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ABSTRACT

This thesis presents the use of top-view finger imaging to increase the accuracy
of fingerprint recognition systems. While the user is touching a fingerprint sensor, a
top-view finger image is captured using a CCD camera without requiring the user to
carry out any additional work. The acquired gray scale finger image is preprocessed to
enhance its edges, the skin furrows, and the nail shape, before the image is filtered by a
bank of Oriented-Filters. A square tessellation is applied to the filtered image to create
a feature map, called a NailCode. The NailCode is used in the matching process by
employing a Euclidean distance computation. A combination between the NailCode
and the fingerprint matcher is done at the decision level by means of a likelihood ratio.
Measured at an equal error rate, the system error is reduced by 17.68% in the
verification mode, and 6.82% in the identification mode. Top-view finger imaging also
reduces the possibility of fraud by having recognition rely on more than one feature.
Since NailCode alone gives lower accuracy than fingerprinting, it is suggested that top-
view finger imaging should not be used alone to verify or identify individuals,
especially when high security is required. It should be employed in conjunction with

fingerprinting to improve overall recognition accuracy.
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CHAPTER 1

INTRODUCTION

1.1 Background and Rationale

Fingerprinting is ubiquitous because of its uniqueness and time invariance [1].
As a biometric feature, fingerprints offer high accuracy even when cheap sensors are
utilized. However, fingerprint recognition accuracy has reached a limit which is
difficult to surpass. One approach is multimodal biometrics, which combines multiple
human features in the recognition process. For example, Hong and Jain employ the
face in conjunction with fingerprints [2], Jain et al. use speech, face, and fingerprints
[3], Marcialis and Roli utilize two different fingerprint sensors [4], while Prabhakar
and Jain examine two fingers [5]. All these methods augment recognition accuracy,
with the drawback that the additional features increase the complexity of user
interaction with the system.

Our approach rests on the idea that the skin wrinkles and furrows on top of
each person’s fingers are different, along with the size and shape of the fingers and
finger nails. Utilizing these attributes will increase the accuracy of a multimodal
biometric system without requiring extra work by the user. The details can be captured
with a small, inexpensive camera positioned above the fingerprint sensor, as shown in
Figure 1.1. Top-view finger imaging also reduces the possibility of fraud by having

recognition rely on more than one feature.

Fingerprint Sensor

Figure 1.1 Top-view image and fingerprint recognition system.



1.2 Literature Review

Many papers report on the use of biometric features to augment the accuracy of
the fingerprint recognition systems. Some use data from the finger image alone. The
following papers are relevant to our work.

1.2.1 Evaluation of personal identification system by transillumination

imaging of a finger [6]

This paper proposes the use of the finger’s translucent property, through
illumination by an array of near-infrared LEDs. A CCD camera captures the blood
vessel structure of the finger. Since the blood vessel pattern is time invariant and
unique, it does not change due to scars that might occur on the skin. Matching is done
by a correlation operation. The authors claim that the system needs low computation
time and has a low error rate.

1.2.2  Vein Pattern Recognitions by Moment invariants [7]

The paper uses a dyadic wavelet transformation to extract the structure of a
finger vein. The input images are manipulated in a wavelet domain, any noise
removed via soft-thresholding denoising, and matching achieved using Hausdorff
distance. The authors claim that their technique is more robust for feature extraction
than a line-tracking operation.

1.2.3  Personal identification using finger knuckle orientation features [8]

The paper proposes the use of a finger knuckle image since it offers many skin
lines and creases. A finite Radon transform (FRT) is employed to detect random lines
and creases. The system gives an equal error rate of 1.14%. The idea behind this paper
is similar to our thesis, but only uses a data from the knuckle; the nail shape and the
finger width is not exploited.

1.2.4 Finger image identification method for personal verification [9]

An image of the entire bottom-view finger (including fingerprint) is utilized,
which contains the front surface of the finger from the fingertip to the second joint of
the finger. The main feature is extracted from the distance between the second joint by
projecting the image in the direction parallel to the finger. The method needs low
computation time, but requires a sheet prism and an expensive TV raster scan camera

which gives a resolution of 10 lines/mm.



1.2.5 PDE-based Finger Image Denoising [10]

The knuckle and wrinkle line of the front surface of a finger is employed. Edge

detection is used to extract finger lines, including the shape of the finger. The idea
behind this paper is similar to our thesis but uses data from the bottom-view of the

finger. The authors focus on preprocessing, and the matching process is not discussed.

1.2.6 Integrating Faces and Fingerprints for Personal Identification [2]

This paper proposes the combination of face and fingerprint to construct an
identification system. Fingerprints offer high accuracy but require much computation
time. Face recognition needs very low computation time, and face indexing
mechanisms for large database searching already exist, but recognition accuracy is
much lower than for fingerprints. The paper uses the face to search over a large
database, and the best five candidates are obtained. Fingerprint verification is applied
to the candidates to find the best match. A final decision employs decision fusion.

1.2.7 On combining classifiers [11]

A theoretical framework for combining classifiers is proposed which uses
different input patterns. Many combination schemes are suggested, such as a sum rule,
product rule, min rule, max rule and majority vote rule. The authors demonstrate that
the sum rule outperforms all the other combination rules.

1.2.8 A multimodal Biometric System using Fingerprint, Face, and Speech

[3]

This paper uses fingerprint, face, and speech together. Although three matchers
are utilized, a majority vote rule is not used to make a final decision. Instead of each
matching module making a decision, they simply return a matching score. The
likelihood ratio of an imposter and the genuine joint probability density functions are
calculated. The imposter and genuine distributions of each matcher must be estimated.

1.2.9 Decision-level fusion in fingerprint verification [5]

A combination of different fingerprint matching algorithms augment the
verification accuracy, with a likelihood ratio used to make a final decision. The authors
demonstrate that the combination scheme using a likelihood ratio outperforms both
sum and product rules. They claim that this combination is optimal in the Neyman-
Pearson sense when sufficient data is available to obtain the distribution of the
classifier outputs. The use of more than one finger is also demonstrated, and the

performance gain is better than the use of different matching algorithms. They



demonstrate that the combination of the best and the weakest classifiers give better
results than combining the best two classifiers.

1.2.10 Fingerprint verification by fusion of optical and capacitive sensors [4]

Two fingerprint sensors obtain two images from the same finger, and a string
matching algorithm is implemented for both images, with a decision made at the
decision level. Two types of combination scheme are used. The first one simply
calculates the average of both matching scores while the other uses a gradient descent
algorithm to find an appropriate weighting value for each score. The latter combination
scheme gives better accuracy than the first one. Although the use of more than one
feature improves recognition accuracy, the approach requires a high degree of user
interaction with the system.

1.2.11 Fingerprint Image Enhancement: algorithm and performance

evaluation [12]

This paper introduces the use of a Gabor filter, one of the most accepted
algorithm for fingerprint preprocessing, for low-pass filtering along the ridge
orientation, while performing band-pass filtering along the direction orthogonal to the
ridge. To use a Gabor filter, the ridge orientation and its frequency must be estimated.
The effect of noise is considerably reduced using this method.

1.2.12 Fingerprint minutiae extraction from skeletonized binary images [13]

This paper proposes a systematic method for fingerprint post processing. One
fingerprint contains only 40-60 real minutiae, but a preprocessed fingerprint might
contains up to 2000-3000 minutiae. Most spurious minutiae can be deleted in a pre-
filtering stage. Skeleton enhancement deletes spurious minutiae arising from bridged
or spur-like ridges. Topological validation verifies bifurcation and termination points.
The paper also introduces the separation of highly reliable minutiae from less reliable

minutiae.



1.3  Objectives

The primary goal of this thesis is to propose a new technique for increasing the
accuracy of fingerprint recognition systems without burdening the user with extra tasks
unlike other multimodal biometric systems. By using biometric features extracted from
a top-view finger image, in conjunction with fingerprinting, multimodal biometric can
be implemented. The algorithm should not require much computation time, and the
combined system has an acceptable response time.

The second objective is to investigate the possibility of fingerprint indexing. If
the new top-view method requires less computation than fingerprint matching, then it
might be useful as a way of reducing the search space, thus increasing fingerprint

matching speed.

1.4  Scope of the Thesis

Top-view finger imaging has not been proposed before, so this thesis will act
as a feasibility study for using top-view finger imaging to recognize people. Feature
extraction and matching for top-view finger imaging must be designed for good
recognition accuracy while requiring low computation time. It must be combined with
fingerprinting to construct a multimodal biometric system. The system’s performance
must be evaluated in terms of recognition accuracy and computation time to ensure
that it can be implemented on a conventional personal computer without requiring
extra hardware acceleration.

To reduce the time to build the software, a well known fingerprint
preprocessing and matching algorithm will be utilized. A cheap CCD camera with a
resolution of 640x480 pixels will be used to capture the top-view finger image in a
light-controlled environment to avoid non-uniform illumination. Measured from the
fingertip, a captured top-view finger image will contain no more than 2 inches of the
finger digit. The implemented system will only utilize a touch-based fingerprint
Sensor.

The wrinkles on a finger usually increase over time, but this thesis will not deal
with this issue. It is very likely that the top-view feature can help fraud reduction, but

we will not pay much attention to this area.



1.5 Organization of the Thesis
The organization is as follows:
- This chapter introduced the subject and scope of the thesis.
- Chapter 2 describes the theoretical background to our work, and the proposed
top-view feature extraction and matching mechanism.
- Chapter 3 explains the experimental result for our implemented system
hardware and software.
- Finally, Chapter 4 discusses the outcomes of this thesis, and supplies

conclusions and possible future work.



CHAPTER 2

RESEARCH METHODOLOGY

This chapter offers a the theoretical background of image processing and
biometrics, followed by methods used to implement the system’s hardware and soft-

ware, and ends with the materials needed to implement the system.

2.1 Theoretical Background

2.1.1 Image coordinates

An image is stored in a rectangular shape, where the left most rectangular
corner is the origin point (0,0), as shown in Figure 2.1. Any pixel in an image of size
mxn can be accessed using a Cartesian coordinate. Let p(i, /) represents the pixel in the
th th .

i rowand; column of the image.

