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ABSTRACT 

A new basic architecture for one-dimensional discrete wavelet 

transform (1-D DWT) using Daubechies biorthogonal wavelet architecture is 

presented in this paper. The proposed DWT is composed of two independent FIR 

filters: a high-pass transposed form FIR filter and a low-pass transposed form FIR 

filter. The input to each filter is the same style as in the lifting scheme. Each FIR filter 

is a two-stage pipeline of which the fastest clock cycle is only either two adders delay 

or one multiplier delay. The proposed architecture has higher speed improved from 

Daubechies architecture, but uses less hardware resources. The area is further 

optimized by the RAG (Reduce Adder Graph) algorithm. Compare to the lifting 

scheme architecture which is commonly used, the proposed architecture achieves 

faster speed, shorter output latency, and the efficient pipeline architecture with 

simpler control.   
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Chapter 1. Introduction 

1.1. Motivation 

DWT (Discrete Wavelet Transform) is a popular mathematical method 

for many applications. In VLSI there are two different circuit structures for 

DWT-based designing, the conventional one is Daubechies-based architecture, and 

the other one is Lifting-based architecture which was improved from Daubechies. The 

Lifting-based is better than Daubechies on high-speed and reduction resource, but 

complicated control. This motivated us to design a new structure not only good at 

speed and resource but also easy to control. 

1.2. Research Background 

1.2.1 Overview of Field Programmable Gate Arrays (FPGA) 

As Programmable Logic Devices (PLDs), FPGA is a programmable 

hardware that can easily implement designs with million of gates on a single chip. 

Designing time and cost can be substantially decreased when compares to the 

equivalent custom VLSI chips by the easy programmable characterize of the FPGAs, 

so that reconfigurable system is capable to be developed for executing application at 

performance. 

1.2.2 Overview Discrete Wavelet Transform (DWT) 

The wavelet transform is a linear transform that can operate in direct or 

inverse form. The wavelet transform approximates a function by representing it as a 
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linear combination of two sets of coefficients g and h constructed from functions 

derived respectively by a scaling function φ(t) and a mother wavelet function φ(t) [1]. 

The two-dimensional wavelet transform is computed by recursive 

application of one-dimensional wavelet transform. In a 1D-DWT, each octave 

computes two sub-bands from one original band and each of this sub-bands has a half 

number of coefficients input without data loss. In a 2D-DWT, each octave computes 

four sub-bands and each of these ones has a quarter number of coefficient input. Fig. 

1.1 and Fig. 1.2 show the input and the output of one octave of 2D-DWT.  

 

 
Fig. 1.1 First level of decomposition [12]. 

 

 
Fig. 1.2 One octave (Third level) of 2D-DWT. 

 

The output coefficients from 1D-DWT are produced by application of 

two filters on data input samples, then producing two different output coefficient 

bands. A low pass filter using h(x) coefficients produces an output band representing 
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low-frequency data and a high-pass filter using g(x) coefficients produces an output 

band representing high frequency data [2]. 

The finite samples filtering presents a problem of discontinuities at its 

boundaries. Thus, the image boundary information could be lost if it was not treated 

properly. A simple method to eliminate this problem is mirroring the boundaries of 

the samples. The amount of samples mirroring depends on the depth of the low pass 

filter. The implementation of an irreversible DWT can be done by using the 

Daubechies biorthogonal wavelet coefficients, consisting of FIR filter coefficients for 

a 7-tap high-pass filter and a 9-tap low-pass filter, as shown in Fig. 1.3 [2]. 

The basic architecture defined in Fig. 1.3 requires 14 adders, 16 

multipliers and 9 registers. This architecture has high area cost for a parallel 

implementation, thus several algorithms were developed to reduce this area cost [2]. 

 
Fig. 1.3 Basic DWT by 9/7-tap Daubechies FIR filter [2]. 

 

Equation for 9-tap Low-pass: 

nnnnnnnnnn ZhZhZhZhZhZhZhZhZhA 24123222321420521622723824)2(
~

++++++++= −−−−−−−−−  

(1.1) 

Equation for 7-tap High-pass: 

nnnnnnnn ZgZgZgZgZgZgZgC 23122221320421522623)2(

~
++++++= −−−−−−−        (1.2) 

The lifting DWT scheme presented in [3] has reduced computational 

complexity, so reducing the hardware cost to compute the DWT. This algorithm 
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shown schematically in Fig. 1.4 was developed by a factorization of poliphase matrix 

from 9/7 Daubechies wavelet filter coefficients. 

(a) 

(b) 

Fig. 1.4 Lifting DWT. 

1.3. Research Methodology 

In this thesis, we propose an efficient pipeline architecture based on the 

Daubechies architecture. The proposed DWT is composed of two independent FIR 

filters: a high-pass FIR filter and a low-pass FIR filter. Each FIR filter is a two-stage 

pipeline with the fastest clock cycle of only either two adders delay or one multiplier 

delay. The propose DWT does not use the extra shift registers for storing the previous 

sampled data. It uses only two registers for the even input and the odd input. In 

additions, it also does not need extra shift registers for pipeline stages. Therefore, the 

proposed architecture is as simple as the Daubechies architecture, but uses less 

hardware resources.  The architecture can achieve the higher speed than the lifting 

architecture because the clock cycle is one multiplier delay or two adders delay, not 

one multiplier delay plus two adders delay in the lifting architecture. The proposed 

architecture still has larger area for the implementation using fixed-point adders and 

multipliers, but occupies less area than Lifting architecture for the implementation by 
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using the reduce adder graph (RAG) algorithm [4]. The proposed architecture can be 

further classified according to two structure types: even-tap filters and odd-tap filters. 

The multipliers occupation of even-tap filter is around 40% more than odd-tap filter. 

My design is called ZXY improved from the Daubechies FIR Filter. 

