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Toeplitz operators related to Sobolev-type functions on

generalized Bergman spaces
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Abstract

We consider the weighted Bergman spaces HL (B, 1), where
du, =c,(1-|z "Y'dr(z), t being the hyperbolic volume measure. These spaces are
nonzero if and only if A>d. For 0< A <d, spaces with the same formula for the
reproducing kernel can be defined using a Sobolev-type norm. We define Toeplitz
operators on these generalized Bergman spaces and investigate their properties.
Specially, we describe classes of symbols for which the corresponding Toeplitz
operators can be defined as bounded operator or as Hilbert-Schmidt operators on the

generalized Bergman spaces.
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Toeplitz operators on generalized
Bergman spaces

Kamthorn Chailuck and Brian C. Hall

Abstract. We consider the weighted Bergman spaces HL? (B, ux), where we
set dpy(2z) = ex{1—|z*)* dr(z), with 7 being the hyperbolic volume measure.
These spaces are nonzero if and only if A > d. For 0 < A £ d, spaces with the
same formula for the reproducing kernel can he defined using a Sobolev-type
norm. We define Toeplitz operators on these generalized Bergman spaces and
investigate their propertios. Specifically, we deseribe classes of symbols for
which the corresponding 'Foeplitz operators can be defined as bounded oper-
ators or as a Hilbert-Schinidt vperators on the gencralized Bergman spaces.

Mathematics Subject Classification (2000). Primary 47B35; Secondary 32A36,
81510,

Keywords. Bergman space; Toeplitz operator; quantization; holomorphic Sobolev
space; Berezin transform.

1. Introduction

1.1. Generalized Bergman spaces
Let B? denote the (open) unit ball in €9 and let 7 denate the hyperbolic volume
measure on B¢, given by

dr(z) = (1 — |z|?)~ @+ ¢z, {1.1)

where dz denotes the 2d-dimensional Lebesgue measure. The measure 7 is natural
because it is invariant under all of the automorphisms (biholomorphic mappings)
of BY. For A > 0, let py denote the measure

dpa(z) = ex(l — [z dr(z),

Supported in part by a grant from Prince of Scugkla University.
Supported in part by NSF Grant DMS-0555862.



2 Kamthorn Chailuek and Brian C. Hall

where ¢y is a positive constant whose value will be specified shortly. Finally, let
HL*(B?, uy) denote the (weighted) Bergman space, consisting of those holomor-
phic functions on BY that are square-integrable with respect to ua. (Often these
are defined using the Lebesgue measure as the reference measure, but all the for-
mulas lock nicer if we use the hyperbolic volume measure instead.} These spaces
carry a projective unitary representation of the group SU(d, 1).

If A > d, then the measure puy is finite, so that all bounded holomorphic
functions are square-integrable. For A > d, we choose ¢y, so that gy is a probability
measure. Calculation shows that

_ P
AT ZAr(A—d)’

(This differs from the value in Zhu's book [22] by a factor of #%/d!, because Zhu
uses normalized Lebesgue whereas we use un-normalized Lebesgue measure in
{1.1).) On the other hand, if A < d, then pj is an infinite measure. In this case,
it is not hard to show that there are no nonzero holomorphic functions that are
square-integrable with respect to py {no matter which nonzero value for c) we
choose).

Although the holomorphic L? space with respect to gy is trivial (zero dimen-
sional) when A < d, there are indications that life does not end at A = d. First,
the reproducing kernel for HL*(B®, uy) is given by

1
(1—z w)*
for A > d. The reproducing kernel is defined by the property that it is anti-
holomorphic in w and satisfles

» Ky(z,w) f(w) duy(w) = f{z)

c A > d. (1.2}

Ky (z,u) =

for all f &€ HL*(B®, uy). Nothing unusual happens to Ky as A approaches d. In
fact, Ky(z,w) := (1 — 2z w)™ " is a “positive definite reproducing kernel” for all
A > 0. Thus, it is possible to define a reproducing kernel Hilbert space for all A > 0
that agrees with HL2(B", j2,) for A > d.

Second, in representation theory, one is sometimes led to consider spaces like
HLA(B%, 1)) but with A < d. Consider, for example, the much-studied metaplectic
representation of the connected double cover of SU(1,1) = Sp{l1,R). This rep-
resentation is a direct sum of two irreducible representations, one of which can
be realized in the Bergman space HLZ(B]'”LL;}/Q) and the other of which can be
realized in (a suitably defined version of) the Bergman space HL*(B', p172). To
be precise, we can say that the second summand of the metaplectic representation
is realized in a Hilbert space of holomorphic functious having K, A = 1/2, as its
reproducing kernel. See [14, Sect. 4.6].

Last, one often wants to consider the infinite-dimensional (d — >¢) limit of
the spaces HL*{B%, u)). (See, for example, [25] and [23].) To do this, one wishes
to embed each space HL?(B%, py) isometrically into a space of functions on B+,
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as functions that are independent of z,4;. It turns out that if one uses (as we do)
hyperbolic volume measure as the reference measure, then the desired isometric
embedding is achieved by embedding HL?(B%, k) into HLA(BY!, 4y). That is,
if we use the same value of A on B4 as on B% then the nortu of a function
flz1,...,2q) is the same whether we view it as a function on BY or as a function
on B! that is independent of zy,,. (See, for example, Theorem 4, where the
inner product of z™ with z" is independent of d.) If, however, we keep A constant
as d lends 1o infinily, Lhen we will eventually violale ihe condition A > d.

Although it is possible to describe the Bergman spaces for A < d as re-
producing kernel Hilbert spaces, this is not the most convenient description for
calculation. Instead, drawing on several inter-related results in the literature, we
describe these spaces as “holomorphic Sobolev spaces,” also called Besov spaces.
The inner product on these spaces, which we denote as H(BY, A}, is an L? inner
product involving both the functions and derivatives of the functions. For A > d,
H{BY, \) is identical to HL2(BY, uy) (the same space of functions with the same
inner product), but II{B%, A) is defined for all A > 0.

It is worth mentioning that in the borderline case A = d, the space (B A)
can be identified with the Hardy space of holomorphic functions that are square-
integrable over the boundary. To see this, note that the normalization constant ¢y
tends to zero as A approaches d from above. Thus, the measure of any compact
subset of B? tends to zero as A — dt, meaning that most of the mass of py is
concentrated near the boundary. As A — d¥, py converges, in the weak-# topology
on B¢, to the unique rotationally invariant probability measure on the boundary.
Alternatively, we may observe that the formula for the inner product of monomials
in H(B%, d) {(Theorem 4 with A = d} is the same as in the Hardy space.

1.2, Toeplitz operators

One important aspect of Bergman spaces is the theory of Toeplitz operators on
them. If ¢ is a bounded measurable function, the we can define the Toeplitz oper-
ator Ty on HLZ(BY, uy) by Ty = Pa(¢f), where Py is the orthogonal projection
from L2(B¢, ;1)) onto the holomorphic subspace. That is, T consists of maultiply-
ing a holomorphie function by ¢, followed by projection back into the holomorphic
subspace. Of course, T, depends on A, but we suppress this dependence in the
notation. The function ¢ is called the (Toeplitz) symbol of the operator 1. The
map sending ¢ to Ty is known as the Berezin-Toeplitz quantization map and it
(and various generalizations) have been much studied. See, for example, the early
work of Berezin [5, 6], which was put into a general framework in [26, 27], along
with [22, 8, 7, 10], to mention just a few works. The Berezin-Toeplitz quantization
may be thought of as a generalization of the anti-Wick-ordered guantization on
C? (see [15)).

