, Warton
(2005) provided evidence that their appropriateness is over-rated. The negative
binomial model was the best fitting of the count distributions, without zero-inflation,
and Gaussian models based on log-transformed were found to fit surprisingly well to

both simulated data and data from ecological studies.

Handling correlated data
Generalized Estimating Equations (GEE) have been developed to extend generalized

linear model to accommodate correlated data.

Yan and Fine (2004) investigated GEEs for estimating association parameters, using
data from a study on the genetics of alcoholism to illustrate the importance of reliable

variance estimation in biomedical applications.

Demidenko (2007) did a simulation study to compare five methods for parameter
estimation of a Poisson regression model for clustered data, including Poisson
regression with and without fixed cluster-specific intercepts, GEE with exchangeable
correlation structure, GEE with an exact covariance matrix, and maximum likelihood.
All five methods gave consistent estimates of slopes but different efficiencies, and the
conclusion was that both the simple Poisson and GEE methods were outperformed by

the three alternatives, with exact GEE recommended for its simplicity.




Dormann et al (2007) compared various methods for taking account of spatial
autocorrelation. The preliminary tests confirmed that most of the spatial modeling
techniques give a good type I error control and precise parameter estimates. They also
found that autocovariate methods consistently underestimate the effects of
environmental controls of species distributions, and that the Bayesian approaches
developed by Besag et al (1991) and advocated in Lawson et al (2003) are
computationally intensive and of questionable benefit in comparison with more

straightforward non-Bayesian methods.

Davis et al (2003) proposed lagged observation-driven models for Poisson counts that
take account of time series autocorrelations. However, in their study of regional and
temporal patterns of infectious disease mortality in provinces of southern Thailand
over the period 1999-2004, Lim and Choonpradub (2007) found that these models are
numerically unstable because the lagged terms arise as exponential functions in the

mean, and need to be log-transformed to achieve stationarity.

Sriwattanapongse et al (2008) also used observation-driven negative binomial
regression models to forecast monthly incidence rates of hospital-diagnosed malaria

by district and age-group in two North-western border provinces of Thailand.

Generalized additive models

Thurston et al (2000) applied the generalized additive model is extended to handle
negative binomial responses to analyze data involving DNA adducts counts and
smoking variables among ex-smokers with lung cancer. This study included a detailed

investigation of the parametric relationship between the number of addicts and years
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since quitting while retaining a smooth relationship between addicts and the other

covariates in the model.

Gaussian models for log-transformed incidence rates

Despite the complexity of generalized linear models and their extensions, Paul and
Saha (2007) questioned their suitability for analyzing over-dispersed data, claiming
that in many real life applications the distributional assumptions of such models

cannot be justified.

Sriwattanapongse and Kuning (2009) overcame lack of fit problems by including
multiplicative interactions based on principal components of residuals from linear
models to analyse the patterns of hospital diagnosed malaria incidences in districts

and quarterly periods in the North-western region of Thailand in 1999-2004.

For modeling pneumonia incidence rates among children under 5 in districts of
SuratThani province in southern Thailand, Kongchouy et al (2010) compared the
negative binomial generalized linear model with a log transformed linear model after
replacing zeros by a constant between 0 and 1. They suggested that the standard
negative binomial models fail to cover the range of over-dispersion situations that

commonly occur in practice, particularly for biological data.
1.3 The studies

Although the data for our studies arose from three quite difference sources, the
outcome variable was essentially the same in each case, namely an incidence rate of
an adverse event based on cells classified by demographic variables including gender
and/or age group, location, and period of time (month, quarter or year). The path

diagrams for the three studies are shown in Figure 1.1.
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Study I: Child diarrhea in Thai Provinces Bordering Cambodia: 1999-2004

72 Months
(Jan 1999 — Dec 2004)

\ 4

Age-group
(0-4)

Number of
Diarrhea cases

106 Districts
(6 Provinces)

Study 2: Tuberculosis (TB) in Nepal: 2003-2008

6 Years
(2003 - 2008)

75 Districts

\4

Number of

Incidence rates

nx1,000
Pop

TB cases

Gender
(Male, Female)

Study 3: Injuries in NSW, Australia: July 2000- June 2005

Gender
(Male, Female)

3 Age-groups

\ 4

Incidence rates

nx1,000
Pop

(0-4, 5-9, 10-14)

175 LGAs
(Location)

Number of
Injury cases

20 Quarters (Jul-Sep
2000 to Apr-Jun 2005)

Figure 1.1: Path diagram for study

Incidence rates
nx 100,000
Pop
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30 June 2005. This data include information on inpatient separations of NSW
residents from public and private hospitals, private day procedures, and public
psychiatric hospitals. They include data on episodes of care in hospital, which end
with the discharge, transfer, or death of the patient, or when the service category for
the admitted patient changes. The hospitalisation data were coded using ICD-10-AM
(National Centre for Classification in Health 1998, National Centre for Classification

in Health 2000, 2002, 2004).

1.5 Objectives and plan of thesis

Appropriate statistical models are used to model incidence rates. These models
attempted to identify the associations between demographic factors (location, season,
age, and gender) and longitudinal data outcomes (incidence rates), so linear
regression, Poisson regression, and negative binomial regression models were applied

to fit these data.
The objectives of studies were thus as follows.
1. To develop statistical methods for modeling incidence rates.

2. To investigate the epidemic patterns between demographic factors and

outcomes variable (incidence rates).

This thesis contains four chapters. The introductory chapter discusses the rationale,
the scope and the aim of the study, and also includes a review of some relevant

literature.

Chapter 2 provides a description of the methodology including an overview of the

statistical methods for data analysis aligned to the statistical models.
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Chapter 3 shows original article and manuscripts that were written for child diarrhea
in Thailand, TB incidence rates in Nepal and children’s injury incidence rates in

NSW, Australia.

The last chapter states the summaries and general conclusions. Suggestions for further

research are also provided in this chapter.




Chapter 2

Methodology

This chapter describes the methodology including an overview of the statistical
methods for data analysis aligned to the statistical models. Graphical and statistical

analyses were carried out using R program (R Development Core Team 2008).

This presents statistical methods adopted in the three papers contained in Chapter 3.
These methods include Poisson regression, negative binomial regression, log-
transformed linear regression modeling, and adjustment for correlated residuals using
the generalized estimating equations method. Statistical procedures in thesel methods
are described and highlighted with respect to statistical models and relevant

assumptions.

2.1 Data management

Infectious disease cases from the Ministry of Public Health are kept in files
comprising individual records. The records contain many errors and omissions, which
were corrected using purpose-written SQL programs in the SQL Server database
system, which was also used to create tables of disease count data aggregated by the
demographic risk determinants. Data were thus converted to a flat-file format for

calculating descriptive statistics and modeling,

The tuberculosis data from Nepal were obtained as aggregated lists in computer files
from the National Tuberculosis Control Program authorities and entered into

computer text files suitable for data cleaning and analysis.

14
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Childhood injury data were processed in the Injury Risk Management Research
Centre at the University of NSW by Dr Shanley Chong, who used R programs

developed by the author to analyse these data and produce the graphs and maps.

2.2 Poisson regression model
Poisson regression is appropriate for fitting models with count data (non-negative
integer-values). A random variable Y is said to have a Poisson distribution with

parameter 4> 0 if it takes integer values y =0, 1, 2, ... with probabilities

-2 9y
Prob(Y = y) =< "7‘ . @2.1)
»

The mean and variance of this distribution can be shown to be
E(Y)=var(Y)=A1. (2.2)

Since the mean is equal to the variance, any factor that affects one will also affect the

other.

Poisson regression model can be fitted by using the generalized linear models method

with the log link function (McCullagh and Nelder 1989).

Poisson regression is commonly used for modeling the number of cases of disease in a
specific population within a certain time period. Suppose that n;, is the number of
observed cases in cells defined by demographic group (gender and/or age group) i,
geographical location j and period of time ¢ and P; is the corresponding population at

risk. If 4,

;i denotes the mean incidence rate, an additive model with this distribution is

expressed as

In{4,) = In(B) +pu+aq, +B,+7,. (2.3)
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The terms «;, B, and y, represent demographic group, location and period of time

effects which sum to zero so that g is a constant encapsulating the overall incidence.

Adjusted Incidence Rates

After fitting the model, adjusted incidence rates for each factor of interest are obtained
by suppressing the subscripts in Equation (2.3) corresponding to the other factors and
replacing these terms with a constant satisfying the condition that the sum of the
counts based on the adjusted incidence rates matches the total (Swennen et al 2009).
For Poisson regression, this is achieved simply by multiplying the incidence rates for

the specified factor of interest by a scale constant specific to the factor.

Sum Contrasts

Sum contrasts (Venables and Ripley 2002, Tongkumchum and McNeil 2009) are used
to obtain confidence intervals for comparing adjusted incidence rates within each
factor with the overall incidence rate. An advantage of these confidence intervals is
that they provide a simple criterion for classifying levels of a factor into three groups
according to whether each corresponding confidence interval exceeds, crosses, or is

below the overall mean.

Methods for creating geographical maps

A thematic map is a type of map that uses different colours or shades to graphically
display information about the underlying data representing estimated values of a
variable at different locations on the map. The thematic map using data in regions
might show one region in dark red to indicate that the region has high values, while
showing another region in very pale red to indicate that the region has low values. A

range map is a type of thematic map that displays data according to ranges set by the




17

users. The ranges are shaded using colors or patterns. These types of maps are used to
show the geographical distribution of the adverse outcome and to identify areas of
high risk. Appropriate graphs are used for exploratory data analysis, visualizing the
pattern of the data and highlighting possible errors in the data that could cause

problems in further analysis.

Since the confidence intervals for factor-specific incidence rates obtained from a
model divide naturally into three groups according to their location entirely above the
mean, around the mean, or entirely below the mean, we used this trichotomy to create

thematic maps of districts according to their estimated the incidence rates.

Over-dispersion

After fitting a generalized linear model to the data, to check the adequacy of the
respective model, one usually computes a residual deviance for each cell. Thus, the
deviance statistic for an observation reflects its contribution to the overall goodness of
fit of the model. Plotting these residual deviances against corresponding quantiles for
the normal distribution gives an indication of the adequacy of the fit of the model to
the data. If the plot is approximately linear with unit slope, the fit is satisfactory.

Details are given in Chapter 7 of Venables and Ripley (2002).

A characteristic of the Poisson distribution is that its mean is equal to its variance. If
the observed variance is greater than the mean the data are over-dispersed and the
residual deviance plot will indicate that the model is not appropriate. Common
reasons for over-dispersion are clustering of disease cases and the omission of

relevant explanatory variables.
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2.3 Negative binomial regression model

A problem with the Poisson regression model occurs when we encounter over-
dispersion.

A method of dealing with such over-dispersion is to use the more general negative
binomial time series model instead of the simple Poisson model (see, for example,

Cameron and Trivedi 1998, page 71).

The negative binomial model where y is the number of trials until number of success

occur is defined in terms of the density function of Y as

L Ty+e) (e Y A Y
Pmb(Y_y)"r(y+1)r(9)(9+/1) (em) ' 24

The Poisson model arises in the limit as this dispersion parameter & — <o, so the over-
dispersion parameter is actually the reciprocal of 6. The expected value of ¥ is A and

its variance is A + 12/6.,

2.4 Log-transformed linear regression model

The conventional model for handling data where the outcome is continuous is linear
regression.

Let Y be a log-normally distributed variable with characteristic parameters mean u
and variance ¢°. This implies that the probability density function of Y is the density

function of the normal distribution, namely,

_ 1 (z-u)
S = Tono CXP[ Y= } (2.5)

In our studies, the incidence rates generally have positively skewed distributions so it

is conventional to transform them by taking logarithms to obtain the outcome as
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n,.j,

ij
Thus an additive linear model was fitted to the logarithms of the log-transformed

incidence rates, namely,
yijt=/'l+ai+ﬂj+yt . 2.7)
As in Equation (2.3), # is a constant and «; , andy, are demographic group,

location and period of time effects, respectively, with zero means.

Handling zeroes

If any count n,, is zero, Equation (2.6) needs to be modified to give a finite result, so

that »

;18 replaced by a positive value n;., .
Various methods may be considered for this data modification. Zero counts simply
could be omitted, and the fitted model then used to impute counts for these cases

before refitting the model (Ardkeaw and Tongkumchum 2009). This method has

advantages in situations where under-reporting is known or suspected. Another

method involves adding a constant ¢ to all counts so that n;., =n,+c. A third method

involves replacing the zeroes by a suitably chosen constant d without changing any

values of n,,

greater than 0 (Kongchouy et al 2010).

