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Abstract

The objective of this research is a selection of an optimal Electromyography (EMG) feature extraction in
order to determine the different kinds of hand movement for applying with EMG recognition and control
system i.e. electric powered wheelchair, mouse cursor, and electric equipment. The evaluation process in this
study is an offline test. In order to find an optimal EMG feature, three criterions should be addressed including
class separability, robustness, and computational complexity. Firstly, we evaluated the existed EMG features
from the literatures. In addition, the modification of the existed EMG features and a novel EMG feature are
presented. However, from the limitation that it does not have the best feature in the whole criterions. In this
study, discussion and summary are presented for each criterion. In practice, we should select the optimal EMG
features depending on the interested application. In summary, we evaluated sixteen existed EMG features,
modified two existed EMG feature, and introduced a novel feature. The discussion and summary are presented
in each criterion of the following:

1. In class separability view point, we selected and grouped three well-known EMG features in time
domain including Root Mean Square (RMS), Waveform Length (WL), and the forth order of Auto Regressive
(AR4). In addition, classification task is evaluated by Linear Discriminant Analysis (LDA). The accuracy of
recognition is about 98-99% with free noise environment. After that we evaluated fifteen EMG features from
the previous literatures in both of time domain and frequency domain by using statistic criterion method. From
the experimental results, WL is the best feature comparing with the other features. RMS and Willison
Amplitude (WAMP) are useful augmenting features for a more powerful feature vector. In conclusion, for a
single feature, WL is the best feature in class separability point of view.

2. In robustness viewpoint, we firstly used pre-processing stage based on denoising method using
wavelet transform. The results show the improving of hand movement recognition accuracy among the noisy
environment. Furthermore, we also modified two types of feature extraction based on frequency domain,
namely Modified Mean Frequency (MMNF) and Modified Median Frequency (MMDF). From the
experimental results, it is shown that MMNF and MMDF can be used for the new robust feature extraction. Its
robustness performance is better than the other existing features. In addition, WAMP and Histogram of EMG
(HIST) are the existed features that are better in robustness point of view.

3. In computational complexity and time, Integrated EMG (IEMG) uses less computational cost. In
addition, we found that time domain features have low computational complexity compared to features in
frequency domain. Moreover, we introduced a novel feature based on non-linear analysis, namely Detrended
Fluctuation Analysis (DFA). DFA is suitable for analyzing the non-stationary (EMG) signals same as time-

frequency features that features in time domain and frequency domain are not suitable. However, DFA takes
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less CPU time than feature in frequency domain and time-frequency features and a few more CPU time than

feature in time domain.
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EMG Denoising Estimation Based on Adaptive Wavelet
Thresholding for Multifunction Myoelectric Control

Angkoon Phinyomark, Student Member, IEEE, Chusak Limsakul,
and Pornchai Phukpattaranont, Member, IEEE

Abstract—Wavelet denoising algorithms have been received
considerable attention in the removal of noises of surface
electromyography (SEMG) signal. Wavelet denoising
algorithms proposed by Donoho’s method is more often used in
sEMG signal. However, Donoho’s method is limited especially
for multifunction myoelectric control. It does not only remove
noises but it also removes some important part of sSEMG
signals. This study proposes an improved threshold estimation
method. Six modified threshold estimation methods associated
with the selected thresholding rescaling are evaluated. SEMG
signal from six hand motions with additive WGN at various
signal-to-noise ratios (SNRs) were applied to evaluate the
efficient of method. Features of the estimated signal are sent to
classification task. Evaluations of the performance of these
algorithms are mean squared error (MSE) and classification
rate. The results show that Global Scale Modified Universal
(GSMU) method provides better performance than traditional
Donoho’s method. It produces sEMG signals that remain
important information of the original SEMG signal and can
eliminate lots of noises. The average MSE are 0.0024 at 20 dB
SNR, low noise, and 0.074 at 0 dB, high noise. The accuracy of
hand movement recognition of SEMG signal that estimates
from GSMU is improved. It improves 1 to 4% of the
classification accuracy depend on level of noise. In addition,
performance of level dependent method is better than the
others rescaling method. In the experiment, GSMU threshold
estimation method is an efficient method for producing useful
sEMG signal without noise and improving the application of
hand movement recognition.

[. INTRODUCTION

URFACE Electromyography (sEMG) signal is one of

physiological signal that is very complex, nonlinear,
non-stationary, and non-periodic [1]. Because the use of
SsEMG signal is very easy, fast and convenient, it is currently
becoming increasingly a powerful indication to get
important information and to diagnose about the muscular
and nervous systems. However, varieties of noises originated
from measure instruments are major problems in analysis of
SEMG signals. Therefore, methods to eliminate or reduce the
effect of noises have been one of the most important
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problems. Power line interference or instability of electrode-
skin contact can be removed using typical filtering
procedures but the interference of white Gaussian noise
(WGN) is difficult to remove using previous procedures.
Wavelet denoising algorithms, an advance signal processing
method, have been received considerable attention in the
removal of WGN [2], [13].

In this study, we propose a wavelet denoising based
estimation technique to generate the useful SEMG signal
without noise. The general wavelet based denoising
procedures are composed of three steps: decomposition,
denoising wavelet’s detail coefficients, and reconstruction.
To achieve and optimize the above procedures, four points
must be addressed, namely selection of the suitable wavelet
function, level of decomposition, threshold estimation, and
threshold transformation. Most wavelet based denoising
literatures are proposed by Donoho’s method [3]-[4].
However, Donoho’s method in denoising of SEMG signal is
limited especially for multifunction myoelectric control. The
limitation of Donoho’s method is the large value of
threshold that is not suitable for sSEMG signal. It does not
only remove noises but it removes some important part of
SEMG signals. As shown in Fig.1, loss of geometrical
characteristics and amplitude of sEMG signal can be
observed.

This study proposes an improved threshold estimation
method based on Donoho’s method. Traditional Donoho’s
method is modified and combined with existing techniques
for providing higher classification rate and less error. It
means that useful information is remained and undesirable
parts of SEMG signal are removed. The aim of this paper is
to show the comparison results of the different threshold
estimation methods found in previous research [4]-[8].
Moreover, thresholding rescaling methods including global,
first-level, and level dependent estimation are evaluated
using both standard deviation of noise and length of wavelet
coefficients parameters [9]-[10]. Getting higher performance
in denoising assumes that mean square error between the
estimated of original SEMG signal and denoising sEMG
signal is the lowest.

After evaluating the threshold estimation method in
denoising point view and for evaluating the efficiency of
classification task, the estimated SEMG signals are sent to
the hand recognition system in order to identify six hand
movements. Lots of methods are used to model and analyze
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Fig. 1. (a) Original sSEMG signal (b) Noisy sEMG signal with 5 dB signal-
to-noise ratio (c) sSEMG signal estimated by traditional Donoho’s method.

SsEMG signal that called feature extraction. Time domain and
frequency domain features are used to describe the
characteristics of the sEMG signal. Three well-known
features are Root Mean Square (RMS), Waveform Length
(WL), and the forth order of Auto Regressive (AR4) [11]-
[12]. After feature extraction task, classification task is
evaluated by Linear Discriminant Analysis (LDA). When
high performance is obtained, classification rate should be
the highest value.

II. WAVELET DENOISING AND SIGNAL ESTIMATION

The objective of wavelet denoising algorithm is to
suppress the noise part of the signal s(n) by discarding the
white Gaussian noise e(n) and to recover the signal of
interest f(n). The model is basically of the following form:

s(n)= f(n)+e(n). (1

The procedure of wavelet denoising follows three steps.
Firstly, sEMG signal is decomposed by discrete wavelet
transform. Detail and approximation coefficient are
obtained. Secondly, estimated threshold is applied to the
detail coefficients, zeroing all coefficients below their
associated thresholds. Finally, denoised signal is
reconstructed based on modified detail coefficients.

The first significant step of wavelet denoising procedure
is selection of wavelet function or mother wavelet. The right

E

%

Hand Open

Pronation

Wrist Flexion

Hand Close Wrist Extension Supination

Fig. 2. Estimated six hand motions.
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wavelet function determines perfect reconstruction and
performs better analysis. Next step is the selection of the
number of decomposition levels of signal. Instead of
focusing on the selection of the wavelet function and
decomposition level, we have presented in previous work
that the Daubechies wavelet with second orders (db2) and
the forth decomposition level provide the lowest mean
square error [13].

A. Wavelet Threshold Estimation Method

Estimation of detail coefficient threshold is selected with
estimator methods for each level from 1 to 4. Universal
threshold estimation method proposed by Donoho’s method
has been shown that its denoising capability is better than
other classical methods such as SURE method, Hybrid
method, and minimax method [13]. Universal threshold
estimation method uses a fixed form threshold, which can be
expressed as [3]

THR;y; = 04/210g(N)

where N is the length in samples of time-domain signal,
o is standard deviation of noise, and log is a natural
logarithm. The parameter o can be estimated using median
parameter which can be calculated as

2

median(‘cDj‘)

=, 3
o 0.6745 ®)

where cDj is the detail wavelet coefficients at scale level j
and 0.6475 is a normalization factor.

Six modified threshold estimation methods were applied in
this study as described in the following. In this study, we
provide specific name to each method because modified
threshold estimation methods do not have specific names.

1) Length Modified Universal Method: Length Modified
Universal (LMU) was modified by Donoho to be used in
soft-thresholding transformation [4]. It is defined as

J2log(V
THR, s =a~%- )

2) Scale Modified Universal Method: Scale Modified
Universal (SMU) was modified by Donoho to be used in
level dependent [5]. It can be expressed as

J

/',
THRgy, =0 -2 2

-\2log(N) ,

where j is scale level from 1 to 4 and J is maximum level, 4.
3) Global Scale Modified Universal Method: Global Scale

Modified Universal (GSMU) was modified by Zhong and

Cherkassky to be used in image denoising [6]. It is given by

®)

-J

THR g =02 2 -\[2log(N) - (6)
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4) Scale Length Modified Universal Method: Scale Length
Modified Universal (SLMU) was modified by Donoho. It is
combined between LMU and SMU [5]. It is shown as

v 21og(N)

J=j -

N2z

5) Log Scale Modified Universal Method: Log Scale
Modified Universal (LSMU) was modified by Song and
Zhao [7]. It takes the different thresholds at different scales.

+/21og(N)

Tlog(i+1)

THRg yyy =20+ (7)

®)

THR sy =0

6) Log Variable Modified Universal Method: Log Variable
Modified Universal (LVMU) was modified by Qingju and
Zhizeng [8]. It uses the constant d to adapt the threshold
value. Their experiments show that the value of constant d is
associated to the wavelet function and SNR. It should be
ranging between 0 and 3. In this study, we used 3 for the
constant d. The equation can be defined as

\21og(N)

_NelogN) )
log[e+(j—1)"1

THR; yyy =0

where e is the mathematical constant (2.71828).

A. Wavelet Threshold Rescaling Method

Seven threshold estimation methods, six modified and
classical one, can be improving using rescaling method. In
wavelet threshold rescaling, three categories can be
identified: global (GL), first-level (FL) and level dependent
(LD) thresholding [9]-[10]. In the first one, standard
deviation of noise (o) can be adapted to three categories.
While the second one, length of wavelet coefficients (V) can
be adapted to only GL and LD thresholding.

In addition, to identify the threshold rescaling method, GL
defines o as the estimated standard deviation of all the
wavelet coefficients and N as length of the total wavelet
coefficients. FL defines o, as the estimated standard

deviation of first-level detail coefficients (cD;). LD defines
o, as the estimated standard deviation for every
decomposition level and N, as length of the total wavelet
coefficients.
After threshold values are determined, thresholding can be
done using soft transformation,
D, ={sgn(cDj)(cDj —THR)), if |cD, |>THR, (10)

0, otherwise

Combining seven threshold estimation methods, six
threshold rescaling methods, and a threshold transformation
method, forty-two possible wavelet denoising estimators
exist. All of wavelet denoising procedures are presented in
Table I. After denoising procedure, the reconstructed signal

Monash University, Sunway campus, Malaysia, 25th & 26th July 2009.

TABLEI
WAVELET DENOISING PROCEDURES (METHOD FORMAT:
THRESHOLD ESTIMATION / 0 RESCALING / N RESCALING)

# TE o N # TE o N
1 UNI 22 UNI
2 LMU 23 LMU
3 SMU 24 SMU
4 SLMU GL | GL 25 SLMU FL | LD
5 GSMU 26 GSMU
6 LSMU 27 LSMU
7 LVMU 28 LVMU
8 UNI 29 UNI
9 LMU 30 LMU
10 SMU 31 SMU
11 SLMU GL | LD 32 SLMU LD | GL
12 GSMU 33 GSMU
13 LSMU 34 LSMU
14 | LVMU 35 LVMU
15 UNI 36 UNI
16 LMU 37 LMU
17 SMU 38 SMU
18 SLMU FL GL 39 SLMU LD | LD
19 GSMU 40 GSMU
20 LSMU 41 LSMU
21 LVMU 42 LVMU

computes wavelet reconstruction based on the original
approximation coefficients of level 4 and the modified detail
coefficients of levels from 1 to 4.

B. Experiment

In this section, we describe our experimental procedure for
recording SEMG signals. The sSEMG signals were recorded
from flexor carpi radialis and extensor carpi radialis longus
of a healthy volunteer by two pairs of surface electrodes (3M
red dot 2.5 cm. foam solid gel). Each electrode was
separated from the other by 20 mm. A band-pass filter of 1-
500 Hz bandwidth and an amplifier with 500 times gain
were used. Sampling rate was set at 1000 samples per
second using a 16 bit A/D converter board (National
Instruments, USA, model 6024E). Volunteers performed six
hand motions including hand open (ho), hand close (hc),
wrist extension (we), wrist flexion (wf), pronation (pr), and
supination (su) as shown in Fig. 2. Hand close and wrist
flexion were analyzed using signals from extensor carpi
radialis longus and the others motions were analyzed using
signals from flexor carpi radialis because each motion has
strong signal depending upon electrode position. Ten
datasets were collected for each motion.

C. Evaluation

The mean squared error (MSE) used to evaluate the
quality of the denoising signals can be given by

N

T — fe. 2
s ,-Z:;(/' Je) ’ (an

N
where f; represents the estimated original sSEMG signal and
fe; is estimated denoising SEMG signal.

The classification rate used to evaluate the quality of the

recognition system from the estimated sSEMG signal. The
performance of the algorithms is the best when MSE is small
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and classification rate closes to 100 percents. To guarantee
the best wavelet denoising method optimized for estimated
sEMG signals, we calculated MSE and classification rate
averages for each motion with 5 times of additional WGN
and each time was varied from 20-0 dB SNRs. SNR is
calculated by

SNR=IOIOg%,

noise

(12)

where P, is the power of original SEMG signals and P,
is the power of WGN.