When A < d, the inner product on H (B¢, A) is not an L? inner product, and
so the “multiply and project” definition of T4 no longer makes sense. Our strategy
is to find alternative formulas for computing Ty in the case A > d, with the hope
that these formulas will continue to make sense (for certain classes of symbols ¢)
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for A < d. Specifically, we will identify classes of symbols ¢ for which T, can be
defined as:

¢ A bounded operator on H(B%, X} (Section 4)
¢ A Hilbert-Schmidt operator on H{B¢%, A) (Section 5).

We also consider in Section 3 Toeplitz operators whose symbols are polynomials in
z and z and observe some unusual properties of such operators in the case A < d.

1.3. Acknowledgments

The authors thank M. Englis for pointing out to them several useful references and
B. Driver for useful suggestions regarding the results in Section 4. This article is an
expansion of the Ph.D). thesis of the first author, written under the supervision of
the second author. We also thank the referee for helpful comments and corrections.

2. H(BY X) as a holomorphic Sobolev space

In this section, we construct a Hilbert space of holomorphic functions on B? with
reproducing kernel (1 — z - 48) ™%, for an arbitrary A > 0. We denote this space
as H(B%, X). The inmer product on this space is an L? inner product with respect
to the measure 1345, , where n is chosen so that A + 2n > d. The inner product,
however, involves not only the holomorphic functions but also their derivatives,
That is, H{B% A) is a sort of holomorphic Sobolev space {or Besov space) with
respect to the measure py 2, When A > d, our space is identical to HL2(BY, ux)—
not just the same space of functions, but also the same inner product. When
A < d, the Hilbert space H{B¢, 1), with the associated projective unitary action
of SU(d, 1), is sometimes referred to as the analytic continuation (with respect to
A) of the holomorphic discrete series.

Results in the same spirit ag-—and in some cases almost identical to—the
results of this section have appeared in several earlier works, some of which treat
arbitrary bounded symmetric domains and not just the ball in C¢. For example,
in the case of the unit ball in C¥%, Theoretu 3.13 of [30] would presumably reduce
to almost the same expression as in our Theorem 4, except that Yan has all the
derivatives on one side, in which case the inner product has to be interpreted as
a limit of integrals over a ball of radius 1 — . (Compare the formula for ¥ on p.
13 of [30) to the formmla for A and B in Theorem 4.) See also [2, 4, 21, 31, 32].
Note, however, a number of these references give a construction that yields, for
A > d, the same space of functions as ’HLz(Bd,;u) with a diffcrent but cquivalent
norm. Such an approach is not sufficient for our needs; we require the sume inner
product as well as the same space of functions.

Although our results in this section are not really new, we include proofs
to make the paper self-contained and to get the precise fori: of the results that
we want. The integration-by-parts argument we use also serves to prepare for
our definition of Tocplitz operators on H (B, A) in Section 4. We ourselves were
introduced to this sort of reasoning by the treatment in Folland's book [14] of the
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disk model for the metaplectic representation, The paper [16] obtains results in
the same spirit as those of this section, but in the context of a complex semisimple
Lie group.

We begin by showing that for X > d, the space HL? (B¢, s15) can be expressed
as a subspace of HL?(BY, pyyen), with a Sobolev-type norm, for amy positive in-
teger n. Let N denote the “number operator,” defined by

Z“ )
j=1

"This operator satisfies Nz™ = |m|z™ for all multi-indices m. If f is holomorphic,
then N f coincides with the “radial derivative” df (rz)/dr|,_, . We use also the

operator N = Ej:z z;0/0%;.
A simple computation shows that

e (- )(Hz\?)““:(f— N )i e

a+1 a+1

We will use (2.1) and the following integration by parts result, which will
also be used in Section 4.

Lemma 1. If A > d and ¥ is a continuously differentiable function for which v
and N are bounded, then

Cx ]ﬂ;d P(z){1 — |2/ dz = e [];d KI + %) u’)} (z)(1 — 2|7 dz

=enn [ [(1+ 7 ) ¥] @00 -1 e

Here dz is the 2d-dimensional Lebesgue measure on BY.

Proof. We start by applying (2.1) and then think of the integral over B as the
limit as r approaches 1 of the integral over a hall of radius 7 < 1. On the ball of
radius 7, we write out 8/dz; in terms of 8/8z; and 8/8y;. For, say, the 0/dx;
term we express the integral as a one-dimensional integral with respect to x; (with
limits of integration depending on the other variables) followed by an integral with
respect to the other variables. We then use ordinary integration by parts in the x;
integral, and similarly for the 8/8y; term.

The integration by parts will vield a boundary term: involving z{z)(1 —
|z|2)*~¢; this boundary term will vanish as r tends to 1, because we assiune A > d.
In the nonboundary term, the operator N applied to (1 — 1z)1)A % will turn into
the operator — Ej:i 9/dzj0z; = —{dI + N) apptied to 3. Computing from (1.2)
that ex/exty = (A—d)/A, we may simplify and let r tend to 1 to obtain the desired

result involving N. The same reasoning gives the result involving N as well. [

We now state the key result, obtained from (2.1) and Lemma 1, relating the
inner produect in HL2(B4, ;15) to the inner product in HL*(B?, pat1) (compare
[14, p. 215] in the case d = 1).
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Proposition 2. Suppose that A > d and f and g are holomorphic functions on BE
for which f, g, Nf, and Ng are all bounded. Then

N N
(f’g>L2(B"..u,\):<f= (I‘{’T) g> ' :<(I+T) f)g> . .
L2{BY fta+1) LB paat 1)

(2.2)

Proof. Recalling the formula (1.1 for the measure 7, we apply Lemma 1 with
¥(z) = f(z)g(z) with f and g holomorphic. Observing that N{fg) = fNg gives
the first equality and observing that N{fg) = (N f)g gives the sccond equality. O

Now, a general function in HL#(B¢, 12,) is not bounded. Indeed, the pointwise
bounds on elements of HL*(B%, uy), coming from the reproducing kernel, are not
sufficient to give a direet proof of the vanishing of the boundary terms in the
integration by parts in Proposition 2. Nevertheless, (2.2} does hold for all f and
g in HLE(BY, puy), provided that one interprets the inner product as the limit as »
approaches 1 of integration over a ball of radius 7. {See [14, p. 215] or [30, Thm.
3.13].) We are going to iterate (2.2) to obtain an expression for the inner product
on HL*(B, uy} involving equal numbers of derivatives on f and g. This leads to
the following result.