Multiplicative rhodels

Whereas age and/or gender effects are likely to remain fixed over the duration of a
study, region effects are more volatile, particularly over the course of an epidemic. To
allow for such interactions between spatial and period effects the additive model (2.7)

needs to be extended, so we consider models of the form
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Y=+ BPy® 2.8)
k=1

This model contains m multiplicative space-time interaction terms. Since this is a non-

linear model, its parameters cannot be fitted using linear regression, but Theil (1983)

showed that the least squares estimates of the ¥ parameters are the elements of the

eigenvector of the matrix YCTYC corresponding to its k” largest eigenvalue, where Y,
has elements y, —y, and Y " denotes the transpose of Y. The corresponding least
squares estimates of the B parameters are then expressed in terms of the

eigenvectors y* as
x S - '
B =27 -7, - 2.9)
t=1

Howeyver, if the 7t(k) parameters are regarded as fixed, the model can still be fitted

using linear regression, giving both estimates and standard errors for the remaining

(k)

. were replaced

parameters. In practice, this assumption would be reasonable if the y
by basis functions g{* such as orthogonal polynomials or spline functions of degree

k. The model then may be written

Y=+ BPg® . (2.10)
k=1

For the case m = 1, this is a simple generalization of the Lee-Carter model (McNeil
and Tukey 1973, Lee and Carter 1992), in turn extended to m components by Booth et

al (2002).







Chapter 3
Modeling Incidence Rates with Applications

3.1 Studies completed

We applied statistical methods for incidence rates to three studies. The first study
examined patterns of diarrhea incidence in children less than 5 years of age in Thai
provinces bordering Cambodia with the exception of Trad province. Zero or low
count cases occurred in some districts where under-reporting was known or suspected.
These counts were replaced by imputed values before fitting the model. The log-
transformed linear regression model was then used to investigate the patterns of
diarrhea incidence for district, quarter and year, and the GEE method was used to
adjust for spatial correlation for residuals. The manuscript has been accepted

for publication in the Southeast Asian Journal of Tropical Medicine and Public

Health and appears in Volume 41 No.1 January 2010.

The second study aimed to model the trends in the annual tuberculosis incidence rates
by gender in districts of Nepal from 2003 to 2008. This method investigates the
regional and temporal pattern of this disease using the additive model given by
Equation (2.3) with the negative binomial distribution to account for over-dispersion,
but found that this model still has excessive deviance. Since the incidence rate for
tuberculosis depends strongly on gender and in Nepal this gender effect varies over
districts, the multiplicative model (2.8) was used with the additive effect for gender
replaced by a factor combining gender and district, and we obtained a satisfactory fit

with two multiplicative district-year components. The manuscript comprising the
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second section of this chapter has been submitted to the Asian Biomedicine (Research

Review and news) Journal.

Our third study involved an analysis of quarterly injury rates from July 2000 to June
2005 among boys and girls under 15 classified by 5-year age groups in 104 local
government areas in NSW. The aim of this paper was to show that the simpler method
based on a negative binomial generalized linear model is preferable to the complex
and computationally expensive Bayesian method used by the NSW Department of
Health in previous studies. This paper is currently being reviewed by the Department

prior to submission to an appropriate international journal.

3.2 Preliminary analysis

Study I: Diarrhea in Thai Provinces Bordering Cambodia: 1999-2004

This study focused on the monthly periods data of the number of under-reported cases

for each district.

Figure 3.1 shows the number of monthly reported diarrhea cases in some selected
districts. This graph illustrates the extent of probable under-reporting under our
suspicion that the data are under reported. In top three panels, there is no strong
evidence of under-reporting. However, in the other six districts there are noticeable
gaps in the time series of reported cases which provide strong evidence of under-

reporting.
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Figure 3.1: Numbers of monthly reported diarrhea cases in selected districts
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Study 2: Tuberculosis (TB) in Nepal: 2003-2008

Figure 3.2 shows 95% confidence intervals for annual incidence rate per 1,000 by
year. These are crude rates, unadjusted for gender and region within Nepal. The
dotted horizontal lines represent the mean of annual TB incidence rate (1.14 per
1,000). The highest incidence rates occurred in 2005 and 2004, with slightly lower

rates in 2006 and 2007, followed by a steep drop in 2008.

Annual incidence rate/1000
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Figure 3.2: Tuberculosis incidence rates by year in Nepal

The preliminary analysis also showed a gender difference, with substantially higher
rates for males, and regional differences, with higher rates in districts located in the

lower altitudes.

The further analysis involved statistical modeling containing effects for gender,
district and year, and it was found necessary to include interactions between these

factors, as well as substantial over-dispersion.
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Study 3: Injuries in NSW, Australia: July 2000- June 2005

Figure 3.3 presents 95% confidence intervals of annual injury-related hospitalization
incidence rates per 100,000 for gender and age group (left panel) and six gender-age
groups (right panel). These graphs show a strong interaction between gender and age
group: rates for boys increase with age (particularly for 10-14 year-olds), but decrease
for girls. An earlier study had fitted a complex Bayesian model using the BRugs
package (Thomas 2004) to these data but had not taken this age-gender interaction
into account. This model corrects for spatial correlation between pairs of districts with

common boundaries. These districts comprised the 175 local government areas

(LGAs) of NSW.
Annual incidence rate/1000
Male Female
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Figure 3.3: Injury incidence rates by gender, age-group, and age-group-gender

These data thus provided an opportunity to fit a simpler linear model to the log-
transformed incidence rates with just two factors (age-gender group and district), and
the GEE method to account for spatial correlation. Since the LGA populations range
from a less than 1000 to more than 300,000, we aggregated LGAs with smaller
populations into 104 super-LGAs, and assumed fixed interchangeable correlation

matrices within each of the 17 larger regions.
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A STATISTICAL METHOD FOR ESTIMATING
UNDER-REPORTED INCIDENCE RATES WITH
APPLICATION TO CHILD DIARRHEA IN THAI

PROVINCES BORDERING CAMBODIA

Sulawan Yotthanoo! and Chamnein Choonpradub?

'Department of Statistics, School of Science and Technology, Naresuan University,

Phayao; *Department of Mathematics and Computer Science, Faculty of Science and

Technology, Prince of Songkla University, Pattani Campus, Pattani, Thailand

Abstract. Diarrhea is a major health problem in Thailand, but reported data of disease
incidence are known or suspected to be under-reported. This study aimed to develop
astatistical model for estimating the annual incidence of hospital diarrhea cases among
children under five years. Data regarding diarrhea patients 0-4 years old were col-
lected for the National Notifiable Disease Surveillance (Report 506) about Thai prov-
inces bordering Cambodia during 1999-2004 by the Ministry of Public Health. A log-
linear regression model based on the prevailing seasonal-trend pattern was usee for
diarrhea incidence as a function of quarter, year and district, after imputing rates where
under-reporting was evident, using populations obtained from the 2000 population
census. The model also takes any spatial correlation between districts into account,
using the generalized estimating equation (GEE) method. Diarrhea incidence had sea-
sonal peaks in the first quarter (January to March) and the trend steadily increased
from 1999 to 2004. Results from such studies can help health authorities develop pre-

27

vention policies.

INTRODUCTION

Diarrhea is one of the world’s top five
infectious disease causes of death (Brownlie
et al, 2006) and remains a major cause of
morbidity and mortality among children in
developing countries (Carlos and Saniel,
1990; Parashar et al, 2003). Children under
five years of age have an average of 3.3 diar-
rhea episodes per year, and more than one-
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partment of Mathematics and Computer Science,
Faculty of Science and Technology, Prince of
Songkla University, Pattani Campus, Pattani
94000, Thailand.

Tel: 66 (0) 894660803; Fax: 66 (0) 7331 2729
E-mail: cchamnein@bunga.pn.psu.ac.th

Vol 41 No. 1 January 2010

third of all deaths in this age group are as-
sociated with diarrhea. Approximately 1.5
billion diarrhea episodes and 4 million
deaths occur annually among children age
less than five years (Vargas et al, 2004).

As in other developing countries, diar-
rhea in Thailand is a major health problem
and accounts for approximately 50% of all
hospital-reported infectious diseases (Thai
Working Group on Burden of Disease and
Injuries, 2002). The Bureau of Epidemiology
(2002) reported that while diarrhea-related
mortality declined from 1.11 per 100,000 in
1988 to 0.23 per 100,000 in 2002, morbidity
increased from 1,488 cases per 100,000 in
1993 to 1,687 cases per 100,000 in 2002. In
2002, there were 1,055,393 cases of diarrhea in
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Thailand, of which one-third occurred among
children under five years of age and 12% re-
quired hospitalization (iraphongsa et al, 2005).

Given that diarrhea morbidity remains
high in Thailand, there is a need to improve
treatment to prevent the disease, especially
in provinces bordering Cambodia where

cross-border migration may be a factor
(Thimasarn et al, 1995; Konchom et al, 2003).

We investigated a statistical model
based on linear regression for estimating the
extent of under-reporting. We then classified
patterns of child diarrhea in Thai provinces
bordering Cambodia using the GEE model.

MATERIALS AND METHODS

Study area and data source

The border between Thailand and Cam-
bodia is approximately 800 km long, stretch-
ing along the provinces of the lower north-
east area of Thailand from a point known as
“Chong Bog” in Ubon Ratchathani Province
and ending in the Had Lek Subdistrict of
Klong Yai in Trat Province (Fig 1). Due to its
stronger economic growth, Thailand attracts
many migrant workers from Cambodia.
Cross-border migration has been connected
with health problems, including infectious
diseases (Thimasarn et al, 1995; Konchom et
al, 2003).

Dataregarding diarrhea cases from 1999
to 2004 in the border provinces of interest
were taken from the National Notifiable Dis-
ease Surveillance Report (506), Bureau of
Epidemiology, Ministry of Public Health.
Each record contains the type of infectious
disease, age, gender, subdistrict of residence,
date of hospitalization, and disease severity
of the patient. The resident population de-
nominator used to compute the annual inci-
dence was obtained from the Population and
Housing Census of 2000, performed by the
National Statistics Office of Thailand.

204

Data analysis

Although the registry included the vil-
lage of residence and date of hospitalization
of the patient, we used districts (statistical
regions containing up to hundreds of vil-
lages ranging in population from 795 to
21,409). We did this to substantially reduce
correlations between annual incidence out-
comes in successive periods of time and in
neighboring locations, while still enabling
trends for place and time to be identified.
Data from the Thai infectious disease regis-
try are known, or suspected, to be seriously
under-reported (Lumbiganon et al, 1990;
Saengwonloey et al, 2003; Intusoma et al,
2008).

We first calculated disease incidence in
cells defined by district () and month (j) of
year (1) as the ratio of the number of reported
cases (1) to the district population in 1,000s
(P). For reasons evident from a detailed
study of monthly disease counts (Table 2),
any occurrence of zero cases in a cell was
considered as a possible instance of under-
reporting, and an additive linear model was
fitted to the logarithms of the remaining in-
cidence rates, namely,

In(%_t_J=yy‘t=l"‘+ai+ﬁj +Ye. (1)

In this model u is a constant and a, B,
and y, are the effects of district i=1,2,...,106,
month j=1,2,...,12and year t=1,2,...,6, respec-
tively, with zero means. After examining the
plot of standardized residuals, this model
was refitted after further omission of cells
corresponding to residuals below aspecified
cut-off value. Having thus obtained an ac-
ceptable fit, the omitted occurrences were
then imputed using the model. Next, we
aggregated the monthly data into quarterly
incidence rates and fitted a model similar to
(1) with j now representing quarter instead
of month, and the residuals from this model

Vol 41 No.1 January 2010
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were used to compute correlation coeffi-
cients between different districts. The aver-
ages of the correlation coefficients within
each province were then used to fit a gener-
alized estimating equation (GEE) model
(Liang and Zeger, 1986; Yan and Fine, 2004)
having a fixed block-diagonal correlation
structure with the blocks corresponding to
provinces. Residuals from this model were
examined using normal quantile plots after
filtering to remove their estimated correla-
tion.

