

Chemical Constituents from the Stem of *Punica granatum* and the Root of *Michelia alba*

Jintana Pongpuntaruk

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Organic Chemistry Prince of Songkla University 2010

Copyright of Prince of Songkla University

Thesis Title	Chemical Constituents from the Stem of Punica granatum and
	the Root of Michelia alba
Author	Miss Jintana Pongpuntaruk
Major Program	Organic Chemistry

Major Advisor:	Examing Committee:
(Assoc. Prof. Chanita Ponglimanont)	Chairperson (Assoc. Prof. Dr. Kan Chantrapromma)
Co-advisor:	(Assoc. Prof. Chanita Ponglimanont)
(Assoc. Prof. Dr. Chatchanok Karalai)	(Assoc. Prof. Dr. Chatchanok Karalai)

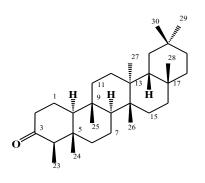
(Asst. Prof. Dr. Kanda Panthong)

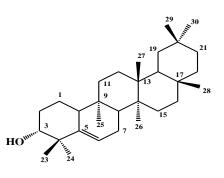
The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Master of Science Degree in Organic Chemistry

> (Assoc. Prof. Dr. Krerkchai Thongnoo) Dean of Graduate School

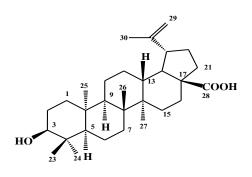
ชื่อวิทยานิพนธ์ ผู้เขียน สาขาวิชา ปีการศึกษา องก์ประกอบทางเกมีจากลำต้นทับทิมและรากจำปี นางสาวจินตนา พงศ์ภัณฑารักษ์ เกมีอินทรีย์ 2552

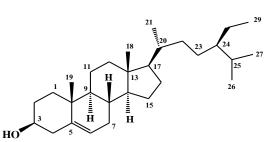
บทคัดย่อ


ตอนที่ 1 องค์ประกอบทางเคมีจากลำต้นทับทิม

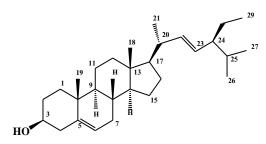

การศึกษาองค์ประกอบทางเคมีของส่วนสกัดหยาบเมทิลีนคลอไรด์ และ อะซีโตน จากลำด้นทับทิม สามารถแยกสารที่มีรายงานแล้วจำนวน 13 สาร ซึ่งเป็นสารประเภท triterpene 3 สาร คือ friedelin (CMD1), 5(6)-gluten-3 -ol (CMD2) และ betulinic acid (CMD3), สารประเภท steroids 7 สาร คือ สารผสมของ -sitosterol (CMD4) และ stigmasterol (CMD5), stigmast-4-en-3one (CMD6), 6 -hydroxystigmast-4-en-3-one (CMD7), ergosterol peroxide (CMD8), 5 cholest-7-en-3-one (CMD9) และ lophenol (CMD10), 5-methylmellein (CMD11), 3,4,3'-tri-Omethylellagic acid (CMD12), 5,7,3',4',5'-penta-O-methylgallocatechin (CMD13)

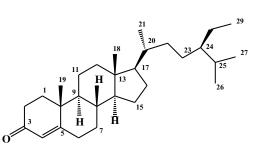
้โครงสร้างของสารประกอบเหล่านี้วิเคราะห์โดยใช้ข้อมูลทางสเปกโทรสโกปี

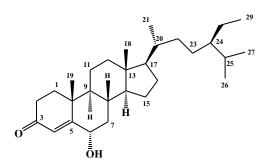

ตอนที่ 2 องค์ประกอบทางเคมีจากรากจำปี


การศึกษาองค์ประกอบทางเคมีของส่วนสกัด หยาบเมทิลีนคลอไรด์ จากรากจำปี สามารถแยกสารได้จำนวน 7 สาร ซึ่งเป็นสารประเภท sesquiterpene 6 สาร คือ costunolide (**JPD1**), parthenolide (**JPD2**), 9β-hydroxy-11βH-dihydroparthenolide (**JPD3**), reynosin (**JPD4**), T-cadinol (**JPD5**), สารใหม่ 1 สาร คือ -(3',4',5'-trihydroxy-3'-methylbutanoyloxy)-11βHdihydroparthenolide (**JPD6**) และสารประเภท lignan 1 สาร คือ lariciresinol (**JPD7**) โครงสร้างของสารประกอบเหล่านี้วิเคราะห์โดยใช้ข้อมูลทางสเปกโทรสโกปี

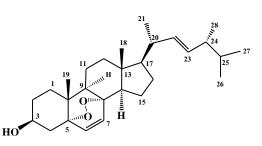
CMD1

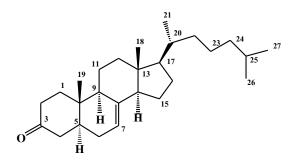


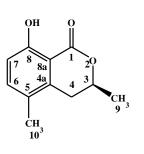


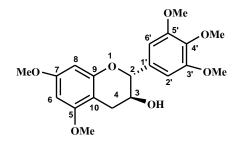

CMD2

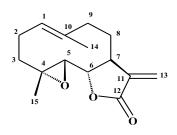
CMD3

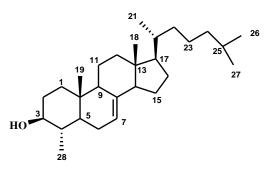


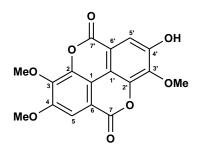

CMD5

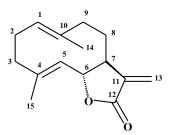

CMD6

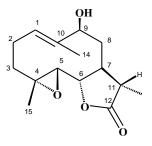


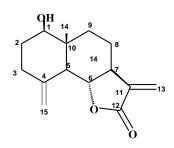


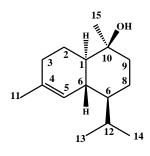

CMD11


CMD13

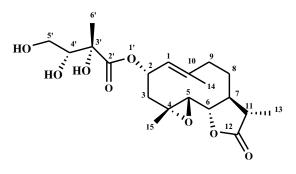


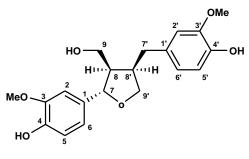



CMD12



JPD1


JPD3

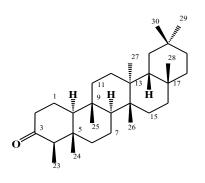


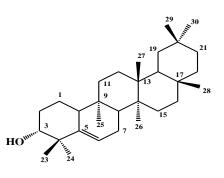
JPD4

JPD6

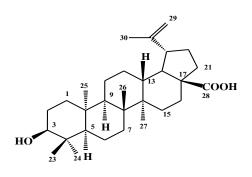
JPD7

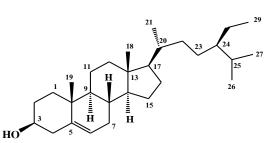
Thesis Title	Chemical Constituents from the Stem of Punica granatum and the Root of Michelia alba
Author	Miss. Jintana Pongpuntaruk
Major Program	Organic Chemistry
Academic Year	2009


ABSTRACT

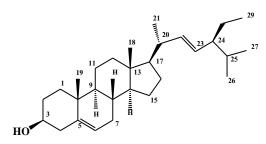

Part I Chemical Constituents from the Stem of Punica granatum

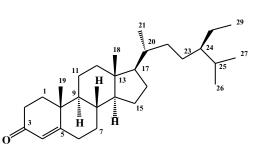
Investigation of the crude methylene chloride and acetone extracts of the stem of Punica granatum, yielded 13 known compounds; three triterpenes: friedelin (CMD1), 5(6)-gluten- ol (CMD2) and betulinic acid (CMD3), seven steroids: a mixture of β -sitosterol (CMD4) and stigmasterol (CMD5), stigmast-4-en-3-one (CMD6 -hydroxystigmast-4-en-3-one (CMD7), ergosterol peroxide (CMD8), -cholest-7-en-3-one (CMD9) and lophenol (CMD10), 5-methylmellein (CMD11), 3,4,3'-tri-O-methylellagic acid (CMD12) and 5,7,3',4',5'-penta-O-methylgallocatechin (CMD13). Their structures were elucidated by spectroscopic methods.

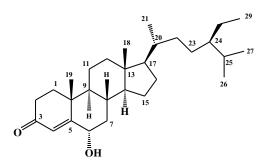

Part II Chemical Constituents from the root of Michelia alba


Investigation of the crude methylene chloride extract of the root of Michelia alba, yielded 7 compounds; six sesquiterpenes: costunolide (JPD1), parthenolide (JPD2), 9β -hydroxy-11 β H-dihydroparthenolide (JPD3), reynosin (JPD4), T-cadinol (JPD5), a new compound $-(3',4',5'-trihydroxy-3'-methylbutanoyloxy)-11\beta$ H-dihydroparthenolide (JPD6) and one lignan: lariciresinol (JPD7). Their structures were elucidated by spectroscopic methods.

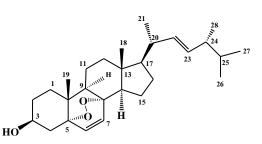
CMD1

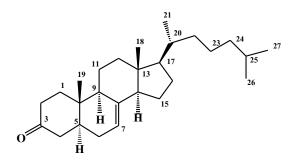


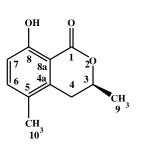



CMD2

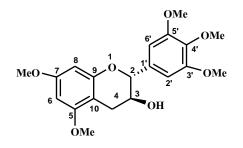
CMD3

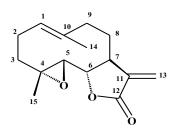


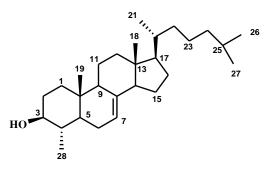

CMD5

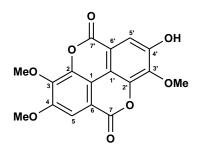

CMD6

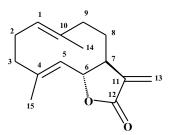
CMD7

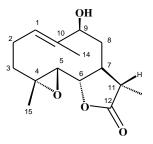

CMD8

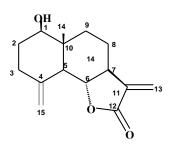


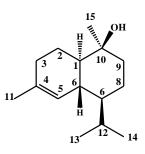

CMD11


CMD13

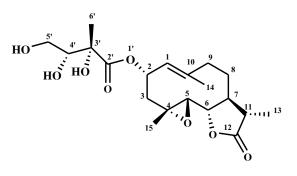

JPD2

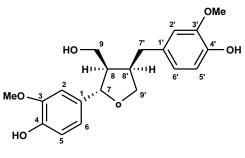



CMD12



JPD1


JPD3



JPD4

JPD6

JPD7

ACKNOWLEDGEMENT

I wish to express my sincere thanks to Associate Professor Chanita Ponglimanont, my major advisor for her constant guidance, useful suggestions, appreciation, sincere advice and kindness. This was a great motivator for me and will remain to be deep-rooted in my heart.

My sincere thanks are expressed to Associate Professor Dr. Chatchanok Karalai my co-advisor for his valuable advice. I would like to offer thanks to Assoc. Prof. Dr. Kitichate Sridith for plant identification.

I would like to express my appreciation to the staffs of the Department of Chemistry, Faculty of Science, Prince of Songkla University for making this thesis possible. Dr. Yaowapa Sukpondma is highly acknowledged for recording NMR spectral data.

This research was supported by a scholarship from the Center for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Educaion. I would like to acknowledge the Faculty of Science Research Fund and the Graduate School, Prince of Songkla University for partial financial support.

Jintana Pongpuntaruk

THE RELEVANCE OF THE RESEARCH WORK TO THAILAND

The purpose of this research is to investigate the chemical constituents from the stem of Punica granatum and the root of Michelia alba. They are a part of the basic research on the Thai medicinal plants. Thirteen compounds and seven compounds have been isolated from the stem of Punica granatum and the root of Michelia alba, respectively.

CONTENTS

	Page
CONTENTS	xiii
LIST OF TABLES	xvi
LIST OF ILLUSTRATIONS	xviii
LIST OF ABBREVIATIONS AND SYMBOLS	xxi
PART 1 Chemical constituents from the stem of Punica granatum	n
CHAPTER 1.1 INTRODUCTION	1
1.1.1 Introduction	1
1.1.2 Review of Literatures	3
1.1.3 Objective	14
CHAPTER 1.2 EXPERIMENTAL	15
1.2.1 Instruments and Chemicals	15
1.2.2 Plant Material	16
1.2.3 Extraction and Isolation	16
1.2.4 Isolation and Chemical Investigation	17
1.2.4.1 Investigation of the crude methylene chloride extract	17
from the stem of P. granatum	
1.2.4.2 Investigation of the crude acetone	21
extract from the stem of P. granatum	
CHAPTER 1.3 RESULTS AND DISCUSSION	23
1.3.1 Structure elucidation of compounds from the stem of P. granatum	23
1.3.1.1 Compound CMD1	24
1.3.1.2 Compound CMD2	27
1.3.1.3 Compound CMD3	30

CONTENTS (Continued)

	Page
1.3.1.4 Compounds CMD4 and CMD5	33
1.3.1.5 Compound CMD6	34
1.3.1.6 Compound CMD7	37
1.3.1.7 Compound CMD8	40
1.3.1.8 Compound CMD9	43
1.3.1.9 Compound CMD10	46
1.3.1.10 Compound CMD11	49
1.3.1.11 Compound CMD12	51
1.3.1.13 Compound CMD13	53
PART II Chemical constituents from the root of Michelia alba	
CHAPTER 2.1 INTRODUCTION	55
2.1.1 Introduction	55
2.1.2 Review of Literatures	57
2.1.3 Objective	78
CHAPTER 2.2 EXPERIMENTAL	79
2.2.1 Instruments and Chemicals	79
2.2.2 Plant Material	80
2.2.3 Extraction and Isolation	80
2.2.4 Isolation and Chemical Investigation	81
2.2.4.1 Investigation of the crude methylene chloride extract	81
from the root of M. alba	

CONTENTS (Continued)

	Page
CHAPTER 2.3 RESULTS AND DISCUSSION	84
2.3.1 Structure elucidation of compounds from the root of M. alba	84
2.3.1.1 Compound JPD1	85
2.3.1.2 Compound JPD2	88
2.3.1.3 Compound JPD3	91
2.3.1.4 Compound JPD4	94
2.3.1.5 Compound JPD5	96
2.3.1.6 Compound JPD6	98
2.3.1.7 Compound JPD7	101
CHAPTER 4 CONCLUSION	104
REFERENCES	105
APPENDIX	108
VITAE	138

LIST OF TABLES

Tables	3	Page
1	Compounds from plants of Punica genus	4
2	¹ H, ¹³ C NMR and HMBC spectral data of compounds CMD1 (CDCl ₃)	25
	and friedelin (R , CDCl ₃)	
3	¹ H, ¹³ C NMR and HMBC spectral data of compounds CMD2 (CDCl ₃)	28
	and 5(6)-gluten- $-ol(\mathbf{R}, CDCl_3)$	
4	¹ H, ¹³ C NMR and HMBC spectral data of compounds CMD3 (CDCl ₃)	31
	and betulinic acid (\mathbf{R} , CDCl ₃)	
5	¹ H, ¹³ C NMR and HMBC spectral data of compounds CMD6 (CDCl ₃)	35
	and stigmast-4-en-3-one (R , CDCl ₃)	
6	¹ H, ¹³ C NMR and HMBC spectral data of compounds CMD7 (CDCl ₃)	38
	an -hydroxystigmast-4-en-3-one (R , CDCl ₃)	
7	¹ H, ¹³ C NMR and HMBC spectral data of compounds CMD8 (CDCl ₃)	41
	and ergosterol peroxide. (\mathbf{R} , CDCl ₃)	
8	¹ H, ¹³ C NMR and HMBC spectral data of compounds CMD9 (CDCl ₃)	43
	an -cholest-7-en-3-one (R , CDCl ₃)	
9	¹ H, ¹³ C NMR and HMBC spectral data of compounds CMD10 (CDCl ₃)	47
	and lophenol (\mathbf{R} , CDCl ₃)	
10	¹ H, ¹³ C NMR and HMBC spectral data of compounds CMD11 (CDCl ₃)	50
	and 5-methylmellein (\mathbf{R} , CDCl ₃)	
11	¹ H, ¹³ C NMR and HMBC spectral data of compounds CMD12	52
	(CDCl ₃ +DMSO-d ₆) and 3,4,3'-tri-O-methylellagic acid (\mathbf{R} , CDCl ₃)	
12	¹ H, ¹³ C NMR and HMBC spectral data of compound CMD13	54
	and comparison with ¹ H NMR of gallocatechin	
13	Compounds from plant of Michelia genus	58
14	¹ H, ¹³ C NMR and HMBC spectral data of compounds JPD1 (CDCl ₃)	86
	and costunolide (\mathbf{R} , CDCl ₃)	

LIST OF TABLES (Continued)

S	Page
¹ H, ¹³ C NMR and HMBC spectral data of compounds JPD2 (CDCl ₃)	89
and parthenolide (\mathbf{R} , CDCl ₃)	
¹ H, ¹³ C NMR and HMBC spectral data of compounds JPD3 (CDCl ₃)	92
and 9 β -hydroxy-11 β H-dihydroparthenolide (R , CDCl ₃)	
¹ H, ¹³ C NMR and HMBC spectral data of compounds JPD4 (CDCl ₃)	95
and reynosin (\mathbf{R} , CDCl ₃)	
¹ H, ¹³ C NMR and HMBC spectral data of compounds JPD5 (CDCl ₃)	97
and T-cadinol (\mathbf{R} , CDCl ₃)	
¹ H, ¹³ C NMR and HMBC and COSY spectral data of compounds JPD6	99
(CDCl ₃) and comparison of 13 C NMR with JPD3	
¹ H, ¹³ C NMR, HMBC spectral data of compounds JPD7 (CDCl ₃)	102
and lariciresinol (R , MeOD)	
	 ¹H, ¹³C NMR and HMBC spectral data of compounds JPD2 (CDCl₃) and parthenolide (R, CDCl₃) ¹H, ¹³C NMR and HMBC spectral data of compounds JPD3 (CDCl₃) and 9β-hydroxy-11βH-dihydroparthenolide (R, CDCl₃) ¹H, ¹³C NMR and HMBC spectral data of compounds JPD4 (CDCl₃) and reynosin (R, CDCl₃) ¹H, ¹³C NMR and HMBC spectral data of compounds JPD5 (CDCl₃) and T-cadinol (R, CDCl₃) ¹H, ¹³C NMR and HMBC and COSY spectral data of compounds JPD6 (CDCl₃) and comparison of ¹³C NMR with JPD3 ¹H, ¹³C NMR, HMBC spectral data of compounds JPD7 (CDCl₃)

LIST OF ILLUSTATIONS

Schemes	Page
1 Extraction of the stem of P. granatum	16
2 Isolation of compounds CMD1-CMD6, CMD9-CMD13	17
from the methylene chloride extract	
3 Isolation of compounds CMD7, CMD8 from the acetone extract	21
4 Extraction of the root of M. alba	80
5 Isolation of compounds JPD1-JPD7	81
from the methylene chloride extract	

Figures	Page
1 Different parts of Punica granatum LINN	2
2 Selected HMBC correlations of CMD1	25
3 Selected HMBC correlations of CMD2	28
4 Selected HMBC correlations of CMD3	31
5 Selected HMBC correlations of CMD6	35
6 Selected HMBC correlations of CMD7	38
7 Selected HMBC correlations of CMD8	41
8 Selected HMBC correlations of CMD9	44
9 Selected HMBC correlations of CMD10	47
10 Selected HMBC correlations of CMD11	50
11 Selected HMBC correlations of CMD12	52
12 Selected HMBC correlations of CMD13	54
13 Different parts of Michelia alba DC	56
14 Selected HMBC correlations of JPD1	86
15 Selected HMBC correlations of JPD2	89
16 Selected HMBC correlations of JPD3	92
17 Selected HMBC correlations of JPD 4	95
18 Selected HMBC correlations of JPD 5	97

LIST OF ILLUSTATIONS (Continued)

	Page
19 Selected HMBC correlations of JPD 6	99
20 Selected HMBC correlations of JPD 7	102
21 IR (neat) spectrum of compound CMD1	109
22 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CMD1	109
23 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CMD1	110
24 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CMD2	110
25 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CMD2	111
26 IR (neat) spectrum of compound CMD3	111
27 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CMD3	112
28 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CMD3	112
29 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of	113
compounds CMD4+CMD5	
30 UV (MeOH) spectrum of compound CMD6	113
31 IR (neat) spectrum of compound CMD6	114
32 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CMD6	114
33 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CMD6	115
34 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CMD7	115
35 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CMD7	116
36 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CMD8	116
37 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CMD8	117
38 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CMD9	117
39 13 C NMR (75 MHz) (CDCl ₃) spectrum of compound CMD9	118
40 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CMD10	118
41 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CMD10	119
42 IR (neat) spectrum of compound CMD11	119
43 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CMD11	120
44 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CMD11	120

LIST OF ILLUSTATIONS (Continued)

	Page
45 IR (neat)) spectrum of compound CMD12	121
46 ¹ H NMR (300 MHz) (DMSO- d_6 +CDCl ₃) spectrum of	121
compound CMD12	
47 ¹³ C NMR (75 MHz) (DMSO-d ₆ +CDCl ₃) spectrum of	122
compound CMD12	
48 IR (neat) spectrum of compound CMD13	122
49 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CMD13	123
50 13 C NMR (75 MHz) (CDCl ₃) spectrum of compound CMD13	123
51 IR (neat)) spectrum of compound JPD1	124
52 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound JPD1	124
53 13 C NMR (75 MHz) (CDCl ₃) spectrum of compound JPD1	125
54 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound JPD2	125
55 13 C NMR (75 MHz) (CDCl ₃) spectrum of compound JPD2	126
56 IR (neat)) spectrum of compound JPD3	126
57 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound JPD3	127
58 13 C NMR (75 MHz) (CDCl ₃) spectrum of compound JPD3	127
59 IR (neat)) spectrum of compound JPD4	128
60 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound JPD4	128
61 13 C NMR (75 MHz) (CDCl ₃) spectrum of compound JPD4	129
62 IR (neat)) spectrum of compound JPD5	129
63 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound JPD5	130
64 13 C NMR (75 MHz) (CDCl ₃) spectrum of compound JPD5	130
65 IR (neat)) spectrum of compound JPD6	131
66 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound JPD6	131
67 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound JPD6	132
68 C C ₃) spectrum of compound JPD6	132
69 C C ₃) spectrum of compound JPD6	133

LIST OF ILLUSTATIONS (Continued)

	Page
70 2D COSY (CDCl ₃) spectrum of compound JPD6	133
71 2D HMQC (CDCl ₃) spectrum of compound JPD6	134
72 2D HMBC (CDCl ₃) spectrum of compound JPD6	134
73 2D NOESY (CDCl ₃) spectrum of compound JPD6	135
74 EIMS spectrum of compound JPD6	135
75 HRFAB spectrum of compound JPD6	136
76 IR (neat)) spectrum of compound JPD7	136
77 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound JPD7	137
78 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound JPD7	137

LIST OF ABBREVIATIONS AND SYMBOLS

S	=	singlet
d	=	doublet
t	=	triplet
q	=	quartet
m	=	multiplet
dd	=	doublet of doublet
ddd	=	doublet of doublet of doublet
dt	=	doublet of triplet
ddq	=	doublet of doublet of quartet
br s	=	broad singlet
br d	=	broad doublet
g	=	gram
nm	=	nanometer
mp	=	melting point
cm ⁻¹	=	reciprocal centimeter (wave number)
	=	chemical shift relative to TMS
J	=	coupling constant
D	=	specific rotation
max	=	maximum wavelength

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

	=	absorption frequencies
	=	molar extinction coefficient
m/z	=	a value of mass divided by charge
°C	=	degree celcius
MHz	=	Megahertz
ppm	=	part per million
с	=	concentration
IR	=	Infrared
UV	=	Ultraviolet
MS	=	Mass Spectroscopy
EIMS	=	Electron Impact Mass Spectroscopy
FAB	=	Fast atom bombardment mass spectrometry
NMR	=	Nuclear Magnetic Resonance
1D NMR	=	One Dimensional Nuclear Magnetic Resonance
2D NMR	=	Two Dimensional Nuclear Magnetic Resonance
COSY	=	Correlation Spectroscopy
DEPT	=	Distortionless Enhancement by Polarization Transfer

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

HMBC	=	Heteronuclear Multiple Bond Correlation
HMQC	=	Heteronuclear Multiple Quantum Coherence
NOESY	=	Nuclear Overhauser Effect Spectrosopy
CC	=	Column Chromatography
QCC	=	Quick Column Chromatography
PLC	=	Preparative Thin Layer Chromatography
TMS	=	tetramethylsilane
CDCl ₃	=	deuterochloroform
CD ₃ OD	=	deuteromethanol
DMSO-d ₆	=	deuterodimethylsulfoxide

CHAPTER 1.1 Introduction

1.1.1 Introduction

Punica granatum LINN. (pomegranate in English), is widely distributed in Southeast Asia. It is an ancient and highly distinctive fruit, the predominant member of two species comprising the Punicaceae family, *granatum* and *protopunica*. The pomegranate fruit as a medicinal plant (Al-Maiman & Ahnad, 2002) is now supported by data obtained from modern science showing that the fruit contains anti-carcinogenic (e.g., Adhami & Mukhtar, 2006; Bell & Hawthorne, 2008), anti-microbial (Reddy, Gupta, Jacob, Khan, & Ferreira, 2007) and anti-viral compounds (Kotwal, 2007; (Shwartza *et al.*, 2009). The methanolic extract from the flowers of *P. granatum* was found to inhibit a tumor necrosis factor-a (TNF-a)-induced cytotoxicity in L929 cells. (Xie *et al.*, 2008).

P. granatum is a small–sized, shrubby tree, 12-16 feet tall, has spiny branches. The leaves are glossy and lanceshaped, and the bark of the tree turns gray as the tree ages. The flowers are large, red, white, or variegated and have a tubular calyx that eventually becomes the fruit. The ripe pomegranate fruit can be up to five inches wide with a deep red, leathery skin, is grenade-shaped, and crowned by the pointed calyx. The fruit contains many seeds separated by white, membranous pericarp, and each is surrounded by small amounts of tart red juice.

In Thailand, *P. granatum* has been found in every part of the country. It has many local Thai names : Thapthim (ทับทิม) Central; Phila (พิลา) Nong Khai; Phila Khao (พิลาขาว), Ma kong kaeo (มะก่องแก้ว) Nan; Ma Ko (มะเก้าะ) Northern; Makchange (หมากจัง) Mee Hong Son (Smitinand, 2001).

a. trees

b. stem

c. leaves

d. fruits

e. seeds

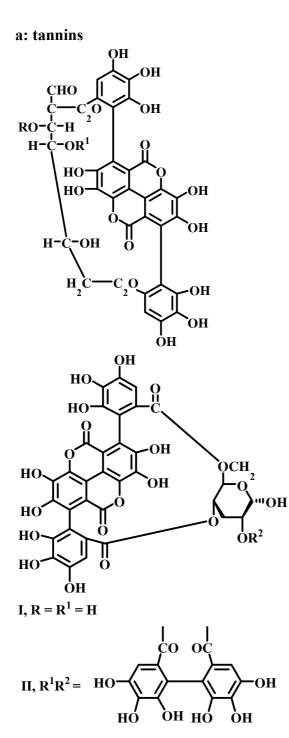
f. flowers Figure 1 Different parts of *Punica granatum* LINN.