This design used 9 multipliers, 15 adders and around 9 registers while the clock speed 

is the same as the Lifting scheme, or uses 18 registers for double speed as Fig. 1.5. 

Actually, this one can do more improving on the speed and area by RAG algorithm 

[4]. 

For example, the developed 9/7 architecture is shown in Fig. 1.5. 

where the equation are the same as Fig. 1.4’s.  

 
Fig. 1.5 ZXY 1D-DWT by 9/7 taps FIR Filter. 
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1.4. Research Plan 

Time(month) 

Task 1

2

3 4 5 6

7

8

9 

10 

11 

12 

13 

14

15

16

17

18

Study Verilog Hardware Description 

Language 

         

Study a commercial software(Xilinx ISE)          

Study JPEG2000 and DWT          

Develop algorithm for DWT          

Develop algorithm for hardware into a 

structural 

         

Test and improve the software          

Analyze and Conclusion           

Report          

Note: The first month August 21, 2008 
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Chapter 2. VLSI Architectures for Discrete Wavelet 

Transforms 

2.1. Introduction  

The discrete wavelet transform (DWT) is widely used in many 

applications, especially in image compression algorithms such as the JPEG2000 

standard [5] [6] [7] [8]. The DWT can be designed by any sub-band multiresolution. 

The implementations of one-dimensional discrete wavelet transform (1-D DWT) by 

filter banks have been presented in [9] [10]. The more conventional approach 

implementation is an irreversible DWT design by using lifting scheme coefficients 

[11] rather than the original Daubechies biorthogonal wavelet coefficients [1]. Based 

on lifting scheme factorization operation [3] for DWT, it requires much less 

multipliers, adders and storage elements compared to the Daubechies which uses 

convolution-based algorithm. However, the Daubechies architecture provides a 

simpler approach for DWT [12]. 

2.2. Basic Daubechies Architecture 

A basic implementation of a 1-D DWT has been done by using the 

Daubechies biorthogonal wavelet coefficients [12]. Two different output bands are 

produced by applying two FIR filters on data input samples. A low-pass filter using 

h(x) coefficients produces low-frequency data and a high-pass filter using g(x) 

coefficients produces high-frequency data. As an example, Fig. 2.1 shows the 9/7-tap 

Daubechies DWT consisting of a 7-tap high-pass filter and a 9-tap low-pass filter. 

The discrete signal input is .  and  are the 

low-pass and the high-pass filter coefficients, respectively. For example 9/7-tap filter 

has 9 low-pass filter coefficients  and 7 
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high-pass filter coefficients . Since the low-pass 

and the high-pass filter coefficients are symmetric ( ), so, the output 

samples of the low-pass sub-band are as follows. 

 

 

 

 

 
                            (2.1) 

Similarly, the high-pass sub-band equations can be rearranged as follows. 

 

 

 

 

 
 (2.2) 

 
Fig. 2.1 Basic DWT architecture by 9/7-tap Daubechies FIR filter. 
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The basic 9/7-tap Daubechies architecture defined in Fig. 2.1 uses 14 

adders, 16 multipliers and 9 registers. This architecture consumes high area cost for 

the parallel implementation. Thus, lifting algorithm was developed to reduce this area 

cost. 

2.3. Lifting scheme for Discrete Wavelet Transform 

The lifting-based wavelet transform presented by Sweldens [13] is a 

sort of architecture featured by a sequence of smaller filters which can be converted 

into a sequence of upper and lower triangular matrices. The sequence of smaller filters 

was achieved from breaking up the high-pass and low-pass wavelet filters [13]. There 

are some advantages of the lifting-based wavelet transform for DWT implementation 

when compares to the conventional convolution-based approach such as easily integer 

operations using less computation requirements and avoid the problems caused by the 

finite precision or rounding. 

For lifting architecture, the traditional conditions (filtering) for 

reconstruction of signal [3] are given by 

                 (2.3) 

where h(z) is the Z-transform of the FIR filter h, for example, and 

polyphase matrices can be defined as  

    (2.4) 

 (2.5) 

where he and ho contain the even and the odd coefficients of the FIR 

filter h respectively. Normally P(z) is named as dual of )(
~

zP . The expression (2.6) 

shown wavelet transform in terms of the polyphase matrix for the forward and inverse 



10 

 

DWT respectively, where )(
~

zsi  and )(
~

zti  (for 1≤i≤m) are Laurent polynomials of 

lower orders, K is a constant and act as a scaling factor. Computation of the upper and 

low triangular matrix are known as primal lifting and dual lifting, respectively [3, 13]. 

Normally, these two basic lifting steps are called update and predict. 

   (2.6) 

where K is a constant. The two types of lifting schemes are shown in 

Fig. 2.2. 

 

 
Fig. 2.2 Lifting based forward and inverse DWT. 

 

As an example (5, 3) filter, with )
8
1,

4
1,

4
3,

4
1,

8
1(

~
−−=h  and 

)
2
1,1,

2
1(

~
−−=g . The polyphase matrix of this filter bank can be derived as 

 
then, can be factorized as  
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If the number of samples are staring from 0, we can consider the even 

and odd terms as the samples of lowpass and highpass subband respectively. Hence, 

we can interpret the above matrices in the time domain as 1222212 )( +++ ++= iiii xxxby  

and iiii xyyay 232122 )( ++= ++ , where a=
2
1

−  and b=
4
1 , 0≤ i ≤

2
N . 

The (9, 7) wavelet filter has been proposed in JPEG2000 standard, the 

polyphase can be factorized [3] as  

where a = -1.586134342, b = -0.05298011854, c = 0.8829110762, d =-0.4435068522, 

and K = 1.149604398. 