Theorem 3. Fix A > d and a non-negative integer n. Then o holomorphic function
f on B belongs to HL*(B?, py) if and only if N'f belongs to HL*(B%, jixys2n) for
0 <1 < n. Furthermore,

<f’g)HL2UB“',pA) = (Af, Bg)ﬂLz(Bd‘M””) {2.3)
for all f.g € HL?(BY, uy), where

N N N
=1+ —){Fr+ — .. S
4 ( +A+n)( +/\+n+l) (I+/\+2n—1)

N N N
= — I ——— .. —_— .
B (I+A)( +)\+1) (I+)\+n—l)

Let us make a few remarks about this result before turning to the proof.
Let ¢ = A+ 2n. It is not hard to see that N*f belongs to HL*(B?, ju,) for
0 € & £ n if and only if all the partial derivatives of f up to order n belong
to HLz(Bd,,u”), s0 we may describe this condition as “f has n derivatives in
HL2(]B%"",,u,,).” This condition then implies that f belongs to HL2(BY, pe_an),
which in turn means that f(z}/{1 - |z|2)" belongs to L?{BY, p,). Since 1/(1 —~
1z]*) blows up at the boundary of B¢, saying that f(z)/(1 — |z|2)" belongs to
L2(B? u,) says that f(z) has better behavior at the boundary than a typical
element of HL2(BY, i, ). We may summarize this discussion by saying that each
derivative that f € HL?(B?, u,) has in HL?(BY, 1) results, roughly speaking, in
an improvement by a factor of {1 — |z|*) in the behavior of f near the boundary.

This improvement. is also reflected in the pointwise bounds on f coming from
the reproducing kernel. If f has n derivatives in HL? (B",,ua), then f belongs to
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HEL2(BY, 1y _3n), which means that f satisfies the pointwise bounds

A < S o gy ary Koan(z, 20}

L\
= ”f“f:z(lﬁd'ﬂ-ﬂ—Qn) (1_|22) . (24}

These bounds are better by a factor of (1 — |z|2}"‘ than the bounds on a typical
element of HL#(B?, u,). See also [16] for another setting in which the existence of
derivatives in a holomorphic L2 space can be related in a precise way to improved
pointwise behavior of the functions.

The results of the two previous paragraphs were derived under the assumption
that A = o — 2n > d. However, Theorem 4 will show that (2.4) still holds under
the assumption A = ¢ — 2n > 0.

Proof. If f and ¢ are polynomials, then (2.3} follows from iteration of Proposition
2. Note that N is a non-negative aperator on polynomials, because the monomials
form an orthogonal basis of eigenvectors with non-negative eigenvalues. It is well
known and easily verified that for any f in HL*(BY, 1), the partial sums of the
Taylor series of [ converge to f in norm. We can therefore choose polynomials f,
converging in norm to f. If we apply (2.3) with f = ¢ = (f; — f) and expand
out the expressions for A and B, then the positivity of N will force each of the
terms on the right-hand side to tend to zero. In particular, N'f; is a Cauchy
sequences in HL2(BY, uyyan), for all 0 < { < n. It is easily seen that the limit
of this sequence is N f; for holomorphic functions, L2 convergence implies locally
uniform convergence of the derivatives to the corresponding derivatives of the limit
function. This shows that N*f is in HL2(B%, ixy2,). For any f, g € HLA{BY, uy),
choose sequences f; and gy of polynomials converging to £, g. Since N*f; and N'g;
converge to N'f and N'g, respectively, plugging f; and g; into (2.3) and taking a
limit gives (2.3) in general.

In the other direction, suppose that N'f belongs to HL2{BY, py o0} for all
0 <1< n. Let f; denote the jth partial sum of the Taylor series of f. Then since
Nz™ = |m[z™ for all multi-indices m, the functions N'f; form the partial sums
of a Taylor series converging to N! fj, and so these must be the partial sums of
the Taylor series of N f. Thus, for each I, we have that N!f; converges to N'f in
HEE(BY, iy 40,). If we then apply (2.3) with f = ¢ = fi — fr, convergence of each
N'f; implies that all the terms on the right-hand side tend to zero. We conclude
that f, is a Cauchy sequence in HL2(B?, xy), which converges to some f. But L2
convergence of holomorphic functions implies pointwise convergence, so the limit
in HL*(BY, py) (ie., f) coincides with the limit in HL2(B, pyya.) (ie.. ). This
shows that f is in HL*{B9, ). |

Now, when A < d, Proposition 2.2 no longer holds. This is because the bhound-
ary terms, which involve {1 — }z|>)*~¢, no longer vanish. This failure of equality is
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actually a good thing, because if we take f = g, then
o [ 1T (- dr(z) = +os
J R

for all nonzero holomorphic functions, no matter what positive value we assign to
. {Recall that when X > d, ¢y is chosen to make uy a probability measure, but
this prescription does not make sense for A < d.) Although the left-hand side of
{2.2) is infinite when f = g and A < d, the right-hand side is finite it A+ 1 > d
and, say, f is a polynomial.

More generally, for any A € d, we can choose n big enough that A + 2n > .
We then take the right-hand side of (2.3) as a definition.

Theorem 4. For all A > 0, choose @ non-negative integer n so that A +2n > d and
define

(B 2 = {f € H(BY) [N*f e HL2(BY, jiagan), 0<k<n}.
Then the formule

<f7 .‘}),\ = (Af: B!])HLZ(]B",}L.\+'2N)

N N N
4 = 2 Y. lr+—"
A (I+A+n) (I+)\+n+l) ( +A+2n71)

N N N
B-@*x)@*zﬁ)“@+rﬂﬁﬁ)

defines an inner product on H(B%, X) und H(B2, X) is complete with respect to this
inner product.

The monornials z™ form an orthogonal busis for H(BY, ) and for all multi-
indices | and m we have

where

! m mil(A)
= Gyt A
(27, =&, (A + |inf)

Furthermore, H(B% X) has & reproducing kermel given by
1

K)‘(Z,‘UJ) = m

Using power series, it is easily seen that for any holomorphic function f, if
N™f belongs to HL2(B?, j15y2n), then N¥f belongs to HL2(B?, jipyqn) for 0 <
k <n .

Note that the reproducing kernel and the inuer product of the monomials
are independent of .. Thus, we obtain the same space of functions with the same
inner product, no 1matter which n we use, so long as A +2n > d.

From the reproducing kernel we obtain the pointwise bounds given by | f(z)]* <

1F s (L =2y,
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Proof. Using a power series argument, it is easily seen that if f and N*f belong to
HL? (B, jisyan), then <f, Nkf>L2(]B,,,M+2“) > 0. From this, we obtain positivity of
the inner product {-,-), . If f; is a Cauchy sequence in H{B? X), then positivity of
the coefficients in the expressions for A and B ituply that for 0 < k <n, N*f; is a
Cauchy sequence in HL2(BY, j1p125), which converges (as in the proof of Theorem
3) to N*f. This shows that N*f is in HL?(B?, uai2a) for each 0 < &k < n, and so
f e H(B4, A), Further, convergence of each N"“fj to N®f implies that f; converges
to [ in H{B% A).