III. MULTIFUNCTION MYOELECTRIC CONTROL BASED ON
ESTIMATED SEMG SIGNAL

Estimated sSEMG signal that were denoised from all of
wavelet denoising procedures in previous section were sent
to hand movement recognition. In this work, we evaluated
the performance of adaptive wavelet thresholding technique
in pattern recognition point view with Myoelectric Control
development (MEC) toolbox [14]. MEC Toolbox has
example data that is collected from 30 subjected. SEMG
signal is recorded from seven electrode positions on the arm
and volunteers perform six motions same as the above
experiment as shown in Fig. 2. More details of experiment
and data acquisition are described in [14]. The window size
is 256 ms and window slide is 32 ms for the real-time
constraint that the response time should be less than 300 ms.
The feature vector is six features per channel (1 RMS, 1 WL,
and 4 AR4). The classification was evaluated by LDA and
majority vote post-processing was performed.

The classification rates were calculated for each estimated
SEMG signals. The improved classification rate (ICR) was
calculated the improvement of wavelet thresholding method,
which can be expressed as

ICR = CRdenoised - CRno denoised > (13)
where CR je0isea 1S classification rate of estimated SEMG
signal and CR ,, senoisea 1S classification rate of noisy sSEMG
signal. The performance of the algorithms is the best when
improved classification rate is high and classification rate
closes to 100 percents.

IV. RESULTS AND DISCUSSION

This paper presents a complete comparative study of
wavelet denoising for estimated SEMG signal using
modified wavelet threshold estimation methods and wavelet
threshold rescaling methods. The objectives of this study
were to investigate the suitable wavelet denoising procedure
in two point views: 1) denoising 2) pattern recognition.

A. Wavelet Denoising and Signal Estimation

In denoising point view, MSE is used to present the high
performance when MSE is small. The results of MSE of all
42 possible combinations of wavelet denoising procedures in

Monash University, Sunway campus, Malaysia, 25th & 26th July 2009.
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Fig. 3. Mean Square Error (MSE) of all 42 possible combinations of
wavelet threshold estimation methods and wavelet threshold rescaling
methods (wavelet denoising procedure numbers refer to the wavelet
denoising procedures in Table I, i.e. #1-Universal threshold estimation
method (UNI), global threshold rescaling of o, and global threshold

rescaling of N ) at (a) 20 dB SNR (b) 10 dB SNR (c) 0 dB SNR.

Table I at 20, 10, 0 db SNR are shown in Fig. 3 (a)-(c) that
presents the low, medium, and high noise, respectively. By
comparing Fig. 3(a)-(c), results of wavelet denoising
procedures in each SNR level is the same trend. As SNR
increases, the MSE of each wavelet denoising procedures
increases. We can evaluate the results in Fig. 3 in three
groups: 1) the suitable wavelet threshold estimation method
2) the suitable threshold rescaling method for o 3) the
suitable threshold rescaling method for N. The evaluation of
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all 42 possible combinations of wavelet threshold estimation methods and
wavelet threshold rescaling methods (wavelet denoising procedure numbers
refer to the wavelet denoising procedures in Table I, i.e. #1-Universal
threshold estimation method (UNI), global threshold rescaling of o, and

global threshold rescaling of V) at 0 dB SNR.

threshold estimation methods shows that all methods have
the same value when rescaling method of o was set to GL.
When rescaling method of o is FL or LD, the results of
threshold estimation method are difference. MSE of UNI is
the lowest, followed closely by the LSMU and LVMU.
SMU and GSMU have slightly larger error compared to the
UNI, LSMU, and LVMU. The MSE of LMU and SLMU are
large. Their MSE are as much as two of the minimum MSE.
The MSE of threshold rescaling of o is the smallest when
it is set to GL. However, it makes the big value of threshold
value. The sEMG signal that estimated from this method
loses lots of useful information. It will make the bad
performance in pattern recognition that we discuss in section
B. By comparing FL and LD, the LD is slightly better than
FL. The results of threshold rescaling of N have the same
result with threshold rescaling ofo. The MSE of LD is
slightly smaller than FL. However, the MSE can evaluate
only for denoising point view that it maybe has the different
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Global Scale Modified Universal (GSMU) method, o threshold rescaling,
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dB SNR (D) 15 dB SNR.

result in pattern recognition point view.

B. Multifunction Myoelectric Control Based on Estimated
SEMG Signal

In pattern recognition point view, CR and /CR are used to -
present the high performance when CR closes to 100 % and
ICR is high. The results of CR and ICR of all 42 possible
combinations of wavelet denoising procedures in Table I at 0
dB SNR are shown in Fig. 4 (a)-(b). From the results of CR
and ICR at various SNR, it has the same trend. Therefore,
we present only at 0 dB, very high noise. Fig. 4 (a) shows
that only four wavelet denoising procedures have the
classification rate more than no denoising procedure.
GSMU-FL-GL, GSMU-FL-LD, GSMU-LD-GL, and
GSMU-LD-LD are the wavelet denoising procedures that
improve the classification rate. Their /CR are about 4%.
Consequently, evaluations of four wavelet denoising
procedures were considered. Fig. 5 (a)-(b) show results of
the effect of level of noises. At 0 dB SNR, very high noise,
GSMU-LD-LD can improve classification rate about 4%. It
shows the best performance. However, at 5, 10, and 15 dB
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SNR, high to low noise, GSMU-FL-LD is the best
performance. The best CR is 98.9% at low noise and 95% at
very high noise. It improves classification rate between 1 to
4% depend on level of noises.

From these experimental results, we can conclude that
GSMU is only one threshold estimation method that can
improve the classification rate. When the threshold rescaling
of Nis GL, the CR is better than LD. However, the threshold
rescaling of ois depending on the level of noise. At very
high noise, LD is better than FL. On the other hand, at high
to low noise, FL is better than LD. In addition, at very low
noise, more than 20 dB SNR, the wavelet denoising
procedure does not improve classification rate. It has the
same results.

V. CONCLUSION

In this work, we introduced and evaluated adaptive
wavelet thresholding technique for estimating useful
information of sSEMG signal and improve the application of
multifunction myoelectric control system. The results show
that Global Scale Modified Universal (GSMU) method
provides better performance than traditional Donoho’s
method and others modified threshold estimation methods.
In addition, performance of level dependent method is better
than the others rescaling method. This paper is a starting
idea to find the optimal threshold value for denoising and
estimating SEMG signal. In the future work, a new equation
should be formulated.
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EMG Signal Estimation Based on Adaptive Wavelet
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Abstract-Electromyography (EMG) signal is interfered with
different kinds of noise and wavelet denoising algorithm is a
powerful method to reduce noises in EMG signal. Hard and soft
shrinkage, traditional wavelet transformation, are applied to
wavelet coefficients with threshold value. From the limitation of
hard and soft shrinkage, this study proposes nine improved
wavelet shrinkage methods that achieve a compromise between
two standards. EMG signal from six hand motions with additive
noise at different signal-to-noise ratios were applied to evaluate
the efficiency of the methods in denoising viewpoint. In addition,
features of estimated denoising signal are sent to classification
task to measure the performance in myoelectric control. The
experimental results show that adaptive wavelet shrinkage
method (ADP) provides the better performance than traditional
methods and other modified methods in both of denoising and
pattern recognition viewpoints. Accuracy of recognition of EMG
signal transformed by ADP is improved about 6.5-78.5%
depending on the level of noise. ADP is an efficient method for
producing useful EMG signal without noise and improving
application of myoelectric control.

I.  INTRODUCTION

Electromyography (EMG) signal is physiological signal that
is a powerful indication to get useful information. It can be
used to control the prosthetic or assistive devices. However,
EMG signal is interfered with different kinds of noises and
becomes the major problem in EMG analysis. Therefore,
methods that used to remove or reduce the effect of noises are
the significant step before performing EMG analysis. Wavelet
denoising algorithm is an effective method to remove or
reduce noises in EMG signal. Generally, the wavelet based
denoising schemes are composed of three stages, namely
decomposition, modified wavelet’s detail coefficients, and
reconstruction. To achieve the above schemes, four points
must be addressed: wavelet function, decomposition levels,
wavelet threshold estimation, and wavelet threshold
transformation or shrinkage [1-2].

This study proposes improved wavelet shrinkage methods
based on Donoho and Johnson’s method [3]. It is influenced
by the fact that the available results of comparative study of
wavelet shrinkage methods were not effective enough [1-6].
From literatures, it has been shown that all of them used only
standard transformation methods, hard and soft shrinkage.
Moreover, our previous work [6], the two modified wavelet
transformation methods, namely hyperbolic and non-negative
Garrote shrinkage have been tested. However, this was not
powerful enough to make the comparison reasonable with
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respect to the available techniques today. In this study, nine
shrinkage methods that modified and compromised between
hard and soft shrinkage and two traditional shrinkage methods
are evaluated in both of denoising and pattern recognition
points of view. In other words, the wavelet denoising method
is used as an estimation technique to generate the useful EMG
signal in pattern recognition that improving in both of
accuracy and robustness.

II. ' WAVELET DENOISING AND ESTIMATION

The aim of wavelet denoising algorithm is used to suppress
the noise part of signal by rejecting white Gaussian noise
(WGN) and recover signal of interest. The first significant step
of wavelet denoising schemes is the selection of wavelet
function. The right wavelet function determines perfect
reconstruction and performs better analysis. Next step is the
selection of suitable decomposition levels. Instead of focusing
on the selection of wavelet function and decomposition level,
we have already presented in our previous work [2], [6] that
the Daubechies wavelet with second orders (db2) and the forth
decomposition level provide the best result in denoising point
of view. The third step is the estimation of wavelet’s detail
coefficients threshold value. Universal threshold method
proposed by Donoho’s method has been shown that its
denoising capability is better than other classical methods [2].
Universal threshold method can be expressed as [3]

THR = 0+/210g(N), (1)

where N is the length in samples of the signal in time domain
and o is standard deviation of noise that can be estimated
using median parameter which can be calculated as
median(‘cDj‘)

0.6745

2

where c¢D; is the wavelet’s detail coefficients at scale level j
and 0.6745 is a normalization factor [3]. Moreover, threshold
value is improved using rescaling method [2].

A.  Wavelet Shrinkage Approach

After threshold values are determined, thresholding can be
done using wavelet shrinkage method. The eleven wavelet
shrinkage methods were described in the following.

1) Hard Shrinkage (HAD): 1t is a simple shrinkage method.
All wavelet’s detail coefficients whose absolute values are



lower than threshold are set to be zero and other wavelet’s
detail coefficients are kept [3]. It is calculated by

eD; ={

2) Soft Shrinkage (SOF): 1t is an extension of HAD [3]. It
can be done by zeroing all wavelet’s detail coefficients whose
absolute values are lower than threshold same as HAD. Then,
non-zero coefficients are shrunk towards zero. It is defined as

eD;, if'|eD; |>THR;
0,

€)

otherwise

D, ={Sgn(cDj)(cDj—THRj), if |eD; [>THR;
0,

otherwise (4)
where sgn(x) is a sign function that extracts the sign of a real
number Xx.

3) Mid Shrinkage (MID): 1t is an extension of SOF [7],
small wavelet’s coefficients are zeroed, and then large
wavelet’s coefficients are not affected. However, intermediate
wavelet’s coefficients are reduced. MID can be expressed as

eD;, |eD,| > 21HR,

cD;

;=1 2sen(cD; )(eD,|~THR,), THR, <|eD,| < 2THR, '

0,

)

otherwise

4) Modulus Squared Shrinkage (MSQ): 1t is attempted to
address the limitation of SOF. It is described in [8] and its
equation is defined same as Hyperbolic shrinkage that is given

by [9],

D, :{sgn(cD (€D} —~THR}) ,
0,

if |D; > THR,
otherwise (6)

5) Non-negative Garrote Shrinkage (NNG): It combines
Donoho and Johnstone’s wavelet shrinkage with Breiman’s
non-negative garrote. The equation is modified by Gao [10]. It
is expressed as

2

THRj
_JeD;= )
eD; = eD;

0,

if | D, |>THR, . ™

otherwise

6) Compromising of Hard- and Soft- Shrinkage (CHS): It
estimates wavelet’s coefficients by weighted average of HAD
and SOF [8]. For 0<a<I, when «a is 0, it changed into HAD
and when «a is 1, it changed into SOF. In this study, we used
0.5 for the constant a.

®)

b {sgn(cDj)(|cDj |-aTHR)), if |cD; |> THR,
cl. = .
J

0, otherwise

7) Weighted Averaging Shrinkage (WAV): It estimates
coefficients by weighted average of MSQ and HAD [5]. It is
given by

©)

D, _{(l—a)sgn(cDi) (cD? —THR}) +a(cD;), if |¢D; [>THR; |

0, otherwise

where 0<o<1. If a is 0, (9) will change to MSQ and (9) will
change to HAD, if o is 1. We used 0.5 for the constant a.
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8) Adaptive Denoising Shrinkage (ADP): 1t is modified
based on SOF [11]. It is given by

2THR;

21D, [THE,

cD/ :cD/—THR/+
1+

(10)
9) Improved Shrinkage (IMP): 1t is attempted to address the
deficiency of HAD and SOF [12]. It can be defined as

(THR/"CDf‘).THRi)’ if |eD; |>THR,; ,

D, = sgn(cD/.)(‘cD/‘—/i’
/ 0, otherwise

(11)

where fe R* and f>1. In this study, we used 15 from the
suggestion of [12].

10) Modified Hyperbolic Shrinkage (MHP): 1t is obtained
from the results in variance pattern resembling HAD and
means resembling SOF removing the bias problem. It is
modified by Poornachandra et al. [13] and is shown as
if |eD; [>THR

J

cD,z.
D, = (k-cDy) 1"’(7) >

’ (12)
0. otherwise

where £ is the scaling function and we used 1 for the constant

k in this study.

11) Custom Shrinkage (CUT): 1dea of this transformation is
similar to that of NNG method, in the sense that CUT and
NNG are continuous and can adapt to the signal characteristics.
The equation can be expressed as

eD; +sgn(cD;)(1-)THR; , if |cD, |>THR,;

cD/-

0.if |eD; <y,
2
D. | — D | —
|eD; |-y (-3) 1D 1=y +4—a ', otherwise
THR, -y THR, -y

where 0 <y < THR; and 0 < a < 1. In this study, we used the
same threshold as [14] with & = 1 and y = THR;/2.

