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Spectrum Analysis by Autoregressive
Methods*

(Performance on Application to
Stationary Signals)

Minoru KAMATA** and Panyarak NGAMSRITRAGUL***

In order to develop a method capable of determining the time variant spectrum of
time series, various existing approaches have been investigated. Although the Fourier-
based methods are superior in their computational efficiency, their inherent character-
istics may sometimes limit applications. The AR method gives the best results even
for small data sets. However, insufficient information is available for determining its
applicability. In this report, a brief review, as well as the performance, of various AR
methods applied to a certain class of stationary time series is systematically document-
ed. The covariance method is found to be the best solution for the determination of
AR coefficients, and many trials using sinusoidal data sets indicate the usefullness and

applicability of AR-based spectrum analysis.
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1. Introduction

It is very common for a mechanical engineer,
especially one working in the field of vibration analy-
sis, to transform time series data into the frequency
domain and make use of the resultant spectrum for his
analysis. Among the transformation methods, FFT is
frequently adopted because of its speed and the advent
of the high-performance FFT analyzer. The FFT
method which is based on the DFT, however, posseses
inherent restrictions for certain applications. The
frequency resolution is dependent on the time width of
the observed time series. These restrictions are found
to be impractical for many applications.
ment by methods such as windowing and zero padding
can be achieved to a certain level. Unfortunately, not
only do the inherent characteristics of DFT remain
unchanged, but these tools also introduce bias.

In contrast to the FFT method, which is classified
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as nonparametric, many parametric methods have
been proposed. The autoregressive (or AR) methods
which estimate the spectrum from the autocorrelation
estimates are the most popular ones. Others such as
moving-average (MA), and autoregressive moving-
average (ARMA) methods can be classified as their
alternatives. All of these methods are very effective
in extracting frequency components from relatively
short time series data. They were mainly developed
for use in the field of geophysics and electrical signal
processing”.  Their applications in the field of
mechanical engineering are very limited. Suzuki®
(Tokyo Metropolitan University), among a few
institutions®**, has been extensively conducting
research on applications of these methods to struc-
tural dynamics. The main reasons for its limited
applications to such field may be the lack of clear
guidelines in specifying the necessary parameters (e.g.
sampling rate, number of data points, and model
order).

In addition to these, many methods such as short-
time Fourier transform (STFT), Wigner distribution,
and wavelet transform have been proposed for the
analysis of nonstationary data (we will limit the

Series C, Vol. 39, No. 2, 1996

NI | -El ectronic Library Service



The Japan Soci ety of Mechanical Engineers

180

definition of the term “nonstationary data” to the time
series data with a spectrum which is time-varying
when viewed using an adequately long time scale, but
stationary when using a short time scale). Their
applications can be found in fields such as speech
processing. The methods are reported to have various
advantages and disadvantages.

Thus, we feel that there must be a method to
accurately obtain the time-variant spectrum of time
series data such as those from the vibration of an
engine with varying speeds, and the autoregressive (or
AR) methods were selected due to their advantage in
accurately estimating the spectrum even from a very
small data set. In this study, the fundamental charac-
teristics of the related methods will first be clarified,
and clear guidelines for various applications will be
developed. In this paper, time series generated from
multiple sinusoidal signals were used for analysis and
investigation.  Non stationary data, as described
above, will be discussed in a separate paper.

2. Objectives

In case of analyzing a short section of transient
time series data which can be treated as stationary,
the problem is to clarify the relationship between the
degree of stationariness and the accuracy of the
analysis. For instance, in dealing with a set of data
with frequency changing at a constant rate, using a
long data section will generally result in a good
accuracy, but the characteristics of the first subsec-
tion and the last subsection will be very different. In
contrast, using a short data section will result in good
stationariness, but obtaining an accurate spectrum
can be difficult. Direct investigation of the effects of
various parameters on the analysis of nonstationary
time series would be very complicated and might yield
to misleading results. In this paper, we therefore limit
our study to only stationary data to attain a clear
understanding mainly of the relationship between the
data length and other parameters.