To compute the inner product of two monomials in H(Bd,/\), we apply the
definition. Since Nz™ = |m|z™, we obtain

(Zlvzm>x
-5 (z\+|m|) (/\+l+|m}) (/\+2n—l+|m|) m!T(A + 2n)
™ A A+l At+2n-1 T(A+ 2n + |m|)
e HAINPY
T+ m])

where we have used the known formula for the inner product of monomials in
HLz(de .u)\+2ﬂ) (e'g'! [22})

Completeness of the monomials holds in H(B%, A) for essentially the same
reason it holds in the ordinary Bergman spaces. For f € HLQ(]Bd,p)\), expand
S in a Taylor series and then consider {z™, f},. Each term in the inner product
is an integral over BY with respect to payon, and each of these integrals can be
computed as the limit as r tends to 1 of integrals over a ball of radius r < 1. On
the ball of radius r, we may interchange the integral with the sum in the Taylor
scries. But distinet monomiials are orthogonal not just over BY but also over the
ball of radius », as is easily verified. The upshot of alt of this is that {2, f}, is a
nonzero wultiple of the mth Taylor coefficient of f. Thus if (z™, f), = 0 for allmn,
[ is identically zero.

Finally, we address the reproducing kernel. Although one can use essentially
the same arguinent as in the case A > d, using the orthogonal basis of monomials
and a binotnial expansion (see the proof of Theorem 12), it is more enlightening to
relate the reproducing kernel in H (B9, M) to that in HL?(B?, 12342,). We require
some elementary properties of the operators A and B; since the monomials form
an orthogonal basis of eigenvectors for these operators, these properties are easily
obtained. We need that A is self-adjoint on its natural domain and that A and B
have bounded inverses.

Let x2*2" be the unique clement of HL2(B%, uy 2n) for which

63 1 = f(2)

B pintan)
for all f in HL3(B?, puxy2n). Explicitly, x2¥2%(w) = (1 — z - w) 32 (This is
Theoremn 2.2 of [Z2] with our A corresponding to n+a + 1 in [Z2].) Now, a simple
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calculation shows that
(I+Nja}(1 -z w)™®={(1-z w)~leth) (2.5)

where N acts on the w variable with z fixed. From this, we see thal N"‘x?*’z" isa
bounded function for each fixed z € B and k € N, so that x2H2" is in H(BY, A}
For any f € H(B% A) we compute that

(f: (AB)_1X2+ZR>,\ = <Af’ B(A8}71Xi+2n>bz(ﬁ"du+2n1
= <f’ Xi+2n>L2(]H~",p,\+2n} - f(Z)

This shows that the reproducing kernel for L{E%, A) is given by Ki(z,w) =
[(AB)~1x2T2"(w). Using {2.5) repeatedly gives the desired result. d

We conclude this seetion with a simple lemma that will be useful in Section

5.

Lemma 5. For all Ay, Ag > 0, if Fis in H(BY A1) and g is in H(B%, );) then fg
is in H(Bd,Al + Az}

Progf. If, say, A] > d, then we have the following situple argument:
: : p 2
1791542, = C)n-h\z/Bt [F(2)*1g(2)* (1 = |22 dr(z)

< CardAg “""HiZ/ﬁ, FEF - 2221 — o)™ dr(z)

Ch 4+, .12 2
== IU”)\1 H!I“,\z .
)

Unfortunately, ex,+2,/¢a, tends to infinity as A, approaches d from above, so we
cannot expect this simple inequality to hold for Ay < d.

For any Aj, Az > 0, choose n s0 that Ay +n > d and Az +n > d. Then fg
belongs to H{BY, Ay + Az} provided that N™(fg) belongs to HL2{B%, Ay + da+2n).
But

N = 3 (M) wEs Mg, (2.6)

Using Theorem 4, it is easy to see that if f belongs to JF{B?, A;) then N* f belongs
to H(B%, A; + 2k). Thus,

INE ] < ap(L = Py,

Now, for each term in (2.6) with & < n/2, we then obtain the following norm

estimate:
_k 2 g
Cf\1+/\'z+2u/1 |N’°f(z)N” "g(z)| (1 |z Putdatln g
E:

—k 2 : 22k .
S cnanman [ INTRG (L= B dr 2)
.



Toeplitz operators on generalized Bergman spaces 11

Since k£ < n/2, we have Az + 2n — 2k > Az + n > d. We are assuming that g
is in H{B% A2), so that N*%g is in H(B% Aa + 2n — 2k), which coincides with
HL*(B?, py, 1 2n_2x). Thus, under our assumptions on f and g, each term in {2.6)
with & < n/2 belongs to HL*{B% A} + Az +2n). A similar argument with the roles
of f and g reversed takes care of the terms with & > n/2. |

3. Toeplitz operators with polynomial symbols

In this section, we will consider our first examples of Toeplitz operators on gen-
eralized Bergman spaces, those whose symbols are (not necessarily holomorphic)
polynomials. Such examples are sufficient to see some interesting new phenocmena,
that is, properties of ordinary Toeplitz operator that fail when extended to these
generalized Bergman spaces. The definition of Toeplitz operators for the case of
polynomial symbols is consistent with the definition we use in Section 4 for a larger
class of symbols.
For A > d, we define the Toceplits operator Ty by

Tof = Pa{ef)

for all f in HL*(BY, 1) and all bounded measurable functions ¢. Recall that
P, is the orthogonal projection from L*(B¢, 1) onto the holomorphic subspace.
Because P, is a self-adjoint operator on LZ(E“, {23 ), the matrix entries of Ty may
be calculated as

(fla Ylf’f‘z)’}{[,'-’(]ﬁd,;u) = (fla ¢f2)L2(]ﬁri'_,u) y A d’ (31)

for all fi, fo € HL?(BY, 4»). From this formula, it is easy to see that Ty = (Ty)*.
If % is a bounded holomorphic function and ¢ is any bounded wmeasurable
function, then it is easy to see that Tyy = TeMy. Thus, for any two multi-indices
m and n, we have
TZ"'z" == (Mz'”)*(Mz")' (32)
We will take (3.2) as a definition for 0 < A < d. Our first task, then, is to show
that M, is a bounded operator on HL2(B%, uy} for all A > 0.

Proposition 6. For all A > 0 and all multi-indices n, the multiplication operator
M_n is a bounded operutor on H(B®, X}, Thus, for any polynomial ¢, the Toeplitz
operator T, defined in (3.2) is a bounded operalor on H (B, A).

Proof. The tesult is a is a special case of a result of Arazy and Zhang (3] and
also of the results of Section 4, but it is easy to give a direct proof. Tt suffices to
show that M, is bounded for each j. Since M, preserves the orthogonality of the
monomials, we obtain
ziz™ m; + 1
||MZJ || = sup -—‘-—” tEal N = sup ———.
" ||zm”,\ 1) |m| + A

Note that m; < |m| with equality when my = 0 for £ # j. Thus the supremum is
finite and is easily seen to have the value of 1 if A > L and 1/X if A < 1. O
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We now record some standard properties of Toeplitz operators on (ordinary)
Bergman spaces. These properties hold for Teeplitz operators (defined by the “mul-
tiply and project” recipe) on any holomorphic L2 space. We will show that these
properties do not hold for Toeplitz operators with polynomial symbols on the
generalized Bergman spaces H(B%, )), A < d.

Proposition 7. For A > d and ¢(z) bounded, the Toeplitz operator Ty on the spuce
HL2{BY, duy), which is defined by Ty f = Py(¢f), kas the following propertics.

