Chapter 2

Methodology

In this chapter we will describe in three sections. In the first section, we describe the
format of input file that is needed for using functions. The second, we describe the
theory used in programming. The last section, we describe the methodology of each
function, which include objective of each function, function syntax, algorithm and

example of the result from function.
2.1 The format of input file

The functions must have at least two files to create the map and display the
information, namely a spatial data file and an attribute data file. Each file must
contain a primary key, which must be composite, to uniquely identify each record.

The spatial data file and the attribute data file are described as below:

Spatial data file contains the Cartesian coordinates system. Figure 2.1 shows an
example of a spatial data file. It contains two columns plotID and pointID,
representing the primary key, and coorx and coory, representing the x- and y-
coordinates, respectively. The column called plotID represents the region code while
the pointID represents a sequential index of coordinates in each region. The fields
must be ordered by plotID, pointID, coorx and coory. However the names of fields

depend on the user.

10

plotID pointID COOYH COOYY

940101 1 T45125.6 758534.1
940101 2 743030.2 753504.1
940101 3 747373 753467.1
940101 g1 T43125.6 753534.1
24010z 1 T35553.7 TI9425.3
24010z 2 743612 .2 T59756.3
940102 3 743745, 5 TAO037 .4
940102 ia 743553 .7 T59425.3
940103 1 TI927E. 6 T59369.6
940103 Z T49243.5 759276.1
940103 3 749210.8 759151.6
2940103 32 T49275. 6 7593659.6

Figure 2.1: An example of a spatial data file

The spatial data file has two types that are simple region and complex region.
Simple region is area that doesn’t have a hole. For example the figure 2.2 has five

simple regions, which we will call A, B, C, D and E.

Nhivang Fattani
TTT}-Harth

TEI000 =

Ta2000 =

Teio0g =

TE00g =

F8000 =

TIE000

48000 50000 52000 I54000 ISE00L
UTIM-East

Figure 2.2: Simple regions

12

If we look in the example text file (figure 2.3) it can be seen that each region has one

duplicated pair of x- and y- coordinates that is a polygon. The region of “940101” start

and end with x = 748125.6 and y = 758534.1, the region “940102” start and end with

x=748553.7 and y = 759425.3, and the region “940103” start and end with

x=749278.6 and y = 759369.6.

Figure 2.3: Text file containing x- and y- coordinates of simple regions

Complex region 1s area that has one or more holes, or an area is interspersed with

plotID
940101
940101
940101

940101

940102
940102
240102

S40102

940103
940103
940103

940103

pointID
1
2
3

COoOrXM CoOOry
[725125.6 75B554.
748030, 755504,
747937 7534857,
[7a51z5. 755554,
[748553 . 750425,
745612 . 759756,
745745 . 760087 .
[745553, 750425,
[749275, 759369,
740245, 759275,
749210, 759151,
[749275, 750369,

smaller polygons. As an example, figure 2.4 has two regions in a place, which we call

A and B.

13

Franao

a0

oo

TTE000

Fianao

A

G000 636000 637000 635000 632000 S90000 &91000

Figure 2.4: Complex regions

If we look in file format, it can be seen that for one region there are two pairs or more

of duplicated x- and y- coordinates,as show n in figure 2.5. The region of “208184”

has two polygons, the first of polygon start and end with x = 688485.8 and y =

778128.7 and the second of polygon start and end with x = 6§9098.7 and y =

Coorx

coor
778128.7 |
778128, 8
FiEl26.1

TRl R, 7]

FIAE7OLE |

776866, 9
FFaB24.8

776879.8

plotIn pointID

208184 1 Eaedns. @
J08184| 2 faaday. 8
208184 3 6EE406. 6
208184| 1124 [Go8485. 8
pos1s4| 1126 [GB0009B.7
20%184| 1127 6850076.0
J08184| 1128 680065, 4
20%184| 1377 [B50008.7

T76A7 0.8]

Figure 2.5: Text file containing x- and y- coordinates of complex regions

Attribute data files contain statistical data. Figure 2.6 shows an example of an

attribute data file. In this file plotID is the primary key, representing the region code.

