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ABSTRACT 
 

 This thesis presents the use of top-view finger imaging to increase the accuracy 
of fingerprint recognition systems. While the user is touching a fingerprint sensor, a 
top-view finger image is captured using a CCD camera without requiring the user to 
carry out any additional work. The acquired gray scale finger image is preprocessed to 
enhance its edges, the skin furrows, and the nail shape, before the image is filtered by a 
bank of Oriented-Filters. A square tessellation is applied to the filtered image to create 
a feature map, called a NailCode. The NailCode is used in the matching process by 
employing a Euclidean distance computation. A combination between the NailCode 
and the fingerprint matcher is done at the decision level by means of a likelihood ratio.  
Measured at an equal error rate, the system error is reduced by 17.68% in the 
verification mode, and 6.82% in the identification mode. Top-view finger imaging also 
reduces the possibility of fraud by having recognition rely on more than one feature. 
Since NailCode alone gives lower accuracy than fingerprinting, it is suggested that top-
view finger imaging should not be used alone to verify or identify individuals, 
especially when high security is required. It should be employed in conjunction with 
fingerprinting to improve overall recognition accuracy.  
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CHAPTER 1 
INTRODUCTION 

 
1.1     Background and Rationale 

Fingerprinting is ubiquitous because of its uniqueness and time invariance [1]. 
As a biometric feature, fingerprints offer high accuracy even when cheap sensors are 
utilized. However, fingerprint recognition accuracy has reached a limit which is 
difficult to surpass. One approach is multimodal biometrics, which combines multiple 
human features in the recognition process. For example, Hong and Jain employ the 
face in conjunction with fingerprints [2], Jain et al. use speech, face, and fingerprints 
[3], Marcialis and Roli utilize two different fingerprint sensors [4], while Prabhakar 
and Jain examine two fingers [5]. All these methods augment recognition accuracy, 
with the drawback that the additional features increase the complexity of user 
interaction with the system. 

Our approach rests on the idea that the skin wrinkles and furrows on top of 
each person’s fingers are different, along with the size and shape of the fingers and 
finger nails. Utilizing these attributes will increase the accuracy of a multimodal 
biometric system without requiring extra work by the user. The details can be captured 
with a small, inexpensive camera positioned above the fingerprint sensor, as shown in 
Figure 1.1. Top-view finger imaging also reduces the possibility of fraud by having 
recognition rely on more than one feature. 

 
 
 
 
 
 
 
 

Figure 1.1 Top-view image and fingerprint recognition system. 
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1.2      Literature Review 
Many papers report on the use of biometric features to augment the accuracy of 

the fingerprint recognition systems. Some use data from the finger image alone. The 
following papers are relevant to our work. 

1.2.1 Evaluation of personal identification system by transillumination 
imaging of a finger [6]   

This paper proposes the use of the finger’s translucent property, through 
illumination by an array of near-infrared LEDs. A CCD camera captures the blood 
vessel structure of the finger. Since the blood vessel pattern is time invariant and 
unique, it does not change due to scars that might occur on the skin. Matching is done 
by a correlation operation. The authors claim that the system needs low computation 
time and has a low error rate.     

1.2.2 Vein Pattern Recognitions by Moment invariants [7]  
The paper uses a dyadic wavelet transformation to extract the structure of a 

finger vein.  The input images are manipulated in a wavelet domain, any noise 
removed via soft-thresholding denoising, and matching achieved using Hausdorff 
distance. The authors claim that their technique is more robust for feature extraction 
than a line-tracking operation.  

1.2.3 Personal identification using finger knuckle orientation features [8]  
The paper proposes the use of a finger knuckle image since it offers many skin 

lines and creases. A finite Radon transform (FRT) is employed to detect random lines 
and creases. The system gives an equal error rate of 1.14%. The idea behind this paper 
is similar to our thesis, but only uses a data from the knuckle; the nail shape and the 
finger width is not exploited.  

1.2.4 Finger image identification method for personal verification [9]  
An image of the entire bottom-view finger (including fingerprint) is utilized, 

which contains the front surface of the finger from the fingertip to the second joint of 
the finger. The main feature is extracted from the distance between the second joint by 
projecting the image in the direction parallel to the finger. The method needs low 
computation time, but requires a sheet prism and an expensive TV raster scan camera 
which gives a resolution of 10 lines/mm.  
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1.2.5 PDE-based Finger Image Denoising [10]  
The knuckle and wrinkle line of the front surface of a finger is employed. Edge 

detection is used to extract finger lines, including the shape of the finger. The idea 
behind this paper is similar to our thesis but uses data from the bottom-view of the 
finger. The authors focus on preprocessing, and the matching process is not discussed.  

1.2.6 Integrating Faces and Fingerprints for Personal Identification [2]  
This paper proposes the combination of face and fingerprint to construct an 

identification system. Fingerprints offer high accuracy but require much computation 
time. Face recognition needs very low computation time, and face indexing 
mechanisms for large database searching already exist, but recognition accuracy is 
much lower than for fingerprints. The paper uses the face to search over a large 
database, and the best five candidates are obtained. Fingerprint verification is applied 
to the candidates to find the best match. A final decision employs decision fusion.  

1.2.7 On combining classifiers [11]  
A theoretical framework for combining classifiers is proposed which uses 

different input patterns. Many combination schemes are suggested, such as a sum rule, 
product rule, min rule, max rule and majority vote rule. The authors demonstrate that 
the sum rule outperforms all the other combination rules.   

1.2.8 A multimodal Biometric System using Fingerprint, Face, and Speech 
[3]  

This paper uses fingerprint, face, and speech together. Although three matchers 
are utilized, a majority vote rule is not used to make a final decision. Instead of each 
matching module making a decision, they simply return a matching score. The 
likelihood ratio of an imposter and the genuine joint probability density functions are 
calculated. The imposter and genuine distributions of each matcher must be estimated. 

1.2.9 Decision-level fusion in fingerprint verification [5]  
A combination of different fingerprint matching algorithms augment the 

verification accuracy, with a likelihood ratio used to make a final decision. The authors 
demonstrate that the combination scheme using a likelihood ratio outperforms both 
sum and product rules. They claim that this combination is optimal in the Neyman-
Pearson sense when sufficient data is available to obtain the distribution of the 
classifier outputs. The use of more than one finger is also demonstrated, and the 
performance gain is better than the use of different matching algorithms. They 
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demonstrate that the combination of the best and the weakest classifiers give better 
results than combining the best two classifiers. 

1.2.10 Fingerprint verification by fusion of optical and capacitive sensors [4]  
Two fingerprint sensors obtain two images from the same finger, and a string 

matching algorithm is implemented for both images, with a decision made at the 
decision level. Two types of combination scheme are used. The first one simply 
calculates the average of both matching scores while the other uses a gradient descent 
algorithm to find an appropriate weighting value for each score. The latter combination 
scheme gives better accuracy than the first one. Although the use of more than one 
feature improves recognition accuracy, the approach requires a high degree of user 
interaction with the system.  

1.2.11 Fingerprint Image Enhancement: algorithm and performance 
evaluation [12]  

This paper introduces the use of a Gabor filter, one of the most accepted 
algorithm for fingerprint preprocessing, for low-pass filtering along the ridge 
orientation, while performing band-pass filtering along the direction orthogonal to the 
ridge. To use a Gabor filter, the ridge orientation and its frequency must be estimated. 
The effect of noise is considerably reduced using this method.  

1.2.12 Fingerprint minutiae extraction from skeletonized binary images [13]  
This paper proposes a systematic method for fingerprint post processing. One 

fingerprint contains only 40-60 real minutiae, but a preprocessed fingerprint might 
contains up to 2000-3000 minutiae. Most spurious minutiae can be deleted in a pre-
filtering stage. Skeleton enhancement deletes spurious minutiae arising from bridged 
or spur-like ridges. Topological validation verifies bifurcation and termination points. 
The paper also introduces the separation of highly reliable minutiae from less reliable 
minutiae.  
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1.3      Objectives 
The primary goal of this thesis is to propose a new technique for increasing the 

accuracy of fingerprint recognition systems without burdening the user with extra tasks 
unlike other multimodal biometric systems. By using biometric features extracted from 
a top-view finger image, in conjunction with fingerprinting, multimodal biometric can 
be implemented. The algorithm should not require much computation time, and the 
combined system has an acceptable response time. 

The second objective is to investigate the possibility of fingerprint indexing. If 
the new top-view method requires less computation than fingerprint matching, then it 
might be useful as a way of reducing the search space, thus increasing fingerprint 
matching speed. 

 
1.4      Scope of the Thesis  

Top-view finger imaging has not been proposed before, so this thesis will act 
as a feasibility study for using top-view finger imaging to recognize people. Feature 
extraction and matching for top-view finger imaging must be designed for good 
recognition accuracy while requiring low computation time. It must be combined with 
fingerprinting to construct a multimodal biometric system. The system’s performance 
must be evaluated in terms of recognition accuracy and computation time to ensure 
that it can be implemented on a conventional personal computer without requiring 
extra hardware acceleration. 

To reduce the time to build the software, a well known fingerprint 
preprocessing and matching algorithm will be utilized. A cheap CCD camera with a 
resolution of 640×480 pixels will be used to capture the top-view finger image in a 
light-controlled environment to avoid non-uniform illumination. Measured from the 
fingertip, a captured top-view finger image will contain no more than 2 inches of the 
finger digit. The implemented system will only utilize a touch-based fingerprint 
sensor. 

The wrinkles on a finger usually increase over time, but this thesis will not deal 
with this issue. It is very likely that the top-view feature can help fraud reduction, but 
we will not pay much attention to this area.  
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1.5      Organization of the Thesis 
The organization is as follows: 

- This chapter introduced the subject and scope of the thesis. 
- Chapter 2 describes the theoretical background to our work, and the proposed 

top-view feature extraction and matching mechanism. 
- Chapter 3 explains the experimental result for our implemented system 

hardware and software. 
- Finally, Chapter 4 discusses the outcomes of this thesis, and supplies 

conclusions and possible future work.   
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CHAPTER 2 
RESEARCH METHODOLOGY 

 
 This chapter offers a the theoretical background of image processing and 
biometrics, followed by methods used to implement the system’s hardware and soft-
ware, and ends with the materials needed to implement the system. 
 
2.1     Theoretical Background 

2.1.1 Image coordinates 
 An image is stored in a rectangular shape, where the left most rectangular 
corner is the origin point (0,0), as shown in Figure 2.1. Any pixel in an image of size 
m×n can be accessed using a Cartesian coordinate. Let p(i, j) represents the pixel in the 
ith row and jth column of the image.  

In this thesis, a top-view finger image is stored as a 8-bit grayscale. This means 
that pixel intensity can vary from 0 to 255, with the value 0 represents the weakest 
intensity (black), while 255 represents the strongest intensity (white).  
 
 
 
 
 
 
 
 

 
 
 

Figure 2.1. Image coordinate. 
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2.1.2 Set Operations and the Image 
 Let ∩ and ∪ be the intersection and union operations that will be applied to 
equal-sized binary images. Let ′ denote the unary complement operation. Suppose 1 
and 0 stand for a white and black pixel respectively, then the results of pixel-wise 
operations are shown in Table 2.1.  
 