L |[Ty]| < sup, |(2);
2. If ¢(z) 2 O for all z, then Ty is a positive operator.

Both of these properties foil when A < d. In fact, for A < d, there @5 no
constunt C such that | Ty|| < Csup, |¢(z}| for all polynominls ¢.

As we remarked in the introduction, when A = d, the space H{B%, A\) may be
identified with the Hardy space. Thus Properties 1 and 2 i the proposition still
hold when A = d, if, say, ¢ is continuouns up to the boundary of B? (or otherwise
has a reasonable extension to the closure of BY),

Proof. When A > d, the projection operator Py has norm 1 and the multiplication
operator My, has norm equal to sup, |¢(z)| as an operator on L2(B¢, is5). Thus, the
restriction to HL*(B%, uy) of Py My has norm at most sup, |¢(z)]. Meanwhile, if ¢
is non-negative, then from (3.1) we see that (f, T/} > 0 for all f € HL2(B?, uy).

Let us now assume that 0 < A < d. Computing on the orthogonal basis in
Theoren 4, it is a simple exercise to show that

F(/\+lm|} (m+e.?)! o 1+m] T

r-llz.z Yy — .
= (") m! T(x+|m| + 1)z A+ |m|z

(3.3)

If we take ¢(2) = |z|%, then suruming (3.3) on § gives

_d+im| .,
Ad|m|”

g "

Since A < d, this shows that ||[Ty|| > 1, even though |¢(z)] < 1 for all z € B
Thus, Property 1 fails for A < d. (From this calculation it easily follows that if
o(z) = (1 — |z[%)/(x — d), then T is the bounded operator (Al + N)™!, for all
A#d)

For the second property, we let 9{z) = | — ¢(z) = 1 — || which is positive.
From the above calculation we obtain

. d +|m|
{Tya™ 2™, = 12", ~ (A ) ) 12 Naee

which is negative if 0 < A < d.
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We now show that there is no constant C such that ||Ty]| < Csup, |¢(z2)].
Consider

k

delz) = (1oI) (Zizf)
= 3 Sy = () _Z_‘._”

=k > lil=k

Computing on the orthogonal basis in Theorem 4 we obtain

. KA KIT(A)
T = — (1o 1) = — =
i Mz::k 7 Tz l) mz::k AT TR T ITo R

where 1 is the constant function. Here, 7 is the number of multi-indices i of length
d such that |¢| = k, which is equal to (k"'f 1) Thus

7 1k(k+441)! T'(A) _(d+k-1)- d 1:[

L P VT ¥ S Wy Ll S S Ve B
Consider Hf_é f—i'} = ( A+g) Smce d > A, the terms ‘i+ are
positive and EOC_O ‘){_'_;‘ diverges. ThlS implies HJ 0 ,\+ = o¢. Since sup, |¢r{z)| =
1 for all k, there is no a constant C such that [|[Ty|| < Csup, [¢(z)]. ]

Remark 8. For A < d, there does not exist any positive measure v on BY such that
£, = Hf”bg(Bd’V) for all f in H(BY, X). If such o v did exist, then the argument
wn the first parl of the proof of Proposition 7 would show that Properties 1 and 2
. the proposition hold.

4. Bounded Toeplitz operators

In this section, we will consider a class of symbols ¢ for which we will be able to
define a Toeplitz operator T as a bounded operator on H{B%,X) for all A > 0.
Our definition of Ty will agree (for the relevant class of symbols) with the usual
“multiply and project” definition for A > d. In light of the examples in the previous
section, we cannot expect boundeduness of ¢ to be sufficient to define Ty as a
bounded operator. Instead, we will consider functions ¢ for which ¢ and a certain
number of derivatives of ¢ are bounded.

Our strategy is to use integration by parts to give an alternative expression
for the matrix entries of a Toeplitz operator with sufficiently regular symbol, in
the case A > d. We then take this oxpression as our definition of Toeplitz operator
in the case O < A < d.
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Theorem 9. Assume A > d and fir a positive integer n. Let ¢ be a function that
is 2n limes continuously differentiable and for which NEN'¢ is bounded for all
0<k,l<n Then

Loy = vz | C[(FEIS(I9()] (1 1212 dr(2)
(B, pex)
Bd
for all f,g € HL?(BY, 1)), where C is the operator given by

N N N N
“= (”m)‘“(”m) (“m)“'(”ﬂ- 1)

Thus, there exist constants Ajgm (depending on n and X) such that

f Tég)HL?(Ed,m) = Z Ajkim (Njf, (Nthﬁb) ng>1,2(15-I

ke lm=1

(1.2)

aan)

Proof. Assume at first that f and g are polynomials, so that f and g and all
of their derivatives are bounded. We use (3.1) and apply the first equality in
Lemma 1 with ¢ = fég. We then apply the first equality in the lemma again with
¥ = (I + N/X)[fég). We continue on in this fashion until we have applied the first
equality in Lemma 1 n times and the second equality n times. This establishes
the desired equality in the case that f and g are polynomials. For general f and
g in HL?(B%, 1)), we approximmate by scquences f and g, of polynomials. From
Theorent 3 we can see that convergence of f, and g, in HL?*(BY, 1) implies con-
vergence of N7 f, and N¥g, to N?f and N*g, so that applying (4.2) to f, and g,
and taking a limit establishes the desired result for f and g. O

Definition 10. Assume 0 < A < d and fix a positive integer n such that A+ 2n > d.
Let ¢ be a function that is 2n times continuously differentinble and for which
N N is bounded for all ) < k,1 < n. Then we define the Toeplitz operator Ty to
be the unique bounded operator on H{B?, X) whose matriz entries are given by

(f,T}py)H(,&d!A):chrzn[ c[(ﬁ;)qs(z)g(z))] (=M de, (43

it

where C 15 given by (4.1).

Note that from Theorem 4, N7 f and N™g belong to L*(BY, yy2,) for all
0<jm<n,forall fand g in HL?(B? u,). Furthermore, ||Njf||‘[‘2(134"““2“J and
Hng”thlﬁd,uuzn) are bounded by constants times || f|[, and |l¢]],, respectively.
Thus, the right-hand side of (4.3) is a continuous sesquilinear form on 7 (B¢, A),
which means that there is a unique bounded operator 1}, whose matrix entries are
given by (4.3).

If A = d, then (as discussed in the introduction) the Hilbert space H(B%, \)
is the Hardy space of holomorphic functions that are square-integrable over the
boundary. In that case, the Toeplitz operator Ty will be the zero operator whenever
¢ is identically zero on the boundary of B*. If A =d 1, d — 2, ..., then the inner
product on H(Bd, A) can be related to the inner product on the Hardy space. It i3
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not hard to see that in these cases, Ty will be the zero operator if ¢ and enough
of its derivatives vanish on the boundary of B,

Let us consider the case in which ¢(z) = v, (2)a(z), where ¥ and vy
are holomorphic functions such that the function and the first n derivatives are
bounded. Then when applying C to mtﬁ(z)g(z), all the N-factors go onto the
expression 1,(z)g(z) and all the N-factors go onto f(z}¢1(z). Recalling from The-
orem 4 the formula for the inner product on H{B%, ), we see that

{fs T¢9>HL2(ﬁd,m) = Wf 1‘925"’)1‘:!(115%“,%) ’

as expected. This means that in this case, Ty5 ,, = (My,)*(My,), as in the case
A > d. In particular, Definition 10 agrees with the definition we used in Section 3
in the case that ¢ is a polynomial in z and z.