To obtain unbiased estimates of inci-
dence rates in cells we used the formula

i:i]t = exp (j'yl +c), (2)

ij
is a constant chosen to match the total num-

ber of observed cases with the total given
by the model. After fitting the model, unbi-
ased incidence rates for levels of each factor
adjusted for other factors were calculated
similarly. Standard errors for these adjusted
incidence rates were obtained using sum
contrasts (Venables and Ripley 2002) to com-
pare the incidence rates for each level of a
factor with the overall mean incidence rate.

where y,.is the fitted value of Yyandc

Since the confidence intervals for fac-
tor-specific incidence rates and proportions
obtained from this model (using the sum
contrasts) divide naturally into three groups
according to their location entirely above the
mean, around the mean, or entirely below
the mean, we used this trichotomy to create
schematic maps of districts according to their
estimated diarrhea annual incidence rates
and under-reporting percentages.

We also estimated the extent of under-
reporting data by district, quarter and year,
by fitting a simple logistic regression model
(Hosmer and Lemeshow, 2000; Kleinbaum
and Klein, 2002) to the corresponding propor-
tions imputed using the method described

Vol 41 No. 1 January 2010

above. These estimated proportions for lev-
els of each factor after adjusting for the other
factors in the model were again computed by
requiring the weighted average of the ad-
justed proportions match the overall propor-
tion, using a Newton-Raphson iteration pro-
cedure with Marquardt damping, and stan-
dard errors for differences between indi-
vidual proportions and the overall mean.

All statistical analysis was carried out
using the R program (R Development Core
Team, 2007).

RESULTS

Preliminary analysis

Preliminary analysis indicated gender
was not a major factor influencing diarrhea
incidence (Ardkeaw and Tongkumchum,
2009), therefore it was not included in the
model. Children less than five years old had
the highest age-specific annual incidence
rate (Bureau of Epidemiology, 2007), so this
group was selected for study.

Data from Trat Province were not avail-
able for 2002 and so were excluded from the
analysis.

During the study period from January
1999 to December 2004, 260,522 cases of di-
arrhea were reported from district hospitals
in the Thai-Cambodia border provinces
among children less than 5 years old. The
number of cases reported in a month for each
district varied from zero to 578 (average an-
nual incidence rate 69.4 per 1,000). Among
the six provinces, Surin (78.8 per 1,000) and
Buri Ram (78.2 per 1,000) had relatively high
rates (Table 1).

Under-reporting

Table 2 shows the number of monthly
reported diarrhea cases in ten selected dis-
tricts. Six of these districts Pho Si Suwan,
Mueang Chan, Ban Mai Chaiyaphot, SilaLat,
Nam Kliang and Chalermphrakiet, had
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49 Rattanaburb 71 Huai ThapThan 93 Mueng SamSip
50 Sanom 72 MNon Khun 94 Afrin Chamrzp
51 Sikhoraphum 73 Si Ratara % FPhibu Mangsshan
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53 LamDuan 5 Wang Hin 97 PhoSai
54 Sarcong Thap 76 Fhu Sing 98 Sarmmng
55 Buxhet 77 Mueng Chan 9 Don Mot Deeng
56 Phanom Dong Fak 74 Benchalak 100 Sirindhorn
57 SilNamng 79 Fhayu 100 Thung Si Udaom
58 Ko Sinagn & Pho Si Suwen 1E NMa'vsi
59 MNon Narad &1 SilaLat 1% MaTan
60 Mueng 5iSaKet & Mueang Ubon Ratchathani 104 Lao Sua Kok
61 Yong Churn Noi &3 Si Mueng Mai 106 Sasang Weerawong
62 Kantharsrom & Khong Chiam 106 Mam Khun
63 Kantharalak & Khuang Mai
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65 Phrai Bueng & Det Udom
66 Prang Ku 88 Ia Chaluad

Fig 1-Districts of Thai provinces bordering Cambodia (exduding Trad).
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Table 1
Number ofreported diarrhea cases and population in each province.

Province No. districts Diarthea cases Population Annual Incidence Rate
Chantaburi 10 12 552 23,108 63.2
Sakaeo 8 18,849 42 560 73.8
Surin 23 64574 126,634 78.8
Buri Ram 17 58,940 125 642 78.2
Si Sa Ket 22 42,798 120,875 545
Ubon Ratchathani 25 62,508 153,410 68.2

Standardized residuals

Standardized residuals

n = B698§3
2 r#=0399

n =6377
£ =0542

Standardized residuals

n =7632
2 =0561

of 0
-2 2 2
=y
4 4
o
e s
3 2 40 1 2 3 3 2 106 1 2 3 3 Z 90 1 2 3

Normal guartiies

Normal quantiles

Normal quartiles

Fig 2-Plots of standardizedresiduals again st normal quantiles with zero cell counts omitted (lef tpanel),
further cells with low residual s omitted (middle panel) andimputedusing the fitted model (right

panel).

stretches of successive unusually low case
counts. In contrast, the four remaining se-
lected districts (Na Yai Am, Kwao SiNarin,
Khlung, and Chom Phra) showed no such
evidence of under-reparting, Any outcome
of zero or an extremely low number of re-
ported cases was considered as a possible
case of under-reporting,

‘The method invelved first aggregating
diarrhea cases by district counts for month
and year from 260,522 individual cases into
7,832 records by cross-tabulating 106 dis-
tricts over 72 months. The left panel of Fig 2
shows the plot of standardized residuals
against normal quantiles after omitting the
649 cells with zero counts (8.5%) based on
model (1). The residuals indicated a poor fit,
which improved substantially when a fur-

Vol 41 No. 1 January 2010

ther 608 cells with residuals less than -1.4
were omitted (7.9%), as the middle panel
shows. We thus used this latter model to
impute cell counts for the omitted data, ob-
taining the plot shown in the right panel of
Fig 2.

Table 3 lists the estimated proportions
ofunder-reported cases, These proportions
were highest in the October to December
quarter and lowest in the April to June quar-
ter. Similarly the estimated under-reporting
rate was lowest in the year 1999 and gradu-
ally increased to 15.2% in 2001 and then de-
creased to 7.7% in 2004,

Based on the criterion we used, there
were only four districts with no evidence of
under-reporting (Mueang Sakaeo, Ban Kruat,
Chom Phra and Phrasat). Chom Phra and
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Table 2

Number of monthly reported diarrhea cases in ten selected districts.

32

MonthID PhoSi Mueang BanMal SilaLat

Nam

Chalerm Na Yai

Khwao Khlung Chom

Suwan Chan Chaiyaphot KHang PhraKiet Am Sinarin Phra

1 0 0 10 18 0 53 57 88 59 193
2 0 0 10 7 ] 19 24 22 48 141
3 0 0 0 19 0 34 26 15 37 88
4 0 0 3 12 0 11 42 18 37 44
5 0 0 1 16 0 9 50 18 32 59
6 0 0 4 24 4 25 35 33 32 53
7 0 0 1 8 0 26 21 16 33 43
8 0 0 4 0 0 16 20 20 33 47
9 0 0 1 18 5 9 33 21 28 45
19 0 0 3 4 15 16 30 27 33 58
11 0 0 2 5 1 10 17 27 22 73
12 0 0 0 7 1] 1 18 45 31 121
13 5 13 3 ] 88 74 41 55 75 101
14 9 25 10 0 64 57 48 51 58 112
15 25 2 4 8 66 62 39 30 41 92
16 18 0 3 12 53 418 34 3 4 45
17 13 0 6 21 55 68 35 47 49 69
18 37 0 2 4 72 69 23 29 54 115
19 0 1 7 10 35 63 23 45 51 110
20 0 0 4 0 21 40 18 27 31 60
21 0 0 2 0 65 31 25 26 38 53
22 0 0 1 0 17 37 20 25 48 62
23 0 0 1 0 28 48 35 29 36 41
24 0 0 0 0 0 59 21 42 31 79
25 17 20 10 0 21 77 34 56 53 91
26 9 17 5 (] 15 61 43 31 63 74
27 6 10 7 0 16 60 52 48 34 72
28 2 3 2 0 37 64 59 34 29 49
29 0 0 1 0 108 54 26 33 27 57
30 0 0 6 0 160 71 32 53 42 84
31 0 ] 2 0 81 32 32 67 37 i
32 0 0 0 0 56 33 35 53 31 118
33 0 0 0 ] 45 22 26 33 30 85
34 7 0 0 0 37 20 9 37 27 36
35 9 0 0 0 0 11 34 19 31 39
36 14 0 0 1 0 0 13 37 11 39
37 25 42 3 91 0 0 42 67 55 381
38 51 20 6 60 1 0 70 58 87 173
39 34 4 1 66 1 1 63 49 94 187
40 26 30 5 54 2 3 33 48 61 91
41 2 30 0 16 0 4 38 32 37 113
42 1 24 26 17 0 5 53 38 47 153
43 0 19 31 30 0 7 36 42 48 178
44 2 12 14 31 2 7 37 48 39 178
45 2 22 7 33 5 7 30 41 26 94
46 5 12 3 24 3 0 22 45 27 118
47 6 0 24 20 1 0 24 68 38 136
48 5 0 9 30 2 0 28 28 55 104
49 5 2 13 2 2 18 30 100 68 187
50 16 0 12 4 4 44 65 77 46 217
51 14 1 19 2 6 34 74 46 51 171
52 3 1 14 8 1 48 26 27 32 103
53 1 0 17 § 3 32 38 17 54 105
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Table 2 (Continued).

MonthID PhoSi Mueang BanMai SilaLat

Nam Chalerm Na Yai

Khwao Khlung Chom

Suwan Chan Chalyaphot KHang PhraKiet Am Sinarin Phra

54 0 1 i6 4 7 13 47 36 48 91

55 4 0 14 4 2 7 34 7 48 117

56 5 2 10 6 3 9 27 29 51 123

57 1 1 46 7 1 8 32 22 73 56

58 4 0 52 2 2 0 26 36 54 76

59 2 1 87 1 4 0 17 25 45 99

60 5 1 [ 0 3 1] 15 48 11 106

61 51 85 111 54 98 0 47 11 60 124

62 48 43 12 48 60 58 45 57 69 116

63 28 81 19 50 57 28 33 60 69 170

64 8 45 12 41 53 27 9 27 45 101

65 10 47 23 47 51 41 24 29 46 115

66 35 31 22 25 32 47 35 29 59 182

67 73 41 35 55 113 62 28 60 45 274

68 64 60 39 54 53 30 20 72 36 219

69 36 31 12 26 0 51 20 56 31 131

70 2 7 17 16 0 8 11 43 42 103

71 0 1 17 2 1 54 22 76 40 125

72 0 0 11 2 ] 72 13 39 33 129

Total 745 788 880 1,131 1,734 2,115 2,348 3,011 3,164 7,905
Population 12,306 9,654 14,226 10,926 24,336 20,526 13,128 16,506 21,480+ 32,658

Phrasat are located in the Surin Province. The Table 3

highest estimates were found in Mueang
Chan, Nam Kliang and Ban Mai Chaiyaphot
Districts where the percentages exceeded
50%. Mueang Chan and Nam Kliang are lo-
cated in the Si Sa Ket Province (see the left
panel in Fig 5).
Diarthea incidence

After aggregating the monthly cell
counts (including those imputed from the
under-reporting model for monthly data),
we used the generalized estimating equation
(GEE) model with a fixed correlation struc-
ture to account for spatial correlations be-
tween districts. In this structured correlation
matrix, correlations between different dis-
tricts within a given province were specified
as the common mean of the corresponding
residual correlation coefficients after fitting
the linear model, unless this value was less
than 0.1, in which case it was taken to be 0.
Correlations between districts in pairs of dif-

Vol 41 No. 1 January 2010

Estimates of under-reporting percentages
by quarter and year.

Factor Percent

Quarter
1: Jan-Mar 8.1
2: Apr-Jun 7.3
3: Jul-Sep 9.6
4: Oct-Dec 21.8
Mean 11.7

Year
1999 6.4
2000 13.0
2001 15.2
2002 14.4
2003 8.9
2004 1.7
Mean 10.9

ferent provinces were similarly fixed at the
means of the corresponding residual corre-
lation, provided these means exceeded 0.1
in magnitude.
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Table 4
Means and standard errors of residual correlations between districts within and between
provinces.
Province Chantaburi Sakaeo Surin Burf Ram  Si Sa Ket Ubon
Ratchathani
Chantaburi 0.17 (0.049)
Sakaeo 0.07 (0.03) 0.13 (0.05)
Surin 0.03 (0.02) 0.05(0.02) 0.03(0.02)
Buri Ram -0.06 (0.02)  -0.05(0.02) 0.03(0.01) 0.17 (0.03)
Si Sa Ket -0.06 (0.02) -0.02 (0.02)  0.00 (0.02) 0.09 (0.01) 0.12 (0.01)
Ubon Ratchathani 0.02 (0.02) 0.09 (0.02) 0.03(0.01) 0.03(0.01) 001 (0.01) 0.12(0.02)

Table 4 shows the means and standard
errors of the residual correlation coefficients
between different districts in each province.
These correlations were generally quite
small, ranging from 0.03 in Surin to 0.17 in
Chantaburi Province.