Therefore, the forward transform for (5, 3) and (9, 7) filters can be 

represented as 21)3,5( MXMY =  and 4321)7,9( MMMXMY = respectively, where 
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Several VLSI architectures have been designed ([17] [18] [20] [21]) 

for implementation of the lifting steps. These architectures range from highly parallel 

architectures to programmable DSP-based architectures to folded architectures. We 

present systematic derivations of some of Daubechies architectures in the following 

sections. 

2.4. Existing DWT Implementation 

2.4.1 DWT VLSI Design by using Daubechies 

Daubechies-based wavelet transform is the first generation of DWT 

VLSI design, implemented by using the Daubechies biorthogonal wavelet coefficients 

[1]. Some papers presented and improved this architecture. 

[14] presented a simple concept of low-complexity, efficient 9/7 

wavelet filters VLSI structure followed the JPEG2000 standard. The performance of a 

hardware implementation of the 9/7 filter bank depends on the accuracy of 

coefficients representation. This architecture shows substantial complexity reduction 

with as good performance as the 9/7-tap implementation, shown in Fig 2.3. Almost 

60% of multipliers was used when compares with the basic-Daubechies architecture 

in Fig 2.1. Furthermore, these multipliers were replaced by shifts which is shown in 

Fig 2.4. However, it still be a direct FIR architecture. 
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Fig. 2.3 Fast 9/7 direct implementation [14]. 

 

 
Fig. 2.4 Fast modified 9/7 direct implementation [14]. 

 

  [15] presented a DWT filter bank which is constructed of simple 

architectures by using Daubechises coefficients. It is a transposed form FIR filter, as 
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shown in Fig 2.5. The input registers were reduced and removed complex control for 

users, but more registers were used between the multiplier block and the adder block.  

 

 
Fig. 2.5 DWT filter bank of Transposed form FIR [15]. 

 

The architecture features parallel and pipelined computation and high 

throughput shown in Fig 2.6 [16]. This architecture is similar to my design (Fig. 3.8 ), 

but only for using 4-tap Daubechies filters. However this high-efficiency architectures 

for the even and odd parts of 1-D convolution is 100% hardware-utilization, 

multiplierless, regular structure, simple control flow and high scalability. The 

multiplier can be replaced by a carry-save adder (CSA), and three hardwire shifters in 

processing element (PE). The shift and adder circuit replacing the multiplier is shown 

in Fig 2.7. In this architectures, multiplications are obtained by shifts and additions 

after approximating the coefficients in both binary recoded format (BBRF). The 

replaced multiplier can reduce power dissipation by m in comparison to the 

conventional architectures in m-bit operands [16]. 
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Fig. 2.6 The horizontal low-pass filter for 1-D DWT [16]. 

 

 
Fig. 2.7 The shift and adder circuits replacing the multiplier [16]. 

2.4.2 DWT VLSI Design by using Lifting Scheme 

2.4.2.1 Lifting Architectures for 1-D DWT [17] 

The data dependencies in the lifting scheme can be explained with the 

help of an example of DWT filtering with four factors (or four lifting steps). The four 

lifting steps correspond to four stages as shown in Fig. 1.4 (a). The intermediate 
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results generated in the first two stages for the first two lifting steps are subsequently 

processed to produce the high-pass (HP) outputs in the third stage, followed by the 

low-pass (LP) outputs in the fourth stage. (9,7) filter is an example of a filter that 

requires four lifting steps. For the DWT filters requiring only two factors, such as the 

(5,3) filter, the intermediate two stages can simply be bypassed. 

2.4.2.2 Direct Mapped Architecture [17] 

A direct mapping of the data dependency diagram into a pipelined 

architecture was proposed by Liu et al. in [17] as depicted in Fig. 2.8. The architecture 

is designed with 8 adders (A1-A8), 4 multipliers (M1-M4), 6 delay elements (D) and 

8 pipeline registers (R). There are two input lines to the architecture: one that inputs 

even samples { iX 2 }, and the other one that inputs odd samples { 12 +iX }. There are 

four pipeline stages in the architecture. In the first pipeline stage, adder A1 computes 

222 −+ ii XX  and adder A2 computes 12222 )( −− ++ iii XXXa . The output of A2 

corresponds to the intermediate results generated in the first stage of Fig. 2.2(a). The 

output of adder A4 in the second pipeline stage corresponds to the intermediate results 

generated in the second stage of Fig. 2.2(a). Continuing in this fashion, adder A6 in 

the third pipeline stage produces the high-pass output samples, and adder A8 in the 

fourth pipeline stage produces the low-pass output samples. For Lifting schemes that 

require only 2 lifting steps, such as the (5,3) filter, the last two pipeline stages need to 

be bypassed causing the hardware utilization to be only 50% or less. Also, for a single 

read port memory, the odd and even samples are read serially in alternate clock cycles 

and buffered. This slows down the overall pipelined architecture by 50% as well. A 

similar pipelined architecture for the (9,7) wavelet has been proposed by Jou et al. in 

[19]. 
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Fig. 2.8 The direct mapped architecture [17]. 

2.4.2.3 Folded Architecture [18] 

The pipelined architecture in Fig. 2.8 can be further improved by 

carefully folding the last two pipeline stages into the first two stages as shown in Fig. 

2.9. The architecture proposed by Lian, et al. in [18] consists of two pipeline stages, 

with three pipeline registers, R1, R2 and R3. In the (9,7) type filtering operation, 

intermediate data (R3) generated after the first two lifting steps (phase1) are folded 

back to R1 (as shown in Fig. 2.9) for computation of the last two lifting steps (phase2). 

The architecture can be reconfigured so that computation of the two phases can be 

interleaved by selection of appropriate data by the multiplexors. As a result, two delay 

registers (D) are needed in each lifting step in order to properly schedule the data in 

each phase. Based on the phase of interleaved computation, the coefficient for 

multiplier M1 is either a or c, and similarly the coefficient for multiplier M2 is b or d. 