The methods employed are AR methods. [nvesti-
gation on the accuracy of the analysis and the applica-
bility was carried out and the results were compared
to those from the FFT method. To date, many AR
methods have been proposed ; three of these, which
are shown in the appendix, were investigated. Vari-
ous synthetic time series data were used, and the
evaluation was done based on adequate trials. The
data series generated was based on the vibration data
of rotating machinery. The spectrum of this kind is
usually line spectrum in which each line indicates a
multiple of the rotational frequency. This is simply
the combination of multiple sinusoidal signals with
frequencies equal to multiples (and half order of the
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multiples) of a base frequency. Using data generated
in this way, the accuracy performance of each
approach was investigated.

All synthesized data were digitized ; round-off
error and other instrumentation noise were also taken
into account by adding random noise. The S/N ratio
of data series is 40 dB unless otherwise specified. To
generalize the results, frequency was normalized as a
fraction of sampling frequency and only values from
0.0 to 0.5 were used.

3. Spectral Analysis by AR Methods

3.1 Principle of AR methods
The principle of AR methods is to fit the observed
data to an AR model, represented by

x[n]:—"ﬁlla[k]x[n*k]Jru[nf/e], (1)

where p: model order, alk]: AR coefficients, u[#]:
input to AR model (usually white noise with variance
0w, x[n]: observed data series.

Equation (1) is usually referred to as a p-order auto-
regressive model or simply AR(p) model.

Various approaches have been proposed to esti-
mate the AR coefficients®+®,
method, method, and
Burg’s method were adopted. The most effective one
was then further investigated. The details of each
method can be found in the appendix.

3.2 Spectrum determination

After AR coefhicients are obtained using one of
the methods presented in the appendix, the power
spectral density (PSD) can be calculated from

In the first stage,

autocorrelation covariance

P syt e (2)

The PSD obtained using Eq.(2) is merely the
PSD of the AR model fitted to observed data. It is
visually appealing, but does not necessarily represent
the real spectrum of the data. Moreover, the values
and the area under each peak are unrelated to the
amplitudes of the sinusoidal components in the data.
The reason is that Eq.(2) was developed for obtain-
ing the spectrum of the real AR process which is
random in nature. The spectrum in this form is
therefore not appropriate for estimating the spectrum
of the sinusoidal signal, which is deterministic. In this
study, the spectrum was estimated by utilizing the
roots of the characteristic equation developed using
the estimated AR coefficients. The procedure is as
follows.

The frequencies and damping ratios of the compo-
nents in the data are first determined from Egs.(3)
and (4), respectively.

3 1 Imz) .
Ji= g tan (Rc(z,)) (3
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Here z:s are roots of the characteristic equation.
These values are then used to form a complex damped
sinusoidal model and fitted to the observed data, as
shown in Eq.(5).

.r[u]:é/l[i] cos 2anfid+ pi)e 5™ (5)

This forms a set of linear simultaneous equations
which can be solved for the unknown vector of com-
plex amplitudes A[7], and thus the phase angles ¢..
The spectrum is then obtained from the plot of these
amplitudes versus the corresponding frequencies. In
this paper, only undamped sinusoidal signals are con-
sidered ; the damping ratios are equal to zero.

By this technique, the dependence of frequency
resolution on the data length (or more precisely, time
scale) as in the case of the FFT method, is removed.
This clearly shows the advantage of the AR
approaches over the FFT approaches.

All computations are based on the programs in
Ref.(6). The code was modified to do operations in
double precision. The input sampled data series is a
16-bit integer array. The computer was an engineer-
ing workstation. Unless the model order is very high,
very little CPU time was consumed.

§i

4. Results and Discussion

4.1 Comparison of the performance of the 3
methods
To distinguish general characteristics of all 3
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methods, a data series comprised of 3 sinusoids was
generated. The frequencies and amplitudes were 0.2,
0.3, 0.4 and 10, 10, 8, respectively. First, a sufficiently
long (2000) data record was used to examine the
effects of model order on the resultant spectrum. The
results are presented in Fig. 1. It is evident that the
covariance method gives the best accuracy. Although
it shows slight error in amplitude estimates for model
order 6, but it gives very accurate spectrum estimates
for orders 8 and higher. For data which consist of 3
harmonic components, model order 6 is adequate.
Here orders higher than 6 must be used because the
data are injected with random noise. The extra model
orders are needed to model the noise components.
Usually the contribution of these noise components is
small for sufficiently high S/N ratio, and will not show
up in the linear plot of the amplitude spectrum.