5. Hilbert—Schmidt Toeplitz operators

5.1. Statement of results

In this section, we will give suflicient conditions under which a Toeplitz operator Ty
can be defined as a Hilbert Schimidt operator on H{B®, A). Specifically, if ¢ belongs
to L*(B?,7) then 1} can be defined as a Hilbert-Schmidt operator, provided that
A > d/2. Meanwhile, if ¢ belongs to L' (B¢, 7), then 1} can be defined as a Hilbert--
Schiuidt operator for all A > 0. In both cases, we define Ty in such a way that for
all bounded functions [ and g in H{B%, ), we have

(Tagh = | F@)d()g(z)(1 —|2)* drz), (5.1)
where ¢y is defined by ¢ = T'(A)/{m?T(A - d)}. This expression is identical to
(3.1) in the case A > d. The value of ¢, should be interpreted as 0 when A — d =
0,-1,-2,.... This means that for ¢ in L#(B% 7) or LY(BY, ) {(but not for other
classes of symbols!), Ty is the zero operator when A = d,d — 1, ... This strange
phenomenon is discussed in the next subsection. Note that we are not claiming
Ty = 0 for arbitrary symbols when A = d,d — L,.. ., but only for symbols that are
integrable or square-integrable with respect to the hyperbolic volume measure 7.
Such functions must have reasonable rapid decay (in an average sense) near the
boundary of B,

In the case ¢ € L?(B%, 1), the restriction A > d/2 is easy to cxplain: the
function {1 — |z|*)* belongs to L2(B%,+) if and only if A > d/2. Thus, if f and g
are bounded and ¢ is in L2(B¢,7), then (5.1) is absolutely convergent for A > df2.

In this subsection, we state our results; in the next subsection, we discuss
sotne unusual properties of T, for A < d; and in the last subsection of this section
we give the proofs.

We begin by considering symbols ¢ in L*(B4, 7).
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Theorem 11. Fiz A > d/2 and let ¢y = T(A)/ (7T (A — d)). (We interpret cx to be
zero if A is an integer and A < d.) Then the operator Ay given by

2 — |wl? A
Arblz) = & ]ﬁ [((1“ OW = 10l) 17 50) dr(w)

l—w-2)(1—@-2)
is « bounded operator from L2(B%, 1) to itself,

Theorem 12. Fix A > d/2. Then for each ¢ € L*(BY, 1), there is a unique Hilbert-
Schmidt operator on H(BE, X, denoted Ty, with the property that

(f.Tagdy = ex | TR)é(2)g(z)(1 —|2*)* dr(z) (5.2)

B4
for all bounded holornorphic functions f and g in H(B% X). The Hilbert-Schridt
norm of Ty is given by

= ((b, A/\QS) L2(B4,r} "

If X > d and ¢ € LA(B%, r)N L= (B%, 1), then the definition of Ty in Theorem
12 agrees with the “multiply and project” definition; compare (3.1).
Applying Lemma 5 with A] = Ay = X and A > d/2, we see that for all f and
g in H(B%,X), the function z — f(2)g(2}(1 - |z/%)* is in L*(B?,7). This means
that the integral on the right-hand side of (5.2} is absolutely convergent for all
f,g € H{B% M), It is then not hard to show that (5.2) holds for all f,g € H(B?,A).
The operator Ay coincides. up to a constant, with the Berezin transform.
Let x2(w) := Ka(z,w) be the colerent state at the point z, which satisfies
z) ={x} f>,\ for all f € H(B? )). Then one siandard definition of the Berezin
transform By is

Byd = (szTfi?X >)\.

(x2:X2)x
The function B¢ may be thought of as the Wick-ordered symbol of Ty, where
Ty is thought of as the anti-Wick-ordered quantization of ¢. Using the formula
{Theorem 4) for the reproducing kernel along with (5.2}, we see that Ay = caDBa.
(Note that x}{(w) is a bounded function of w for each fixed z € B¢ and that
(Xz: )A—K,\(z Z))

Note that 7 is an infinite measure, which means that if ¢ is in L2(B%,7) or
LY{B% 1), then ¢ must tend to zero at the boundary of B¢, at least in an average
sense. This decay of ¢ is what allows (5.2) to be a convergent integral. If, for
example, we want to take ¢(z) = 1, then we cannot use (5.2) to define Ty, but
must instead use the definition from Section 3 or Section 4.

Note also that the space of Hilbert-Schmidt operators on H(B%, A) may be
viewed as the quantum counterpart of L2(B%, 1). It is thus natural to nvestigate
the guestion of when the Berezin—Toeplitz quantization maps L2(B4, 1) into the
Hilbert-Schmidt operators.

We now show that if one considers a symbol ¢ in L*(B%,7), then one obtains
a Hilbert—-Schmidt Toeplitz operator Ty for all A > 0.
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Theorem 13. Fix A > 0 and let ¢y be as in Theorem 12. Then for each ¢ €
LY(BY, 1), there exists @ unigue Hilbert-Schmidt operator on H(B®, X), denoted
Ty, with the property that

{(f,169)5 = cx y Fe(2)g(2)(L = 1P} dr(2) (5.3)
for all bounded holomorphic functions f and g in H(B®, A}, The Hilbert-Schrnidt
normy of Ty satisfics

||’1Y¢”us < e H‘?ﬁHLI(Bd,T)-

Using the pointwise bounds on elements of H (B4 A} coming from the re-
producing kernel, we see immediately that for all f,g € H(B% A}, the function
z — f(2)g(z}(1 — |z|?}* is bounded. It is then not hard to show that (5.3) holds
for all f,g € H(B% A).

We have already remarked that the definition of 1y given in this section
agreos with the “multiply and project” definition when A > d (and ¢ is bounded).
It is also easy to see that the definition of Ty given in this section agrees with
the one in Section 4, when ¢ falls under the hypotheses of both Definition 10 and
cither Theorem 12 or Theorem 13. For some positive integer n, consider the set of
A’s for which A + 2n > d and X > d/2, i.e., A > max(d — 2n,d/2), Now suppose
that ¢ belongs to L2(B4,7) and that N*N'¢ is bounded for all 0 < k,{ < n. It is
easy to see that the matrix entries (f, Tyg), depend real-analytically on A for fixed
polynomials f and g, whether 1} is defined by Definition 10 or by Theorem 12,
For A > d, the two matrix entries agree becausc both definitions of T agree with
the “multiply and project” definition. The matrix entries therefore must agree
for all A > max(d — 2n,d/2). Since polynomials are dense in H(B%, ) and both
definitions of T give bounded operators, the two definitions of Ty agree. The same
reasoning shows agreement of Definition 10 and Theorem 13.