The column called name is the name of the region. The numEvn and numEvngrp

14

columns are the variables to display on the map. In this example, numEvn is the
number of terrorist events in each region, while numEvngrp is the same data

categorized into groups.

plotID name mumErn mmEvrngrp
940101 Sabarang 59 31404
940102 AriuhFu 1z 1:0-20
940103 ChabangTiEo 4 1:0-20
240104 Bana &o 3404+
940105 Tanyonglulo 14 1:0-20
940106 EhlongManing 11 1:0-20
240107 FKamivo = 1:0-20
9401058 Earahom 11 1:0-20
940109 Pakaharang 31 2:21-40
940110 Rusamilaes 47 3140+

Figure 2.6: Example of an attribute data file

2.2 Theory related

Location reference systems for spatial features on the Earth’s surface use a
coordinates system. Some maps are measured in longitude and latitude values, called
a geographic grid. Other maps are measured in two dimensional coordinates, which
are called a plane coordinate system or Cartesian coordinate system. Longitude values
are similar to x values in a coordinate system and latitude value are similar to

y values. The geographic grid consists of meridians and parallels. The meridians are
lines of longitude for the East-West direction. The parallels are lines of latitude for the
North-South direction. The plane coordinate systems are designed for detailed
calculations and positioning. Scales of measurement can vary, depending on the level
of detail and precision required. Four coordinates systems are commonly used in the

United States, with measurements varying between meters, feet and miles. In this

15

study a spatial data file that contains the Cartesian coordinates system was used

(Chang, 2002).

The theory that the researcher used to develop functions is described as below:
To calculate perimeter, suppose we are given the two points that are (x;, y;) and

(x2, 12), as shown in figure 2.7.

(x1,31)

(x3,¥,)

Figure 2.7: A line between two points

From the standard Pythagorean theorem for relating the parts of a triangle, we can
compute the distance between these points, which is given by the formula in

figure 2.8.

(x5 1)

d=(x,—x)> + (3, -)’
Vo =W

———————————— (xzayZ)

Figure 2.8: The Pythagorean theorem

where d is the distance, x,-x; is difference in the x direction, y,-y; is difference in the y
direction. We can compute the perimeter by aggregating the distances between every
pair of points. This formula isused for a coordinate system based on a projection,
such as the Universal Transverse Mercator (UTM), State Plane or United Kingdom

National Grid. It will not work for latitude and longitude.

For computing the area of a polygon the formula in figure 2.9 was used.

(x1,) (g5 ¥g)

(x5,,) (x7,77)

(x3,13) (X6 6)

(x4,¥4) (x5, 5)
lN—l

A= EZ(xiyiH — X))
i=0

Figure 2.9: A polygon

where 4 is the area, 7 is a index for every Cartesian coordinate, and N is the total

number of coordinates, for the center of a polygon the formula below was used:
1 N-1 1 N-1
Gr= _Z(xi + X X Vi — X1 Vi) Ay= _Z(yi + V)X Vi — X0 ;)
64 i=0 64 i=0

Where C, is the center of x and C,, is the center of y, 4 is the area, i is an index for
every Cartesian coordinate and N is the total number of coordinates (Bourke, 1988).

These formulas also can apply to computing for triangle (figure 2.10) and square

(figure 2.11).

(x1, 1)

(x3,¥,) (x4, 74)

Figure 2.10: A triangle

16

17

(X1, 1) (x3,¥3)

(x,3,) (X4, 74)

Figure 2.11: A square

For managing the integer variable into groups by using Frequency Distribution of
Grouped Data, as the first step we calculated a range of data. The range of data is the
difference in value between a maximum value and a minimum value.
r = Max-Min
Where r is a range value, Max is a maximum value and Min is a minimum value. For
the second step, we computed a number of class from this formula:
k=1+3.3logN
Where £ is a number of class and N is a number of data. The third step calculates a
class interval value.
i=rlk
Where i is class interval value, r is a range value and £ is a number of class. The class
interval must be the integer. If the value of class interval has a decimal, it must be
rounded up in value, whether it is less or more than 0.5. If the value of class interval is
an integer, it must be that integer plus one. The last step counts the number in each
class. The lower bound of the first class must cover the minimum value. The upper

bound of the last class must cover the maximum value (Hanmongkolpipat, 2003).