The autocorrelation method, on the other hand,
gives both fault frequencies and amplitudes for model
order 6. Increasing model order improves the fre-
quency estimates, but still gives incorrect amplitude
estimates. Moreover, extra fault components also
show up with increasing order.

Burg’s method is shown to accurately determine
only the frequencies, but fails to estimate the ampli-
tudes. Spurious peaks also occur with increasing
model order.

Next, the effects of model order and data length
on the spectrum estimates were examined. Fig. 2
shows a set of spectra with varying data length and
the model order fixed at 18. It is clear that for the
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covariance method, the spectrum estimates are not
effected by the data length being used. The extra
peaks, if they exist, are insignificant. For the autocor-
relation method, though the amplitude estimates
become better with increasing data length, the value
of many fault peaks is relatively high and could not be
identified if not known a priori. Burg's method shows
no improvement for either frequency or amplitude
estimates no matter how long the data record is. With
a shorter data record, Burg's method seems to give
better amplitude estimates. From the definition of
each method, the differences shown here are not
unexpected.

The effect of model order on the spectrum esti-
mates was further investigated for better understand-
ing of the performance of each method. This time a
data length of 1000 was used, and the results are
presented in Fig. 3. Burg's method and the autocor-
relation method show many significantly high spurious
peaks, and the amplitude estimates are also inaccu-
rate. The covariance method, in contrast, shows
accurate estimates of hoth frequencies and amplitudes
regardless of the model order specified, as long as the
order is greater than twice the number of frequency
components. Although there are a number of methods
for selecting the order for AR approaches, e.g. AIC
and FPE, we found that these methods are suitable for
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fitting random time series. For a sinusoidal signal
which is deterministic, these methods fail to show a
minimum value at a specific model order. Fortunate-
ly, the covariance method is shown to be capable of
yielding accurate spectrum estimates, even for data
with an unknown number of frequency components, if
high model order is specified. Theoretically, the
model order must only be twice the number of fre-
quency components in the data. The actual signal,
however, is always contaminated by kinds of noise.
Specification of theoretical model order generally
does not eable the extraction of all the correct fre-
quency components. The problem here is identifying
how large a model order should be specified. The
answer depends on the S/N ratio and other character-
istics of the data. With many trials, we suggest that
five times the number of frequency components will
generally give adequate results. For data with fre-
quency components very closely spaced, it will be
shown later that a much larger model order is needed.

Fig. 4 shows the result from the same set of data
with S/N ratio reduced to 20 dB. Since Burg's method
and the autocorrelation method failed to yield good
results, only the results from the covariance method
are presented. If model order is specified much higher
than necessary, the spectrum estimates exhibit spuri-
ous peaks. It is also evident that these spurious peaks
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Table 1 Trial conditions (high-frequency range)
frequency [samplie number{number of cycles)

percycle [ L=512] L=8
0.476 2.10 244 3.81
(1.455 2.20 233 3.64
0.435 230 223 3.48
0.417 2.40 214 334
0.400 2.50 205 3.20
0.391 2.56 200 3.13
0.385 2.60 197 3.08
0.370 2.70 189 2.96

Ampli tude

183
Table 2 Results of single frequency (high- frequency
range)
L=512 L=64 L=32 L=8
Freq. | p=2|p=10|p=30|p=60] p=2 |p=10{p=30{ p=2 |p=10] p=2| p=4
0.476 B A A A | A- A A B A A B
0.455 B A A F | A Al A | A A A C
0435 | A-| A A Al A | A A| A A A C
0417 | A-1 A A A A A A A A A A
0400 | A-| A A A A A A A A A A
0391 | A-] A AlA | A A A A A A A
0385 1 A-| A A A A A A A A A A
0370 | A~ Al Al A A AlAlA]lA]A]A

Amplitude

Fig. 4 Spectrum maps (Effect of $/N ratio)

do not occur at the same frequencies for different
model orders, they can therefore easily be identified
by comparing the results of data fitted the data using
different model orders. The figure clearly indicates
that the data length has no significant adverse effect
on the accuracy of spectrum estimates. The covarian-
ce method is thus a robust method which is also
capable of obtaining spectrum estimates of low S/N
ratio time series with good accuracy.