The results obtained by fitting the GEE
model are shown in Fig 3. The left plot shows
observed counts versus expected counts. The
middle plot shows abserved annual inci-
dence per 1,000 versus the corresponding
model-fitted values. Since both the cell
counts and the corresponding incidence
rates were strongly right-skewed, they were
plotted on a cube root scale, which gave a
squared correlation of 0.65 between the ob-
served and fitted rates on this scale. The right
plot shows the residuals (after filtering out
the estimated spatial correlations) versus
normal quantiles. Apart fromaslight tilt, this
plot shows little reason to doubt the normal-
ity assumption.

Fig 4 shows the fitted annual diarrhea
incidence rates based on the GEE model. The
graphs show 95% confidence intervals for
annual diarrhea incidence/1,000 by quarter
(left panel), year (middle panel) and district
(right panel), each adjusting for the effects
of the other two factors in the model. The
dotted horizontal lines on each graph repre-
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sent the overall mean annual incidence rate
(19.4 per 1,000). The seasonal pattern of di-
arrhea incidence clearly indicates a peak in
the January to March quarters with an ad-
justed annual incidence rate of 29.8 per 1,000
{95% CI 28.6 - 31.0). The trend s{eadily in-
creased from 17.7 (95% C1 16.5 - 18.9) in 1999
to 20.0 (95% C118.9 - 21.0) in 2002, then drop-
ping slightly to 18.6 (95% CI 17.8 - 19.4) in
2003 and increasing to 23.4 (95% CI 22.4 -
24.4) in 2004. The variation between districts
was greater, ranging from 3.6 (95% CI 3.0 -
4.4) in Kantharalak District to 58.2 (95% CI
50.8 - 66.7) in Bung Bun District. The annual
diarrhea incidence rate was general higher
than the mean in the districts of Buri Ram
and Surin Provinces, generally lower than
the mean in Chantaburi and Si Sa Ket Prov-
inces, and typical of the whole in Sa Kaeo
and Ubon Ratchathani Provinces.

The particular statistical and graphics
methods used to produce Fig 5 enable un-
der-reporting and incidence relativities be-
tween districts to be clearly illustrated. The
right panel shows a thematic map of districts
with diarrhea incidence coded according to
whether the confidence interval exceeds,
crosses, or is below the overall mean. Higher
disease incidence occurred mainly in Buri
Ram (14 of 23 districts) and Surin (8 of 17
districts) in the middle of the region.

Vol 41 No.1 January 2010
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Fig 3-Plots of observed versus fitted counts and incidence rates (left panels) and residuals versus nor-

mal quantiles after fitting the GEE model.
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DISCUSSION

The results show the diarrhea incidence
in the Thai provinces bordering Carmbodia
is a serious health problem (Staff ofthe De-
partment of Planning and Health Informa-
tion, 2008). The log-linear model was used
to impute cell counts for the omitted data
and the generalized estimating equation
(GEE) model with a fixed correlation struc-
ture based on quarter, year and district
which were used for analysis. The use ofthe
GEE method for modeling spatial correla-

Vol 41 No. 1 January 2010

tion is discussed in detail in arecent review
by Dormann et al (2007). Generalized linear
models (GLIMs) provide powerful statistical
modeling (Aitkin et al, 1989) and the appli-
cation of the GLMs to model epideminlogi-
cal datawas recommended by Flanders and
Kleinbaum (1995). This method has also
been applied to modeling diarrhea diseases
by Kale and Hinde (2004), HIV/AIDS and
other infectious disease mortality rates by
Limand Choonprabub (2007).

The estimated under-reporting of diar-
rhea case (Table 3) was relatively high dur-
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Fig 5-Schematic map of under-reporting (left panel) and annual diarrheal inddence rates (right panel)

in districts of Thailand bordering Cambodia.

ing the last quarter and low during the sec-
ond quarter. Onereason for this pattern might
have been due to the low number of actual
cases during the last quarter of each year, but
may also have been due to health worker fail-
uretorecord and report actual cases for vari-
ous reasons, including computer system
problems. During the period 1999 to 2004,
estimated under-reporting was lowest in 1999
and steadily ncreased in 2001 and then de-
creased by 2004, The highest estimates were
found in the three districts Mueang Chan,
[Nam Kliang and Ban MaiChaiyaphot, where
our estimates exceed 50%. Evidence of un-
derrepertingwas also found in most districts
of 5i Sa Ket Province. Possible causes include
overworked government personnel, inad-
equate coordination with private hospitals,
and inadequate supervision at the central
public health level (Saengwanloey et al, 2003),
However, there were four districts with no
evidence of under-reporting.

Thehighest diarrhea incidence ocourred
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among children under five years old, which
is consistent with the findings by Pinfold et
al (1991) who conducted astudy ofseasonal
effects on the reported incidence of acute
diarrhea in Northeast Thailand. They found
voung children were the most affected
group, with a reported annual incidence of
2,952 per 100,000 for children less than five
vears old, Kosek et al (2003) found that diar-
thea accounted for 21 % of all deaths of chil-
dren less than five years old, Early interven-
tion for this age group could reduce the in-
cidence,

Accordingtothis study, the diarrhea in-
cidence during the study period was rela-
tively high from January to March, This pe-
riod mainly overlaps the winter and sum-
mer seasons and is associated with a high
risk of diarrhea (Pinfold etal, 1991), Diarrhea
disease was influenced by El Nitio (Patz,
2003) in Peru, the number of diarrhea cases
increased with an ambient temperature in-
crease (Checkley, 2000). Moreover, we dis-

Vol 41 MNo. 1 January 2010
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covered the overall trend of diarrhea inci-
dence from 1999 to 2004 was slightly higher.
In contrast, the Bureau of Policy and Strat-
egy has shown that the diarrhea trend
among the overall Thai population remained
stable based on statistics from the Ministry
of Public Health (2001). The high, and in-
creasing trends of diarrhea incidence oc-
curred in the districts in the middle of the
region. Possible reasons are as follows: resi-
dents in this area have a relatively low Gross
Regional and Provincial Product (GRP) per
capita (Office of the National Economic and
Social Development, 2006); residents are
more likely to consume raw meats and fer-
mented foods (Lee et al, 1993; Somnasang et
al, 1998) and long droughts occur in the re-
gion.

In conclusion, the data analysis model
enables adjustments to be made to compen-
sate for under-reporting and should thus
provide more accurate estimates of disease
incidence. The model may be useful for
health planning in countries similar to Thai-
land where routine epidemiological reports
of diarrhea and other disease cases are pro-
vided at the district level, because it provides
a simple method based on readily available
demographic data. The model can also be
used to identify an unusually high annual
incidence within the period of its occurrence,
and thus enable health authorities to reduce
the severity of ensuing epidemics by imple-
menting preventative measures put in place
for the demographic group at risk.
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Abstract

Tuberculosis (TB) is a major cause of morbidity, mortality, and disability worldwide.
It constitutes a large burden of infectious disease in Nepal. Every year more than
30,000 people develop active tuberculosis and 5,000-7,000 people have died due to
TB. The magnitude of tuberculosis infection across the country is alarming and varies
with location. The objective of the study was to model the trends in incidence of
Tuberculosis from 2003 to 2008. A retrospective study was conducted in Nepal of
tuberculosis incidence by gender and location over the six years period. Data were
obtained for 198,734 tuberculosis cases from the South Asian Association for
Regional Cooperation Tuberculosis and HIV/AIDS center (STAC). A negative
binomial model using two trend eigenvectors as predictors was used to determine the
trends of TB incidence in Nepal. The incidence rate of TB decreased from 1.32 to
1.24 per 1000 populations from 2003 to 2008. The result of fitting a negative binomial
model was acceptable as indicated by the residual plots. The model extracted two
trend eigenvectors that characterized (a) a decreasing trend of TB incidence, and (b)

a tendency to increase during the first five years followed by a sharp drop in 2008.
Tuberculosis is still a public health problem in Nepal. This study showed a steady
decreasing trend in TB incidence but the numbers of cases are still very high. Gender
differences exist in Tuberculosis incidence in Nepal. Higher rates were observed in
Terai Region and urban areas. These findings highlight the need of tuberculosis
control measures on a sustained and long term basis on high TB burden areas of

Nepal.

Keywords: Tuberculosis, Negative binomial model, eigenvectors, count model
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Introduction

Tuberculosis (TB) remains a major cause of infectious disease mortality, with an
estimated 8.8 million new cases and 1.6 million deaths annually (WHO 2008, Werf
and Borgdorff 2007). With 2.5% of all deaths worldwide attributed to TB, the disease
is the seventh most common cause of death, after cardiovascular diseases, respiratory
infections, chronic obstructive pulmonary disease, diarrheal diseases and HIV/AIDS
(WHO 2004). TB remains a serious public health problem among particular patient
populations, including children and elderly, and is prevalent in many urban areas (Dye
et al 2005, Blumberg et al 2005). The global burden of TB is large, and is likely to
remain high among public health problems in coming decades (Dye et al 1999, Lopez
et al 2006).

Tuberculosis is a major public health problem in Nepal. Data from the National
Tuberculosis Programme of Nepal shows that there are about 30,000 infectious cases
and 5,000-7,000 deaths due to TB annually (STC 2007). It is the most common cause
of death in the most economically productive age group comprising adults aged 15 to
49 years (Harries et al 1998). The reported incidence of all forms of tuberculosis
amongst the general population was 176 per 100,000 in 2006 with mortality
(including HIV) of 23 cases per 100,000 (WHO 2008). As in other countries, the
tuberculosis epidemic in Nepal can be traced in part to poor working and living
conditions. Many of these conditions persist to this day, and along with the Multi
Drug resistance (MDR-TB) and HIV/AIDS epidemic, have fueled the current high

levels of tuberculosis disease in the country.

The National Tuberculosis Center’s annual reports provide evidence that the
magnitude of tuberculosis infection across the country is high and varies with
location. The reported caseload is extremely high in the Terai and the Hill parts of the
country and is also high in many urban areas (STC 2007).

Several studies have found a gender difference in tuberculosis incidence (Uplekar et
al 2001, Holmes et al 1998). In Nepal, the female/male ratio was found to be below
parity among TB suspects undergoing sputum examination and for all types of TB
case detection (Shrestha and Jha 2007).
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Public health officials are often required to evaluate disease incidence in the country.
They need to compare the standardized disease incidence rate within the area and time
frame so that necessary actions can be taken. Statistical modeling may provide the
quantitative framework for investigating key issues related to tuberculosis incidence,
transmission dynamics and to predict the effects of different interventions. A
mathematical model was used to describe the spatial and temporal variation in TB and
HIV in India (Williams et al 2005). Another model was proposed to simulate TB
dynamics and to evaluate the potential impact on active TB prevalence of several
intervention strategies in highly endemic overcrowded prisons in Brazil (Legrand et al
2008). Poisson regression model was applied to determine the spatial and temporal
variations in incidence of tuberculosis and identified an upward trend in the number
of reported cases of tuberculosis in southern, eastern and middle Africa (Uthman et al
2005). Similar study on tuberculosis incidence in Portugal based on spatiotemporal
clustering revealed that TB incidence showed clear spatial patterns, and high

incidence rate space-time clusters were identified in three areas of the nation between

2000 and 2004 (Nunes 2007).

Investigating the regional and temporal pattern of disease can indicate areas with
problems and possibly predict periods of likely disease epidemics. It can also help the
concerned health authorities to plan an effective prevention program. The Poisson
distribution and its extension to the negative binomial distribution to handle over

dispersion is a standard approach to modeling event count data.

The aim of the study is to model the trends in incidence of tuberculosis in Nepal from
2003 to 2008.

Materials and methods
Study Area and Data Source

Nepal, officially the Federal Democratic Republic of Nepal, is a landlocked country in
South Asia and is the world's youngest republic. It is bordered to the north by the
People's Republic of China, and to the south, east, and west by the Republic of India.
It has five development regions (eastern, central, western, mid western and far

western), 14 zones, 75 districts, and has a current population growth of 2.2%
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(Wikipedia 2009). On the basis of topography, it is divided into three distinct
geographical regions; Mountain (7% of the population), Hill (43%) and Terai (50%),

in decreasing altitude.