Table 2.1. Set operations applied to pixels. 
A B A ∩ B A ∪ B A′ 
0 0 0 0 1 
0 1 0 1 1 
1 0 0 1 0 
1 1 1 1 0 

 
2.1.3 Image Thinning [14] 
Thinning is the process of deriving a shape skeleton, which is one pixel thick 

and has a distance symmetrically to its boundary. There are many algorithms to find 
the skeleton of a basic shape; in this thesis, a morphological operation is used. 
 The morphological thinning operation, denoted , is derived by performing a 
Hit-or-Miss transformation( ) to the input image, A, using a structuring element, B; 
 
 A  B = A ∩ (A  B)′ (2.1) 
 

To ensure that the input image is thinned symmetrically, the input image A 
must be thinned using a sequence of structuring elements as follows: 

  
 A {B} = ((…((A  B1)  B2)  B3)…)  Bn), (2.2) 
 
where {B} = {B1, B2, B3,…, Bn}, and Bi is obtained by performing clockwise rotation 
of  Bi-1, as shown in Figure 2.2. B9 is identical to B1, and B10 is identical to B2 and so 
on. Equation 2.2 means that the Hit-or-Miss operation must be performed on the input 
image A with the structuring element B1 and then the result further modified using the 
structuring element B2, and so on, until no further changes occur to the image.  
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Figure 2.2. Sequence of structuring elements used for thinning. The ×’s stand 
for “don’t care” values. 

 
2.1.4 Adaptive Threshold [14] 
Thresholding is a standard method for image segmentation, which separates an 

object from its background by specifying a threshold value, T. A pixel whose intensity 
is greater than the threshold value is claimed as an object pixel; otherwise, it becomes 
a background pixel. Thresholding can also be used to convert a grayscale image into a 
binary image. We define a binary image, b(x,y),  as: 
 1 if ( , )

( , )
0 otherwise.

p x y T
b x y

>⎧
= ⎨

⎩
 (2.3) 

  
If there is more than one object in the image, multilevel thresholding can be 

used. For example, if two objects exist in the image, two thresholds, T1 and T2, are 
utilized. The image pixel p(x,y) is classified using:  

 
   
   
  (2.4) 
  

The process is called global thresholding if the threshold value (or values when 
multilevel thresholding is used) is applied across every pixel of the image. It is called 
adaptive thresholding when different threshold values are applied to different areas of 
the image, thereby dividing the image into sub-images. Different threshold values may 
be used to segment each subimage. 

 

1

1 2

background if ( , )
( , ) object1 if ( , )

object2 otherwise.

p x y T
p x y T p x y T

≤⎧
⎪∈ < ≤⎨
⎪
⎩
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An appropriate threshold value can be obtained manually or automatically. 
Aautomatic thresholding is carried out as follows: 

1) The input image is divided into subimages of size B×B. 
2) An initial thresholding value T is estimated from the average gray level of 

the subimage of interest. 
3) A subimage is segmented using T, creating two groups of pixels; G1 

contains all the pixels with intensity values greater than T, while G2 
contains all the pixels with intensity value ≤ T. 

4) Average intensity values of all pixels in group G1 and G2 are calculated, 
producing  µ1 and µ2.  

5) A new threshold value is calculated using: 
 
 1 20.5( )T µ µ= +  (2.5) 
 

6) The pixels in the subimage are segmented with the new threshold T using: 
 
 0 if ( , ) ( , )

( , )
255 otherwise.

p x y T x y
p x y

>⎧
= ⎨

⎩
 (2.6) 

 
2.1.5 Gradient operator [14] 

 The gradient of an image, f (x, y), at coordinate (x, y) is defined as a 2-D 
column vector: 

 .x

y

f
G x

fG
y

f

∂⎡ ⎤
⎢ ⎥⎡ ⎤ ∂⎢ ⎥∇ = =⎢ ⎥ ∂⎢ ⎥⎣ ⎦
⎢ ⎥∂⎣ ⎦

 (2.7) 

 
 The gradient magnitude is calculated using:  
 
 2 2

x yf G G∇ = +  (2.8) 
  

 
 



 
 

11 

To reduce the computational requirements of equation 2.8, the gradient 
magnitude can be estimated using:  

 
 x yf G G∇ ≈ +  (2.9) 
  
The gradient direction is calculated using: 
 

 1tan x

y

G
G

−
⎛ ⎞

Θ = ⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.10) 
 
The implementation of the partial derivatives for ∂f/∂x and ∂f/∂y utilize the 

Sobel or Prewitt operators. The convolution masks of these operators are shown in 
Figure 2.3. The Sobel mask is more difficult to implement than the Prewitt mask but 
gives better noise reduction. 

 
 

 
 
 

 
Figure 2.3. Convolution masks of Prewitt and Sobel operators. 

 
 
2.1.6 Canny Edge detection [15], [16] 
There are many ways to find the edge of an image, which can be classified into 

two categories: gradient and Laplacian methods. Canny is a gradient method, first 
proposed by John F. Canny in 1986. It is an optimal edge detection algorithm, 
containing 4 main steps: 

1) Smoothing: Noise is reduced by smoothing the input image using a 
Gaussian filter. The size of the Gaussian convolution mask can be varied 
depending on the degree of smoothing. A large size increases noise reduce-
tion, at the expense of removing small details on the edges.  

2) Gradient Calculation: Depending on the computational requirements, the 
gradient operator can be utilize either the Sobel, Roberts, and Prewitt 
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operators. Equations 2.9-2.10 are calculated to derive the edge image, and 
the gradient direction. The direction is discretized into one of four 
possibilities (0°, 45°, 90°, and 135°).  For example, an edge direction falling 
in the range [22.5, 67.5) is set to 45°, while an edge direction falling in the 
range [67.5, 112.5) is set to 90°.  

3) Nonmaxima Suppression: If two neighbor pixels in the direction orthogonal 
to the gradient direction have intensities lower than the edge pixel of 
interest, then the two pixels are considered nonmaxima and are deleted, 
producing a thin line in the edge image. For example, if the gradient 
direction is 45 degree, the northwest and the southeast pixels must be 
examined.  

4) Hysteresis Thresholding: The edges detected with steps 1-3 are thres-
holded, utilizing two threshold values T1 and T2, with T1>T2. If the gradient 
magnitude of an edge pixel of interest is higher than T1, it is left untouched. 
Edge pixels with gradient magnitudes lower than T2 are deleted. An edge 
pixel with gradient magnitude lower than T1 but higher than T2 will appear 
in the final edge image if at least one of its neighbor pixels has a gradient 
magnitude greater than T1.  

 
2.1.7 Euclidean Distance 
Euclidean distance is the most commonly used distance measurement. In two-

dimensional space, the Euclidean distance between point (x1,y1) and (x2,y2) is 
calculated from 

 
 2 2

1 2 1 2( ) ( )d x x y y= − + −  (2.11) 
 
Equation 2.11 states that the Euclidean distance is the shortest path between 

two points. In Euclidean n-space, the Euclidean distance between point p and q is 
calculated using the formula 

 

 2

1
( , ) ( )

n

i i
i

d p q
=

= −∑p q  (2.12) 
 
where 1 2( , ,..., )np p p=p and 1 2( , ,..., )nq q q=q . 
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2.1.8 Biometrics 
Biometric recognition is the use of biological data to distinguish individuals. It 

can employ distinctive physiological data, such as the face, iris, retina, facial 
thermogram, fingerprint, ear, DNA, hand geometry, or hand vein. It may also utilize 
distinctive behavioral data, such as the person’s signature, gait, or voice. Biometic 
technology research group include the Biometrics Research Group at the Department 
of Computer Science and Engineering, Michigan State University 
(http://biometrics.cse.msu.edu, 2009), the Biometric System Laboratory at the 
University of Bologna, (http://biolab.csr.unibo.it, 2009), and the National Biometric 
Test Center at San Jose State University, (http://www.engr.sjsu.edu/biometrics, 2009).  

Fingerprinting is used more often than other biometric features because it only 
requires low cost system components, is convenient to use, has high robustness, and 
individual fingerprints are unique and time invariant [1].  

 
2.1.9 Performance Evaluation of Biometrics system 
Recognition begins with a score obtained from a biometric matcher. The score 

may be the similarity or the difference between an input pattern and a database feature.  
Let Q stand for a biometric template stored in a database, and I the input 

biometric feature. The input pattern is assumed to fall into one of two possible classes, 
ω1 and ω2. ω1 stands for the imposter class (i.e. I and Q do not come from the same 
individual) and ω2 for the genuine class (i.e. I and Q do come from the same 
individual). Suppose that the matcher reports the similarity value, s, between I and Q. 
The person who supplied the input I will be classified as an intruder if s is less than a 
threshold value,τ, otherwise, the person will be classified as a genuine user. The 
decision made by the system can belong to one of four categories: 

- genuine accept: the system matches the input to the correct database 
template; 

- genuine reject: the system correctly rejects the input as an intruder, whom 
is not enrolled in the database;  

- false accept: the system incorrectly matches the input to an incorrect 
template in the database;  

- false reject: the system incorrectly rejects a genuine user.   
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To measure system performance, the FAR (False Acceptance Rate) and FRR 
(False Rejection Rate) system values must be calculated. They are duels of each other: 
if the system FAR increases, then the FRR decreases, and vice versa. Figure 2.4 shows 
the relationship between the system threshold value and these values.  

 
FRR and FAR can be estimated from 

 1( | )FAR p s ds
τ

ω
+∞

= ∫  (2.13) 
 

 2( | )FRR p w s ds
τ

−∞

= ∫  (2.14) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4. The system FAR and FRR for a given threshold,τ. 
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Figure 2.5. Receiver Operating Characteristic (ROC) curve 
 
The Receiver Operating Characteristic (ROC) curve shows overall biometrics 

performance, as in Figure 2.5. An ROC curve plots FAR against the Genuine 
Acceptance Rate (GAR), whish is (1-FRR). Some research literature use the terms 
FMR (False Match Rate) and FNMR (False Non Match Rate) rather than FAR and 
FRR, but FAR and FRR is more common.   

 
2.1.10 Multimodal biometrics 
Different classifiers usually missclassify different input patterns [1], so overall 

performance is improved by employing multiple classifiers.  Multimodal biometrics is 
simply the use of more than one biometric recognizer to identify a person, and is 
widely practiced, as shown in table 2.2. 
 
Table 2.2. Examples of multimodal biometric systems. 

Biometric features Proposed by 
Two different fingers Prabhakar and Jain, 2002 [5] 
Two different types of fingerprint sensors Marcialis and Roli, 2004 [4] 
Speaker and face Brunelli and Falavigna, 1995 [17]  

Duc et al., 1997 [18] 
Kitler et al., 1997 [19] 
Choudhury et al., 1999 [2] 
Verlinde, Chollet and Acheroy, 2001 [21] 
Ben-Yacoub et al., 1999 [22] 

Face with fingerprint and speaker Jain, Hong and Kulkarni, 1999 [3] 
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2.1.11 Fingerprints 
A fingerprint image replicates the epidermis structure of a person’s finger. It is  

composed of ridges interleaved with valleys, as shown in Figure 2.6. A person’s 
fingerprint are fully formed about 2 months before birth, and the finger ridge structure 
remains the same throughout the person’s life [23]. 

There are many ways to acquire an individual’s fingerprint. The simplest is by 
inking a finger and pressing it onto a paper. Nowadays, there are also various types of 
sensors, such as optical, capacitive, thermal, piezoelectric, and ultrasound devices, as 
shown in Figure 2.7.   

 
 
 
 
 
 
 

 
 

Figure 2.6. A fingerprint image. 
 
 
 
 
 
 
 

             (a)                                 (b)                                   (c)                                       (d) 
 
          (a)                             (b)                                  (c)                                    (d) 
Figure 2.7. Four different types of fingerprint sensor;  

a) touch-based capacitive sensor (http://www.biometrics-china.com, 2009);  
b) touch-based optical sensor (http://www.digitalpersona.com, 2009);  
c) sweep-based capacitive sensor (http://www.scantastik.com, 2009);   
d) touchless optical sensor (http://www.tst-biometrics.com, 2009). 
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Fingerprint processing requires two main steps: enrollment and matching. 
Enrollment inserts new fingerprint data into a database, while matching deals with the 
comparison between the input fingerprint and fingerprints in the database. There are 
two modes of fingerprint recognition: verification and identification. During 
verification, an input fingerprint is compared with one database item to check if they 
come from the same finger. During identification, all the database’s fingerprints must 
be searched to find the best match with the input. Computation time is an issue for the 
identification mode, especially in systems with large databases. To reduce the search 
space of fingerprint identification, Senior; Hao and Zong; Munir and Javed classifed 
fingerprint into 5 categories: arch, left loop, right loop, tented arch, and whorl [24], 
[25], [26]. Another way of reducing the search space is by indexing [27].  