The hardware utilization of this architecture is always 100%. Note that for the (5,3) 

type filter operation, folding is not required. 
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Fig. 2.9 The folded architecture in [18]. 

2.4.2.4 MAC Based Programmable Architecture [20] 

A programmable architecture that implements the data dependencies 

represented in Fig. 2.2(a) using four MACs (Multiply and Accumulate) and nine 

registers has been proposed by Chang et al. in [20]. The algorithm is executed in two 

phases as shown in Fig. 2.10. The data-flow of the proposed architecture can be 

explained in terms of the register allocation of the nodes. The computation and 

allocation of the registers in phase 1 are done in the following order 

R0  12 −iX ; R2  iX 2 ; 

R3  R0+a(R1+R2); 

R4  R1+b(R5+R3); 

R8  R5+c(R6+R4); 

 

Similarly, the computation and register allocation in phase 2 are done 

in the following order 

R0  12 −iX ; R2  iX 2 ; 

R5  R0+a(R2+R1); 

R6  R2+b(R3+R5); 

R7  R3+c(R4+R6); 

Output(LP)  R4+d(R8+R7);  Output(HP)  R7 
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  As a result, two samples are input per phase and two samples (LP 

and HP) are output at the end of every phase. For 2D DWT implementation, the 

output samples are also stored into a temporary buffer for filtering in the vertical 

dimension. 

 

 
Fig. 2.10 Data-flow and register allocation of the MAC based architecture in [20]. 

2.4.2.5 Flipping Architecture [21] 

While conventional lifting-based architectures require fewer arithmetic 

operations, they sometimes have long critical paths. For instance, the critical path of 

the lifting-based architecture for the (9,7) filter is am TT 84 +  while that of the 

convolution implementation is am TT 4+ . One way to improve this is by pipelining 

which results in a significant increase in the number of registers. For instance, to 

pipeline the lifting-based (9,7) filter such that the critical path is am TT 2+ , 6 

additional registers are required. 

Recently, Huang et al. [21] proposed a very efficient way of solving 

the timing accumulation problem. The basic idea is to remove the multiplications 

along the critical path by scaling the remaining paths by the inverse of the multiplier 

coefficients. Fig. 2.11(a)-(c) describes how scaling at each level can reduce the 

multiplications in the critical path. Fig. 2.11(d) further splits the three input addition 
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nodes into two 2-input adders. The critical path is now am TT 5+ . The minimum 

critical path of mT  can be achieved by 5 pipelining stages using 11 pipelining 

registers (not shown in the figure). Detailed hardware analysis of lossy (9,7), integer 

(9.7) and (6,10) filters have been included in [21]. Further more, since the flipping 

transformation changes the round-off noise considerably, techniques to address 

precision and noise problems have also been addressed in [21]. 

 

 
Fig. 2.11 A flipping architecture [21]. (a) Original architecture, (b)-(c) Scaling the 

coefficients to reduce the number of multiplications, (d) Splitting the three-input 

addition nodes to two-input nodes. 
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2.4.2.6 Generalized Architecture [22] 

The architecture proposed by Andra et al. [22] is an example of a 

highly programmable architecture that can support a large set of filters. These include 

filters (5,3), (9,7), C(13,7), S(13,7), (2,6), (2,10), and (6,10). Since the data 

dependencies in the filter computations can be represented by at most four stages, the 

architecture consists of four processors, where each processor is assigned 

computations of one stage. Fig. 2.12(a) describes the assignment of computation to 

two processors, P1 and P2, for the (5,3) filter which can be represented by two stages. 

 
Fig. 2.12 Processor assignment and partial schedule for the (5,3) filter implementation 

in the Generalized architecture in [22]. 
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The processor architecture consists of adders, multipliers and shifters 

that are interconnected in a manner that would support the computational structure of 

the specific filter. Fig. 2.13 describes the processor architectures for the (5,3) filter 

and the (9,7) filter. While the (5,3) filter architecture consists of two adders, and a 

shifter, the (9,7) filter architecture consists of two adders and a multiplier. Fig. 2.12(b) 

describes part of the schedule for the (5,3) filter. The schedules are generated by 

mapping the data dependency graph onto the resource-constrained architecture. It is 

assumed that the delays of each adder, shifter and the multiplier are 1, 1 and 4 time 

units respectively. For example (Fig. 2.11(b)), Adder 1 of P1 adds the elements 

( 0x , 2x ) in the 2nd cycle and stores the sum in register R1. The shifter reads this sum 

in the next cycle (3rd cycle), carries out the required number of shifts (one right shift 

as a= -0.5) and stores the data in register Rs. The second adder (Adder2) reads the 

value in Rs and subtracts the element 1x  to generate 1y  in the next cycle. To 

process N=9 data, the P1 processor takes four cycles. Adder 1 in P2 processor starts 

computation in the sixth cycle. The gaps in the schedules for P1 and P2 are required 

to store the zeroth element of each row. 

 
Fig. 2.13 Processor architecture for the (5,3) and (9,7) filters in [22]. 

2.4.2.7 Recursive Architecture [24] 

Most of the traditional DWT architectures compute the ith level of 

decomposition upon completion of (i-1)th level of decomposition. However in 

multiresolution DWT, the number of samples to be processed in each level is always 
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half of the size in the previous level. Thus it is possible to process multiple levels of 

decomposition simultaneously. This is the basic principle of a recursive architecture 

that was first proposed for a convolution based DWT in [23] and applied for lifting 

based DWT in [24] [25]. Here computations in higher levels of decomposition is 

initiated as soon as enough intermediate data in low-frequency subband is available 

for computation. The proposed architecture for a 3-level decomposition of an input 

signal using Daubechies-4 DWT is shown in Fig. 2.14. 