Table 1: Definitions and populations of super-districts

Code Super-districts Population Code  Super-districts Population
1 Darchula 138,455 33 Rupandehi 833,681
2 Baitadi 265,773 34 Chitwan 555,121
3 Dadeldhura 144,833 35 Makwanpur 457,349
4 Kanchanpur 451,790 36 Parsa 580,572
5 Bajhang+ Bajura 312,813 37 Bara 652,286
6 Doti 233,751 38 Rautahat 630,969
7 Achham 259,964 39 Rasuwa+ Sindu 398,709
8 Kailali 744,760 40 Dhading 388,103
9 Karnali (zone) 350,358 41 Nuwakot 330,100
10 Dailekh 256,064 42 Kathmandu 1,304,954
11 Jajarkot 153,719 43 Kavre 435,759
12 Surkhet 338,208 44 Bhaktapur 259,223
13 Bardiya 454,657 45 Lalitpur 393,228
14 Banke 457,903 46 Dolkha 233,748
15 Rukum 215,643 47 Ramechhap 242,525
16 Salyan 242,739 48 Sindhuli 322,698
17 Rolpa 236,419 49 Mabhottari 637,294
18 Pyuthan 240,913 50 Dhanusha 779,388
19 Dang 540,577 51 Sarlahi 734,858
20 Mustang+ Myagdi 145,264 52 Solu+ Okhal 297,154
21 Baglung 303,556 53 Khotang 258,656
22 Parbat 179,200 54 Udaypur 339,163
23 Manang+ Lamjung 207,714 55 Siraha 661,030
24 Gorkha 325,824 56 Saptari 658,681
25 Kaski 444,787 57 Sankhu+ Tehra 308,761
26 Syangja 358,149 58 Bhojpur 227,545
27 Tanahu 362,300 59 Dhankuta 189,483
28 Gulmi 336,857 60 Sunsari 733,919
29 Arghakhanchi 237,762 61 Morang 978,441
30 Palpa 304,171 62 Taple+ Panchthar 379,783
31 Nawalparasi 665,258 63 Illam 329,176
32 Kapilvastu 567,152 64 Jhapa 795,779

Nepal is covered by the National Tuberculosis Control Program (NTC), which strictly
follows the World Health Organization strategy (WHO 2008) defined as Directly
Observed Treatment, Short Course, and regularly issues a progress report. The
information used, regarding cases notified between 2003 to 2008 was provided by
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STAC, the specific NTC information system managed by the NTC coordination team,
working for the prevention and control of TB and HIV/AIDS in the Region (STC
2007). The reported cases for each year are available in computer files comprising
characteristics of the disease, gender, address, and the severity of the illness. The
independent variables are: (a) gender, (b) location and (c) calendar year (2003 to
2008).

To simplify the effect of location of residence when calculating incidence rates, one
or more contiguous districts in each zone were grouped together to form 64 “super-
districts” containing populations of above 100,000 on average, as shown in Table 1,
where they are listed in order of geographical location from far western to eastern

(keeping district within the same zone together) with their 2008 populations.
Statistical methods

Poisson regression is commonly used for modeling the number of cases of disease in a

specific population within a certain time period. If A, denotes the mean incidence rate
for gender i, geographical location j and year ¢, an additive model with this

distribution is expressed as
In(4;,)=In(B) +pu+a,+ B, +7,. (1)

In this model, F; is the corresponding population at risk in 1000s and the terms a,,
B, and y, represent gender, location and year effects that sum to zero so that M isa

constant encapsulating the overall incidence. The model fit is then assessed by the
linearity in the plot of deviance residuals against normal quantiles, and also by
examining plots of observed counts and appropriately scaled incidence rates against
corresponding fitted values based on the model. The additive model including

interaction between location and year takes the form
In(4;,) = In(F)+a; + B jt (2)

To allow for possible interactions between gender, location and year effects, model

(1) may be extended to

In(4,) =In(B)) +a, + B, 3)
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The interaction between the gender and year is omitted because it is reasonable to

assume that the gender effect varies with location but not with year.

This model has interactions between two factors so if Z, J and T are the numbers of
respective levels of these factors, the number of parameters is IJ+IT+JT-(I+J+T)-4.
For example with the two sexes, 64 locations and 6 years the number of parameters is

equal to 448.

Since it is difficult to interpret a model with such a large number of parameters, we
considered an alternative set of models that include interactions, these take the form,

form<T,

In(4,,) =In(P,) + o +Z By 4)

This model is non-linear so it cannot be fitted directly as a Poisson generalized linear

model. However if y,, is the natural logarithm of the incidence rate in cell (3, J, 0), the

model can be approximated by a non-linear model with additive errors ¢, , that is,

ijt >

Vi = @y +Z/3‘k) Y+ (5)

To handle observations with zero cell counts, an appropriate adjustment is needed

such as replacing any zero counts by a small positive constant. For specified values of

i, Theil (1983) showed that the least squares estimates of the y* parameters in model
(5) are the elements of the eigenvector of the matrix ¥ Y_ corresponding to its k£
largest eigenvalue, where Y, has elements Yy —y;and Y " denotes the transpose of
Y. The corresponding least squares estimates of the S’ parameters are then
expressed in terms of the eigenvectors y* as
2 T
B =;;7t(k)(y1jt-—)_}y) : (6)

If the ,8,‘." ) parameters are regarded as fixed, model (4) can be fitted using Poisson

regression, giving both estimates and standard errors for the remaining parameters. In
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(k)

. were replaced by basis

practice, this assumption would be reasonable if the y

(k)

, such as orthonormal polynomial or spline functions of degree k. The

functions g

model then may be written
In(4;,) =In(B) +a, + 3, BPg" . Q)
k=1

For I=2, J=64 and T=6, the number of parameters in this model varies from 192 when

m = 1 to 448, the number of parameters in model (2), when m = T-1.

Model (7) also gives adjusted incidence rates for each factor of interest, obtained by
replacing the parameters corresponding to the other factors by constants chosen to

ensure that the total expected number of cases equals the observed number.

Sum contrasts (Venables and Ripley 2002, Tongkumchum and McNeil 2009) were
used to obtain confidence intervals for comparing the adjusted incidence rates within
each factor with the overall incidence rate. Since the confidence intervals for factor-
specific incidence rates obtained from the model divide naturally into three groups
according to their location entirely above the mean, around the mean, or entirely
below the mean, we used this trichotomy to create schematic maps of super-districts

according to their estimated tuberculosis annual incidence rates.

Poisson models for disease counts are often over-dispersed due to clustering, in which
case the negative binomial model is more appropriate (Venables and Ripley 2002).
The negative binomial model is an extension of the Poisson model for incidence rates

that allows for the over dispersion that commonly occurs for disease counts.

The R program was used for all statistical analysis, graphs and maps (Venables et al
2008).

Results
Preliminary Analysis

During the study period 198,719 confirmed cases were notified from 2003 to 2008.
Among all cases, 86,722 cases were new smear positive cases, 13,545 cases were

relapse, 1,727 were failure, 1,914 were defaulters, 55,333 were new smear negative
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and 39,458 were extra pulmonary cases. The number of cases varied from 0 to 1,801
per year, with 127,979 male cases and 70,740 female cases. The mean incidence rate
of TB was 1.31 per 1,000 population. The incidence rates by year are shown in the
Table 2.

Table 2: TB incidence rates by year

Years No. of TB cases Population Incidence
(N=198719)
2003 31,637 23,961,451 1.32
2004 32,903 24,516,403 1.34
2005 34,077 25,266,209 1.34
2006 33,206 25,714,085 1.29
2007 33,450 26,284,014 1.27
2008 33,446 26,805,469 1.24

Figure 1 shows plots of the eigenvectors y* for k = 1, 2. Since the first eigenvector
shows a decreasing linear trend and the second eigenvector shows a linear frend for
t=1to 5 followed by a sharp drop at # = 6 (a saw tooth with peak in 2007), it is
reasonable to choose these functions as basis functions. Note that the first of these

fixed functions has two parameters and the second has three parameters, and these

five parameters can be determined by the requirement that they are normalized to
have mean 0, sum of squares 1 and correlation 0. The functions are thus g =0.837 -
0.239 tand g/¥=-0.414+0.187 tfor 0 <t <6 and g® =—0.736 for ¢ =6. In Figure

1, the dotted lines denote these fixed functions.
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Figure 1: Plot of two eigenvectors and corresponding basis functions (dotted)

Statistical Analysis

Table 3 summarizes results obtained from fitting different Poisson and negative

binomial models to the data. Models based on equation (7) with m > 2 have too many

parameters to be easily interpreted. However, equations (2) and (3) have many more

parameters than the two categories of equation (7), as can be seen in Table 3. To

ensure that the negative binomial models are hierarchical, we used the value of §

estimated from model E (391.13 with standard error 60.0) for all models.

Table 3: Analysis of Deviance for Poisson and Negative Binomial models

Model No. d.f. Residual Deviance Residual Deviance
parameters Poisson Negative Binomial
A: Equation (1) 70 698 3708.7 2183.4
B: Equation (2) 385 383 2331.6 1346.0
C: Equation (3) 448 320 717.2 484.4
D: Equation (7) (m=1) 192 576 1585.6 1022.6
E: Equation (7) (m=2) 256 512 1317.3 860.7
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Figure 2 plots of the deviance residuals versus normal quantiles are compared, and it

can be seen that the fit for the negative binomial model is more acceptable than that

for the Poisson model. The largest two outliers identified in each graph were super-

districts 27 and 46 during the years 2007 and 2004, respectively. The corresponding

observed counts were 215 and 107 whereas the fitted values given by the negative

binomial model were 124.4 and 62.8, respectively.

Deviance Residuals: Poisson

Deviance Residuals: NB
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Figure 2: Diagnostic plots for Poisson and negative binomial models

Figure 3 shows plots of observed counts and observed annual incidence rates per 1000

population versus corresponding fitted values using the negative binomial model,

indicating that the model fitted the data quite well.
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Figure 3: Plots of observed counts and observed incidence against fitted values
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Figure 4 shows plots of the adjusted annual TB incidence rates/1000 for males and
females and their confidence intervals for each super-district. The horizontal line
corresponds to the overall incidence rates for males and females combined (1.31 per
1,000 population). The dark line represents the males and the light line represents
females. The dotted horizontal dark line corresponds to the mean incidence rates for
males (1.70 per 1000 population) and the dotted horizontal light line corresponds to
the mean incidence rates for females (0.91 per 1000 population). In most of the super-

districts, there is high incidence of TB in males.
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Figure 4: Annual TB incidence/1000 for males and females

Figure 5 shows a schematic map of the male and female adjusted incidence rates for
super-districts, using the confidence intervals plotted in Figure 4 to classify these
regions as above the mean (darkest shade), below the mean (lightest shade) or not
evidently different from the mean (intermediate shade). Higher TB incidence rates
occurred for males and females in most of the super-districts of the Terai region and
some super-districts of the Hill region. The plot also shows similar patterns for males
and females, suggesting that it might be reasonable to fit a simpler model that does
not contain an interaction between gender and super-district. However, when the

simpler model was fitted, the residual deviance increased to 1719.5 with 575 degrees
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of freedom, and the plot of deviance residuals also indicated a poor fit, so the model

containing the interaction was preferred.
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Figure 5: Schematic map of annual tuberculosis incidence rates for males and females

Figure 6 shows a plot of the estimated trend coefficients with circles indicating
confidence regions (left panel) and annual incidence rates for four selected districts
for males corresponding to extreme coefficients (right panel). The lines are the trends
of incidence rates given by fixed functions corresponding to the dotted lines in Figure
1. Super-district 35 had a pure downward trend, super-district 17 had a trend similar
to the saw tooth shape in figure 1 and super-districts 11 and 53 had a hybrid trends

composed of weighted linear combinations of the two trend functions.
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Figure 6: Plots of component coefficients and trends of extreme super-districts for

males
Discussion

In Nepal, tuberculosis is a serious public health problem where more than 30,000
cases occur every year; half of them are infectious with the disease spreading in these
communities. The present study used model to determine the trends in tuberculosis

incidence in Nepal from 2003 to 2008.