The acquisition of a fingerprint by a sensor can be categorized into 3 different 
methods, i.e., touch, sweep, and touchless. A fingerprint image will not usually be 
stored in the database, instead, feature extraction is applied to the image and prominent 
features are stored instead. There are two types of fingerprint features: minutiae and 
FingerCode [28], [29], of which minutiae is the most common. There are many types 
of minutiae, as shown in Figure 2.8(a), but only the termination type (sometimes called 
endpoint) and the bifurcation type are common. Each minutia is represented by a (x, y) 
coordinate and the angle of the respective ridge line, as shown in Figure 2.8(b). 

Before feature extraction, the supplied grayscale fingerprint must be 
preprocessed because most sensors lack image enhancement capabilities, (except the 
sensor proposed by Shigematsu et al [30]). The main role of preprocessing is to reduce 
the input image’s noise, after which the image is converted into a binary image. The 
thinning process is applied, and a set of minutiae extracted from the result. Post-
processing [3], [31] is applied to the minutiae to remove spurious results.  

Some approaches do not perform minutiae extraction on a thinned binary 
image, but instead extract extract minutiae directly from the grayscale fingerprint 
image. This avoids the possibility of some relevant data disappearing or errors 
occurring during image conversion [32], [33]. 

Fingerprint processing can be implemented on many platforms, from 
microcomputers to embedded systems [34], [35]. The fingerprint sensor simply sends 
raw data to a processing module, which can be implemented in software alone or with 
software and special designed accelerator hardware. For example, Ratha et al. [36], 
Lindoso et al. [37] use an array processor built from FPGA for matching the 
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fingerprint with the large database. Although hardware offers astonishing speed ups, it 
is costly to build and unsuitable for small fingerprint databases. 

 
2.1.12 Standard fingerprint databases 
Four standard fingerprint databases are widely used to test system 

performance: NIST [38], FVC2000 [39], FVC2002 [40], and FVC2004 [41] However, 
in this thesis, since two recognition features are utilized together, these database will 
not be utilized for performance testing. The multimodal biometric systems of 
Prabhakar and Jain [5], Hong and Jain [2] and Marcialis and Roli [4] also did not use 
these databases for similar reasons.   
 
 
 
 
 
 
 
 
 
 
 
Figure 2.8. a) Examples of the 4 Minutia types; b) Feature [xi, yi,θi] extracted from a 
bifurcation i; c) Feature [xj, yj,θj] extracted from a termination minutia j.  

 
 
 2.1.13 Fingerprint deformation 

When a user presses his finger onto a sensor, the three dimensional epidermis 
shape is converted into two dimensional data. Finger pressure or the angle between the 
finger and the sensor plate may cause a non-linear deformation of the fingerprint 
image which varies over the image area. The deformation’s effect on a (x, y) minutiae 
coordinate is called translation deformation; the deformation’s effect on the minutiae 
angle is called rotational deformation. A fingerprint matching algorithm can utilize a 
bounding box to handle these two deformations [42]. The size of the box affects the 
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biometrics’s system accuracy: a large bounding box tends to increase the FAR; a small 
bounding box tends to increase the FRR. A deformation model may help to reduce the 
effect of a large bounding box. For example, Bazen and Gerez propose a deformation 
model of fingerprint [43], Senior and Boole employ a canonical fingerprint form, and 
Lee et al utilize a method to normalize the distance between ridges [45]. All of these 
methods reduce the fingerprint recognition error.  
 
2.2     Method 
 The system hardware must digitize the fingerprint and the corresponding top-
view finger image, and the software must then process both top-view and fingerprint. 
Before the system performance can be evaluated, a test database of finger images must 
be collected. The data on each finger will be collected several times, one for enrolment 
into the system, and the others for testing performance.  

Fingerprint processing consists of 4 main steps: 
1) preprocessing; 
2) feature extraction; 
3) post processing; 
4) matching.  
 

Fingerprint preprocessing uses a technique proposed by Hong et al. [12], but 
feature extraction and post-processing employs our own techniques. The details of the 
fingerprint matching algorithms are explained in section 2.2.11. 

Since top-view finger imaging has not been proposed before, new techniques 
for its preprocessing, feature extraction, and matching must be investigated. The 
proposed techniques are explained in sections 2.2.3-2.2.10.  

The performance of top-view finger imaging must be evaluated on its own 
before combining it with standard fingerprinting in a multimodal biometric system. 
After the performance is known for separate top-view and fingerprint matchers, the 
performance of the combination can be assessed.  
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 2.2.1 Overview of the system 
 The system hardware consists of an optical fingerprint sensor equipped with a 
CCD camera in a light controlled environment. A Pentium4 2.4 GHz personal 
computer interfaces with the two sensors without any additional hardware acceleration.  

As shown in Figure 2.9, the system software consists of 5 parts:  
1) The fingerprint feature extraction module reads an image from the fingerprint 

sensor, and preprocesses the image before performing feature extraction. Minutiae 
features are extracted, and any spurious minutiae are deleted using techniques 
described in section 2.2.19. 

2) The fingerprint matching module calculates the similarity value between the input 
image and a template stored in the system database. The algorithms are explained 
in section 2.2.11.  

3) The top-view feature extraction module reads a top-view finger image from the 
CCD camera. A NailCode feature map is extracted after image pre-processing. 

4) The top-View matching module computes the distance between the input and the 
template.  

5) The decision fusion module combines the matching scores from the two matchers 
to make a final decision.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.9. Block diagram of the whole system. 
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 2.2.2 Top-View finger image acquisition 
 The acquisition hardware comprises a Creative VF0080 CCD camera 
(resolution 640x480) and a digital Persona UareU4000B fingerprint sensor (resolution 
512 dpi). To avoid issues with non-uniform illumination, a light controlled environ-
ment is maintained, as shown in Figure 2.10, with ten blue LEDs as light sources for 
the top-view finger image acquisition. The optical fingerprint sensor automatically 
switches on a red light whenever it senses a finger pressing down. The grayscale top-
view finger image is derived from the blue component of a color image obtained from 
the CCD camera, since the wavelength of blue is farther from red than green [14]. This 
means that the interference of red light with the blue component of a color image is 
less than with a green component. Measured from the fingertip, the captured top-view 
finger image contains no more than 2 inches of the finger digit. The distance between 
the CCD camera and the fingerprint sensor is adjusted to give the maximum amount of 
detail for the finger along with finger inclination detection. This setup yields an image 
resolution of 250 dots per inch. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.10. System hardware used to digitize fingerprint and top-view finger images. 
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2.2.3 Top-View finger image Preprocessing 
 The greyscale top-view finger image obtained from the CCD camera is TG, and 
has size W×L (see Figure 2.12(a)). Its preprocessing flowchart is shown in Figure 2.11. 
The main steps include: 
1) Smoothing. Due to the presence of noise and non-uniform illumination in the 

image, a smoothing Gaussian filter is applied to TG. 
2) Binarization. The greyscale image is converted into black and white image 

(black=0 and white=255) using an adaptive threshold, resulting in an image shown 
in Figure 2.12(b).   

3) Small Particle Deletion. Small particles made up of white pixels less than the 
threshold value are deleted. The resulting image, TH, is shown in Figure 2.12(c). 

4) Background Deletion. The background of the finger image is deleted using the 
method described in section 2.2.5. Figure 2.12(d) shows the resulting image. 

5) Finger Inclination Correction. The image is rotated to align vertically with the     
x-axis of the image, as shown in Figure 2.12(e). 

6) Skeletonization. A thinning operation is applied to the image to create a skeleton 
for the remaining lines in the image, as shown in Figure 2.12(f). 

7) FilterBank. The skeletonized image is manipulated by a filterbank holding eight 
different filtering directions. The results are eight images ready for feature 
extraction. The details are explained in section 2.2.7. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.11. Flowchart of the preprocessing algorithm. 
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Figure 2.12. Images obtained in each preprocessing step: (a) TG; (b) binarized image; 
(c) TH; (d) after background deletion; (e) after inclination correction; (f) skeletonized 
image. 

2.2.4  Finger image alignment parameter 
When a finger is pressed on the fingerprint sensor, it may be up to ±30° away 

from the assumed vertical orientation. The inclination is detected, and the image is 
rotated as follows: 
1) The Canny algorithm is applied to the TH image, producing an edge image, TK, 

which is copied into two images named TL and TR using the conditions: 
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2) The parameters for the left-edge of the finger are obtained by letting C be the set of 
contours in TL, where C = {C1, C2, C3,..., Ck } and k = number of contours. A line-
fitting algorithm [46] is applied to each contour Ci to find its straight-line 
parameter Si. For each Si we have: 

(2.17) 
 

where ( , )i i
x yV V is a normalized vector parallel to the fitted line and 0 0( , )i iX Y is a point 

on that line [46]. 
3) The parameter Sleft of the left-edge finger is selected from the set of Si using the 

condition: 
 

(2.18) 
 
where Ni is the number of white pixels in each contour Ci. 

4) The parameter Sright of the right-edge finger can be derived by applying steps 2-3 to 
TR. 

 

(2.19) 
(2.20) 

 The parameter Sleft and Sright are used in the background deletion and finger 
image inclination process.  

2.2.5  Background deletion 
Since the CCD camera is located above the fingerprint sensors, then the top-

view finger image will include an image of the fingerprint sensor. This must be 
removed so that only the finger image is processed. Background deletion is achieved 
as follows: 
1) Image ML, which has the same size as TG, is created using the condition: 
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2) Image MR, which has the same size as ML, is created using the condition: 
 

 
(2.22) 
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3) The background-deleted image, TF, is created from the operation: 
 

                         TF = MR ∩ ML ∩ TH (2.23) 
 

where ∩ is a pixelwise-intersection operation, applied to equal-sized images. 

 
2.2.6 Finger image inclination correction 

1) Let ρ and λ be the angles of inclination of the left and right edges of the finger 
respectively, defined by: 
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2) The rotation of the finger around the origin is calculated using: 
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The value of ρ and λ range from -90°to 90°. Figure 2.14 shows all three 

different conditions to obtain ϕ. 
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2.2.7 Filterbank 
The skeletonized top-view finger image is manipulated using a bank of 

oriented filters, with eight different θ values (0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 
and 157.5°) with respect to the x-axis. The oriented filters enhance the ridge lines along 
the specified θ angles while blurring the lines that lie in other directions (see Figure 
2.13). Figure 2.15 shows the kernel Oriented Filters for different θ  values. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.13. Finger images filtered at (a) 0°  and (b) 90°. 

 
 
 
 
 
 
 
 
 
 
 
 



 
 

27 

λ

ρ

ρ

λ

0.5( )ϕ ρ λ π= + +

ρ

λ

0.5( )ϕ ρ λ π= + −

0.5( )ϕ ρ λ= +

(a)

(b)

(c)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.14 The derivation of ϕ for different conditions; 

(a) the signs of ρ and λ are negative; 
(b) the signs of ρ and λ are different; 
(c) the signs of ρ and λ are positive. 
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Figure 2.15. Kernel of Oriented Filters with different θ values. 
 

2.2.8 Feature Extraction 
Feature extraction is carried out as follows: 

1) The top-view finger image reference point, located in the middle of the nail base, is 
obtained using the algorithm described in section 2.2.9, and shown in action in 
Figure 2.16(a). 