(13)

a-THRj[

B.  Experiments

The EMG signals in this study were divided into two sets.
The first set is used to evaluate the denoising viewpoint using
mean square error (MSE) criterion and the second set is used
to evaluate the recognition viewpoint using classification rate
criterion. The EMG signals in both data sets are from six
upper limb motions including wrist flexion, wrist extension,
hand close, hand open, forearm pronation, and forearm
supination. The EMG signals in the first set were recorded
from two channels on the right forearm namely, flexor carpi
radialis and extensor carpi radialis longus by two pairs of Ag-
AgCl Red Dot surface electrodes. Each electrode was
separated from the other by 2 cm. The EMG signals were
sampled at 1 kHz by using an analog-to-digital converter
board (DAQCard-6024E, NI). A band-pass filter of 10-500 Hz
bandwidth and an amplifier with 60 dB gain were used. Ten
datasets were collected for each motion. The second set of
EMG signals was recorded from eight channels on the right
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Figure 1. The procedure of improving multifunction myoelectric control
system using wavelet denoising algorithm.

forearm. The numbers of motion increase in the second dataset
for the performance in pattern recognition. This dataset was
acquired by Carleton University in Canada [15]. This system
set a band-pass filter of 1-1000 Hz bandwidth and an amplifier
with 60 dB gain (Model 15, Grass Telefactor). The EMG
signals were sampled at 3 kHz by using an analog-to-digital
converter board (PCI-6071E, National Instruments). However,
in recognition system, down-sample of EMG signal from 3
kHz to 1 kHz was done. Six trials were collected for each
subjects and each trial consisted of four repetitions of each
motion. EMG data from three subjects were selected in this
study. More details of experiment and data acquisition are
described in [15].

C. Evaluation Criterions

Two measured indices are used in this study to illustrate the
performance in two criterions. Firstly, MSE is used to evaluate
the quality of denoising point of view that can be expressed as

N
i - fe)

MSE =& ———>
N

(14)

where f; represents the estimated EMG signal from the original
signal and fe; is estimated EMG signal from the noisy signal.
Secondly, EMG signals that are denoised from all of
wavelet shrinkage method were sent to upper limb motions
recognition system. Features of the estimated EMG signals are
extracted in this study including root mean square (RMS),
waveform length (WL), and the fourth order of auto regressive
coefficients (AR4). As a result, six members were formed as a
feature vector. Classifier is linear Discriminant analysis (LDA)
and majority vote (MV) post processing was performed to
improve the classification results. The window size is 256 ms
and window slide is 64 ms for real-time constraint in
myoelectric control system [16]. The procedure of recognition
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Figure 2. Original EMG signal (gray line) and noisy EMG signal at 5 dB SNR
(black line) with six upper limb motions [17].

system is shown in Fig. 1. The second index is classification
rate (CR). It is used to evaluate the quality of the recognition
system with the EMG signal that is estimated by using wavelet
denoising. To clearly show observation results, improved
classification rate (/CR) is calculated to demonstrate the
improvement of the modified wavelet shrinkage methods. It
can be defined as

ICR = CRdenoised -CR (15)

where CRjenoised A0d CR 5 genoisea are the CR resulting from with
and without wavelet denoising procedures, respectively. The
performance of algorithms is better when /CR is higher. It
means that useful information in EMG signal is remained and
undesirable parts of EMG signal are removed. To guarantee
the best wavelet shrinkage method achieved and optimized for
estimated useful EMG signal, we calculated MSE and CR
averages for each motion with 5 times of additional WGN and
in each time the WGN was varied from 20-0 dB SNRs. We
can observe the effect of noise by adding different levels of
noise. The example of original EMG signal and original EMG
signal with WGN at 5 dB SNR are shown in Fig. 2. The SNR is
calculated by

no—denoised >

SNR =101og@,

noise

(16)

where P, is the power of original EMG signal and P, is
the power of WGN.

III. RESULTS AND DISCUSSION

A.  Performance in Denoising Point of View

The result of MSE that is used to present the performance of
denoising is shown in Fig. 3 in log-lin type of a semi-log
graph at different level of WGN. The denoising performance
is better when the MSE is lower. From the Fig. 3, the MSE of
11 wavelet shrinkage methods and no denoising case with
only WT are presented. At medium and high noises, SNR is
lower than 10 dB. All of wavelet shrinkage methods are better
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Figure 3. MSE of only WT and 11 wavelet shrinkage methods
at different level of noise (20-0 dB SNRs).

than WT. However, at low noise, 15 dB SNR, HAD and MHP
are worse than WT. In addition, CUT, WAV, and MID are
worse than WT at very low noise, 20 dB SNR. Moreover, as
SNR increases, the MSE of each wavelet shrinkage method as
well increases.

From the experimental results, the MSE of ADP is lowest,
followed closely by SOF and IMP. It means that ADP is the
best shrinkage in denoising viewpoint. MSE of WT is seven
times the MSE of ADP at low noise and is three times the
MSE of ADP at high noise. Some responses of wavelet
shrinkage methods are presented in Fig. 5(f). However, the
MSE can be evaluated only for the performance of denoising
viewpoint. It may have the different result in the viewpoint of
pattern recognition. The same MSE of each wavelet shrinkage
method does not mean that the form or shape of estimated
EMG signal is similar. We can observe the difference between
the estimated EMG signal from the noisy EMG signal at 5 dB
SNR of SOF (gray line) and ADP (black line) that have the
close MSE values as shown in Fig. 4. This provides a different
value of features in recognition system.

B.  Performance in Pattern Recognition Viewpoint

CR and ICR were used to present the high performance
when CR closed to 100 % and /CR is high. The results of CR
and /CR of 11 wavelet shrinkage methods at different level of
noise (0, 10, and 20 dB SNR) are shown in Fig. 5(a-c)
respectively. From the observation of CR and /CR of wavelet
shrinkage at different level of SNR, it has the same trend.
From the Fig. 5(a-c), we can observe that the use of wavelet
denoising method to estimate EMG signal before sending to
recognition system provides larger CR than no denoising
EMG signal (black line). The CRs of upper limb motions
recognition without applying wavelet denoising method are
shown in Fig. 5(e) with the square box at each level of noise.
When the level of noise increases, CR of no denoising rapidly
decreases. But the recognition results when using denoising
technique still achieved the CR larger than 80%. From these
experiments, we can confirm that estimated EMG signal that
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T T T T T

Noisy EMG signal
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Figure 4. Estimated EMG signal using SOF (gray line) and estimated EMG
signal using ADP (black line) with six upper limb motions.

is applied wavelet denoising method before recognition
system has better performance than using raw EMG signal in
noisy environment. We can get the robust EMG pattern
recognition using wavelet shrinkage. It improved about 5% at
low level of noise (20 dB SNR), about 60% at medium level of
noise (10 dB SNR), and about 70% at very high level of noise
(0 dB SNR).

Next, we can see that the best shrinkage is ADP from the
observation of the CR and ICR in Fig. 5(a-c). Its results are
summarized in Fig. 5(d) and the comparison with no denoising
is shown in Fig. 5(e). However, when level of noise is low, the
performance of different kinds of wavelet shrinkage is similar.
Moreover, the best wavelet shrinkage method is still ADP.
The best CR is 98.38% at low noise and 91.62% at very high
noise. It is still larger than 90%. Results show that ADP is the
best wavelet shrinkage in both of denoising and pattern
recognition points of view. The performance of ADP in
pattern recognition viewpoint is followed closely by CUT and
MHP. These shrinkage methods are better than traditional
shrinkage, HAD and SOF. The CR of SOF is the lowest. It
was expected to perform poorly in recognition viewpoint.

IV. CONCLUSION

Modified wavelets shrinkage methods are introduced and
evaluated as an estimation tool to generate useful EMG signal
for the pattern recognition in both of class separability and
robustness. The evaluation of estimated EMG data confirmed
the better results of modified wavelet shrinkage methods over
traditional wavelet shrinkage methods. It is able to improve
application of multifunction myoelectric control in both of
denoising and recognition viewpoints. The results show that
the adaptive wavelet shrinkage (ADP) method provides better
performance than no denoising and other candidate methods.
This paper is a starting idea to find optimal shrinkage method
for denoising and estimating EMG signals. In future work, the
evaluation of estimated EMG signals with different features
and classifiers will be investigated. Moreover, a new equation
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of wavelet shrinkage method should be formulated only for
EMG signals.
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Abstract-In EMG hand movement recognition, the first and
the most important step is feature extraction. The optimal feature
is important for the achievement in EMG analysis and control. In
this paper, we present a statistical criterion method using the
ratio between Euclidean distance and standard deviation, which
can response the distance between two scatter groups and directly
address the variation of feature in the same group as a selection
tool to find the optimal EMG feature. Fifteen features that have
been widely used to classify EMG signals were used. The optimal
feature is conducted to demonstrate the validity of the proposed
index. The major advantages of this method are simplicities of
implementation and computation. Moreover, the results of
proposed method are the same trend with classification results of
the achievement classifiers in EMG recognition. From the
experimental results, waveform length is the best feature
comparing with the other features. Root mean square, mean
absolute value, Willison amplitude, and integrated EMG are
useful augmenting features for a more powerful feature vector.
From these results, it demonstrates that the proposed method can
be used for an EMG feature evaluation index.

I. INTRODUCTION

Electromyography (EMG) signals have the properties of
nonstationary, nonlinear, complexity, and large variation.
These lead to difficulty in analyzing EMG signals. In the EMG
hand movement recognition, there are two main points, namely
feature selection and classifier design that should be paid more
attention. In this paper, we focus on the first point. In general,
the methods of feature selection can be divided into two types:
the measure of classification accuracy and the evaluation using
statistical criterion [1]. The first selection method has major
disadvantage that the evaluation of EMG features depend on
the classifier type but the second selection method is not
problematic in this way and tries to quantify the suitableness of
the feature space [2]. From the literatures, there are many
existing selection methods based on statistic criterion for EMG
feature evaluation such as Davies-Bouldin index [1-6],
scattering index [5], Fishers linear discriminate index [6],
Bhattacharyya distance [7], and fuzzy-entropy-based feature
evaluation index [8]. However, the complexity of computation
and implementation is drawback of the existing methods.

In this paper, we used two fundamental methods which can
evaluate distance between two scatter groups (separation index)
and directly address the variation of feature in the same group
(compactness index), the ratio between Euclidean distance and
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standard deviation. The most significant advantage of this
method is that it is simple to be implemented and computed.
After that the selection of the best features based on the
proposed statistical criterion method is investigated. For this
purpose, we evaluate different kinds of features that have been
widely used in EMG hand movement recognition and there are
up-to-date to available techniques today [1-8]. The results of
this evaluation and the proposed statistic method can be widely
used in EMG applications such as control of EMG robots and
prostheses or the EMG diagnosis of nerve and muscle diseases.

Many research works have explored the extraction of
features from EMG signal for hand movement recognition.
Various features were found in the literatures [1-9]. For
example, features based on time domain are mean absolute
value, modified mean absolute value, root mean square,
integrated of EMG, simple square integral, variance, mean
absolute value slope, waveform length, zero crossing, slope
sign change, Willison amplitude, and auto-regressive model.
Moreover, features based on frequency domain such as mean
frequency and median frequency are proposed. All of these
feature candidates are selected to be evaluated in this paper.
Accordingly, we select six kinds of frequently used hand
movements to be classified. In addition, two muscle positions
of electrodes are selected based on the relations between
muscle location and hand movements to obtain the meaningful
EMG signals.

The rest of this paper is organized as follows. Section 2
illustrates experiments and data acquisition. In Section 3, the
detail of fifteen kinds of selected features candidates will be
introduced. In the later of this section, the detail of proposed
statistic criterion method is illustrated. Section 4, experimental
results are reported and discussed. Finally, we have some
conclusion remarks in Section 5.

II. EXPERIMENTS AND DATA ACQUISITION

Varieties of EMG signals from six hand movements and two
muscle positions are used as representative data in this study.
Six hand movements were performed by a healthy subject. The
six different types of hand movements are performed. They are
typical movements of the most frequency use for human beings.
They are wrist flexion (wf), wrist extension (we), hand close
(hc), hand open (ho), forearm pronation (fp), and forearm
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Figure 1. Six different types of hand movements to be classified
(a) wf (b) we (c) he (d) ho (e) fp (f) fs [9].

supination (fs) as shown in Fig. 1. Ten datasets were collected
for each hand movement from two channels by two pairs of
bipolar Ag/AgCl electrodes (3M red dot solid gel). Therefore,
there were 120 datasets of EMG signals in subject. One pair of
muscle position was placed over the flexor carpi radialis (chl)
and the other was placed over the extensor carpi radialis longus
(ch2). The top side of wrist is used as the reference muscle
position. All disc electrodes were put on the skin surface of the
right forearm of the subject. Each bipolar pair of electrodes
was spaced from a center to center by 20 mm. Moreover, to
avoid the cross interference between two muscles, 5 mm
diameter electrodes was used.

Differential amplifiers were set with 60 dB gain and band-
pass filters of 10-500 Hz bandwidth were used to remove high
random frequency interferences and the motion artifacts at low
frequency. Sampling frequency was set at 1000 Hz using a 16
bit analog-to-digital converter board (NI, DAQCard-6024E). In
the analysis, the window length of EMG samples was set for
256 ms with the objective of real-time signal processing. In
other words, the maximum permissible delay for EMG hand
prosthesis control should be less than 300 ms [10].

[II. METHODOLOGY

A. Feature Extraction Stage

Fifteen features from time domain and frequency domain are
used in evaluation. Time domain features are measured as a
function of time. Because of their implementation and
computation simplicity, time domain features are the most
popular in EMG hand movement recognition. All features in
time domain can be implemented in real-time. Normally,
features in this group are used for detecting muscle contraction,
muscle activity, and onset detection. Thirteen features based on
time domain are described as follows.

1) Integrated EMG (IEMG): IEMG is normally used as an
onset detection index that is related to EMG signal sequence
firing point. IEMG is the summation of the absolute values of
EMG signal amplitude, which can be expressed as

N
IEMG =)’

n=1

X, - (1
where x, represents the EMG signal in a segment and N
denotes the length of the EMG signal.

2) Mean Absolute Value (MAV): MAV is similar to IEMG
that normally used as an onset index to detect the muscle
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activity. MAV is the average of the absolute value of EMG
signal amplitude. MAV is a popular feature used in EMG hand
movement recognition application. It is defined as

X

1 N
MAV—NZ : )

n=1

3) Modified Mean Absolute Value 1 (MAVI1): MAVI1 is an
extension of MAV. MAV1 uses weighting window function
(w,) to improve the robustness of MAV. It is calculated by

le

>

1 N
MAVI=—)> w
, (3)
I, if025N<n<0.75N

W)l = .
0.5, otherwise.