We extracted two trend eigenvectors from the covariance matrix of the residuals after
fitting a simple model containing a gender/super-district factor to log transformed
incidence rates. The first eigenvector clearly showed a decreasing trend of TB
incidence and the second eigenvector showed a gradual increase during the first five
years followed by a sharp drop in 2008. We then replaced these data generated
eigenvectors by fixed orthonormal functions comprising a straight line and bent line
and then fitted generalized linear Poisson and negative binomial models containing
the gender and super-district factor and the two fixed functions with super-district
specific parameters. The negative binomial model fitted reasonably well as indicated
by plots of deviance residuals. We also plotted confidence intervals for the adjusted

incidence rates for gender and super-district.
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The overall annual incidence rate of TB was found to be 1.31 per 1,000 population.
The findings showed that gender differences existed in the incidence of TB; the male
to female incidence ratio was 1.86. This is reasonably consistent with TB incidence

and gender patterns found in recent studies in Nepal (Shrestha and Jha 2007).

Epidemiological findings demonstrate that in most settings, tuberculosis incidence
rates are higher for males, at all ages except in childhood, when they are higher for
females. Studies have reported that sex differentials in prevalence rates begin to
appear between 10 and 16 years of age, and remain higher for males than females
thereafter (WHO 2003). A possible reason for the higher prevalence in post-
adolescent males is that biological factors associated with being female (such as
hormonal factors) may protect post-adolescent females from TB infection (Dolin
1998).

The decreases in trends of TB incidence as fitted by fixed functions over the six year
periods were consistent with the WHO report and STC annual report on tuberculosis.
The decrease in TB incidence may be attributed to successful TB control programs in
the country with the expansion of DOTS, case finding and treatment success in the
recent years in Nepal (STC 2007). Similarly a recent first national tuberculin survey
carried out among school children in Nepal shows the ARTI (Annual Risk of
Tuberculosis Infection) in Nepal to be lower than previous estimates, indicating a

decrease in transmission of tuberculosis (Shrestha et al 2008).

There were pronounced spatial variations in TB incidence for males and females with
higher rates occurring in the Terai region, followed by the Hill and Mountain regions.
Thus it can be concluded that tuberculosis is more prevalent in the Terai region.
Studies from the UK and Spain have shown seasonal variations in tuberculosis rates
and higher notification rates over summer and in hotter regions (Douglas et al 1996
and Douglas et al 2000). This increase has been attributed to impaired host defence
mechanisms (Davies 1997). But the notification rate in the Terai region can be
attributed not only to medical factors, but also social and environmental factors. The
Terai region is characterized by high temperatures, low socio-economic status,
malnutrition, high levels of poverty and social deprivation, all contributing to TB

infection. However the lower incidence rates of tuberculosis in mountain areas are
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consistent with studies from Kenya and Mexico, which reported that the tuberculosis
incidence decreases strongly with increasing altitude (Mansoer et al 1999, Vargas et
al 2004). The cause of the close inverse relationship of altitude and TB incidence
might be related to the well known changes in alveolar oxygen pressure at different
altitudes (Vargas et al 2004, West et al 1990). In this study, the steady decline of the
barometric pressure as altitude decreases leads to lower alveolar oxygen pressure,

which in turn inhibits the development of tuberculosis lesions.

TB incidences were also found to be higher in urban areas. The high number of cases
in cities may be due to increasing poverty, migration, and homelessness in cities that
seems to be linked with the reemergence of TB (Carolyn 1996). Associations among
tuberculosis, urbanization, and poverty have been noted in studies from countries as
diverse as India and the Philippines (Rangan et al 2003, Tupasi et al 2000). It is clear
that growing numbers of poor, malnourished people living in unhygienic,

overcrowded conditions can facilitate the transmission of TB in Nepal.

Our study had some limitations. We analyzed a short period of time (from 2003 to
2008). Additional analyses are needed to evaluate the trends of tuberculosis using data
for a longer study period, or more detailed incidence data (monthly, quarterly).
Second, we could not incorporate age, which is considered as the one of the risk

factors for tuberculosis, due to unavailability of age-specific incidence data.

In conclusion, this study presents insights into the incidence of TB by gender, year
and location. These findings require further investigation, but highlight the
importance of selectively monitoring geographic locations and planning future

intervention strategies.
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Abstract
Objective: To demonstrate the utility of a simple additive statistical model in
accounting for the spatial, demographic and temporal patterns of unintentional

injuries among children, as a first step in explaining child injury risk inequity.

Setting: Data were obtained on all hospital separations of NSW residents aged below
15 years who were unintentionally injured from 1 July 2000 to 30 June 2005.
Analysis: A generalized linear model was used to estimate injury incidence rates

across local government areas in New South Wales, Australia.

Results: The incidence rates for males in all age groups were higher than those for
females, with age-specific rates increasing for males and decreasing for females.
Higher incidence rates were observed for children residing in rural and remote areas,
and in the eastern suburbs of Sydney, and incidence rates were generally highest

during summer and lowest during winter.

Conclusions: A simple generalized linear model containing age/gender group,
location of residence and quarterly period as additive factors can provide a useful
method for comparing injury risk, and has practical advantages over other methods
that have been used in the literature. Such analysis provides useful information for
further studies using socioeconomic indicators and leading to a better understanding
of injury inequity, and better planning of injury prevention strategies within

communities.

Keywords: Injury, count model, spatial analysis, inequity
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Introduction

Locations with different environmental settings have different injury rates (WHO
2009). Exploring spatial patterns in injury risk may help to understand these
differences. Spatial analysis studies the distribution and risk factors of disease and
health-related events in relation to the geographical and environmental factors that
determine the distribution (Waller and Gotway 2004). The increasing amount of geo-
coded health and population data, combined with appropriate statistical methods,
computing technology, and user-friendly geographic information systems, has
facilitated investigations of spatial variation of injury risk (Braddock et al 1994,
Poulos et al 2008, Bell et al 2008).

Many spatial analysis studies use Bayesian statistical methods (Vacchino 1999,
Clements et al 2006, Zhu et al 2006, Law and Haining 2004). Lawson et al (2003)
have provided a comprehensive description of these methods. However, despite their
popularity among many statisticians, Bayesian methods are complex, comptitationally
intensive, require special-purpose software, and do not provide conventional estimates

of population parameters and their standard errors.

The aim of this paper is to illustrate the application of a conventional generalized
linear model with additive determinants and to compare the results obtained with

those based on a corresponding Bayesian model.

Methods

Data were obtained on all hospital separations of New South Wales (NSW) residents
aged below 15 years who were unintentionally injured from 1 July 2000 to 30 June
2005. These data include information on inpatient separations of NSW residents from
public and private hospitals, private day procedures and public psychiatric hospitals.
They include data on episodes of care in hospital, which end with the discharge,
transfer, or death of the patient, or when the service category for the admitted patient
changes. The hospitalisation data were coded using ICD-10-AM (National Centre for
Classification in Health 1998, National Centre for Classification in Health 2000,
2002, 2004). Injury-related hospitalised injuries were selected if they met the

following criteria:
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¢ the hospitalisation was for a patient resident in NSW;
* injury or poisoning was the principal diagnosis (ICD-10-AM range S00-T98);
¢ the external cause code was in the ICD-10-AM range V00-X59.

Hospitalizations relating to transfers and statistical discharges were excluded in order
to partly eliminate ‘multiple counts’. These exclusions refer to transfers between
hospitals or changes in the service category, such as a change from acute to
rehabilitation for a patient during one episode of care in a single facility (Population
Health Division 2004).

As geographic-based estimates may be unstable where there were small numbers of
injuries due to a small population, local government areas (LGAs) with population
less than 20,000 were combined with adjacent LGAs, and designated as super LGAs,
as shown in the Appendix. In preliminary data analysis, injury rates were computed
with respect to 17 statistical divisions of NSW created from the 11 statistical districts
used by the Australian Bureau of Statistics and dividing the Sydney Metropolitan

District into seven divisions defined by their geographic location (see Appendix).

Statistical analysis

A generalized linear model with a negative binomial distribution allowing for extra-
Poisson dispersion (Venables and Ripley 2002, Chapter 7) was used to model the
number of injury outcomes in the population. The data were classified by gender, age
group, location of residence (104 super LGAs) and quarterly time periods, thus giving
2x3x104x20 = 12,120 data cells. If A, denotes the number of injuries for age group-

gender combination i, geographic location J and quarter ¢, an additive model with this

distribution is expressed as

In(4,) = p+1n(P,) +a, + B, +5,.

In this model, Fy, is the corresponding population at risk in 100,000s and a;, B, and

J, represent the gender-age, location (super LGA) and quarter effects. To check the

fit of the model, deviance residuals were plotted against normal quantiles, and
observed counts and appropriately scaled incidence rates were plotted against

corresponding fitted values based on the model.
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Sum contrasts (Venables and Ripley 2002, Chapter 6) were used to obtain confidence
intervals for comparing the adjusted incidence rates for each factor with the overall
incidence rate. Since these confidence intervals divide naturally into three groups
according to their location entirely above the mean, around the mean, or entirely
below the mean, this trichotomy was used to create thematic maps of super LGAs

according to their estimated injury annual incidence rates.

In the corresponding Bayesian method the Besag-York-Mollie model was used
(Lawson et al 2003, pages 123-124). This model is widely used in spatial statistics,
taking into account both spatially correlated variation in rates in adjacent LGAs and
uncorrelated variability in rates across areas. It gives the posterior distribution of the
expected relative risk. The expected number of cases in each LGA was calculated by
multiplying the overall age-gender-specific rate for NSW with the age-gender-specific
population of the LGA, in order to adjust for the changes in age distribution across
LGAs. The age-gender-specific hospital separation ratios were calculated for each
LGA by comparing the number of injury cases in each LGA with the expected
number. This expected number of cases was determined by multiplying the age-
gender-specific rate for NSW by the age-gender-specific population of the LGA. For
each LGA, the mean of the posterior distribution was taken as the best estimate of the
smoothed hospital separation ratio. The 95% credible interval for the relative risk was
used to compare the risk for each LGA with the NSW state average. The models were
checked using the Gelman-Rubin diagnostic, and spatial autocorrelations in the

residuals were examined using Moran’s I statistic (Lawson et al 2003).

The R program (Venables and Smith 2004) was used for all conventional statistical
analysis, graphs and maps, and the BRugs package (Thomas 2004) was used for the

Bayesian analysis.
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Results

There were 91,573 NSW residents aged below 15 who were admitted to hospital for
an unintentional injury during the period 1 July 2000 to 30 June 2005. Of these,
63.6% were male. The rates were clearly lower for females, particularly for those
aged 10-14 years. The rates were also higher in the western regions of NSW (i.e.
Murrumbidgee and North-West districts) and lower in the inner-city and central
suburbs of metropolitan Sydney. The quarterly rates varied from a minimum of
1022.3 per 100,000 in July-September 2002 to a maximum of 1508.2 in J anuary-
March 2001 (Table 1).

Age-gender group Count  Rate Quarter Count  Rate
Male 04 16826 1518.5 Jul-Sep 2000 4402 1313.4
5-9 17470 1519.9 Oct-Dec 2000 4833 1441.9
10-14 23943 2048.7
Female 0-4 12355 1178.7 Jan-Mar 2001 4745 1415.7
5-9 11730 1074.6 Apr-Jun 2001 4704 1403.5
10-14 9249  833.1 Jul-Sep 2001 4293 1279.1
Oct-Dec 2001 4885 1455.5
Statistical division Count  Rate
01:Richmond 3,369 13654 Jan-Mar 2002 5062 1508.2
02:Mid-North 4,607 1556.1 Apr-Jun 2002 4511 1344.0
03:Hunter 7,069 1172.8 Jul-Sep 2002 3415 1022.3
04:Illawarra 5,766 1379.0 Oct-Dec 2002 4818 1442.2
05:South East 2,484 1218.1
06:Murray 1,871 1534.2 Jan-Mar 2003 4983 1491.6
07:North West 2,990 1804.4 Apr-Jun 2003 4599 1376.7
08:Northern 3,005 1531.1 Jul-Sep 2003 4306 1295.8

09:Central West 3,351 1713.1 Oct-Dec 2003 4690 1411.3
10:Murrumbidgee 3,266 1887.9
11:Sydney Outer 7,843 1499.7 Jan-Mar 2004 4917 1479.6
12:Sydney: Inner 2,283 1124.3 Apr-Jun 2004 4900 1474.5
13:Sydney North 7,803 1305.9 Jul-Sep 2004 4037 1216.0
14:Sydney West 16,126 1345.3 Oct-Dec 2004 4412 13289
15:Sydney South 11,433 1350.6
16:Sydney 4,410 967.3 Jan-Mar 2005 4555 1372.0
17:Sydney 3,897 1525.7 Apr-Jun 2005 4506 1357.2

Table 1: Hospitalisation injury incidence rates per 100,000 in NSW by age-gender
group, quarter and statistical division, 2000-01 to 2004-05
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Figure 1 shows a plot of observed cell counts versus corresponding fitted values based
on the negative binomial model, together with the plot of deviance residuals versus
normal quantiles. The negative binomial model fits the data quite well as evident by
the linear in the residuals plot. The comparison of the crude injury hospitalisation
rates (Table 1) and the adjusted injury hospitalisation rates (Figure 1) suggests little

evidence of confounding in these data.
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Figure 1: Plots of observed counts against fitted values (left) and deviance residuals

versus normal quantiles (right).