2) θ is the degree setting on the oriented filter. The filtered image Qθ is tessellated 
using the reference point (xr,yr) into H×V (10×15) square cells of size w×w 
(15×15), as shown in Fig. 2.16. p(x,y) denotes the pixel intensity at location (x,y) of 
Qθ. The variance for each square cell at location (h,v) is calculated using: 
 

(2.27) 
where 
 a = yr + vw 
 b = yr + w(v+1) 
 c = xr + w(h-0.5H) 
 d = xr + w(h-0.5H+1). 
The tessellated area should cover the shape and the width of the nail base while 
avoiding problems with finger nail length variation. For that reason, we selected h 
to range from 0,1,..., H-1 and v to range from -2,-1,0,...,V-3. 
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3) After applying step 2 to every filtered image, the extracted feature, called a 
NailCode, and denoted by iΨ , is calculated. iΨ for the images using reference 
point Ri, is defined by: 

(2.28) 

where 2 2 2 2 T
1 2 3[ , , ,...., ] .

j

i
H VΨ σ σ σ σ ×=  

4) Due to the possibility of a reference point detection error, a compensation 
technique is used. If R0 is the reference point obtained by using the algorithm 
described in section 2.2.9, then there are eight translated versions, R1-R8, each δ  
pixels from R0, as shown in Figure 2.18. In the enrollment module, only 0Ψ is 
extracted from the input top-view finger image. In the authentication module, the 
NailCode 0 1 2 8{ , , ,..., }=N Ψ Ψ Ψ Ψ is extracted from the input top-view finger 
image. 

 

 

 

 

 

 

                                                         (a) 
                                                                                                                      (b) 

Figure 2.16. Reference point location and square tessellation on the filtered image. 
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2.2.9 Automatic detection of reference point location 
The reference point of a top-view finger image is located at the midpoint of the 

finger’s nail base. The steps for its detection are: 
1) Let ∩, ∪ and ′ denote the intersection, union and inversion operations 

respectively. Image TH, as shown in Figure 2.17(a), is employed to create image 
TM, using the condition: 

                  
TM = ( MR ∩ ML ∩ TH ) ∪  ( MR ∩ ML)′                     

(2.29) 
2) The image TM, shown in Figure 2.17(d), is dilated and inverted before being rotated 

to be exactly vertical, resulting in TP. 
3) Let L  be the set of contours found in the image TP: 

L   = { L1, L2, L3, ..., Lf } 

where f is the number of contours detected in the image. The reference point 
location can be derived by applying the algorithm described in Figure 2.19 to 
image TP, using the following parameters in each iteration: 

- Ni  = The number of white pixels in each contour Li 

- BRi = The bounding rectangle of each contour Li. Each rectangle contains the 
parameters: 

 

where BR
iy = y coordinate of top edge of the rectangle corner  
BR
ix = x coordinate of left edge of the rectangle corner  
BR
iw = width of rectangle  
BR
ih =  height of rectangle. 

- ratioi = .i
BR BR
i i

N
w h×

 
 
 
 

{ , , , }BR BR BR BR
i i i ix y w h
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As shown in Figure 2.17(e), our algorithm tries to find the largest contours in the 
top-view finger image which are expected to be the nail. To avoid the contours that 
are larger than the nail, the ratio of the width and the length of the bounding 
rectangle is calculated, and contours with a ratio less than rth (0.6) are thrown 
away. 

4) Lj is the selected contour obtained from the algorithm in Figure 2.19. The reference 
point  R(x,y) is computed on Lj with: 

 
 
 
 

 
 
 
 
 
 
 
 
 

                         (a) TH                                 (b) MR                            (c) ML 
 
 
 
 
 
 
 
 

 
                          (d) TM                                  (e) TP                            (f)  
Figure 2.17. Top-view finger images for each step of the reference point detection 
algorithm: (a) TH; (b) MR; (c) ML; (d) TM; (e) TP; (f) the obtained reference point 
superimposes on a top-view finger image. 
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2.2.10 NailCode Matching 
The Euclidean distance is computed as part of the matching operation. 

Let 0
TΨ be a NailCode template in the database and 0 1 2 8{ , , ,..., }IP IP IP IPN Ψ Ψ Ψ Ψ= be the 

NailCode extracted from the input top-view finger image. Each Ei in the Euclidean 
distance E = {E0, E1,...., E8} is the distance between 0

TΨ and i
IPΨ . The matching score 

between the input and the template is: 
matching_scoretop = min(E0, E1, ..., E8)   (2.30) 

 
 
 
 
 
 

Figure 2.18. Eight points for reference point error compensation 
 

num_loop=0 
ref_pt_found = false 
do 
{ 
     all values in L   are deleted, giving L  = {}  

find contours from image TP, putting all the results in L 
for each contour Li 
   if (Ni>threshold and  ratioi>rth) 
          ref_pt_found = true 
       else 
                  remove Li from L 
             
if (ref_pt_found =true) 
  select contour Lj from L  with the largest ratio 
else 
      perform erosion operation on image TP 
  num_loop++ 

} 
while (num_loop<MAX_LOOPS and ref_pt_ found =false) 
 
if (num_loop<MAX_LOOPS) 
 extract the reference point from the contour Lj 
else 
 the reference point can not be found, and the image is rejected 

Figure 2.19. Reference point detection algorithm. 
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2.2.11 Fingerprint matching algorithms 
Many fingerprint matching algorithms are proposed in the research literatures, 

e.g., local structure matching [47], [48], Hough Transform [36], Error Propagation 
[49], Energy based matching [50], Hidden Markov matching [51],  and Correlation 
based matching [37], [52]. All of these methods can be classified into two categories: 
minutiae-based and texture-based. Two fingerprint matching systems based on 
minutiae matching are developed: the first uses Hough transform-based matching 
while the other uses our own algorithm. They are combined with the top-view finger 
image matching system as described in section 2.2.20.  
 

2.2.12 Hough transform-based minutiae matching (HTMM) 
This algorithm was proposed by Ratha et al. [36]. It tries to find the best 

transformation parameter (e.g. translation and rotation) between the input and the 
template minutiae. Each discretized transformation estimation is stored in an 
accumulator array, and the translation and rotation parameter are obtained by detecting 
the highest peak in the array. Since this algorithm uses an accumulator array in a 
similar way to a typical Hough transform, this algorithm is called Hough transform 
minutiae matching (HTMM). The details of this algorithm can be found in [1].  

HTMM executes quickly but with low accuracy tolerances (compared to the 
other minutiae matching algorithms). Work by Prabhakar and Jain [5] confirm these 
characteristics. 

 
  2.2.13 Our proposed minutiae-based fingerprint matching (SMM) 
  Minutiae matching can be summarized by the following steps: 
1) Let Z and R be the minutiae sets for the template and the input fingerprint,  

 
 
 
 
 
 

 
 

2) A score table of size z×r is created, with all its values set to zero. z and r are the 
number of minutiae in Z and R, respectively. 

3) Execute the algorithm shown in Figure 2.20.  
 
 

1 1 1{( , , ),..., ( , , )}Z Z Z Z Z Z
z z zZ x y x yθ θ=

1 1 1{( , , ),..., ( , , )}.R R R R R R
r r rR x y x yθ θ=
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Two minutiae are paired if and only if their direction distance and spatial 
distance are less than threshold values. The derived matching score is the number of 
matched minutiae between the input fingerprint and a templates. Because of its 
simplicity, this algorithm is called SMM (Simple Minutiae matching). The two 
distance values between minutiae (xR, yR, θ R) and (xP, yP, θ P) can be calculated using 
formula 

 

 2 2( ) ( )R P R Psd x x y y= − + −  (2.31) 
and 
 ( )min , 2R P R Pdd θ θ π θ θ= − − −  (2.32) 
where sd denote the spatial distance and dd represents for the direction distance.  
 

for i=1 to z 
      for j=1 to r 
      { 
 find the translation vector (∆x, ∆y)T 

0 0 0

RZ
ji

Z R
i j

xxx
y y y

⎡ ⎤⎡ ⎤∆⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥∆ = − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

            translate all minutiae in R , storing the result in A 

0

A R

A R

A R

x x x
y y y
θ θ

⎡ ⎤ ⎡ ⎤ ∆⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + ∆⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 

for (∆θ  =  -Φ ;  ∆θ ≤Φ;   ∆θ += λ) 
       R* is the rotated version of  all minutiae in A using: 

*

*

*

cos sin 0
sin cos 0
0 0 1

R A

R A

R A

x x
y y

θ θ
θ θ

θ θ

⎡ ⎤ ⎡ ⎤∆ − ∆⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= ∆ ∆⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 

 Let pairS θ∆ be the number of paired minutiae between R* and Z 

score_table[i,j] = arg max pairS θ

θ

∆

∆
 

      } 
      

,
_ arg max _ [ , ]btm i j

matching score score table i j=  

Figure 2.20. Our SMM algorithm 
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2.2.14 Fingerprint preprocessing  
In this thesis, the quality of the fingerprint image is enhanced using the 

algorithm proposed by Hong et al. [12]. The main steps of the algorithm are as 
follows:  
1) Normalization: Let I(i, j) and G(i, j) denote the pixel intensity value of the input 

and output image of the normalization process respectively. M and VAR denote the 
estimated mean and variance of the input fingerprint I. The clarity of the 
fingerprint ridge structure is enhanced by applying the pre-specified mean M0 and 
variance VAR0 to the input image I using the formula: 

 

 

( )

( )

2
0

0

2
0

0

( , )
if ( , )

( , )
( , )

otherwise.

VAR I i j M
M I i j M

VARG i j
VAR I i j M

M
VAR

⎧ −⎪ + >
⎪= ⎨
⎪ −

−⎪
⎩

 (2.33) 

2) Ridge orientation estimation: The normalized image is divided into blocks of size 
w×w (16×16). A local ridge orientation of each block center is estimated using the 
algorithm described in section 2.2.15 and the orientation image, O, is created. 
Although the process to derive the ridge orientation is obtained at block level, but 
the orientation image is defined at pixel level.  

3) Ridge frequency estimation: The local ridge frequency of each image block is 
calculated using the algorithm described in section 2.2.16 and the ridge frequency 
image is created. As with the orientation image, the ridge frequency image is also 
defined at a pixel level. This value will be used in the filtering process and for 
segmenting the input image using a region mask.  

4) Region mask estimation: Each input image block of size w×w must be classified 
into a recoverable or an unrecoverable block. This information will be used in the 
filtering process and feature extraction. A mask value of each block centered at 
pixel (i, j) is set to 255 (indicating as a recoverable block) if the ridge frequency of 
the corresponding block lies between 1/3 and 1/25; otherwise, the mask value is set 
to zero (indicating an unrecoverable block). This region mask is defined at the 
pixel level. 
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5) Filtering: A bank of Gabor filters is applied to the normalized fingerprint image. In 
this process, the input is a grayscale image, and the output is a signed 16-bit image. 
The purpose of this process is to perform low-pass filtering along the ridge 
orientation while performing band-pass filtering along the direction orthogonal to 
the ridge orientation [53].  

 
 2.2.15 Fingerprint orientation image [12] 
 An orientation image shows the local ridge orientation of each image block. 
This image is obtained as follows   
1) The normalized image, G, is divided into blocks of size w×w.  
2) The gradient ∂x(i, j) and ∂y(i, j) of G(i, j) is calculated. To reduce the 

computational time, the simple Sobel operator is used in this thesis. 
3) The local orientation of each block centered at pixel (i, j) is estimated using the 

following formula: 

 
2 2

2 2

( , ) 2 ( , ) ( , )

w wi j

x x y
w wu i v j

V i j u v u v
+ +

= − = −

= ∂ ∂∑ ∑  (2.34) 
 

 ( )
2 2

2 2

2 2

( , ) ( , ) ( , )

w wi j

y x y
w wu i v j

V i j u v u v
+ +

= − = −

= ∂ − ∂∑ ∑  (2.35) 
 

 1 ( , )1( , ) tan
2 ( , )

x

y

V i ji j
V i j

θ −
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.36) 
 

where θ(i, j) represents the computed ridge orientation of each block. Note that the 
ridge angle of 225° and 45° are not different. For this reason, the value of θ(i, j) 
ranges from 0° to 179°.  