4) Modified Mean Absolute Value 2 (MAV2): MAV2 is
related to MAV1. Moreover, continuous weighting window
function (w,,) in this feature is used to improve the smoothness
of weighting function. The equation can be defined as

1 N
MAV2 = —
2

X, 1
n=1
1, if 025N <n<0.75N “)
w, ={ 4n/ N, if 025N >n
4n—N)/N, if0.75N<n.

5) Mean Absolute Value Slope (MAVS): MAVS is a modified
version of MAV. The differences between the MAVs of
adjacent segments are determined. It can be defined as

MAVS,=MAV,, -MAV,; i=1,..,1-1. &)

where 7 is the number of segments covering EMG signal.
When the number of segments increases, it may improve the
representation of the original signal over the traditional MAV.

6) Simple Square Integral (SSI): SSI captures the energy of
the EMG signal as a feature. It can be expressed as

N

SSI=Y"
n=l1
7) Variance (VAR): VAR captures the power of EMG signal
as a feature. Normally, variance is mean of square of deviation
of that variable. However, mean value of EMG signal is close

to zero. Therefore, variance of EMG signal can be defined as

1 N
VAR =——>x’. 7
N _1 ~ n ( )
8) Root Mean Square (RMS): RMS is related to constant
force and non-fatiguing contraction. Generally, it similar to SD,
which can be expressed as

N
RMS = /inj : (®)
N n=1

9) Waveform length (WL): WL is the cumulative length of
waveform over time segment. WL is similar to waveform
amplitude, frequency and time. The WL can be formulated as

2

x}'l

(6)
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Xy =X, - )

10) Zero crossing (ZC): ZC is the number of times that the
amplitude values of EMG signal crosses zero in x-axis. In
EMG feature, threshold condition is used to avoid from
background noise. ZC provides an approximate estimation of
frequency domain properties. The calculation is defined as

ZC= jf[sgn (x,%x,.,) N[, =x,.,| = threshold |;
n=1

(10)
1, if x=threshold

0, otherwise.

sgn(x) = {

11) Slope Sign Change (SSC): SSC is related to ZC. It is
another method to represent the frequency domain properties
of EMG signal calculated in time domain. The number of
changes between positive and negative slope among three
sequential segments are performed with threshold function for
avoiding background noise in EMG signal. It is given by

N-1

ssC= 3 [ £[(x, =5 )x(x, ~x,.)]]:

n=2

(11)
1, if x =threshold

0, otherwise.

f(x)={

12) Willison amplitude (WAMP): WAMP is the number of
time resulting from the difference between EMG signal
amplitude of two adjoining segments that exceeds a predefined
threshold, which is used to reduce background noises like in
the calculation of ZC and SSC. It is given by

N-1
WAMP =" f(|x, —x,..):
n=1
(12)
I, if x> threshold
S (x)= .
0, otherwise.

WAMP is related to the firing of motor unit action potentials
and muscle contraction level. The suitable value of threshold
parameter of features in ZC, SSC, and WAMP is normally
chosen between 10 and 100 mV that is dependent on the setting
of gain value of instrument. However, the optimal threshold
suitable for EMG analysis is discussed later.

13) Auto-regressive (AR) coefficients: AR model described
each sample of EMG signals as a linear combination of
previous EMG samples (x,.;) plus a white noise error term (w,).
In addition, p is the order of AR model. AR coefficients (a;) are
used as features in EMG hand movement recognition. The
definition of AR model is given by

P
xn :_Zai'xrﬁi +Wn > (13)
i=1
Moreover, two features in frequency domain are evaluated
in this study. Normally, frequency domain features are used to
detect neural abnormalities and muscle fatigue. Moreover,
these features are used in EMG hand movement recognition.
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Details of all features are as follows.

14) Median Frequency (MDF): MDF is frequency at which
the spectrum is divided into two regions with equal amplitude.
It can be expressed as

MDF M 1 M

Y=Y p=1dp.
Jj=1 J J=1

=MDF

(14)

where P; is EMG power spectrum at frequency bin ;.

15) Mean Frequency (MNF): MNF is average frequency. It
is calculated as the sum of the product of power spectrum and
frequency divided by the total sum of spectrum intensity,
which can be expressed as

M M
MNE=) /P, /> P, (15)
J=l j=1

where f; is frequency of spectrum at frequency bin .

B.  Feature Selection Stage

The good quality in class separability point of view means
that the result of misclassification rate is the lowest or the
highest of separation between classes is obtained and the small
value of variation in subject experiment is reached. From the
explanation above, feature selection methods can be obtained
based on either classifier or statistic measurement index. From
the drawback of evaluation using classifier in the first type that
the evaluation results are dependent on the classifier [5, 11].
We investigate the selection of features based on statistical
index in this study. We introduce the statistic criterion method
which can evaluate distance between two scatter groups
(separation index) and directly address the variation of feature
in the same group (compactness index). Normally, the
statistical index should be addressed in both of separation and
compactness index [8]. Euclidean distance (ED) and standard
deviation (SD) are the simple method that is selected in this
study to address two properties above.

ED is the most common use of distance. It is calculated as
the root of square differences between co-ordinates of a pair of
objects. We used ED as a separation index. In addition, SD is
the most robust and widely used measure of the variability. SD
is used as a compactness index. The ED(p,q) is defined as

(16)

where p and g is the feature mean of two motions from six
hand motions with two dimensional spaces (two muscles). In
addition, the equation of SD is given by

Ny 2
ro—
SD =0 = —ZWZI(W IU) ,
NW

2 2
ED(p,q) :\/(Pchl ) (P —da)

a7

where 7 is the feature of the w" window of Ny and u is the
feature mean of all windows. The ratio between ED and SD
that we called RES,,, index is used as a statistic measured index
in this paper. The RES,, index can be expressed as

_ED(p.q)

RES,, =

(18)
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where the & is the average between standard deviation of two
motions (p and ¢g) with two dimensional spaces (two muscle
positions, chl and ch2). In addition, the EMG features are
normalized before calculating the ED and SD values. The
normalization in this study refers to allow feature values on
different scales to be compared. In order to negate that
variable's effect on the EMG features, the normalized features
(7porm) are performed which can be expressed as
7+ min(r)

o axr+ min) 19)

The best performance of classification is obtained when the
ED value is high and the SD value is low. Therefore the RES,,
index should be large to obtain better performance. In order to
confirm the results, the average of RES,, from fifteen possible

combinations of six hand movements (RES index) is performed.

The most significant advantage of the proposed statistic
method is that it is simple to implement and compute.
Moreover, in order to confirm that it can directly indicate the
best feature with the classification results. We compared the
results of proposed method with the classification results of the
achievement classifiers in EMG recognition. We used the
results of support vector machine (SVM) classifier in [12] to
compare.

IV. RESULTS AND DISCUSSION

In order to demonstrate the classification performance, the
scatter plots between EMG features from two muscles of six
movements are used to confirm the distance between two
scatter groups and the variation of feature in the same group.
From Fig. 2(a), scatter plot of WL feature shows that the data
points in each motion are clear separation and compactness. It
will be easily grouped when used for pattern recognition.
However, from the Fig. 2(b), scatter plot of ARI is observed
that pattern for different motions are much fluctuated. In
practice, it is hard to classify these patterns to reach maximum
rate. In this paper, we used RES index to indicate the quality of
separation instead of using the observation from scatter plot.

From the experimental results, WL is the best feature
compared with the other features as we can observe from the
Fig. 3. WL obtains the RES index as 11.764. It is higher than
the secondary feature about 2.337. RMS, WAMP, MAV, and
IEMG are the secondary features group. Their RES index are
greater than 9.3. Moreover, they provide only one feature per
channel which is small enough to combine with other features
to make a more powerful feature vector but it does not increase
the computational burden for the classifier. VAR, SSI, MAV1
are closed by the secondary features group. For time domain
features that contained frequency information, WAMP has
better cluster separability than ZC and SSC. The optimal
threshold value of WAMP is about 30 mV but the optimal
threshold value of ZC and SSC is about 10 mV.

The modified version of MAV is worse than the traditional
MAV. In addition, the whole features in frequency domain
show poor class separability. MNF and MDF obtain RES index
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Figure 2. Scatter plot of six different movements of (a) WL features -
(b) AR1 features - from two muscles (chl and ch2).

merely about 4.6 and ARI obtain RES index only about 3.7.
RES index of WL feature is three times the RES index of whole
frequency domain features. Furthermore, MAVS is the worst
classifier performance compared to the other features. Its RES
index is only 2.901. The RES index of WL feature is four times
the RES index of the worst case, MAVS. Additionally, AR and
MAVS in this study used the first order and two segments for
obtaining only one feature per channel. Therefore, the
increasing of AR order and MAVS segments may improve the
classification results.

The results of the proposed method are the same trend with
the SVM classifier in [12]. The classification results of SVM
classifier in [12] showed that it is better than the other
successful classifier, namely linear Discriminant analysis and
multilayer perceptron neural network. The best single feature is
WL in [12] that is similar to the results from RES index. In
addition, other results in [12] are similar with the results of
RES index such as the better performance of RMS over MAV,
the improvement of WAMP over ZC and SSC, the betterment
of original MAV over modified version of MAV, or the poor
class separability of EMG features in frequency domain.

Moreover, Fig. 4(a-b) shows the value of ED and SD that ZC
has the highest £D but the SD of ZC is very poor. Hence, the
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Figure 3. Bar plot of RES index of fifteen features
with the six different movements and two muscles.

RES index of ZC is not good. MDF and WAMP are the same
trend with ZC that ED is high but SD is high too. The ED of

WL follows the best group. Furthermore, SD of WL is smallest.

For this cause, the RES index of WL is higher than other
features. For the worst case, MAVS obtained both of smallest
ED and highest SD.

V. CONCLUSION

From the RES index, WL has the best overall performance.
RMS and WAMP are the better ones that can use with WL for
a useful feature vector. The results of RES index are same trend
with the classification results of SVM classifier. From the
experiments demonstrate that RES index can be used as an
EMG feature evaluation index. In future work, other features
that have been reported in literatures should be evaluated to
find the better one. Moreover, the combination of some useful
features should be tested using the proposed index and the
achievement classifiers to find optimal feature vector for EMG
recognition. In addition, the assessment of the RES index with
the larger EMG datasets is ongoing research..
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A Novel Feature Extraction for
Robust EMG Pattern Recognition

Angkoon Phinyomark, Chusak Limsakul, and Pornchai Phukpattaranont

Abstract—Varieties of noises are major problem in recognition of Electromyography (EMG) signal. Hence, methods to remove
noise become most significant in EMG signal analysis. White Gaussian noise (WGN) is used to represent interference in this
paper. Generally, WGN is difficult to be removed using typical filtering and solutions to remove WGN are limited. In addition,
noise removal is an important step before performing feature extraction, which is used in EMG-based recognition. This research
is aimed to present a novel feature that tolerate with WGN. As a result, noise removal algorithm is not needed. Two novel mean
and median frequencies (MMNF and MMDF) are presented for robust feature extraction. Sixteen existing features and two
novelties are evaluated in a noisy environment. WGN with various signal-to-noise ratios (SNRs), i.e. 20-0 dB, was added to the
original EMG signal. The results showed that MMNF performed very well especially in weak EMG signal compared with others.
The error of MMNF in weak EMG signal with very high noise, 0 dB SNR, is about 5-10% and closed by MMDF and Histogram,
whereas the error of other features is more than 20%. While in strong EMG signal, the error of MMNF is better than those from
other features. Moreover, the combination of MMNF, Histrogram of EMG and Willison amplitude is used as feature vector in
classification task. The experimental result shows the better recognition result in noisy environment than other success feature

71

candidates. From the above results demonstrate that MMNF can be used for new robust feature extraction.

Index Terms—Electromyography (EMG), Feature extraction, Pattern recognition, Robustness, Man-machine interfaces.

1 INTRODUCTION

URFACE Electromyography (sEMG) signal is one of

the electrophysiological signals, which is extensively

studied and applied in clinic and engineering. In this
research, the application of sEMG signal in assistive tech-
nology and rehabilitation engineering is paid attention.
Main application of these fields is the control of the pros-
thesis or other assistive devices using the different pat-
terns of sEMG signal [1-2]. Nevertheless, the major draw-
back of EMG pattern recognition is the poor recognition
results under conditions of existing noises especially
when the frequency characteristic of noise is random. Ma-
jor types of noise, artefact and interference in recorded
sEMG signal are electrode noise, electrode and cable mo-
tion artifact, alternating current power line interference,
and other noise sources such as a broad band noise from
electronic instrument [3-4]. The first three types of noise
can be removed using typical filtering procedures such as
band-pass filter, band-stop filter, or the use of well elec-
trode and instrument [3-4] but the interferences of ran-
dom noise that fall in EMG dominant frequency energy is
difficult to be removed using previous procedures. Gen-
erally, white Gaussian noise (WGN) is used to represent

o Angkoon Phinyomark is with Department of Electrical Engineering,
Prince of Songkla University, Songkhla, Thailand 90112.

o Chusak Limsakul is with the Department of Electrical Engineering,
Prince of Songkla University, Songkhla, Thailand 90112.

o Pornchai Phukpattaranont is with the Department of Electrical Engi-
neering, Prince of Songkla University, Songkhla, Thailand 90112.

the random noise in sSEMG signal analysis [5-6]. Adaptive
filter or wavelet denoising algorithm, advance digital sig-
nal filter, has been received considerable attention in the
removal of WGN [7-8]. However, WGN cannot be re-
moved one hundred percent and sometimes some impor-
tant part of SEMG signals are removed with noise even if
we use adaptive filter and wavelet denoising algorithm.
The broad band and random frequency characteristic of
noise in this group is a main reason that make it difficult
to be removed. Moreover, the amplitude of noise is bigger
than the sEMG signal amplitude; the amplitude of raw
signal is about 50 pV-100 mV [9].

In EMG-based pattern recognition, sEMG signal is
preprocessed the spectral frequency component of the
signal and extracted some features before performing
classification [1]. Normally, in preprocessing and signal
condition procedure, method to remove noise is a signifi-
cant step to reduce noises and improve some spectral
component part [3]. Next important step, feature extrac-
tion, is used for highlighting the relevant structures in the
sEMG signal and rejecting noise and unimportant sSEMG
signal [5]. The success of EMG pattern recognition de-
pends on the selection of features that represent raw
sEMG signal for classification. This study is motivated by
the fact that the limitation of the solutions to remove
WGN in the preprocessing step and EMG-based gestures
classification need to do the extraction step. The selection
of feature that torelance of WGN and the modified of ex-
isting EMG feature to improve the robust property are
proposed. As a result, WGN removal algorithms in the
preprocessing step are not needed.

