รายงานวิจัยฉบับสมบูรณ์ เรื่อง การแยกสารคลายตัวต่อเนื้อเยื่อ cavernosum จากเหง้ากระชายดำและ กลไกในการแสดงฤทธิ์ของสารนั้นต่อเนื้อเยื่อ human Cavernosum ที่ตัดออกมาศึกษานอกตัว Isolation of cavernosal dilator substance(s) from rhizomes of Kaempferia parviflora and its mechanism of action on human cavernosal tissue in vitro รศ.ดร.ฉวิวรรณ จันสกุล นพ.กุลเดช เตชะนภารักษ์ ศ.พวงเพ็ญ ศิริรักษ์ ได**้รับทุนอุดหนุนการวิจัยจากงบประมาณแต**่นดิน ประจำปี **2550 - 2551** มหาวิทยาลัยสงขลานครินทร์ 8 มิถุนายน 2552 ## บทคัดย่อ การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อ (1) แยกสารออกฤทธิ์คลายตัวต่อเนื้อเยื่อ cavernosum ของคน จากเหง้ากระชายคำให้บริสุทธิ์ (2) ศึกษากลไกในการแสคงฤทธิ์ของสารบริสุทธิ์ที่แยกออกมาได้ต่อการ กลายตัวเนื้อเยื่อ cavernosum ของคน ทำการทคลอง โดยสกัดเหง้ากระชายคำสคด้วย ethanol และตามด้วย dichloromethane ได้เป็น ethanol และ dichloromethane extract แล้วนำมาแยกสารออกฤทธิ์โคยวิธี column chromatography โดยใช้ silica gel 100 เป็นตัวยึดอยู่กับที่ และชะออกด้วยส่วนผสมของ $\mathrm{CH_2Cl_2}$: MeOH ในสัคส่วนต่าง ๆ กัน แล้วเลือก fraction ที่มีผลคลายตัวต่อเนื้อเยื่อ cavernosum มาแยกต่ออีกครั้ง ด้วยวิธีการเดิมโดยใช้ silica gel 60 เป็นตัวยึดอยู่กับที่ แล้วเลือก fraction ที่มีผลคลายตัวต่อเนื้อเยื่อ cavernosum มาแยกให้บริสุทธิ์โดยใช้ silica gel RP 18 เป็นตัวยึดอยู่กับที่และชะออกด้วยส่วนผสมของ ในสัคส่วนต่าง ๆ กัน สามารถแยกสารออกฤทธิ์คังกล่าวได้ 3 ชนิคคือ 5,7dimethoxyflavone (DM), 5,7,4'-trimethylflavone (TM) และ 3,5,7,3',4'-pentamethoxyflavone (PM) และ นำสารทั้ง 3 ชนิดนี้มาศึกษากลไกในการแสดงฤทธิ์แบบ in vitro โดยใช้เนื้อเยื่อ cavernosum ของคนที่ได้ จากการผ่าตัดแปลงเพศ ผลการทดลองพบว่าทั้ง DM, TM และ PM มีผลทำให้เนื้อเยื่อ cavernosum ของ คนที่ให้หดตัวอยู่ก่อนแล้วด้วย phenylephrine คลายตัว โดยความแรงในการคลายตัวเพิ่มขึ้นตามความ เข้มข้นของสาร สารทั้ง 3 ชนิคนี้ออกฤทธิ์ทั้งทางตรงโดยกระตุ้นให้เนื้อเยื่อ cavernosum คลายตัวและ ออกถุทธิ์ทางอ้อมโดยที่ DM มีผลกระตุ้นให้มีการหลั่ง nitric oxide จาก endothelium cell ของเนื้อเยื้อ cavernosum และกระตันการทำงานของ soluble guanylate cyclase , TM มีผลกระตัน Ca^{2^+} sensitive K^+ channel และ ATP-sensitive K channel ส่วน PM มีผลกระตุ้นเฉพาะ ATP-sensitive K channel ไปเสริม ผลทางตรงที่ทำให้เกิดการคลายตัวของเนื้อเยื่อ cavernosum ทั้ง DM, TM และ PM อาจมีฤทธิ์ยับยั้งการ หลั่งของ Ca²⁺ จาก sarcoplasmic reticulum แต่ไม่มีฤทธิ์เป็น phosphodiesterase dihydropyridine Ca²⁺-channel blocker, store-operated Ca²⁺-channel blocker, Rho-kinase inhibitor หรือ ยับยั้งการหลั่ง Ca^{2^+} จากแหล่งอื่นภายในเซลล์ที่ไม่ใช่จาก sarcoplasmic reticulum ข้อมูลที่ได้จากการศึกษา ในครั้งนี้สามารถยืนยันข้อมูลทางยาของเหง้ากระชายคำในการเสริมสมรรถนะทางเพศของชายได้ ## Abstract This study was designed to (1) isolate cavernosal -relaxive substances from the rhizomes of Kaempferia parviflora, and (2) investigate the mechanisms involved in their relaxant activity on the human cavernosum. Fresh rhizomes of the Kaempferia parviflora were extracted with ethanol followed by dichloromethane to obtain an ethanol and dichloromethane extract. Cavernosal -relaxive substances were isolated from these two extracts by using a column of silica gel 100 as a stationary phase, and elution with different concentrations of a mixture of CH₂Cl₂: MeOH. The active fractions were rechromatographed using a similar procedure with silica gel 60. Finally, the active subfractions obtained were subjected to column chromatography using silica gel RP18 as a stationary phase and elution with different concentrations of a mixture of MeOH: H₂O. Three pure active substances were isolated: 5,7-dimethoxyflavone (DM), 5,7,4'trimethylflavone (TM) and 3,5,7,3',4'-pentamethoxyflavone (PM). The mechanisms responsible for the relaxant activity of these compounds were studied in in vitro preparations of the human cavernosum obtained from patients that had undergone a sexchange operation. DM, TM and PM each caused a dose-dependent relaxation of the human cavernosum previously contracted with phenylephrine. These three compounds acted both directly to relax the cavernosal tissue and indirectly via different pathways. DM indirectly stimulated the release of nitric oxide from the cavernosal endothelial cell, as well as by stimulating the soluble guanylate cyclase, TM stimulated by opening a Ca2+ sensitive K⁺ channel and an ATP-sensitive K⁺ channel, whereas PM caused an opening of the ATPsensitive K⁺ channel. These indirect activities potentiated a direct relaxant effect on the cavernosum. DM, TM and PM may also acts as Ca2+ mobilizing inhibitors of the sarcoplasmic reticulum, but do not act as a phosphodiesterase inhibitor, a dihydropyridine Ca²⁺ channel blocker, a store-operated Ca²⁺-channel blocker, a Rho-kinase inhibitor, or a mobilizing inhibitor of the Ca2+ from other intracellular Ca2+ stores beside that of the sarcoplasmic reticulum. Knowledge obtains from these studies support the therapeutic claims made for the aphrodisiac activity of the Kaempferia parviflora rhizomes.