4) The orientation field is modified using a low-pass filter to reduce the effect of 
noise and ridge turbidity. Before low-pass filtering, the orientation image is 
converted into a continuous vector field, which is defined as follows: 

 

 ( )( , ) cos 2 ( , )x i j i jθΦ =  (2.37) 
 ( )( , ) sin 2 ( , )y i j i jθΦ =  (2.38) 
 

 
 



 
 

37 

Low-pass filtering is applied to each x and y component of Φx and Φy. The filtered 
result, x′Φ and y′Φ are defined as follows:  
 

 ( ) ( )
/ 2 / 2

/ 2 / 2
( , ) , ,

w w

x x
u w v w

i j W u v i uw j vw
Φ Φ

Φ Φ=− =−

′Φ = Φ − −∑ ∑  (2.39) 

 ( ) ( )
/ 2 / 2

/ 2 / 2

( , ) , ,
w w

y x
u w v w

i j W u v i uw j vw
Φ Φ

Φ Φ=− =−

′Φ = Φ − −∑ ∑  (2.40) 
 

where W is a two-dimensional low-pass filter of size wΦ×wΦ , because the ridge 
orientation is obtained at a block level, this filter is applied to x′Φ and y′Φ at block 
level.  
 

5) A filtered ridge orientation is obtained using the formula: 
 

 1 ( , )1( , ) tan
2 ( , )

y

x

i j
O i j

i j
−

′Φ⎛ ⎞
= ⎜ ⎟′Φ⎝ ⎠

 (2.41) 
 

 
Figure 2.21. Oriented window and x-signature [12]. 
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2.2.16 Fingerprint ridge frequency image [12] 
 The local ridge frequency is the reciprocal of the average inter-ridge distance in 
the respective block of the fingerprint image. In a grayscale fingerprint image, a local 
block, where no minutiae appear, contains a sinusoidal wave along the direction 
orthogonal to the fingerprint ridge. The steps to obtain the frequency image are as 
follows: 
1) The orientation image, O, is divided into blocks of size w×w. 
2) An oriented window of size l ×w is computed from each block. The orientation 

window centered at (i, j) is extracted for the x-signature X[0].. X[l-1] using: 
 

1

0

1[ ] ( , )
w

d
X k G u v

w

−

=

= ∑  0,1,..., 1k l= −    (2.42) 
where u is obtained from 

 cos sin
2 2
w lu i d kθ θ⎛ ⎞ ⎛ ⎞= + − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (2.43) 

 
 

and v is calculated from 
 cos sin .

2 2
l wv j k dθ θ⎛ ⎞ ⎛ ⎞= + − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (2.44) 

 
3) Let T(i, j) denote the average of the number of pixels between the two 

consecutive valleys in the x-signature, then the local ridge frequency, Ω(i, j) 
can be obtained from 

 1( , )
( , )

i j
T i j

Ω =  (2.45) 
 

As shown in Figure 2.22, any pixel in the oriented window of size l×w can be 
accessed using a location (u, v). The parameters u and v can be obtained using  
 

 u i a b= − +  (2.46) 
 ( )v j m g= − +  (2.47) 
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                                                                                                                                                  (a)        
 
 
                                            
 
 
 
 
 
 
 
 
 
 
 
                                                                                                  

                                                                                                                                              (b)       
Figure 2.22. The derivation of the coordinate (u,v) from the oriented window of size 
l×w: (a) the derivation of value u; (b) the derivation of value v. 
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From Figure 2.22(a), the parameters a and b of equation 2.46 are obtained 
using 
 

 sin
2
la k θ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (2.48) 

 cos
2
wb d θ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (2.49) 

 From Figure 2.22(b), the parameters m and g of equation 2.47 are obtained 
using 
 

 sin
2
wm d θ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (2.50) 

 cos
2
lg k θ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (2.51) 

 

 The substitution of equations 2.48 and 2.49 into equation 2.46 yields equation 
2.43.  The substitution of equations 2.50 and 2.51 into equation 2.47 yields equation 
2.44.  
 

2.2.17 Fingerprint filtering using Gabor filter [12] 
 The Gabor filter is a directional filter where users can select the orientation of 
filtration. When used with fingerprints, the two dimensional Gabor filter performs low-
pass filtering along the ridge orientation while performing band-pass filtering along the 
direction orthogonal to the ridge orientation [53]. To apply Gabor filters to a 
fingerprint image, three parameters are required: 

1) the frequency of the sinusoidal wave form, 
2) the filtration orientation, and 
3) the standard deviation of the Gaussian envelope along x and y axes. 
Let G be a normalized fingerprint image, h be an even-symmetric Gabor filter, 

R be the region mask image, O be the orientation image, and F be the frequency 
image. The output of the Gabor filter, E, is derived using the formula:  

   
   

(2.52) 
  

where wg is the size of the Gabor filter.  
 

( )
/ 2 / 2

/ 2 / 2

255 if ( , ) 0
( , )

, : ( , ), ( , ) ( , ) otherwise
g g

g g

w w

u w u w

R i j
E i j

h u v O i j F i j G i u j v
=− =−

=⎧
⎪= ⎨ − −⎪
⎩

∑ ∑



 
 

41 

An even-symmetric Gabor filter has the general form 
 

 ( )
2 2

2 2

1( , : , ) exp cos 2 ,
2 x y

x y
h x y f fxφ φ

φφ π
δ δ

⎧ ⎫⎡ ⎤⎪ ⎪= − +⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (2.53) 

 cos sin ,x x yφ φ φ= +  (2.54) 
 sin cos ,y x yφ φ φ= − +  (2.55) 

 

where φ  is the orientation of the Gabor filter, f is the specified frequency, and 
δx and δy are the space constants of the Gaussian envelop along the xφ and yφ axes, 
respectively [53]. Choosing the values δx and δy is a trade-off, large values yield more 
noise reduction but allow the possibility of spurious ridges and valleys occurring.   

 
2.2.18 Fingerprint feature extraction  

The use of Gabor filter enhances the clarity of the ridge and valley structures. 
However, the enhanced image must be converted into the binary image using a basic 
global threshold which is defined as 

 

 0 if ( , )
( , )

255 otherwise
p x y T

b x y
>⎧

= ⎨
⎩

 (2.56) 
  

where p(x, y) is the image after the Gabor filter has been applied and b(x, y) is 
the resulting binary image. A thinning operation must be applied to b(x, y) to obtain 
the skeleton of the ridge structure. The output of the thinning process is converted into 
m-connectivity [14], as shown in Figure 2.23. 
    
 
 
 
 
 
 
 

                                       (a)                                                                      (b) 
Figure 2.23. a) fingerprint ridges after thinning operation,   

b) after converted to m-connectivity. 
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Each minutia comprises three parameters: type, direction, and location. To 

obtain the location of each minutia, a feature extraction window of size 3×3, shown in 
Figure 2.24, is moved throughout the thinned image. Let M is the point of interest 
which is white pixel, and N1, .., N8 are its surrounding pixels. M is considered a 
location of termination point if number of its surrounding white pixels equals to 1. On 
the other hand, if number of surrounding white pixels is equal to 3, then M is the 
location of a bifurcation point. 

 
 

 
 
 
 

Figure 2.24. Minutiae extraction window 
 

To obtain the direction of a termination minutia, line following is performed on 
the ridge line starting from the termination point (xt, yt) until ε pixels have been visited. 
Let (xs, ys) be the stop point of the line following operation, the termination minutiae 
direction, denoted θt, can be calculated using 

 

 1tan ( ).s t
t

s t

y y
x x

θ − −
=

−
 (2.57) 

  
The process of deriving the direction of bifurcation is more complex than that 

of the termination minutia. If we have a look at a bifurcation point, there are 3 ridge 
lines directed outward 3 different directions. The problem arises because we need to 
find which direction is appropriate to be used as the bifurcation direction. Figure 
2.25(a) shows that direction D1 is better than the other two directions because A1 is the 
only acute angle while the other two angles, A2 and A3, are the obtuse angles. To find a 
bifurcation direction, the algorithm works as follows: 

 
 
 
 

N1 N2 N3

N4

N5N6N7

N8 M
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1 {2,3} {1,2} {2,3} {3,1}

2 {3,1} {1,2} {3,1} {2,3}

3 {1,2} {3,1} {1,2} {2,3}

if ( ) and ( )

if ( ) and ( )

if ( ) and ( )
d

P L L L L

P P L L L L

P L L L L

⎧ < <
⎪

= < <⎨
⎪ < <⎩

1) Ridge line following is performed outward from the bifurcation point for η pixels 
in each direction. Let P1, P2 and P3 stand for the stop points of each direction of 
ridge line following and L{i,j} stand for the line started from point Pi to Pj, then the 
shortest path among these 3 points is obtained using 

 
 Lmin = min(L{1,2}, L{2,3}, L{3,1}) (2.58) 

 
2) Find the destination point, denoted Pd, using the following condition 
 

 
  (2.59) 
 
 

3) Let (xd,yd) and (xb,yb) be the coordinates of the destination point and bifurcation 
point respectively, the bifurcation direction, denoted θb,  is calculated from 

 
(2.60) 

 
 
 
 
 
 
 
Figure 2.25. (a) three ridge lines directed outward from the bifurcation point; (b) the 
most suitable direction to be used as a bifurcation direction. 
 

2.2.19 Fingerprint post-processing 
 Although good preprocessing algorithms are used in the system, spurious 
minutiae may occur if the input fingerprint has low quality or too much noise. Post 
processing is required to remove as many spurious minutiae as possible, while 
preserving real minutiae. Figure 2.26 shows the steps of the post processing, the steps 
in sections 2.2.19.1-2.2.19.2 deal with the fingerprint image pixel directly while the 
steps in section 2.2.19.2-2.2.19.4 deal with the minutiae set already extracted from the 
fingerprint image. 
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Figure 2.26. Flowchart of the fingerprint minutiae post-processing. 
 

2.2.19.1 Small intra-ridge holes deletion 
 In the preprocessing, the use of a Gabor filter effectively reduces the noise, 
however, in some cases, small black residues may remain within the white ridge line, 
as shown in Figure 2.27. When thinning is applied to these ridges, an island may occur 
which leads to spurious minutiae. To reduce this effect, all pixels in the black contours 
with an area lower than a threshold value will be changed to white, this process must 
be applied to the fingerprint image before the thinning process. 
 
 
 
 
                                                         

  
                                                                  (a) 
 
 
 
 
                                                                  (b) 
Figure 2.27. The comparison of the fingerprint ridge before and after small black hole 
deletion (a) the ridge shape before small black hole deletion (left) and its thinned 
version (right);  (b) the ridge shape after small black holes are deleted (left) and its 
thinned version (right). 

fingerprint image after applying
Gabor filter

spurious spurs deletion

too close bifurcations deletion

spurious termination deletion

too close minutiae deletion

Small intra-ridge holes deletion
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  2.2.19.2 Spurious spurs deletion 
  When the thinning operation is performed upon a ridge line that is not of 
uniform thickness, spurs may occur, this leads to two spurious minutiae: termination 
and bifurcation. A morphological pruning operation [14] can be used to eliminate the 
spurs but with the side effect that some pixels at the end of the ridge line might be 
deleted. This means that the accuracy of the system might be affected by the 
translation of the termination minutia. In this thesis, spurious spurs are removed using 
the following steps: 
 
1) Let M be the minutiae set that contains the set of bifurcation B and termination T. 