© 2009 Journal of Computing
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Fig. 1. Estimated six upper limb motions (a) wrist flexion (b) wrist
extension (c) hand close (d) hand open (e) forearm pronation (d)
forearm supination.

From the literatures, the development of robust feature
extractions in speech, texture, and image are presented
[10-11] but there is no selection and modification of ro-
bust EMG feature extraction. There are some evaluations
about the effect of noise with EMG features [5, 12-14].
However, these literatures attend to the quality of EMG
features in maximum class separability point of view. The
description and discussion about the robustness are infe-
riority. Furthermore, features that used to evaluate in the
literatures are not fair with the available methods today.
In 1995, Zardoshti-Kermani et al. [5] evaluated seven fea-
tures in time domain and frequency domain. WGN with 0
to 50% of rms amplitude signal are used to test the effect
of noise. The cluster separability index and classification
result are presented that histrogram of EMG is the better
feature in very high noise (50% of rms amplitude signal).
Later, in 2003, thirteen features with combination and
various orders are tested the robustness property by
Boostani et al. [12]. One level, one tenth of sSEMG peak-to-
peak amplitude, of 50 Hz interference and random noise
is considered and the sensitivity of feature is reported. In
addition, our previous work [13-14] compared the effect
of eight features and their relevant features with 50 Hz
interference and WGN. The results of mean square error
(MSE) criterion show that Willison amplitude with 5 mV
threshold parameter is the best feature compared to the
other features.

However, there is an increase in EMG feature methods
that is published in many literatures this day. In this pa-
per, sixteen features in time domain and frequency do-
main from the literatures [5, 12-17] are used to test the
robustness with the additive WGN at various signal-to-
noise ratios (SNRs). Moreover, the effect of the level of
signal amplitude was tested. Eighteen features that used
in this research represent most features in EMG pattern
recognition. Generally, most of the attempts to extract
features from sEMG signal can be classified into three
categories including time domain, frequency domain, and
time-frequency domain [1]. We considered only former
two categories because they have computational simplici-
ty and they have been widely used in research and in
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Fig. 2. Strong sEMG signal (gray line) and weak sEMG signal (black
line) of (a) wrist extension motion. (b) hand open motion.

clinical practice. In addition, two novel feature calcula-
tions using frequency properties are presented. We mod-
ified the mean frequency and median frequency by calcu-
lating the mean and median of amplitude spectrum in-
stead of power spectrum that we called Modifed Mean
Frequency (MMNF) and Modified Median Frequency
(MMDF). This paper is organized as follows. Experiments
and data acquisition are presented in Section 2. Section 3
presents a description of EMG feature extraction methods
in time domain and frequency domain. In addition, the
evaluation criterion is introduced. Results and discussion
are reported in Section 4, and finally the conclusion is
drawn in Section 5.

2 EXPERIMENTS AND DATA ACQUISITION

In this section, we depict our experimental procedure for
recording sEMG signals. The sEMG signal was recorded
from flexor carpi radialis and extensor carpi radialis lon-
gus of a healthy male by two pairs of Ag-AgCl Red Dot
surface electrodes on the right forearm. Each electrode
was separated from the other by 2 cm. A band-pass filter
of 10-500 Hz bandwidth and an amplifier with 60 dB gain
was used. Sampling frequency was set at 1 kHz using a 16
bit analog-to-digital converter board (National Instru-
ments, DAQCard-6024E).

A volunteer performed four upper limb motions in-
cluding hand open, hand close, wrist extension, and wrist
flexion as shown in Fig. 1 (a-d). In this study, the effect of
signal strength was performed by divided the sEMG sig-
nal to two types: strong sEMG signal and weak sEMG
signal. Strong sEMG signals were collected from extensor

carpi radialis longus in hand close and wrist flexion and
28
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Fig. 3. The eight electrode placements of the right forearm.

were collected from flexor carpi radialis in hand open and
wrist extension as shown in Fig. 2 (gray line). In addition,
the others motion and electrode channel are weak sSEMG
signals as shown in Fig. 2 (black line). Ten datasets were
collected for each motion. The sample size of the SEMG
signals is 256 ms for the real-time constraint that the re-
sponse time should be less than 300 ms. This dataset was
used for the MSE criterion that represent the effect of
noise with the value of EMG features.

The second dataset is used to evaluate the performance
of the classification results of EMG features in noisy envi-
ronment. Seven upper limb motions including hand open,
hand close, wrist extension, wrist flexion, forearm prona-
tion, forearm supination and resting as shown in Fig. 1
and eight electrode positions on the right forearm as
shown in Fig. 3 were used in the classification procedure
to measure the performance of the EMG feature space
quality with WGN. This dataset was acquired by the Car-
leton University in Canada [17]. A duo-trode Ag-AgCl
surface electrode (Myotronics, 6140) was used and an Ag-
AgCl Red-Dot surface electrode (3M, 2237) was placed on
the wrist to provide a common ground reference. This
system set a bandpass filter with a 1-1000 Hz bandwidth
and amplifier with a 60 dB (Model 15, Grass Telefactor).
The sEMG signals were sampled by using an analog-to-
digital converter board (National Instruments, PCI-
6071E), and the sampling frequency was 3 kHz. However,
in pattern recognition, downsample of EMG data from 3
kHz to 1 kHz was done. Each trial of the database con-
sisted of four repetitions of each motion. There are six
trials in each subject. Three subjects were selected in this
study. More details of experimentals and data acquisition
are described in [17].

3 METHODOLOGY

Eighteen time domain features and frequency domain
features are described in this section. Thirteen time do-
main variables are measured as a function of time. Be-
cause of their computational simplicity, time domain fea-
tures or linear techniques are the most popular in EMG
pattern recognition. Integrated EMG, Mean absolute val-
ue, Modified mean absolute value 1, Modified mean abso-
lute value 2, Mean absolute value slope, Simple square
integral, Variance of EMG, Root mean square, Waveform
length, Zero crossing, Slope sign change, Willison ampli-
tude, and Histogram of EMG are used to test the perfor-
mance. All of them can be done in real-time and electron-
ically and it is simple for implementation. Features in this

group are normally used for onset detection, muscle con-
traction and muscle activity detection. Moreover, features
in frequency domain are used to represent the detect
muscle fatigue and neural abnormalities, and sometime
are used in EMG pattern recognition. Three traditional
and two modified features in frequency spectrum are per-
formed namely autoregressive coefficients, mean and
median frequencies, modified mean and median frequen-
cies. Afterward, the evaluation methods of two criterions
that used to measure the robustness property of the
whole features are introduced.

3.1 Time Domain Feature Extraction

3.1.1 Integrated EMG

Integrated EMG (IEMG) is calculated as the summation of
the absolute values of the sSEMG signal amplitude. Gener-
ally, IEMG is used as an onset index to detect the muscle
activity that used to oncoming the control command of
assistive control device. It is related to the sEMG signal
sequence firing point, which can be expressed as

N
IEMG=)"

n=1

xn

, 1)

where N denotes the length of the signal and x,
represents the SEMG signal in a segment.

3.1.2 Mean Absolute Value

Mean Absolute Value (MAV) is similar to average recti-
fied value (ARV). It can be calculated using the moving
average of full-wave rectified EMG. In other words, it is
calculated by taking the average of the absolute value of
sEMG signal. It is an easy way for detection of muscle
contraction levels and it is a popular feature used in
myoelectric control application. It is defined as

x (2)

n

1 N
MAV_WZ

n=1

3.1.3 Modified Mean Absolute Value 1

Modified Mean Absolute Value 1 (MMAV1) is an exten-
sion of MAV using weighting window function w,. It is
shown as

xﬂ

7

N
MMAV1 = lz w,
PJ n=1

1, if0.25N <n<0.75N

w =
" 05,

otherwise .

3.1.4 Modified Mean Absolute Value 2

Modified Mean Absolute Value 2 (MMAV2) is similar to
MMAVI1. However, the smooth window is improved in this
method using continuous weighting window function w,. It
is given by

x )

nl|’

N
MMAV2 = % > w,

n=1
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1, if 025N <n<0.75N
w, ={ 4n/ N, if 0.25N >n
4(n—-N)/N, if 0.75N <n.

3.1.5 Mean Absolute Value Slope

Mean Absolute Value Slope (MAVSLP) is a modified ver-
sion of MAV. The differences between the MAVs of adja-
cent segments are determined. The equation can be de-
fined as

MAVSLP,=MAV, ,-MAV, . ®)

3.1.6 Simple Square Integral

Simple Square Integral (SSI) uses the energy of the sSEMG
signal as a feature. It can be expressed as

N
SSI=Y"
n=1

3.1.7 Variance of EMG

Variance of EMG (VAR) uses the power of the sEMG sig-
nal as a feature. Generally, the variance is the mean value
of the square of the deviation of that variable. However,
mean of EMG signal is close to zero. In consequence, va-
riance of EMG can be calculated by

’ Q)

xn

N
VAR:LZx2 ) 7)
N-1 n=1

n

3.1.8 Root Mean Square

Root Mean Square (RMS) is modeled as amplitude mod-
ulated Gaussian random process whose RMS is related to
the constant force and non-fatiguing contraction. It relates
to standard deviation, which can be expressed as

1 N
RMS = [— 2. ®)
N n=1

The comparison between RMS and MAV feature is
reported in the literatures [3, 18]. Clancy et al.
experimentally found that the processing of MAV feature
is equal to or better in theory and experiment than RMS
processing. Furthermore, the measured index of power
property that remained in RMS feature is more advantage
than MAV feature.

3.1.9 Waveform Length

Waveform length (WL) is the cumulative length of the
waveform over the time segment. WL is related to the
waveform amplitude, frequency and time. It is given by

©)

All of these features above, 3.1.1-3.1.9, are computed
based on sEMG signal amplitude. From the experimental
results, the pattern of these features is similar. Hence, we
selected the robust feature representing for the other
features in this group. The results and discussion is

presented in Section 4.1.

3.1.10 Zero Crossing

Zero crossing (ZC) is the number of times that the ampli-
tude value of sEMG signal crosses the zero y-axis. In
EMG feature, the threshold condition is used to abstain
from the background noise. This feature provides an ap-
proximate estimation of frequency domain properties. It
can be formulated as

7C = bf [Sgn(x,, XX, ) A |x” - xm| > threshold} ;
n=1 (10)
1, if x > threshold

sgn(x) = 0, otherwise

3.1.11 Slope Sign Change

Slope Sign Change (SSC) is similar to ZC. It is another
method to represent the frequency information of sSEMG
signal. The number of changes between positive and neg-
ative slope among three consecutive segments are per-
formed with the threshold function for avoiding the inter-
ference in sSEMG signal. The calculation is defined as

N-1

SSC = Z [f[(xn -x, )x(xn -X,. )ﬂ ;
" (1)
L if x> threshold
f@ =t 0, otherwise '

3.1.12 Willison Amplitude

Willison amplitude (WAMP) is the number of times that
the difference between sEMG signal amplitude among
two adjacent segments that exceeds a predefined thre-
shold to reduce noise effects same as ZC and SSC. The
definition is as

WAMP = NZl (%, =%,
n=1

);

1, if x > threshold
=t ! |

(12)
, otherwise

WAMP is related to the firing of motor unit action po-
tentials (MUAP) and the muscle contraction level.

The suitable value of threshold parameter of features
in ZC, SSC, and WAMP is normally chosen between 10
and 100 mV that is dependent on the setting of gain value
of instrument. Nevertheless, the optimal threshold that
suitable for robustness in sEMG signal analysis is eva-
luated and discussed in Section 4.1.

3.1.13 Histogram of EMG

Histogram of EMG (HEMG) divides the elements in
sEMG signal into b equally spaced segments and returns
the number of elements in each segment. HEMG is an
extension version of the ZC and WAMP features. The
effect of various segments is tested and expressed in Sec-
tion 4.1.
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(bottom) of noisy sEMG signal at 20 dB SNR in hand close motion.

3.2 Frequency Domain Feature Extraction

3.2.1 Autoregressive Coefficients

Autoregressive (AR) model described each sample of
SEMG signal as a linear combination of previous samples
plus a white noise error term. AR coefficients are used as
features in EMG pattern recognition. The model is basi-
cally of the following form:

(13)

where x, is a sample of the model signal, a; is AR coeffi-
cients, w, is white noise or error sequence, and p is the
order of AR model.

The forth order AR was suggested from the previous
research [19]. However, the orders of AR between the first
order and the tenth order are found. The results are dis-
cussed in Section 4.1.

3.2.2 Modifed Median Frequency

Modified Median Frequency (MMDF) is the frequency at
which the spectrum is divided into two regions with
equal amplitude. It can be expressed as

M 1
Z Aj:E

j=MMDF

MMDF

Z 4, =
Jj=1

where A; is the sSEMG amplitude spectrum at frequency
bin j.

4;,

J

M=

_ (14)

J

3.2.3 Modifed Mean Frequency
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Fig. 5. Original sSEMG (gray line) signal and noisy sEMG signal at 5
dB SNR (black line) in six upper limb motions.

Modified Mean Frequency (MMNF) is the average fre-
quency. MMNEF is calculated as the sum of the product of
the amplitude spectrum and the frequency, divided by
the total sum of spectrum intensity, as in
M M
MMNF = ijAj ZA.f ’
Jj=1

Jj=1

(15)

where f; is the frequency of spectrum at frequency bin ;.

3.2.4-3.2.5 Mean Frequency and Median Frequency
Traditional median frequency (MDF) and traditional
mean frequency (MNF) are calculated based on power
spectrum. We can calculate using the sEMG power spec-
trum Pj instead of amplitude spectrum A;. They can be
expressed as

MDF M 1 M
P=2 P=22F, (16)
j=1 j=MDF j=1
M M
MNF = Zf/PI y (17)

The outline of amplitude spectrum and power spec-
trum is similar but the amplitude value of amplitude
spectrum is larger than amplitude value of power spec-
trum as shown in Fig. 4. Moreover, the variation of ampli-
tude spectrum is less than the power spectrum. For that
reason, variation of MMNF and MMDF is also less than
traditional MNF and MDEF.

3.3 Evaluation methods

The percentage error (PE) is used to evaluate the quality
of the robust of WGN of EMG features, as in

— feature

clean noise

| feature
where featureqe., denotes the feature vector of the original

sEMG signal and featurey.is. represents the feature vector
of the noisy sSEMG signal. WGN at different level is added

31

PE x100% ,

feature (18)

clean



JOURNAL OF COMPUTING, VOLUME 1, ISSUE 1, DECEMBER 2009, ISSN: 2151-9617

HTTPS://SITES.GOOGLE.COM/SITE/JOURNALOFCOMPUTING/

805
\ —--I[EMG
70-%, MAV
LR *MMAV1
~60; ~-MMAV2 |
3 ~—MAVSLP
550 S8l
5 +-VAR
© 40 —RMS
g --WL
530
<
[3)
o

(a)

Percentage Error (%)
o (3] o [$J
S o o =)

o
o

o

40 5 10

25
Signal-to-Noise Ratio (dB)

30

(c)

—2nd coef. of 3 seg.
---3rd coef. of 5 seg.
-e-4nd coef. of 7 seg.