18

2.3 Methodology of each function

In this study we created 10 functions. They can be divided to three groups. The first
group being functions to manage regions, there are five functions, namely
create.map(), setcol. map(), setcol.cmap(), setnme.map() and combine.map(). The
second group contains functions to show statistics data, there are two functions which
are colstat.map() and piestat.map(). The third group containsfunctions to compute
area, perimeter and center of region, and these are area.map(), perimeter.map() and

center.map(). Figure 2.12 shows chart of functions that are created.

Functions

To manage regions

create.map()

setcol.map()

setcol.cmap()

setnme.map()

combine.map()

To show statistics data

colstat.map()

piestat.map()

To compute area, perimeter and center

area.map()

perimeter.map()

center.map()

Figure 2.12: The functions are created

19

The create.map() function

Objective: To create a map.

Function syntax: create.map (flexy, xscl, yscl, scl.size, scl.col, wh, ww, header.text,
header.size, header.col, map.col, xylabel, xylabel.size, xylabel.col, xyline, xyline.col,
xyline.type)

The arguments are described in table 2.1.

Argument Description

flexy Spatial data file

xscl The minimum and maximum value of x axis
yscl The minimum and maximum value of y axis
scl.size Size of x axis and y axis

scl.col Color of x axis and y axis

wh Window height

WW Window width

header.text

header.size

The main title name

Size of title name

header.col Color of title name
map.col Color of map
xylabel Show “UTM-North” on y label and “UTM-East” on x label

xylabel.size

Size of x label and y label

xylabel.col ~ Color of x label and y label
xyline Show grid line

xyline.col Color of grid line
xyline.type =~ Type of grid line

Table 2.1: The data input for create.map() function

20

The algorithm for creating map is described in algorithm 2.1. There are seven steps.

Algorithm 2.1: create.map()

1. Read the data from syntax.

2. Check complex regions, if one region has tweairs or more of duplicated x- and y-
coordinates, put theNA value between each region of each complex region.

3. Create a window using windows() function.

4. Create a map using polygon() function.

5. If header.text is not null, display the title name on the top of a map using mtext()
function.

6. If xyline = T, display the grid line with abline() function.

7. Display the place code or the primary key of simple regions and complex regions

on R Console.

Example: Figure 2.13 shows the result from create.map() function. It is 13 sub-
distrincts of Mueang Pattani district, Pattani province. There are Sabarang, Anoru,
Chabang Tiko, Bana, Tanyong Lulo, Khlong Maning, Kamiyo, Barahom, Paka

Harang, Rusa Milae, Talubo, Baraho and Puyut.

Muang pattani
UTh4-Morth

TE4000 [

TE2000 [-

FEOOOO |-

728000 [-

Ta6000 -

724000 [-

F52000 [

F50000

740000 745000 750000 755000 TEO000
UTh-East

Figure 2.13: The result from create.map() function

21

The setcol.map() function

Objective: To specify color of each region.

Function syntax: setcol.map (flexy, plcid, mcol)

The arguments are described in table 2.2.

Argument Description

flexy Spatial data file
plcid The primary key of region to display color
mcol Color of each region

Table 2.2: The data input for sefcol. map() function

The algorithm for specifying color of each region is described in algorithm 2.2. There

are six steps.

Algorithm 2.2: setcol. map()

1. Read the data from syntax.

2. Check complex regions, if one region has two pairs or more of duplicated x- and y-
coordinates, put theNA value between each region of each complex region.

3. If plcids null, get the primary key in flexy.

4. If mcol is null, generate the color for mcol.

5. Display the color of each region using polygon() function. For complex regions, all
regions of each complex region willhave the same color.

6. Display the place code or the primary key and the color of each region on R
Console.

Example: Figure 2.14 shows the result from setcol.map() function of Ko Mak sub-

district, Pak Phayun district, Phatthalung Province.

22

LITh-Marth

830000 -

G25000 -

20000 |-

&15000 -

E42000 B44000 B45000 B48000 RSOO00 BS2000 BS54000
LUTh-East

Figure 2.14: The result from setcol.map() function

The setcol.cmap() function

Objective: To specify color of complex region.

Function syntax: setcol.cmap (flexy, plcid, reg, mcol)

The arguments are described in table 2.3.