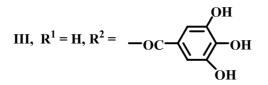
1.1.2 Review of Literatures

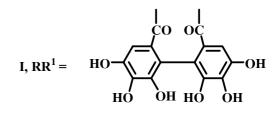
Chemical constituents isolated from *P. granatum* were summarized in **Table 1**. Information obtained from SciFinder Scholar copyright in 2009 will be presented and classified into groups: alkaloids, steroids, flavonoids, tannins, catechins, ellagic, coumarins, gallic acid, prenylpropanoid and triterpenoids.

b: flavonoids
d: triterpenes
f: ellagic acid
h: gallic acid

•	•
1:	coumarins

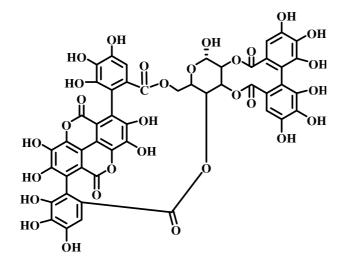

j: phenylpropanoid


Scientific name	Part	Compounds	Bibliography
P. granatum	Fruit	punicalagin, 1a	Mayer <i>et al.</i> ,
		punicalin, 2a	1977
	Stem Bark	4,6-(<i>S</i> , <i>S</i>)-gallagyl-D-glucose, 3a	Tanaka <i>et al.</i> ,
		2,3-(S)-hexahydroxydiphenoyl-4,6-	1986
		(S,S)-gallagyl-D-glucose, 4a	
		2-O-galloyl-4,6-(<i>S</i> , <i>S</i>)-gallagyl-D-	
		glucose, 5a	
	Seeds	estrone, 3c	Moneam et al.,
		coumestrol, 1i	1988
		genistein, 1b	
		daidzein, 2b	
		genistin, 3b	
		daidzin, 4b	
	Root Bark	hygrine, 1e	Neuhofer et al.,
		sedridine, 2e	1993
		pseudopelletierine, 3e	
		pelletierine, 4e	
		norpseudopelletierine, 5e	
		N-methylpelletierine, 6e	
		norhygrine, 7e	

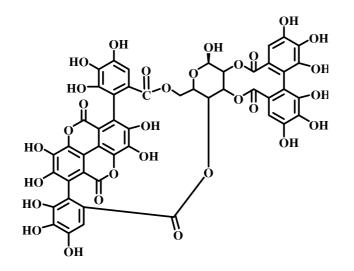

Scientific	Part	Compounds	Bibliography
name	1 art	Compounds	Dibilography
	Head	3'-O-methyl-3,4-	Tommy et al.,
	wood	methylenedioxyellagic acid, 1f	2001
		methyl gallate, 1h	
		gallic acid, 2h	
		ellagic acid, 2f	
		3,3'-di-O-methyl-ellagic acid, 2f	
		corilagin, 8a	
	Fruit	prodelphinidin B, 1g	Plumb <i>et al.</i> ,
		prodelphinidin C , 2g	2002
		catechin-(4-8)-gallocatechin, 3 g	
		gallocatechin, 4g	
	Fruit	α-punicalagin, 6a	Machado et al.,
		β-punicalagin , 7a	2002
	Seed	coniferyl 9-O-[β-D-	Wang et al., 2004
		apiofuranosyl(1β6)]-O-β-D-	
		glucopyranoside, 1j	
		sinapyl 9-O-[β-D-	
		apiofuranosyl(1β6)]-O-β-D-	
		glucopyranoside, 2j	
		daucosterol, 1c	
		3,3'-di-O-Methylellagic acid, 3f	
		3,3',4'-tri-O-Methylellagic acid, 4f	
	Flower	pomegranatate, 5f	Wang et al., 2006
		daucosterol, 1c	
		ellagic acid, 2f	
		maslinic acid, 1d	
		3,3',4'-tri-O-Methylellagic acid, 4f	
		ethyl brevifolincarboxylate, 2i	
Scientific	Part	Compounds	Bibliography

name			
	Flower	punicanolic acid, 2d	Xie <i>et al.</i> ,2008
		ursolic acid, 3d	
		β -sitosterol, 2 c	
		asiatic acid, 2b	
		luteolin, 4d	
		tricetin , 6b	
		maslinic acid, 1d	
		1,2,6-tri-O-Galloyl -β-D-	
		glucopyranoside, 9a	
		1,2-di-O-Galloyl-4,6-O-(<i>S</i>)-	
		hexahydroxydiphenoyl -β-D-	
		glucopyranoside, 10a	

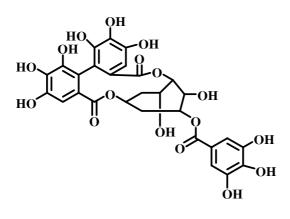
structures

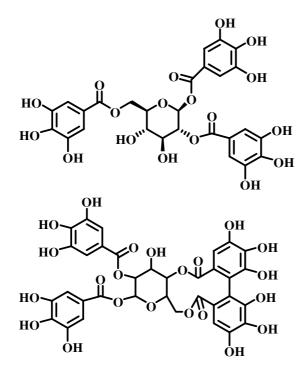


II, $R = R^1 = H$

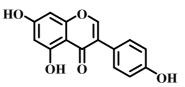

1a: punicalagin (I)2a: punicalin (II)

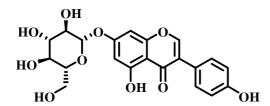
3a: 4,6-(*S*,*S*)-gallagyl-D-glucose


- **4a**: 2,3-(*S*)-hexahydroxydiphenoyl-4,6(*S*,*S*)gallagyl-D-glucose
- **5a**: 2-O-galloyl-4,6-(*S*,*S*)-gallagyl-glucose

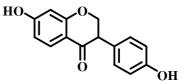

6a. α -punicalagin

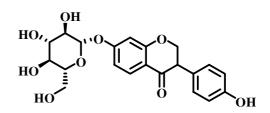
7a: β-punicalagin

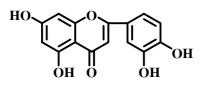

8a: corilagin

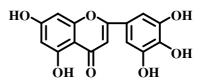

9a: 1,2,6-tri-O-galloyl -β-D-glucopyranoside

10a: 1,2-di-O-galloyl-4,6-O-(*S*)hexahydroxydiphenoyl glucopyranoside

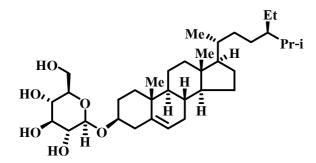

b: flavonoids


1b: genistein


3b: genistin

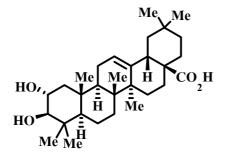


4b: daidzin

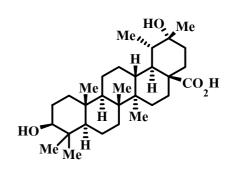


5b: asiatic acid

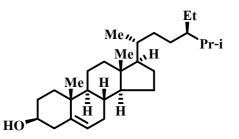
c: steroids

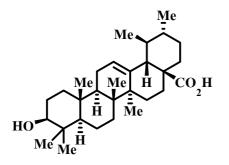


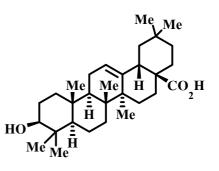
1c: daucosterol


HO HO

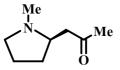
3c: estrone


d: triterpenes

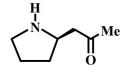

1d: maslinic acid


2d: punicanolic acid

2c: β -sitosterol

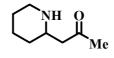


3d: ursolic acid



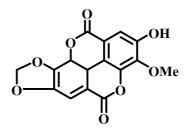
4d: luteolin

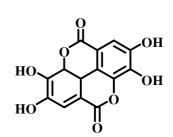
e: alkaloids



1e: hygrine

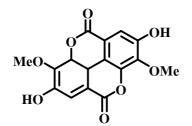
2e: sedridin

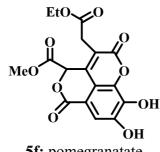

3e: pseudopelletierine


4e: pelletierine Me N O Me

7e: norhygrine

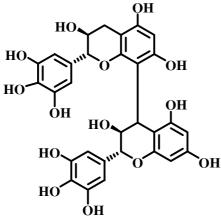
f: ellagic acid


1f: 3'-O-methyl-3,4methylenedioxyellagic acid

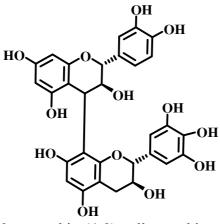

2f: ellagic acid

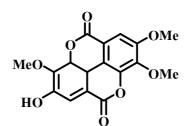
5e: norpseudopelletierine

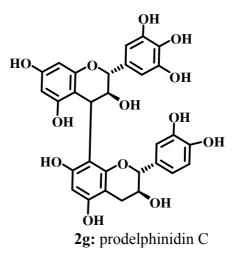
6e: *N*-methylpelletierine

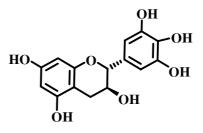


3f: 3,3'-di-O-methyl-ellagic acid

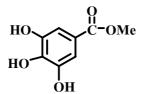



g: catechins

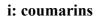

1g: prodelphinidin B

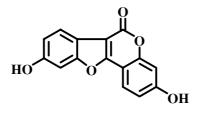


3g: catechin-(4-8)-gallocatechin

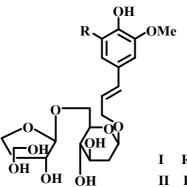


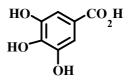
4f: 3,3',4'-tri-O-methylellagic acid

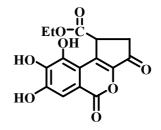




4g: gallocatechin


1h: methyl gallate




1i: coumestrol

j: phenylpropanoids

2h: gallic acid

2i: ethyl brevifolincarboxylate

1j: coniferyl 9-O-[β-Dapiofuranosyl(1β6)]-O-β-Dglucopyranoside

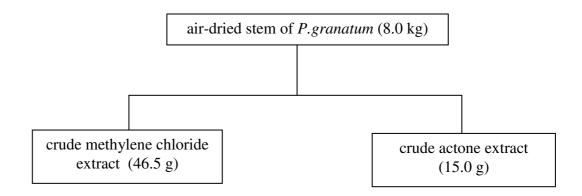
2j: sinapyl 9-O-[β-Dapiofuranosyl(1β6)]-O-β-Dglucopyranoside

1.1.3 Objective

This part of research work involved isolation, purification and structure elucidation of chemical constituents from the stem of *Punica granatum*.

CHAPTER 1.2 EXPERIMENTAL

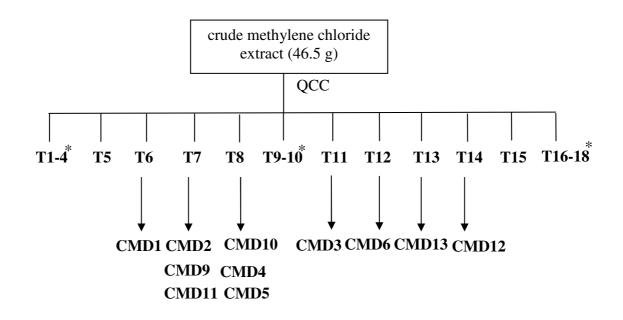
1.2.1 Instruments and Chemicals


Melting points were determined on the Fisher-John melting point apparatus. The UV spectra were measured with a SPECORD S 100 (Analytikjena) and principle bands (λ_{max}) were recorded as wavelengths (nm) and log ε in MeOH solution. The optical rotation [α]_D was measured in chloroform and methanol solution with Sodium D line (590 nm) on a JASCO P-1020 digital polarimeter. The IR spectra were measured with a Perkin-Elmer FTS FT-IR spectrophotometer. NMR spectra were recorded using 300 MHz Bruker FTNMR Ultra ShieldTM spectrometers in acetone- d_6 and CDCl₃ with TMS as the internal standard. Chemical shifts are reported in δ (ppm) and coupling constants (*J*) are expressed in hertz. EI and HREI mass spectra were measured on a Kratos MS 25 RFA spectrometer. Solvents for extraction and chromatography were distilled at their boiling point ranges prior to use except chloroform was analytical grade reagent. Quick column chromatography (QCC) and column chromatography (CC) were carried out on silica gel 60 H (Merck) and silica gel 100 (Merck), respectively.

1.2.2 Plant Material

The stem of *P. granatum* was collected from Chumphon province in the southern part of Thailand, in May 2008. Identification was made by Assoc. Prof. Dr. Kitichate Sridith and a specimen (No.0013591) deposited at PSU Herbarium, Department of Biology, Faculty of Science, Prince of Songkla University.

1.2.3 Extraction and Isolation


The chopped air-dried stem of *P. granatum* (8.0 kg) was successively extracted with methylene chloride and acetone (one week for each solvent) at room temperature. The solvent was evaporated under reduced pressure to give concentrated solution of methylene chloride extract as yellow viscous residue (46.5 g) and brownish acetone extract (15.0 g), respectively. The process of extraction was shown in **Scheme 1**

Scheme 1 Extraction of the stem of *P.granatum*

1.2.4 Isolation and Chemical Investigation

1.2.4.1 Investigation of the crude methylene chloride extract from the stem of *P. granatum*.

*No further investigation

Scheme 2 Isolation of compounds CMD1- CMD6, CMD9- CMD13 from the methylene chloride extract

The crude methylene chloride extract as yellow viscous residue (46.5 g) was subjected to quick column chromatography over silica gel using solvent of increasing polarity from hexane through acetone. The eluates were collected and combined based on TLC characteristics to give eighteen fractions (T1-T18).

Fraction T6 (4.5 g) was filtered and washed with hexane to give **CMD1**: friedelin (1.2 g) as white crystal and the mother liquor as yellow viscous oil after evaporation of the solvent.

Fraction T7 (3.5 g) was purified by QCC with a gradient of acetonehexane to afford twenty fractions (T7.1-T7.20).

Subfraction T7.15 (135.5 mg) was recrystallized from the methylene chloride to give CMD9: 5α -cholest-7-en-3-one (58.0 mg).

Subfraction T7.17 (56.7 mg) was purified by CC with 7% EtOAc/hexane to give CMD2: 5(6)-gluten-3 α -ol (9.4 mg).

Subfraction T7.20 (30.2 mg) was purified by CC with 20% acetone/hexane to give CMD11: 5-methylmellein (4.5 mg).

Fraction 8 (6.7 g) was separated by CC with a gradient of acetonehexane to afford twelve fractions (T8.1-T8.12).

Subfraction T8.7 (3.6 g) was filtered and washed with hexane to yield a mixture of **CMD4**: β -sitosterol and **CMD5**: stigmasterol (2.3 g) as a white solid and the mother liquor as yellow viscous oil after evaporation of the solvent.

Subfraction T8.10 (43.2 mg) was purified by CC with 15% acetone/hexane to give CMD10: lophenol (10.7 mg).

Fraction T11 (4.1g) was separated by CC with 30% EtOAc/hexane to give **CMD3**: betulinic acid (1.7 g).

Fraction T12 (1.2 g) was separated by CC with 30% acetone/hexane to give **CMD6**: stigmast-4-en-3-one (30 mg).

Fraction T13 (113.6 mg) was separated by CC with 30% acetone/hexane to give **CMD13**: 5,7,3',4',5'-penta-O-methylgallocatechin (8.2 mg).

Fraction T14 (221.7 mg) was separated by CC with 30% EtOAc/hexane to give CMD12: 3,4,3'-tri-O-methylellagic acid (9.9 mg).

Compound CMD1: friedelin, white solid, m.p. 245-247°C; $[\alpha]_D^{28}$: -28.2° (c = 0.63, CHCl₃); ref $[\alpha]_D^{28}$: -22.3° (c = 0.54, CHCl₃) (Ahad *et al.*, 1991); IR (neat) v_{max} 1715 (C=O stretching) cm⁻¹. For ¹H NMR (CDCl₃, 300 MHz) spectral data and ¹³C NMR (CDCl₃, 75 MHz) spectral data see **Table 2**.

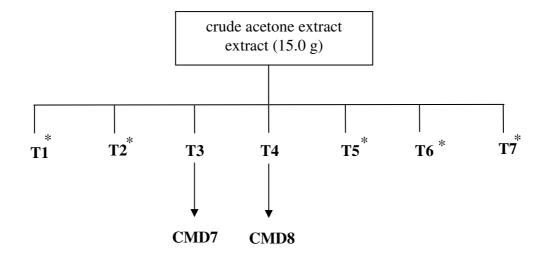
Compound CMD2: 5(6)-gluten-3 α -ol, white solid, m.p. 210-212°C; [α] $_{D}$ ²⁸: +61.6° (c = 0.7, CHCl₃); IR (neat) v_{max} 3415 (O-H stretching) and 1618 (C=C stretching) cm⁻¹. For ¹H NMR (CDCl₃, 300 MHz) spectral data and ¹³C NMR (CDCl₃, 75 MHz) spectral data see **Table 3**.

Compound CMD3: betulinic acid, white solid, m.p. 280-282°C; $[\alpha]_{D}^{28}$: +18.7° (c = 0.03, CHCl₃); ref $[\alpha]_{D}^{28}$: +17.7° (c = 0.03, CHCl₃) (Thongdeeying,

2005); IR (neat) v_{max} 3413 (O-H stretching), 1686 (C=O stretching) and 1645 (C=C stretching) cm⁻¹. For ¹H NMR (CDCl₃, 300 MHz) spectral data and ¹³C NMR (CDCl₃, 75 MHz) spectral data see **Table 4**.

Compounds CMD4 and CMD5: a mixture of β -sitosterol and stigmasterol, white solid; IR (neat) v_{max} 3425 (O-H stretching) and 1642 (C=C stretching) cm⁻¹.

Compound CMD6: stigmast-4-en-3-one, colorless viscous oil; $[\alpha]_D^{28}$: +67.7° (c = 0.47, CHCl₃); ref $[\alpha]_D^{28}$: +66.4° (c = 0.40, CHCl₃) (Della *et al.*, 1990); UV λ_{max} (MeOH) (log ε): 241 (4.21) nm; IR (neat) v_{max} 1674 (C=O stretching) and 1616 (C=C stretching) cm⁻¹. For ¹H NMR (CDCl₃, 300 MHz) spectral data and ¹³C NMR (CDCl₃, 75 MHz) spectral data see **Table 5**.


Compound CMD9: 5 α -cholest-7-en-3-one, white solid, m.p. 144-146 °C; $[\alpha]_D^{28}$: +12.1° (c = 0.05, CHCl₃); IR (neat) v_{max} 3424 (O-H stretching) and 1616 (C=C stretching) cm⁻¹. For ¹H NMR (CDCl₃, 300 MHz) spectral data and ¹³C NMR (CDCl₃, 75 MHz) spectral data see **Table 8**.

Compound CMD10: lophenol, white solid, m.p. 149-150°C; $[\alpha]_D^{28}$: +7.0° (c = 0.04, CHCl₃); ref $[\alpha]_D^{28}$: +5.0° (c = 0.03, CHCl₃) (Farines *et al.*, 1988); IR (neat) v_{max} 3424 (O-H stretching) and 1618 (C=C stretching) cm⁻¹. For ¹H NMR (CDCl₃, 300 MHz) spectral data and ¹³C NMR (CDCl₃, 75 MHz) spectral data see **Table 9**.

Compound CMD11: 5-methylmellein, colorless viscous oil; $[\alpha]_D^{28}$: -122° (c = 0.8, CHCl₃); ref $[\alpha]_D^{28}$: -118° (c = 0.06, CHCl₃) (Cambie *et al.*, 1991); UV λ_{max} (MeOH) (log ε): 208 (3.32) nm; IR (neat) v_{max} 3290 (O-H stretching), 1669 (C=O stretching) and 1610 (aromatic) cm⁻¹. For ¹H NMR (CDCl₃, 300 MHz) spectral data and ¹³C NMR (CDCl₃, 75 MHz) spectral data see **Table 10**.

Compound CMD12: 3,4,3'-tri-O-methylellagic acid, white solid; UV λ_{max} (MeOH) (log ε): 248 (3.55) and 371 (2.94) nm; IR (neat) v_{max} 3400 (O-H stretching), 1744 (C=O stretching) and 1602 (aromatic) cm⁻¹. For ¹H NMR (CDCl₃, 300 MHz) spectral data and ¹³C NMR (CDCl₃, 75 MHz) spectral data see **Table 11**.

Compound CMD13: 5,7,3',4',5'-penta-O-methylgallocatechin, colorless viscous oil; $[\alpha]_D^{28}$: -47.7° (c = 0.07, CHCl₃); UV λ_{max} (MeOH) (log ε): 207 (3.34) and 270 (2.59) nm; IR (neat) v_{max} 3453 (O-H stretching) and 1602 (aromatic) cm⁻¹. For ¹H NMR (CDCl₃, 300 MHz) spectral data and ¹³C NMR (CDCl₃, 75 MHz) spectral data see **Table 12**.

1.2.4.2 Investigation of the crude acetone extract from the stem of *P. granatum*

*No further investigation

Scheme 3 Isolation of compounds CMD7 and CMD8 from the acetone extract.

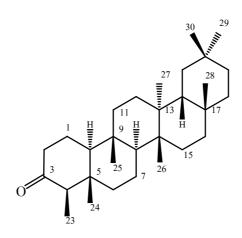
The brownish crude acetone extract of *P. granatum* (15.0 g) was subjected to quick column chromatography and eluted with hexane and acetone. The eluates were combined on the basis of TLC characteristic to give seven fractions (T1-T7).

Fraction T3 (1.4 g) was separated by CC with 2% methanol/CH₂Cl₂ to give CMD7: 6α -hydroxystigmast-4-en-3-one (4.1 mg).

Fraction T4 (1.7 g) was purified by CC with 30% acetone/hexane to afford seven fractions (T4.1-T4.7).

Subfraction T4.5 (35.6 g) was separated by CC with 2% methanol/CH₂Cl₂ to give **CMD8**: ergosterol peroxide (4.9 mg).

Compound CMD7: 6 α -hydroxystigmast-4-en-3-one, colorless viscous oil; $[\alpha]_D^{28}$: +12.5° (c = 0.80, CHCl₃); ref $[\alpha]_D^{28}$: +10.7° (c = 0.63, CHCl₃) (Della Greca *et al.*, 1990); UV λ_{max} (MeOH) (log ε): 241 (4.73); IR (neat) v_{max} 3418 (O-H stretching), 1670 (C=O stretching) and 1645 (C=C stretching) cm⁻¹. For ¹H NMR (CDCl₃, 300 MHz) spectral data and 13 C NMR (CDCl₃, 75 MHz) spectral data see **Table 6.**


Compound CMD8: ergosterol peroxide, colorless viscous oil; $[\alpha]_D^{28}$: -11.3° (c = 0.32, CHCl₃); ref $[\alpha]_D^{28}$: -12.8° (c = 0.42, CHCl₃) (Daengrot 2006); IR (neat) v_{max} 3442 (O-H stretching), 1716 (C=O stretching). For ¹H NMR (CDCl₃, 300 MHz) spectral data and ¹³C NMR (CDCl₃, 75 MHz) spectral data see **Table 7**.

CHAPTER 1.3 RESULTS AND DISCUSSION

1.3.1 Structure elucidation of compounds from the stem of *P. granatum*

The crude methylene chloride and acetone extracts from the stem of *P. granatum* were subjected to repeated quick column and column chromatography over silica gel to furnish thirteen known compounds of three triterpenes: friedelin (CMD1), 5(6)-gluten-3 α -ol (CMD2) and betulinic acid (CMD3), seven steroids: a mixture of β -sitosterol (CMD4) and stigmasterol (CMD5), stigmast-4-en-3-one (CMD6), 6 α -hydroxystigmast-4-en-3-one (CMD7), ergosterol peroxide (CMD8), 5 α -cholest-7-en-3-one (CMD9) and lophenol (CMD10), 5-methylmellein (CMD11), 3,4,3'-tri-O-methylellagic acid (CMD12), and 5,7,3',4',5'-penta-O-methylgallocatechin (CMD13).

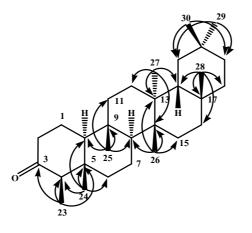
Their structures were elucidated mainly by 1D and 2D NMR spectroscopic data: ¹H, ¹³C NMR, DEPT 135°, DEPT 90°, HMQC, HMBC, COSY and NOESY. The physical data of the known compounds were also compared with the reported values.

Compound CMD1 was obtained as a white solid, mp 245-247 °C, $[\alpha]_D^{28}$: -28.2° (c = 0.63, CHCl₃). The IR spectrum showed absorption bands for carbonyl group at 1715 cm⁻¹. It gave a purple vanillin-sulfuric acid test indicating a triterpene.

The ¹³C NMR spectral data recorded in CDCl₃ showed 30 signals for 30 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of eight methyl (δ 6.8, 14.7, 17.9, 18.7, 20.3, 31.8, 32.1 and 35.0), eleven methylene (δ 18.2, 22.3, 30.5, 32.4, 32.8, 35.3, 35.6, 36.0, 39.3, 41.3 and 41.5), four methine (δ 42.8, 53.1, 58.2 and 59.5) and seven quaternary carbons (δ 28.2, 30.0, 37.4, 38.3, 39.7, 42.2 and 213.3).

The ¹H NMR spectral data showed characteristic of friedelin as one methyl doublet at δ 0.89 (3H-23, *d*, *J* = 6.3 Hz) and seven methyl singlets at δ 0.72, 0.87, 0.95, 1.00, 1.01, 1.05 and 1.18.

The position of a methyl group 3H-23 was determined through an HMBC experiment in which the methyl protons at δ 0.89 (3H-23) showed correlations with C-3 (δ 213.3), C-4 (δ 58.2) and C-5 (δ 42.2). Thus on the basis of its spectroscopic data and comparison with the previously reported data of friedelin (Ahad *et al.*, 1991), compound CMD1 was therefore assigned as friedelin.



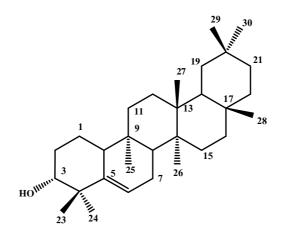

Figure 2 Selected HMBC correlations of CMD1

 Table 2 ¹H, ¹³C NMR and HMBC spectral data of compounds CMD1 (CDCl₃) and friedelin (**R**, CDCl₃)

Position	Type of C	δc /ppm		бн / ppm (multiplicity, J/Hz)	$HMBC$ $^{1}H \rightarrow ^{13}C$
		CMD1	R	CMD1	
1	CH_2	22.3	22.3	1.64 (<i>m</i>), 1.69 (<i>m</i>)	-
2	CH_2	41.5	41.5	2.36 (<i>m</i>), 2.23 (<i>m</i>)	-
3	С	213.3	213.2	-	-
4	СН	58.2	58.2	2.24 (<i>m</i>)	-
5	С	42.2	42.2	-	-
6	CH_2	41.3	41.3	2.44 (m), 1.78 (m)	-
7	CH_2	18.2	18.2	1.52 (<i>m</i>), 1.39 (<i>m</i>)	-
8	СН	53.1	53.1	1.42 (<i>m</i>)	-
9	С	37.4	37.5	-	-
10	СН	59.5	59.5	1.56 (<i>m</i>)	-
11	CH_2	35.6	35.6	1.61 (<i>m</i>), 1.43 (<i>m</i>)	-
12	CH_2	30.5	30.5	1.46 (<i>m</i>), 1.34 (<i>m</i>)	-
13	С	39.7	39.7	-	-
14	С	38.3	38.3	-	-
15	CH_2	32.4	32.4	1.51 (<i>m</i>), 1.29 (<i>m</i>)	-
16	CH ₂	36.0	36.0	1.61 (<i>m</i>), 1.36 (<i>m</i>)	-

Position	Type of C	δc /ppm		δн / ppm (multiplicity, J/Hz)	$HMBC$ $^{1}H \rightarrow ^{13}C$
		CMD1	R	CMD1	
17	С	30.0	30.0	-	-
18	СН	42.8	42.8	1.53 <i>(m)</i>	-
19	CH_2	35.3	35.4	1.62 (<i>m</i>), 1.49 (<i>m</i>)	-
20	С	28.2	28.1	-	-
21	CH_2	39.3	39.3	1.48 (<i>m</i>), 0.93 (<i>m</i>)	-
22	CH_2	32.8	32.8	1.50 (<i>m</i>), 1.26 (<i>m</i>)	-
23	CH ₃	6.8	6.8	0.89 (<i>d</i> , 6.3)	3, 4, 5
24	CH_3	14.7	14.7	0.72 (s)	4, 5, 6, 10
25	CH_3	17.9	18.0	0.87 (s)	8, 9, 10, 11
26	CH ₃	18.7	18.7	1.01 (s)	8, 13, 14, 15
27	CH_3	20.3	20.3	1.05 (s)	12, 13, 14, 18
28	CH_3	32.1	32.1	1.18 (s)	16, 17, 18, 22
29	CH_3	31.8	31.8	1.00 (s)	19, 20, 21
30	CH ₃	35.0	35.0	0.95 (s)	19, 20, 21

1.3.1.2 Compound CMD2

Compound CMD2 was obtained as a white solid, mp 210-212 °C, $[\alpha]_D$ ²⁸: +61.6° (c = 0.7, CHCl₃); The IR spectrum showed absorption band of a hydroxyl group at 3415 cm⁻¹.