5.2. Discussion

Before proceeding on with the proof, let us make a few remarks about the way we
are defining Toeplitz operators in this section. For A > d, ¢y Is the normalization
constant that makes the measure u), a probability measure, which can be computed
to have the value T(A)/(nT(A — d)). For A < d, although the measure (I -
|2|%)* d7(z) is an infinite measure, we simply use the same formula for ¢y in terms
of the gamma function. We understand this to mean that ¢, = 0 whenever A is an
integer in the range (0,d]. It also means that c, is negative whend — 1 < A < d
and when d — 3 < A < d — 2, ete.

In the cases where ¢y = 0, we have that Ty = 0 for all ¢ in LI(IEB‘I,T) or
L3(B?, 7). This first occurs when A = d. Recall that for A = d, the space H (B¢, X)
can be identificd with the Hardy space of holomorphic functions square-integrable
over the boundary. Meanwhile, having ¢ being integrable or square-integrable with
respect to T means that ¢ tends to zero (in an average seuse) at the boundary, in
which case it is reasonable that Ty should be zero as an operator on the Hardy
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space. For other integer values of A < d, the inner product on H{B%, A} can be
expressed using the methods of Section 2 in terns of integration over the boundary,
but involving the functions and their derivatives. In that case, we expect Ty to
be zero if ¢ has sufficiently rapid decay at the boundary, and it is reasonable to
think that having ¢ in L' or L? with respect to 7 constitutes sufficiently rapid
decay. Note, however, that the conclusion that 7y = 0 when ¢y = 0 applies only
when ¢ is in L! or L?; for other classes of symbols, such as polynomials, Ty is not
necessarily zero. For example, 1,» is equal to M,=, which is certainly a nonzero
operator on H (B4, ), for all A > 0.

Meanwhile, if ¢x < 0, then we have the curious situation that if ¢ is positive
and in L' or L? with respect to 7, then the operator Ty is actually a negative
operator. This is merely a dramatic example of a phenomenon we have already
noted: for A < d, non-negative symbols do not necessarily give rise to non-negative
Toeplitz operators. Again, though, the conclusion that T} is negative for ¢ positive
applies only when ¢ belongs to L' or L2, For example, the constant function 1
always maps to the (positive!) identity operator, regardless of the value of A,

5.3. Proofs

As motivation, we begin by computing the Hilbert-Schmidt norm of Toeplitz op-
erators in the case A > 4. For any bounded measurable ¢, we extend the Toeplitz
operator Ty to all of L2(B?, u)) by making it zero on the orthogonal complement
of the holomorphic subspace. This extension is given by the formula PyMgPy.
Then the Hilbert-Schmidt norm of the operator T on HL?(B%, ) is the same
as the Hilbert-Schmidt norm of the operator PyMyPy on L2(BY, 12)). Since Py is
computed as integration against the reproducing kernel, we may compute that

Py\MgPrfiz) = » Ko(z, w) fw) dux(w),

where

Kelz,w) = K{(z,w)d(u) K (u, w) dpy(u).

E-4

If we can show that K, is in L2(B® x B?, sy x p3), then it will follow by a
standard result that 1 is Hilbert-Schmidt, with Hilbert-Schmidt norm equal to
the L? norm of Ks. For sufficiently nice ¢, we can compute the L? norm of Ky
by rearranging the order of integration and using twice the reproducing identity
K (z,u)K (w,u) dux(w) = K(z,%). (This identity reflects that P§ = Py.) This
yields

Lo Walz o) dinn(e) dis = (0, 483
zlx ol
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where Ay is the integral operator given by

Aro(z) = 5 y | (z,w)]? (1= [2])* (1 — [0 d(w) dr{w)

1 _ ,2'2 _ ‘wg A
:cifﬁd [((l (1L~ ") ¢(w) dr(w). (5.4)

1—w- 2z}l -z w)

In the case d/2 < A < d, it no longer makes sense to express Ty as PyMyPs.
Nevertheless, we can consider an operator Ay defined by (5.4). Our goal is to show
that for all A > d/2, (1) A, is a bounded operator on L?(B?,7) and (2) if we define
T by {5.1), then the Hilbert-Schmidt norm of 1y is given by (¢, Axd}papa .y We
will obtain similar results for all A > G if ¢ ¢ L'(B%, 7).

Proof of Theorern 11. We give two proofs of this result; the first generalizes more
easily to other bounded symmetric domains, whereas the second relates Ay to the
Laplacian for BY {(compare [13}}.

First Proof. We let

1- 230 = w1
FA(Z,'LU) ZCQ)\ ( _‘z‘ )( l1“| ) .
(l—dw-2){1-Z w)
i.e., Fy is the integral kernel of the operator Ax. A key property of Fy is its in-
variance under automorphisis: £ ({2}, ¥{w}) = F\(z,w) for each automorphisim
(biholomorphistn) 1) of B¢ and all z,w € B¢. To establish the invariance of Fy, let

falz) = A1 = o)™ (5.5)
According to Lemma 1.2 of [Z22], Fa(z,w) = faldw(z)), where ¢, is an auto-
morphism of B? taking 0 to w and satisfying ¢2, = 1. Now, if ¥ is any au-
tomorphism, the classification of automorphisms (Theorem 1.4 of {Z2]) implies

that ¢ o ¢y, = By o U for some unitary matrix U. From this we can obtain
(2514’:(11:] =lUo d)w o Uj_lu and so

by (W(2))) = AU (1(2)))) = frlew(2),
Le., Fa{g(z), v{w)) = F\(z,w).

The invariance of F under automorphisms means that Ay¢ can be thought of
as a convolution (over the automorphism group PSU(d, 1}} of ¢ with the function
fx. What this means is that

Ard(z) = fG falgh™ - 0)p(h - 0) dh,

where ¢ € G is chosen so that g - 0 = 2. Here G = PSU{d,1) is the group
of automorphisms of B? {given by fractional linear trausformations) and dh is
an appropriately normalized Haar measure on G. Furthermore, L?(B%, 7) can be
identified with the right- K -invariant subspace of L2(G,dg), where K = U(d) is
the stabilizer of 0.

If X > d, then fy is in LY{B%,7), in which case it is easy to prove that A,
is bounded; see, for example, Theorem 2.4 in [5]. This argument does not work if
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A < d. Nevertheless, if A > d/2, an easy computation shows that fy belongs to
L*(B?, 1) and also to LP(B?,7) for some p < 2. We could at this point appeal to a
general result known as the Kunze-Stein phenomenon [24]. The result states that
on connected semisimple Lie groups G with finite center (including PSU(d, 1)),
convelution with a function in LP(G,dg), p < 2, is a bounded operator from
L3*(C, dg) to itself. (See [11] for a proof in this generality.) However, the proof of
this result is simpler in the case we are considering, where the function in LP(G, dg)
is bi-K-imvariant and the other function is right-K-invariant. (In our case, the
function in LP((3, dg) is the function g — fi(y - 0} and the function in L*{G, dg)
is g — ¢{g - 0}.) Using the Helgason Fourier transform along with its behavior
under convolution with a bi-K-invariant function ([19, Lemma I111.1.4]), we need
only show that the spherical Fourier transform of [ is bounded. {(Helgason proves
Lemma IIT.1.4 under the assumption that the functions are continuous and of
compact support, but the proof also applies more generally.) Meanwhile, standard
estimates show that for every & > 0, the spherical functions are in L2*+£(G/K), with
L?*=(G/K) norm bounded independent of the spherical function. (Specifically, in
the notation of [18, Sect. IV.4], for all A € a*, we have |¢r(g)] < ¢olg), and
estimates on ¢y {(e.g., [, Prop. 2.2.12]) show that ¢y is in L21¢ for all e > 0.)