 

 
 

 
Fig. 2.14 The recursive architecture in [24]. 

 

The basic circuit elements used in this architecture are delay elements, 

multipliers and MAC units which are in turn designed using a multiplier, an adder and 

two shifters. The multiplexors M1 and M2 select the even and odd samples of the 

input data as needed by the lifting scheme. S1, S2 and S3 are the control signals for 

data flow of the architecture. The select signal (S1) of the multiplexors is set to 0 for 
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the first level of computation and is set to 1 during the second or third level 

computation. The switches S2 and S2 select the input data for the second and third 

level of computation. The multiplexor M3 selects the delayed samples for each level 

of decomposition based on the clocked signals show in Fig. 2.14. 

A recursive architecture for 1D implementation of the (5,3) filter has 

been proposed in [26]. The architecture has hardware complexity identical to [25] but 

is claimed to be more regular. The topology is similar to a scan chain, and thus can be 

easily modified to support testable scan-based designs. 

2.4.2.8 Summary of Lifting Architecture 

In fact, all of existing lifting architecture didn’t improve the method of 

computation, the main idea of these lifting architectures essentially just used 

basic-lifting architecture with FIFO method or buffer memory control to improve. 

Hence, any one of the existing lifting architecture has to use lower speed for reduce 

resource and vice versa, in another word, they just via modified lifting architecture to 

achieve different choice for making a balance between speed and resource for 

different application requirement. 

2.5. RAG for High-Performance  

The transposed FIR enjoys, in the case of a constant coefficient filter, 

two additional improvements: multiple uses of the repeated coefficients using the 

reduced adder graph (RAG) algorithm [4], and pipeline adders using a carry-save 

adder. 

Fig. 2.15 illustrates the RAG algorithm. Fig. 2.15 (a) is the multiplier 

block of transposed filter which has four nonzero coefficients, namely f[0], f[1], f[3] 

and f[5], which are 346, 208, -44, and 9. For cost estimation we convert the decimal 

values (index 10) into binary representations (index 2) for coefficients. Fig. 2.15 (b) 
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shows the resulting reduced adder graph. It used 7 shifts and 5 adders instead of 4 

multipliers. 

 

 
(a) 

 
(b) 

 
Fig. 2.15 Realization of F6 using RAG algorithm [27]. 
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2.6. Lifting 2-D DWT recursive Architecture [28] 

 
Fig. 2.16 Calculation sequence of the 2-D RA. 

 

The basic strategy of the 2-D recursive architecture is the same as that 

of its 1-D counterpart. The calculations of all DWT stages are interleaved to increase 

the hardware utilization. Within each DWT stage, processing sequences of each DWT 

stage is shown in Fig. 2.16. The image is scanned into the row processor in a raster 

format, and the first horizontal DWT is immediately started. The resulting high- and 

low-frequency DWT coefficients of the odd lines are collected and pushed into two 

first-in first-out (FIFO) registers or two memory banks. The separate storages of the 

high- and low-frequency components produce a more regular data flow and reduce the 

required output switch operations, which in turn consume less power. The DWT 

coefficients of the even lines are also rearranged into the same sequence and are 

directly sent to the column processor, together with the output of the FIFO. The 

column processor starts calculating the vertical DWT in a zigzag format after one 

row’s delay. 

The block diagram of the lifting 2-D DWT architecture is shown in Fig. 

2.17. The FPGA implements a row processor (RP), a column processor (CP), and a 

local memory module (MEM) used to buffer results between the RP and CP. The 2-D 

DWT is computed in row-column fashion (i.e., the DWT is carried out on the rows 

first and then on the columns). The image, which is stored in external memory, is read 

to the FPGA in row-by-row order. The row processor performs horizontal filtering to 

the rows and writes the approximation, a, and detail, d, coefficients to the local 
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memory. Once a sufficient number of rows have been processed, the column 

processor starts vertical filtering; it fetches coefficients from the local memory and 

generates four subbands, aa, da, dd, and ad, as shown in Fig. 2.18. The four subbands 

are written back to the external memory, again in row-wise order. 

 

 
Fig. 2.17 System architecture [28]. 

 

 
Fig. 2.18 A one-level 2-D DWT [28]. 

 

Multiple levels are performed on this architecture in a non-interleaved 

fashion, with results between levels stored in the external memory. For each of the 

higher levels, an approximation subband is read from external memory and four 

higher level subbands are generated using the same computing modules. The 

operation continues until the desired level is finished. 
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Fig. 2.19 Implementation of a Lifting step [28]. 

 

Row and column processing require two slightly different 

implementations of the lifting step. During row processing, the pixels of an image are 

read from external memory in a row-wise fashion, and needed in a row-wise order, 

making a systolic architecture of Fig. 2.19(a), which takes its inputs sequentially, 

ideally suitable. On the other hand, after row processing the pixels are stored in an 

embedded memory until enough column data is available to proceed with column 

processing. The inputs are best fed into the column processor in parallel, leading to 

the parallel architecture of Fig. 2.19(b). The first-in-first-out (FIFO) buffers shown in 

Fig. 2.19 are used to compensate for the latency of the pipelined multipliers within the 

lifting steps. 

Lifting Row Processor (RP): Implementation of the row processor (RP) 

is straightforward; a functional block diagram is shown in Fig. 2.19. It consists of six 

computing modules: P1, U1, P2, U2, G1 and G2. Each lifting step (P1, U1, P2 and U2) 

is implemented using the systolic architecture of Fig. 2.20, and the steps are cascaded 

to build the whole lifting structure. At each clock, P1 takes a pair of coefficients, even 

and odd, and produces a pair of outputs that is then fed to the next module U1. 