The ¹³C NMR spectral data recorded in CDCl₃ showed 30 signals for 30 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of eight methyl (δ 16.2, 18.4, 19.6, 25.4, 29.0, 32.0, 32.4 and 34.5), ten methylene (δ 18.2, 23.8, 27.9, 30.4, 32.1, 33.2, 34.6, 35.1, 36.1 and 39.0), five methine (δ 43.1, 47.7, 49.7, 76.4 and 122.1) and seven quaternary carbons (δ 28.3, 30.1, 34.9, 37.9, 39.3, 40.8 and 141.7).

The ¹H NMR spectral data showed eight methyl singlets at δ 0.85, 0.95, 0.99, 1.00, 1.04, 1.09, 1.14 and 1.16, a vinyl proton at δ 5.63 (1H, *d*, *J* = 6.0 Hz, H-6). The ¹³C NMR spectrum confirmed the presence of a carbon-carbon double bond at δ 122.1 (C-6) and 141.7 (C-5). The broad singlet of H-3 indicated a (β) orientation of H-3.

On the basis of HMBC the vinyl proton H-6 at δ 5.63 showed correlations with C-4 (δ 40.8), C-5 (δ 141.7), C-7 (δ 23.8), C-8 (δ 47.7), and C-10 (49.7), suggesting the presence of a double bond between C-5 and C-6. Thus on the basis of its spectroscopic data and comparison with those reported in the literatures (Susidarti et al., 2006), compound CMD2 was therefore assigned as 5(6)-gluten-3 α -ol.

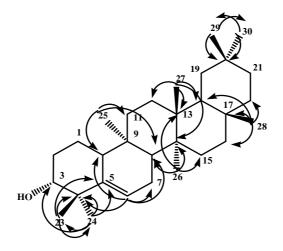
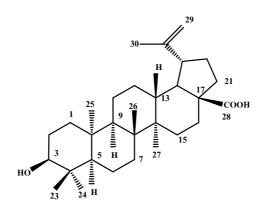


Figure 3 Selected HMBC correlations of CMD2


Table 3¹H, ¹³C NMR and HMBC spectral data of compounds CMD2 (CDCl₃) and5(6)-gluten-3α-ol (**R**, CDCl₃)

Position	Туре	δc /p	pm	δ _H / ppm (multiplicity, J/Hz)	HMBC	
	of C	CMD2	R	CMD3	¹ H→ ¹³ C	
1	CH_2	18.2	18.3	1.00 (<i>m</i>), 1.60 (<i>m</i>)	-	
2	CH_2	27.9	28.1	1.13 <i>(m)</i> , 1.68 <i>(m)</i>	-	
3	CH	76.4	76.6	3.47 (<i>br s</i>)	-	
4	С	40.8	41.0	-	-	
5	С	141.7	141.9	-	-	
6	СН	122.1	122.3	5.63 (<i>d</i> , 6.0)	4, 5, 7, 8, 10	
7	CH_2	23.8	23.9	1.68 (<i>m</i>), 2.01 (<i>m</i>)	-	
8	СН	47.7	47.7	1.52 (<i>m</i>)	-	
9	С	34.9	35.1	-	-	
10	CH	49.7	49.9	1.98 (<i>m</i>)	-	
11	CH_2	34.6	34.8	1.33 (<i>m</i>), 1.52 (<i>m</i>)	-	
12	CH_2	30.4	30.6	1.38 (<i>m</i>), 1.15 (<i>m</i>)	-	
13	С	37.9	38.1	-	-	
14	С	39.3	39.5	-	-	
15	CH_2	32.1	32.3	1.25 (<i>m</i>), 1.49 (<i>m</i>)	-	
16	CH_2	39.0	39.2	0.92 (<i>m</i>), 1.57 (<i>m</i>)	-	

Table 3(Continued)

Position	• 1		pm	бн / ppm (multiplicity, J/Hz)	HMBC ¹ H → ³ C	
	of C	CMD2	R	CMD3	H→C	
17	С	30.1	30.3	-	-	
18	СН	43.1	43.3	1.58 (<i>m</i>)	-	
19	CH_2	33.2	33.4	1.25 (<i>m</i>), 1.50 (<i>m</i>)	-	
20	С	28.3	28.5	-	-	
21	CH_2	35.1	35.3	1.51 (<i>m</i>), 1.40 (<i>m</i>)	-	
22	CH_2	36.1	36.3	1.53 (<i>m</i>), 1.42 (<i>m</i>)	-	
23	CH ₃	29.0	29.2	1.04 (<i>s</i>)	3, 5, 24	
24	CH ₃	25.4	25.7	1.14 (<i>s</i>)	3, 5, 23	
25	CH ₃	16.2	16.4	0.85 (s)	8, 10, 11	
26	CH ₃	18.4	18.6	1.00 (s)	8, 13, 14, 15	
27	CH ₃	19.6	19.8	1.09 (s)	13, 14, 18	
28	CH ₃	32.0	32.3	1.16 (s)	16, 17, 18, 22	
29	CH_3	34.5	34.7	0.95 (s)	19, 21, 20, 30	
30	CH ₃	32.4	32.6	0.99 (s)	19, 21, 20, 29	

1.3.1.3 Compound CMD3

Compound CMD3 was obtained as a white solid, mp. 280-282 °C, $[\alpha]_D^{28}$: +18.7° (c = 0.03, CHCl₃). It gave a purple vanillin-sulfuric acid test. The IR spectrum showed absorption band of a hydroxyl group at 3415 cm⁻¹ and a carbonyl group at 1686 cm⁻¹.

The ¹³C NMR spectral data recorded in CDCl₃ showed 30 signals for 30 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of six methyl (δ 14.5, 15.2, 15.6, 15.9, 19.1, and 27.6), eleven methylene (δ 18.2, 20.8, 25.4, 26.9, 29.6, 30.5, 32.2, 34.2, 37.1, 38.7 and 109.3), six methine (δ 38.2, 46.9, 49.1, 50.5, 55.3 and 78.7) and seven quaternary carbons (δ 37.1, 38.7, 40.6, 42.3, 56.1, 150.7 and 179.1).

The ¹H NMR spectral data showed characteristic of lupane triterpenes as one vinylic methyl at δ 1.69, two protons of an isopropenyl moiety at δ 4.61 (*br s*) and 4.74 (*br s*) and a typical lupine β H-19 proton at δ 3.01 (*m*). An oxymethine proton was shown at δ 3.19 (*dd*, J = 10.8, 5.4 Hz). The doublet of doublet splitting pattern together with a large coupling constant of H-3 with $J_{ax-ax} = 10.8$ Hz and $J_{ax-eq} = 5.4$ Hz indicated an axial (α) orientation of H-3. The ¹³C NMR spectral data displayed a signal of carboxyl carbon at δ 179.1, thus suggesting a carboxylic functionality at C-28. The location of the carboxyl group was confirmed by HMBC experiment in which the methylene proton 2H-22 (δ 1.41 and 1.93) showed correlations with C-17 (δ 56.1), C-18 (δ 49.1) and C-28 (179.1). Thus on the basis of its spectroscopic data and comparison with those reported in the literatures (Macias *et al.*, 1994 and Thongdeeying, 2005), compound CMD3 was therefore assigned as betulinic acid.

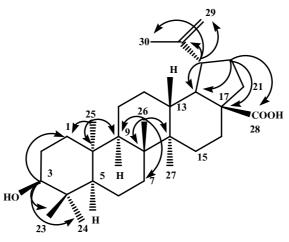
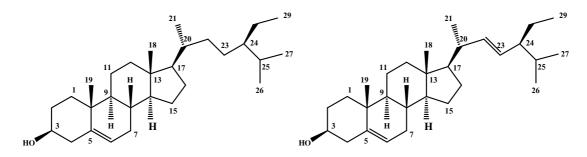
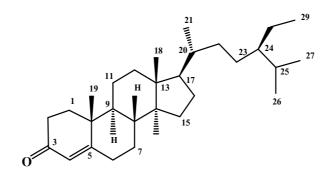


Figure 4 Selected HMBC correlations of CMD3


Table 4¹H, ¹³C NMR and HMBC spectral data of compounds CMD3 (CDCl₃) and
betulinic acid (**R**, CDCl₃)

Position	V 1		pm		ppm city, J/Hz)	HMBC
	of C	CMD3	R	CMD3	R	¹ H≯ ³ C
1	CH_2	38.7	38.5	0.88 (<i>m</i>), 1.65 (<i>m</i>)	0.95 (<i>m</i>), 1.70 (<i>m</i>)	-
2	CH_2	26.9	28.2	1.57 (<i>m</i>), 1.61 (<i>m</i>)	1.57 (<i>m</i>), 1.62 (<i>m</i>)	-
3	СН	78.7	78.1	3.19 (<i>dd</i> , 10.8, 5.4)	3.19 (<i>dd</i> , 10.8, 5.4)	1, 23, 24
4	С	38.7	39.4	-	-	-
5	СН	55.3	55.9	0.69 (<i>m</i>)	0.71 (<i>m</i>)	4, 6, 7, 9
6	CH_2	18.2	18.7	1.36 (<i>m</i>), 1.51 (<i>m</i>)	1.45 (<i>m</i>), 1.55 (<i>m</i>)	-
7	CH_2	34.2	34.7	1.38 (<i>m</i>)	1.42 (<i>m</i>)	-
8	С	40.6	41.0	-	-	-
9	СН	50.5	50.9	1.26 (<i>m</i>)	1.33 (<i>m</i>)	-
10	С	37.1	37.5	-	-	-
11	CH_2	20.8	21.1	1.23 (<i>m</i>), 1.43 (<i>m</i>)	1.25 (<i>m</i>), 1.45 (<i>m</i>)	-
12	CH_2	25.4	26.0	1.69 (<i>m</i>)	1.07 (<i>m</i>), 1.73 (<i>m</i>)	-
13	СН	38.2	39.2	2.22 (<i>m</i>)	2.30 (<i>m</i>)	-
14	С	42.3	42.8	-	-	-
15	CH_2	29.6	30.2	1.51 (<i>m</i>), 1.51 (<i>m</i>)	1.18 (<i>m</i>), 1.53 (<i>m</i>)	-
16	CH ₂	32.2	32.8	1.40 (<i>m</i>), 2.25 (<i>m</i>)	1.43 (<i>m</i>), 2.23 (<i>m</i>)	-

Table 4(Continued)


Position Type		δc /p	pm	δн / _] (multiplic		
	of C	CMD3	R	CMD3	R	¹ H → ³ C
17	С	56.1	56.6	-	-	-
18	СН	49.1	49.7	1.58 (<i>m</i>)	1.63 (<i>m</i>)	-
19	СН	46.9	47.7	3.01 (<i>m</i>)	3.02 (<i>m</i>)	18, 20, 21,
						29, 30
20	С	150.7	151.4	-	-	-
21	CH_2	30.5	31.4	1.42 (<i>m</i>), 1.91 (<i>m</i>)	1.40 (<i>m</i>), 1.93(<i>m</i>)	-
22	CH_2	37.1	37.4	1.41 (<i>m</i>), 1.93 (<i>m</i>)	1.43 (<i>m</i>), 1.91(<i>m</i>)	17, 18, 28
23	CH_3	27.6	28.5	0.97 (s)	0.95 (s)	3,4,5, 24
24	CH_3	15.2	16.2	0.75 (s)	0.75 (s)	3, 4, 5, 23
25	CH ₃	15.9	16.3	0.82 (s)	0.86 (s)	1, 5, 9, 10
26	CH_3	15.6	16.2	0.94 (s)	0.97 (s)	7, 8, 9, 14
27	CH_3	14.5	14.8	0.98 (s)	1.01 (s)	8, 13, 14, 15
28	С	179.1	179.0	-	-	-
29	CH_2	109.3	110.0	4.61 (<i>br s</i>)	4.59 (<i>dd</i> , 2.2, 1.0)	19, 30
				4.74 (br s)	4.71 (<i>d</i> , 2.2)	
30	CH ₃	19.1	19.4	1.69 (s)	1.69 (<i>d</i> , 1.0)	19, 20, 29

1.3.1.4 Compounds CMD4 and CMD5

The mixture of CMD4 and CMD5 was isolated as a white solid. Its IR spectrum showed absorption bands at 3425 (hydroxyl) and 1642 cm⁻¹ (double bond). The ¹H NMR spectral data contained an oxymethine proton at δ 3.57-3.47 (*m*), three olefinic protons at δ 5.36 (*d*, *J* = 5.1 Hz), 5.16 (*dd*, *J* = 15.1, 8.4 Hz) and 5.01 (*dd*, *J* = 15.1, 8.4 Hz). The ¹H NMR (Cheenpracha, 2004) data was corresponded to a previous reported data of β -sitosterol and stigmasterol. Thus, this mixture was identified as β -sitosterol (CMD4) and stigmasterol (CMD5).

1.3.1.5 Compound CMD6

Compound CMD6 was isolated as colorless viscous oil; $[\alpha]_D^{28}$: +67.7° (c = 0.47, CHCl₃). Its IR spectrum showed absorption bands for α,β -unsaturated carbonyl group at 1674 cm⁻¹ and double bond at 1616 cm⁻¹. The UV absorption was shown at 241 nm.

The ¹³C NMR spectral data recorded in CDCl₃ showed 29 signals for 29 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested a presence of six methyl (11.9, 12.0, 17.4, 18.7, 19.0 and 19.8), eleven methylene (21.0, 23.1, 24.2, 26.1, 28.2, 32.1, 32.9, 33.9, 34.0, 35.7 and 39.6), eight methine (29.2, 35.6, 36.1, 45.8, 53.8, 55.9, 56.1 and 123.7) and four quaternary carbons (38.6, 42.4, 171.6 and 199.6).

The ¹H NMR spectral data displayed a downfield vinyl proton at δ 5.72 (H-4). The ¹³C NMR spectrum confirmed the presence of a carbon–carbon double bond at δ 123.7 (C-4) and 171.6 (C-5) and the downfield chemical shift of C-5 (δ 171.6) also indicated the presence of the conjugate carbonyl function. On the basis of HMBC the vinyl proton (δ 5.72) showed correlations with C-2 (δ 33.9), C-3 (δ 199.6), C-6 (δ 32.9) and C-10 (δ 38.6) suggesting the presence of a double bond between C-4 and C-5. On the basis of its spectroscopic data and comparison with previously reported data (Della *et al.*, 1990), Compound CMD6 was identified as stigmast-4-en-3-one.

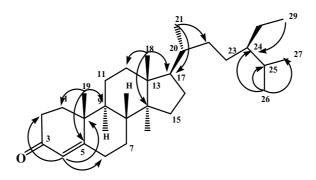
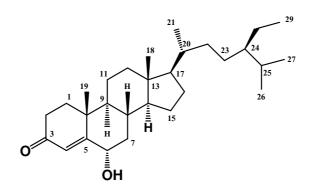


Figure 5 Selected HMBC correlations of CMD6


Table 5 ¹H, ¹³C NMR and HMBC spectral data of compounds CMD6 (CDCl₃) and stigmast-4-en-3-one (\mathbf{R} , CDCl₃)

		δc /	ppm	δ _H / ppn	n	
Position	Type of			(multiplicity,	J/Hz)	HMBC
	С	CMD6	R	CMD6	R	$H^1 \rightarrow {}^{13}C$
1	CH_2	35.7	35.7	1.54 (<i>m</i>), 1.67 (<i>m</i>)	-	-
2	CH_2	33.9	33.9	2.28 (<i>m</i>), 2.50 (<i>m</i>)	-	-
3	С	199.6	198.9	-	-	-
4	СН	123.7	123.6	5.72 (<i>br s</i>)	5.74 (<i>d</i> , 2.2)	2, 3, 6, 10
5	С	171.6	171.0	-	-	-
6	CH_2	32.9	32.9	2.25 (<i>m</i>), 2.40 (<i>m</i>)	-	-
7	CH_2	32.1	32.1	1.10 (<i>m</i>), 1.85 (<i>m</i>)	-	-
8	СН	35.6	35.7	1.71 (<i>m</i>)	-	-
9	СН	53.8	53.8	0.92 (<i>m</i>)	-	-
10	С	38.6	38.6	-	-	-
11	CH_2	21.0	21.0	1.40 (<i>m</i>), 1.50 (<i>m</i>)	-	-
12	CH_2	39.6	39.5	1.15 (<i>m</i>), 2.04 (<i>m</i>)	-	-
13	С	42.4	42.4	-	-	-
14	СН	55.9	55.9	1.00 (<i>m</i>)	-	-
15	CH_2	24.2	24.1	1.23 (<i>m</i>), 1.29 (<i>m</i>)	-	-
16	CH_2	28.2	28.1	1.27 (<i>m</i>), 1.32 (<i>m</i>)	-	-

Table 5 (Continued)

		δc /]	opm	δ _H / ppm		
Position	Type of			(multipli	city, J/Hz)	HMBC
	С	CMD6	R	CMD6	R	$H^1 \rightarrow {}^{13}C$
17	CH	56.1	56.1	1.11 (<i>m</i>)	-	-
18	CH_3	12.0	12.0	0.71 (s)	0.72 (s)	12, 14, 17
19	CH_3	17.4	17.4	1.18 (s)	1.19 (s)	1, 5, 9, 10
20	СН	36.1	36.1	2.01 (<i>m</i>)	-	-
21	CH ₃	18.7	18.7	0.92 (<i>d</i> , 6.3)	0.93 (<i>d</i> , 6.6)	17, 20, 22
22	CH_2	34.0	34.0	2.39 (<i>m</i>)	-	-
23	CH_2	26.1	26.0	1.17 (<i>m</i>)	-	-
24	CH	45.8	45.8	0.93 (<i>m</i>)	-	-
25	CH	29.2	29.1	1.26 (<i>m</i>)	-	-
26	CH_3	19.8	19.8	0.85 (<i>d</i> , 6.9)	0.84 (<i>d</i> , 6.8)	24, 25, 27
27	CH_3	19.0	19.2	0.84 (<i>d</i> , 6.6)	0.82 (<i>d</i> , 6.8.)	24, 25, 26
28	CH_2	23.1	23.1	1.29 (<i>m</i>)	-	-
29	CH_3	11.9	11.4	0.83 (<i>d</i> , 6.6)	0.85 (<i>d</i> , 7.2)	24, 28

1.3.1.6 Compound CMD7

Compound CMD7 was isolated as colorless viscous oil; $[\alpha]_D^{28}$: +12.5° (c = 0.8, CHCl₃). The absorption bands for IR and UV spectral data were similar to compound CMD6 with additional IR hydroxyl absorption at 3446 cm⁻¹.

The ¹H and ¹³C NMR spectral data of compounds CMD6 and CMD7 showed structural similarity, except for additional signal for an oxymethine proton at δ 4.33 (H-6) in CMD7. The multiplicity of the oxymethine proton signal as a doublet of doublet of doublet ($J_{ax-ax} = 17.7$, $J_{ax-eq} = 5.7$, $J_{allylic} = 1.2$ Hz) from coupling with 2H-7 and H-4, indicated that H-6 was situated in an axial (β) position. The location of a hydroxyl group at C-6 was determined through an HMBC experiment in which the oxymethine proton signal at δ 4.33 (H-6) showed long-range correlations with C-3 (δ 198.5), C-4 (δ 118.7), C5 (δ 170.6), C-7 (δ 40.5), C-8 (δ 33.2) and C-10 (δ 38.0). Thus on the basis of its spectroscopic data and comparison with previously reported data (Della Greca *et al.*, 1990), compound CMD7 was assigned as $\delta\alpha$ hydroxystigmast-4-en-3-one.

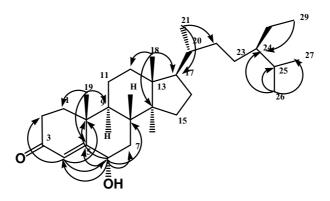
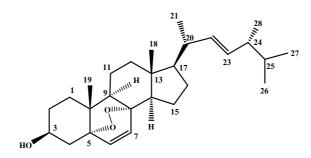


Figure 6 Selected HMBC correlations of CMD7


Table 6¹H, ¹³C NMR and HMBC spectral data of compounds CMD7 (CDCl₃) and
6α-hydroxystigmast-4-en-3-one (**R**, CDCl₃)

Position Type of C		δc /	ppm	δн / ppm (multiplicity, J/Hz)	HMBC ¹ H→ ¹³ C
		CMD7 R		CMD7	
1	CH_2	35.3	36.3	1.74 (<i>m</i>), 1.79 (<i>m</i>)	-
2	CH_2	32.9	34.1	2.32 (<i>m</i>), 2.38 (<i>m</i>)	-
3	С	198.5	202.9	-	-
4	CH	118.7	119.4	6.17 (<i>d</i> , 1.2)	2, 3, 6, 10
5	С	170.6	171.0	-	-
6	CH	67.7	68.7	4.33 (<i>ddd</i> , 17.7, 5.7, 1.2)	4, 5, 7, 8, 10
7	CH_2	40.5	39.4	1.08 (<i>m</i>), 2.15 (<i>m</i>)	-
8	CH	33.2	33.8	1.63 (<i>m</i>)	-
9	CH	52.8	53.7	0.95 (<i>m</i>)	-
10	С	38.0	39.3	-	-
11	CH_2	20.0	21.0	1.51 (<i>m</i>), 1.55 (<i>m</i>)	-
12	CH_2	38.5	39.4	2.02 (<i>m</i>), 2.06 (<i>m</i>)	-
13	С	41.5	41.5	-	-
14	СН	54.7	55.5	1.12 (<i>m</i>)	-
15	CH_2	23.2	24.4	1.12 (<i>m</i>), 1.64 (<i>m</i>)	-
16	CH_2	28.7	28.1	1.28 (<i>m</i>), 1.71 (<i>m</i>)	-

Table 6 (Continued)

Position	Type	δc /ppm		δн / ppm (multiplicity, J/Hz)	HMBC ¹ H≯ ¹³ C
	of C	CMD7	R	CMD7	
17	CH	55.0	55.9	1.16 (<i>m</i>)	-
18	CH ₃	10.9	11.9	0.71 (s)	12, 14, 17
19	CH ₃	17.3	17.9	1.18 (s)	1, 5, 9, 10
20	СН	35.1	36.1	2.05 (<i>m</i>)	-
21	CH ₃	17.7	18.7	0.92 (<i>d</i> , 6.3)	17, 20, 22
22	CH_2	32.8	33.9	2.48 (<i>m</i>)	-
23	CH_2	27.1	26.1	0.88 (<i>m</i>)	-
24	СН	44.8	45.8	0.97 (<i>m</i>)	-
25	СН	28.2	29.2	1.62 (<i>m</i>)	-
26	CH_3	18.8	19.7	0.84 (<i>d</i> , 6.9)	24, 25, 27
27	CH ₃	18.0	19.0	0.81 (<i>d</i> , 6.6)	24, 25, 26
28	CH_2	22.1	23.1	1.18 (<i>m</i>)	-
29	CH ₃	11.0	11.9	0.85 (<i>t</i> , 6.9)	24, 28

1.3.1.7 Compound CMD8

Compound CMD8 was isolated as colorless viscous oil; $[\alpha]_D^{28}$: - 11.3°(c = 0.33, CHCl₃). Its IR spectrum showed absorption bands for a hydroxyl group at 3414 cm⁻¹.

The ¹³C NMR spectral data recorded in CDCl₃ showed 28 signals for 28 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested a presence of six methyl (δ 12.9, 17.6, 18.2, 19.6, 19.9 and 20.9), seven methylene (δ 20.6, 23.4, 28.6, 30.1, 34.7, 37.0 and 39.4), eleven methine (δ 33.1, 39.7, 42.8, 51.1, 51.7, 56.2, 66.5, 130.8, 132.3, 135.2 and 135.4) and four quaternary carbons (δ 36.9, 44.6, 79.4 and 82.2). Two quaternary carbon signals at δ 82.2 and δ 79.4 were, respectively, assignable to C-5 and C-8 bearing a 5 α , 8 α -peroxide bonds.

The ¹H NMR spectral data showed characteristic of ergostane-type sterol as four methyl doublets at δ 0.82 (3H, J = 6.6 Hz, Me-26), 0.83 (3H, J = 6.6 Hz, Me-27), 0.91 (3H, J = 6.9 Hz, Me-28) and 1.01 (3H, J = 6.6 Hz, Me-21) and two methyl singlets at δ 0.82 (Me-18) and 0.88 (Me-19). Two parts of olefinic proton signals at δ 6.27 (H-6) and 6.50 (H-7) (each 1H, d, J = 8.7 Hz) and 5.14 (H-22) and 5.23 (H-23) (each 1H, dd, J = 15.3, 7.8 Hz) were attributable to Δ^6 and Δ^{22} double bonds, respectively. The oxymethine proton signal at δ 3.97 (H-3, *m*) was assigned as H-3 α due to the absence of NOESY cross peak with 3H-19 (δ 0.88).

The location of the peroxide bond was confirmed by HMBC experiment in which the olefinic proton H-6 (δ 6.27) showed correlations with C-4 (δ 39.4), C-5 (δ 82.2) and C-8 (δ 79.4). The olefinic proton H-7 (δ 6.50) showed long-range correlations with C-5 (δ 82.2), C-8 (δ 79.4), C-9 (δ 51.1) and C-14 (δ 51.7). Thus on the basis of its spectroscopic data and comparison with those reported in the

literatures (Yue *et al.*, 2001, Rosecke *et al.*, 2000 and Daengrot 2006), compound CMD8 was, therefore, assigned as ergosterol peroxide.