M = {B, T} 
B = {B1, B2, ..., Bn} 
T = {T1, T2,.., Tk) 

2) For each bifurcation Bi, if all three neighborhood ridge pixels are found around the 
bifurcation point, continue with step 3, otherwise, check the next bifurcation point. 

3) Ridge line following is performed outward from the bifurcation point for ϖ pixels 
in every direction. The value ϖ  is derived from the local inter-ridge distance. If a 
ridge break is found before ridge line following is completed, all traced ridge 
pixels in that direction are deleted. 

4) Steps 2 and 3 are repeated until all bifurcation points in M have been checked. 
5) All minutiae in M are deleted before minutiae extraction is reapplied to the spur 

deleted image. The new minutiae in M are ready to be processed in section 
2.2.19.3. 

 
 
 
 
 
 

 
 

Figure 2.28. Fingerprint image before spur deletion (left) and after spur deletion 
(right). 
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2.2.19.3 Spurious bifurcation deletion 
 The alignment of ridge lines in some cases leads to a cluster of very close 
bifurcations. Figure 2.29 shows a case where two additional bifurcation points are 
detected near a real bifurcation point. Deleting all close minutiae would result in the 
real minutia vanishing. The objective is to delete all, and only, the unnecessary 
minutiae. Spurious bifurcation deletion is carried out as follows: 
1) Let B is the set of bifurcations where B = {B1, B2, ..., Bn}. Bi is the bifurcation point 

of interest selected from B. 
2) All bifurcations around Bi that are less than 3 pixels from Bi are deleted from B. 
3) The next bifurcation is selected from B, step 2 is repeated until all bifurcation 

points in B are checked. 
 
 
 
 
  
 

Figure 2.29. Example of two spurious bifurcations around the real bifurcation. 
 
  2.2.19.4 Spurious termination deletion 

Spurious termination points arise at the joint between the fingerprint area and 
the background of the fingerprint image, as shown in Figure 2.30(b). Since these 
terminations are not real ones, but occur from the limitations of fingerprint image 
acquisition of each sensor, spurious terminations are removed using the algorithm 
modified from Farina et al. [13]. The process is carried out as follows: 
1) The local ridge distance, denoted ξ, around the termination point of interest is 

measured. 
2) Ridge line following is performed from the termination point for 0.5ξ. 
3) Line following is continued for 1.5ξ, as shown in Figure 2.30(a) then neighboring 

ridges are searched orthogonally to the termination direction, if 2 sandwich ridges 
are found, continue with step 4, otherwise,  that termination point is deleted. 

4) Each detected ridge from step 3 is traced for 3ξ in the same direction as the 
termination of interest. If a ridge break is reached before tracing is completed, that 
termination is invalidated. 
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                                                                        (a) 
 
 
 
 
 
 
 
 
                    (b)                                                  (c) 
Figure 2.30. (a) direction of line following to detect spurious termination point; 
(b) before removing spurious termination points; (c) after spurious termination points 
have been removed. 
 
  2.2.20 Decision Fusion 
  Decision fusion results in an improvement in matching accuracy when the top-
view matcher gives the wrong result while the bottom-view matcher gives the right 
one, or vice versa. To combine the 2 biometric features, the decision fusion is done at a 
confidence level. Figure 2.31 shows the block diagram of our implemented system, the 
decision is not performed at the two matchers. This means that the top-view and 
bottom-view matchers only send the matching scores to the fusion module and the 
decision is made in this module. 
 
 
 
 

3ξ

1.5ξ

3ξ
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Figure 2.31 Decision fusion between the Top-View and fingerprint matcher 

 
  Suppose that the input top-view and botom-view images are to be classified 
into imposter class, ω1, or genuine class, ω2. Suppose that x1 is the distance derived 
from the top-view matcher and x2 is the matching score from the bottom-view matcher.  
  The design goal of the biometric system depends on its application. In high 
security access applications, a low value of false acceptance rate (FAR) is required 
while forensic applications need a low value of false rejection rate (FRR). Our design 
goal is to minimize both FAR) and FRR. However, it is difficult to get an extremely 
low value for these two rates at the same time. So the approach that most designers 
choose to implement the system is to minimize the equal error rate (EER: the point 
where the system has FAR equals to FRR) [1]. 
  If the top-view feature alone is used to verify a person, the FAR and FRR can 
be computed using:  
 1 1 1( | )ω

−∞

= ∫
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topFAR p x dx  (2.61) 
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In contrast, if the bottom-view feature alone is used to verify a person, the FAR 
and FRR values can be calculated using: 
 2 1 2( | )ω

∞

= ∫
btm

btm
th

FAR p x dx  (2.63) 
 

 2 2 2( | )ω
−∞

= ∫
btmth

btmFRR p x dx  (2.64) 
 

  The values thbtm and thtop are threshold values set at the top-view and bottom-
view matcher, respectively. Equations 2.61-2.64 state that the threshold values of both 
top-view and bottom-view matchers have an effect on the FAR and FRR. When the 
threshold value is adjusted to increase the FAR, the FRR is decreased, and vice versa. 
 The final decision of the fusion module in Figure 2.31 is made using: 
 

 1

2

if ( )
decision

otherwise.
ω β
ω

≤⎧
= ⎨

⎩

L  (2.65) 
 

The likelihood ratio, L [5], [54],  can be calculated using: 
 

 1 2 2

1 2 1

( , | ) .
( , | )

ω
ω

=
p x xL
p x x

 (2.66) 
 

  If L is high, then the input data is more likely to come from the genuine class. 
The input is decided to come from the genuine class if L>β, where β is an empirically 
determined threshold value. The joint probability in equation 2.66 is difficult to obtain 
directly from training data, but by assuming that each xi is statistically independent, the 
joint probability density function can be estimated using: [54] 
 

(2.67) 
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2.3     Materials and Equipments 
 1. A 2.4 GHz Pentium4 Microcomputer, 2 GBytes RAM. 
 2. C++ Compiler. 
 3. OpenCV library Version 1.0. 
 4. Creative VF0080 CCD camera:  

- 640×480 CMOS sensor. 
- Video frame rate at up to 30 frames per second. 

 5. Digital Persona UareU4000B fingerprint sensor: 
- Optical based sensor. 
- 8-bit grayscale image output. 
- Resolution 512 dpi. 
- Scan capture area 14.6×12.1 mm. 

 
2.4 Summary 

This chapter discussed the theoretical background of the image processing, 
followed by the methods used to implement the system hardware and software. Details 
of the top-view finger image processing were elucidated. The fingerprint processing 
algorithms were also explained in this chapter. The next chapter reveals experimental 
results of the implemented system.  



CHAPTER 3 
EXPERIMENTAL RESULTS 

 
3.1     Top-View finger image acquisition  

The top-view finger image is obtained from a color CCD camera, with 
examples shown in figure 3.1. The top-view color image suffers interference from the 
red light illumination from the optical fingerprint sensor. This interference is omitted 
by selecting only the blue component from the obtained color image, which is used for 
creating an input grayscale top-view finger image in the top-view preprocessing steps.  
 

 
 
 
 
 

 
                          (a)                                         (b)                                   (c) 
 
 
 
 
 
 
 
                                                        (d)                                           (e) 
Figure 3.1 Top-View finger image obtained from CCD camera; a) color image; b) blue 
component; c) green component; d) red component; and e) grayscale top-view finger 
image. 
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 3.2     Top-view finger image processing and feature extraction 
 The resolution of the image derived from a Creative VF0080 CCD camera is 
640×480 pixels. The distance between the CCD camera and the fingerprint sensor is 
adjusted to acquire maximum detail of the finger, as shown in figure 3.2(a). The image 
is clockwise rotated by 90 degrees and then cropped to 326×480 pixels (see figure 
3.2(b)). The obtained image is now named TG as described in section 2.2.3.  

As a trial, the HTMM transform was applied to TG to detect the inclination of 
the finger. The OpenCV’s cvHoughLines2 function was used for this task. The Hough 
transform gives a good result, but suffered from taking a long computation time 
compared to the line fitting algorithm. For this reason, the line fitting algorithm has 
been used throughout the rest of our experiments.  

 
 
 
 
 
 
 
 
 
 
 
 

  (a)               (b)  
 

Figure 3.2. Top-view finger image acquisition; a) original image from the CCD 
camera; b) cropped and rotated image.  
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3.2.1 The parameters for top-view finger image feature extraction  
 As described in section 2.2.8, the NailCode is acquired by performing square 
tessellation of the top-view finger image. To obtain the best recognition accuracy using 
this feature, appropriate values of the three parameters of equation 2.27 must be 
evaluated:  

1) the width of each square cell w.  
2) the number of tessellated rows H.  
3) the number of tessellated columns V.   
To find appropriate values of these three parameters, 800 top-view finger 

images from 100 different fingers, with eight images per individual, were collected. 
One image from each individual was employed for enrolment. The remaining images 
were used to test the recognition accuracy. This means that there were 700 test images 
in the database. The reference point of each top-view finger image was manually 
defined.  

First, several values of w were tried. Each top-view finger image was 
tessellated using H and V of size 10 and 14, respectively. Table 3.1 indicate that the 
best value of w is 15.  

 
Table 3.1. The system accuracy according to each value of window size (w).  

Window Size(pixel) correct incorrect accuracy  
9 527 173 75.29 

11 629 71 89.86 
13 662 38 94.57 
15 669 31 95.57 
17 668 32 95.43 

 
Next, the appropriate value for V was sought. Table 3.2 shows that the best 

value of V is 15. Table 3.3 reveals that the best value of H is 10.  
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Table 3.2. The system accuracy according to each value of V. 
Number of window  
in vertical axis (V) 

Correct Incorrect Accuracy 

11 653 47 93.29 
12 668 32 95.43 
13 668 32 95.43 
14 669 31 95.57 
15 671 29 95.86 
16 670 30 95.71 
17 667 33 95.29 
18 666 34 95.14 

 
Table 3.3. The system accuracy according to each value of H.  

Number of window  
in horizontal axis(H) Correct Incorrect Accuracy 

6 657 43 93.86 
7 670 30 95.71 
8 670 30 95.71 
9 668 32 95.43 

10 671 29 95.86 
11 665 35 95.00 
12 662 38 94.57 
13 655 45 93.57 
14 653 47 93.29 

 
 
 
 3.2.2 Fine-tuning to get the best parameter of the top-view finger image 

preprocessing and feature extraction 
 As described in section 2.2.3, an adaptive threshold is applied to the grayscale 
top-view finger image to obtain its two-color version. Different window sizes for 
adaptive threshold give different results for the binarized image, as shown in figure 
3.3. However, it is difficult to select an appropriate value for this parameter by 
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observing the result of a threshold with the naked eye. Instead we measure the class 
separation (CS) statistic [5] between the imposter and genuine class for various sizes 
of the adaptive threshold window. The window size that gives maximum value of the 
class separation is accepted as the best parameter. 
 As previously described in section 2.2.20, the symbols ω1 and ω2 represent the 
imposter and a genuine classes, respectively. The CS statistic measures how well the 
two classes are separated with respect to the feature vector, X d, in a d-dimensional 
space, Rd, is defined as [5] 
 1 2( ) ( | ) ( | ) d

d

d d d

R
CS X p X p X xω ω= −∫  (3.1) 

  
 In order to get  the class separation, the genuine and imposter distribution of a 
top-view matching score must be obtained. To attain both distributions, images of 200 
fingers are randomly selected from the database of section 3.4. At total of 278,600 
(200*199*7) matches were evaluated to estimate the imposter distribution, and 1,400 
(200*7) matches were examined to approximate the genuine distribution.   
 To find the best value of the adaptive threshold’s window size, the class 
separation with the window size set to 13, 15, 17, 19, 21, 23, and 25 were measured. 
As shown in table 3.4, the adaptive threshold with the window size of 17 gives the best 
class separation because it gives the largest value of CS. 
 