= ~-5nd coef. of 9 seg. |
R -#-6nd coef. of 11 seg.
s

ITE AN

[

o

©

€

§20

(3]

o

0 2 4 6 8 10

12 14
Signal-to-Noise Ratio (dB)

(e)

o 2 4 6 8 10 12 14
Signal-to-Noise Ratio (dB)

(b)
120

-
(=3
(=]

=3
(=]

»
[=)

Percentage Error (%)
)
=)

20

6 8 10 _12 14 16
Signal-to-Noise Ratio (dB)
(d)

AR4 AR5 ¢ AR6 +~AR7 > AR8 +AR9 =-AR10

[—AR1 ---AR2 #-AR3
200

T
A
Y
i
k)
3
3
3

_

[

o,
T

LWk
A
%

Percentage Error (%)
o
o

% 2 6 8 10 12 14 16 18 20
Signal-to-Noise Ratio (dB)

®

Fig. 6. Average PE of sEMG signals of (a) features in time domain based on signal amplitude, 3.1.1-3.1.9 (b) ZC with various threshold value
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segment parameters (3, 5, 7, 9, 11 segments) (f) AR coefficients with various orders (1-10) at various signal-to-noise ratios (20-0 dB) in four

motions.

to the original sEMG signal.

The performance of the methods is the best when PE is
the smallest value. We calculated average PE for each
motion with ten repeated datasets. Therefore, there are 80
datasets with four motions and two channels for each
feature and noise level was varied from 20 to 0 dB SNR
for each dataset. Moreover, WGN was added 10 times in
each noise level to confirm the results. SNR is calculated
by

P
SNR =10log —de=,

(19)

where Py is power of the original sSEMG signal and P
is power of WGN.

The classification rate (CR) is used to evaluate the qual-
ity of the recognition system with the noisy environment
of sEMG signal. The performance of the methods is the
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Fig. 7. (a-b) Average PE of strong sEMG signals of nine selected features at various signal-to-noise ratios (20-0 dB SNRs) in four motions.
(c-d) Average PE of weak sEMG signals of nine selected features at various signal-to-noise ratios (20-0 dB SNRs) in four motions.

best when the CR values still have the same value with
the noisy sEMG signals. Original sEMG signal and noisy
sEMG signal were sent to hand movement recognition. In
this study, we evaluated the performance of robust fea-
tures in pattern recognition view point with Myoelectric
Control development (MEC) toolbox [17]. The window
size is 256 ms and window slide is 64 ms for the real-time
constraint that the response time should be less than 300
ms. The feature vector of selected robust features was
evaluated by linear discriminant anslysis classifier (LDA)
and majority vote (MV) post-processing was performed
in this study. In summary, the robust features should
have the small value of PE and still have maximum classi-
fication accuracy.

4 RESULTS AND DISCUSSION

4.1 The Quality of the Robustness of EMG Features
with WGN

To test the robustness of sixteen traditional features and
two novel features, we measured the PE with sEMG sig-
nal with additive WGN. The results of PE are plotted for
SNRs from 20 dB to 0 dB, as shown in Fig. 6-7, in practice;
we can select feature extraction to be suitable for each
application depend on the level of interference of SEMG

system. For the easy way to describe the results of a large
number of features, we discussed and evaluated the fea-
tures that have the same pattern in recognition and eva-
luated some parameter of each feature in Fig. 6. As a re-
sult, only nine representatives are discussed as the results
shown in Fig. 7.

In Fig. 6 (a), the PE of time domain features computed
using sEMG signal amplitude demonstrates that RMS
results in powerful performance in robust noise tolerance
than the other features. Hence, RMS feature is used to
represent the features in this group. Fig. 6 (b-d) present
the evaluation of suitable value of threshold. Threshold
value was chosen between 10 and 50 mV. The optimal
threshold is 10 mV for ZC and WAMP but the suitable
threshold of SSC is 30 mV. However, the minimum PE of
SSC is higher than ZC and WAMP. ZC and WAMP with
10 mV threshold value are selected for the representative
features of this group. Afterward, the second bin of the
third segment HEMG was adopted from the result in Fig.
6 (e) and the first-order of AR is chosen because the PE of
the other AR orders are much bigger than the first one as
shown in Fig. 6 (f).

Therefore, we evaluated the performance of robustness
of nine representative features namely RMS, ZC and
WAMP with 10 mV threshold, HEMG with 2nd bin, AR
order 1, MNF, MDF, MMNF, and MMDEF. Two types of
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TABLE 1
CLASSIFICATION RATE (%) OF 7 EMG FEATURES
USING LEAVE-ONE-OUT VALIDATION

Level of SNR noise

Method == 2T 20dB | 15dB | 10dB
HEMG | 60.7835 | 49.1590 | 41.7926 | 34.6817
WL 793059 | 341707 | 14.4347 | 12,5186
WAMP | 86.6298 | 92.2504 | 47.0087 | 21.6095
MMNE | 41.1326 | 363636 | 32.6804 | 17.1386
MAV,WL,

Csee | 956781 | 674260 | 225676 | 7.9838
RMS,AR2 | 96.4871 | 89.8872 | 64.8712 | 25.2714
HEMG,WA
MIPAAINE | 930807 | 96:1891 | 64.0622 | 281243

sEMG signal, strong signals and weak signals, are used to
evaluate the robust of nine features. The weak sEMG sig-
nal has the effect of interference more than the strong
sEMG signal. In practice, we can select the robust features
to be suitable for each application. Fig. 7 (a) and Fig. 7 (b)
show the average PE of strong sEMG. For strong sEMG
signals and low noise, SNR more than 10 dB, MMNF has
the smallest average PE, followed closely by the MMDF,
MNF, and MND. For SNR less than 10 dB that showed
high noise, the PE of MNF and MDF rapidly increased
and SNR less than 3 dB that showed very high noise,
WAMP has the average PE close to MMNEF. The average
error of MMNF in strong sEMG with very high noise, 0
dB SNR, is only 6%. Moreover in wrist extension and
hand open from extensor carpi radialis longus, it is only
3.5%. HEMG and ZC have slightly larger error compared
to the first group in Fig. 7 (b). The PE of RMS and AR1 are
large that they were expected to perform poorly.

The average PE of weak sEMG signals shown in Fig. 7
(c-d) clearly demonstrate that MMNF is the best robust-
ness feature and closed by MMDF and HEMG, whereas
the error of other features is more than 20%. In very high
noise, 0 dB SNR, it provides average PE about 10% and
the PE of wrist extension from flexor carpi radialis is only
5%. Other feature results are similar to the results of
strong sEMG signal but the results of PE of weak sEMG
signal are larger than the PE of strong sEMG signal. The
results above show that MMNF was the best feature
comparing with others in four motions. In summary,
MMDF and WAMP can be used with HEMG for multi-
feature. Hence, it is compared the classification results in
noisy environment with other successful individual fea-
ture and multi-feature sets from the literatures [5, 14-15,
20] in Section 4.2.

4.2 The Quality of the Recognition System of EMG
Features with the Noisy Environment

Four individual features and three multi-feature sets are
examined in this study. The classification results of seven
representative features are reported in Table 1. Leave-
one-out validation was used to guarantee an exact per-
formance measure for this dataset. The first single robust
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Fig. 8. Plot of the classification results as a function of time (Top)
and plot of confusion matrix (Below) of our multi-feature set with (a)
original sSEMG signal. (b) noisy sEMG signal, 15 dB SNR.

feature is HEMG that suggested by Zardoshti-Kermani et
al. [5] and is comfirmed with our result in Section 4.1. The
second feature, WL is recommended by Oskoei and H.
Hu [15] that it is the best single feature in their experi-
ment. Lastly, two individual features, WAMP and
MMNF, are aprroved by our previous experiment [14]
and the experimental results in this paper. The recogni-
tion results of single feature did not perform well but it is
commonly used in EMG recognition system. The CR of
WAMP in clean and low noisy environment is good but
its CR is rapidly decreased in high noise. The CR of
HEMG is still stability even if noise increases. In addition,
no surprising that the CR of WL in noisy environment is
poor that comfired by the result in Section 4.1 and the CR
of MMNF is poor because of the limitation of their ability
to discriminate between classes. However, in practice, we
are usually combined this feature with other features to
get the useful information features. Because of only one
feature per channel of feature that provided from features
in time domain and frequency domain, it is effective and
small enough to combine with other features for a more
powerful feature vector and avoiding additional signifi-

cant computational burden.
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Therefore, the multi-features are the excellent way to
provide the powerful performance in recognition system.
The combination of robust features namely, MMNF,
WAMP, and HEMG is compared with two successful and
popular multi-features that was used by Hudgins et al.
[20], MAV, WL, ZC and SSC, and was recommended by
Oskoei and H. Hu [15] , conists of RMS and AR2. From
the experiment in Table 1, our robust multi-features
group provides more excellent discriminatory power for a
classifier than Hudgins’s and Oskoei’s multi-features
group in noisy environment. Moreover, the observation
from the classification results as a function of time and
plot of confusion matrix of our multi-feature set with or-
ginal sEMG signal and noisy sEMG signal are shown in
Fig. 8.

5 CONCLUSION

The objectives of this study were to present a novel fea-
ture that tolerate with white Gaussian noise. Sixteen tra-
ditional features and two novel features in time domain
and frequency domain were tested. Results showed that a
modified mean frequency (MMNF) is the best feature
comparing with others in the quality of the robustness of
EMG features with WGN point of view. MMNF has aver-
age error only 6% in strong sEMG signals and 10% in
weak sEMG signal at SNR value of 0 dB and MMNF has
average error only 0.4% in both strong and weak sEMG
signals at SNR value of 20 dB. In addition, MMNF and
other robust features (WAMP and HEMG) are used as an
input to the EMG pattern recognition. The experiment
shows that these features are the excellent candidates for
a multi-source feature vector. From the above experiment
results, it is shown that MMNF can be used as feature in
augmenting the other features for a more powerful robust
feature vector. Future work is recommended to combine
the new multi-feature sets with MMNF to be tested in
other classifer types.
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ABSTRACT

Recent advances in nonlinear analysis techniques are
essential to understand the complexity of surface
Electromyography (SEMG) signal. This research
examines the use of Detrended Fluctuation Analysis
(DFA), a novel parameter, to study the properties of
SEMG signal and to use these properties to identify the
hand movements. The experimental results of mean and
standard deviation show that the scaling exponents of
DFA in various hand motions have the significant
difference values and small experimental variation.
Cluster-to-cluster distance and scatter plot between
scaling exponents of hand movements were demonstrated
that DFA is suitable for SEMG feature extraction to
characterize the SEMG signal. The application of this
parameter is use to feature extraction for multifunction
myoelectric control.

1. INTRODUCTION

Surface Electromyography (SEMG) signal is one of
physiological signal that is very complex, nonlinear, non-
stationary, and non-periodic [1]. This is due to the fact
that the use of SEMG signal is very easy, fast and
convenient, it is currently becoming increasingly a
powerful indication to get important information and to
diagnose about the muscular and nervous systems. Use of
SEMG signal for the measurement of force from hand
motions is a powerful indication to apply in rehabilitation
system and the control of prosthetic devices. Lots of
methods are used to model and analyze SEMG signal that
call feature extraction [2]. Time domain feature is first
group that is used to describe the characteristics of the
SEMG signal. Two well-known time domain features are
mean absolute value (MAV) and root mean square
(RMS). MAV and RMS are widely used for
multifunction myoelectric control. However, time domain
features were successful to some limit because these
methods assume that SEMG signal is stationary, while the
SEMG signal is non-stationary. Thus changing the
researcher’s trend toward the use of information
contained in frequency domain. Mean frequency and
median frequency are two characteristic variables in
power spectral density that a major role in frequency

domain. Later, time-frequency features such as short time
Fourier transform, wavelet transform, and wavelet packet
transform, were used. Furthermore, all of these features
that introduce above are calculated based on linear or
statistical analysis.

Recent advances in nonlinear analysis techniques are
essential to understand the complexity of biomedical
signal [3-4]. They are very useful methods in a range of
muscular applications. Nonlinear analysis techniques may
be estimated by using entropy, correlation, and fractal
dimension. Some methods have been reported for
characterization of SEMG signal such as correlation time,
Lempel-Ziv complexity, sample entropy, approximate
entropy, Lyapunov exponent, and fractal dimension [5-7].
Detrended fluctuation analysis (DFA) is invented by Peng
et al. [8]; it has been established as an important tool for
detecting long-range correlations in noisy signal. DFA is
a method for the determination of fractal scaling
exponent and very useful for analyzing non-stationary
time series. The DFA method has been successfully
applied to various fields such as DNA sequences, cardiac
dynamics, human gait, longtime weather records,
economics time series, and especially complex medical
signals such as EEG (Electroencephalogram) and ECG
(Electrocardiogram) signals [3-4, 9]. However, DFA has
never been used in the analysis of SEMG signal.
Therefore, DFA maybe is a useful tool to characterize the
self-similarity of SEMG signal. This paper presents the
use of DFA to study the nonlinear properties of SEMG
signal and to use these properties to identify hand
movements. As a result, this parameter can be used to
feature extraction for multifunction myoelectric control.

2. EXPERIMENTS AND DATA ACQUISITION

In this section, we describe our experimental procedure
for recording sEMG signal. The sEMG signals were
recorded from flexor carpi radialis (channel 1) and
extensor carpi radialis longus (channel 2) of a healthy
male by two pairs of surface electrodes (3M red dot 2.5
cm. foam solid gel). Each electrode was separated from
the other by 20 mm. The frequency range of EMG is
within 0-500 Hz, but the dominant energy is concentrated
in the range of 10-150 Hz. A band-pass filter of 10-500
Hz bandwidth and an amplifier with 60 dB gain were
used. Sampling rate was set at 1000 samples per second
using a 16 bit A/D converter board (IN BNC-2110,
National Instruments Corporation).
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Figure 1. Estimated six hand motions.

A volunteer performed six upper limb motions
including hand open (ho), hand close (hc), wrist
extension (we), wrist flexion (wf), forearm pronation (fp),
and forearm supination (fs) as shown in Fig. 1. Ten
datasets were collected for each motion. The sample size
of the SEMG signals in this research is 256 ms for the
real-time constraint of robot arm control or prosthetic
device that the response time should be less than 300 ms.