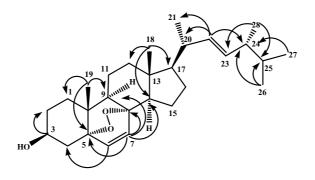
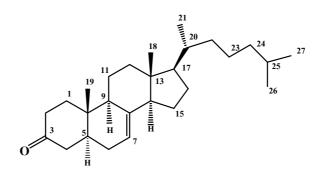


Figure 7 Selected HMBC correlations of CMD8


Table 7¹H, ¹³C NMR and HMBC spectral data of compounds CMD8 (CDCl₃) and
ergosterol peroxide (**R**, CDCl₃)

		δc /ppm		δ _H / ppn	n	HMBC
Position	Type of			(multiplicity,	J/Hz)	(CMD)
	С	CMD8	R	CMD8	R	$H^1 \rightarrow {}^{13}C$
1	CH_2	30.1	30.2	1.56 (<i>m</i>), 1.85 (<i>m</i>)	-	-
2	CH_2	34.7	34.8	1.71 (<i>m</i>), 1.98 (<i>m</i>)	-	-
3	CH	66.5	66.5	3.97 (<i>m</i>)	3.97 (<i>m</i>)	2
4	CH_2	39.4	39.4	1.25 (<i>m</i>), 1.96 (<i>m</i>)	-	-
5	С	82.2	82.2	-	-	-
6	СН	135.4	135.2	6.27 (<i>d</i> , 8.7)	6.24 (<i>d</i> , 8.7)	4, 5, 8
7	СН	130.8	130.7	6.50 (<i>d</i> , 8.7)	6.51 (<i>d</i> , 8.7)	5, 8, 9, 14
8	С	79.4	79.4	-	-	-
9	СН	51.1	51.3	1.51 (<i>m</i>)	-	-
10	С	36.9	37.0	-	-	-
11	CH_2	20.6	20.7	1.42 (<i>m</i>), 1.61 (<i>m</i>)	-	-
12	CH_2	37.0	37.0	1.91 (<i>m</i>), 2.13 (<i>m</i>)	-	-
13	С	44.6	44.6	-	-	-

		δc /p	nm	δ _H / pp	m	
Position	Type of	007	,pm	(multiplicity	y, J/Hz)	HMBC
	С	CMD8	R	CMD8	R	$H^{1} \rightarrow {}^{13}C$
14	СН	51.7	51.7	1.61 (<i>m</i>)	-	-
15	CH_2	23.4	23.4	1.24 (<i>m</i>), 1.53 (<i>m</i>)	-	-
16	CH_2	28.6	28.6	1.40 (<i>m</i>), 1.76 (<i>m</i>)	-	-
17	СН	56.2	56.2	1.24 (<i>m</i>)	-	-
18	CH ₃	12.9	12.9	0.82 (s)	0.82 (s)	12, 14, 17
19	CH ₃	18.2	18.2	0.88 (s)	0.88 (s)	1, 5, 9
20	СН	39.7	39.7	2.04 (<i>m</i>)	-	-
21	CH ₃	20.9	20.9	1.01 (<i>d</i> , 6.6)	0.91 (<i>d</i> , 6.6)	17, 20, 22
22	СН	135.2	135.2	5.14 (<i>dd</i> , 15.3, 7.8)	5.22 (<i>dd</i> ,	20, 21, 24
					15.3, 8.2)	
23	СН	132.3	132.3	5.23 (<i>dd</i> , 15.3, 7.8)	5.14 (<i>dd</i> ,	20, 24, 28
					15.3, 7.6)	
24	СН	42.8	42.8	1.87 (<i>m</i>)	-	-
25	СН	33.1	33.1	1.49 (<i>m</i>)	-	-
26	CH ₃	19.6	19.6	0.82 (<i>d</i> , 6.6)	0.82 (<i>d</i> , 6.6)	24, 25, 27
27	CH ₃	19.9	19.9	0.83 (<i>d</i> , 6.6)	0.82 (<i>d</i> , 6.6)	24, 25, 26
28	CH_2	17.6	17.6	0.91 (<i>d</i> , 6.9)	1.00 (<i>d</i> , 6.6)	23, 25
L			1			

Table 7 (Continued)

1.3.1.8 Compound CMD9

Compound CMD9 was isolated as a white solid. mp. 144-146 °C, $[\alpha]_D^{28}$: +12.1° (c = 0.05, CHCl₃). Its IR spectrum showed absorption bands for carbonyl group at 1708 cm⁻¹ and double bond at 1630 cm⁻¹.

The ¹³C NMR spectral data recorded in CDCl₃ showed 27 signals for 27 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested a presence of five methyl (δ 11.9, 12.4, 18.9, 22.6 and 22.8), eleven methylene (δ 21.7, 23.0, 24.0, 27.9, 30.1, 36.1, 38.1, 38.8, 39.5(x2) and 44.2), seven methine (δ 28.0, 36.5, 42.9, 48.9, 55.0, 56.2 and 117.0) and four quaternary carbons (δ 34.4, 43.4, 139.6 and 212.0).

The ¹H NMR spectral data displayed a downfield vinyl proton at δ 5.19 (H-7). The ¹³C NMR spectrum confirmed the presence of a carbon–carbon double bond at δ 117.0 (C-7) and 139.6 (C-8). On the basis of HMBC the vinyl proton H-7 (δ 5.19) showed correlations with C-5 (δ 42.9), C-6 (δ 30.1), C-9 (δ 48.9) and C-14 (δ 55.0) suggesting the presence of a double bond between C-7 and C-8. On the basis of its spectroscopic data and comparison with previously reported data (Dolle *et al.*, 1991), Compound CMD9 was identified as 5 α -cholest-7-en-3-one.

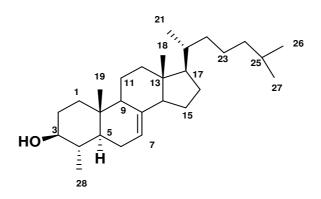

Figure 8 Selected HMBC correlations of CMD9

Table 8 ¹H, ¹³C NMR and HMBC spectral data of compounds CMD9 (CDCl₃) and 5α -cholest-7-en-3-one (**R**, CDCl₃)

	Type of C	δc /ppm		$\delta_{ m H}$ / ppm	
Position				(multiplicity, J/Hz)	HMBC
		CMD9	R	CMD9	$H^1 \rightarrow {}^{13}C$
1	CH_2	38.8	38.2	2.28 (<i>m</i>), 2.48 (<i>m</i>)	-
2	CH_2	39.5	39.6	1.22 (<i>m</i>), 2.22 (<i>m</i>)	-
3	С	212.0	211.8	-	-
4	CH_2	44.2	44.3	2.34 (<i>m</i>), 2.90 (<i>m</i>)	-
5	CH	42.9	43.0	1.83 (<i>m</i>)	-
6	CH_2	30.1	30.2	1.03 (<i>m</i>), 1.72 (<i>m</i>)	-
7	СН	117.0	117.0	5.19 (br s)	5, 6, 9, 14
8	С	139.6	139.6	-	-
9	СН	48.9	49.0	1.72 (<i>m</i>)	-
10	С	34.4	34.5	-	-
11	CH_2	21.7	21.8	1.57 (<i>m</i>), 2.10 (<i>m</i>)	-
12	CH_2	38.1	38.9	1.28 (<i>m</i>), 1.35 (<i>m</i>)	-
13	С	43.4	43.5	-	-
14	СН	55.0	55.1	1.82 (<i>m</i>)	-
15	CH_2	23.0	23.0	1.38 (<i>m</i>), 1.52 (<i>m</i>)	-
16	CH_2	27.9	28.0	1.23 (<i>m</i>), 1.91 (<i>m</i>)	-

Position	Type of	δc /ppm		δ _H / ppm (multiplicity, J/Hz)	НМВС
	С	CMD9	R	CMD9	$H^1 \rightarrow {}^{13}C$
17	СН	56.2	56.3	1.22 (<i>m</i>)	-
18	CH_3	11.9	11.9	0.56 (s)	12, 13, 14, 17
19	CH ₃	12.4	12.5	1.02 (s)	1, 5, 9, 10
20	СН	36.5	36.2	1.10 (<i>m</i>)	-
21	CH_3	18.9	18.9	0.92 (<i>d</i> , 6.6)	17, 20, 22
22	CH_2	36.1	36.2	1.38 (<i>m</i>)	-
23	CH_2	24.0	24.0	1.17 (<i>m</i>)	-
24	CH_2	39.5	39.6	2.10 (<i>m</i>)	-
25	СН	28.0	28.0	1.90 (<i>m</i>)	-
26	CH_3	22.6	22.6	0.87 (<i>d</i> , 6.6)	24, 25, 27
27	CH ₃	22.8	22.8	0.87 (<i>d</i> , 6.6)	24, 25, 26

1.3.1.9 Compound CMD10

Compound CMD10 was obtained as a white solid. mp. 149-150 °C, [α] _D ²⁸: +7.0° (c = 0.04, CHCl₃). The IR spectrum showed absorption band of a hydroxyl group at 3424 cm⁻¹.

The ¹³C NMR spectral data recorded in CDCl₃ showed 28 signals for 28 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of six methyl (δ 11.9, 14.2, 15.2, 18.9, 22.6 and 22.8), ten methylene (δ 21.4, 22.9, 23.9, 26.7, 28.0, 31.0, 36.2, 37.0, 39.5 and 39.6), nine methine (δ 28.0, 36.2, 40.3, 46.7, 49.7, 55.0, 56.2, 76.3 and 117.5) and three quaternary carbons (δ 34.9, 43.4 and 139.2).

The ¹H NMR spectral data showed two methyl singlets at δ 0.52 and 0.83, four methyl doublets at δ 0.86, 0.87, 0.92 and 0.99 and a vinyl proton at δ 5.18 (1H, *dd*, *J* = 5.18, 1.5 Hz, H-7). The ¹³C NMR spectral data confirmed the presence of a carbon-carbon double bond at δ 117.5 (C-7) and 139.2 (C-8). The doublet of doublet splitting pattern of H-3 at δ 3.12 (1H, *dd*, *J* = 10.5, 4.5 Hz) indicated its (α) orientation.

On the basis of HMBC the vinyl proton H-7 (δ 5.18) showed correlations with C-5 (δ 46.7), C-6 (δ 26.7), C-9 (δ 49.7) and C-14 (δ 55.0), suggesting the presence of a double bond between C-7 and C-8. Thus on the basis of its spectroscopic data and comparison with those reported in the literatures (Farines *et al.*, 1988), compound CMD10 was therefore assigned as lophenol.

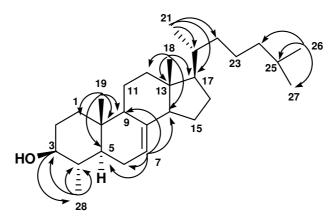
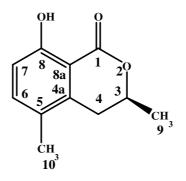


Figure 9 Selected HMBC correlations of CMD10


Table 9 ¹H, ¹³C NMR and HMBC spectral data of compounds **CMD10** (CDCl₃) and lophenol (**R**, CDCl₃)

Position	Type of C	δc /ppm	δ _H / j		
			(multiplic	HMBC	
		CMD10	CMD10	R	$H^1 \rightarrow {}^{13}C$
1	CH_2	37.0	1.83 (<i>m</i>), 1.13 (<i>m</i>)	-	-
2	CH_2	31.0	1.80 (<i>m</i>), 1.45 (<i>m</i>)	-	-
3	СН	76.3	3.12 (dd, 10.5, 4.5)	3.12 (<i>dd</i> , 10.6, 4.7)	28
4	СН	40.3	1.33 (<i>m</i>)	-	-
5	СН	46.7	1.12 (<i>m</i>)	-	-
6	CH_2	26.7	1.60 (<i>m</i>), 2.10 (<i>m</i>)	5.18 (<i>d</i> , 5.2)	-
7	СН	117.5	5.18 (dd, 5.8, 1.5)	-	5, 6, 9, 14
8	С	139.2	-	-	-
9	СН	49.7	1.62 (<i>m</i>)	-	-
10	С	34.9	-	-	-
11	CH_2	22.9	1.53 (<i>m</i>), 1.32 (<i>m</i>)	-	-
12	CH_2	39.5	1.12 (<i>m</i>), 1.35 (<i>m</i>)	-	-
13	С	43.4	-	-	-
14	СН	55.0	1.81 (<i>m</i>)	-	-
15	CH_2	23.9	1.15 (<i>m</i>), 1.52 (<i>m</i>)	-	-
16	CH_2	28.0	1.28 (<i>m</i>), 1.91 (<i>m</i>)	-	-

Table 9 (Continued)

		δc /ppm	δ _H / p		
Position	Type of	11	(multiplici	HMBC	
	С	CMD10 CMD10		R	$H^{1} \rightarrow {}^{13}C$
17	СН	56.2	1.20 (<i>m</i>)	-	-
18	CH_3	11.9	0.52 (s)	0.53 (s)	12, 13, 14, 17
19	CH_3	14.2	0.83 (s)	0.83 (s)	1, 5, 9, 10
20	СН	36.2	1.23 (<i>m</i>)	-	-
21	CH_3	18.9	0.92 (<i>d</i> , 6.3)	0.99 (<i>d</i> , 6.3)	17, 20, 22
22	CH_2	36.2	1.34 (<i>m</i>)	-	-
23	CH_2	39.6	1.21 (<i>m</i>)	-	-
24	CH_2	21.4	1.55 (<i>m</i>)	-	-
25	СН	28.0	1.85 (<i>m</i>)	-	-
26	CH_3	22.6	0.87 (<i>d</i> , 6.6)	0.87 (<i>d</i> , 6.5)	24, 25, 27
27	CH_3	22.8	0.86 (<i>d</i> , 6.6)	0.86 (<i>d</i> , 6.5)	24, 25, 26
28	CH ₃	15.2	0.99 (d, 6.3)	0.92 (<i>d</i> , 5.8)	3, 4, 5

1.3.1.10 Compound CMD11

Compound CMD11 was obtained as a colorless viscous oil, $[\alpha]_D^{28}$: - 122° (c = 0.03, CHCl₃) It exhibited UV absorption bands at 208, 248 and 323 nm for benzene chromophore. The IR spectrum showed absorption bands at 3290 and 1669 cm⁻¹ indicating the presence of hydroxyl and chelated carbonyl groups, respectively.

The ¹³C NMR spectral data displayed 15 signals for 15 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of two methyl (δ 18.1 and 20.9), one methylene (δ 31.9), three methine (δ 75.4, 115.7 and 137.4) and five quaternary carbons (δ 108.1, 134.9, 137.0, 160.6 and 170.3).

The ¹H NMR spectral data consisted of signals for two *ortho*-coupled aromatic protons of a 1,2,3,4-tetrasubstituted benzene at δ 6.82 (1H, *d*, *J* = 8.4 Hz, H-7) and 7.29 (1H, *d*, *J* = 8.4 Hz, H-6), one oxymethine proton at δ 4.68 (1H, *ddq*, *J* = 16.8, 11.4, 3.6 Hz, H-3), one methylene group at δ 2.72 (1H, *dd*, *J* = 16.8, 11.4 Hz, H-4) and 2.95 (1H, *dd*, *J* = 16.8, 3.6 Hz, H-4) and two methyl groups at δ 1.55 (3H, *d*, *J* = 6.0 Hz, Me-10) and 2.20 (3H, *s*, Me-9)

The locations of the two methyl groups (Me-9 and Me-10) at C-3 and C-5, respectively were deduced from HMBC correlations of Me-9 (δ 1.55) with C-3 (δ 75.4) and C-4 (δ 31.9) and of Me-10 (δ 2.20) with C-5 (δ 134.9), C-4a (δ 137.0) and C-6 (δ 137.4). On the basis of the above results and comparison with the reported data of 5-methylmellein [Cambie *et al.*, 1991], compound CMD11 was therefore assigned as 5-methylmellein.

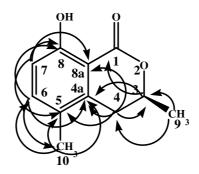
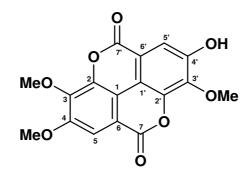



Figure 10 Selected HMBC correlations of CMD11

Table 10 1 H, 13 C NMR and HMBC spectral data of compounds CMD11 (CDCl₃)and 5-methylmellein (**R**, CDCl₃)

Position	Type of C	δ _c /ppm		$ \delta_{c} / ppm \qquad \qquad$		$\begin{array}{c} \text{HMBC} \\ \text{H}^{1} \Rightarrow {}^{13}\text{C} \end{array}$
		CMD11	R	CMD11	R	
1	С	170.3	170.4	-	-	-
2	-	-	-	-	-	-
3	СН	75.4	75.4	4.68 (<i>ddq</i> , 16.8,	4.69 (<i>ddq</i> , 16.6,	1, 4a
				11.4, 3.6)	11.4, 3.4)	
4	CH_2	31.9	31.9	2.72 (<i>dd</i> ,	2.72 (<i>dd</i> ,	3, 4a, 5, 8a
				16.8, 11.4),	11.6, 16.6),	
				2.95 (<i>dd</i> ,	2.95 (<i>dd</i> ,	
				16.8, 3.6)	16.6, 3.4)	
4a	С	137.0	137.1	-	-	-
5	С	134.9	134.9	-	-	-
6	СН	137.4	137.9	7.29 (<i>d</i> , 8.4)	7.29 (<i>d</i> , 8.5)	4a, 8, 10
7	СН	115.7	115.7	6.82 (<i>d</i> , 8.4)	6.82 (<i>d</i> , 8.5)	5, 8, 8a
8	С	160.6	160.5	-	-	-
8a	С	108.1	108.1	-	-	-
9	CH ₃	20.9	20.9	1.55 (<i>d</i> , 6.0)	1.55 (<i>d</i> , 6.3)	3, 4
10	CH ₃	18.1	16.1	2.20 (s)	2.20 (s)	5, 4a, 6

1.3.1.11 Compound CMD12

Compound CMD12 was obtained as a white solid. It exhibited UV absorption bands at 248 and 371 nm for benzene chromophore. The IR spectrum showed absorption bands at 3400 and 1744 cm⁻¹ indicating the presence of hydroxyl and carbonyl groups, respectively.

The ¹³C NMR spectral data displayed 17 signals for 17 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of three methyl (δ 56.8, 61.5 and 61.8), two aromatic methine (δ 107.7 and 112.8) and 12 quaternary carbons (δ 111.7, 112.0, 112.7, 114.0, 140.7, 141.0, 141.4, 141.8, 152.8, 154.0, 158.7 and 159.1).

The ¹H NMR spectral data consisted of signals for two *singlets* aromatic protons at δ 7.68 (1H, *s*, H-5) and 7.64 (1H, *s*, H-5'), three methoxyl groups at δ 4.17 (3H, s, 3-OMe), 4.04 (3H, s, 4-OMe) and 4.19 (3H, s, 3'-OMe).

The locations of the two aromatic protons (H-5 and H-5') were deduced from HMBC correlations of H-5 (δ 7.68) with C-3 (δ 141.8), C-4 (δ 154.0), C-6 (δ 114.0) and C-7 (δ 159.1) and of H-5' (δ 7.64) with C-1' (δ 111.7), C-3' (δ 140.7), C-4' (δ 152.8) and C-7' (δ 158.7). On the basis of the above results and comparison with the reported data of 3,4,3'-tri-O-methylellagic acid [Bai *et al.*, 2008], compound CMD12 was assigned as 3,4,3'-tri-O-methylellagic acid.

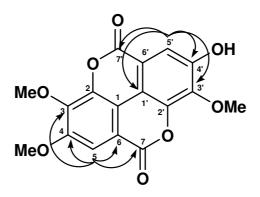
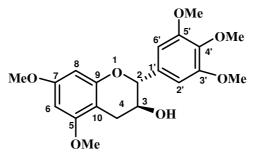



Figure 11 Selected HMBC correlations of CMD12

Table 11 ¹H, ¹³C NMR and HMBC spectral data of compounds CMD12(CDCl₃+DMSO-d₆) and 3,4,3'-tri-O-methylellagic acid (**R**, CDCl₃)

Position	Type of C	δc /ppm		δ _H / ppm (multiplicity, J/Hz)		HMBC H ¹ \rightarrow ¹³ C
		CMD12	R	CMD12	R	
1	С	112.0	107.4	-	-	-
2	С	141.4	141.2	-	-	-
3	С	141.8	141.1	-	-	-
4	С	154.0	153.7	-	-	-
5	СН	107.7	107.4	7.68 (s)	7.51 (s)	3, 4, 6, 7
6	С	114.0	113.5	-	-	-
7	С	159.1	158.6	-	-	-
1′	С	111.7	107.4	-	-	-
2'	С	141.0	140.6	-	-	-
3'	С	140.7	140.3	-	-	-
4′	С	152.8	153.2	-	-	-
5'	СН	112.8	111.8	7.64 (s)	7.60 (s)	1', 3' ,4' ,7'
6′	С	112.7	112.5	-	-	-
7′	С	158.7	153.7	-	-	-
3-OMe	CH ₃	61.8	61.3	4.17 (s)	4.03 (s)	3
4-OMe	CH ₃	56.8	56.7	4.04 (s)	3.99 (s)	4
3'-OMe	CH ₃	61.5	60.9	4.19 (<i>s</i>)	4.05 (<i>s</i>)	3'

1.3.1.12 Compound CMD13

Compound CMD13 was obtained as a colorless viscous oil, $[\alpha]_D^{28}$: - 47.7° (c = 0.07, CHCl₃) The IR spectrum showed absorption band for a hydroxyl at 3453 cm⁻¹. The UV spectrum showed absorption maxima at 207 and 270 nm.

The ¹³C NMR spectral data displayed 20 signals for 20 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of four aromatic methine carbons (δ 92.0, 93.0 and 104.0 (x2)), two oxymethine carbons (δ 68.4 and 82.2), a methylene carbon (δ 22.8), eight quaternary aromatic carbons (δ 101.1, 133.4, 138.2, 153.6 (x2), 155.2, 158.8 and 159.8) and five methoxyl carbons (δ 55.4, 55.5, 56.2 and 60.8 (x2)).

The ¹H NMR spectral data suggested the presence of four aromatic protons (δ 6.12, 6.15 and 6.68 (x2)), two methine protons (δ 4.08 and 4.63), two methylene protons (δ 2.60 and 3.10) and five methoxyl groups at δ 3.76, 3.81, 3.86 (x2) and 3.88 (each 3H, *s*, OCH₃). Two doublet resonances at δ 6.12 and 6.15 with the coupling constant of 2.1 Hz corresponded to the resonances of meta protons H-6 and H-8, respectively. A singlet at δ 6.68 were assigned for the resonances of H-2' and H-6'. The spectra further showed the resonances of H-2 (δ 4.63, *d*, *J* = 8.4 Hz), H-3 (m) and 2H-4 (δ 2.60, *dd*, *J* = 16.3, 9.0 Hz and 3.10, *dd*, *J* = 16.3, 6.0 Hz).

The downfield chemical shift of H-2 (δ 4.63) and H-3 (δ 4.08) indicated that these two protons were next to oxygen-bearing carbons. From NOESY experiment, the methine proton at δ 4.63 (H-2) showed no cross peak with H-3 supporting that H-2 and H-3 were *trans*. From comparison of the reported data of gallocatechin (Foo *et al.*, 2000), compound CMD13 was therefore assigned as 5,7,3',4',5'-penta-O-methylgallocatechin.

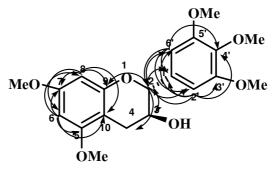


Figure 12 Selected HMBC correlations of CMD13

Table 12¹H, ¹³C NMR and HMBC spectral data of compound CMD13 (CDCl₃)and comparison with ¹H NMR of gallocatechin.

Position	Туре	δc /ppm	$\delta_{\rm H}$ / ppm multiplicity, J/Hz)		HMBC
	of C CMD13		CMD13	Gallocatechin	$H^1 \rightarrow^{13}C$
1					
1	-	-	-	-	-
2	СН	82.2	4.63 (<i>d</i> , 8.4)	4.55 (<i>d</i> , 7.2)	3, 4, 9, 1', 2', (6')
3	СН	68.4	4.08 (<i>m</i>)	3.97 (<i>m</i>)	1′, 10
4	CH_2	22.8	2.60 (<i>dd</i> , 16.3, 9.0)	2.4-2.9 (<i>m</i>)	2, 5, 9, 10
			3.10 (<i>dd</i> , 16.3, 6.0)		
5	С	158.8	-		-
6	СН	92.0	6.12 (<i>d</i> , 2.1)	5.94 (<i>dd</i> , 2.2)	5, 7, 8, 10
7	С	159.8	-		-
8	СН	93.0	6.15 (<i>d</i> , 2.1)	5.88 (<i>d</i> , 2.2)	6, 7, 9, 10
9	С	155.2	-		-
10	С	101.1	-		-
1′	С	133.4	-		-
2', 6'	СН	104.0	6.68 (<i>s</i>)	6.4 (<i>s</i>)	2, 1', 3', 4'
3', 5'	С	153.6	-	-	-
4′	С	138.2	-	-	-
5-OMe	CH_3	55.5	3.81 (s)	-	5
7-OMe	CH ₃	55.4	3.76 (<i>s</i>)	-	7
3', 5'-OMe	CH ₃	60.8	3.88 (s)	-	3', 5'
4'-OMe	CH ₃	56.2	3.86 (s)	-	4'

CHAPTER 2.1 Introduction

2.1.1 Introduction

Michelia alba DC. (*M. longifolia* B.) is a member of the Magnoliaceae family and called "champee" in Thailand (Smitinand, 2001). The genus *Michelia* contains about 50 species. *Michelia* species have been used for the treatment of cancer, for example *M. champaca* has been used in India for the treatment of abdominal tumors whereas *M. hypoleuca* and *M. officinalis* for carcinomatous sores and leukemia, respectively (Chen *et al.*, 2008). In the previous report, parthenolide and costunolide have been isolated from the chloroform extract of the fresh bark of *Michelia longifolia* Blume. Parthenolide displayed significant activity against the human laryngeal epidermoid carcinoma (ED₅₀ = 0.76) and the 9KB cell culture system (ED₅₀ = 0.45). Costunolide showed reproducible inhibitory activity against the KB cell culture of a human carcinoma of the nasopharynx (Likhitwitayawuid *et al.*, 1998).

M. alba is an evergreen tropical tree from Southeast Asia, 10-12 m tall. The bark is distinct ridges and brown color. Leaves are single arrange alternate oval, length 20 cm, width 8 cm. The flowers are fragrant white and have 8-12 petals.

b. stem

c. leaves

f. flowers

2.1.2 Review of Literatures

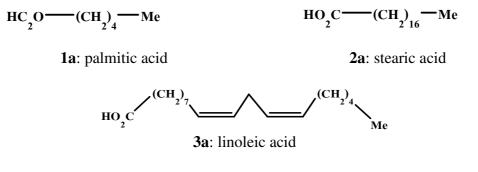
Chemical constituents isolated from the ten species of this genus were summarized in **Table 13**. Information obtained from SciFinder Scholar copyright in 2009 will be presented and classified into groups: monoterpenoids, sesquiterpenoids, triterpenoids, alkaloids, steroids, amide, lignin, benzenoids and aliphatic.