Table 3.4 The class separation of a system for different sizes of an adaptive threshold’s 
window. 

Window Size CS 
11 1.109 

13 1.404 

15 1.412 

17 1.474 

19 1.254 

21 1.157 

23 1.004 

25 0.801 
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(a)                                   window size = 15          window size = 19         window size = 25                    
 
 
 
 
 
 
 
 
 
 

(b)                                   window size = 15          window size = 19        window size = 25                     
 
 
 
 
 
 
 
 
 
(c)                                   window size = 15          window size = 19         window size = 25                    
 
Figure 3.3.  The binarized version of the top-view finger images due to different 
window size of an adaptive threshold; (a) finger with low detail of skin wrinkle; (b) 
finger of medium detail of skin wrinkle; (c) finger with high detail of skin wrinkle. 
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3.2.3 Top-view reference point location error and system accuracy 
If the derived reference point location is incorrect, then the identification 

accuracy will be affected. Table 3.5 shows that an increasing reference point location 
error significantly reduces identification accuracy. The table was obtained by trying to 
tessellate the filtered image with the translated version of the reference point. This was 
done by moving the reference point with the distance, δ, in eight directions. 

 
Table 3.5. Identification accuracy of person recognition with different reference-point 
location errors. 

Reference point error δ (in pixels) Identification accuracy (percent) 
0 96.57 
5 89.10 
8 78.00 
10 65.90 
12 51.90 

   

  To test the effect of a reference point location error, 800 top-view finger 
images that were used to test the system in section 3.2.1 were utilized, and a proposed 
automatic reference point detection algorithm was tested with these images. Table 3.6 
shows that only 6 test images were rejected by the proposed reference point detection 
algorithm. When a manually defined reference point was used, the identification 
accuracy was 96.57 percent, which dropped to 73.78 percent when only a single 
automatic reference point, R0, was used. Table 3.6 shows that additional points R1-R8, 
improved the accuracy of the system dramatically, especially when δ was 9 or 10 
pixels. In those cases, the identification accuracy was 93.80 percent. 
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Table 3.6. Identification accuracy with different reference point markings. 
Reference point marking method Reject Accuracy 
Manual 0 96.57 % 
Automatic using R0 alone 6 73.78 % 
Automatic using R0-R8 (δ =5) 6 87.03 % 
Automatic using R0-R8 (δ =8) 6 92.51 % 
Automatic using R0-R8 (δ =9) 6 93.80 % 
Automatic using R0-R8 (δ =10) 6 93.80 % 

 
3.3     Top-view finger image and time variances 

It is well known that the wrinkles of the skin on the finger will increase over 
time. Images of ten different fingers captured 990 days after the day of their enrolment 
(see figure 3.4) have been tested to investigate the effect of time variances to the result 
of a NailCode matching. All of the later versions of the top-view finger images can 
still correctly be identified.  

 
 

 
 
 
 
 
 
 
 
 
 
                                                  (a)                        (b) 
Figure 3.4. Finger image captures at different times: (a) the initial image;  
(b) the same finger captured after 990 days had passed. 



 
 

59 

3.4     Test database of the top-view finger images and fingerprints  
 The test database was collected from 800 different fingers. A snapshot of a 
finger comprises both top and bottom-views. Eight snapshots were collected for each 
finger: one was added to the database while the other seven were used to test system 
performance. This means that the test database comprises 6,400 (800*8) snapshots. 
This database will be used to test the system performance which will be described in 
sections 3.7-3.8.  
 
3.5     Fingerprint preprocessing  
 The resolution of the 8-bit grayscale fingerprint derived from the sensor is 
466×510 pixels. The image is first normalized and the orientation field is estimated. A 
low-pass filter is applied to the orientation field obtained to reduce the effect of noise. 
Various sizes of low-pass filter has been tested, as shown in figures 3.5 and 3.6. When 
applied with a good quality fingerprint, filters of size 3×3 and 5×5 give unnoticeably 
different results, however, a filter of size 5×5 gives better smooth orientation field. A 
filter of size 7×7 has been tried; however, it smoothes too much so the acquired 
orientation around the tented arch tends to lose detail. For this reason we chose to use a 
low-pass filter of size 5×5 for the rest of our experiments.  
 After the fingerprint orientation is acquired, the x-signature of each image 
block is estimated to find the local ridge frequency. An area of the fingerprint where 
no minutiae appear gives a nearly sinusoidal shape wave of x-signature, however an 
area with no fingerprint ridge gives a rectangular shape wave, as shown in figure 3.7. It 
is noted that the sign of the image intensity has both positive and negative values 
because the format of the normalized image is signed 16-bit. The average number of 
pixels between the two consecutive valleys in the x-signature is used for estimating the 
local ridge frequency. The minutiae mask image, as shown in figure 3.8, is created 
from the ridge frequency image. The image area where the frequency ranges from 1/3 
to 1/25 gives the minutiae mask value of 255 (indicating a usable area), otherwise, the 
minutiae mask of that area will be set to 0 (indicating a non-usable area). 
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                                       (a)                                                                    (b) 
 
 
 
 
 
 
 
 
 
 

(c) (d) 
Figure 3.5.  Results of the fingerprint orientation field due to different wΦ of the low 
pass filter:  (a)  image of good quality;  (b) orientation field before smoothing;           
(c) orientation field after smoothing with a low-pass filter of 3×3;  (d)  orientation field 
after smoothing with a low-pass filter of 5×5.  
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                                        (a)                                                                    (b) 
 
 
 
 
 
 
 
 
 
 
 
                                       (c)                                                                    (d) 
 
Figure 3.6.  Results of the fingerprint orientation field due to different wΦ of the low 
pass filter:  (a)  image of poor quality;  (b) orientation field before smoothing;                  
(c) orientation field after smoothing with a low-pass filter of 3×3;  (d)  orientation field 
after smoothing with a low-pass filter of 5×5.  
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                                                                                                                           (a) 
                    
 
  
                                                                                                                           (b) 
 
 
 
              
            (c)   
Figure 3.7.  X-signature due to different regions of fingerprint: (a) where a ridge 
ending was found; (b) where no ridge line appears;  (c) where no minutia appear.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8. The fingerprint image (left) and the obtained minutiae mask image (right). 
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 When the fingerprint is manipulated by a Gabor filter, the parameters δx and δy 
must be defined. As shown in figures 3.9-3.11, larger values for these parameters give 
better noise reduction but with increased possibility of the occurrence of spurious 
ridges and valleys. After testing with number of fingerprint images, these values are 
empirically set to 20.  
 After the Gabor filter is applied to the fingerprint, a thresholding process is 
needed to convert the obtained 16-bit signed image to the binary version. Figures 3.12-
3.14 demonstrate the results of different threshold values on three different qualities of 
fingerprint images. The threshold value is empirically set to -400. 

In the preprocessing steps, the Gabor filter requires much computation time 
because it re-computes the trigonometric functions ( cos andsinφ φ ) for every pixel of 
the filtering process, as described in section 2.2.17. The value φ  is the obtained ridge 
orientation of the respective processing area, however, since φ is defined at blockwise 
level, it is not necessary to re-calculate these trigonometric functions every time when 
processing the image at the pixel level. By calculating these trigonometric functions 
only once for each local image block, the required computation time is substantially 
reduced. As shown in table 3.7, the improved version of the Gabor filter runs 
approximately 44 times faster than the original one.  
 
Table 3.7.  Result of computation time required by each type of Gabor filter. 

Filter type Average computation time 
Conventional Gabor filter 2.726 seconds 
Improved Gabor filter 0.062 seconds 

 
3.6     Fingerprint post-processing 
 After preprocessing and feature extraction, post-processing steps are required. 
Figures 3.15-3.17 demonstrate the results of each post-processing step done to an input 
image of poor quality. It is noted that most of the false minutiae are deleted, however, 
the post processing steps also delete some real minutiae, but this happens at a very low 
rate.  
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tst 
 
 
 
 
 
 
 
 
 
                                     (a)                                                                (b) 
 
 
 
 
 
 
 
 
 
 
 

 (c) (d) 
 
Figure 3.9. Result of the fingerprint image manipulated by a Gabor filter with different 
δx and δy values:  (a) original gray scale fingerprint of good quality;  (b)  after filtered 
with of δx and δx of 12;   (c)  after filtered with of δx and δx of 20; ;  (d)  after filtered 
with of δx and δx of 30. 
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                                     (a)                                                                (b) 
 
 
 
 
 
 
 
 
 
 
 
                                     (c)                                                                (d) 
 
Figure 3.10. Result of the fingerprint image manipulated by a Gabor filter with 
different δx and δy values:  (a) original gray scale fingerprint of poor quality;  (b)  after 
filtered with of δx and δx of 12;   (c)  after filtered with of δx and δx of 20; ;  (d)  after 
filtered with of δx and δx of 30. 
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                                     (a)                                                                (b) 
 
 
 
 
 
 
 
 
 
 
 

                                     (c)                                                                (d) 
 
Figure 3.11. Result of the fingerprint image manipulated by a Gabor filter with 
different δx and δy values:  (a) gray scale fingerprint of non-uniform pressure of the 
finger;  (b)  after filtered with of δx and δx of 12;   (c)  after filtered with of δx and δx of 
20; ;  (d)  after filtered with of δx and δx of 30. 
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                                     (a)                                                                (b) 
 

 
 
 
 
 
 
 
 
 
 
                                     (c)                                                                (d) 
 
Figure 3.12. Result of the binarized fingerprint image due to different threshold values:  
(a) original gray scale fingerprint of good quality;  (b)  after binarized using threshold 
value of -800;   (c)  after binarized using threshold value of -400;  (d)  after binarized 
using threshold value of  0. 
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 (a)                                                                (b) 
 
 
 
 
 
 
 
 
 
 
 (c)                                                                (d) 
 
Figure 3.13. Result of the binarized fingerprint image due to different threshold values:  
(a) original gray scale fingerprint of poor quality;  (b)  after binarized using threshold 
value of -800;   (c)  after binarized using threshold value of -400;   (d)  after binarized 
using threshold value of  0. 
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 (a)                                                                (b) 
 
                                                                            
 
 
 
 
 
 
 
 
 

 (c)                                                                (d) 
 
Figure 3.14. Result of the binarized fingerprint image due to different threshold values:  
(a) gray scale fingerprint of non-uniform pressure of the finger;  (b)  using threshold 
value of -800;   (c)  using threshold value of -400;   (d)  using threshold value of  0. 
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 (a)                                                                (b) 
 
 
 
 
 
 
 
 
 
 
 

 (c)                                                                (d) 
 
Figure 3.15. Result of the fingerprint post-processing steps:  (a) binarized fingerprint 
image; (b) after small black holes have been removed;  (c)  after small white ridges 
have been removed; (d) after thinning process.   
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 (a)                                                                (b) 
 
 
 
 
 
 
 
 
 
 
 
 (c)                                                                (d) 
 
Figure 3.16. Result of the fingerprint post-processing steps:  (a) m-connectivity type 
fingerprint image; (b) after spurs have been deleted;  (c)  minutiae extracted from spurs 
deleted image; (d) minutiae after fake termination points have been deleted.   
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           (a)      (b) 
Figure 3.17  Result of too close minutiae deletion;  (a) before deletion (b) after too 
close minutiae are deleted. 
 