Argument Description

flexy Spatial data file
plcid The primary key of a complex region to display color
reg Specify regions are numeric (1, 2, 3, ..., n) from the largest region to

the smallest region

mcol Color of each region

Table 2.3: The data input of setcol.cmap() function

The algorithm for specifying color of complex region is described in algorithm 2.3.

There are five steps.

23

Algorithm 2.3: setcol.cmap()

1. Read the data from syntax.

2. Count the number of region in plcid variable.

3. Compute the area of each region and sort them from the largest region to the
smallest region.

4. Display the color of each region with polygon() function.

5. Display the place code or the primary key and the color of each region on R

Console.

Example: Figure 2.15 shows the result from setcol.cmap() function. It is a complex

region of one place in figure 2.14.

LTh-Marth

S25000

g27000 | [&

2
26000 |
&
25000 | @

S24000

E47000 E45000 E49000 ES0000
LUThA-East

Figure 2.15: The result from setcol.cmap() function

24

The setnme.map() function

Objective: To display a name on each region.

Function syntax: setnme.map (x, y, flexy, plcid, nme, frm, sfrm, wfrm, colfrm, sfont,
wfont, nmecmap)

The arguments are described in table 2.4.

Argument Description

X Position of x axis

y Position of y axis

flexy Spatial data file

plcid The primary key of region to display name
nme The name to display

frm Frame of name

sfrm Size of frame

wirm Width of frame

colfrm Color of frame

sfont Font size of name

wfont Font width of name

nmecmap If do not display name of complex regions giving value to “F”

Table 2.4: The data input of setnme.map() function

The algorithm for displaying a name on each region is described in algorithm 2.4.

There are six steps.

25

Algorithm 2.4: setnme.map()
1. Read the data from syntax.
2. Check complex regions, if one region has two pairs or more of duplicated x- and y-
coordinates, put theNA value between each region of each complex region.
3. If x, y and nme is not null.
3.1 If frm is not null, display the frame using points() function.
3.2 Display the name on each region with fext() function.
4. If plcidind nme is not null.
4.1 If frm is not null, display the frame using points() function.
4.2 For simple regions, compute the center of each region and display the
name using fext() function on the center of each region.
4.3 For each complex region:
- Count the region number of a complex region.
- Compute the area of each region.
- Find the maximum area from all regions and compute the center.
- Display the name using text() function.
5.1fx, y and plcid is null.
5.1 Find the place code or the primary key in flexy.
5.2 If frm is not null, display the frame using points() function.
5.3 For simple regions, compute the center of each region and display the
name using fext() function on the center of each region.
5.4 For each complex region:
- Count the region number of a complex region.

- Compute the area of each region.

- Find the maximum area from all regions and compute the center.

- Display the name using text() function.
5.5 Display the name of each region, that is numeric from 1 to n (n is a
number of region) with text() function on the center of region.
6. Display the place code or the primary key and the name of each region on R

Console.

Example: Figure 2.16 shows the result from setnme.map() function.

LITM-Marth
4000 -

TE2000

TEOao0 -

000

Tag0o0 -

4000

32000

45000 Fa0000 Ta5000
LITh-East

Figure 2.16: The result from setnme.map() function

The combine.map() function

Objective: To combine different regions into one region.

Function syntax: combine.map (flexy, plcid, mcol, mline)

The arguments are described in table 2.5.

26

27

Argument Description

flexy Spatial data file

plcid The primary key of region to combining
mcol Color of region after combining

mline Line type of region after combining

Table 2.5: The data input of combine.map() function

The algorithm for combining regions is described in algorithm 2.5. There are five

steps.

Algorithm 2.5: combine.map()

1. Read the data from syntax.

2. Check complex regions, if one region has two pairs or more of duplicated x- and y-
coordinates, put theNA value between each region of each complex region.

3. If mcol is not null, display the color of each region using polygon() function.

4. Merge place which is specified in plcidrariable with merge() function.

5. Draw new line, especially the x- and y- coordinates are matched by using /ine()

function.

Example: Figure 2.17 shows the result from combine.map() function.

LUTh-Marth
FE4000 [

FE2000 1

TEO000 -

58000

TE000 -

24000

22000 ¢

F45000 L0000 F55000
Th-East

Figure 2.17: The result from combine.map() function

The colstat.map() function

Objective: To display statistical data on the map using color shade.