- a: aliphaticb: steroidsc: amided: triterpenoidse: sesquiterpenoidsf: monoterpenoidsg: ligninh: alkaloids
- i: benzenoids

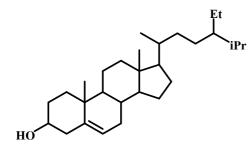
Scientific name	Part	Compounds	Bibliography
M. alba	Not specified	oxoushinsunin, 1h	Yang <i>et al.</i> ,
		ushinsunin, 2h	1962
		norushinsunin, 3h	
	Not specified	dehydrolinalool oxide, 1f	
		costunolide, 1e	Asaruddin <i>et</i>
		caryophyllene oxide, 2e	al., 2003
		dihydrocostunolide, 3e	
		dihydroparthenolide, 4e	
		parthenolide, 5e	
	Leaves	(-)-anonaine, 4h	
		(-)-norushinsunine, 5h	Chen et al.,
		(-)-ushinsunine, 6h	2008
		(-)- <i>N</i> -acetylanonaine, 7h	
		liriodenine, 8h	
		oxoxylopine, 9h	
		michelenolide, 6e	
		costunolide, 1e	
		11,13-dehydrolanuginolide, 7e	
		N-trans-feruloyltyramine, 1c	
		(+)-syringaresinol, 1g	

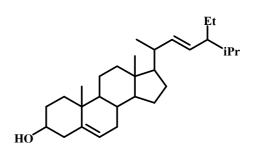
aphy
al.,
al.,
., 1982
., 1902
t al.,

Scientific name	Part	Compounds	Bibliography
M. fuscata	Leaves	 thalictrine picrate, 15h D-(-)-2,2-dimethylcoclaurinium picrate, 16h (-)-magnocurarine, 17h α-magnoflorine, 18h 	Yakugaku <i>et</i> al., 1959
	Not specified	magnolamine, 14h (+)-armepavine, 19h tri-o-methylmagnolamine, 20h o-methylcodamine, 21h magnolamine, 14h evoeuropine, 22h magnolin, 23h	Ito <i>et al.</i> , 1959 Aleshinskaya <i>et</i>
M. hydyosperma	Not specified Fruit	β-pinene, 5f α-terpineol, 6f safrole, 6i methyl eugenol ether, 7i	<i>al</i> , 1957 Liu <i>et al.</i> , 2007
		epi- α -Selinene, 18e β -sesquiphellandrene, 19e α -cubebene, 20e α -bergamotene, 21e eudesma-4(14),11-diene, 22e	
		α-muurolene, 23eα-caryophyllene, 24ecopaene , 25eβ-phellandrene, 16fβ-elemene, 8fβ-bisabolene, 26eδ-cadinene, 27e	

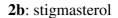

Scientific name	Part	Compounds	Bibliography
M. hydyosperma	Fruit	eucalyptol, 9f	Liu et al.,
	Not specified	(+)-limonene, 10f	2007
		safrole, 6i	Wu et al.,
		methyl eugenol ether, 7i	1981
M. lacei	Branches	(+)-alloaromadendrane-4α,10β-	Chen et al.,
		diol, 28e	2002
		D-aromadendrane-4β,10α-diol, 29e	
		parthenolide, 5e	
		spathulenol, 30e	
		syringin, 8i	
M. lanuginose	Bark	(-)-parthenolide, 5e	Talapatra <i>et</i>
		11βH,13-dihydroparthenolide, 4e	al., 1978
	Bark	michelanugine, 24h	Talapatra <i>et</i>
		N,O- diacetylmichelanugine, 25h	al., 1975
		oxoushinsunine, 1h	,
		oxoxylopine, 9h	Coo at al
M. maudiae	Leaves	(\pm) - γ -cadinene, 31e	Cao <i>et al</i> ., 2007
		γ -murolene, 32e	
		4-carene, 11f	
		l-alloaromadendrene, 33e	
		l-terpinen-4-ol, 12f	
		β-cubebene, 34e	

Scientific name	Part	Compounds	Bibliography
M. maudiae	Leaves	(±)-3-carene, 13f	Cao et al., 2007
		(R)-(+)-α-pinene, 3f	
		α -caryophyllene, 24e	
		espatulenol, 35e	
		(+)-limonene, 10f	
		α-copaene, 25e	
		elixene, 14f	
		β-caryophyllene oxide, 36e	
		δ-terpinene, 15f	
		(+)-ledol, 37e	
		β-phellandrene, 16f	
		(-)-β-cadinene, 38e	
		β-elemene, 39e	
		2-borneol, 17f	
		α-gurjunene, 40e	
		(+)-aromadendrene, 41e	
		β -selinenol, 42e	
		eucalyptol, 4f	
		β-pinene, 5f	
		γ-caryophyllen, 43e	
		γ-terpinene, 18f	
		α-terpineol, 6f	
		3,3-dimethyl-2- methylenenorbornane, 7f	

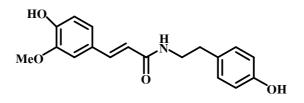

Scientific name	Part	Compounds	Bibliography
M. maudiae	Leaves	β-caryophyllene, 44e	Cao et al., 2007
M. montana	Bark	safrole, 6i	Dutta et al.,
		sarisan, 9i	1987
	Leaves	asaricin, 10i	Van Genderren
		α-asaron, 11i	et al., 1999
		myristicin, 12i	
		safrole, 6i	
		eugenyl methyl ether, 13i	
M. nilagirica	Root Bark	parthenolide, 5e	Kumar et al.,
		costunolide, 1e	1995
M. rajaniana	Bark	(-)-parthenolide, 5e	Ruangrungsi et
·		oxoushinsunine, 1h	al., 1988
M. szechuanica	Aerial part	sphaelactone A, 45e	Lin et al., 1999
		3,4-divanilyltetrahydrofuran, 3g	
		(-)-syringaresinol, 2g	
		sinapaldehyde, 14i	
		syringaldehyde, 15i	
M. yunnanennsis	Flower	(+)-methylxanthoxylol, 4g	Xiong <i>et al.</i> ,
		horsfieldin, 5g	2008
		(-)-sesamin, 6g	
		(-)-eudesmin, 7g	
	Not specified	1β-hydroxyarbusculin A, 46e	Hong et al.,
		reinosin, 47e	1998
		(-)-parthenolide, 5e	
		oleanolic acid, 1d	
		syringaldehyde, 15i	
	Not	12,13-di-acetoxy-1,4,6,11-	Hong et al.,
	specified	eudesmanetetrol, 48e	1998


Structures

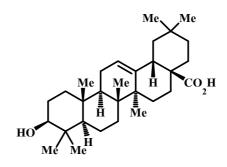
a: aliphatic



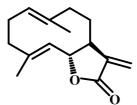
b: steroids



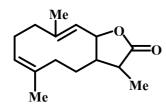
1b: β-sitosterol

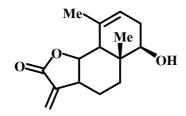


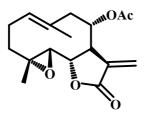
c: amide

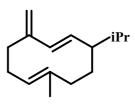


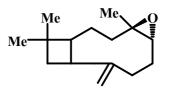
1c: N-trans-feruloyltyramine

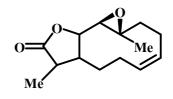

d: triterpenoids

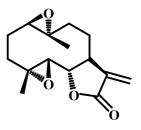

1d: oleanolic acid

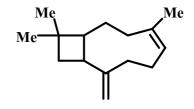

1e: costunolide

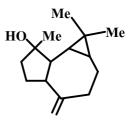

3e: dihydrocostunolide

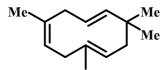

5e: parthenolide

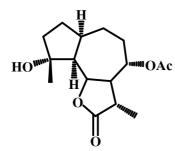

7e: 11,13-dehydrolanuginolide

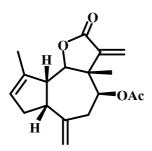

9e: germacrene D

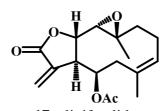

2e: caryophyllene oxide

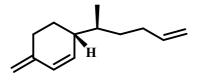

4e: dihydroparthenolide

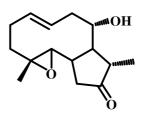

6e: michelenolide

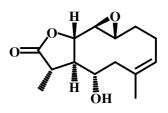

8e: caryophyllene

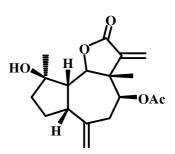

10e: spathulenol

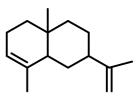

11e: α-humulene

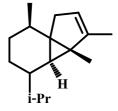

13e: michefuscalide


15e: azuleno[4,5-b]furan-2(3H)-one

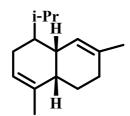

17e: lipiferolide


19e: β-sesquiphellandrene

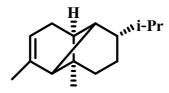

12e: deacetyllanuginolide


14e: 11,13-dihydrostizolin

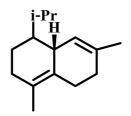
16e: β-cyclolipiferolide

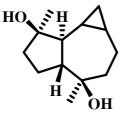


18e: epi-α-selinene

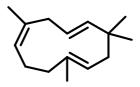


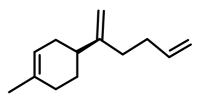
20e: α-cubebene

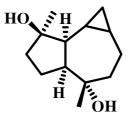

21e: α -bergamotene

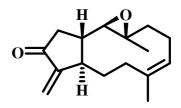

23e: α-muurolene

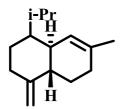
25e: copaene

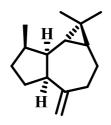

27e: δ -cadinene

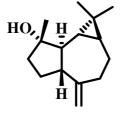

29e: D-aromadendrane- 4β ,10 α -diol

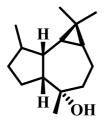

22e: eudesma-4(14),11-diene

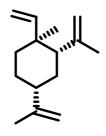

24e: α-caryophyllene

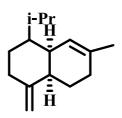

26e: β-bisabolene

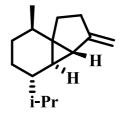

28e: (+)-alloaromadendrane- 4α , 10β -diol

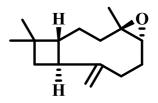

30e: spathulenol

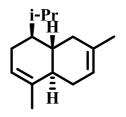

31e: (\pm) - γ -cadinene

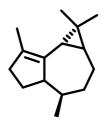

33e: l-alloaromadendrene

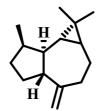

35e: espatulenol

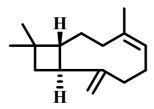

37e: (+)-ledol

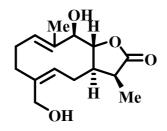

39e: β-elemene

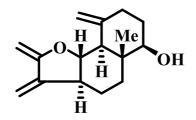

32e: γ-murolene

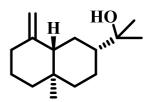

34e: β-cubebene

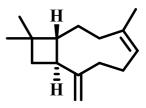

36e: β -caryophyllene oxide

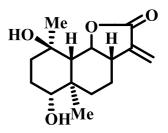

38e: (-)-β-cadinene

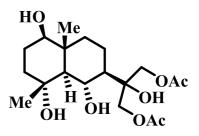

40e: α-gurjunene


41e: (+)-aromadendrene

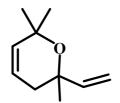

43e: γ-caryophyllen


45e: sphaelactone A


47e: reinosin

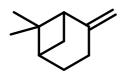

42e: β-selinenol

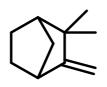
44e: β-caryophyllene

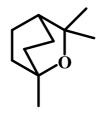


46e: 1β-hydroxyarbusculin A

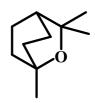
48e: 12,13-di-acetoxy-1,4,6,11eudesmanetetrol

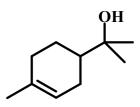

f: monoterpenoids

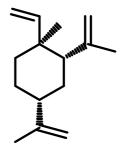

1f: dehydrolinalool oxide

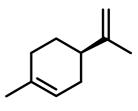

3f: α-pinene

5f: β-pinene

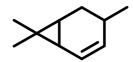

7f: 3,3-dimethyl-2methylenenorbornane


9f: eucalyptol

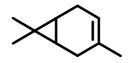

2f: camphene

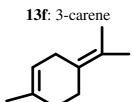

4f: eucalyptol

6f: α-terpineol



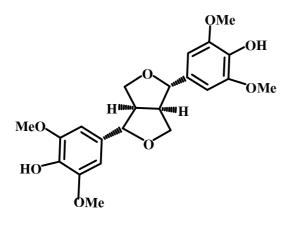
8f: β -elemene



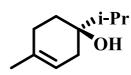

10f: (+)-limonene

f: monoterpenoids

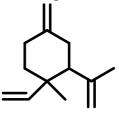
11f: 4-carene

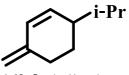


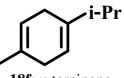
15f: δ-terpinene


HO

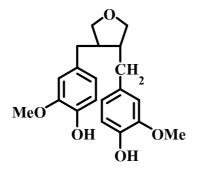
17f: 2-borneol



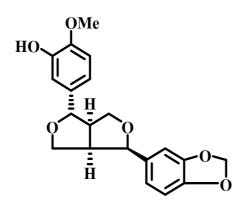

1g: syringaresinol


12f: l-terpinen-4-ol

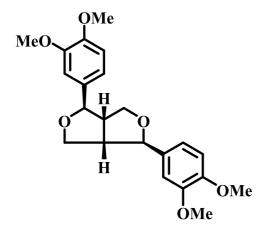
14f: elixene

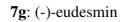


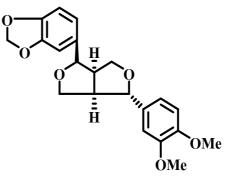
16f: β -phellandrene

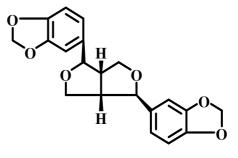


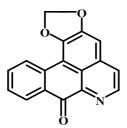
18f: γ-terpinene



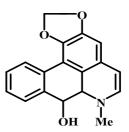



3g: 3,4-divanilyltetrahydrofuran

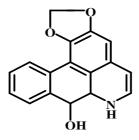

5g: horsfieldin

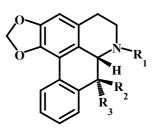


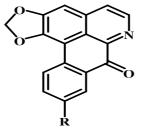
4g: (+)-methylxanthoxylol

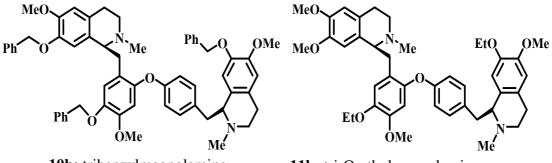


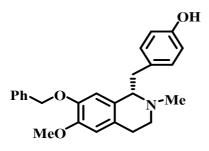
6g: (-)-sesamin


h: alkaloids

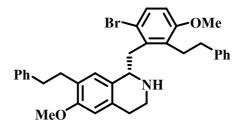

1h: oxoushinsunin


2h: ushinsunin

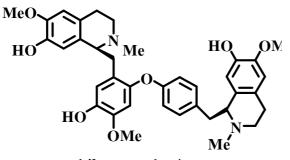

3h: norushinsunin


4h: $R_1 = R_2 = R_3 = H$ **4h:** (-)-anonaine**5h:** $R_1 = R_2 = H, R_3 = OH$ **5h:** (-)-norushinsunine**6h:** $R_1 = CH_3, R_2 = H, R = OH$ **6h:** (-)-ushinsunine**7h:** $R = COCH_3, R_2 = R_3 = H$ **7h:** (-)-*N*-acetylanonaine

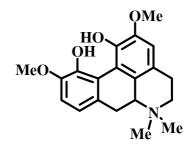
8h: R = H	8h: liriodenine
9h: R = OH	9h: oxoxylopine

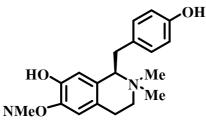


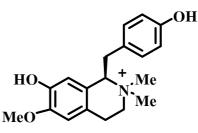
10h: tribenzylmagnolamine

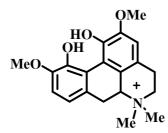


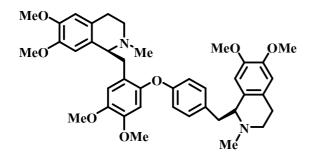
12h: coclaurine

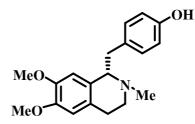

11h: tri-O-ethylmagnolamine

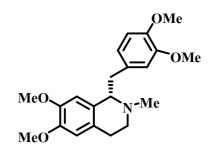

13h: reticuline

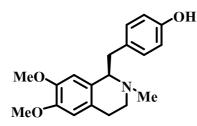

14h: magnolamine

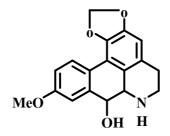

15h: thalictrine picrate

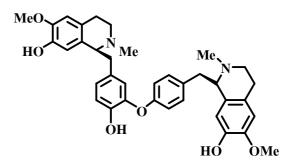

16h: D-(-)-2,2-dimethylcoclaurinium picrate

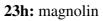

17h: (-)-magnocurarine

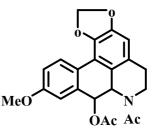

18h: α-magnoflorine

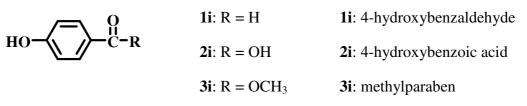

20h: tri-O-methylmagnolamine

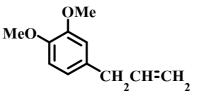

19h: (+)-armepavine

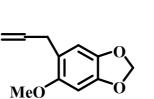

21h: O-methylcodamine

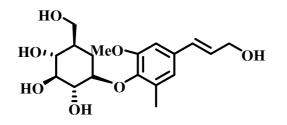


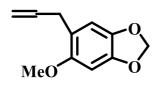

22h: evoeuropine

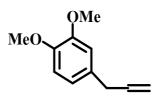

24h: michelanugine



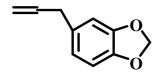

25h: N,O-diacetylmichelanugine

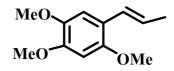

MeO


4i: eugenol methyl ether


6i: safrole

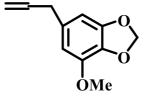
8i: syringing


10i: asaricin


5i: estragole

CH₂CH=CH₂

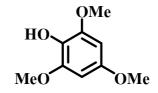
7i: methyl eugenol ether



9i: sarisan

11i: α -asaron

i: benzenoids


12i: myristicin

OMe MeO

13i: eugenyl methyl ether

MeO -СНО HO ОМе

14i: sinapaldehyde

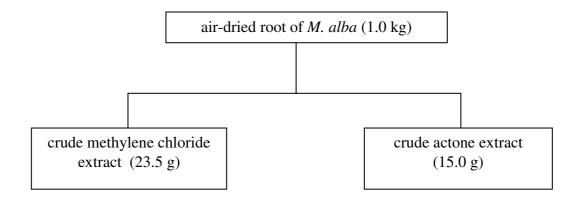
15i: syringaldehyde

2.1.3 Objective

This part of research work involved isolation, purification and structure elucidation of chemical constituents from the root of *Michelia alba*.

CHAPTER 2.2 EXPERIMENTAL

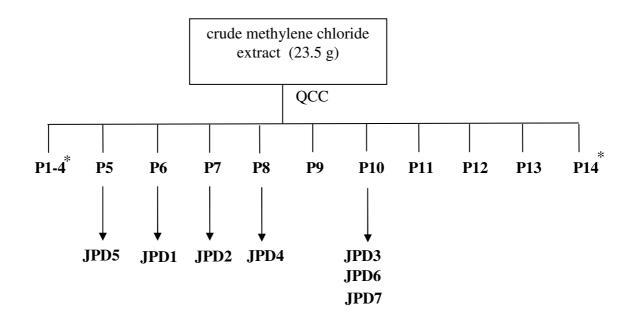
2.2.1 Instruments and Chemicals


Melting points were determined on the Fisher-John melting point apparatus. The UV spectra were measured with a SPECORD S 100 (Analytikjena) and principle bands (λ_{max}) were recorded as wavelengths (nm) and log ε in MeOH solution. The optical rotation [α]_D was measured in chloroform and methanol solution with Sodium D line (590 nm) on a JASCO P-1020 digital polarimeter. The IR spectra were measured with a Perkin-Elmer FTS FT-IR spectrophotometer. NMR spectra were recorded using 300 MHz Bruker FTNMR Ultra ShieldTM spectrometers in acetone- d_6 and CDCl₃ with TMS as the internal standard. Chemical shifts are reported in δ (ppm) and coupling constants (*J*) are expressed in hertz. EI and HRFAB mass spectra were measured on a Kratos MS 25 RFA spectrometer. Solvents for extraction and chromatography were distilled at their boiling point ranges prior to use except chloroform was analytical grade reagent. Quick column chromatography (QCC) and column chromatography (CC) were carried out on silica gel 60 H (Merck) and silica gel 100 (Merck), respectively.

2.2.2 Plant Material

The root of *M. alba* was collected from Chumphon province in the southern part of Thailand, in May 2008. Identification was made by Assoc. Prof. Dr. Kitichate Sridith and a specimen (No. 0013594) deposited at PSU Herbarium, Department of Biology, Faculty of Science, Prince of Songkla University.

2.2.3 Extraction and Isolation


The chopped air-dried root of *M. alba* (1.0 kg) was successively extracted with methylene chloride and acetone (one week for each solvent) at room temperature. The solvent was evaporated under reduced pressure to give crude methylene chloride extract as green viscous residue (23.5 g) and crude acetone extract (15.0 g), respectively. The process of extraction was shown in **Scheme 4.**

Scheme 4. Extraction of the root of *M. alba*

2.2.4 Isolation and Chemical Investigation

2.2.4.1 Investigation of the crude methylene chloride extract from the root of *M. alba*

*No further investigation

Scheme 5 Isolation of compounds JPD1- JPD7 from the methylene chloride extract

The crude methylene chloride extract as green viscous residue (23.5 g) was subjected to quick column chromatography over silica gel using solvent of increasing polarity from hexane through EtOAc. The eluates were collected and combined based on TLC characteristics to give fourteen fractions (P1-P14).

Fraction P5 (235.0 mg) was purified by CC with 10% acetone/hexane to give **JPD5**: T-cadinol (55.0 mg).

Fraction P6 (2.3 g) was filtered and washed with hexane to give **JPD1**: costunolide (1.21 g) as white crystal and the mother liquor as violet viscous oil after evaporation of the solvent.

Fraction P7 (2.8 g) was filtered and washed with hexane to give **JPD2**: parthenolide (1.71 g) as white crystal and the mother liquor as green viscous oil after evaporation of the solvent.

Fraction P8 (115.7 mg) was separated by CC with 30% EtOAc/hexane to give **JPD4**: reynosin (10.7 mg).

Fraction P10 (111.8 mg) was separated by CC with 30% acetone/hexane to give JPD3: 9β -hydroxy-11 β H-dihydroparthenolide (6.7 mg), JPD6: 2-(3',4',5'-trihydroxy-3'-methylbutanoyloxy)-11 β H-dihydroparthenolide (14.0 mg) and JPD7: lariciresinol (8.8 mg).

Compound JPD1: costunolide, white solid, m.p. 103-105 °C; $[\alpha]_D^{28}$: +132° (c = 0.30, CHCl₃);ref $[\alpha]_D^{28}$: +131° (c = 0.30, CHCl₃) (Ming *et al.*, 1989); UV λ_{max} (MeOH) (log ε): 207 (3.56) nm; IR (neat) v_{max} 1763 (C=O stretching) and 1663 (C=C stretching) cm⁻¹. For ¹H NMR (CDCl₃, 300 MHz) spectral data and ¹³C NMR (CDCl₃, 75 MHz) spectral data see **Table 14.**

Compound JPD2: parthenolide, white solid, m.p. 113-115 °C; $[\alpha]_D^{28}$: -50° (c = 0.49, CHCl₃); ref $[\alpha]_D^{28}$: -26° (c = 0.03, CHCl₃) (Galal *et al.*, 1999); UV λ_{max} (MeOH) (log ε): 205 (3.59) nm; IR (neat) v_{max} 1769 (C=O stretching) and 1680 (C=C stretching) cm⁻¹. For ¹H NMR (CDCl₃, 300 MHz) spectral data and ¹³C NMR (CDCl₃, 75 MHz) spectral data see **Table 15.**

Compound JPD3: 9 β -hydroxy-11 β H-dihydroparthenolide, white solid, m.p. 143-145°C; [α] _D ²⁸: -49.3° (c = 1.45, CHCl₃). UV λ_{max} (MeOH) (log ε): 205 (3.62) nm; IR (neat) v_{max} 3444 (O-H stretching), 1769 (>C=O stretching) and 1669 (C=C stretching) cm⁻¹. For ¹H NMR (CDCl₃, 300 MHz) spectral data and ¹³C NMR (CDCl₃, 75 MHz) spectral data see **Table 16**.

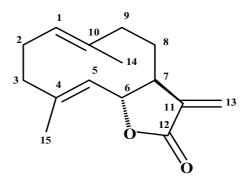
Compound JPD4: reynosin, white solid, m.p. 133-135 °C; $[\alpha]_D^{28}$: +95.6 (c = 0.06, CHCl₃); ref $[\alpha]_D^{28}$: +137° (c = 0.11, CHCl₃) (Abegaz *et al.*, 1991); UV λ_{max} (MeOH) (log ε): 205 (3.63) nm; IR (neat) v_{max} 3467 (O-H stretching), 1766

(C=O stretching) and 1654 (C=C stretching) cm⁻¹. For ¹H NMR (CDCl₃, 300 MHz) spectral data and ¹³C NMR (CDCl₃, 75 MHz) spectral data see **Table 17**.

Compound JPD5: T-cadinol, white solid, m.p. 44-46 °C; $[\alpha]_D^{28}$: +5° (c = 0.9), CHCl₃); ref $[\alpha]_D^{28}$: +3° (c = 1.2, CHCl₃) (Claeson *et al.*, 1991); IR (neat) v_{max} 3450 (O-H stretching) and 1668 (C=C stretching) cm⁻¹. For ¹H NMR (CDCl₃, 300 MHz) spectral data and ¹³C NMR (CDCl₃, 75 MHz) spectral data see **Table 18**.

Compound JPD6: 2α -(3',4',5'-trihydroxy-3'-methylbutanoyloxy)-11 β H-dihydroparthenolide, colorless viscous oil; $[\alpha]_D^{28}$: -43° (c = 0.7), CHCl₃). UV λ_{max} (MeOH) (log ε): 206 (3.76) nm; IR (neat) v_{max} 3437 (O-H stretching), 1770 (>C=O stretching) and 1639 (C=C stretching) cm⁻¹. HRFAB: m/z [M+H]⁺ 399.2015 (calcd for C₂₀H₃₁O₈, 3992019); For ¹H NMR (CDCl₃, 300 MHz) spectral data and ¹³C NMR (CDCl₃, 75 MHz) spectral data see **Table 19**.

Compound JPD7: lariciresinol, yellow viscous oil; $[\alpha]_D^{28}$: +35° (c = 1.3), CHCl₃); ref $[\alpha]_D^{28}$: +30° (c = 0.10, CHCl₃) (xie *et al.*, 2003); UV λ_{max} (MeOH) (log ε): 205 (3.76), 228 (3.24) and 281 (2.87) nm; IR (neat) v_{max} 3419 (O-H stretching) and 1604 (C=C stretching) cm⁻¹. For ¹H NMR (CDCl₃, 300 MHz) ¹³C NMR (CDCl₃, 75 MHz) spectral data see **Table 20.**


CHAPTER 2.3 RESULTS AND DISCUSSION

2.3.1 Structure elucidation of compounds from the root of *M. alba*

The crude methylene chloride extract from the root of *M. alba* were subjected to repeated quick column and column chromatography over silica gel to furnish one new sesquiterpene: 2α -(3',4',5'-trihydroxy-3'-methylbutanoyloxy)-11 β H-dihydroparthenolide (**JPD6**) together with five known sesquiterpenes: costunolide (**JPD1**), parthenolide (**JPD2**), 9β -hydroxy-11 β H-dihydroparthenolide (**JPD3**), reynosin (**JPD4**) and T-cadinol (**JPD5**), and one known lignan: lariciresinol (**JPD7**).

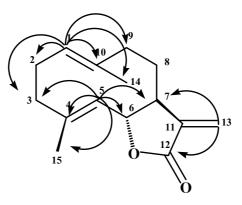
Their structures were elucidated mainly by 1D and 2D NMR spectroscopic data: ¹H, ¹³C NMR, DEPT 135°, DEPT 90°, HMQC, HMBC, COSY and NOESY. The physical data of the known compounds were also compared with the reported values. Mass spectra were determined for the new sesquiterpene: 2α -(3',4',5'-trihydroxy-3'-methylbutanoyloxy)-11 β H-dihydroparthenolide (**JPD6**).

2.3.1.1 Compound JPD1

Compound JPD1 was obtained as a white solid, mp 103-105 °C, $[\alpha]_D^{28}$: +132° (c = 0.30, CHCl₃). The IR spectrum showed absorption bands at 1763 cm⁻¹ indicating the presence of an α , β -unsaturated γ -lactone.

The ¹³C NMR spectral data displayed 15 signals for 15 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of two methyl (δ 16.0 and 17.6), five methylene (δ 26.1, 27.9, 39.3, 40.9 and 119.8), four methine (δ 50.7, 82.0, 127.0 and 127.3) and four quaternary carbons (δ 136.8, 140.0, 141.3 and 170.3).The ¹H NMR spectral data showed signals assignable to two tertiary methyls at δ 1.42 (*s*, Me-14) and δ 1.70 (*s*, Me-15), a methine at δ 2.57 (m, H-7), the downfield exocyclic methylenes at δ 5.53 (1H, *d*, *J* = 3.6 Hz, H-13) and 6.25 (1H, *d*, *J* = 3.6 Hz, H-13), a methine bearing the oxygen function at δ 4.57 (*t*, *J* = 9.9 Hz, H-6), and two olefins at δ 4.84 (1H, *brdd*, *J* = 10.5, 3.9 Hz, H-1) and 4.74 (1H, *brd*, *J* = 9.9 Hz, H-5) together with four methylene protons.