3.7      Decision Fusion 
 As described in section 2.2.20, the top-view and bottom-view matching score 
distribution must be estimated to combine both top-view and bottom-view features 
together. To attain both distributions, images of 300 fingers were randomly selected 
from the database of section 3.4. A total of 627,900 (300*299*7) matches were 
evaluated to estimate the imposter distribution, and 2,100 (300*7) matches were 
examined to approximate the genuine distribution. As previously described in section 
2.2.20, the symbols ω1 and ω2 represent the imposter and the genuine class, 
respectively. x1 is the top-view matching score derived from top-view matcher and x2 is 
the matching score that comes from the bottom-view matcher. Figures 3.18 and 3.19 
show the estimated distribution of the bottom-view and top-view distributions 
respectively. 
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Figure 3.18. The estimated bottom-view matching score distribution. 
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Figure 3.19.  The estimated top-view matching score distribution. 
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3.8      System Performance 
Three matchers were implemented: (1) an HTMM matcher using the Hough 

transform-based minutia matching technique, (2) a SMM matcher utilizing our 
minutiae matching algorithm as described in section 2.2.13, and (3) a TopView 
matcher which employs the NailCode feature. The scores from these three matchers 
were combined to make a multimodal biometric system using the algorithm described 
in section 2.2.20.  
  

3.8.1 Performance in the verification mode 
The FAR and FRR values were plotted on a Receiver Operating Curve (ROC) 

to judge the performance of the system, as shown in Figure 3.20. The genuine 
acceptance rate can be obtained from ROC as 1-FRR. For the FAR, 4,474,400 
(800*799*7) matches were evaluated, and 5,600 (800*7) matches were exammed to 
find the FRR.  

The verification performance against three conditions was tested, with each 
condition using only one score from its respective matcher. There was no combination 
of these three systems. Figure 3.20 shows that the SMM matcher gives better accuracy 
than the other two matchers at every operating point. At low FARs, the TopView 
matcher gives higher accuracy than the HTMM matcher, but the HTMM matcher 
surpasses TopView at higher FAR values. 

The three matchers are combined into pairs, and the likelihood ratio was used 
to perform the decision fusion. System accuracy increased, as shown in Figure 3.21. 
The combination TopView+SMM gives the best accuracy. Also, the SMM matcher 
alone has better accuracy than a combination of TopView+HTMM at all operating 
points with FARs lower than 7%. Since biometric systems need to operate at a low 
FAR value, this made us decide to use our minutia matching algorithm to improve 
system accuracy in the identification mode.  
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Figure 3.20. Verification performance of individual matchers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.21. Verification performance of all combinations. 
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Finally, the matching scores of all three matchers are combined, 
TopView+HTMM +SMM. This outperformed all the paired matcher combinations at 
low FAR values, but for FARs greater than 2%, the TopView+SMM combination had 
lower rejection rates.  

The Equal Error Rate (EER) was used to measure the strength of performance 
gains. The TopView, HTMM and SMM matchers alone yield EERs of 3.91%, 3.80% 
and 1.86% respectively. The combinations of TopView+SMM, HTMM+SMM, 
TopView+HTMM yield EERs of 1.52%, 1.64% and 2.35%, respectively. The 
combination of all three matchers gives the best EER of 1.35%.  

As shown in Table 3.8, most of the computing time for the top-view finger 
image processing is spent on the preprocessing. While the NailCode matching process 
requires considerably low computation time. Average computing time used to perform 
verification for NailCode matching and Hough transform-based minutiae matching 
were 20 µs and 3.125 ms, respectively. The average time for performing verification 
using our SMM minutiae matching algorithm was 135.8 ms. This reveals that SMM is 
not suitable for directly searching the entire database because of its time-consuming 
behavior. However, due to its higher accuracy compared to TopView and HTMM, the 
SMM matcher will be used to improve personal identification accuracy. 
 
Table 3.8. Average computing time for one test on a 2.4 GHz Pentium 4. 

Source Process Computing time (ms) 
Preprocessing  193.95 
Feature Extraction     4.01 
Matching    0.02 

Top-view  
finger image 

Reference point detection  19.05 
Preprocessing 119.64 
Feature Extraction    1.68 
Post Processing 281.45 
Matching (Algorithm HTMM)    3.13 

Fingerprint 

Matching (Algorithm SMM) 135.80 
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3.8.2 Performance in the identification mode 
To evaluate the performance of the identification mode, the 800 finger samples 

in our database were divided into four databases of 200 samples each. A total of 
22,400 (800*7*4) identification operations were evaluated. When the system used a 
HTMM matcher alone its EER was 2.27%, while the TopView matcher’s EER was 
2.84%. 

The HTMM and SMM matchers were combined, but the likelihood ratio was 
not utilized. Instead, the HTMM matcher was used to match the input features against 
all the templates in the database to find the best ten finger details. The SMM matcher 
was then employed to re-verify these ten details to find the best match. Figure 3.22 
shows that this combination had an EER of 1.76%. 

When the three matchers are combined, the TopView matcher is used to verify 
the extracted input feature against all the templates in the database. The five best finger 
details from the TopView matcher were obtained and added to a candidate list. The 
HTMM matcher was also utilized to search the database to find the five finger details 
with the highest matching scores, and they were also put into the candidate list. The 
SMM matcher re-verified all the finger details in the list, and  the best match was 
found. This configuration had an EER of 1.64%. The Equal Error Rate of all 
experiments are summarized in Table 3.9. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.22 Performance in the identification mode.     
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Table 3.9. Equal Error Rate of the tested configurations.  
Mode of Operation Test Configuration EER(%) 

TopView 3.91 
HTMM 3.80 
SMM 1.86 
HTMM+SMM 1.64 
TopView+SMM 1.52 
TopView+HTMM 2.35 

Verification 

TopView+HTMM+SMM 1.35 
HTMM 2.27 
TopView 2.84 
HTMM+SMM 1.76 Identification 
TopView+HTMM+SMM 1.64 

 
The average computation time to perform 1:200 matches in the identification 

operation for the TopView and HTMM matchers was 4 ms and 625 ms, respectively. 
The SMM matcher required 1.358 seconds to perform 1:10 verifications in both the 
SMM+HTMM and the SMM+HTMM+TopView configurations. 
   

 
3.9      Summary 

This chapter begins with the experiments to find the best values of the top-view 
preprocessing and feature extraction parameters. Then the effect of a reference point 
location error to the system accuracy was revealed. The results of the reference point 
error compensation are reported. Three matchers were implemented and the 
performance of each matcher was evaluated. These three matchers were combined 
together and the performance of each combination was evaluated. The average 
computing time of the tested systems are also included in this chapter.  
 

 
 
 



CHAPTER 4 
CONCLUSIONS AND FUTURE WORK 

 
4.1     Discussions  

System accuracy is highly dependent on the precision of the reference point 
location: if it cannot be detected by the autonomous detection algorithm, then the input 
top-view image is rejected. The rejection rate of the proposed algorithm is 0.75 
percent. During the enrolment process, if the top-view finger image is rejected, then 
the user must re-enter the input feature. When the image is rejected during the 
authentication process, the next step depends on the particular system’s requirements. 
Re-entry is compulsory when both features are simultaneously required. On the other 
hand, if the top-view finger image is just an additional feature used to augment system 
accuracy, then a decision can be made when the bottom-view matcher gives a strong 
enough match.  

The average reference-point location error of the proposed algorithm is about 
10 pixels. This error can be reduced by our compensation method, but the NailCode 
matching time is increased by about 8 times compared to when only one reference 
point is utilized. However, the computation time required for NailCode matching is 
considerably less than for minutiae matching. 

Since the ROC curve gives the overall accuracy of the system at different 
thresholds, the selection of an appropriate threshold value for a specific system 
depends on its application. In very high security applications, a system with very low 
FAR is required at the expense of user convenience. Some genuine users with low 
matching scores may be rejected by the system, and re-authentication is mandatory. On 
the other hand, forensic applications require a low FRR to detect the criminal at the 
expense of investigating large numbers of falsely accepted users. Civilian applications 
need both low FAR and low FRR. The most appropriate operating point for civilian 
applications is the EER [56]. The ROC curves shown in figures 3.20-3.22 reveal that 
the combination of two or more matchers are more suitable for civilian and high 
security applications than for forensic applications because all the operating points of 
the combined system under the equal-error-line give better accuracy than a system 
before combination.   
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After combination, the NailCode feature reduces the verification error rate of 
the system by 17.68%. This value is obtained by comparing the results at the EER 
point between the HTMM+SMM and the HTMM+SMM+TopView configurations. In 
identification mode, the system error is reduced by 6.82%. NailCode improves the 
accuracy of the fingerprint matching system, while requiring very low computation 
times, and being able to operate in both identification and verification modes. We 
recommend that a NailCode matcher should be used to increase the accuracy of 
fingerprint recognition systems. 

Since the system using NailCode alone gives lower accuracy than 
fingerprinting, we suggest that top-view finger imaging should not be used alone to 
verify or identify individuals, especially when high security is required. Imaging 
should be employed in conjunction with fingerprinting to improve overall recognition 
accuracy. These two features can be easily utilized together as parts of one user 
operation.  

Cuts or incised wounds on the finger might affect system accuracy. However, it 
is difficult to test this circumstance. Skin wrinkles on a finger will increase over time, 
but at a slow rate. For example, it has been demonstrated that the same finger captured 
990 days after its previous snapshot can still be correctly identified [55]. However, the 
number of the tested fingers is too low for statistical analysis because the author did 
not plan to test this issue during the earlier stages of the experiments. In order to keep 
the top-view feature up-to-date, biometric updating should be used to overcome any 
time variances. The simplest approach is to update the top-view feature when the 
matching score of both top-view and bottom-view are greater than the pre-specified 
thresholds. The update should be done at run-time to avoid user inconvenience.  

The top-view finger image can be used to reduce the possibility of fake 
fingerprints. In other words, it can be used to detect the liveness of fingerprint. To do 
this, a combination strategy between the top-view and bottom-view must be employed 
at the abstract level. When combined with one fingerprint matcher, the top-view and 
bottom-view matchers simply report “yes” or “no”, and an AND operation is 
employed to make a final decision. On the other hand, when NailCode is combined 
with more than one fingerprint matcher, a majority vote rule can be utilized.   
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 Since we do not have the library to get a fingerprint image directly from a 
digital Persona UareU4000B fingerprint sensor, modifications were carried out to 
demonstration code from ITWORKS (http://www.itworksolutions.com, 2010) to get 
the fingerprint image from the sensor. The code uses DLLs to interface with the 
fingerprint sensor hardware, and the acquired image seems a little degraded compared 
to the sample fingerprints from DB2 of FVC2004 [41], where the images are obtained 
from the same sensor. It is believed that the accuracy of the implemented system 
would be improved if the proper sensor interfacing library was used. 

The finger inclination angle can be detected during top-view finger 
preprocessing, and used to reduce the search space for fingerprint matching. However, 
to ensure that the top-view and bottom-view features are statistically independent of 
each other, the inclination angle is not utilized in the fingerprint matching module. 

 
4.2     Research Contributions  

This thesis proposes the use of top-view finger imaging to increase the 
accuracy of fingerprint recognition systems without requiring extra work by the user. 
Methods for preprocessing, feature extraction, and matching were invented for the top-
view finger image. The proposed method works well in both verification and 
identification modes. Since top-view finger imaging needs very low computation time 
compared to fingerprinting, it can be used as an indexing method for reducing the time 
for large database searching. It also reduces the possibility of fraud by having 
recognition rely on more than one feature.  

 
4.3     Future Work 

The skin wrinkles on a finger will increase over time, so it is recommended that 
the systematic process of keeping the top-view feature up-to-date should be further 
studied and developed.  

Although NailCode matching can tolerate with the translation and rotation of 
the finger, it cannot tolerate scaling of the top-view finger image. This means that 
NailCode matching is a sensor-dependent feature, so the same sensor is required for 
both the enrolment and authentication processes. A scaling ability must be developed 
to overcome this limitation. 
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A top-view finger image might be useful for reducing the use of fake 
fingerprints. Fingerprint liveness detection using the top-view finger image should be 
further developed.  

Other feature extraction techniques should be investigated, so the need for a 
reference point can be dropped. 
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