Function syntax: colstat.map (flexy, plcid, dat, mcol, grp, mline, xlg, ylg, Ig, pslg,
slg, ncollg)

The arguments are described in table 2.6.

Argument Description

flexy Spatial data file

plcid The primary key of region

dat The statistical data or the information
mcol Color of each group

grp Group number

mline Type of line.

xlg Position of x axis to show legend

ylg Position of y axis to show legend

Ig Show legend defaults to “TRUE”

28

29

Argument Description

pslg Position of legend

slg Size of legend

ncollg Column number of legend

Table 2.6: The data input of colstat.map() function

The algorithm for displaying color shade is described in algorithm 2.6. There are six

steps.

Algorithm 2.6: colstat.map()
1. Read the data from syntax.
2. Check complex regions, if one region has two pairs or more of duplicated x- and y-
coordinates, put theNA value between each region of each complex region.
3. If dat is a categorical variable, display the color of each group using polygon()
function and display the type of line using method like combine.map() function.
4. If dat 1s a continuous variable.
4.1 Manage dat variable to be categorical variable by using Frequency

Distribution of Grouped Data including:

- Compute range of data using formula: » = Max-Min

- If grp is not null, give k = grp. If grp is null, compute number of
group using formula: £ = 1+3.3/logN

- Compute class interval using formula: i = r/k

- Give the value for each group, which are & groups.

4.2 Define value, which is the categorical data, to dat variable.

30

4.3 Display the color of each group with polygon() function and display the
type of line using method like combine.map() function.
5. If Ig =T, display the legend of data with legend() function using position of xlg, ylg
or pslg.

6. Display the name and the color of each group on R Console.

Example: Figure 2.18 shows the result from colstat.map() function.

LITh-Morth
TE4000 |-

TE2000 |-

FE0000 [

ToE000

6000 -

Tod000 |-

752000

745000 750000 755000
LITM-East

Figure 2.18: The result from colstat.map() function

The piestat.map() function

Objective: To display statistical data on the map using circle.

Function syntax: piestat.map (flexy, plcid, dat, mcol, grp, xlg, ylg, Ig, pslg, slg,
ncollg, strpie)

The arguments are described in table 2.7.

31

Argument Description

flexy Spatial data file

plcid The primary key of region

dat The statistical data or the information
mcol Color of circle

grp Group number, when dat variable is integer
xlg Position of x axis to show legend

ylg Position of y axis to show legend

g Show legend defaults to “TRUE”
pslg Position of legend

slg Size of legend

ncollg Column number of legend

strpie The start size of circle

Table 2.7: The data input of piestat.map() function

Algorithm 2.7: piestat.map()

1. Read the data from syntax.

The algorithm for displaying circle is described in algorithm 2.7. There are six steps.

2. Check complex regions, if one region has two pairs or more of duplicated x- and y-
coordinates, put theNA value between each region of each complex region.
3. If dat is categorical variable.

3.1 For simple regions, display the circle on the center of each region using
points() function. Size of the circle should be increased for each group.

3.2 For each complex region:

- Count the number of region of a complex region.

32

- Compute the area of each region.
- Find the maximum area from all regions and compute the center of
that region.
- Display the circle using points() function.
4. If dat is continuous variable.
4.1 Manage dat variable to be categorical variable by using Frequency
Distribution of Grouped Data including:
- Compute range of data using formula: » = Max-Min
- If grp is not null, give k = grp. If grp is null, compute the number of
group using formula: k£ = 1+3.3/logN
- Compute class interval using formula: i = r/k
- Give the value for each group, which are & groups.
4.2 Define value, which is the categorical data, to dat variable.
4.3 For simple regions, display the circle on the center of each region using
points() function. Size of the circle should be increased for each group.
4.4 For each complex region:
- Count the number of region of a complex region.
- Compute the area of each region.
- Find the maximum area from all regions and compute the center of
that region.
- Display the circle using points() function.
5. 1f Ig =T, display the legend of data with /egend() function using position of x/g, ylg
or pslg.

6. Display the name and the circle size of each group on R Console.

33

Example: Figure 2.19 shows the result from piestat.map() function.