The locations of the two methyl groups (Me-14 and Me-15) at C-10 and C-4, respectively were deduced from HMBC correlations of Me-14 (δ 1.42) with C-9 (δ 40.9), C-10 (δ 136.8) and C-1 (δ 127.0) and of Me-15 (δ 1.70) with C-3 (δ 39.3), C-4 (δ 140.0) and C-5 (δ 127.3). The stereochemistry at C-6 and C-7 in compound JPD1 was assigned from NOESY experiments. Since no cross peak was observed between H-6 and H-7, compound JPD1 should contain a *trans*-fused lactone ring. The lack of NOESY cross peaks between H-1 and Me-14 and between H-5 and Me-15 suggested *E*-configurations of both double bonds. On the basis of the above results and comparison with the reported data of costunolide [Ming *et al.*, 1989], compound JPD1 was assigned as costunolide.



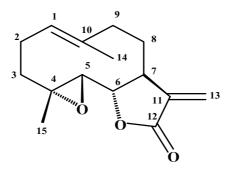

Figure 14 Selected HMBC correlations of JPD1

Table 14¹H, ¹³C NMR and HMBC spectral data of compounds JPD1 (CDCl₃) andcostunolide (**R**, CDCl₃)

		δc /	ppm	δ _H / ppm (mu	ltiplicity, J/Hz)	HMBC
Position	Type of C	JPD1	R	JPD1	R	$H^{1} \rightarrow {}^{13}C$
1	СН	127.0	127.0	4.84 (brdd,	4.84 (brdd,	2, 3, 9, 14
				10.5, 3.9)	12.3, 4.0)	
2	CH_2	26.1	28.2	2.0-2.4 (<i>m</i>)	1.67 <i>(m)</i> ,	1, 3, 4, 10
					2.0-2.4(m)	
3	CH_2	39.3	41.1	2.4-2.0 (<i>m</i>)	2.4-2.0 (<i>m</i>)	6, 7, 12
4	С	140.0	140.0	-	-	-
5	СН	127.3	127.2	4.74 (brd, 9.9)	4.73 (brd, 10.5)	3, 6, 7, 11, 15
6	СН	82.0	82.0	4.57 (<i>t</i> , 9.9)	4.57 (<i>t</i> , 9.5)	4, 5, 7, 8, 11
7	СН	50.7	50.5	2.57 (m)	2.56 (<i>m</i>)	6, 9, 11, 12, 13
8	CH_2	27.9	26.3	1.67 (<i>m</i>),	2.0-2.4 (<i>m</i>)	6, 7, 9, 10
				2.0-2.4 (<i>m</i>)		
9	CH_2	40.9	39.7	2.0-2.4 (<i>m</i>)	2.0-2.4 (<i>m</i>)	1, 7, 8, 10
10	С	136.8	136.9	-	-	-
11	С	141.3	141.4	-	-	-
12	С	170.3	170.4	-	-	-

		δc /ppm		δH / ppm (mt	НМВС	
Position	Type of C	JPD1	R	JPD1	R	$H^1 \rightarrow^{13}C$
13	CH ₂	119.8	119.7	5.53 (<i>d</i> , 3.6), 6.25 (<i>d</i> , 3.6)	5.51 (<i>d</i> , 3.5) 6.25 (<i>d</i> , 3.5)	6, 7, 12
14 15	CH ₃ CH ₃	16.0 17.6	16.3 17.5	1.42 (s) 1.70 (s)	1.40 (s) 1.70 (s)	1, 2, 8, 9, 10 3, 4, 5, 6

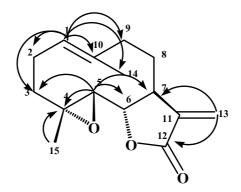
2.3.1.2 Compound JPD2

Compound JPD2 was obtained as a white solid, mp 113-115 °C, $[\alpha]_D$ ²⁸: -50° (c = 0.49, CHCl₃). The IR spectrum showed absorption bands of an α , β unsaturated γ -lactone at 1769 cm⁻¹.

The ¹³C NMR spectral data showed 15 signals for 15 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of two methyl (δ 17.0 and 17.3), five methylene (δ 24.2, 31.7, 36.4, 41.2 and 121.3), four methine (δ 47.7, 66.4, 82.5 and 125.3) and four quaternary carbons (δ 61.6, 134.7, 139.3 and 169.3). The ¹H NMR spectral data displayed the signals for exocyclic methylene protons conjugated with the γ -lactone ring system at δ 5.63 (H-13, d, J = 3.6 Hz) and 6.35 (H-13, d, J = 3.6 Hz), a lactone proton signal at δ 3.86 (H-6, t, J = 8.7 Hz), an oxymethine proton at δ 2.79 (1H, d, J = 8.7 Hz, H-5), two methyl signals at δ 1.71 (Me-14, s) and 1.30 (Me-15, s). The ¹H and ¹³C NMR spectral data of compound JPD2 were closely related to those of compound JPD1 suggesting the same sesquiterpene lactone skeleton. The differences were shown at positions 4 and 5 in which an olefinic methine proton H-5 at $\delta_{\rm H}$ 4.74 in JPD1 was replaced by an oxymethine proton at $\delta_{\rm H}$ 2.79 (d, J = 8.7 Hz) in JPD2 and the chemical shifts of C-4 (δ 140.0) and C-5 (δ 127.3) which were those of sp² carbons in JPD1 were replaced by those of C-4 (δ 61.6) and C-5 (δ 66.4) in JPD2 whose values suggested an epoxide functionality.

The stereochemistry at C-4, C-5, C-6 and C-7 was deduced by NOESY experiment. Cross peaks were observed between H-5/H-7, H-6/Me-15, with the absence of cross peaks between H-6/H-7 and H-5/Me-15. These results indicated the *trans*-fused lactone ring and also the orientation of the epoxy group to be *trans* to Me-

15 and to H-5. Thus on the basis of its spectroscopic data and comparison with the previously reported data of parthenolide (Galal *et al.*, 1999), compound JPD2 was therefore, assigned as parthenolide.



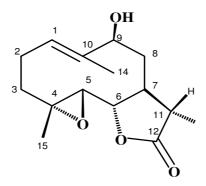

Figure 15 Selected HMBC correlations of JPD2

Table 15 ¹H, ¹³C NMR and HMBC spectral data of compounds **JPD2** (CDCl₃) and parthenolide (**R**, CDCl₃)

		δc /ppm		δ _H / ppm (mi	ultiplicity, J/Hz)	HMBC
Position	Type of C	JPD2	R	JPD2	R	$H^1 \rightarrow^{13}C$
1	СН	125.3	125.2	5.21 (<i>br d</i> , 11.7)	5.21 (<i>dd</i> , 12.2, 4.0)	2, 3, 8, 9, 14
2	CH_2	24.2	24.1	2.10-2.25 (<i>m</i>),	2.09-2.24 (<i>m</i>),	1, 3, 4, 10
				2.46 (<i>m</i>)	2.46 (<i>ddd</i> , 13.8,	
					12.2, 12.5)	
3	CH_2	36.4	36.3	1.25 (<i>m</i>),	1.25 <i>(m)</i> ,	1, 2, 4, 5, 15
				2.10-2.25 (<i>m</i>)	2.09-2.24 (<i>m</i>)	
4	С	61.6	61.5	-	-	-
5	СН	66.4	66.3	2.79 (<i>d</i> , 8.7)	2.79 (<i>d</i> , 8.9)	3, 4, 6, 7, 15
6	СН	82.5	82.4	3.86 (<i>t</i> , 8.7)	3.86 (<i>dd</i> , 8.9, 8.3)	4, 7, 8, 11, 12
7	CH	47.7	47.6	2.78 (m)	2.78 (<i>m</i>)	5, 9, 11, 12, 13
8	CH_2	31.7	30.6	2.10-2.25 (<i>m</i>)	2.09-2.24 (<i>m</i>)	6, 7, 9, 10
				1.72 (<i>m</i>)	1.73 (<i>m</i>)	
9	CH_2	41.2	41.1	2.10-2.25 (<i>m</i>)	2.09-2.24 (<i>m</i>)	1, 7, 8, 10, 14
				2.38 (<i>m</i>)	2.38 (<i>m</i>)	

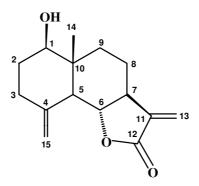
		δc /p	opm	$\delta_{\rm H}$ / ppm (mu	ltiplicity, J/Hz)	HMBC
Position	Type of C	JPD2	R	JPD2	R	$H^1 \rightarrow^{13}C$
10	С	134.7	134.6	-	-	-
11	С	139.3	139.2	-	-	-
12	С	169.3	169.2	-	-	-
13	CH_2	121.3	121.1	5.63 (<i>d</i> , 3.6),	5.63 (<i>d</i> , 3.6),	7, 11, 12
				6.35 (<i>d</i> , 3.6)	6.35 (<i>d</i> , 3.6)	
14	CH_3	17.0	16.5	1.71 (s)	1.72 (s)	1, 9, 10
15	CH ₃	17.3	17.2	1.30 (<i>s</i>)	1.31 (s)	3, 4, 5

2.3.1.3 Compound JPD3

Compound JPD3 was obtained as a white solid , mp 143-145 °C, $[\alpha]_D$ ²⁸: -49.3° (c = 1.45, CHCl₃). The IR spectrum showed absorption bands at 3444 and 1769 cm⁻¹ indicating the presence of hydroxyl and γ -lactone functionalities, respectively.

The ¹H and ¹³C NMR spectral data of compound JPD3 were comparable to those of compound JPD2. The major differences between compound JPD3 and compound JPD2 were that compound JPD3 did not show the two downfield doublets at $\delta_{\rm H}$ 5.63 and 6.35 due to the exocyclic methylene protons as in compound JPD2. Instead, in compound JPD3 a new methyl signal at $\delta_{\rm H}$ 1.30 (*d*, *J* = 7.2 Hz) appeared together with a multiplet signal of a methine proton at $\delta_{\rm H}$ 2.30. A new oxymethine proton was also evidenced at $\delta_{\rm H}$ 4.15 (m) whose position at C-9 was determined through an HMBC experiment which showed correlations with C-1 (δ 125.8), C-7 (δ 48.3), C-8 (δ 37.8) and C-14 (δ 10.8). The new methyl protons at δ 1.30 (Me-13) was attached to the ring at C-11 due to its HMBC correlations with C-7 (δ 48.3), C-11 (δ 42.0) and C-12 (δ 177.2). NOESY experiment displayed cross peaks of H-7/Me-13/H-9 and H-6/H-11 suggesting 9 β OH and 11 β H. Thus on the basis of its spectroscopic data and comparison with the previous report [Galal et al., 1999], compound JPD3 was assigned as 9 β -hydroxy-11 β H-dihydroparthenolide.

Figure 16 Selected HMBC correlations of JPD3


Table 16 ¹H, ¹³C NMR and HMBC spectral data of compounds **JPD3** (CDCl₃) and 9β -hydroxy-11 β H-dihydroparthenolide (**R**, CDCl₃)