In this thesis, a top-view finger image is stored as a 8-bit grayscale. This means

that pixel intensity can vary from O to 255, with the value O represents the weakest

intensity (black), while 255 represents the strongest intensity (white).

(0,0) m-1

> X

p(ij)

Figure 2.1. Image coordinate.



2.1.2 Set Operations and the Image

Let M and U be the intersection and union operations that will be applied to
equal-sized binary images. Let ' denote the unary complement operation. Suppose 1
and 0 stand for a white and black pixel respectively, then the results of pixel-wise

operations are shown in Table 2.1.

Table 2.1. Set operations applied to pixels.

A |B |ANB | AUB A’
0 |0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

2.1.3 Image Thinning [14]

Thinning is the process of deriving a shape skeleton, which is one pixel thick
and has a distance symmetrically to its boundary. There are many algorithms to find
the skeleton of a basic shape; in this thesis, a morphological operation is used.

The morphological thinning operation, denoted &, is derived by performing a

Hit-or-Miss transformation(®) to the input image, 4, using a structuring element, B;

AQB=4N(A® B) 2.1

To ensure that the input image is thinned symmetrically, the input image 4

must be thinned using a sequence of structuring elements as follows:
AR®{B}=((...(4®BY® B)® B)..)® B"), (2.2)

where {B} = {Bl, Bz, B3,..., B}, and B is obtained by performing clockwise rotation
of B"', as shown in Figure 2.2. B’ is identical to B', and B' is identical to B° and so
on. Equation 2.2 means that the Hit-or-Miss operation must be performed on the input
image 4 with the structuring element B " and then the result further modified using the

structuring element Bz, and so on, until no further changes occur to the image.



0lo0]o0 X100 1[X]o 11| X
X1 | X 1110 1{1]0 1[11]0
111 11| X 1 0 X110
B! B’ B’ B*
111 X111 0o X]|1 olo|X
X111 | X 01]1 01]1 0111
0lo0]o0 olo|X 0 X]|1 X111
B’ B® B’ B®

Figure 2.2. Sequence of structuring elements used for thinning. The X’s stand

for “don’t care” values.

2.1.4 Adaptive Threshold [14]

Thresholding is a standard method for image segmentation, which separates an
object from its background by specifying a threshold value, 7. A pixel whose intensity
is greater than the threshold value is claimed as an object pixel; otherwise, it becomes
a background pixel. Thresholding can also be used to convert a grayscale image into a

binary image. We define a binary image, b(x,y), as:
1 if p(x,»)>T
b(x,y)= {

i (2.3)
0 otherwise.

If there is more than one object in the image, multilevel thresholding can be
used. For example, if two objects exist in the image, two thresholds, 7| and 7,, are

utilized. The image pixel p(x,y) is classified using:

background if p(x,y)<T]
p(x,) € ;objectl if 7, < p(x, ») < T,
object2 otherwise. (2.4)

The process is called global thresholding if the threshold value (or values when
multilevel thresholding is used) is applied across every pixel of the image. It is called
adaptive thresholding when different threshold values are applied to different areas of
the image, thereby dividing the image into sub-images. Different threshold values may

be used to segment each subimage.
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An appropriate threshold value can be obtained manually or automatically.

Aautomatic thresholding is carried out as follows:

D
2)

3)

4)

5)

6)

The input image is divided into subimages of size BxB.

An initial thresholding value 7T is estimated from the average gray level of
the subimage of interest.

A subimage is segmented using 7, creating two groups of pixels; G,
contains all the pixels with intensity values greater than 7, while G,
contains all the pixels with intensity value < 7.

Average intensity values of all pixels in group G, and G, are calculated,
producing 44, and Li,.

A new threshold value is calculated using:
T=0.5(y + 1) (2.5)
The pixels in the subimage are segmented with the new threshold 7 using:

0 if p(x,y)>T(x,y)

) (2.6)
255 otherwise.

p(x,y) ={

2.1.5 Gradient operator [14]

The gradient of an image, f (x, y), at coordinate (x, y) is defined as a 2-D

column vector:

o

Gx _ 6x
AR .

oy

The gradient magnitude is calculated using:

Vf =G +G’ (2.8)
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To reduce the computational requirements of equation 2.8, the gradient

magnitude can be estimated using:

Vf =|G,

+G,| (2.9)

The gradient direction is calculated using:

®=tan"' (GX ] (2.10)
Gy

The implementation of the partial derivatives for 0f/Ox and Of/Oy utilize the

Sobel or Prewitt operators. The convolution masks of these operators are shown in
Figure 2.3. The Sobel mask is more difficult to implement than the Prewitt mask but

gives better noise reduction.

Prewitt Sobel
Figure 2.3. Convolution masks of Prewitt and Sobel operators.

2.1.6 Canny Edge detection [15], [16]

There are many ways to find the edge of an image, which can be classified into
two categories: gradient and Laplacian methods. Canny is a gradient method, first
proposed by John F. Canny in 1986. It is an optimal edge detection algorithm,
containing 4 main steps:

1) Smoothing: Noise is reduced by smoothing the input image using a
Gaussian filter. The size of the Gaussian convolution mask can be varied
depending on the degree of smoothing. A large size increases noise reduce-
tion, at the expense of removing small details on the edges.

2) Gradient Calculation: Depending on the computational requirements, the

gradient operator can be utilize either the Sobel, Roberts, and Prewitt



3)

4)

12

operators. Equations 2.9-2.10 are calculated to derive the edge image, and
the gradient direction. The direction is discretized into one of four
possibilities (00, 450, 900, and 1350). For example, an edge direction falling
in the range [22.5, 67.5) is set to 450, while an edge direction falling in the
range [67.5, 112.5) is set to 90 .

Nonmaxima Suppression: If two neighbor pixels in the direction orthogonal
to the gradient direction have intensities lower than the edge pixel of
interest, then the two pixels are considered nonmaxima and are deleted,
producing a thin line in the edge image. For example, if the gradient
direction is 45 degree, the northwest and the southeast pixels must be
examined.

Hysteresis Thresholding: The edges detected with steps 1-3 are thres-
holded, utilizing two threshold values T, and T,, with T\>T,. If the gradient
magnitude of an edge pixel of interest is higher than T, it is left untouched.
Edge pixels with gradient magnitudes lower than 7, are deleted. An edge
pixel with gradient magnitude lower than T, but higher than 7, will appear
in the final edge image if at least one of its neighbor pixels has a gradient

magnitude greater than 7.

2.1.7 Euclidean Distance

Euclidean distance is the most commonly used distance measurement. In two-

dimensional space, the Euclidean distance between point (x.y,) and (x,y,) is

calculated from

d=(x, =%, +(3,~ )’ @.11)

Equation 2.11 states that the Euclidean distance is the shortest path between

two points. In Euclidean n-space, the Euclidean distance between point p and q is

calculated using the formula

d(p,a) =, /im —q) (2.12)

where p =(p,, p,,....p,) and q=(q,.4,,....q,) -
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2.1.8 Biometrics

Biometric recognition is the use of biological data to distinguish individuals. It
can employ distinctive physiological data, such as the face, iris, retina, facial
thermogram, fingerprint, ear, DNA, hand geometry, or hand vein. It may also utilize
distinctive behavioral data, such as the person’s signature, gait, or voice. Biometic
technology research group include the Biometrics Research Group at the Department
of Computer Science and Engineering, = Michigan State  University
(http://biometrics.cse.msu.edu, 2009), the Biometric System Laboratory at the
University of Bologna, (http://biolab.csr.unibo.it, 2009), and the National Biometric
Test Center at San Jose State University, (http://www.engr.sjsu.edu/biometrics, 2009).

Fingerprinting is used more often than other biometric features because it only
requires low cost system components, is convenient to use, has high robustness, and

individual fingerprints are unique and time invariant [1].

2.1.9 Performance Evaluation of Biometrics system
Recognition begins with a score obtained from a biometric matcher. The score
may be the similarity or the difference between an input pattern and a database feature.
Let QO stand for a biometric template stored in a database, and / the input
biometric feature. The input pattern is assumed to fall into one of two possible classes,
w, and @,. @, stands for the imposter class (i.e. / and Q do not come from the same
individual) and @, for the genuine class (i.e. / and Q do come from the same
individual). Suppose that the matcher reports the similarity value, s, between I and Q.
The person who supplied the input / will be classified as an intruder if s is less than a
threshold value, 7, otherwise, the person will be classified as a genuine user. The
decision made by the system can belong to one of four categories:
- genuine accept. the system matches the input to the correct database
template;
- genuine reject: the system correctly rejects the input as an intruder, whom
is not enrolled in the database;
- false accept: the system incorrectly matches the input to an incorrect
template in the database;

- false reject: the system incorrectly rejects a genuine user.
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To measure system performance, the FAR (False Acceptance Rate) and FRR
(False Rejection Rate) system values must be calculated. They are duels of each other:
if the system FAR increases, then the FRR decreases, and vice versa. Figure 2.4 shows

the relationship between the system threshold value and these values.

FRR and FAR can be estimated from

FAR = [ p(o|s)ds (2.13)
FRR = j p(w, | s)ds (2.14)
p(als)
A threshold (7)
p(ayls)

p(@,ls)

FRR
FAR

——
matching score (s)

Figure 2.4. The system FAR and FRR for a given threshold, 7.
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Figure 2.5. Receiver Operating Characteristic (ROC) curve

The Receiver Operating Characteristic (ROC) curve shows overall biometrics
performance, as in Figure 2.5. An ROC curve plots FAR against the Genuine
Acceptance Rate (GAR), whish is (I-FRR). Some research literature use the terms
FMR (False Match Rate) and FNMR (False Non Match Rate) rather than FAR and
FRR, but FAR and FRR is more common.

2.1.10 Multimodal biometrics

Different classifiers usually missclassify different input patterns [1], so overall
performance is improved by employing multiple classifiers. Multimodal biometrics is
simply the use of more than one biometric recognizer to identify a person, and is

widely practiced, as shown in table 2.2.