Choosing ¢ so that 1/p+ 1/{2 + &) = 1 establishes the desired boundedness.

Second proof. If ¢x = 0 (le, if A € Z and A < d}, then there is nothing
to prove. Thus we assume ¢, is nonzero, in which case ¢4 is also nonzero. The
invariance of F\ under automorphisms together with the square-integrability of
the function (1 — [z]?)* for A > d/2 show that the integral defining Ay f(z) is
absolutely convergent for all z.

We introduce the (hyperbolic) Laplacian A for B, given by

d

82
A= —2%) > (55 — z2) o (5.6)
Fk=1 JUck

{(This is a negative operator.) This operator commutes with the automorphisins
of BY. It is known (e.g., [28]) that A is an unbounded self-adjoint operator on
L%(B?, 1), on the domain consisting of those f’s in L*(B?,7) for which Af in the
distribution sense belongs to L#(B%, 7). In particular, if f ¢ L2(B%,7) is C? and
Af in the ordinary sense belongs to L2(B4,7)}, then [ € Dom(A).

We now claim that

AFy(zw) = MA -} (Fy(z,w) — Fyp1(z,w), (5.7)

where A, indicates that A is acting on the variable z with w fixed. Since A
commutes with automorphisms, it again suffices to check this when w = 0, in
which case it is a straightforward algebraic calculation. Suppose, then, that ¢ is a
C'* function of compact support. In that case, we are free to differentiate under
the integral to obtain

BAg = AA - d)Axd — A(A — d)Ax11 6 15.8)
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Now, the invariance of Fy tells us that L2(B%, 7) norm of Fy(z,w) as a func-
tion of z is Anile for all w and independent of w. Putting the L2 norm inside the
integral then shows that Ay and Ay, 1¢ are in L2(B?, 7). This shows that Ax¢ is
in Domn{A). Furthermore, the condition A > d/2 implies that A(A—d/2) > —d?/4.
K is known that the L? spectrum of A is {—oo, —d2/4]. For general symmetric
space of the noncompact type, the L? spectrum of the Laplacian is (—oc, — ||p||2],
where p is half the sum of the positive (restricted} roots for /K, counted with
their multiplicity. In our case, there is one positive root e with multiplicity (2d —2)
and another positive root 2a with multiplicity 1. {(See the entry for “A TV” in Ta-
ble VI of Chapter X of [17].) Thus, p = do. Tt remains only to check that if the
metric is normalized so that the Laplacian cotnes out as in (5.6), then HOzH2 =1/4.
This is a straightforward but unilluminating computation, which we omit.

Since A(A — d) is in the resolvent set of A, we may rewrite (5.8} as
Axd = —AA = d)[A = XA - )] Axy a0

Suppose now that A+ 1 > d, so that {as remarked above) Ayy; is bounded. Since
[A — ¢I]7! is a bounded operator for all ¢ in the resolvent of A, we see that Ay
has a bounded extension from C=(B%) to L2(B%, 7). Since the integral computing
Ax¢(z) is a continuous linear functional on L?(B¢, 7) (iutegration against an ele-
ment of L2(BY, 1)), it is easily seen that this bounded extension coincides with the
original definition of Ajy.

The above argument shows that Ay is bounded if A > d/2 and A+ 1 > d.
Iteration of the argument then shows boundedness for all A > d/2. O

Proof of Theorem 12, We wish to show that for all A > d/2, if ¢ is in LZ(IB"!,T),
then therec is a unique Hilbert—Schmidt operator T}, with matrix entries given in
(5.1} for all polynomials, and furthermore, ||T¢Hiw = (¢, Arp}, - At the beginning
of this section, we had an calculation of ||Tyl| in terms of Ay, but this argument
relied on writing Ty as PyMyPy, which does not make sense for A < d.

We work with an orthonormal basis for H(B?, )] consisting of normalized

mouotnials, namely,
(A + |m])
— m
emiz) = 2 \,‘ mil(A)

for each multi-index m. Then we want to establish the existence of a Hilbert—
Schmidt operator whose matrix entries in this basis are given by

Bom 1= €, fﬂ alslenle)(1 ~ 12 drz). (5.9)

There will exist a unique such operator provided that 3, |am|? < cc.
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If we assume, for the moment, that Fubini’s Theorem applies, we obtain

Zlaim‘2

Lm
_ A'+|” A'+!Wﬂ I m -m
6 [.1 /I&dz IR mlT(A) Fula™e
x ¢p(2)pwi(1 — 2|9 (1 —~ |w|? Y dr(z) dr(w), (5.10)

where [ and m range over all multi-indices of length d.
We now apply the binomial series

e n ()

k=0

for r € € with || < 1, where

(This is the so-called negative binomial series.) We apply this with r = Zj Zywy,

and we then apply the (finite) multinomial series to the computation of (z - w)*,
The result is that

PO 1
Z;: Yy Z["”lzm» (5.11}

where the sum is over all multi-indices {. Applying this result, (5.10) becomes

Z aim|® = (@, Axd)y (5.12)

which is what we want to show.

Assume at first that ¢ is “nice,” say, continuous and supported in a ball of
radius ¥ < I. This ball has finitc measure and ¢ is bounded on it. Thus, if we
put absolite values inside the sum and integral on the right-hand side of (5.10},
finiteness of the result follows from the absolute convergence of the series (511}
Thus, Fubini’'s Thecrem applies in this case.

Now for a general ¢ € L%(B%, 1}, choose ¢; couverging to ¢ with ¢; “nice.”
Then (5.12) tells us that Ty, is a Cauchy sequence in the space of Hilbert—Schmidt
operators, which therefore converges in the Hilbert-Schmidt norm to some oper-
ator T. The matrix entries of Ty, in the basis {e,} are by construction given by
the integral in (5.9). The matrix entries of T are the lmit of the matrix entries
of Ty,, hence also given by (5.9). because ¢; and e, are bounded and (1 — |z}2)*
belongs to L2(B%, 7} for A > d/2.

We can now establish that (5.2) in Theorem 12 holds for all bounded holo-
morphic functions f and ¢ in H (B¢, X) by approximating these functions by poly-
uornials. O
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Proof of Theorem 13. In the proof of Theorem 12, we did not use the assumption
A > d/2 until the step in which we approximated arbitrary functions in L?(B¢, )
by “nice” functions. In particular, if ¢ is nice, then (5.9) makes sense for all A > 0,
and {5.12) still holds. Now, since Fy(z,w) = fa{¢w(2)), where fy is given by (5.5),
we see that |F\(z,w)| < ¢ for all z,w € B%. Thus,

2
(¢, gy < X161 oo,y
for all nice ¢. An easy approximation argument then establishes the existence of

a Hilbert-Schmidt operator with the desired matrix entries for all ¢ € L(B?, 7),
with the desired estimnate on the Hilbert—Schmidt norm. 0
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