LITh-Maorth
FE4000 [
FE2000 |-
FEOOOO |-
Faa000 -
FaE000 |-
« 1:0-20
Fa4000 |- 2:21-40
3:40+
F52000 [:
F4a000 Fa0000 Faa000

LTh-East

Figure 2.19: The result from piestat.map() function

The area.map() function

Objective: To compute the area of each region.

Function syntax: area.map (flexy, plcid, mshow)

The arguments are described in table 2.8.

Argument Description

flexy Spatial data file

plcid The primary key of region

mshow Show the area on map, defaults to “FALSE”

Table 2.8: The data input of area.map() function

The algorithm for computing area is described in algorithm 2.8. There are six steps.
Algorithm 2.8: area.map()
1. Read the data from syntax.

2. If plcids null, get the primary key in flexy.

3. For complex regions, count the number of region of each complex region.

4. Compute the area of simple regions and each region of complex regions.

5. If mshow = T, display the area on the center of each region.

6. Display the area of each region on R Console.

Example: Figure 2.20 shows the result from area.map() function.

LIThA-Morth

VE4000 |-

VE2000 |

VEO000 |-

Fago0o -

Fas000 |-

24000 |-

Fa2000 |

10127790 .49

8342325.95

745000 750000 755000
LTh-East

Figure 2.20: The result from area.map() function

The perimeter.map() function

Objective: To compute the perimeter of each region.

Function syntax: perimeter.map (flexy, plcid, mshow)

The arguments are described in table 2.9.

34

Argument Description

flexy Spatial data file

plcid The primary key of region

mshow Show the area on map, defaults to “FALSE”

Table 2.9: The data input of perimeter.map() function

The algorithm for computing perimeter is described in algorithm 2.9. There are six

steps.

Algorithm 2.9: perimeter.map()

1. Read the data from syntax.

2. If plcids null, get the primary key in flexy.

3. For complex regions, count the number of region of each complex region.

4. Compute the perimeter of simple regions and each region of complex regions.
5. If mshow = T, display the perimeter on the center of each region.

6. Display the perimeter of each region on R Console.

Example: Figure 2.21 shows the result from perimeter.map() function. It is the

Na Thap canal in Na Thap sub-district, Chana district, Songkhla province.

35

36

LITh-Marth
7a00a

FE000 |-

F00a

MEEE|

FTE000 |-

a00a

E35000 E3E000 E37000 33000 33000 E30000 E31000
UTh-East

Figure 2.21: The result from perimeter.map() function

The center.map() function

Objective: To compute the center of each region.

Function syntax: center.map (flexy, plcid)

The arguments are described in table 2.10.

Argument Description
flexy Spatial data file
plcid The primary key of region

Table 2.10: The data input of center.map() function

The algorithm for computing the center is described in algorithm 2.10. There are five

steps.

Algorithm 2.10: center.map()

1. Read the data from syntax.

2. If plcids null, get the primary key in flexy.

3. For complex regions, count the number of region of each complex region.
4. Compute the center of simple regions and each region of complex regions.

5. Display the center of each region on R Console.

Example: Figure 2.22 shows the result from center.map() function.

oo -1 @mon o WMo

o
= O

o
LI

Figure 2.22: The result from center.map() function

In summary, the functions must have at least two files to create the map and display

ploid x center y center

240101
240102
240103
940104
940105
240106
240107
9401038
940109
240110
240111
940112
940113

74120,
7492660,
TAET0E .
T51303.
754568,
754052 .
THE592.
THE03T.
TER579 .
745955,
505604,
THO0425.
70359,

5

[% I o S =V o N T S A6 N s (T e

Te0304d,
Tel3ls.
T5E705.
Taldog4d.
Telz294,
758509,
Th5E0Z5.
TaO3TT.
T5eZE85.
Tel0lz0.
ThEZZ0.
T55395.
753872,

oo w oo om0 -] e =N

37

the information, there are a spatial data file and an attribute data file. The spatial data

file has two types that are simple region and complex region. In this chapter also we

described the methodology to create function of 10 functions, which include the

objective, function syntax, algorithm and the example of result of each function.

For next chapter, we will describe the detail of result for each function. How is the

ability of each function?