Similarly U1 feeds P2, which feeds U2. Finally, the outputs of U2 are scaled through 
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G1 and G2, which are implemented as one-tap filters. The result is the 

one-dimensional DWT of the rows. 

 

 
Fig. 2.20 Architecture of the row processor [28]. 

 

Lifting Column Process (CP): Coefficient exit the row processor in 

row-wise order, and are stored in an embedded memory until enough rows are 

buffered so that column processing can begin. When using convolution 9/7 wavelet 

filters, nine rows must be buffered. The column processing is then done in row-wise 

manner; the column filter works on nine pixels of data from a single column at a time. 

At each clock, the filter moves one column to the right. This architecture reduces the 

amount of buffer space required by exploiting a lifting structure. The lifting structure 

staggers when the column data is needed; although we still need nine pixels of data 

from a column to complete one wavelet coefficient, we need only three pixels to start 

the first lifting step. The remaining pixels are used in later clocks by later lifting steps. 

We shall see that in all, buffer space for only seven rows in required. 

 
Fig. 2.21 Architecture of the column processor [28]. 

 

A block diagram of the column processor is shown in Fig. 2.21. The 

basic building blocks and their functions are the same as for the row processor except 
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that the parallel lifting step architecture is used. The lifting step computations are 

scheduled on the modules of the column processor so as to minimize the amount of 

embedded memory needed to buffer data between the row and column processing 

while keeping both the row and column processor continually busy. We can use 

ASAP scheduling: each lifting step starts operation as soon as its inputs are available. 

For the sake of simplicity of the figures, we assume that the latency of each 

computing module is one time unit. The schedule can be easily modified to account 

for additional latency. 

The embedded memory is organized into seven lines of N words each. 

Each line has two parts: the first N/2 words are used to buffer approximation 

coefficients coming from the row processor, and the second N/2 words are used to 

buffer detail coefficients. At each clock, the row processor writes two new 

coefficients (one approximation and one detail). It moves from left to right along each 

line of the memory, and starts over at the beginning of the first line after it completes 

the seventh line. 

As soon as the row processor (RP) completes the third row of 

coefficients, the first two lifting steps P1 and U1 start column processing. They travel 

left to right along the lines of memory, just behind the row processor. At each clock, 

P1 needs three inputs coming from a single column of the memory. One of the inputs 

is passed directly to it from the row processor. The other two are read from the 

embedded memory. P1 writes its result in the embedded memory, over the middle 

input (which will never be needed again). This result will be read by P2 at a later time. 

P1 also passed both the top input that it read and the result that it produced to U1. The 

other lifting steps follow along behind P1 in a similar way. 
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Chapter 3. The Proposed 1-D DWT Architecture 

3.1. Expressions Formalization 

The 1-D Daubechies architecture sequence is separately low-pass and 

high-pass filtered consisting of FIR filter coefficients. However, most common FIR 

filters are the linear time-invariant (LTI) filters. An FIR with constant coefficients is 

an LTI digital filter. The output of an FIR of order or length L, to an input time-series 

x[n], and x is input signal, y is the convolved output, is given by a finite version of the 

convolution sum given in (3.1), namely: 

∑ −==
k

knfkxnfnxny ][][][*][][
            (3.1) 

In contrast, the DWT expressions have two inputs, consist of even 

number x[2n] and odd number x[2n-1] of the input signal x[n]. Let a be the number 

of taps. The even-tap and odd-tap filters have different expressions as follows.  

When the a of taps is odd number, the expression is as (3.2), set a = 

2b-1, the n of f[n], n [b, -b], if n [b, -b], f[n]=0. 

∑
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When the a of taps is even number, the expression is as (3.3), set a = 

2b, the n of f[n], n [b-1, -b-1], if n [b-1, -b-1], f[n]=0. 
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           (3.3) 

For example number of a is 7, then b is 3, as Fig. 3.1, f[n] = [ 3g , 2g , 

1g , 0g , 1−g , 2−g , 3−g ], x[2k] is even number of input signal, and x[2k+1] is odd 

number of input signals. The implement function for plus sign of this expression is as 

the first row adders in Fig. 3.1. The implement function for the other additions is as 

the second row adders in Fig. 3.1. 
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3.2. 1-D Architecture for High/Low pass Filter 

In this thesis, we propose an efficient pipeline architecture based on the 

Daubechies architecture. The proposed DWT is composed of two independent FIR 

filters: a high-pass FIR filter and a low-pass FIR filter. Each FIR filter is a two-stage 

pipeline with the fastest clock cycle of only either two adders delay or one multiplier 

delay. The propose DWT does not use the extra shift registers for storing the previous 

sampled data. It uses only two registers for the even input and the odd input. In 

additions, it also does not need extra shift registers for pipeline stages. Therefore, the 

proposed architecture is as simple as the Daubechies architecture, but uses less 

hardware resources.  The architecture can achieve the higher speed than the lifting 

architecture because the clock cycle is one multiplier delay or two adders delay, not 

one multiplier delay plus two adders delay in the lifting architecture. The proposed 

architecture still has larger area for the implementation using fixed-point adders and 

multipliers, but occupies less area than Lifting architecture for the implementation by 

using the reduce adder graph (RAG) algorithm [4]. The proposed architecture can be 

further classified according to two structure types: even-tap filters and odd-tap filters. 

The multipliers occupation of even-tap filter is around 40% more than odd-tap filter. 

The proposed design, named ZXY, has two steps as simple as 

Daubechies architecture as shown in Fig. 3.1. The operations are scheduled and 

assigned into two pipeline stages: a multiplier block and an adder block. In the first 

stage, the two input data are simultaneously multiplied by all coefficients. The second 

stage is the adder block which executes in order of formula on the right clock. Here, 

the multipliers and the adders, used in the high-pass filter and the low-pass filter, are 

the fixed-point format. 