		δc /j	opm	$\delta_{\rm H}$ / ppm (mul	tiplicity, J/Hz)	HMBC
Position	Type of C	JPD3	R	JPD3	R	$H^1 \rightarrow^{13}C$
	~~~					
1	СН	125.8	126.6	5.36 ( <i>dd</i> , 12.0, 2.7)	5.37 ( <i>dd</i> , 12.3, 1.2)	2, 3, 9, 14
2	$CH_2$	23.6	24.2	2.16 ( <i>m</i> ),	2.16 (m),	1, 3, 4, 10
				2.46 ( <i>m</i> )	2.46 ( <i>ddd</i> , 13.4,	
					12.2, 5.4, 4.5)	
3	$\mathrm{CH}_2$	36.3	36.8	1.12 ( <i>m</i> ), 2.13 ( <i>m</i> )	1.12 ( <i>ddd</i> , 13.0,	1, 5, 15
					5.6, 5.5), 2.14 ( <i>m</i> )	
4	С	61.4	61.8	-	-	-
5	CH	66.0	66.5	2.61 ( <i>d</i> , 8.7)	2.6 ( <i>d</i> , 8.9)	3, 4, 6, 7
6	CH	81.3	81.7	3.81 ( <i>t</i> , 8.7)	3.8 ( <i>t</i> , 8.6)	4, 5, 7, 8, 11
7	CH	48.3	48.9	1.96 ( <i>m</i> )	1.96 ( <i>m</i> )	5, 9, 11, 13
8	$\mathrm{CH}_2$	37.8	38.2	1.96 ( <i>m</i> ), 1.89 ( <i>m</i> )	1.96 ( <i>m</i> ), 1.86 ( <i>m</i> )	6, 9, 11
9	CH	80.0	80.0	4.15 ( <i>m</i> )	4.16 ( <i>m</i> )	1, 7, 10 ,14
10	С	136.6	136.9	-	-	-
11	CH	42.0	42.5	2.30 ( <i>m</i> )	2.29 ( <i>m</i> )	6, 8, 12, 13
12	С	177.2	177.4	-	-	-

 Table 16 (Continued)

			opm	$\delta_{\rm H}$ / ppm (multiple)	HMBC	
Position	Type of C	JPD3	R	JPD3	R	$H^1 \rightarrow {}^{13}C$
13	$CH_3$	13.6	13.6	1.30 (d, 7.2)	1.30 (d, 7.0)	7, 11, 12
14	$CH_3$	10.8	11.3	1.73 (s)	1.73 (s)	1, 9, 10
15	CH ₃	17.2	17.7	1.31 (s)	1.31 (s)	3, 4, 5

#### 2.3.1.4 Compound JPD4



Compound JPD4 was obtained as a white solid, mp 133-135 °C,  $[\alpha]_D$ ²⁸: +95.6 (c = 0.26, CHCl₃). The IR spectrum showed absorption bands at 3467 and 1766 cm⁻¹ indicating the presence of hydroxyl and  $\gamma$ -lactone functionalities, respectively.

The ¹³C NMR and DEPT spectral data exhibited 15 carbons, attributable to one methyl ( $\delta$  11.6), six methylene ( $\delta$  21.4, 31.3, 33.5, 35.7, 110.0 and 117.0), four methine ( $\delta$  49.6, 53.0, 78.2 and 79.6) and four quaternary carbons ( $\delta$  43.0, 139.2, 142.4 and 170.7). The ¹H NMR spectral data displayed signals assignable to a tertiary methyl at  $\delta$  0.81 (Me-14), an oxymethine at  $\delta$  3.55 (1H, *dd*, *J* = 11.4, 4.5 Hz, H-1) and two sets of exocyclic methylene protons at  $\delta$  4.85 (1H, *br s*, H-15), 5.00 (1H, *br s*, H-15) and 5.43 (1H, *d*, *J* = 3.6, H-13), 6.10 (1H, *d*, *J* = 3.6 Hz, H-13).

The locations of the two sets of exocyclic methylene protons at C-13 and C-15 were confirmed by HMBC correlations of 2H-13 at  $\delta$  5.43 and 6.10 with the carbons at C-11 ( $\delta$  139.2), C-12 ( $\delta$  170.7) and C-7 ( $\delta$  49.6), and of 2H-15 at  $\delta$  4.85 and 5.00 with C-3 ( $\delta$  33.5), C-4 ( $\delta$  142.4) and C-5 ( $\delta$  53.0). In addition an oxymethine proton at  $\delta$  3.55 showed correlations with C-2 ( $\delta$  31.3), C-3 ( $\delta$  33.5), C-10 ( $\delta$  43.0), C-5 ( $\delta$  53.0) and C-14 ( $\delta$  11.6) suggesting a hydroxyl group at C-1. NOESY experiment displayed cross peak between H-1/H-5, H-5/H-7, H-6/Me-14 and no cross peaks between H-6/H-7 suggesting that Me-14 and H-6 were on the same side whereas those of H-1, H-5 and H-7 were on the same side but opposite to Me-14 and H-6 and the lactone ring was *trans*-fused as in compounds JPD1 and JPD2. On the basis of the above analysis and comparison with the literatures, the structure of JPD4 was identified as reynosin (Abegaz *et al.*, 1991).

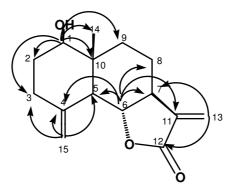
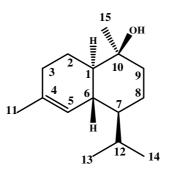




Figure 17 Selected HMBC correlations of JPD4

**Table 17** ¹H, ¹³C NMR and HMBC spectral data of compounds **JPD4** (CDCl₃) and reynosin (**R**, CDCl₃)

		δc /ppm	$\delta_{\rm H}$ / ppm (mult	iplicity, J/Hz)	HMBC
Position	Type of C	JPD4	JPD4	R	H≯ ¹³ C
1	CH	78.2	3.55 ( <i>dd</i> , 11.4, 4.5)	3.55 ( <i>dd</i> , 12.0, 6.0)	2, 3, 5, 10, 14
2	$CH_2$	31.3	-	-	-
3	$CH_2$	33.5	1.60 ( <i>m</i> ), 1.80 ( <i>m</i> )	-	-
4	С	142.4	-	-	-
5	СН	53.0	2.19 ( <i>d</i> , 10.8)	-	1, 3, 7, 9
6	СН	79.6	4.02 ( <i>t</i> , 10.8)	4.02 ( <i>t</i> , 11.0)	4, 5, 8, 10, 11, 12
7	СН	49.6	2.55 (td, 11.5, 3.0)	-	5, 6, 8, 11, 13
8	$CH_2$	21.4	1.60 ( <i>m</i> ), 2.10 ( <i>m</i> )	-	-
9	$CH_2$	35.7	1.30 ( <i>m</i> ), 2.15 ( <i>m</i> )	-	-
10	С	43.0	-	-	-
11	С	139.2	-	-	-
12	С	170.7	-	-	-
13	$CH_2$	117.0	5.43 ( <i>d</i> , 3.6),	5.43 ( <i>d</i> , 3.6),	7, 11, 12
			6.10 ( <i>d</i> , 3.6)	6.10 ( <i>d</i> , 3.6 )	
14	CH ₃	11.6	0.81 (s)	0.80 (s)	1, 5, 9, 10
15	$CH_2$	110.0	4.85 (br s )	4.85 (br s)	3, 4, 5
			5.00 (br s )	5.00 (br s )	

#### 2.3.1.5 Compound JPD5



Compound JPD5 was obtained as a white solid, m.p. 44-46 °C,  $[\alpha]_D^{28}$ : +5° (c = 0.9), CHCl₃). The IR spectrum showed absorption bands of hydroxyl group at 3450 cm⁻¹ and double bond at 1668 cm⁻¹.

The ¹³C NMR spectral data showed 15 signals for 15 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of four methyl ( $\delta$  15.2, 21.2, 26.1 and 28.2), four methylene ( $\delta$  19.8, 22.6, 30.9 and 40.3), five methine ( $\delta$  23.7, 37.7, 46.6, 47.9 and 122.6) and two quaternary carbons ( $\delta$  70.7, and 134.3).

The ¹H NMR spectral data displayed the signals for an isopropyl group at  $\delta$  2.18 (1H, *m*, H-12), 0.79 (3H, *d*, *J* = 6.9 Hz, Me-14) and 0.91 (3H, *d*, *J* = 6.9 Hz, Me-13), a three-proton singlet at  $\delta$  1.22 for a methyl attached to a quaternary carbon bearing a hydroxyl group, a trisubstituted olefinic proton at  $\delta$  5.55 (1H, *brs*, H-5) and a methyl group at  $\delta$  1.67 (*br s*).

The stereochemistry at C-1, C-6, C-7 and C-10 was deduced by NOESY experiment. Cross peaks were observed between H-1/H-7, H-1/Me-15, with the absence of cross peaks between H-1/H-6. These results indicated the *trans*-fused ring of JPD5. Thus on the basis of its spectroscopic data and comparison with the previously reported data of T-cadinol (Claeson *et al.*, 1991), compound JPD5 was therefore, assigned as T-cadinol.

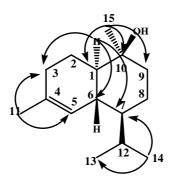
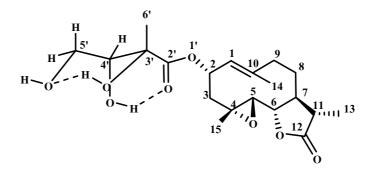




Figure 18 Selected HMBC correlations of JPD5

**Table 18** ¹H, ¹³C NMR and HMBC spectral data of compounds **JPD5** (CDCl₃) and T-cadinol (**R**, CDCl₃)

		δc /	ppm	δ _H / ppm (mu	ltiplicity, J/Hz)	НМВС
Position	Type of C	JPD5	R	JPD5	R	$H^1 \rightarrow {}^{13}C$
1	СН	47.9	47.9	1.10 ( <i>dd</i> , 10.2, 2.1)	1.09 ( <i>ddd</i> , 12.3, 10.2, 1.9)	3, 6, 7
2	$CH_2$	22.6	22.6	1.93 ( <i>m</i> ), 1.35 ( <i>m</i> )	1.92 ( <i>m</i> ), 1.35 ( <i>m</i> )	-
3	$\mathrm{CH}_2$	30.9	30.9	1.89-2.20 ( <i>m</i> )	1.92-2.08 (m)	-
4	С	134.3	134.3	-	-	-
5	СН	122.6	122.6	5.55 (brs)	5.55 (brs)	1, 3, 6, 7, 11
6	СН	37.7	37.7	1.97 (brs)	1.95 (brs)	2, 4, 5, 10, 12
7	СН	46.6	46.6	1.00 ( <i>tt</i> , 11.1, 2.1)	1.00 ( <i>tt</i> , 11.3, 3.2)	1, 6, 8, 9, 12, 13
8	$\mathrm{CH}_2$	19.8	19.8	1.45 ( <i>m</i> ), 1.33 ( <i>m</i> )	1.47( <i>m</i> ), 1.32 ( <i>m</i> )	-
9	$\mathrm{CH}_2$	40.3	40.3	1.40 ( <i>m</i> ), 1.72 ( <i>m</i> )	1.41( <i>m</i> ), 1.74 ( <i>m</i> )	-
10	С	70.7	70.6	-	-	-
11	СН	23.7	23.8	1.67 (brs)	1.67 (brs)	3, 4, 5
12	$CH_3$	26.1	26.2	2.18 (hept d, 3.3)	2.18 (hept d, 3.2)	6, 7, 8, 13, 14
13	$CH_3$	21.2	21.4	0.91 ( <i>d</i> , 6.9)	0.91 ( <i>d</i> , 6.9)	7, 12, 14
14	$CH_3$	15.2	15.2	0.79 ( <i>d</i> , 6.9)	0.79 ( <i>d</i> , 7.0)	7, 12, 13
15	$CH_3$	28.2	28.5	1.22 (s)	1.22 (s)	1, 9, 10

#### 2.3.1.6 Compound JPD6



Compound JPD6 was obtained as a colorless gum,  $[\alpha]_D^{28}$ : -43° (c = 0.7), CHCl₃). It was assigned a molecular formula C₂₀H₃₁O₈ [M+H]⁺ on the basis of a molecular ion at *m/z* 399.2015 by HRFABMS. The IR spectrum showed absorption bands of an  $\alpha$ , $\beta$ -unsaturated  $\gamma$ -lactone at 1770 cm⁻¹ and hydroxyl at 3437 cm⁻¹.

The ¹³C NMR spectral data showed 20 signals for 20 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of four methyl ( $\delta$  17.0, 17.6, 18.2 and 21.4), four methylene ( $\delta$  29.4, 41.2, 45.4 and 72.0), seven methine ( $\delta$  42.4, 51.8, 66.3, 66.4, 73.2, 81.8 and 128.9) and five quaternary carbons ( $\delta$  60.7, 73.5, 136.2, 177.2 and 178.2).

The ¹H and ¹³C NMR spectral data of compound JPD6 were closely related to those of compound JPD3 suggesting the same sesquiterpene skeleton. The differences were shown in the main skeleton at C-9, of which that of JPD3 was an oxymethine carbon ( $\delta$  80.0) whereas that of JPD6 was a methylene carbon ( $\delta$  41.2). Another difference was shown as an additional ester side chain signals of JPD6 at  $\delta$ 4.14 (1H, *dd*, *J* = 3.6, 1.0 Hz, H-4'), 4.37 (1H, *dd*, *J* = 10.7, 3.6 Hz, H_a-5'), 4.31 (1H, *dd*, *J* = 10.7, 1.0 Hz, H_b-5') and 1.47 (3H, *s*, Me-6'). The oxymethine H-4' ( $\delta$  4.14) showed COSY cross peak with an oxymethine H-5' ( $\delta$  4.37) and also showed HMBC correlations with C-2' ( $\delta$  178.2), C-3' ( $\delta$  73.5), C-5' ( $\delta$  72.0) and C-6' ( $\delta$  21.4). The methyl protons Me-6' ( $\delta$  1.47) showed HMBC correlations with C-2' ( $\delta$  178.2), C-3' ( $\delta$  73.5) and C-4' ( $\delta$  73.2). These informations suggested a 2,3,4-trihydroxy-2methylbutanoyloxy side chain whose attachment at C-2 of a sesquiterpene skeleton was determined through an HMBC experiment in which the oxymethine proton signal at  $\delta$  4.66 (1H, dt, J = 10.5, 5.7 Hz, H-2) showed correlations with C-1 ( $\delta$  128.9), C-3 ( $\delta$  45.4) and C-10 ( $\delta$  136.2). The multiplicity of the oxymethine proton H-2 signal as a doublet of triplet ( $J_{ax-ax} = 10.5$ ,  $J_{ax-eq} = 5.7$  Hz) from coupling with H-1 and 2H-3, indicated that H-2 was situated in an axial ( $\beta$ ) position. NOESY experiment displayed cross peaks of H-1/H-5/H-7, H-6/H-11/Me-15 and H-2/Me-14/Me15/H-3 $\beta$ . suggesting  $\alpha$ -orientation of 2,3,4-trihydroxy-2-methylbutanoyloxy side chain. Compound JPD6 was therefore suggested as  $2\alpha$ -(3',4',5'-trihydroxy-3'-methylbutanoyloxy)-11 $\beta$ H-dihydro parthenolide, a new compound.

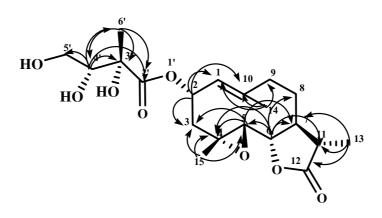
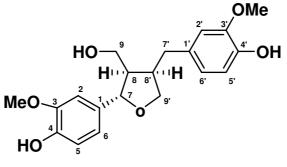



Figure 19 Selected HMBC correlations of JPD6


**Table 19** ¹H, ¹³C NMR and HMBC spectral data of compound **JPD6** (CDCl₃) and comparison of ¹³C NMR with **JPD3** 

Position	Туре	δc /	ppm	δ _H / ppm (multiplicity, J/Hz)	$\begin{array}{c} \text{HMBC} \\ \text{H}^{1} \Rightarrow {}^{13}\text{C} \end{array}$	COSY
	of C	JPD6	JPD3	JPD6		
1	СН	128.9	125.8	5.25 (brd, 10.5)	3, 8, 9, 14	2
2	СН	66.4	23.6	4.66 ( <i>dt</i> , 10.5, 5.7)	1, 3, 10	1, 3
3	$CH_2$	45.4	36.3	2.55 ( <i>dd</i> , 12.0, 5.7 ),	1, 2, 4, 5, 6	2
				1.22 ( <i>dd</i> , 12.0, 10.5)	-	
4	С	60.7	61.4	-	-	-
5	СН	66.3	66.5	2.79 ( <i>d</i> , 9.3)	3, 4, 7	6

Table 19 (Continued)

Position	Type of C	δc /ppm		δ _H / ppm (multiplicity, J/Hz)	$\begin{array}{c} \text{HMBC} \\ \text{H}^{1} \rightarrow {}^{13}\text{C} \end{array}$	COSY
		JPD6	JPD3	JPD6		
6	CH	81.8	81.3	3.80 ( <i>t</i> , 9.3)	4, 5, 7, 8, 11	5, 7
7	CH	51.8	48.3	1.88 ( <i>m</i> )	5, 6, 8, 9, 11, 13	6, 8, 11
8	$CH_2$	29.4	37.8	1.95 ( <i>m</i> ), 1.65 (m)	-	-
9	$CH_2$	41.2	80.0	2.10 ( <i>m</i> ), 2.30 (m)	1, 7, 8, 10	-
10	С	136.2	136.6	-	-	-
11	CH	42.4	42.0	2.30 ( <i>m</i> )	7, 8, 12, 13	7, 13
12	С	177.2	177.2	-	-	-
13	$CH_3$	13.2	13.6	1.29 ( <i>d</i> , 6.9 )	7, 11, 12	11
14	$CH_3$	17.6	10.8	1.77 (s)	1, 8, 9, 10	-
15	$CH_3$	18.2	17.2	1.30 (s)	3, 4, 5	-
2'	С	178.2	-	-	-	-
3'	С	73.5	-	-	-	-
4′	СН	73.2	-	4.14 ( <i>dd</i> , 3.6, 1.0)	2', 3', 5', 6'	5'
5'	$CH_2$	72.0	-	4.37 ( <i>dd</i> , 10.7, 3.6)	2', 3', 4' ,6'	4′
				4.31 ( <i>dd</i> , 10.7, 1.0)		
6′	CH ₃	21.4	-	1.47 (s)	2', 3', 4'	-

### 2.3.1.7 Compound JPD7



Compound JPD7 was isolated as a colorless viscous oil,  $[\alpha]_D^{28}$ : +35° (c = 1.3), CHCl₃). Ihe IR spectrum showed absorption bands due to hydroxyl at 3419 cm⁻¹ and double bond at 1604 cm⁻¹. The UV absorption was shown at 205, 228 and 281nm.

The ¹³C NMR spectral data recorded in CDCl₃ showed 20 signals for 20 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested a presence of four oxygenated olefinic quaternary carbons at  $\delta$  144.0, 145.0, 146.5 and 146.6, two olefinic quaternary carbons at  $\delta$  132.3 and 134.8, six aromatic carbons at  $\delta$  108.3, 111.2, 114.2, 114.4, 118.8 and 121.9, an oxygenated methine carbon at  $\delta$  82.8, two methine carbons at  $\delta$  42.4 and 52.6, two oxygenated methylene carbons at  $\delta$  60.9 and 72.9 and two methoxyl carbons at  $\delta$  55.9x2.

The ¹H NMR spectral data showed signals at  $\delta$  6.88 (1H, *d*, *J* = 1.8, H-2), 6.82 (1H, *d*, *J* = 8.4, H-5), 6.79 (1H, *dd*, *J* = 8.4, 1.8, H-6), 6.68 (1H, *d*, *J* = 1.8, H-2'), 6.85 (1H, *d*, *J* = 8.4, H-5') and 6.69 (1H, *dd*, *J* = 8.4, 1.8, H-6') indicating two 1,3,4trisubstituted benzene rings. An oxygenated methine signal at  $\delta$  4.78 (1H, *d*, *J* = 6.6 Hz, H-7), two methine signals at  $\delta$  2.40 (1H, *m*, H-8) and 2.73 (1H, *m*, H-8') and two methoxyl signals at  $\delta$  3.86 (3H, *s*, 3-OMe) and  $\delta$  3.88 (3H, *s*, 3'-OMe) were observed.

On the basis of HMBC the oxygenated methine proton H-7 at  $\delta$  4.78 showed correlations with C-1 ( $\delta$  134.8), C-8 ( $\delta$  52.6), C-9 ( $\delta$  60.9), C-8' ( $\delta$  42.4) and C-9' ( $\delta$  72.9), a methine proton H-8 at  $\delta$  2.40 showed correlations with C-1 ( $\delta$  134.8), C-9 ( $\delta$  60.9), C-7' ( $\delta$  33.3), C-8' ( $\delta$  42.4) and C-9' ( $\delta$  72.9) and that of H-8' at  $\delta$  2.73 showed correlations with C-7 ( $\delta$  82.8), C-8 ( $\delta$  52.6), C-9 ( $\delta$  60.9), C-1' ( $\delta$  132.3), C-7' ( $\delta$  33.3) and C-9' ( $\delta$  72.9).

The stereochemistry at C-7, C-8 and C-8' was deduced by NOESY experiment. Cross peaks were observed between H-8/H-8', with the absence of cross peaks between H-8/H-7. These results indicated that H-8 and H-8' were *cis* and H-8 and H-7 were *trans*. On the basis of its spectroscopic data and comparison with previously reported data (xie *et al.*, 2003). Compound JPD7 was identified as lariciresinol.

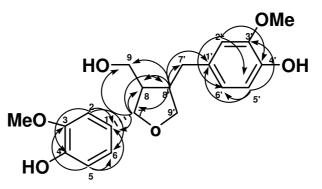





Table 20¹H, ¹³C NMR and HMBC spectral data of compounds JPD7 (CDCl₃) andlariciresinol (**R**, MeOD)

		δc /p	opm	$\delta_{\rm H}$ /	/ ppm	
Position	Type of			(multipli	city, J/Hz)	HMBC
	С	JPD7	R	JPD7	R	$H^{1} \rightarrow {}^{13}C$
1	С	134.8	135.8	-	-	-
2	СН	108.3	110.7	6.88 ( <i>d</i> , 1.8)	6.90 ( <i>d</i> , 1.8)	1, 4,6
3	С	146.5	149.0	-	-	-