4.2 Performance in estimating spectrum of
extremely high and low frequencies —single
sinusoidal signal—

In order to understand the accuracy performance
of AR methods in estimating the spectrum of data
which consists of extremely high and low frequencies
(relative to sampling frequency), here the results
using only one sinusoidal component will first be
presented. For extremely high-frequency the number
of data points per cycle is very small, as is the number
of cycles in the data record for the case of extremely
low-frequency.

Since the fraction of sample frequency was em-
ployed throughout this paper, the extremely high-
frequency is thus the one with the fraction value very
close to 0.5. A set of selected frequencies, the corre-
sponding number of data points per cycle, and number
of cycles per prescribed data length are presented in
Table 1. To generalize the results obtained, the
generated data series are adjusted to have a S/N ratio
of 40 by injecting random noise. The accuracy perfor-
mance of the covariance method with varying data
length and model order was studied. Due to the large
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number of results, only tabulated results are given
here. The performance rank, which is used for the
estimation of results, is summarized as follows.
rank A . Excellent Results
rank A- : Fairly Good Results
rank B : Difference in Amplitude (5-20%)
rank C : Difference in Frequency (1-5%)
rank D : Both B and C
rank E : Large Difference in Frequency (5-10%)
rank F : Large Extra Spectral Lines
rank G : Lack of Some Spectral Lines
rank X : Absence of Correct Spectral Line
Table 2 presents the results for the case of
extremely high-frequency. With data length of 512,
which is more than sufficient, both too low and too
high a model order reduces the performance of estima-
tion. Since the data are a single sinusoid contaminat-
ed with noise, the theoretical model order of 2 is not
sufficient. A model order of 10 yields excellent results.
Increasing model order beyond this causes spurious
peaks, and introduces slight error in the amplitude
estimates, but this is insignificant. The results for the
cases of data length of 64 and 32 are acceptable
regardless of model order. For an extremely short
data record with only 8 points of data, accurate spec-
trum estimates can be obtained with an order of 2
rather than 4. Moreover, with frequency as high as
(.495 times sampling frequency, it was observed that
the spectrum could be accurately estimated using a
data length of 32 and model order of 10. The results
of this investigation indicate that unless the data
length is insufficient, accurate spectrum estimates can
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be determined using the covariance method. In the
case of FFT, if data length is 32 points the frequency
resolution is approximately 0.03. If the data number
is not a multiple of cycle, side lobes will appear and
accurate spectrum estimates cannot be obtained.

Next, results from data containing an extremely
low-frequency component will be presented. In this
case, the collected data will usually be less than one
cycle. Since FFT assumes the available data length
or time-width as its period, the correct result is
unexpectable. The AR methods, on the other hand, do
not possess such limitations. Frequency resolution
can almost be arbitrarily chosen. Furthermore, it is
reported that the AR methods are capable of estimat-
ing spectra of data with only half cycle. In this report,
the data series summarized in Table 3 were used to
examine the performance of the covariance method.

The results are presented in Table 4. In this
extremely low-frequency case, the performance
depends on the number of cycles contained in the data
record, not the frequency itself. With data containing
more than 0.4 times the component cycle, accurate
spectrum estimates can be obtained without major
difficulty. If this becomes 0.256, the estimation
becomes unstable. Although no clear threshold num-
ber can he drawn from the trials, (.4 times the cycle
would be a good choice. Based on this number, the
minimum frequency can be as low as 0.0005 (or 1/1000
of maximum frequency). This is another advantage
of the AR method over FFT. It is also observed that
for extremely low-frequency, higher order is needed.
If, however, data contains 0.5 times the cycle, model
order of 10 is sufficient.