3. METHODOLOGY

Detrended Fluctuation Analysis (DFA) is a modified root
mean square analysis of a random walk to analyze
physiological signal. We used the scaling exponent from
DFA algorithm to indentify the SEMG signal from hand
movement. The scaling exponent of DFA is related with
Hurst exponent and fractal dimension. We can convert
this exponent to fractal parameters. However, they have
the linear relationship. In this study, we considered only
the scaling exponent of DFA.

3.1. Detrended Fluctuation Analysis

To exemplify the DFA algorithm, we use the SEMG time
series as shown in Fig. 2(a) that be denoted by {x(t)},
where t is discrete time ranging from 1 to N (N = 256).
The procedure of DFA follows six steps described below.

1) The SEMG time series is first integrated. This
integration process converts SEMG signals into a
random walk. The integrated series is

k

S AL .
Q
T
2 0
£
£
<-0.1¢ .
—sEMG time series
-0'20 50 100 150 200 250
Discrete time (s)
(a)

—Integrated series
—Least-square line

y(k)

o 5b 1 60 k 1 50 260 25;0
(b)

Figure 2. Example of calculate the DFA algorithm of
SEMG signal. (a) SEMG time series (b) Integrated series,
vertical dotted lines represent window sizes, and solid
straight lines represent least-square line.

In this study, we have two experiments or options about
window sizes or box sizes.
1. From the experiments of [10], the maximum
window should be one-tenth of the signal length
(N). The window sizes are ranged between 3 and
25 points in this study.
2. In practices [11], the minimum length is around
10, and the maximum is a half length of the
signal length (N), giving two adjacent intervals.
The window sizes are ranged between 8 and 128
points in this study.

Table 1. Options of window sizes.

Y Option Window sizes
k)= [xt —xt},k:l,...,N, 1
y( ) tzzl: { ( )} ( ) @) 1 Start: 2 Increment: 2 End: 24
L 1 2 Start: 4 Increment: 4 End: 24
where x(t) represents the average value of x(t). y(k) 3 Start: 6 Increment: 6 End: 24
is called cumulative sum or profile. The example is 4 Start: 8 Increment: 8 End: 24
shown in Fig. 2(b). 1 27k, k=3, ... 7
2) The integrated series are divided into L equal 2 2 27k, k=4,..,7
windows or box sizes as shown in Fig. 2(b). In each 3 Start: 8 Increment: 8 End: 128
window has n time points, where n = integer (N/L). 4 Start: 16 Increment: 16 End: 128
The 2nd Biomedical Engineering International Conference (BMEiCON 2009) 325

40



3) Within each window of length n, a least-square is fit
to the integrated series ({y(k)}) as shown in Fig. 2(b).
The coefficient of y coordinate is denoted by y,(k).
The least-square line is shown the semi-local trend in
that window.

4) The RMS fluctuation of integrated series and
detrended time series is calculated by

S (B30 K] o

The results are F(n) at the window size n and
window size n.

5) The computation is repeated over all window sizes,
as define in 2nd step. As a result, the linear
relationship between F(n) and n is plotted in log-log
graph.

6) The slope of the line between log F(n) and log n can
be characterized the fluctuation as shown in Fig. 3.
This slope is called scaling exponentea . In this
study, we used a natural logarithm.

The scaling exponent can be explaining the behavior
of time series as:

1) 0<a<1/2 indicates anti-correlated.
2) «=1/2 indicates uncorrelated or white noise.
3) 1/2<a <1 indicates correlated.

4) «a =1 indicates 1/f-noise or pink noise.
5) 1< a <3/2 indicates non-stationary or random walk.

6) «a =3/2indicates Brownian noise.

3.2. Evaluation

For multifunction myoelectric control, the selection of
feature extraction is a significant stage to achieve optimal
performance in classification. In [2] the quality of EMG
feature extraction is evaluated by three properties: class
separability, robustness, and complexity. In this study, we
demonstrate a novel feature, DFA, to identify the hand
movement in class separability point view. A high quality
of class separability is the maximum class separability or
misclassification rate, and small variation in subject
experiment. For the class separability, we calculated the
mean value of scaling exponent of DFA, ten trials, in
each motions and channels. We can observe the different
values between six motions and two channels for feature
space. The standard deviation of mean (SDM) value is
the one way to demonstrate the class separability. When
the SDM value is large, it means the maximum class
separability. In addition, the scatter plot graph is plotted
to observe the pattern of different motions. In this study,
we plotted scatter between two features, DFA’s scaling
exponent and RMS (Root mean square), popular feature.
The other way to indicate class separability is cluster-
to-cluster distance. It is distance between mean features
of different motions. The performance of classification is

log(F{n))

log(F(n))

Extension Motion, Channel 2

2 25 3 35 4 45 5
log(n)

(b)

Figure 3. Plot of log F(n) and log n for SEMG time
series from (a) supination motion and flexor carpi
radialis. (b) extension motion and extensor carpi radialis
longus. The plots are from a subject with 10 repeated.

the best when the distance is large. The cluster-to-cluster
distance (dj;) can be calculated by

djj = ||meani —mean; || , (3)

where mean; (mean;) is the average of DFA’s scaling
exponent of motion i (j); i and j is one of six hand
movements and one of two channels.

The second condition, the variation in subject
experiment is measured by the standard deviation (SD).
In each trial of the same movement, the value of DFA’s
scaling exponent should have the same value; it means
that the variation should be small. The SD of each
motions and channels are presented and the mean of all
SD (MSD) is shown. The other indication is the
observation of the range of the top and bottom of box in
box plot graph.

4. RESULTS AND DISCUSSION

The scaling exponents of DFA are calculated from the
slope of the line between log F(n) and log n. The example
of the double log plots are shown in Fig. 3. In Fig. 3(a),
the double log plot of window size option 2.1 of
supination motion and channel 1 is the maximum DFA’s
scaling exponent. The minimum DFA’s scaling exponent
is shown in Fig. 3(b) by the double log plot of window
size option 2.1 of extension motion and channel 2. From -
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Figure 4. (a) Bar plot (b) Box plot of Scaling exponent
of DFA (option 1.4) for different motions from channel 1
and 2.

the plot, we can see that the pattern of the lines is
different for different motions and different channels.

The mean and SD of DFA’s scaling exponents in six
motions and two channels are presented in Fig. 4(a) and
Fig. 5(a) by bar graph and in Fig. 4(b) and Fig. 5(b) by
box plot graph. The results that show in Fig. 4 and Fig. 5
are the example results of option 1 and 2, respectively.
The best result in this study is meant the balance between
the maximum class separability and small experimental
variation. The observation of Fig. 4(a) and 5(a) is the
different between the DFA’s scaling exponent of same
motion but different channels and the DFA’s scaling
exponent of same channel but different motions.
Furthermore, the Fig. 4(b) and Fig. 5(b) are confirmed the
different between the DFA’s scaling exponent of various
motions and various channels. The interesting result of
DFA'’s scaling exponents of option 1 is the range of DFA
value. When we used window sizes option 1.1, the values
of DFA are ranging between 8.5574 and 9.2871 that
mean the wrong value of DFA’s scaling exponent.
However, when the window sizes are setup to option 1.2,
1.3, and 1.4, the range of DFA value will be correct, it
ranges between 0.2301 and 1.3909. The option 1.4 has
the much bigger range of DFA value, 1.1608, than option
1.2 and 1.3. In the option 2, the range of DFA’s scaling
exponent is ranged between 1.5363 and 0.0758, the range
of option 2.4. The range of option 2 is much bigger than
the range of option 1. In this study, the range values of -
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Figure 5. (a) Bar plot (b) Box plot of Scaling exponent
of DFA (option 2.1) for different motions from channel 1
and 2.

scaling exponent of DFA varied more than the fractal
dimension of [12] that varies between 1.95 and 2.

We are confirmed the quality of the class separability
by SD of mean DFA’s scaling exponent (SDM) in six
motions and two channels and cluster-to-cluster distance
(dj) that are shown in Fig. 6-7 (a) and Fig. 6-7 (b),
respectively. The SDM of option 1 increases when the
window sizes increase and the option 1.4 has the biggest
value of SDM. Moreover, the results of window sizes
option 2 are the same trend with option 1. When window
sizes increase, the SDM increases. However, some
interesting observation is the increasing interval window
sizes with the same size interval are better than the
increasing interval window sizes with the power of 2.

The cluster-to-cluster distances (d;) of all window
sizes options are shown in Fig. 6(b) and 7(b). We can
observe that dj; of all window sizes options of channel 1
is less than d;; of channel 2 except the case of option 1.4.
All of these results can confirmed the significant different
for different motions and channel. The values of d; of
DFA’s scaling exponent in each option in this study are
much bigger than the dj; of fractal dimension in [13], in
case of the calculation by raw sEMG signals.

In the second condition, the variation in subject
experiment direct-change with the maximum class
separability. It means that the maximum class separability
increases, the variation increases. This is the limitation
that should be considered in the practice and applications.
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The variation of window sizes option 1 is bigger than the
window sizes option 2 that can be observed from Fig. 6-7
(@). The minimum SD is the window sizes option 2.1,
0.0688 and the maximum SD is the window sizes option
1.4, 0.1356. The other indication is the observation of the
range of the top and bottom of box in box plot graph, Fig.
4-5(b). From the observation, it is confirmed that the
option 2 is much less than the option 1.

The scatter plots between DFA and RMS are shown
in Fig. 8. From the Fig. 8(a), the data points in each
motion are clear separation. It will be easily grouped
when used for pattern recognition. From the Fig. 8(b), it
is observed that pattern for different motions are very
varied. In practice, it is hard to classify these patterns for
maximum rate. From this point, DFA should be
combining with other features for a more powerful
feature vector.

From the experimental results, we can summary into
three points:

1) It is observed that the scaling exponent of DFA of
SEMG may be considered as a feature vector for the
classification of hand movements. It has the maximum
class separability and less variation of subject
experimental as compared to existing fractal analysis
methods [12-13]. Furthermore, the values of scaling
exponent are not depended on the amplitude of SEMG
signals same as other features in time domain group such
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as RMS or MAV (Mean absolute value). In addition, the
pattern of DFA’s scaling exponents of various hand
motions are very different to the patterns of RMS or
MAV values that calculated from various hand motions.

2) The optimal window size of DFA algorithm for
SEMG signal is the option 2.4 because it is balance
between the maximum class separability and less
experimental variation.

3) From the values of DFA’s scaling exponent of six
motions, it is observed that the behavior of wrist
extension, wrist flexion, hand close, and hand open are
anti-correlated time series. It means that a high amplitude
data point is followed by a low amplitude data point, and
vice versa. The behavior of DFA’s scaling exponent of
wrist extension and channel 2 is very high anti-correlated
but behavior of DFA’s scaling exponent of wrist
extension and channel 1 is very low anti-correlated (close
to white noise). In addition, the behavior of DFA’s
scaling exponent of forearm pronation and forearm
supination are non-stationary. However, the behavior of
DFA’s scaling exponent of forearm pronation and
channel 1 is associated with pink noise.

5. CONCLUSIONS

Detrended fluctuation analysis (DFA), a novel non-linear
analysis, is used to study the properties of SEMG signal.
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From the experiments, it is shown that DFA’s scaling
exponent is the efficient method to make it useful
parameter in practical SEMG controlled prostheses. In the
future work, the DFA should be tested the performance of
class separability with many volunteers that will be
answer the variation of this method in inter-subjects.
Moreover, the classification of DFA with others feature
should be considered for multifunction myoelectric
control system.
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Abstract

Detrended Fluctuation Analysis (DFA), a novel
nonlinear analysis, is a useful tool to study and
understand the properties and complexity of surface
Electromyography (sEMG) signal. Many noises that
contaminate SEMG signals in real applications display
trends that become difficult to analyze SEMG signal.
The different types of trend fitting of DFA algorithm
are used to eliminate these problems. In this study, the
performance of DFA algorithm for sEMG-based
control is presented. Moreover, the six types of trend,
namely linear, quadratic, cubic, fourth order, fifth
order, and sixth order polynomial functions are
evaluated. The experimental results show that the
scaling exponents of linear trend in various hand
movements have the significant different values and
small experimental variation. Hence, linear trend is a
suitable trend fitting for sSEMG signal. However, the
interesting result is when we considered the scaling
exponent of each pair of EMG hand movements; the
appropriate trend is changed. Therefore, the selection
of optimal trend fitting will improve the effectiveness
in analysis of SEMG signals and become the useful
tool to extract feature in SEMG-based control.
Moreover, the DFA relate to the fractal analysis. The
better performance of DFA algorithm over the other
fractal parameters in SEMG-based control is shown.
Keywords: Electromyography (EMG), Detrended
Fluctuation Analysis (DFA), Feature extraction,
Noise, Man-machine interfaces

1. Introduction

Surface Electromyography (SEMG) signal is one
of electrophysiological signal that is measured the
muscle activity and gives a useful information for
study of many clinical and biomedical engineering
applications. Use of sSEMG signal as a distinguishing
tool to identify neuromuscular diseases and disorders
of motor control is the currently increasing the
importance and also used as an effective control
signal for the prosthetic devices. The significant step
to achieve the control performance is the extraction of
feature from the sSEMG signal [1]. Because of lots of
information from the raw sEMG signal, the optimal
feature will provide the better performance in SEMG-

based control. Normally, feature extraction in sSEMG
analysis can be divided into three groups [1]. The first
feature group is based on time domain and linear
technique. Two popular features in this group are
Mean Absolute Value (MAV) and Root Mean Square
(RMS). These features are vastly used in both of
diagnostic tool and assistive device control. Even so
time domain feature were limited success because
these methods presume that the sEMG signal is
stationary, while SEMG signal is non-stationary. The
second feature group attended to use the frequency
information. Mean Frequency (MNF) and Median
Frequency (MDF) are two major characteristic
variables in frequency domain. There are useful in
fatigue analysis but performance in control signal
viewpoint is very poor. Subsequently, time-frequency
features such as Wavelet Transform (WT) and
Wavelet Packet Transform (WPT) were used as the
third feature group. The good ability in class
separability viewpoint of this feature group is
presented in many literatures. Nevertheless, the
drawbacks of their complexity and computational
time are main limitation of feature in this group.
Moreover, all of these features that introduce above
are calculated based on linear or statistical analysis
but the properties of SEMG signal are very complex,
non-linear, non-stationary, and non-periodic [2].
Non-linear analysis technique is necessary to
comprehend the complexness of SEMG signal [2].
Detrended Fluctuation Analysis (DFA) is one of non-
linear analysis method that is an effective method in a
range of biological, forecasting, and medical
applications. Peng et al. [3] invented DFA as an
important tool for detection of long-range correlations
in time series of noisy signal. The fractal scaling
exponent is determined by DFA and it is very helpful
parameter for non-stationary time series analysis.
From the literatures, the success of DFA algorithm in
many fields such as DNA sequences, human gait,
cardiac dynamics, economics time series, and
longtime weather records are reported. In addition,
fractal analysis of complex medical signals such as
Electroencephalogram (EEG) and Electrocardiogram
(ECQG) signal are well performed [4]. However, the
usefulness of DFA in EMG analysis has been started
in our previous work [7]. In [7], DFA is a beneficial
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Figure 1. Two muscle position on the forearm [5-6].

tool to characterize the self-similarity of SEMG signal
and extract the novel feature that has the different
pattern from popular feature such as RMS or MAV.
Besides the effect of window size parameter of DFA
is evaluated. In this paper, the usefulness of DFA
algorithm to study the nonlinear properties of SEMG
signal is still discovered. In addition, the effects of
trend in fitting procedures are evaluated to eliminate
different orders of noisy trend in SEMG signals. The
variety of the SEMG signals recorded from six hand
movements and two muscle positions are used as
representative SEMG signals.