4	С	145.0	147.1	-	-	-
5	СН	114.2	116.0	6.82 ( <i>d</i> , 8.4)	6.76 ( <i>m</i> )	1, 3, 6
6	СН	118.8	119.8	6.79 ( <i>dd</i> , 8.4, 1.8)	6.75 ( <i>m</i> )	1, 2, 4, 5
7	СН	82.8	84.1	4.78 ( <i>d</i> , 6.6)	4.74 ( <i>d</i> , 7.0 )	1, 8, 9, 8', 9'
8	СН	52.6	54.0	2.40 ( <i>m</i> )	2.37 ( <i>m</i> )	1, 9, 7', 8', 9'
9	$CH_2$	60.9	60.5	3.74 ( <i>dd</i> , 8.4, 6.6)	3.62 ( <i>dd</i> , 10.9, 6.5)	—
				3.90 ( <i>dd</i> , 8.4, 7.2)	3.83 ( <i>dd</i> , 10.9, 8.0)	

		δc /p	pm	δ _H /	ppm	
Position	Туре			(multiplic	city, J/Hz)	HMBC
	of C	JPD7	R	JPD7	R	H ¹ → ¹³ C
1'	С	132.3	133.6	-	-	-
2'	СН	111.2	113.5	6.68 ( <i>d</i> , 1.8)	6.79 ( <i>d</i> , 1.9)	4', 5', 6'
3'	С	146.6	149.0	-	-	-
4′	С	144.0	145.8	-	-	-
5'	CH	114.4	116.2	6.85 ( <i>d</i> , 8.4)	6.71 ( <i>d</i> , 8.0)	1', 3', 6'
6′	CH	121.9	122.2	6.69 ( <i>dd</i> , 8.4, 1.8)	6.64 ( <i>dd</i> , 8.0, 1.9)	2', 4', 7'
7′	$\mathrm{CH}_2$	33.3	33.7	2.54 ( <i>dd</i> , 13.2,	2.48 ( <i>dd</i> , 13.4,	
				10.8)	11.1)	
				2.92 ( <i>dd</i> , 13.2,	2.92 ( <i>dd</i> , 13.4,	
				5.1)	4.8)	
8′	СН	42.4	43.9	2.73 ( <i>m</i> )	2.73 ( <i>m</i> )	7, 8, 9, 1', 7', 9'
9′	$CH_2$	72.9	73.5	3.77 ( <i>dd</i> , 8.4, 5.7)	3.72 ( <i>dd</i> , 8.4, 5.8)	7, 8, 7′
				4.05 ( <i>dd</i> , 8.4, 6.6)	3.97 ( <i>dd</i> , 8.4, 6.5)	
3-OMe	$CH_3$	55.9	56.4	3.86 (s)	3.82 (s)	3
3'-OMe	CH ₃	55.9	56.4	3.88 (s)	3.84 (s)	3'

# CHAPTER 4 CONCLUSION

Thirteen known compounds; three triterpenes: friedelin (CMD1), 5(6)gluten-3 $\alpha$ -ol (CMD2) and betulinic acid (CMD3), seven steroids: a mixture of  $\beta$ sitosterol (CMD4) and stigmasterol (CMD5), stigmast-4-en-3-one (CMD6), 6 $\alpha$ hydroxystigmast-4-en-3-one (CMD7), ergosterol peroxide (CMD8), 5 $\alpha$ -cholest-7-en-3-one (CMD9) and lophenol (CMD10), 5-methylmellein (CMD11), 3,4,3'-tri-Omethylellagic acid (CMD12) and 5,7,3',4',5'-penta-O-methylgallocatechin (CMD13) were isolated from the stem of *Punica granatum*. Their structures were elucidated by spectroscopic methods. A mixture of CMD4 and CMD5 (2.3 g) and CMD1 (1.2 g) were major components.

One new sesquiterpene,  $2\alpha$ -(3',4',5'-trihydroxy-3'-methylbutanoyloxy)-11 $\beta$ H-dihydroparthenolide (**JPD6**), and six known compounds, five sesquiterpenes: costunolide (**JPD1**), parthenolide (**JPD2**),  $9\beta$ -hydroxy-11 $\beta$ H-dihydroparthenolide (**JPD3**), reynosin (**JPD4**) and T-cadinol (**JPD5**), one lignan: lariciresinol (**JPD7**) were isolated from the root of *Michelia alba*. Their structures were elucidated by spectroscopic methods. Compounds **JPD1** (1.21 g) and **JPD2** (1.71 g) were major components.

## REFERENCES

Abegaz, B. M. 1991. Polyacetylenic thiophenes and terpenoids from the roots of *Echinops Pappii*. Phytochemistry. 30, 879-881.

Al-Maiman, S. A., & Ahnad, D. 2002. Changes in physical and chemical properties during pomegranate (*Punica granatum* L.) fruit maturation. Food Chemistry. 76, 437-441.

Ahad, A. M., Goto, Y., Kiuchi, F., Tsuda, Y., Kondo, K. and Sato, T. 1991. Studies on crude drugs effective on visceral larva migrans. XII. Nematocidal principles in oakmoss absolute and nematocidal activity of 2,4-dihydroxybenzoates. Chem. Pharm. Bull. 39, 1043-1046.

Bai, N., He, K., Roller, M., Zheng, B., Chen, X., Shao, Z. Peng, T. and Zheng, Q. 2008. Active compounds from *Lagerstroemia* speciosa, Insulin-like glucose uptake-stimulatory/inhibitory and adipocyte differentiation-Inhibitory activities in 3T3-L1 cells. J. Agric. Food Chem. 56, 11668-11674.

Bell, C., & Hawthorne, S. 2008. Ellagic acid, pomegranate and prostate cancer-A mini review. Journal of Pharmacy and Pharmacology. 60, 139–144.

Cambie, R. C., Lal, A. R., Rutledge, P. S. and Woodgate, P. D. 1991. Ent-14[s],16β,17-trihydroxyatisan-3-one and further constituents from *Euphorbia fidjiana*. Phytochemistry. 30, 287-292.

Cheenpracha, S. 2004. Chemical constituents from the seeds of *Cerbera manghas* and the stems of *Derris trifoliata*. Master of Science Thesis in Organic Chemistry, Prince of Songkla Universitry, p 137.

Chen, C. Y., Huang, L., Chen, L. J., Lo, W. L., Kuo, S. Y., Wang, Y. D., Kuo, S. H. and Hsieh, T. J. 2008. Chemical constituents from the leaves of *Michelia alba*. Chemistry of Natural Compounds. 44, 137-139.

Claeson, P., Andersson, R. and Samuelsson, G. 1991. T-Cadinol: A pharmacologically active constituent of scented marrh: introductory pharmacological characterization and high field ¹H- and ¹³C-NMR data. Planta medica. 57, 352-356.

Daengrot, C. 2006. Chemical constituents from the Bark of Heritiera littoralis. Master of Science Thesis in Organic Chemistry, Prince of Songkla Universitry, p 59-61.

Della Greca, M., Monaco, P. and Previtera, L. 1990. Stigmasterols from *Typha latifolia*. J. Nat. Prod. 53, 1430-1435.

Dolle, F., Hetru, C., Roussel, J. P., Rousseau, B., Sobrio, F., Luu, B. and Hoffmann, J. A. 1991. Synthesis of a tritiated-3-dehydroecdysteroid putative precursor of ecdysteroid biosynthesis in *Locusta migratoria*. Tetrahedron. 47, 7067-7080.

Farines, M., Cocallemen, S. and Soulier, J. 1988. Triterpene alcohols, 4-methylsterols and 4-desmethylsterols of eggplant seed oil. A new phytosterol. Lipids. 23, 349-354.Galal, A. M., Ibrahim, A-R. S., Mossa, J. S. and El-Feraly, F. S. 1999. Microbial transformation of parthenolide. Phytochemistry. 51, 761-765.

Kotwal, G. J. 2007. Genetic diversity-independent neutralization of pandemic viruses (e.g. HIV), potentially pandemic (e.g. H5N1 strain of influenza) and carcinogenic (e.g. HBV and HCV) viruses and possible agents of bioterrorism (variola) by enveloped virus neutralizing compounds (EVNCs). Vaccine. 26, 3055–3058.

Likhitwitayawuid, K., Runggrungsi, N., Boriboon, M., Lange, G. L. and Decicco, C. P. 1998. Constituents of the bark of *Michelia longifolia*. J. Sci. Soc. Thailand. 14, 73-76.

Macias, F. A., Simonet, A. M. and Esteban, M. D. 1994. Potential allelopathic lupine triterpenes from bioactive fractions of *Melilotus messanensis*. Phytochemistry. 36, 1369-1379.

Ming, C. W., Mayer, R., Zimmermann, H. and Rucker, G. 1989. A non-oxidized melampolide and other germacranolides from *Aristolochia yunnanensis*. Phytochemistry. 28, 3233-3234.

Reddy, M. K., Gupta, S. K., Jacob, M. R., Khan, S. I., & Ferreira, D. 2007. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannin and phenolic acids from *Punica granatum* L. Planta Medica. 73, 461-467.

Shwartz, E., Glazer, I., Bar-Ya'akov, I., Matityahu, I., Bar-Ilan, I., Holland, D. and Amir, R. 2009. Changes in chemical constituents during the maturation and ripening of two commercially important pomegranate accessions. Food Chemistry. 115, 965–973.

Smitinand, T. 1980. Thai Plant Names (Botanical Name-Vernacular Names)., 2nd ed., Funny Publishing Limited Partnership, Bangkok, Thailand, p 226.

Susidarti, R.A., Rahmani, M., Ismail, H. B., Sukari, A., Hin, T-Y. Y., Lian, G. C., Ali, A. M., Kulip, J. and Waterman, P. G. 2006. A new coumarin and triterpenes from Malaysian *Micromelum minutum*. Natural Product Research. 20, 145-151.

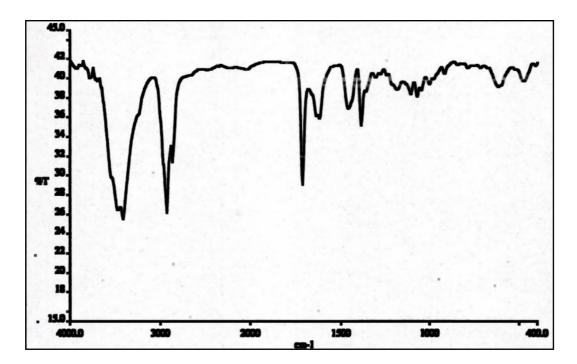
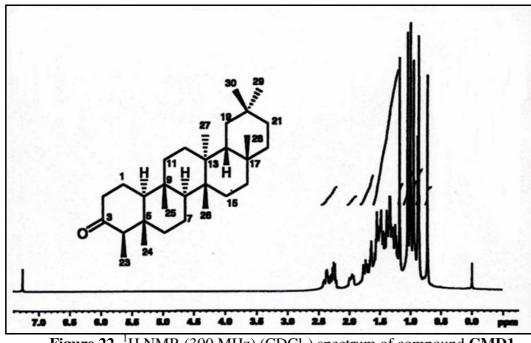
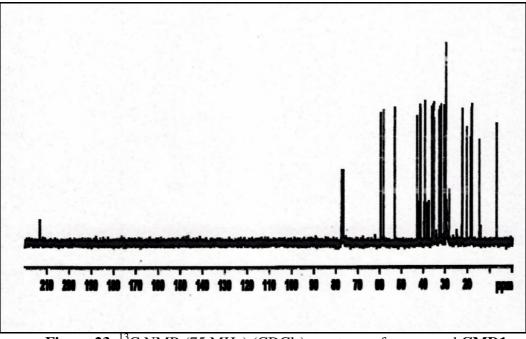
Thongdeeying, P. 2005. Chemical constituents from the leaves of *Ceriops decandra* (Giff.) Ding Hou. Master of Science Thesis in Organic Chemistry, Prince of Songkla Universitry, p 54-55.

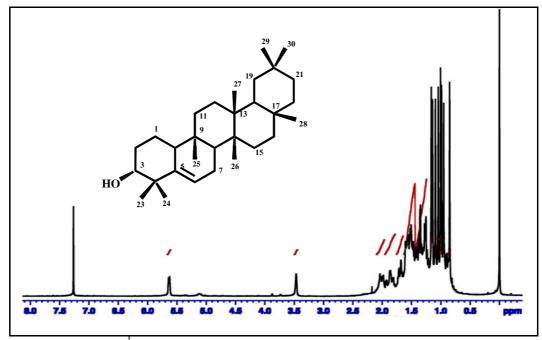
Xie, L. H., Akao, T., Hamasaki, K., Deyama, T. and Hattori, M. 2003. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of enterococcus faecalis strain PDG-1 responsible for the Transformation of (+)-pinoresinol to (+)-lariciresinol. Chem. Pharm. Bull. 51, 508-515.

Xie, Y., Morikawa, T., Ninomiya, K., Imura, K. and Muraoka, O. 2008. Medicinal Flowers. XXIII.¹) New Taraxastane-Type Triterpene, punicanolic acid, with tumor necrosis factor-a inhibitory activity from the flowers of *Punica granatum*. Chem. Pharm. Bull. 56, 1628–1631.

Yue, J. M., Chen, S. N., Lin, Z. W. and Sun, H. D. 2001. Sterols from the *fungus Lactarium* volemus. Phytochemistry. 56, 801-806.

APPENDIX



Figure 21 IR (neat) spectrum of compound CMD1



**Figure 22** ¹H NMR (300 MHz) (CDCl₃) spectrum of compound CMD1



**Figure 23** ¹³C NMR (75 MHz) (CDCl₃) spectrum of compound CMD1



**Figure 24** ¹H NMR (300 MHz) (CDCl₃) spectrum of compound CMD2

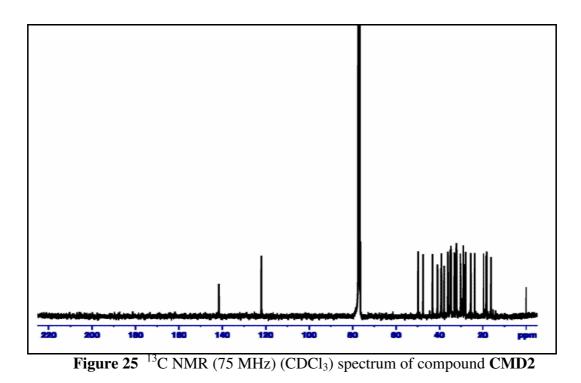
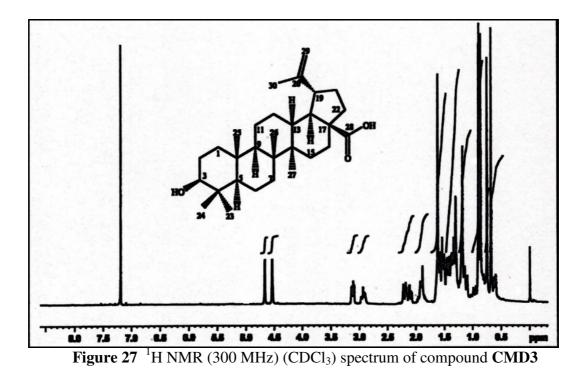
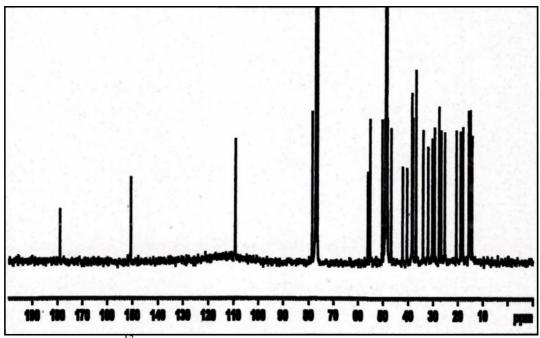







Figure 26 IR (neat) spectrum of compound CMD3







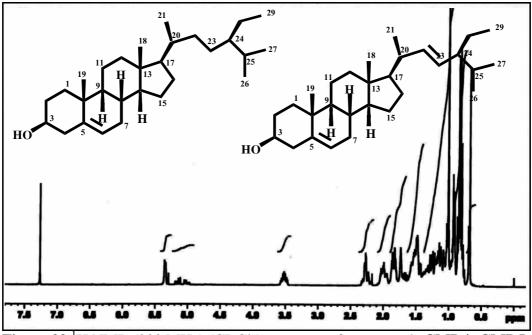



Figure 29 ¹H NMR (300 MHz) (CDCl₃) spectrum of compounds CMD4+CMD5

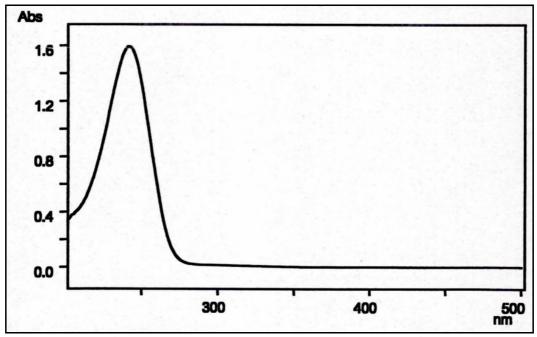



Figure 30 UV (MeOH) spectrum of compound CMD6

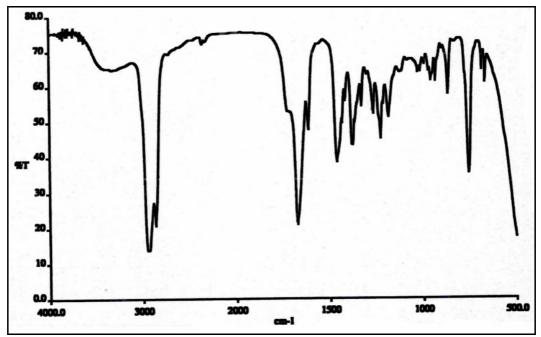



Figure 31 IR (neat) spectrum of compound CMD6

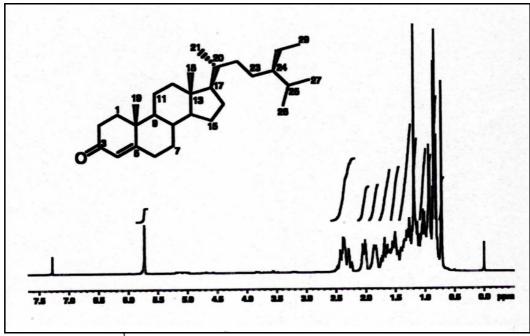



Figure 32 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound CMD6

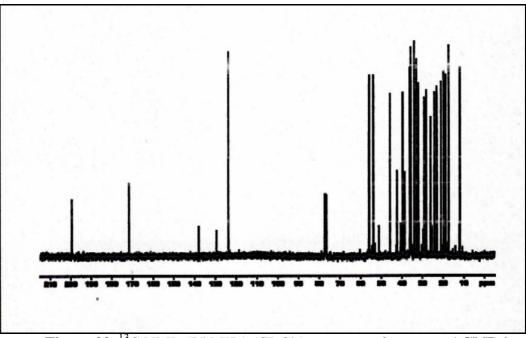
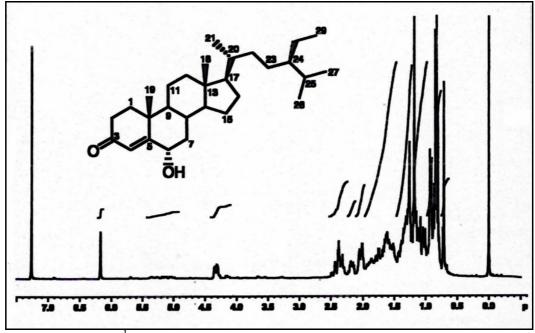




Figure 33 ¹³C NMR (75 MHz) (CDCl₃) spectrum of compound CMD6





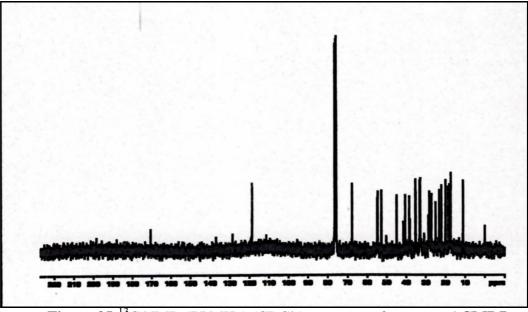
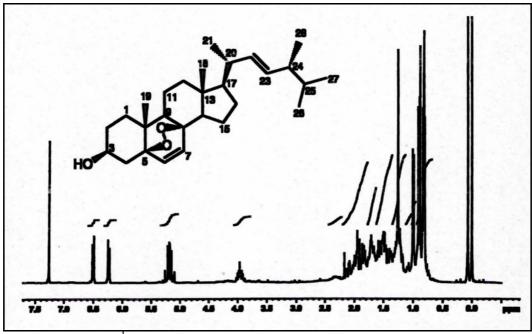




Figure 35¹³C NMR (75 MHz) (CDCl₃) spectrum of compound CMD7





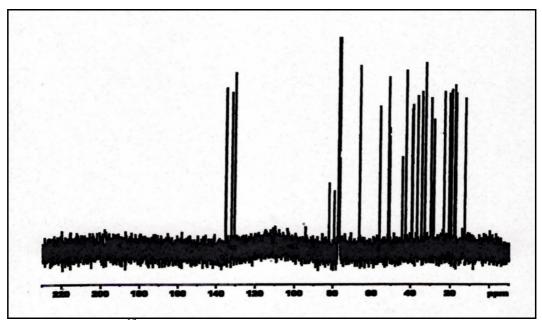



Figure 37¹³C NMR (75 MHz) (CDCl₃) spectrum of compound CMD8

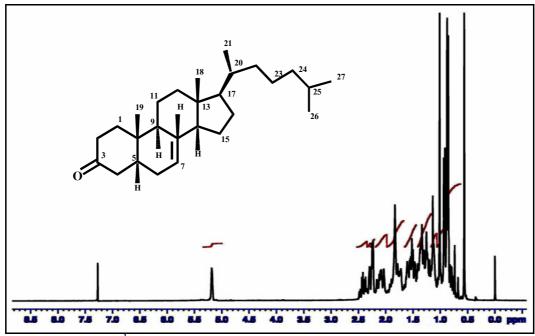



Figure 38 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound CMD9

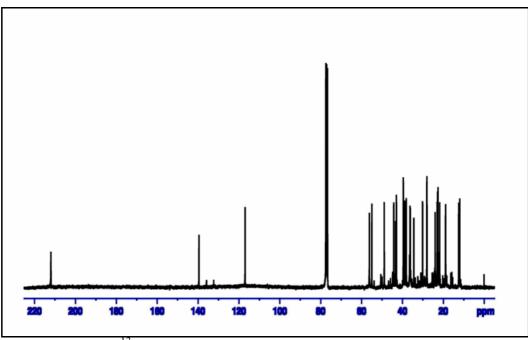



Figure 39¹³C NMR (75 MHz) (CDCl₃) spectrum of compound CMD9

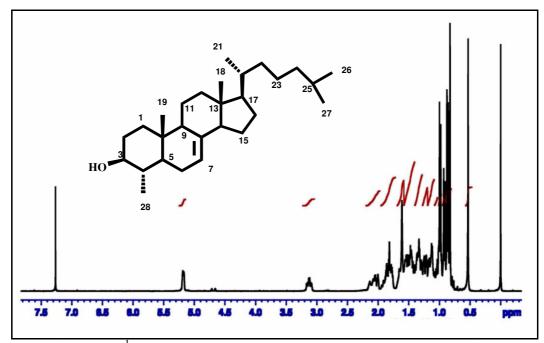



Figure 40 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound CMD10

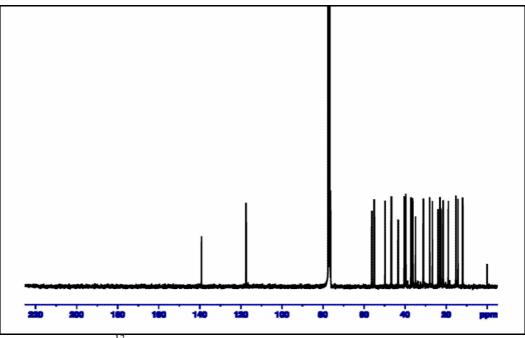



Figure 41¹³C NMR (75 MHz) (CDCl₃) spectrum of compound CMD10

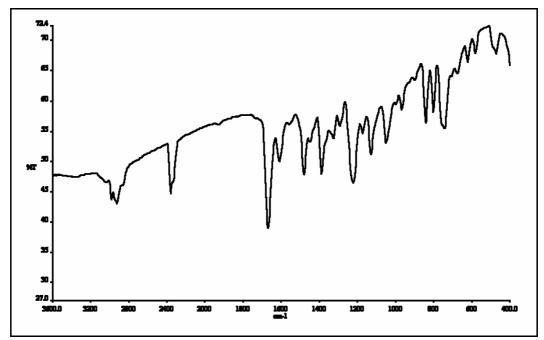



Figure 42 IR (neat) spectrum of compound CMD11

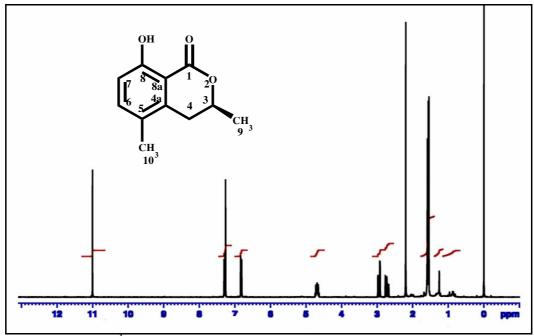



Figure 43 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound CMD11

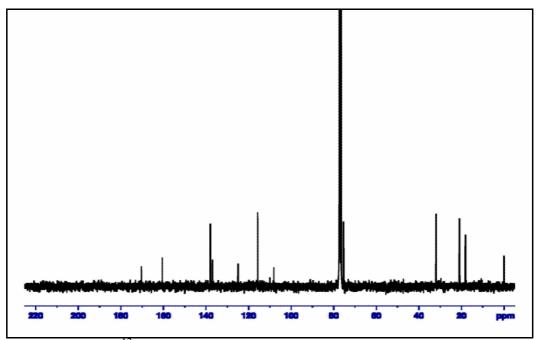



Figure 44¹³C NMR (75 MHz) (CDCl₃) spectrum of compound CMD11

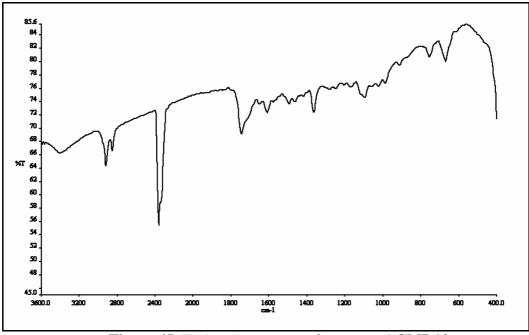



Figure 45 IR (neat) spectrum of compound CMD12

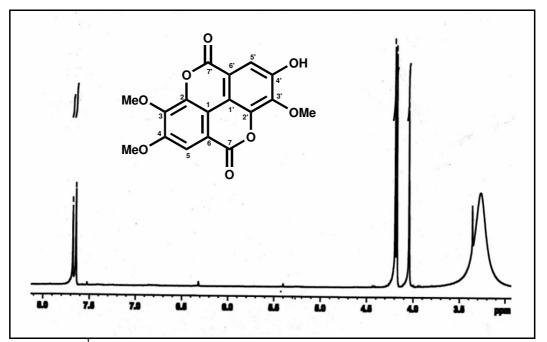



Figure 46 ¹H NMR (300 MHz) (DMSO-d₆+CDCl₃) spectrum of compound CMD12

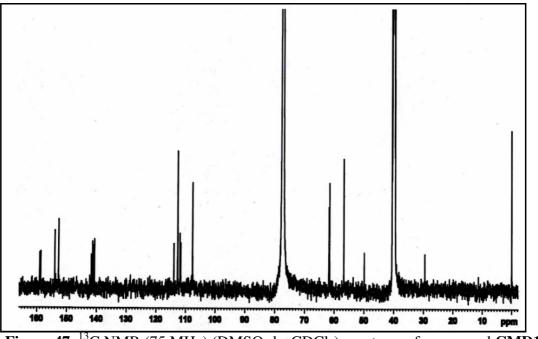



Figure 47¹³C NMR (75 MHz) (DMSO-d₆+CDCl₃) spectrum of compound CMD12

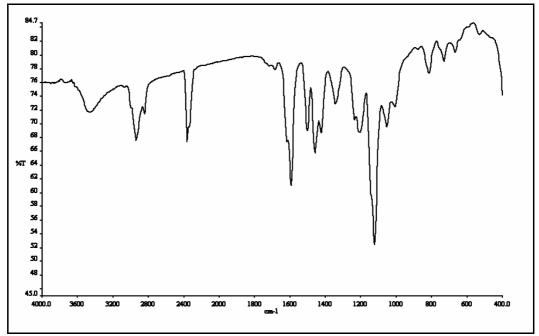



Figure 48 IR (neat) spectrum of compound CMD13

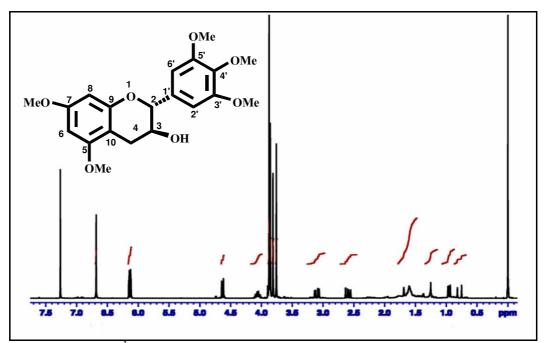



Figure 49 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound CMD13

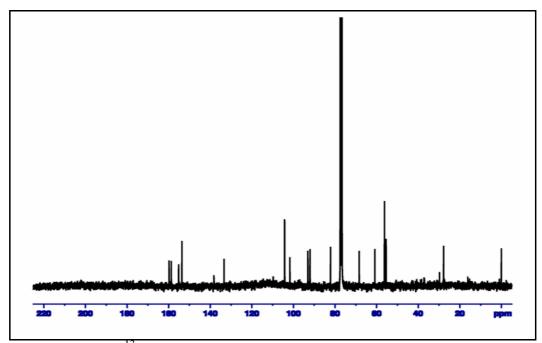



Figure 50¹³C NMR (75 MHz) (CDCl₃) spectrum of compound CMD13

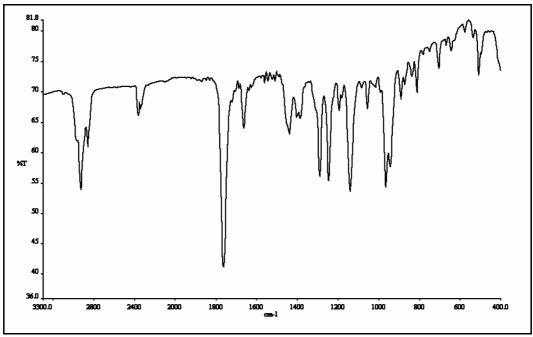
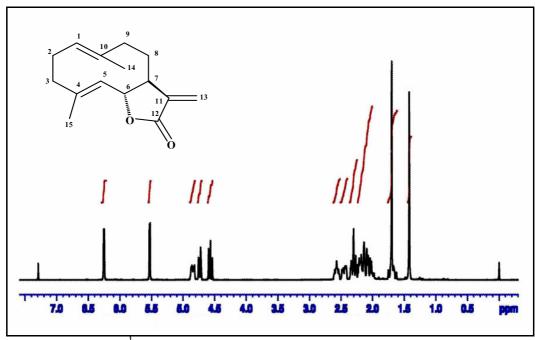




Figure 51 IR (neat) spectrum of compound JPD1



**Figure 52** ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **JPD1** 

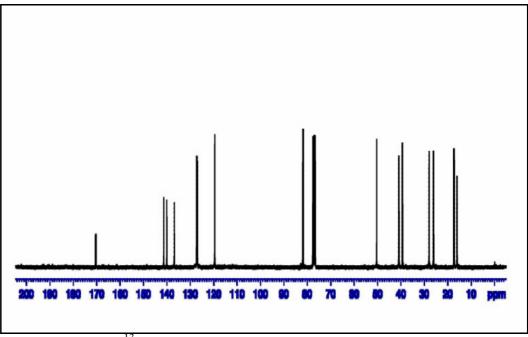
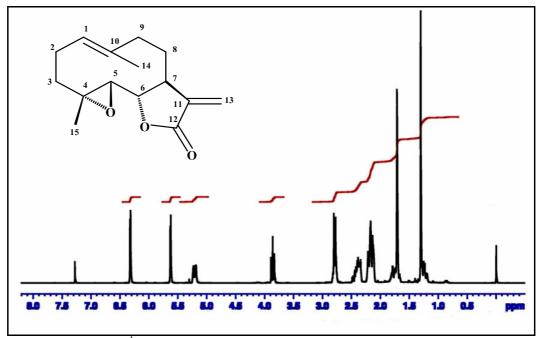




Figure 53 ¹³C NMR (75 MHz) (CDCl₃) spectrum of compound JPD1



**Figure 54** ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **JPD2** 

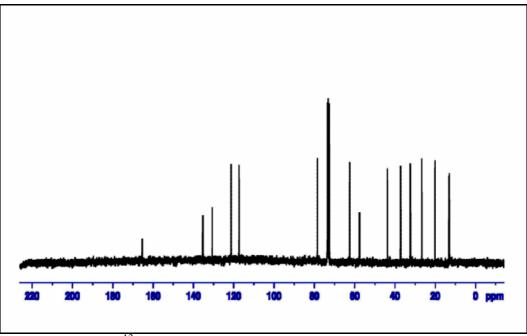



Figure 55 ¹³C NMR (75 MHz) (CDCl₃) spectrum of compound JPD2

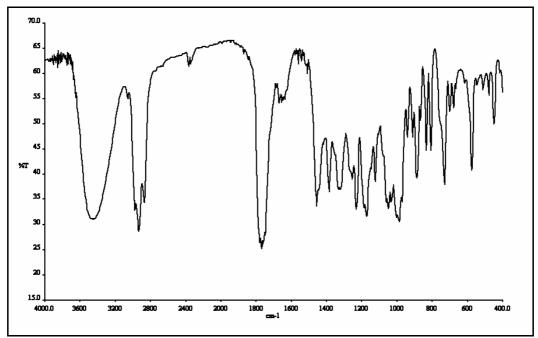
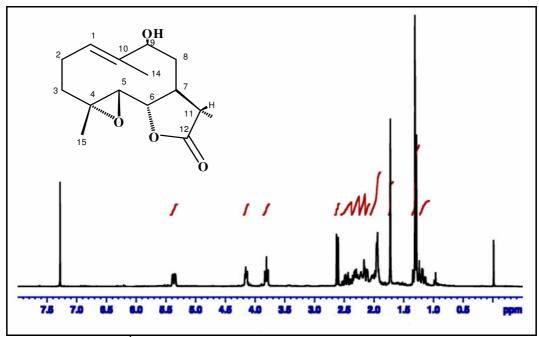




Figure 56 IR (neat) spectrum of compound JPD3



**Figure 57** ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **JPD3** 

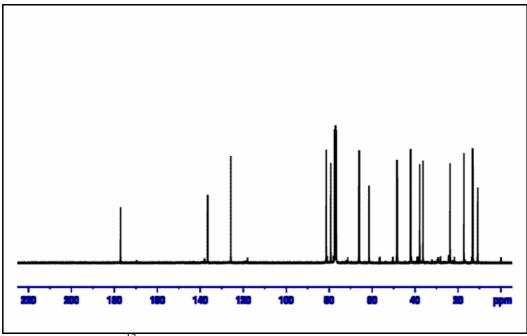



Figure 58 ¹³C NMR (75 MHz) (CDCl₃) spectrum of compound JPD3

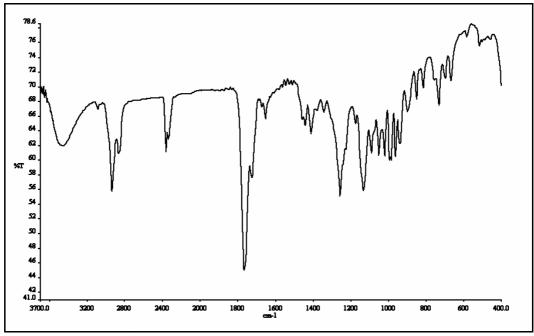



Figure 59 IR (neat) spectrum of compound JPD4

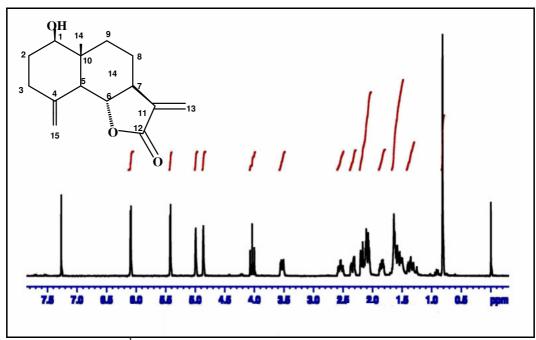



Figure 60¹H NMR (300 MHz) (CDCl₃) spectrum of compound JPD4

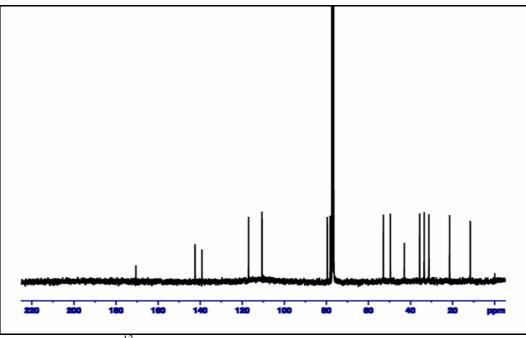



Figure 61¹³C NMR (75 MHz) (CDCl₃) spectrum of compound JPD4

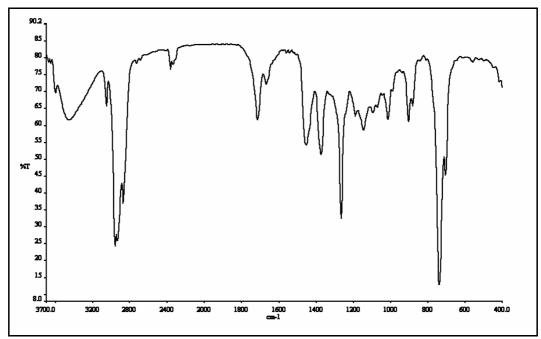
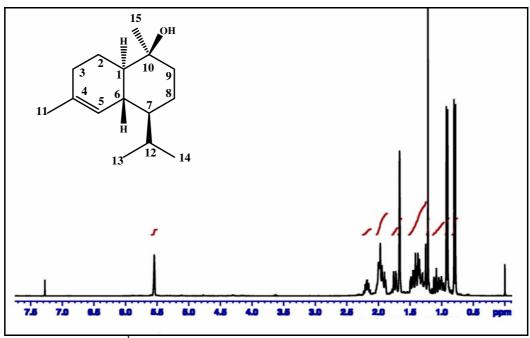




Figure 62 IR (neat) spectrum of compound JPD5



**Figure 63** ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **JPD5** 

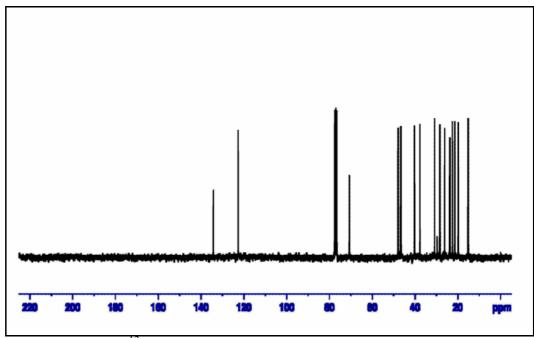



Figure 64 ¹³C NMR (75 MHz) (CDCl₃) spectrum of compound JPD5

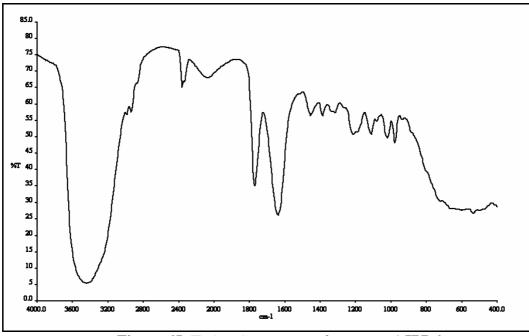
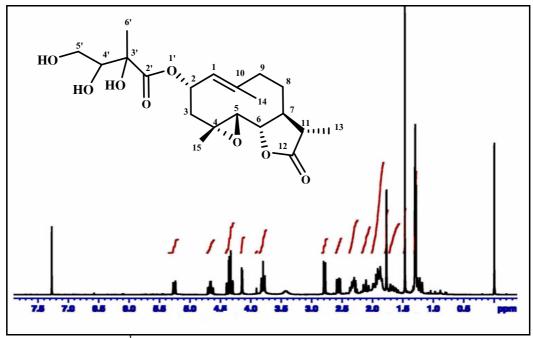




Figure 65 IR (neat) spectrum of compound JPD6



**Figure 66** ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **JPD6** 

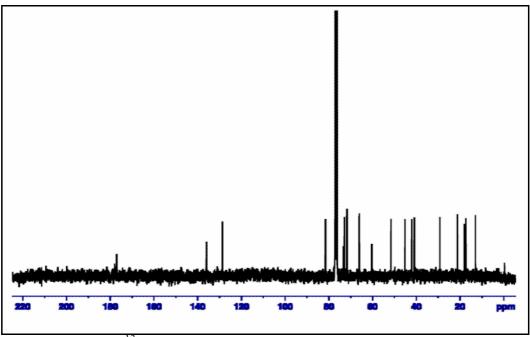



Figure 67¹³C NMR (75 MHz) (CDCl₃) spectrum of compound JPD6

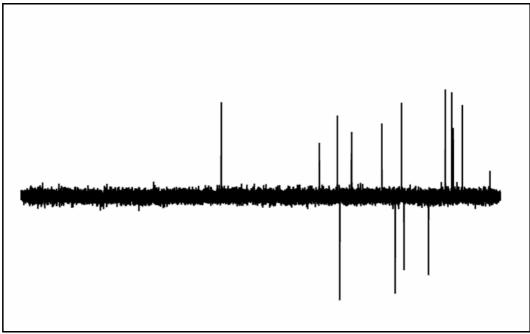



Figure 68 DEPT 135° (CDCl₃) spectrum of compound JPD6

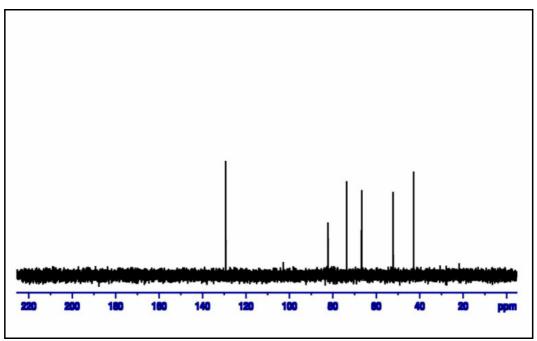



Figure 69 DEPT 90° (CDCl₃) spectrum of compound JPD6

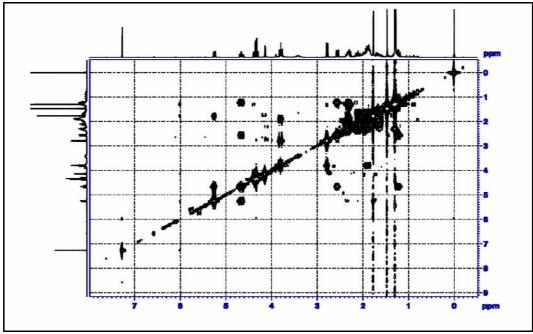



Figure 70 2D COSY (CDCl₃) spectrum of compound JPD6

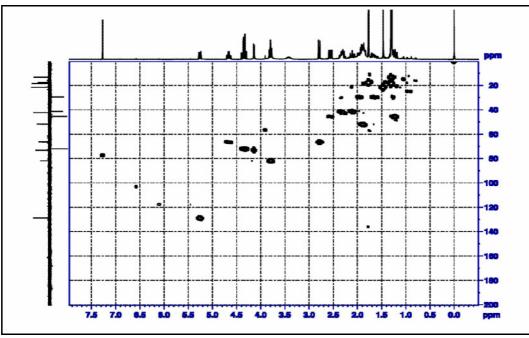
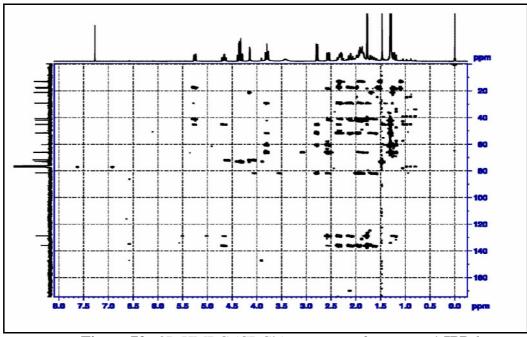




Figure 71 2D HMQC (CDCl₃) spectrum of compound JPD6



**Figure 72** 2D HMBC (CDCl₃) spectrum of compound **JPD6** 

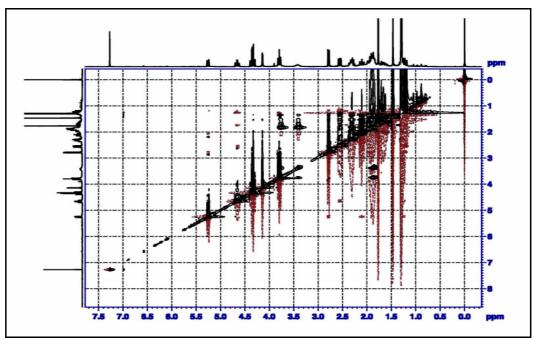



Figure 73 2D NOESY (CDCl₃) spectrum of compound JPD6

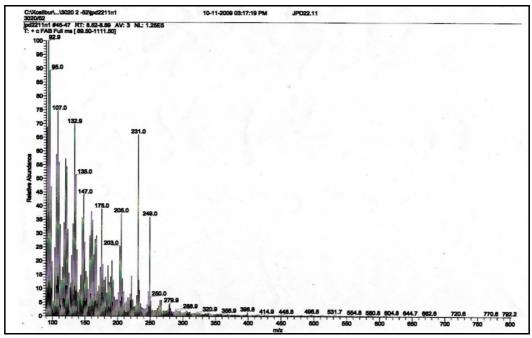



Figure 74 EIMS spectrum of compound JPD6

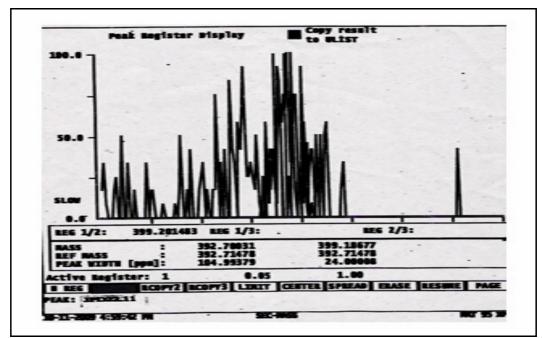



Figure 75 HRFAB spectrum of compound JPD6

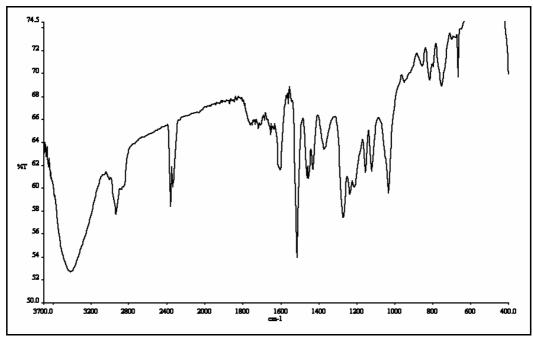
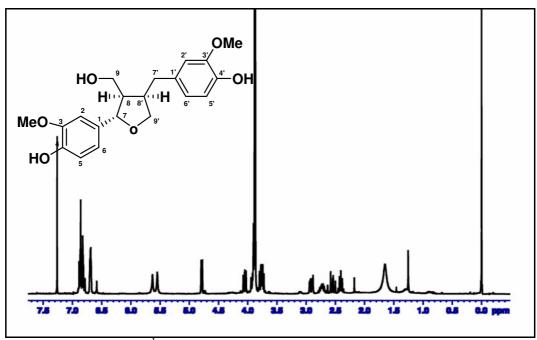




Figure 76 IR (neat) spectrum of compound JPD7



**Figure 77** ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **JPD7** 

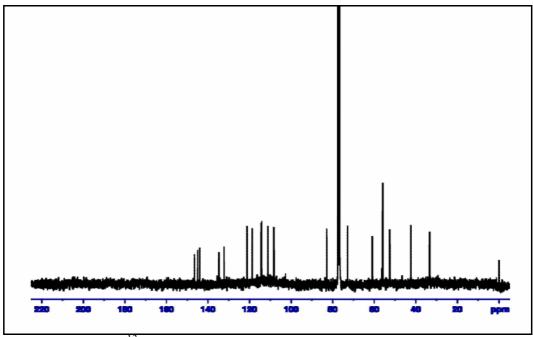



Figure 78¹³C NMR (75 MHz) (CDCl₃) spectrum of compound JPD7

## VITAE

Name	Miss Jintana Pongpuntaruk	
Student ID	5110220008	
Educational Attainm	ent	
Degree	Name of Institution	Year of Graduation
B.Sc.	Prince of Songkla	2008
(Chemistry)	University	

## **Scholarship Awards during Enrolment**

The Center for Innovation in Chemistry: Postgraduate Education and Research Program in Chemistry (PERCH-CIC)

## **List of Publication and Proceedings**

## Proceedings

Pongpuntaruk, J., Ponglimanont, C. and Karalai, C. 2010. Sesquiterpene Lactones from the Root of *Michelia alba* DC. 16th National Graduate Research Conference, Maejo University, Chiang Mai, Thailand, March 11-12, 2010 pp. 13 (Poster presentation)