Table 2.2. Examples of multimodal biometric systems.

Biometric features Proposed by

Two different fingers Prabhakar and Jain, 2002 [5]

Two different types of fingerprint sensors | Marcialis and Roli, 2004 [4]

Speaker and face Brunelli and Falavigna, 1995 [17]

Duc et al., 1997 [18]

Kitler et al., 1997 [19]

Choudhury et al., 1999 [2]

Verlinde, Chollet and Acheroy, 2001 [21]
Ben-Yacoub et al., 1999 [22]

Face with fingerprint and speaker Jain, Hong and Kulkarni, 1999 [3]
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2.1.11 Fingerprints

A fingerprint image replicates the epidermis structure of a person’s finger. It is
composed of ridges interleaved with valleys, as shown in Figure 2.6. A person’s
fingerprint are fully formed about 2 months before birth, and the finger ridge structure
remains the same throughout the person’s life [23].

There are many ways to acquire an individual’s fingerprint. The simplest is by
inking a finger and pressing it onto a paper. Nowadays, there are also various types of
sensors, such as optical, capacitive, thermal, piezoelectric, and ultrasound devices, as

shown in Figure 2.7.

Figure 2.6. A fingerprint image.

g
——
(a) (b) (c) (d)

Figure 2.7. Four different types of fingerprint sensor;
a) touch-based capacitive sensor (http://www.biometrics-china.com, 2009);
b) touch-based optical sensor (http://www.digitalpersona.com, 2009);
¢) sweep-based capacitive sensor (http://www.scantastik.com, 2009);

d) touchless optical sensor (http://www.tst-biometrics.com, 2009).
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Fingerprint processing requires two main steps: enrollment and matching.
Enrollment inserts new fingerprint data into a database, while matching deals with the
comparison between the input fingerprint and fingerprints in the database. There are
two modes of fingerprint recognition: verification and identification. During
verification, an input fingerprint is compared with one database item to check if they
come from the same finger. During identification, all the database’s fingerprints must
be searched to find the best match with the input. Computation time is an issue for the
identification mode, especially in systems with large databases. To reduce the search
space of fingerprint identification, Senior; Hao and Zong; Munir and Javed classifed
fingerprint into 5 categories: arch, left loop, right loop, tented arch, and whorl [24],
[25], [26]. Another way of reducing the search space is by indexing [27].

The acquisition of a fingerprint by a sensor can be categorized into 3 different
methods, i.e., touch, sweep, and touchless. A fingerprint image will not usually be
stored in the database, instead, feature extraction is applied to the image and prominent
features are stored instead. There are two types of fingerprint features: minutiae and
FingerCode [28], [29], of which minutiae is the most common. There are many types
of minutiae, as shown in Figure 2.8(a), but only the termination type (sometimes called
endpoint) and the bifurcation type are common. Each minutia is represented by a (x, y)
coordinate and the angle of the respective ridge line, as shown in Figure 2.8(b).

Before feature extraction, the supplied grayscale fingerprint must be
preprocessed because most sensors lack image enhancement capabilities, (except the
sensor proposed by Shigematsu et a/ [30]). The main role of preprocessing is to reduce
the input image’s noise, after which the image is converted into a binary image. The
thinning process is applied, and a set of minutiae extracted from the result. Post-
processing [3], [31] is applied to the minutiae to remove spurious results.

Some approaches do not perform minutiae extraction on a thinned binary
image, but instead extract extract minutiae directly from the grayscale fingerprint
image. This avoids the possibility of some relevant data disappearing or errors
occurring during image conversion [32], [33].

Fingerprint processing can be implemented on many platforms, from
microcomputers to embedded systems [34], [35]. The fingerprint sensor simply sends
raw data to a processing module, which can be implemented in software alone or with
software and special designed accelerator hardware. For example, Ratha et al. [36],

Lindoso et al. [37] use an array processor built from FPGA for matching the



18

fingerprint with the large database. Although hardware offers astonishing speed ups, it

is costly to build and unsuitable for small fingerprint databases.

2.1.12 Standard fingerprint databases

Four standard fingerprint databases are widely used to test system
performance: NIST [38], FVC2000 [39], FVC2002 [40], and FVC2004 [41] However,
in this thesis, since two recognition features are utilized together, these database will
not be utilized for performance testing. The multimodal biometric systems of
Prabhakar and Jain [5], Hong and Jain [2] and Marcialis and Roli [4] also did not use

these databases for similar reasons. X,

N termination 6\
A y, A
&§ bifurcation b) ¥

Figure 2.8. a) Examples of the 4 Minutia types; b) Feature [x, y, 8] extracted from a

a)

bifurcation #; ¢) Feature [xj, Yy (9j] extracted from a termination minutia ;.

2.1.13 Fingerprint deformation

When a user presses his finger onto a sensor, the three dimensional epidermis
shape is converted into two dimensional data. Finger pressure or the angle between the
finger and the sensor plate may cause a non-linear deformation of the fingerprint
image which varies over the image area. The deformation’s effect on a (x, y) minutiae
coordinate is called translation deformation; the deformation’s effect on the minutiae
angle is called rotational deformation. A fingerprint matching algorithm can utilize a

bounding box to handle these two deformations [42]. The size of the box affects the
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biometrics’s system accuracy: a large bounding box tends to increase the FAR; a small
bounding box tends to increase the FRR. A deformation model may help to reduce the
effect of a large bounding box. For example, Bazen and Gerez propose a deformation
model of fingerprint [43], Senior and Boole employ a canonical fingerprint form, and
Lee et al utilize a method to normalize the distance between ridges [45]. All of these

methods reduce the fingerprint recognition error.

2.2 Method

The system hardware must digitize the fingerprint and the corresponding top-
view finger image, and the software must then process both top-view and fingerprint.
Before the system performance can be evaluated, a test database of finger images must
be collected. The data on each finger will be collected several times, one for enrolment
into the system, and the others for testing performance.

Fingerprint processing consists of 4 main steps:

1) preprocessing;

2) feature extraction;

3) post processing;

4) matching.

Fingerprint preprocessing uses a technique proposed by Hong et al. [12], but
feature extraction and post-processing employs our own techniques. The details of the
fingerprint matching algorithms are explained in section 2.2.11.

Since top-view finger imaging has not been proposed before, new techniques
for its preprocessing, feature extraction, and matching must be investigated. The
proposed techniques are explained in sections 2.2.3-2.2.10.

The performance of top-view finger imaging must be evaluated on its own
before combining it with standard fingerprinting in a multimodal biometric system.
After the performance is known for separate top-view and fingerprint matchers, the

performance of the combination can be assessed.
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2.2.1 Overview of the system

The system hardware consists of an optical fingerprint sensor equipped with a
CCD camera in a light controlled environment. A Pentium4 2.4 GHz personal
computer interfaces with the two sensors without any additional hardware acceleration.

As shown in Figure 2.9, the system software consists of 5 parts:

1) The fingerprint feature extraction module reads an image from the fingerprint

sensor, and preprocesses the image before performing feature extraction. Minutiae
features are extracted, and any spurious minutiae are deleted using techniques
described in section 2.2.19.

2) The fingerprint matching module calculates the similarity value between the input

image and a template stored in the system database. The algorithms are explained
in section 2.2.11.

3) The top-view feature extraction module reads a top-view finger image from the

CCD camera. A NailCode feature map is extracted after image pre-processing.

4) The top-View matching module computes the distance between the input and the

template.

5) The decision fusion module combines the matching scores from the two matchers

to make a final decision.

Minutiae
Extractor

Enrollment Module

Y

Minutiae
Extractor

Minutiae
matcher

NailCode

Minutiae Decision Fusion decision = yes/no

Figure 2.9. Block diagram of the whole system.




21

2.2.2 Top-View finger image acquisition

The acquisition hardware comprises a Creative VF0080 CCD camera
(resolution 640x480) and a digital Persona UareU4000B fingerprint sensor (resolution
512 dpi). To avoid issues with non-uniform illumination, a light controlled environ-
ment is maintained, as shown in Figure 2.10, with ten blue LEDs as light sources for
the top-view finger image acquisition. The optical fingerprint sensor automatically
switches on a red light whenever it senses a finger pressing down. The grayscale top-
view finger image is derived from the blue component of a color image obtained from
the CCD camera, since the wavelength of blue is farther from red than green [14]. This
means that the interference of red light with the blue component of a color image is
less than with a green component. Measured from the fingertip, the captured top-view
finger image contains no more than 2 inches of the finger digit. The distance between
the CCD camera and the fingerprint sensor is adjusted to give the maximum amount of
detail for the finger along with finger inclination detection. This setup yields an image

resolution of 250 dots per inch.

Figure 2.10. System hardware used to digitize fingerprint and top-view finger images.
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2.2.3 Top-View finger image Preprocessing

The greyscale top-view finger image obtained from the CCD camera is 7., and

has size WXL (see Figure 2.12(a)). Its preprocessing flowchart is shown in Figure 2.11.

The main steps include:

D

2)

3)

4)

5)

6)

7)

Smoothing. Due to the presence of noise and non-uniform illumination in the
image, a smoothing Gaussian filter is applied to 7,

Binarization. The greyscale image is converted into black and white image
(black=0 and white=255) using an adaptive threshold, resulting in an image shown
in Figure 2.12(b).

Small Particle Deletion. Small particles made up of white pixels less than the
threshold value are deleted. The resulting image, 7}, is shown in Figure 2.12(c).
Background Deletion. The background of the finger image is deleted using the
method described in section 2.2.5. Figure 2.12(d) shows the resulting image.
Finger Inclination Correction. The image is rotated to align vertically with the
x-axis of the image, as shown in Figure 2.12(e).

Skeletonization. A thinning operation is applied to the image to create a skeleton
for the remaining lines in the image, as shown in Figure 2.12(f).

FilterBank. The skeletonized image is manipulated by a filterbank holding eight
different filtering directions. The results are eight images ready for feature

extraction. The details are explained in section 2.2.7.