Table 3 Trial conditions (low-frequency range)

number of cycles (I=fc/n
L=512[L=124L=64]L=32| L=8 n
0.0005 1 0.256] 0.06] 0.03 0.02] 0.004] 1000
0.001 [ 0512] 0.13] 0L06] 0.03( 0.008 500,
0.002 | 1.024] 0.26{ 0.13| 0.06] 0.016 250
0.004 | 2.048} 0.51] 0.26] 0.13] 0.032 125
0.010 5.12| 1.28] 0.64] 0.32] 0.08 50
0.013 6.4] 16] 0.8 04] 0.1 40
0.025 12.8] 32| 16| 0.8 0.2 20
0.050 256 6.4 32| 1.6] 04 10

trequencyf

Table 4 Results of single frequency (low-frequency

range)
L=512 L=128 L=64 L=32 L=8

Freq. | p=2{p=10{p=301p=6(] p=2 |p=10{p=30]p=6(] p=2 |p=10{p=30[ p=2 [p=10] p=2] p=4
().0005 X XA |A | X E A E X X E X X X X
0.001 X D{ A F X C A D| X X X X X X X
().002 X B A A X C A C X X E X X X X
0.004 XA 1A A X A A A X cicC E E X X
0.010 D A A A D A A A D| A A D| C X X
0.0125 D A AlA | D A A A D A A DA | X X
(.025 B A A A B A A A B A A B A D D
0.050 B A A A | A A A Al A A A A A|lA- | D

Series , Vol. 39, No. 2, 1996

We conclude here that the covariance method can
be effectively used to estimate the spectrum for data
which contains at least 0.4 times the cycle.

4.3 Performance for double sinusoidal compo-
nents

Next, the accuracy performance of analyzing
data containing two sinusoidal components was inves-
tigated. Two cases were considered here, i.e., compo-
nents of two widely separated, and two adjacent fre-
quencies.

(1) Data with two widely separated frequency
components

This section presents the performance of analyz-
ing data with two widely separated frequency compo-
nents. The high-frequency was fixed at 0.45, and the
low-frequency was varied from 1/20 to 1/1000 of the
higher one. The results are presented in Table 5. It
is seen that the method is capable of locating the
correct spectrum of both components up to a ratio of
only 1/100. A small deviation takes place in the case
of a ratio of 1/200. The same trend was observed for
shorter data records. With additional trials, the low-
frequency component was seen to dominate the anal-
vzing performance. As mentioned in the previous
section, the fraction of the low-frequency component
cycle directly affects the performance of analysis.
The smaller the fraction, the larger the required
model order. Generally, data containing frequencies
separated by more than 1/100 can be analyzed by
employing the techniques of filtering, there is thus
little benefit to proceeding further to more extreme
cases. Here we summarize that for data with the
ratio of high and low frequencies up to 1: 100 and the
lower frequency component which contains at least
0.5 times its cycle, the corresponding spectrum can be
determined accurately using the covariance method
with properly specified model order.

(2) Data with two adjacent frequency compo-
nents

For closely spaced frequency components, two
base frequencies, i.e., 0.05 and 0.3, were considered.
With each base frequency, another component with
frequency equal to its base value plus a fraction,

Table 5 Results of double frequencies (widely

separated)

11=0.45.12=f1/n L=512 L=12§]
12 n | p=8 | p=20|p=40{ p=40

0.00045 1 1000 G G C G

0.0000 5000 G| F C

0.00225 2000 G A- ] A A

0.0045 o] B | A|A A

0.009 ol A-] A A ] A

0.0225 200 A A A A
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Table 6 Results of double frequencies (closely spaced) Table 8 Trial conditions (multiple frequencies)
Ditt. 1=0.05,£2=f1+0.5/n 1=0.30.£2=f140.5/n cond. frequencies included
in two L=512 L=512 10 lines__[0.01, 0.05, 0.10, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.47