This paper is organized as follows. In Section 2,
the experiments and data acquisition are introduced in
detail. The proposed algorithm, DFA, is defined in
Section 3 with the evaluation methods. In Section 4,
the comparative analysis of DFA’s trend is reported
and discussed. Finally, the concluding remarks are
drawn.

2. Experiments and Data Acquisition

Two channels of SEMG signals were recorded
by two pairs of bipolar Ag/AgCl electrodes (3M red
dot solid gel). One pair was placed over the flexor
carpi radialis (Chl) and the other was placed over the
extensor carpi radialis longus (Ch2), as shown in Fig.
1. The top side of the wrist is used as the reference
electrode position. All disc electrodes were put on the
skin surface of the right forearm of volunteer. Each
bipolar pair of electrodes was spaced from a center to
center by 20 mm. In addition, to avoiding the cross
interference between two channels, 5 mm diameter
electrodes were used. Differential amplifiers were set
with 60 dB gain and band-pass filters of 10-500 Hz
bandwidth were used to remove the high random
frequency noises and movement artifacts at low
frequency. Sampling frequency was set at 1000 Hz
using a 16 bit analog-to-digital converter board (NI,
DAQCard-6024E).

A healthy volunteer was asked to perform six
different types of movement: wrist flexion (WF),
wrist extension (WE), hand close (HC), hand open
(HO), forearm pronation (FP), and forearm supination
(FS), as shown in Fig. 2. The size of sSEMG samples
were recorded for 256 ms with the aim of real-time
signals processing (the maximal allowable delay for
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(a)

(b)

Figure 2. Six different types of hand movement
(a) wrist flexion (b) wrist extension (c¢) hand close
(d) hand open (e) forearm pronation (f) forearm
supination [8].

prosthetic control should be less than 300 ms [9]). A
volunteer was instructed to repeat each hand
movement category ten times. Hence, there were 120
datasets of two channels of sSEMG signals in total.

3. Methodology

DFA is an alterable RMS of a random walk to
study electrophysiological signal. We used the fractal
scaling exponent from DFA algorithm to distinguish
the sSEMG signal with hand movements. The scaling
exponent of DFA is one of the fractal parameters. It
relates to Hurst exponent and fractal dimension. The
conversion between DFA’s scaling exponent and
other fractal parameters is easy with linear equation.
Hence we considered only DFA’s scaling exponent
which can be widely used in non-linear analysis.
3.1 Detrended fluctuation analysis

To illustrate the procedure of DFA algorithm,
we use the sSEMG time series as shown in Fig. 3(a)
that be signified by {x(¢)}, where ¢ is the discrete time
in the range [1, N] where N is the sample length of
time series. The scheme of DFA follows six steps
described below.

1. The sEMG time series is first integrated. This
integration process is used to convert SEMG signals
into a random walk. The integrated series or profile is

y(k):Z:‘[{x(t)}—M}k:I,...,N : (1)

where x(t) represents the average value of x(¢). y(k)

is called cumulative sum or profile. The example
results are shown in Fig. 3(b-c) in dotted lines.

2. The profiles are divided into L equal window
sizes as shown in Fig. 3(b-c) in dashed lines. In each
window has an n time points, where # is defined as
int(N/L). Instead of focusing on the selection of
window sizes, we have already presented in our
previous work that the optimal window size are in the
range [16, 128] with 16 time intervals [7].

3. Inside each window of length 7, a least-square
is fit to the profile ({y(k)}) as shown in Fig. 3(b-c) in
solid lines. The coefficient of y coordinate is referred
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Figure 3. Example of calculate the DFA of sSEMG signal (a) SEMG time series (b-c) Detrended profiles
(dotted lines), window sizes (dashed lines), and least squares fits (solid lines) (b) DFA1 (c) DFA6
(d) plot of log F(n) and log n for SEMG time series with 10 repetition.

by y,(k). The least-square fits are shown the semi-
local trend in that window. In this study, the various
orders of polynomial function are evaluated the effect
of detrending. Six types of fitting procedure are linear
(DFA-1), quadratic (DFA-2), cubic (DFA-3), forth
order (DFA-4), fifth order (DFA-5), and sixth order
(DFA-6) polynomial functions.

4. The RMS fluctuation of the profiles and
detrended time series are calculated by

1 N

P (LS00

k=1

5. The computation is repeated over all window
sizes, as define in the second step. As a result, the
linear relationship between F(n) and n is plotted in
log-log graph.

6. The slope of the line between log F(n) and log
n can be characterized the fluctuation as shown in Fig.
3(d). This slope is called scaling exponent « and it is
used as a feature parameter in this study. The natural
logarithm is applied in this work.

Mainly the regular DFA uses linear polynomial
to fit and detrend the SEMG profiles. The linear fitting
can eliminate only constant trend in the noisy sSEMG
signal. However, due to the varieties of noise are not
only in constant form or trend, the different orders of
trend fitting of DFA algorithm are used to resolve a
problem. We will explain in described case, linear

fitting (n = 1). The linear fittings are applied to the
profile as shown in Fig. 3(b), so we call DFA-1. Due
to the profiles (dotted lines) in Fig. 3(b), DFA-1 can
eliminate the constant trend in original (x(f)) signal.
Therefore, the DFA of order n can remove trend of
order n-1. If the noisy signal is contaminated with the
linear trend, it means the quadratic fitting or DFA-2 is
needed. In this study, we vary the order of trend
fitting of DFA algorithm from 1 to 6, because DFA-6
polynomial fits shows more similarity with sSEMG
signal.
3.2 Evaluation method

For sSEMG-based control, the selection of feature
is an important stage to succeed optimal performance
in classification. In [1], the evaluation of the quality
of EMG feature is measured by three criterions: class
separability, robustness, and complexity. In this study,
we demonstrate a novel feature extraction, DFA’s
scaling exponent, to recognize the hand movement in
class separability point of view. Moreover, the effect
of trend in DFA feature does not only enhance the
class separability property also enhance the usefulness
of the DFA feature with noisy environment. The
robustness criterion is discussed with the effect of
DFA’s order and behavior of time series. The better
quality in SEMG-based control is performed when the
representative feature can reach the high recognition
rate and get the small variation in subject experiment.
For the class separability viewpoint, the statistical
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indication can be used same as the measuring of
recognition rate using classifier. The first method has
advantage that the evaluation of features is not
dependent on the statistic types as in the second
method that is dependent on the classifier types.
Cluster-to-cluster distance (d) is a statistic indication
that is used to illustrate the difference between two
scatter groups [11]. It calculates the distance between
mean features of different movements as defined by

d; = "mean[ —mean; ", (3)
where mean; (mean)) is the average of DFA’s scaling
exponent of movement i (f); i and j is one of six hand
movements and one of two channels.

In this study, the averaging of dj; of the possible
combination between two movements from the total
six hand movements and two channels is performed to
confirm the results. The performance of recognition is
best when the averaged distance (dj;) is large. The
other condition that should be considered is the
variation in subject experiment. Normally, standard
deviation (o) is the measured index of the variation. In
practice, each trial of the same movement, the value
of DFA’s scaling exponent should be the same value.
It means that the variation should be small, in other
words, the ¢ should be as small as possible. The ¢ of
each movements and channels are averaged to
confirm the results.

4. Results and Discussion
4.1 Class separability criterion

The value of DFA’s scaling exponents in six
movements and two channels of the various fitting
orders are presented. The results show the usefulness
of DFA features same as the results in [7]. The effect
of six trend types are evaluated and discussed in this
study. The best result is meant that the balance
between the maximum class separability (d;) and the
small experimental variation (¢). From the
observation of dj; of six trend types as shown in Fig.
4(a), DFA-1 has the maximum value of dj; that means
it obtained the maximum class separability. In
addition, we observed that the performance of class
separability is reduced when the order of DFA
increases. Note that the dj; as shown in Fig. 4(a) is
calculated with the sEMG signals in six movements
and two channels.

However, if we considered the dj; of each pair of
EMG hand movements, we found that the suitable
order is changed. For example, the d; between HO
and HC movements obtains the highest value when
the trend fitting is DFA-6 and the d;; between WE and
WF movements obtains the highest value when the
trend fitting is DFA-1. Therefore, in practice, the
selection of optimal trend fitting with the selected
sEMG signal will improve the effectiveness in the
analyzing of sSEMG analysis and become the useful
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Figure 5. Bar plot of DFA’s scaling exponent for FP-FS movements from two channels with six different orders.

tool to extract feature in SEMG-based control.

From the theory, the DFA algorithm relates to
the fractal analysis. The other fractal parameters used
in the previous literatures [10-11] are compared with
the fractal scaling exponent from the DFA algorithm.
In [10], the values of fractal parameter are only
ranging between 1.950 and 2.000 for four movements
and four muscles but the DFA’s scaling exponent
with DFA-1 in this study are varied from 0.075 to
1.536. So the interval of our DFA value is bigger than
the interval of fractal parameter reported in [10]. It is
guaranteed the discriminate ability. Furthermore, the
values of d;; of DFA’s scaling exponent in each trend
in this study are much bigger than the d;; of fractal
dimension in [11], in case of the calculation by raw
SEMG signals as the results shown in Fig. 4(c).

In the second condition, the variation in subject
experiment is discussed. Normally, the maximum
class separability directly changes with the variation
in subject experiment. It means that the maximum
class separability increases, the variation increases.
This is the limitation that should be considered in the
practice and real-world applications. However, the
effect of the variation of DFA is not normality. The
variation of DFA-1 is smaller than other trends that
can be observed from Fig. 4(b). It guarantees that the
optimal order of fitting procedure for DFA algorithm
in analysis of EMG signal is the DFA-1 or linear
polynomial function. The maximal ¢ is obtained when
the fitting procedure is DFA-4 and DFA-5.

The interesting results are shown in Fig. 4 (c-d).
The figures show the comparison of d;; and o between
the six trends in this study and in [11]. The results of
literature calculate the fractal parameter of FS and FP.
We compare only two movements (FS and FP) of our

results with results in [11] that used the same muscle
position. In the dj; results, DFA-4 has the maximum
value, followed closely by DFA-6 and DFA-5. On the
other hand, the dj; of fractal-based on raw SEMG data
in [11] is very small. It is expected to perform poor
class separability. Moreover, the ¢ of fractal-based on
both raw and filtered SEMG data in [11] are bigger
than each trend in this study. Therefore, estimation of
fractal parameter with DFA algorithm is better than
the estimation of fractal parameter with Higuchi’s
fractal dimension and correlation dimension that used
in [10] and [11], respectively.

For the class separability point of view, we can
summarize into two points:

1. It is observed that the fractal scaling exponent
of DFA method may be considered as a feature vector
for the classification of EMG hand movements. It has
the maximum class separability and less variation of
subject experiment as compared to the existing fractal
methods to estimate fractal parameters [10-11]. In
addition, the values of fractal scaling exponent are not
dependent on the amplitude of sSEMG signals like as
other features in time domain group such as MAV or
RMS. Furthermore, the patterns of fractal scaling
exponents of many kinds of hand movements are very
different to the patterns of RMS or MAV features that
calculated from various hand movements.

2. The optimal trend of fitting procedure for
DFA algorithm with SEMG signal is DFA-1 or linear
polynomial function because it obtains the better
results in both of maximum class separability
viewpoint and less experimental variation viewpoint.

4.2 Robustness criterion
The scaling exponent ¢ is an indicator of the

49



nature of the fluctuations in the SEMG signal that can
be explicating the behavior of SEMG time series. If
0<a<0.5, the correlation in the time series are
antipersistent, while if 0.5 <a <1, the correlation in
the time series are persistent. Furthermore, when
1<a<1.5, the behavior of the time series is non-
stationary or random walk. The fractal-like signal (1/f
noise) or pink noise results in ¢ =1, the uncorrelated
or white noise results in a = 0.5, and the Brownian
noise in ¢ =1.5.

For the robustness point of view, we can use the
advantage of higher order (4™, 5™, and 6™) that has
better class separability (high dj;) than the lower order.
The behavior of the sEMG signal in various hand
movements can describe this advantage point. It is
observed that the behavior of WE, WF, HC, and HO
are anti-correlated time series. It means that a high
amplitude data point is followed by a low amplitude
data point, and vice versa. However, the behavior of
FP and FS are non-stationary or random walk in most
trends (DFA’s scaling exponent values are more than
one). The amplitudes of these movements are very
small. Although, MAV or RMS features (popular
features in sEMG-based control) in FP and FS are
calculated features based on amplitude. Therefore, the
value of MAV and RMS is close to zero. If the SEMG
signal is contaminated, it becomes difficult to analyze.
However, the higher order of the DFA generate the
crucial difference between two channels of FP and FS
as shown in Fig. 5 that normally has the same values
in the most of EMG features. In other way, we can
observe the d; value of FP and FS movements as
shown in Fig. 4(c). This advantage point is strongly
recommended to extract features in movements that
have the small amplitude.

5. Conclusion

A novel non-linear and fractal method analysis,
Detrended fluctuation analysis (DFA) is used to study
the non-stationary characteristics of sEMG signal.
From the results, the fractal scaling exponent that
estimated with DFA is the powerful method to make
it useful parameter in practical sSEMG-based control
such as prosthetic or robot arm. The selection of
detrended with specific SEMG signal will be improve
the effective in processing. Extraction of DFA feature
on higher order trends is recommended to use with the
sEMG signals with small amplitude property. In the
future work, the DFA feature should be tested the
performance of movement separability with many
volunteers that will be answering the variation of this
method in inter-subjects. Moreover, the classification
of DFA based on the small order for high amplitude
movements and high order for low amplitude
movements should be considered for SEMG-based
control.
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