As an example, the 7-tap high-pass filter of the proposed 1-D 9/7-tap 

DWT is shown in Fig. 3.1. The 9-tap low-pass filter (not shown) has the similar 

structure. In the first step, the multipliers use the coefficients from 9/7 Daubechies 

filter. Because of the repeated coefficients (g1, g2, and g3), the proposed 7-tap 

high-pass filter uses less three multipliers than the original Daubechies architecture of 

Fig. 2.1. Similarly, the 9-tap low-pass filter uses less four multipliers than the original 
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Daubechies architecture. The second step uses 6 adders which parallelly execute the 

data from the first- and second- pipeline stages. The latency of the first stage is one 

multiplier delay, and the latency of the second stage is two adder delays. Therefore, 

the pipeline clock is determined from the maximum delay of either one multiplier or 

two adders. 

The proposed architecture has the similar structure as the general 

transposed FIR filter. However, the clock cycle of the pipeline version of the 

transposed FIR filter is constrained by one multiplier delay plus one adder delay as 

show in Fig. 2.1. 

In Fig. 3.1, the defined registers R0-R7 have all of the results after 

every clock. The dataflow for 1-D DWT 7-tap high-pass filter is described in Table 

3.1.  R7 is output register for this high-pass filter, and has the same equation as (3.2). 

The circuit operates in pipeline manner with the latency of four clock cycles. The first 

sub-band output is produced at the forth clock cycle as shown in the column of R7. 

After the forth clock cycle, the pipeline produces the high-pass output at every clock. 

Here, the clock cycle is determined from the maximum of either 2 adder delays or 1 

multiplier delay. Usually, the delay of a fixed-point multiplier is about 2 fixed-point 

adder delays. That means our pipeline is balanced, and the idle-time during pipeline 

stage is very small. Therefore, the high throughput performance can be achieved by 

the proposed architecture. 

 
Fig. 3.1 The proposed 1-D DWT architecture for 7-tap high-pass filter. 
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The proposed architecture provides two options to tradeoff between 

area and speed. The structure shown in Fig. 3.1 is good for horizontal filters for 2-D 

DWT that needs high speed performance. There still have another option for vertical 

filters, for example 7-tap filter, just delete registers R0-R3 for area reduction, but the 

clock cycle will be extended, the detail shown in Table 3.1. 

The control circuit for the proposed architecture is very simple. 

Observe that no control signal is needed in the two-stage pipelined FIR in Fig. 3.1. 

Only a global clock signal is used for all registers. 

 

Table 3.1 The dataflow for the ZXY DWT 7-taps high-pass filter, about Fig. 3.1. 

 

3.3 Generalization for Even- and Odd-tap Filters 

The proposed architecture uses different resources for even and odd 

number of filter taps. The odd number-tap filter can reduce some multipliers of 
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coefficients, whereas the even number-tap filter can reduce some of the adders. For 

example, the 1-D DWT 4-tap filter is designed with 4 multipliers, 3 adders and 6 

registers, as shown in Fig. 3.2. The detailed comparison results in general taps are 

listed in Table 3.2. The even number-tap filter is designed m the same way as 4-tap 

DWT, such as [16]. 

 

Table 3.2 The used resources for even and odd number taps filter. 

Tap Coefficients Multiples Adders Registers 

2 2 2 4 

4 4 3 6 

6 6 5 9 

8 8 7 12 

Even number 

10 10 9 15 

3 2 2 4 

5 3 4 6 

7 4 6 8 

9 5 8 10 

Odd number 

13 7 12 14 

 

 
Fig. 3.2 The proposed 1-D DWT with 4-tap (even number) filter. 
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3.4 High-Speed Performance with RAG 

 
Fig. 3.3 Proposed 1-D DWT by 9/7 taps filter and its multiplier block design. 

 

When performing operation scheduling, an important decision is the 

selection of a clock cycle to schedule the operations into different states. A bad choice 

of the clock cycle could adversely affect the performance and the cost of the final 

design. In Fig. 3.1, the proposed structure shows a two-stage pipeline with the 

pipeline stage delay (the inverse of throughput) constraint of two adders at every 

clock. In Fig. 1.4, the lifting structure shows one-stage pipeline with the pipe stage 

delay constraint of one multiplier plus two adders at every clock. 

As explained in section 2.5, the proposed architecture can be further 

optimized by using the reduce adder graph (RAG) algorithm [4] as shown in the right 

side of Fig. 3.3. The adaptability of RAG algorithm to the proposed architecture is 

excellent, but it to the lifting scheme is not efficient. Therefore, the proposed 
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architecture with RAG can use the faster clock than the lifting scheme, the details of 

the RAG architecture for 1-D DWT 9/7-tap filter are shown in Table 4.1 and 4.2. 

3.5 Proposed ZXY 2-D DWT Architecture 

Implementation of the ZXY row processor (RP) is as straightforward 

as Lifting’s Fig. 2.19 (a). The detail was detailed in section 2.61. Actually, the ZXY 

column processor (CP) using the same way as lifting’s, except the size of buffer they 

used. For ZXY 7-tap filter architecture shown in Fig. 3.4, buffer space for only three 

rows is required, so the 9/7-tap filter, buffer space for only seven there rows is 

required as lifting scheme. 

 

 
Fig. 3.4 ZXY parallel architecture for column processing (7-tap). 
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Chapter 4. Performance Analysis and Comparison 

In order to show better comparison, we selected 9/7-tap and 5/3 -tap 

DWT filters for the comparison objects. Fig. 3.9 shows the complete proposed 

architecture for the 9/7-tap filter with high-pass and low-pass filters. The experimental 

results on two examples demonstrate the proposed architecture achieved more 

efficient than the Daubechies and the lifting scheme architectures as shown in Table 

4.1. 