Top-view finger > Sl Pa.rt — — Skeletonization
. Deletion
image T
Ty
\i A
Image Background .
Smoothing Deletion Rl
v S B A T
Finger 8 Filtered
Binarization Inclination [—— images
Correction

Figure 2.11. Flowchart of the preprocessing algorithm.
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Figure 2.12. Images obtained in each preprocessing step: (a) 7; (b) binarized image;
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(c) T,; (d) after background deletion; (e) after inclination correction; (f) skeletonized

image.

2.2.4 Finger image alignment parameter

When a finger is pressed on the fingerprint sensor, it may be up to +30° away

from the assumed vertical orientation. The inclination is detected, and the image is

rotated as follows:

1) The Canny algorithm is applied to the 7,, image, producing an edge image, 7T},

which is copied into two images named 7, and 7, using the conditions:

T, (x,y)=

To(x,y)=

Ty (x, ), [
0,
TK(xay)’ [

0,

0<x<W/2
L/2<y<L

otherwise

(2.15)

W/2<x<W
L/2<y<L

otherwise. (2.16)
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2) The parameters for the left-edge of the finger are obtained by letting C be the set of
contours in 7, where C = {C,, C,, C,,..., C,} and k = number of contours. A line-
fitting algorithm [46] is applied to each contour C, to find its straight-line

parameter S,. For each S; we have:

S, =LV, X0, X)), i=1.k (2.17)

where (V;,7)) is a normalized vector parallel to the fitted line and (X, ¥, ) is a point
on that line [46].

3) The parameter S

o Of the left-edge finger is selected from the set of S, using the

condition:
abs(tan™ (V/ /V/)<7/6 and

S . =S8. where
o {NRN,- forall j=i, i=1.k (2.18)

where NV, is the number of white pixels in each contour C..

4) The parameter S,

of the right-edge finger can be derived by applying steps 2-3 to

T,.
S[eﬁ :(V;laV;aXé,Yol) (2.19)
S, =V VL X0, Y)) (2.20)
The parameter Sleﬁ and Sright are used in the background deletion and finger

image inclination process.

2.2.5 Background deletion

Since the CCD camera is located above the fingerprint sensors, then the top-
view finger image will include an image of the fingerprint sensor. This must be
removed so that only the finger image is processed. Background deletion is achieved
as follows:

1) Image M,, which has the same size as T, is created using the condition:

. ((m,<0and y >2mx+c,)
255 if] ! oo
M, (x,y)= or (m,>0and y <mx+c,)

2.21
0 otherwise ( )

& VX
where m, :71 andc, =Y — .

l
X X



2)

3)

Image M,, which has the same size as M, is created using the condition:

555 . [((m <O0and y<m.x+c,)
i
M, (x,y) = or(m,>0and y>2mx+c,)
0 otherwise
VI‘ VVXI"
wherem, =—— and ¢, =¥ - ero :

X

The background-deleted image, 7, is created from the operation:

T,=M," M, NT,
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(2.22)

(2.23)

where M is a pixelwise-intersection operation, applied to equal-sized images.

2.2.6 Finger image inclination correction

1) Let p and 4 be the angles of inclination of the left and right edges of the finger

2)

respectively, defined by:

Vl
p=tan” (Vle

The rotation of the finger around the origin is calculated using:

0.5(p+ A1) if (pxA<0)
p=:05(p+A—-7x) elseif (p>0and 4 >0)
0.5(p+A+r) otherwise.

(2.24)

(2.25)

(2.26)

The value of p and A range from 90 to 90 . Figure 2.14 shows all three

different conditions to obtain ¢.
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2.2.7 Filterbank

The skeletonized top-view finger image is manipulated using a bank of
oriented filters, with eight different @ values (0, 22.5 , 45, 67.5 , 90 , 112.5 , 135,
and 157.50) with respect to the x-axis. The oriented filters enhance the ridge lines along
the specified € angles while blurring the lines that lie in other directions (see Figure

2.13). Figure 2.15 shows the kernel Oriented Filters for different 8 values.
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Figure 2.14 The derivation of ¢ for different conditions;
(a) the signs of p and /1 are negative;
(b) the signs of p and 4 are different;

(c) the signs of p and 4 are positive.
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Figure 2.15. Kernel of Oriented Filters with different & values.

2.2.8 Feature Extraction
Feature extraction is carried out as follows:

1) The top-view finger image reference point, located in the middle of the nail base, is
obtained using the algorithm described in section 2.2.9, and shown in action in
Figure 2.16(a).

2) O is the degree setting on the oriented filter. The filtered image Qg is tessellated
using the reference point (x.y) into HXV (10x15) square cells of size wXw
(15x15), as shown in Fig. 2.16. p(x,y) denotes the pixel intensity at location (x,y) of
Q. The variance for each square cell at location (4,v) is calculated using:

2
o’ (h,v)= %iip(x,y)z —[Liip(x, y)j 2.27)

where x=c y=a w? = y=a
a=y twvw
b=y +whv+l)
c=x_+wh-0.5H)
d=x_+wh-0.5H+1).
The tessellated area should cover the shape and the width of the nail base while
avoiding problems with finger nail length variation. For that reason, we selected 4

to range from 0,1,..., H-1 and v to range from -2,-1,0,...,V-3.
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3) After applying step 2 to every filtered image, the extracted feature, called a

4)

NailCode, and denoted by %', is calculated. ¥’ for the images using reference

point R,, is defined by:

W = I:T() s T22.59 Y/45 s T67.5 5 SU90’ TIIZ.S 5 S”ns . ']’157_5 ] (228)

i 2 2 2 2 T
where v =lo,,0,,07,.....05.,] .

Due to the possibility of a reference point detection error, a compensation
technique is used. If R, is the reference point obtained by using the algorithm
described in section 2.2.9, then there are eight translated versions, R -R,, each o
pixels from R, as shown in Figure 2.18. In the enrollment module, only ¥’ is
extracted from the input top-view finger image. In the authentication module, the
NailCode N ={¥°, %' ,¥°,., %" is extracted from the input top-view finger

image.

Reference Point

(a)

(b)

Figure 2.16. Reference point location and square tessellation on the filtered image.
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2.2.9 Automatic detection of reference point location

The reference point of a top-view finger image is located at the midpoint of the

finger’s nail base. The steps for its detection are:

1)

2)

3)

Let M, U and ' denote the intersection, union and inversion operations
respectively. Image 7, as shown in Figure 2.17(a), is employed to create image

T, using the condition:

Ty=(Mg M, N"Ty)u (Mg M)
(2.29)
The image T,,, shown in Figure 2.17(d), is dilated and inverted before being rotated
to be exactly vertical, resulting in 7.

Let £ be the set of contours found in the image T, s
J = {L], Lg, L3, ceey Lf}

where f is the number of contours detected in the image. The reference point
location can be derived by applying the algorithm described in Figure 2.19 to

image 7, using the following parameters in each iteration:
- N, = The number of white pixels in each contour L,

- BR, = The bounding rectangle of each contour L. Each rectangle contains the

parameters:

{xBR yBR W.BR , hiBR}

i 20 2

where y”* =1y coordinate of top edge of the rectangle corner

BR
X =

1

x coordinate of left edge of the rectangle corner

BR
W =

width of rectangle

h”f = height of rectangle.

- ratio,=————.
BR BR
oW Xk
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As shown in Figure 2.17(e), our algorithm tries to find the largest contours in the
top-view finger image which are expected to be the nail. To avoid the contours that
are larger than the nail, the ratio of the width and the length of the bounding
rectangle is calculated, and contours with a ratio less than r, (0.6) are thrown
away.

4) L;is the selected contour obtained from the algorithm in Figure 2.19. The reference

point R(x,y) is computed on L, with:

R(x,y)= (fo + O.SWER,yfR + th)

J

Figure 2.17. Top-view finger images for each step of the reference point detection
algorithm: (a) 7,; (b) M,; (c) M,; (d) T,; (e) T,; (f) the obtained reference point

superimposes on a top-view finger image.
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2.2.10 NailCode Matching

The Euclidean distance is computed as part of the matching operation.
Let¥) be a NailCode template in the database and N = {¥,,,¥,,,¥ip,.... ¥}, be the
NailCode extracted from the input top-view finger image. Each E, in the Euclidean
distance E = {E,, E,,...., E;} is the distance between ¥, and ¥}, . The matching score

between the input and the template is:

matching_score;,, = min(Ey, E, ..., Eg) (2.30)
R4 Pid \\X R2
l/ 5 \
\
R5 X 0 X R1
! RO f
‘X ,,
R6 "% _XRs
\~~X-~"
R7

Figure 2.18. Eight points for reference point error compensation

num_loop=0
ref pt _found = false
do
{

all values in o are deleted, giving o= {}

find contours from image Tp, putting all the results in ¢’

for each contour L;

if (Vp>threshold and ratio>r,;)
ref pt found = true
else
remove L; from ./

if (ref _pt_found =true)
select contour L; from -’with the largest ratio
else
perform erosion operation on image 7p
num_loop++

}
while (num_loop<MAX LOOPS and ref pt found =false)

if (num_loop<MAX_LOOPS)
extract the reference point from the contour L;
else
the reference point can not be found, and the image is rejected

Figure 2.19. Reference point detection algorithm.
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2.2.11 Fingerprint matching algorithms

Many fingerprint matching algorithms are proposed in the research literatures,
e.g., local structure matching [47], [48], Hough Transform [36], Error Propagation
[49], Energy based matching [50], Hidden Markov matching [51], and Correlation
based matching [37], [52]. All of these methods can be classified into two categories:
minutiae-based and texture-based. Two fingerprint matching systems based on
minutiae matching are developed: the first uses Hough transform-based matching
while the other uses our own algorithm. They are combined with the top-view finger

image matching system as described in section 2.2.20.