Figure 2 shows 95% confidence intervals of annual injury-related hospitalisation
incidence rate per 100,000 by super LGA (top panel), and sex and age group (bottom
left panel), and year (right bottom panel), each adjusted for the effects of the other
terms in the model. The vertical dotted lines separate the 17 divisions based on the
statistical districts with the metropolitan district divided into the seven geographical
regions. The incidence rates for males for all age groups were higher than those for
females, with rates increasing by age group for males, and decreasing by age group
for females. Also incidence rates were lower during July to September and higher

during January to March.
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Figure 2: Injury-related hospitalisation incidence rate/100,000 by super LGA (top
panel), and sex and age group (bottom left panel), and year (ri ght bottom panel), each

adjusted for the effects of the other terms in the model.

The upper panel of Figure 3 shows a thematic map of the adjusted annual injury-
related hospitalisation rates in super-LGAs after fitting the generalized liner model,
using the confidence intervals to classify them as above the mean (darkest shade),
below the mean (light shade) or not evidently different from the mean (moderate
shade). The lower panel of Figure 3 shows a similar map of the relative risk of injury
in LGAs after using the Bayesian model. In both maps, injuries are higher in the
remote and rural areas mainly in the western regions and also in some areas close to
the coast of NSW.
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Negative Binomial Model

B Above Average
B Average
O Below Average

Bayesian Method

W Above Average

Figure 3: Thematic maps of adjusted annual injury-related hospitalisation rates in
NSW with the insert of Sydney metropolitan areas. The upper panel shows rates for
super-LGAs based on confidence intervals plotted in the upper panel of Figure 2, and

the lower panel shows rates for LGAs based on an alternative Bayesian method.

Table 2 shows a cross tabulation of the LGAs based on the 95% credible intervals
given by the Bayesian method and the corresponding 95% confidence intervals given
by the negative binomial model. The two methods give similar results. However,
there were 19 LGAs with above average injury rates using the negative binomial
model, whereas using the Bayesian method only 8 LGAs were identified as having an

above average injury risk.
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Negative binomial model
Below Above
average Average average | 1otal
Below
average 41 1 1 43
Bayesian Average 4 43 19 66
model 0 —
ove
average 1 8 27 66
Total 46 52 77 175

Table 2: Comparison of results in LGAs for Bayesian and negative binomial models

Discussion

Poisson and negative binomial models have been used for analysing count data,
though less commonly for spatial modeling. This paper reports on the effectiveness of
using such a model in describing the spatial pattern of child injuries. This model is
able to analyse the effect of age-group, gender and time trend at the same time. After
adjusting for the age-group, gender, and quarterly period, geographic location was
used to model injury incidence rates and thus identify high risk geo graphical locations

as priority areas for the prevention of injuries.

The Bayesian model found fewer LGAs with risk significantly different from the
overall average than the corresponding negative binomial model. Previous studies on
spatial statistics of injuries have used this method (Bell et al 2009, Chong and
Mitchell 2008, Poulos et al 2008). However, the Bayesian method is computationally

intensive and time consuming (Carroll et al 2006).

The negative binomial model performs as well as the Bayesian model. Using a simple
count model to distinguish areas with increased risk makes complicated data simpler
to understand by stakeholders planning injury prevention program for different areas.
In addition, it enables estimated rates to be calculated without lengthy or technically

complicated procedures.

A limitation of this study is that the location of the incident is based on the location of
residence of the hospitalised individual and it is possible that the injury may not have

occurred near or in the home environment.
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This study clearly shows that majority of the metropolitan areas have lower injury
risk. However, most rural areas situated in the western part of NSW have higher
injury risk.

Thus the patterns found in this study suggest socioeconomic status may help to

explain the differences in injury risk and model will be fitted to adjust for this status

to account for spatial variation we observe in this study.
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Appendix: Geographical Divisions

LGA Div SiD| LGA Div SID| LGA Div SID| LGA Div SID
Ballina 1 1 |Tallaganda 5 32 |Narrabri 8 45 [Hawkesbury 11 62
Byron 1 2 |Yass 5 32 [Quirindi 8 45 |Wollondilly 1 63
Kyogle 1 3 |Boorowa S5 33 |Barraba 8 46 |Wyong 11 64
Richmond Valley 1 3 |Crookwell 5 33 |Bingara 8 46 |Ashfield 12 65
Lismore 1 4 [Harden 5 33 |Manilla 8 46 |Drummoyne 12 66
Tweed 1 5 |Young 5 33 |Nundle 8 46 |Leichhardt 12 67
Coffs Harbour 2 6 |Abury 6 34 |Parry 8 46 |Marrickville 12 68
Grafton 2 7 |Corowa 6 35 [Uralla 8 46 (South Sydney 122 69
Pristine Waters 2 7 |Culcairn 6 35 |Walcha 8 46 |Sydney 12 70
Greater Taree 2 8 {Holbrook 6 35 |Tamworth 8 47 Baulkham Hills 13 7
Hastings 2 9 jHume 6 35 |Gleninnes 8 47 |Hornsby 13 72
Kempsey 2 10 {Tumbarumba 6 35 |Guyra 8 47 |Ku-ring-gai 13 73
Copmanhurst 2 11 |Berrigan 6 36 |Severn 8 47 |Pittwater 13 74
Maclean 2 11 |Conargo 6 36 |Tenterfield 8 47 |Warringah 13 75
Bellingen 2 12 {Deniliquin 6 36 |Bathurst 9 48 [Blacktown 14 76
Nambucca 2 12 (Jerilderie 6 36 [Blayney 9 49 |Camden 14 77
Cessnock 3 13 |Urana 6 36 |Evans 9 49 (Campbelltown 14 78
Great Lakes 3 14 [Balranald 6 37 |Oberon 9 49 |Fairfield 14 79
Lake Macqguarie 3 15 [Murray 6 37 |Ryistone 9 49 Live}pool 14 80
Maitland 3 16 (Wakool 6 37 |Cabonne 9 50 |Penrith 14 81
Newcastle 3 17 |Wentworth 6 37 |Cowra 9 50 [Bankstown 15 82
Port Stephens 3 18 |[Windouran 6 37 |Forbes 9 51 (BotanyBay 15 83
Dungog 3 19 |BrokenHill 7 38 |Bland 9 51 [Canterbury 15 84
Gloucester 3 19 (Dubbo 7 39 |Weddin 9 51 [Hurstville 15 85
Merriwa 3 19 [Mudgee 7 40 |Greater Lithgow 9 52 [Kogarah 15 86
Murrurundi 3 19 |Wellington 7 40 |Orange 9 53 |Randwick 15 87
Scone 3 19 [Coolah 7 41 [Lachlan 9 54 [Rockdale 15 88
Muswellbrook 3 20 |Coonabarabran 7 41 |Parkes 9 54 |Sutherland 15 89
Singleton 3 20 |Gilgandra 7 41 |Griffith 10 55 |Auburn 16 90
Kiama 4 21 |Narromine 7 41 [Carrathool 10 56 [Burwood 16 9N
Shelflharbour 4 22 |Bogan 7 42 |Hay 10 56 |Concord 16 92
Shoalhaven 4 23 [Bourke 7 42 [Leeton 10 56 |Holroyd 16 93
Wingecarribee 4 24 [Brewarrina 7 42 |Murrumbidgee 10 56 |Parramatta 16 94
Wollongong 4 25 [Central Darling 7 42 |Coolamon 10 57 |Ryde 16 95
Bega Valley 5 26 |Cobar 7 42 |Junee 10 57 |[Strathfield 16 96
Bombala 5 27 [Coonamble 7 42 |Narrandera 10 57 |Hunters Hill 17 97
Snowy River 5 27 |walgett 7 42 |Temora 10 57 |Lane Cove 17 98
Yarromumla 5 27 {Warren 7 42 {Cootamundra 10 58 |Manly 17 99
Cooma-Monaro 5 28 |Unincorporated NSW 7 42 |Gundagai 10 58 |Mosman 17 100
Eurobodalla 5 29 |Armidale Dumaresq 8 43 |Tumut 10 58 |North Sydney 17 101
Goulburn 5 30 [Inverell 8 44 [Lockhart 10 59 (Waverley 17 102
Queanbeyan 5 31 |Moree Plains 8 44 [Wagga Wagga 10 59 |Willoughby 17 103
Gunning 5 32 |Yallaroi 8 44 |Blue Mountains 11 60 |Woollahra 17 104
Mulwaree 5 32 |Gunnedah 8 45 |Gosford 11 61




Chapter 4

Summary and Conclusions

This thesis has focused on using statistical methods to model incidence rates with
application to diarrhea morbidity among young children in Thai Provinces bordering
Cambodia, tuberculosis incidence rates for all persons classified by gender, location
and years in Nepal, and injuries to young persons classified by gender, age group and
local government area in NSW (Australia). This chapter summarizes the results and

general conclusions, and suggests directions for further research by statisticians.

4.1 Summary of Study Results

Child diarrhea in Thai provinces bordering Cambodia

The original objective for this study was to investigate spatio-temporal patterns of
hospital-reported diarrhea incidence for young children in districts of Thai provinces
bordering Cambodia. However, the preliminary investigation revealed extensive
under-reporting in the surveillance database. Because the data set that we used
reported for other common diseases and the reported data for the same months and
districts as for the diarrhea data were also zeroes, the evidence for under-reporting
was even stronger than the preliminary analysis indicated. It should also be noted that
infectious diseases in Thailand are substantially under-reported for two reasons. First,
many people with the disease do not seek hospital treatment, and even when they do,
hospitals do not always provide complete reports to the surveillance system lacking
the information on patient enrolment and data collection in terms of validity and

representative (Leelarasamee et al 2004). Thus the study actually had two objectives.
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First, it was necessary to develop a method for imputing the under-reported data, and
this became the primary objective of the published paper. The second objective was

to subsequently use the imputed data to investigate the diarrhea incidence patterns.

For the first objective, a log-transformed linear regression model was used to estimate
the extent of under-reporting of hospital-diagnosed cases of diarrhea. Age was not a
factor in the model, and the data were aggregated as combinations of districts and
months. Zero cases occurred in some districts where under-reporting was known or
suspected. We omitted the zero cases before fitting an additive linear model to the
log-transformed monthly incidence rates, and then deleted the cells corresponding to
residuals below a specified cut-off value (-1.4). This value was chosen to satisfy the
normality assumption in the residuals plot. The fitted model was then used io impute
the omitted occurrences. Table 4.1 shows the number of cases thus imputed, by

district and year. Districts with no under-reporting are in bold.