Freq. n =8 | p=20| p=40] p=60] p=80
0.0005 | 1000 G G B F F

0.001 5001 G
0.005 100 E
0.01 S0 D

8 | p=20| p=40| p=60{ p=80
G B D | A-

= w ool

E | A-
A A
A A

> > >

A D B A- A
A A A A- A
A A A A A

Table 7 Results of multiple frequencies (3 lines)
£1=0.45,12=0.2,t3=0.01

L:
200 30 40 50 60 70 80 90
p=03L| G A A A A A A F
p=04L| A- A- A- A A- A A A

varied from 1/50 to 1/1000, of the Nyquist frequency
(i.e., 0.5) was added to form a test data series. The
results are as shown in Table 6. With frequency
difference of about 1/500 of Nyquist frequency (or
0.001 of sampling frequency), the spectrum can be
identified using a rather high model order. The same
results were observed for both base frequencies.
Model order of 80 is an extremely large value. The
explanation for these results is that for identifying the
spectrum of very closely spaced components, very
high resolution is needed. Increasing model order is
thus equivalent to increasing the frequency resolution.
If the frequency difference is only 0.005, a model order
of 20 is sufficient. In any case, if the FFT method
were used, the resolution would be 0.002 for a data
record of 512 points. This clearly limits the ability to
separate 2 adjacent frequency components. This
shows that this AR method is superior to FFT. Sup-
plemental trials confirm the effectiveness of the
method as long as data length for low-frequency is
adequate.
4.4 Data with multiple frequency components

This section presents the performance of multiple
components analysis, i.e., 3, 10, and 20 components
with a pair of adjacent frequency components. Table
7 shows the results for data with 3 frequency compo-
nents. It is observed that, with the exception of a very
short data record, the spectrum can be obtained
without any difficulty. The data length, as mentioned
in the previous section, depends on the component
with lowest frequency. Likewise, if a pair of adjacent
frequency components exists, high model order is
needed.

The details for data containing 10 and 20 compo-
nents are shown in Table 8. The analyzing perfor-
mance is summarized in Table 9. Results for short
and sufficiently long data records are presented for

JSME International Journal

20 lines (1) [0.01, 0.03, 0.05, 0.06, 0.08, 0.09, 0.10, 0.14, 0.16, 0.18,
0.20, 0.22, 0.26, 0.30, 0.35, 0.38, 0.40. 0.44, 0.46, 0.47

20 lines (2)[0.01, 0.03, 0.05, 0.06, 0.08, 0.09, 0.10, 0.14, 0.16, 0.18,
0.20, 0.22, 0.26, 0.30, 0.35, 0.395, 0.40, 0.44, 0.46, 0.47

20 lines (3)|0.01, 0.03, 0.0495, 0.06, 0.08, 0.09, 0.10, 0.14, 0.16, 0.18,
0.20, 0.22, 0.26, 0.30, 0.35, 0.38, 0.40, 0.44, 0.46, 0.47

Table 9 Results of multiple frequencies (10 and 20 lines)
10 Lines L=

50 60 70 80 90 100 110 120
p=24| A- A- A A A A A A

20 Lines L=
130 150 180 200 240 280 300 320

(p44 G G G G G G G G
so)y B B B B B B B B
60lA- A A A A A A A

2p=60| B _A- A A A A A A

G3p=60l G G A A A A A A
80/ G B A A A A A A

both cases. For data with 10 components, an accurate
spectrum can be obtained with short data record and
relatively low model order. For data with 20 compo-
nents, on the other hand. relatively high model order is
needed to resolve the spectrum, and at least 180 data
points are required. As can be expected, much higher
model order is needed if adjacent frequency compo-
nents exist. Supplemented trials have led to the
conclusion that in the case of a data length of about 10
times the number of components, as long as it is not
less than 0.4 times the cycle of the lowest frequency
component, a sufficiently accurate spectrum can be
resolved using the covariance method.

5. Conclusions

In this paper, investigation results on the accu-
racy performance of spectrum analysis for multiple
sinusoidal data using AR methods are presented. The
following conclusions can be drawn.

(1) The PSD obtained from the AR coefficients
using Eq.(2) provides no useful information for
extracting the real amplitude of the frequency compo-
nents. The frequencies and damping ratios must first
be determined from the roots of the characteristic
equation, and amplitudes and phases then obtained by
fitting a damped sinusoidal model to the data.

(2) Various methods were proposed to obtain the
AR coefficients ; the covariance method has been
confirmed to be the most effective one with the results
independent of data length and model order. The lack
of dependence of performance on model order is a
very important characteristic which has eliminated
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the cumbersome procedure of selecting a proper
model order.