2.2.12 Hough transform-based minutiae matching (HTMM)

This algorithm was proposed by Ratha et al. [36]. It tries to find the best
transformation parameter (e.g. translation and rotation) between the input and the
template minutiae. Each discretized transformation estimation is stored in an
accumulator array, and the translation and rotation parameter are obtained by detecting
the highest peak in the array. Since this algorithm uses an accumulator array in a
similar way to a typical Hough transform, this algorithm is called Hough transform
minutiae matching (HTMM). The details of this algorithm can be found in [1].

HTMM executes quickly but with low accuracy tolerances (compared to the
other minutiae matching algorithms). Work by Prabhakar and Jain [5] confirm these

characteristics.

2.2.13 Our proposed minutiae-based fingerprint matching (SMM)
Minutiae matching can be summarized by the following steps:

1) Let Z and R be the minutiae sets for the template and the input fingerprint,

Z:{(xlzﬂylzﬂ912)9-'-9(xzz9yzz79zz)}

R= {(le,le,HIR),...,(xf,yf,Hf)}.
2) A score table of size zxr is created, with all its values set to zero. z and r are the
number of minutiae in Z and R, respectively.

3) Execute the algorithm shown in Figure 2.20.
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Two minutiae are paired if and only if their direction distance and spatial
distance are less than threshold values. The derived matching score is the number of
matched minutiae between the input fingerprint and a templates. Because of its
simplicity, this algorithm is called SMM (Simple Minutiae matching). The two
distance values between minutiae (xR, yR, HR) and (xP, yP, HP) can be calculated using

formula

Sa':\/(xR—)CP)2+(yR—yP)2 (2.31)
and

dd = min(\e‘e —o"

270" —9”\) (2.32)

where sd denote the spatial distance and dd represents for the direction distance.

for i=1 to z
forj=1tor
{
find the translation vector (Ax, Ay)"
EIREANE
Ay |=| ¥ || ¥}
0 0 0

translate all minutiae in R , storing the result in 4
][] TAx
U=+ Ay
o' |6 O
for (Af? = -0 ; A0LZD; AO+=))

R is the rotated version of all minutiae in 4 using:

x cosAf —sinAf 0 x*

y¥ |=|sinA@ cosA@ 0 y*

oOr 0 0 1 o4

Let S7

pair

be the number of paired minutiae between R* and Z

score_tablel[i,j] = arg max S0
A

pair

}

matching _score,, = arg n}%x score _tableli, j]

Figure 2.20. Our SMM algorithm
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2.2.14 Fingerprint preprocessing
In this thesis, the quality of the fingerprint image is enhanced using the

algorithm proposed by Hong et al. [12]. The main steps of the algorithm are as

follows:

D

2)

3)

4)

Normalization: Let I(i, j) and G(i, j) denote the pixel intensity value of the input
and output image of the normalization process respectively. M and VAR denote the
estimated mean and variance of the input fingerprint /. The clarity of the
fingerprint ridge structure is enhanced by applying the pre-specified mean M, and

variance VAR, to the input image / using the formula:

.. 2
M, +\/ VAR, (II(/Z; M) 1G, j)> M
GG /)= > (2.33)
M, — \/ VAR, (1G; j)=M) otherwise
0 VAR '

Ridge orientation estimation: The normalized image is divided into blocks of size

wxw (16x16). A local ridge orientation of each block center is estimated using the
algorithm described in section 2.2.15 and the orientation image, O, is created.
Although the process to derive the ridge orientation is obtained at block level, but
the orientation image is defined at pixel level.

Ridge frequency estimation: The local ridge frequency of each image block is

calculated using the algorithm described in section 2.2.16 and the ridge frequency
image is created. As with the orientation image, the ridge frequency image is also
defined at a pixel level. This value will be used in the filtering process and for

segmenting the input image using a region mask.

Region mask estimation: Each input image block of size wxw must be classified
into a recoverable or an unrecoverable block. This information will be used in the
filtering process and feature extraction. A mask value of each block centered at
pixel (i, j) is set to 255 (indicating as a recoverable block) if the ridge frequency of
the corresponding block lies between 1/3 and 1/25; otherwise, the mask value is set
to zero (indicating an unrecoverable block). This region mask is defined at the

pixel level.
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Filtering: A bank of Gabor filters is applied to the normalized fingerprint image. In
this process, the input is a grayscale image, and the output is a signed 16-bit image.
The purpose of this process is to perform low-pass filtering along the ridge
orientation while performing band-pass filtering along the direction orthogonal to

the ridge orientation [53].

2.2.15 Fingerprint orientation image [12]

An orientation image shows the local ridge orientation of each image block.

This image is obtained as follows

1)
2)

3)

4)

The normalized image, G, is divided into blocks of size wXxw.

The gradient O (i j) and ay(i, j) of G(i, j) is calculated. To reduce the
computational time, the simple Sobel operator is used in this thesis.

The local orientation of each block centered at pixel (i, j) is estimated using the
following formula:

LW LW
it jt—

2 2
Vi)=Y, 2 20,0, u,v) (2.34)
u:i—gv:j—%

LW . 4
it—  jt—

Vi, )= i > (0@ -8,u.v)) (2.35)

u=it .
=i——v=j—
) J

2

03, j)= ltan_1 [MJ (2.36)
2 V.30, J)

where @i, j) represents the computed ridge orientation of each block. Note that the

ridge angle of 225" and 45 are not different. For this reason, the value of &/, j)

ranges from 0 to179 .

The orientation field is modified using a low-pass filter to reduce the effect of

noise and ridge turbidity. Before low-pass filtering, the orientation image is

converted into a continuous vector field, which is defined as follows:

@ (i, j) = cos (200, j)) (2.37)
@ (i, j) =sin(26(, ))) (2.38)
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Low-pass filtering is applied to each x and y component of @ _and ®@,. The filtered

result, ®’ and @’ are defined as follows:

We /2 We /2

D' (1, ))= Z Z W (u,v) @, (i—uw, j—vw) (2.39)
U=—Wg /2 v=—wg /2
We /2 We /2
@' (i, ))= z z W (u,v) @, (i—uw, j—vw) (2.40)

U=—Wg, /2 v=—Wg /2

where W is a two-dimensional low-pass filter of size wgxwe , because the ridge

orientation is obtained at a block level, this filter is applied to®’ and q)'y at block

level.

5) A filtered ridge orientation is obtained using the formula:

Q' (i,]
O, /)= tan" [M} (2.41)
2 @ (0, )
Local ridge Orientation
o
Block
Oriented Window

x-signature

Figure 2.21. Oriented window and x-signature [12].
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2.2.16 Fingerprint ridge frequency image [12]

The local ridge frequency is the reciprocal of the average inter-ridge distance in
the respective block of the fingerprint image. In a grayscale fingerprint image, a local
block, where no minutiae appear, contains a sinusoidal wave along the direction
orthogonal to the fingerprint ridge. The steps to obtain the frequency image are as
follows:

1) The orientation image, O, is divided into blocks of size wxw.
2) An oriented window of size / Xw is computed from each block. The orientation

window centered at (7, j) is extracted for the x-signature X[0].. X[/-1] using:
w—1

X[k]:lZG(u,v) k=0,1,..1-1 (2.42)
W -0
where u is obtained from

u=i+(%—d}cos&’+(k—éjsin0 (2.43)

and v is calculated from

v:j+(k—éjcost9+(d—%)sin0. (2.44)

3) Let T(i, j) denote the average of the number of pixels between the two
consecutive valleys in the x-signature, then the local ridge frequency, £i, j)

can be obtained from

(2.45)

o) = T(i1 7)

As shown in Figure 2.22, any pixel in the oriented window of size /Xw can be
accessed using a location (u, v). The parameters u and v can be obtained using