Table 4.1: Summary of under-reported cases categorized by district and year

Chanthaburi Province

Year

District 1999 2000 2001 2002 2003 2004 | Average |
1 Mueang Chantchaburi 13 0 0 0 0 0 2.1
2 Khlung 0 0 19 0 18 0 6.1
3 Tha Mai 0 26 0 0 0 0 44
4 Pong Nam Ron 0 0 0 0 0 43 7.1
5 Makham 6 0 13 0 0 0 33
6 Laem Sing 6 5 23 20 0 17 11.7
7 Soydow 0 0 0 24 0 12 5.9
8 Kaeng Hang Maeo 18 0 0 0 0 10 4.6
9 Na Yai Am 0 0 5 0 0 16 35
10 Nao Kichakut 6 0 9 0 0 20 5.8
Average 4.9 3.2 6.9 43 1.8 11.7 54




Table 4.1: (Continued)

Sa Kaeo Province
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Year

District 1999 2000 2001 2002 2003 2004 Average |
11 Mueang Sa Kaeo 0 0 0 0 0 0 0.0
12 Khlong Hat 0 0 0 21 0 0 35
13 Ta Phraya 0 0 0 187 156 151 82.3
14 Wang Nam Yen 13 0 0 16 0 0 48
15 Wattana Kakhon 0 0 0 0 16 0 2.7
16 Aranyaprathet 0 0 21 0 17 0 6.3
17 Khao Chakan 0 0 109 250 45 29 72.2
18 Khok Sung 0 3 0 49 3 11 10.9
19 Wang Sombun 8 15 0 28 35 22 18.1

Average 2.3 2.0 14.4 61.2 30.2 23.7 22.3

Buri Ram Province

District 1999 2000 2001 2002 2003 2004 | Average |
20 Mueang Buri Ram 0 0 462 414 47 0 153.8
21 Khu Muang 76 177 41 265 186 0 124.1
22 Krasang 0 0 0 0 39 0 6.4
23 Nang Rong 161 0 0 0 0 111 454
24 Nong Ki 0 0 29 184 0 0 355
25 Lahan Sai 0 60 28 298 0 0 64.4
26 Prakhon Chai 0 0 0 250 0 0 41.6
27 Ban Kruat 0 0 0 0 0 0 0.0
28 Phu Thai Song 0 0 10 72 0 7 14.9
29 Lam Plai Mat 0 0 0 181 0 0 30.1
30 Satuek 0 0 80 855 273 0 201.4
31 Pakham 0 0 0 171 79 103 58.9
32 Na Pho 0 101 0 0 19 103 37.2
33 Nong Hong 0 0 25 179 0 104 513
34 Phlapphlachai 0 0 0 243 0 36 46.5
35 Huai Rat 0 0 16 0 0 267 47.1
36 Non Suwan 0 0 102 0 24 151 46.1
37 Chamni 0 0 0 0 0 16 2.7
38 Ban Mai Chaiyaphot 65 100 107 99 0 0 61.9
39 Non Din Daeng 13 14 13 138 0 37 35.8
40 Ban Dan 0 27 0 64 0 0 15.1
41 Khaen Dong 0 7 22 78 0 0 17.6
42 Chalem Phra Kiet 49 0 34 273 80 77 85.3

Average 15.8 21.1 42.1 163.6 325 44.0 53.2




Table 4.1: (Continued)

Surin Province
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Year

District 1999 2000 2001 2002 2003 2004 | Average |
43 Mueang Surin 0 0 290 0 0 0 48.3
44 Chumphon Buri 20 53 42 43 0 24 30.3
45 Tha Tum 42 231 436 0 0 237 157.8
46 Chom Phra 0 0 0 0 0 0 0.0
47 Prasat 0 0 0 0 0 0 0.0
48 Kap Choeng 1 0 125 0 66 0 32.1
49 Rattanaburi 0 0 0 186 298 0 80.7
50 Sanom 0 0 50 58 41 15 27.2
51 Sikhoraphum 0 0 116 0 113 0 38.2
52 Sangkha 0 0 0 0 90 0 15.1
53 Lam Duan 52 0 0 0 0 55 17.9
54 Samrong Thap 137 97 413 0 0 0 107.9
55 Buachet 28 50 381 32 0 0 81.7
56 Phanom Dong Rak 0 5 6 6 37 27 13.5
57 Si Narong 0 48 121 0 142 41 58.8
58 Kwao Sinarin 27 0 10 0 9 27 12.3
59 Non Narai 6 7 0 14 66 20 - 18.9

Average 18.4 289 117.2 20.0 50.8 26.3 43.6

Si Sa Ket Province

District 1999 2000 2001 2002 2003 2004 | Average
60 Mueng Si Sa Ket 0 0 33 0 0 84 19.5
61 Yong Chum Noi 40 0 42 9 17 54 26.9
62 Kanthararom 0 239 657 164 84 58 200.4
63 Kantharalak 145 54 50 0 12 35 493
64 Khukhan 0 0 0 286 516 185 164.4
65 Phrai Bueng 22 0 0 75 53 53 33.8
66 Prang Ku 258 0 0 302 24 0 97.4
67 Khun Han 0 120 41 43 181 97 80.2
68 Rasi Salai 39 11 10 0 0 13 12.2
69 Uthumphon Phisai 12 16 42 164 13 61 51.4
70 Bung Bun 30 25 36 0 37 25 25.6
71 Huai Thap Than 0 83 205 0 42 38 61.3
72 Non Khun 57 145 216 149 32 38 106.2
73 Si Ratana 0 232 0 0 0 46 46.4
74 Nam Kling 174 13 70 224 196 67 124.0
75 Wang Hin 36 14 197 214 143 0 100.8
76 Phu Sing 26 160 99 40 37 0 60.4
77 Mueng Chan 76 54 51 19 78 19 49.5
78 Benchalak 16 16 52 43 120 10 42.6
79 Phayu 35 24 31 30 5 5 21.6
80 Pho Si Suwan 53 27 25 21 15 18 26.6
81 Sila Lat 17 40 72 4 44 10 313

Average 47.1 57.9 87.7 81.1 75.0 41.7 65.1
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Table 4.1: (Continued)

Ubon Ratchathani Province

Year
District 1999 2000 2001 2002 2003 2004 | Average |

82 Mueang Ubon Ratchathani 0 764 0 0 0 0 127.3
83 Si Mueng Mai 25 19 0 57 0 0 16.7
84 Khong Chiam 77 54 0 0 0 114 40.8
85 Khuang Nai 130 0 0 0 0 238 61.2
86 Khemarat 184 360 0 139 0 0 113.8
87 Det Udom 61 453 338 0 0 75 154.5
88 Na Chaluai 0 12 0 11 109 93 37.5
89 Nam Yuen 0 76 72 81 0 133 60.3
90 Buntharik 135 306 142 25 23 74 117.5
91 Trakan Phut Phon 0 0 0 0 0 632 105.3
92 Kut Khaopun 41 0 0 0 0 0 6.8
93 Mueng SamSip 0 0 14 45 19 0 12.9
94 Warin Chamrap 0 0 120 0 0 0 20.1
95 Phibu Mangsahan 15 59 0 0 24 83 303
96 Tan Sum 52 30 127 54 0 18 47.0
97 Pho Sai 14 45 0 0 0 0 9.9
98 Samrong 77 86 105 0 0 33 50.0
99 Don Mot Daeng 17 20 0 85 48 81 41.7
100 Sirindhorn 0 254 124 0 0 0 63.0
101 Thung Si Udom 0 0 0 33 18 20 11.7
102 Na Yai 6 65 17 0 11 13 18.7
103 Na Tan 21 37 14 25 30 33 26.7
104 Lao Sua Kok 0 6 0 4 22 0 52
105 Sawang Weerawong 0 30 0 29 8 169 39.2
106 Nam Khun 11 33 11 10 4 16 14.2
Average 110.2 181.1 118.7 100.0 89.2 1473 49.3

Next, we fitted a model to the under-reported rates using logistic regression. In this
model the outcome was taken as the binary variable indicating whether or not under-
reporting had occurred in cells comprising districts for each of the 24 quarterly
periods over the 6 years. The factors in this model were taken as the 106 districts, four
seasons (January-March, April-June, July-September, and October-December) and the
six years. The four districts showing no evidence of under-reporting were omitted

from the model.
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Figure 4.1 shows the results after fitting this model as 95% confidence intervals for
the percentages of under-reported data by season (left panel), year (middle panel) and
district (right panel), with the first level for each factor used as the referent group. The
dotted horizontal lines represent the overall percentage of under-reported cells
(10.8%). The proportions of under-reported cells were highest in the fourth quarter
(October-November). The percentages increased sharply after 1999, remained stable
for the next three years, and then dropped substantially again in 2003-2004. The
percentage of under-reported cases was higher than average in districts of SiSaket

province, and lower than average in districts of Chanthaburi province
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Figure 4.1: Results of fitting logistic regression model

For the second objective, after fitting the log-transformed linear regression model to
the quarterly incidence rates, we examined the spatial correlation structure of the
residual errors between pairs of districts. As expected, these correlations were quite
low and mostly not statistically significant for districts in different provinces, but
statistically significant correlations were found between districts in the same province.
We used the GEE method to adjust for these within-province correlations, assuming a

fixed correlation structure with the same correlation between all districts in the same
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province, but allowing these common correlations (which ranged from 0.03 for Surin
province to 0.12 for Si Sa Ket and Ubon Ratchathani, 0.13 for Sakaeo and 0.17 for

Chantaburi and Buri Ram) to vary with province. To reduce correlations occurring in
disease counts in successive months, we aggregated the data into quarterly incidence

rates before fitting the model to the log-transformed rates.

The results (Figure 4 of the article 1) show that the diarrhea incidence rates were
higher in the first quarter (January to March), with no trend except for slightly higher
rates in 2004. There were pronounced differences between districts, with higher rates

in Buri Ram, Surin and Si Sa Ket provinces.

Tuberculosis in Nepal

The tuberculosis data in Nepal were aggregated by year and the 75 districts were
combined to 64 super-districts to achieve a more equal balance of populations in
different regions. There was no evidence of under-reporting. Different models based
on both log-transformed linear model and Poisson and negative binomial generalized
linear models were considered, taking into account the need to provide a satisfactory

fit to the data without an excessive number of parameters in the model.

This criterion proved difficult to meet with purely additive linear models. In the end
we selected a nonlinear model with two multiplicative components similar to an
extension of the Lee-Carter model used for mortality forecasting (Lee and Carter
1992, Booth et al 2002). The log-transformed model with assumed Gaussian errors
fitted poorly compared with an equivalent negative binomial generalized linear model

for which the fit was satisfactory.
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The multiplicative components could be estimated as eigenvectors of a covariance
matrix, and when these were smoothed using linear spline basis functions and used as

fixed predictors it was possible to fit the negative binomial model straightforwardly.

The first basis function comprised a linear decreasing trend of TB incidence and the
second function comprised a linear increasing trend during the first five years
followed by a sharp drop in 2008. The decrease in trends of TB over this period may
be attributed to successful TB control, case finding and treatment success in the recent

years in Nepal.

Injuries in NSW

For this study comprising children’s injury incidence rates in local government areas
of NSW, generalized Poisson and negative binomial linear models with additive
determinants were compared with the Bayesian model that the statisticians in the
Department of Health had recommended. We first fitted a linear model to the log-
transformed incidence rates with an appropriate modification to handle the zero
counts. This method also incorporated GEEs with fixed correlation structure within
the 17 larger divisions similar to that used in the first study. This model fitted
reasonably well, but the GEE adjustment proved to be largely unnecessary because
the spatial correlations were small, probably due to the fact that the district effects
accommodated these correlations. So we then fitted a standard negative binomial
generalized linear model and found that this fitted the data even better than the log-
transformed linear model. The results obtained from this model were found to be very

similar that those given by the Bayesian model.
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4.2 Conclusions
The conclusions from our three investigations may be summarized as follows.

While much more study is needed with more extensive data sets, it would appear that
appropriate methods for analyzing incidence rates already exist, and the new methods
that continue to be developed in the statistical literature are largely unnecessary for
most studies involving incidence rate outcomes. In particular, we found no reason to
use generalized linear models other than negative binomial models, or generalized
linear models with GEEs, zero-inflated models, generalized additive models, mixed
models, Bayesian models, Markov chain Monte Carlo models, or any of the other
complex models that have been developed. These models are often preferrqd for good
reasons in the statistical literature, and have been found useful for many applications,
but they have costs including computational complexity, lack of available software,
and difficulty in explaining them to scientists with limited understanding of statistical

theory.

Despite arguments that Gaussian models for transformed outcomes are inappropriate
for analyzing incidence rates (see, for example Crawley 2005, page 125 ), we found
that this model, with appropriate modification for handling zeros, fits incidence rates
well in a wide variety of situations. Given that the Gaussian model is well understood
and has been generalized to handle more complex situations including correlated
errors with respect to both space and time, errors with non-stationary variances,
weighted errors, multivariate outcomes, as well as non-linear models, we argue that it

should not be too readily abandoned.
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Therefore we suggest that future studies with incidence rate outcomes should
seriously consider using an appropriate model with Gaussian errors as a basis for data

analysis.

Transformed linear models could possibly be improved further by incorporating
weights into the linear regression model, with the weights increasing with the number
of disease counts in a cell (see, for example, Faraway 2006). Our reason for
suggesting this is that un-weighted linear regression just deals with the incidence rates
and does not take into account the number of cases, but it could be argued that the
number of cases (not just the incidence rate) should determine the standard error of an

estimated incidence rate.
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