(3) The results of investigation using synthesized
data have led to the understanding of the limitations
and characteristics of the covariance method. For an
extremely high-frequency component (relative to
Nyquist frequency), the correct spectrum can be
estimated without restriction even with a short data
record. For extremely low-frequency, on the other
hand, the spectrum analysis becomes impossible if the
data record amounts to less than 0.4 times its cycle.

(4) If the data contain a sufficient number of
points for the low-frequency component as stated
above, the spectrum can be accurately estimated for
both widely separated and very closely spaced fre-
quency components by using the covariance method.

(5) If not contradicted with the conditions
mentioned in (3), the guideline for assigning the data
length is to use at least about 10 times the number of
frequency components embedded in the data. A good
choice for the model order is about half of this num-
ber.

(6) Since the above characteristics are not
realizable by the FFT method, this thus reveals the
advantage of AR methods in application to spectrum
analysis.

Appendix

(1) Autocorrelation method
Multiplying both sides of Eq.( 1) and then taking
the expected value, with the autocorrelation function
defined as in Eq.(6) and taking into account the
properties of «[#], will result in Eq.(7).

1 ivoi-k ’ . O~
k] = yzn=o “xln]aln+ k] (ki 0~p) (6)
r[—k] (kb —1~—(p—1))
;'[k]+,ﬁl(1[;z])'[k n]=0 (7)

Rewriting the above equation in the matrix form
yields the Yule-Walker equation

7‘[.0] )"[1] r[[).—l] (1[‘1] r[.l]
=11 0 e L
(8)

which can be efficiently solved for «[1], -+, a[p] using
Levinson’s algorithm. Since this method assumes 0
outside the observed data, its performance is accept-
able for long data records, but its resolution is reduced
for short data records.
(2) Covariance method

If the correlation function is taken in the form of
Eq.(9) instead of Eq.( 6 ), the matrix form of Eq.(7)
becomes as shown by Eq.(10).
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n-1

cli, j]1= Al%}]r[n*i]x[n~j] (9)

f)nzﬂ
cl1,1) ¢[1,2] - <[, p] || al1] [1,0]
2 1] elz2]l ¢ | i | |el200
1] cpolllapnl]  |elp ol
(10)

Equation (10) is different from Eq.(8) in that the
covariance matrix is not a Toeplitz one, and thus Eq.
(10) cannot be solved using Levinson's algorithm.
This matrix is, Hermatian and the
efficient Cholesky decomposition can be employed to
determine AR coefficients.

An alternative approach to derive the covariance
method is to apply the least squares method directly
to Eq.(1) which is just another form of Prony's
method.

(3) Burg’s method

In contrast to the above methods which estimate
AR coefficients directly, another method proposed by
Burg first estimates the reflection coefficients and then
uses Levinson recursion to calculate the AR
coefficients. The computation procedures are as fol-
lows.

fortunately,

The forward and backward prediction errors are
first obtained from

sty Zll s Baditetn-a v
Nl
0i= W’léle l H 71]*2(1;,[]1”["*1] 2’ (12)
where
axlil= anl 7]+ kran- [?‘l] (i=1,2,- k=1)
fex (i=k).
(13)

If the (£—1th reflection coefficient is known, the
prediction error (average of forward and backward
prediction errors) is thus only a function of k(k).

Minimizing prediction error yields the estimates of
k(k):

— 2 hehoa[n]es [ n—1]
D ILE (P78 ) 2 e | R
where
wﬁ[;z]ﬁr[u]+é}lak[i]x[nfi] (15)
(,’}?[H]:I[H*k]+§kl(lk[l‘].l’[’lik+ 7]. (16)

Substituting Eq.(13) into Egs.(15) and (16) yields the
following recursive expressions :

ellnl=ei_[n]+ ket [n—1] (17)
elln)=ct[n—1]1+ ket [ n], (18)
where

eilnl=edl n]=x[n]. (19)
After the kth reflection coefficient is obtained, the
corresponding AR coefficients can be readily calcu-
lated from Eq.(13). Burg's method is known to
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produce more accurate AR spectrum estimates

compared to correlation-based methods.

Short-

comings, e.g.. frequency bias as a function of initial
phases and spectral line splitting, were also reported.

(1)
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