u=i—a+b (2.46)
v=j—-(m+g) (2.47)
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block origin(i,j)

~~~~~~~~~ (b)
Figure 2.22. The derivation of the coordinate (u,v) from the oriented window of size

Ixw: (a) the derivation of value u; (b) the derivation of value v.
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From Figure 2.22(a), the parameters a and b of equation 2.46 are obtained

using
/ .
a= E—kjsm@ (2.48)
b= %—djcos@ (2.49)
From Figure 2.22(b), the parameters m and g of equation 2.47 are obtained
using
m =[%—djsin0 (2.50)
g:(é—kjcosé? (2.51)

The substitution of equations 2.48 and 2.49 into equation 2.46 yields equation
2.43. The substitution of equations 2.50 and 2.51 into equation 2.47 yields equation
2.44.

2.2.17 Fingerprint filtering using Gabor filter [12]

The Gabor filter is a directional filter where users can select the orientation of
filtration. When used with fingerprints, the two dimensional Gabor filter performs low-
pass filtering along the ridge orientation while performing band-pass filtering along the
direction orthogonal to the ridge orientation [53]. To apply Gabor filters to a
fingerprint image, three parameters are required:

1) the frequency of the sinusoidal wave form,

2) the filtration orientation, and

3) the standard deviation of the Gaussian envelope along x and y axes.

Let G be a normalized fingerprint image, /# be an even-symmetric Gabor filter,
R be the region mask image, O be the orientation image, and F be the frequency
image. The output of the Gabor filter, £, is derived using the formula:

255 if R(i, j)=0
E(,j)={ & &

h(u,v:0(, j),F(,j))G(Gi—u,j—v) otherwise
u;vg/Zu—zwg/Z ( / ]) / (252)

where W, 1s the size of the Gabor filter.
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An even-symmetric Gabor filter has the general form

1 x2 yZ
h(x,y:¢,f):exp{—g{é—g+5—§:l}cos(2ﬁﬁc¢), (2.53)
X, = Xcosg+ysing, (2.54)
y, =—xsing+ ycosg, (2.55)

where ¢ is the orientation of the Gabor filter, fis the specified frequency, and
0. and é; are the space constants of the Gaussian envelop along the x4 and y4 axes,
respectively [53]. Choosing the values 0. and é; is a trade-off, large values yield more

noise reduction but allow the possibility of spurious ridges and valleys occurring.

2.2.18 Fingerprint feature extraction

The use of Gabor filter enhances the clarity of the ridge and valley structures.
However, the enhanced image must be converted into the binary image using a basic
global threshold which is defined as

b(x,y)={0 it pley)>T (2.56)

255 otherwise

where p(x, y) is the image after the Gabor filter has been applied and b(x, y) is
the resulting binary image. A thinning operation must be applied to b(x, y) to obtain
the skeleton of the ridge structure. The output of the thinning process is converted into

m-connectivity [14], as shown in Figure 2.23.

(a) (b)

Figure 2.23. a) fingerprint ridges after thinning operation,

b) after converted to m-connectivity.
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Each minutia comprises three parameters: type, direction, and location. To
obtain the location of each minutia, a feature extraction window of size 3x3, shown in
Figure 2.24, is moved throughout the thinned image. Let M is the point of interest
which is white pixel, and N,, .., N; are its surrounding pixels. M is considered a
location of termination point if number of its surrounding white pixels equals to 1. On
the other hand, if number of surrounding white pixels is equal to 3, then M is the

location of a bifurcation point.

N] NZ N3
N, | M | N,
N7 N6 N5

Figure 2.24. Minutiae extraction window

To obtain the direction of a termination minutia, /ine following is performed on
the ridge line starting from the termination point (x, y,) until & pixels have been visited.
Let (x, y,) be the stop point of the line following operation, the termination minutiae

direction, denoted Ht, can be calculated using

0, = tan”' (221, (2.57)

s t

The process of deriving the direction of bifurcation is more complex than that
of the termination minutia. If we have a look at a bifurcation point, there are 3 ridge
lines directed outward 3 different directions. The problem arises because we need to
find which direction is appropriate to be used as the bifurcation direction. Figure
2.25(a) shows that direction D, is better than the other two directions because 4, is the
only acute angle while the other two angles, 4, and A4, are the obtuse angles. To find a

bifurcation direction, the algorithm works as follows:
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1) Ridge line following is performed outward from the bifurcation point for 7 pixels
in each direction. Let P, P, and P, stand for the stop points of each direction of

ridge line following and L,

» stand for the line started from point P, to Pj, then the

shortest path among these 3 points is obtained using
Luin =min(Ly1 2y, Lo 3y, Liz1y) (2.58)
2) Find the destination point, denoted P, using the following condition

R (L <Lyy)and (Liy < Ly)))
Fy=9B if (L) <L) and (L) <Lppy)
B if (L, <Lgy)and (L, <Ly )

(2.59)

3) Let (x,y,) and (x,y,) be the coordinates of the destination point and bifurcation

point respectively, the bifurcation direction, denoted 8,, is calculated from

Figure 2.25. (a) three ridge lines directed outward from the bifurcation point; (b) the

most suitable direction to be used as a bifurcation direction.

2.2.19 Fingerprint post-processing

Although good preprocessing algorithms are used in the system, spurious
minutiae may occur if the input fingerprint has low quality or too much noise. Post
processing is required to remove as many spurious minutiae as possible, while
preserving real minutiae. Figure 2.26 shows the steps of the post processing, the steps
in sections 2.2.19.1-2.2.19.2 deal with the fingerprint image pixel directly while the
steps in section 2.2.19.2-2.2.19.4 deal with the minutiae set already extracted from the

fingerprint image.
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: fingerprint image after applying i
| Gabor filter ;
; too close bifurcations deletion
Small intra-ridge holes deletion ¢
+ spurious termination deletion
spurious spurs deletion +
too close minutiae deletion

Figure 2.26. Flowchart of the fingerprint minutiae post-processing.

2.2.19.1 Small intra-ridee holes deletion

In the preprocessing, the use of a Gabor filter effectively reduces the noise,
however, in some cases, small black residues may remain within the white ridge line,
as shown in Figure 2.27. When thinning is applied to these ridges, an island may occur
which leads to spurious minutiae. To reduce this effect, all pixels in the black contours
with an area lower than a threshold value will be changed to white, this process must

be applied to the fingerprint image before the thinning process.

(b)
Figure 2.27. The comparison of the fingerprint ridge before and after small black hole
deletion (a) the ridge shape before small black hole deletion (left) and its thinned
version (right); (b) the ridge shape after small black holes are deleted (left) and its

thinned version (right).
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2.2.19.2 Spurious spurs deletion

When the thinning operation is performed upon a ridge line that is not of
uniform thickness, spurs may occur, this leads to two spurious minutiae: termination
and bifurcation. A morphological pruning operation [14] can be used to eliminate the
spurs but with the side effect that some pixels at the end of the ridge line might be
deleted. This means that the accuracy of the system might be affected by the
translation of the termination minutia. In this thesis, spurious spurs are removed using

the following steps:

1) Let M be the minutiae set that contains the set of bifurcation B and termination 7.

M={B, T}
B=1{B,B, ..,B}
T=AT, Ty... T))

2) For each bifurcation B, if all three neighborhood ridge pixels are found around the
bifurcation point, continue with step 3, otherwise, check the next bifurcation point.

3) Ridge line following is performed outward from the bifurcation point for @ pixels
in every direction. The value @ is derived from the local inter-ridge distance. If a
ridge break is found before ridge line following is completed, all traced ridge
pixels in that direction are deleted.

4) Steps 2 and 3 are repeated until all bifurcation points in M have been checked.

5) All minutiae in M are deleted before minutiae extraction is reapplied to the spur
deleted image. The new minutiae in M are ready to be processed in section
2.2.19.3.

Figure 2.28. Fingerprint image before spur deletion (left) and after spur deletion
(right).
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2.2.19.3 Spurious bifurcation deletion

The alignment of ridge lines in some cases leads to a cluster of very close

bifurcations. Figure 2.29 shows a case where two additional bifurcation points are

detected near a real bifurcation point. Deleting all close minutiae would result in the

real minutia vanishing. The objective is to delete all, and only, the unnecessary

minutiae. Spurious bifurcation deletion is carried out as follows:

1)

2)
3)

Let B is the set of bifurcations where B = {B,, B,, ..., B, }. B, is the bifurcation point
of interest selected from B.

All bifurcations around B, that are less than 3 pixels from B, are deleted from 5.
The next bifurcation is selected from B, step 2 is repeated until all bifurcation

points in B are checked.

Figure 2.29. Example of two spurious bifurcations around the real bifurcation.

2.2.19.4 Spurious termination deletion

Spurious termination points arise at the joint between the fingerprint area and

the background of the fingerprint image, as shown in Figure 2.30(b). Since these

terminations are not real ones, but occur from the limitations of fingerprint image

acquisition of each sensor, spurious terminations are removed using the algorithm

modified from Farina et al. [13]. The process is carried out as follows:

)]

2)
3)

4)

The local ridge distance, denoted &, around the termination point of interest is
measured.

Ridge line following is performed from the termination point for 0.5&

Line following is continued for 1.5&, as shown in Figure 2.30(a) then neighboring
ridges are searched orthogonally to the termination direction, if 2 sandwich ridges
are found, continue with step 4, otherwise, that termination point is deleted.

Each detected ridge from step 3 is traced for 3£ in the same direction as the
termination of interest. If a ridge break is reached before tracing is completed, that

termination is invalidated.
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(b) (c)

Figure 2.30. (a) direction of line following to detect spurious termination point;

(b) before removing spurious termination points; (c) after spurious termination points

have been removed.

2.2.20 Decision Fusion

Decision fusion results in an improvement in matching accuracy when the top-
view matcher gives the wrong result while the bottom-view matcher gives the right
one, or vice versa. To combine the 2 biometric features, the decision fusion is done at a
confidence level. Figure 2.31 shows the block diagram of our implemented system, the
decision is not performed at the two matchers. This means that the top-view and
bottom-view matchers only send the matching scores to the fusion module and the

decision is made in this module.
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A

Feature
Extraction
Module
Y
Fingerprint
Matching module ystem
Database

s%\

.. distance
Decision

Fusion
Module

final decision

Figure 2.31 Decision fusion between the Top-View and fingerprint matcher

Suppose that the input top-view and botom-view images are to be classified
into imposter class, ®,, or genuine class, ®,. Suppose that x, is the distance derived
from the top-view matcher and x, is the matching score from the bottom-view matcher.

The design goal of the biometric system depends on its application. In high
security access applications, a low value of false acceptance rate (FAR) is required
while forensic applications need a low value of false rejection rate (FRR). Our design
goal is to minimize both FAR) and FRR. However, it is difficult to get an extremely
low value for these two rates at the same time. So the approach that most designers
choose to implement the system is to minimize the equal error rate (EER: the point
where the system has FAR equals to FRR) [1].

If the top-view feature alone is used to verify a person, the FAR and FRR can

be computed using:
thygy

FAR,, = [ p(x|@)dx, (2.61)

—00