Our efficient pipeline architecture for 1-D DWT is as simple as the 

Daubechies architecture, and has many benefits as below. Firstly, ZXY architecture 

has the same separability as the Daubechies architecture, which means the high-pass 

FIR filter and the low-pass FIR filter of them can perform independently, but lifting 

scheme can not. Secondly, ZXY architecture is pipeline design, so that the hardware 

complexity was reduced with little resources overhead. At last, ZXY is the better 

applicability. There are two options for clock cycle selection. The long clock cycle 

(the delay of one multiplier plus two adders) is for register reduction, and the short 

clock cycle (the maximum delay of one multiplier or two adders) for high-speed 

performance. Moreover, the proposed architecture can be designed as any kind of taps 

filter as shown in Table 4.1. 

 

Table 4.1 Performance Comparison for 1-D DWT 9/7 and 5/3-tap filters. 

Architecture   M A R clk cycle Latency Shift 
5/3 8 6 5 4A+1M 4clk -- Daubechies 9/7 16 14 9 8A+1M 4clk -- 
5/3 4 4 8 2A+1M 5clk -- Lifting 9/7 6 8 14 2A+1M 7clk -- 
5/3 5 6 5 2A+1M 3clk -- 
5/3 5 6 10 2A 4clk -- 
9/7 9 14 9 2A+1M 3clk -- 

ZXY    HS 
AR 
HS 
AR 9/7 9 14 18 2A 4clk -- 
(RAG)Lifting 9/7 0 22 14 2A+1M 7clk 16 
(RAG)ZXY 9/7 0 24 18 2A 4clk 13 
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HS: High Speed type;  AR: Area Reduction type 

L: Latency;   R: Register; S: Shift 

A: One Adder's Delay Time or Adders 

M: One Multiplier's Delay Time or Adders 

Latency shown in this table is for low-pass output. Usually, high-pass output comes 

early than low-pass one or two clock cycle. 

 

Fig. 4.1, 4.2 and 4.3 are Daubechies, Lifting and ZXY 9/7-taps filter 

simulation results, respectively. They are implemented in 11-bit fixed-point input and 

output, by Xilinx Spartan3E XC3S1200, FG320, Speed: -4, and software: Xilinx ISE 

11.1. They used the same the discrete input signals, and got the same results, except 

deviation. They are using 11 bit signed fixed point for computation. 

In Fig. 4.1, Daubechies filter is improved by two stage pipelining, its 

minimum clock cycle is dominated by one multiplier latency (18.776ns), because 

eight-adder latency is shorter than one-multiplier latency. However, we set the clock 

to be 20ns for easy to show in Fig. 4.1. Because one register has been used after each 

multiplier to modify Daubechies architecture for higher-speed performance, which is 

shown in Fig. 2.1 

 

 
Fig. 4.1 Simulation for Daubechies DWT by 9/7-tap filter. 

 

In Fig. 4.2, Lifting filter's minimum clock cycle depends on one 

multiplier and two-adder latency (23.805ns). So we set clock cycle to 24ns for this 

circuit. The architecture in Fig. 2.2(b) directly connects the multiplier which is the one 

before high-pass output, so high-pass output latency is shorter than low-pass two 

clock cycle. The first high-pass output is number 26, and the first low-pass output is 

number -33. 
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Fig. 4.2 Simulation for Lifting DWT by 9/7-tap filter. 

 

In Fig. 4.3, the proposed filter's minimum clock cycle depends on only 

one multiplier latency (10.233ns) when it used RAG for multiplier block design. We 

set the clock cycle is 12ns in this case, whose circuit structure is shown in Fig. 3.9. 

 
Fig. 4.3 Simulation for ZXY DWT by 9/7-tap filter. 

 

Table 4.2 Performance Comparison for DWT 9/7-tap filter by Xilinx ISE 11. 
Circuit Slices SFFs LUTs Bit MCC LHP LLP Figure
Daubechies  502 274 905 11 18.776ns 4 clk 3 clk Fig. 10

323 165 533 11 23.805ns Fig. 11Lifting 
490 240 835 16 -- 

7 clk 5 clk 
-- 

344 216 649 11 18.776ns -- ZXY 
632 321 1190 16 -- -- 
152 204 269 11 10.233ns Fig. 12ZXY (RAG) 
307 321 583 16 -- 

4 clk 3 clk 

-- 
MCC: minimum clock cycle; 

FFs: Slices Flip Flops;  

LHP/LLP: latency for High-pass/Low-pass; 
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Chapter 5.  Conclusions 

An efficient pipeline architecture 1-D DWT based on the Daubechies 

architecture has been proposed. The proposed DWT is composed of two independent 

FIR filters: a high-pass FIR filter and a low-pass FIR filter. Each FIR filter is a 

two-stage pipeline whose fastest clock cycle is only either two adders delay or one 

multiplier delay.  The proposed architecture can achieve the higher speed than lifting 

because the clock cycle is one multiplier delay or two adders delay, this is in contrast 

to one multiplier delay plus two adders delay found in the lifting architecture. The 

proposed architecture still be larger area for the implementation using fixed-point 

adder and multiplier, but is almost the same area for the implementation using the 

reduce adder graph (RAG) algorithm. The proposed architecture can be further 

generalized to implement as any even- and odd- taps of filters. 

Our efficient pipeline architecture for DWT has many benefits as follows: 

●It is a pipeline architecture that works efficiently without complicated control. 

●It can be adapted to any-tap of DWT filters. 

●It is a kind of transposed FIR structure. Multipliers have the same input that is good 

for adapting RAG algorithm for size reduction. 

●It is a two-input structure which is the same type as Lifting structure, but shorten 

latency and shorten clock cycle with little resource overhead. 

●It is available to be regarded as two independent FIR filters: a high-pass filter FIR 

filter and a low-pass filter. 
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