FRR,, = j p(x, | @,)dx, (2.62)

thy,,
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In contrast, if the bottom-view feature alone is used to verify a person, the FAR

and FRR values can be calculated using:

0

FAR,, = [ p(x,|@)dx, (2.63)
thygy,
thbrm

FRR,, = j p(x, | @,)dx, (2.64)

The values th,,, and th,,, are threshold values set at the top-view and bottom-
view matcher, respectively. Equations 2.61-2.64 state that the threshold values of both
top-view and bottom-view matchers have an effect on the FAR and FRR. When the
threshold value is adjusted to increase the FAR, the FRR is decreased, and vice versa.

The final decision of the fusion module in Figure 2.31 is made using:

Q) if (L <
decision=1{ ( ',8) (2.65)
, otherwise.
The likelihood ratio, L [5], [54], can be calculated using:
:p(‘xli‘XZ‘a)Z). (266)
p(x,x, | @)

If L is high, then the input data is more likely to come from the genuine class.
The input is decided to come from the genuine class if L>f, where £ is an empirically
determined threshold value. The joint probability in equation 2.66 is difficult to obtain
directly from training data, but by assuming that each x; is statistically independent, the

joint probability density function can be estimated using: [54]

p(X,%,,..0 X, |a)j):11:11 p(x; |w;) (2.67)
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2.3 Materials and Equipments
1. A 2.4 GHz Pentium4 Microcomputer, 2 GBytes RAM.
2. C++ Compiler.
3. OpenCV library Version 1.0.
4. Creative VF0080 CCD camera:
- 640x480 CMOS sensor.
- Video frame rate at up to 30 frames per second.
5. Digital Persona UareU4000B fingerprint sensor:
- Optical based sensor.
- 8-bit grayscale image output.
- Resolution 512 dpi.
- Scan capture area 14.6X12.1 mm.

2.4 Summary

This chapter discussed the theoretical background of the image processing,
followed by the methods used to implement the system hardware and software. Details
of the top-view finger image processing were elucidated. The fingerprint processing
algorithms were also explained in this chapter. The next chapter reveals experimental

results of the implemented system.



CHAPTER 3

EXPERIMENTAL RESULTS

3.1 Top-View finger image acquisition

The top-view finger image is obtained from a color CCD camera, with
examples shown in figure 3.1. The top-view color image suffers interference from the
red light illumination from the optical fingerprint sensor. This interference is omitted
by selecting only the blue component from the obtained color image, which is used for

creating an input grayscale top-view finger image in the top-view preprocessing steps.

d) (e)

Figure 3.1 Top-View finger image obtained from CCD camera; a) color image; b) blue

component; ¢) green component; d) red component; and ¢) grayscale top-view finger

image.
51
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3.2 Top-view finger image processing and feature extraction

The resolution of the image derived from a Creative VF0080 CCD camera is
640x480 pixels. The distance between the CCD camera and the fingerprint sensor is
adjusted to acquire maximum detail of the finger, as shown in figure 3.2(a). The image
is clockwise rotated by 90 degrees and then cropped to 326x480 pixels (see figure
3.2(b)). The obtained image is now named 7 as described in section 2.2.3.

As a trial, the HTMM transform was applied to 7, to detect the inclination of
the finger. The OpenCV’s cvHoughLines2 function was used for this task. The Hough
transform gives a good result, but suffered from taking a long computation time
compared to the line fitting algorithm. For this reason, the line fitting algorithm has

been used throughout the rest of our experiments.

_ ;.-._u-'i’f‘l"_

(a) (b)

Figure 3.2. Top-view finger image acquisition; a) original image from the CCD

camera; b) cropped and rotated image.
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3.2.1 The parameters for top-view finger image feature extraction

As described in section 2.2.8, the NailCode is acquired by performing square
tessellation of the top-view finger image. To obtain the best recognition accuracy using
this feature, appropriate values of the three parameters of equation 2.27 must be
evaluated:

1) the width of each square cell w.

2) the number of tessellated rows H.

3) the number of tessellated columns V.

To find appropriate values of these three parameters, 800 top-view finger
images from 100 different fingers, with eight images per individual, were collected.
One image from each individual was employed for enrolment. The remaining images
were used to test the recognition accuracy. This means that there were 700 test images
in the database. The reference point of each top-view finger image was manually
defined.

First, several values of w were tried. Each top-view finger image was
tessellated using H and V of size 10 and 14, respectively. Table 3.1 indicate that the

best value of w is 15.

Table 3.1. The system accuracy according to each value of window size (w).

Window Size(pixel) correct incorrect | accuracy
9 527 173 75.29
11 629 71 89.86
13 662 38 94.57
15 669 31 95.57
17 668 32 95.43

Next, the appropriate value for / was sought. Table 3.2 shows that the best
value of V'is 15. Table 3.3 reveals that the best value of H is 10.
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Table 3.2. The system accuracy according to each value of V.

Number of window Correct Incorrect | Accuracy

in vertical axis (V)
11 653 47 93.29
12 668 32 95.43
13 668 32 95.43
14 669 31 95.57
15 671 29 95.86
16 670 30 95.71
17 667 33 95.29
18 666 34 95.14

Table 3.3. The system accuracy according to each value of H.

Number of window

in horizontal axis(H) CoEs Incorrect | Accuracy
6 657 43 93.86
7 670 30 95.71
8 670 30 95.71
9 668 32 95.43
10 671 29 95.86
11 665 35 95.00
12 662 38 94.57
13 655 45 93.57
14 653 47 93.29

3.2.2 Fine-tuning to get the best parameter of the top-view finger image

preprocessing and feature extraction

As described in section 2.2.3, an adaptive threshold is applied to the grayscale
top-view finger image to obtain its two-color version. Different window sizes for
adaptive threshold give different results for the binarized image, as shown in figure

3.3. However, it is difficult to select an appropriate value for this parameter by
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observing the result of a threshold with the naked eye. Instead we measure the class
separation (CS) statistic [5] between the imposter and genuine class for various sizes
of the adaptive threshold window. The window size that gives maximum value of the
class separation is accepted as the best parameter.

As previously described in section 2.2.20, the symbols o, and w, represent the
imposter and a genuine classes, respectively. The CS statistic measures how well the
two classes are separated with respect to the feature vector, X d, in a d-dimensional

space, R, is defined as [5]
CS(X%) = de

p(X* @)= p(X* | @,)] dx (3.1)

In order to get the class separation, the genuine and imposter distribution of a
top-view matching score must be obtained. To attain both distributions, images of 200
fingers are randomly selected from the database of section 3.4. At total of 278,600
(200*199*7) matches were evaluated to estimate the imposter distribution, and 1,400
(200*7) matches were examined to approximate the genuine distribution.

To find the best value of the adaptive threshold’s window size, the class
separation with the window size set to 13, 15, 17, 19, 21, 23, and 25 were measured.
As shown in table 3.4, the adaptive threshold with the window size of 17 gives the best

class separation because it gives the largest value of CS.

Table 3.4 The class separation of a system for different sizes of an adaptive threshold’s

window.
Window Size CS
11 1.109
13 1.404
15 1.412
17 1474
19 1.254
21 1.157
23 1.004
25 0.801




(a) window size = 15 window size = 19 window size = 25

window size = 15 window size = 19 window size = 25

ize = 19 window size = 25

=

(c) window size = 15 windo

Figure 3.3. The binarized version of the top-view finger images due to different
window size of an adaptive threshold; (a) finger with low detail of skin wrinkle; (b)

finger of medium detail of skin wrinkle; (c) finger with high detail of skin wrinkle.
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3.2.3 Top-view reference point location error and system accuracy

If the derived reference point location is incorrect, then the identification
accuracy will be affected. Table 3.5 shows that an increasing reference point location
error significantly reduces identification accuracy. The table was obtained by trying to
tessellate the filtered image with the translated version of the reference point. This was

done by moving the reference point with the distance, o, in eight directions.

Table 3.5. Identification accuracy of person recognition with different reference-point

location errors.

Reference point error 6 (in pixels) | Identification accuracy (percent)
0 96.57
5 89.10
8 78.00
10 65.90
12 51.90

To test the effect of a reference point location error, 800 top-view finger
images that were used to test the system in section 3.2.1 were utilized, and a proposed
automatic reference point detection algorithm was tested with these images. Table 3.6
shows that only 6 test images were rejected by the proposed reference point detection
algorithm. When a manually defined reference point was used, the identification
accuracy was 96.57 percent, which dropped to 73.78 percent when only a single
automatic reference point, R, was used. Table 3.6 shows that additional points R,-R,,
improved the accuracy of the system dramatically, especially when 6 was 9 or 10

pixels. In those cases, the identification accuracy was 93.80 percent.
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Table 3.6. Identification accuracy with different reference point markings.

Reference point marking method | Reject | Accuracy
Manual 0 96.57 %
Automatic using R alone 6 73.78 %
Automatic using R -R, (6=5) 6 87.03 %
Automatic using R -R, (6=8) 6 92.51 %
6
6

Automatic using R -R, (6=9) 93.80 %
Automatic using R -R, (6=10) 93.80 %

3.3 Top-view finger image and time variances

It is well known that the wrinkles of the skin on the finger will increase over
time. Images of ten different fingers captured 990 days after the day of their enrolment
(see figure 3.4) have been tested to investigate the effect of time variances to the result
of a NailCode matching. All of the later versions of the top-view finger images can

still correctly be identified.

(a) (b)

Figure 3.4. Finger image captures at different times: (a) the initial image;

(b) the same finger captured after 990 days had passed.
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3.4 Test database of the top-view finger images and fingerprints

The test database was collected from 800 different fingers. A snapshot of a
finger comprises both top and bottom-views. Eight snapshots were collected for each
finger: one was added to the database while the other seven were used to test system
performance. This means that the test database comprises 6,400 (800*8) snapshots.
This database will be used to test the system performance which will be described in

sections 3.7-3.8.

3.5 Fingerprint preprocessing

The resolution of the 8-bit grayscale fingerprint derived from the sensor is
466x510 pixels. The image is first normalized and the orientation field is estimated. A
low-pass filter is applied to the orientation field obtained to reduce the effect of noise.
Various sizes of low-pass filter has been tested, as shown in figures 3.5 and 3.6. When
applied with a good quality fingerprint, filters of size 3x3 and 5x5 give unnoticeably
different results, however, a filter of size 5x5 gives better smooth orientation field. A
filter of size 7x7 has been tried; however, it smoothes too much so the acquired
orientation around the tented arch tends to lose detail. For this reason we chose to use a
low-pass filter of size 5x5 for the rest of our experiments.

After the fingerprint orientation is acquired, the x-signature of each image
block is estimated to find the local ridge frequency. An area of the fingerprint where
no minutiae appear gives a nearly sinusoidal shape wave of x-signature, however an
area with no fingerprint ridge gives a rectangular shape wave, as shown in figure 3.7. It
is noted that the sign of the image intensity has both positive and negative values
because the format of the normalized image is signed 16-bit. The average number of
pixels between the two consecutive valleys in the x-signature is used for estimating the
local ridge frequency. The minutiae mask image, as shown in figure 3.8, is created
from the ridge frequency image. The image area where the frequency ranges from 1/3
to 1/25 gives the minutiae mask value of 255 (indicating a usable area), otherwise, the

minutiae mask of that area will be set to 0 (indicating a non-usable area).
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Figure 3.5. Results of the fingerprint orientation field due to different w of the low
pass filter: (a) image of good quality; (b) orientation field before smoothing;

(c) orientation field after smoothing with a low-pass filter of 3x3; (d) orientation field

after smoothing with a low-pass filter of 5x5.
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Figure 3.6. Results of the fingerprint orientation field due to different w of the low
(c) orientation field after smoothing with a low-pass filter of 3x3; (d) orientation field

pass filter: (a) image of poor quality; (b) orientation field before smoothing;

after smoothing with a low-pass filter of 5x5.
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Figure 3.7. X-signature due to different regions of fingerprint: (a) where a ridge

ending was found; (b) where no ridge line appears; (c) where no minutia appear.
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Figure 3.8. The fingerprint image (left) and the obtained minutiaec mask image (right).
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When the fingerprint is manipulated by a Gabor filter, the parameters 0. and 5;
must be defined. As shown in figures 3.9-3.11, larger values for these parameters give
better noise reduction but with increased possibility of the occurrence of spurious
ridges and valleys. After testing with number of fingerprint images, these values are
empirically set to 20.

After the Gabor filter is applied to the fingerprint, a thresholding process is
needed to convert the obtained 16-bit signed image to the binary version. Figures 3.12-
3.14 demonstrate the results of different threshold values on three different qualities of
fingerprint images. The threshold value is empirically set to -400.

In the preprocessing steps, the Gabor filter requires much computation time
because it re-computes the trigonometric functions (cosgandsing) for every pixel of
the filtering process, as described in section 2.2.17. The value ¢ is the obtained ridge
orientation of the respective processing area, however, since ¢is defined at blockwise
level, it is not necessary to re-calculate these trigonometric functions every time when
processing the image at the pixel level. By calculating these trigonometric functions
only once for each local image block, the required computation time is substantially
reduced. As shown in table 3.7, the improved version of the Gabor filter runs

approximately 44 times faster than the original one.

Table 3.7. Result of computation time required by each type of Gabor filter.

Filter type Average computation time
Conventional Gabor filter 2.726 seconds
Improved Gabor filter 0.062 seconds

3.6 Fingerprint post-processing

After preprocessing and feature extraction, post-processing steps are required.
Figures 3.15-3.17 demonstrate the results of each post-processing step done to an input
image of poor quality. It is noted that most of the false minutiae are deleted, however,
the post processing steps also delete some real minutiae, but this happens at a very low

rate.
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(a) (b)

(c) (d)

Figure 3.10. Result of the fingerprint image manipulated by a Gabor filter with
different 6, and §y values: (a) original gray scale fingerprint of poor quality; (b) after
filtered with of §_and O, of 12; (c) after filtered with of 8, and _of 20; ; (d) after
filtered with of _and 0. of 30.
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(c) (d)

Figure 3.11. Result of the fingerprint image manipulated by a Gabor filter with
different O, and é‘v values: (a) gray scale fingerprint of non-uniform pressure of the
finger; (b) after filtered with of O_and O, of 12; (c) after filtered with of §_and O, of
20; ; (d) after filtered with of ¢_and 0. of 30.
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(a)

(c) (d)

Figure 3.13. Result of the binarized fingerprint image due to different threshold values:
(a) original gray scale fingerprint of poor quality; (b) after binarized using threshold
value of -800; (c) after binarized using threshold value of -400; (d) after binarized

using threshold value of 0.
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Figure 3.14. Result of the binarized fingerprint image due to different threshold values:

(a) gray scale fingerprint of non-uniform pressure of the finger; (b) using threshold

value of -800; (c) using threshold value of -400; (d) using threshold value of 0.
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(a) (b)

(c) (d)

Figure 3.15. Result of the fingerprint post-processing steps: (a) binarized fingerprint
image; (b) after small black holes have been removed; (c) after small white ridges

have been removed; (d) after thinning process.
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(a) (b)

(c) (d)

Figure 3.16. Result of the fingerprint post-processing steps: (a) m-connectivity type
fingerprint image; (b) after spurs have been deleted; (c) minutiae extracted from spurs

deleted image; (d) minutiae after fake termination points have been deleted.
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(a) (b)

Figure 3.17 Result of too close minutiae deletion; (a) before deletion (b) after too

close minutiae are deleted.

3.7 Decision Fusion

As described in section 2.2.20, the top-view and bottom-view matching score
distribution must be estimated to combine both top-view and bottom-view features
together. To attain both distributions, images of 300 fingers were randomly selected
from the database of section 3.4. A total of 627,900 (300%299*7) matches were
evaluated to estimate the imposter distribution, and 2,100 (300*7) matches were
examined to approximate the genuine distribution. As previously described in section
2.2.20, the symbols @, and @, represent the imposter and the genuine class,
respectively. x, is the top-view matching score derived from top-view matcher and x, is
the matching score that comes from the bottom-view matcher. Figures 3.18 and 3.19
show the estimated distribution of the bottom-view and top-view distributions

respectively.
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Figure 3.18. The estimated bottom-view matching score distribution.
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Figure 3.19. The estimated top-view matching score distribution.
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3.8 System Performance

Three matchers were implemented: (1) an HTMM matcher using the Hough
transform-based minutia matching technique, (2) a SMM matcher utilizing our
minutiae matching algorithm as described in section 2.2.13, and (3) a TopView
matcher which employs the NailCode feature. The scores from these three matchers
were combined to make a multimodal biometric system using the algorithm described

in section 2.2.20.

3.8.1 Performance in the verification mode

The FAR and FRR values were plotted on a Receiver Operating Curve (ROC)
to judge the performance of the system, as shown in Figure 3.20. The genuine
acceptance rate can be obtained from ROC as 1-FRR. For the FAR, 4,474,400
(800*799*7) matches were evaluated, and 5,600 (800*7) matches were exammed to
find the FRR.

The verification performance against three conditions was tested, with each
condition using only one score from its respective matcher. There was no combination
of these three systems. Figure 3.20 shows that the SMM matcher gives better accuracy
than the other two matchers at every operating point. At low FARs, the TopView
matcher gives higher accuracy than the HTMM matcher, but the HTMM matcher
surpasses TopView at higher FAR values.

The three matchers are combined into pairs, and the likelihood ratio was used
to perform the decision fusion. System accuracy increased, as shown in Figure 3.21.
The combination TopView+SMM gives the best accuracy. Also, the SMM matcher
alone has better accuracy than a combination of TopView+HTMM at all operating
points with FARs lower than 7%. Since biometric systems need to operate at a low
FAR value, this made us decide to use our minutia matching algorithm to improve

system accuracy in the identification mode.
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Figure 3.20. Verification performance of individual matchers.
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Figure 3.21. Verification performance of all combinations.
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Finally, the matching scores of all three matchers are combined,
TopView+HTMM +SMM. This outperformed all the paired matcher combinations at
low FAR values, but for FARs greater than 2%, the TopView+SMM combination had
lower rejection rates.

The Equal Error Rate (EER) was used to measure the strength of performance
gains. The TopView, HTMM and SMM matchers alone yield EERs of 3.91%, 3.80%
and 1.86% respectively. The combinations of TopView+SMM, HTMM+SMM,
TopView+HTMM vyield EERs of 1.52%, 1.64% and 2.35%, respectively. The
combination of all three matchers gives the best EER of 1.35%.

As shown in Table 3.8, most of the computing time for the top-view finger
image processing is spent on the preprocessing. While the NailCode matching process
requires considerably low computation time. Average computing time used to perform
verification for NailCode matching and Hough transform-based minutiae matching
were 20 Us and 3.125 ms, respectively. The average time for performing verification
using our SMM minutiae matching algorithm was 135.8 ms. This reveals that SMM is
not suitable for directly searching the entire database because of its time-consuming
behavior. However, due to its higher accuracy compared to TopView and HTMM, the

SMM matcher will be used to improve personal identification accuracy.

Table 3.8. Average computing time for one test on a 2.4 GHz Pentium 4.

Source Process Computing time (ms)
Preprocessing 193.95
Top-view Feature Extraction 4.01
finger image | Matching 0.02
Reference point detection 19.05
Preprocessing 119.64
Feature Extraction 1.68
Fingerprint | Post Processing 281.45
Matching (Algorithm HTMM) 3.13
Matching (Algorithm SMM) 135.80
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3.8.2 Performance in the identification mode

To evaluate the performance of the identification mode, the 800 finger samples
in our database were divided into four databases of 200 samples each. A total of
22,400 (800*7*4) identification operations were evaluated. When the system used a
HTMM matcher alone its EER was 2.27%, while the TopView matcher’s EER was
2.84%.

The HTMM and SMM matchers were combined, but the likelihood ratio was
not utilized. Instead, the HTMM matcher was used to match the input features against
all the templates in the database to find the best ten finger details. The SMM matcher
was then employed to re-verify these ten details to find the best match. Figure 3.22
shows that this combination had an EER of 1.76%.

When the three matchers are combined, the TopView matcher is used to verify
the extracted input feature against all the templates in the database. The five best finger
details from the TopView matcher were obtained and added to a candidate list. The
HTMM matcher was also utilized to search the database to find the five finger details
with the highest matching scores, and they were also put into the candidate list. The
SMM matcher re-verified all the finger details in the list, and the best match was
found. This configuration had an EER of 1.64%. The Equal Error Rate of all

experiments are summarized in Table 3.9.
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Figure 3.22 Performance in the identification mode.
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Table 3.9. Equal Error Rate of the tested configurations.

Mode of Operation | Test Configuration EER(%)

TopView 3.91

HTMM 3.80

SMM 1.86

Verification HTMM+SMM 1.64
TopView+SMM 1.52

TopView+HTMM 2.35
TopView+HTMM~+SMM 1.35

HTMM 2.27

Identification Top¥iew 284
HTMM~+SMM 1.76
TopView+HTMM~+SMM 1.64

The average computation time to perform 1:200 matches in the identification
operation for the TopView and HTMM matchers was 4 ms and 625 ms, respectively.
The SMM matcher required 1.358 seconds to perform 1:10 verifications in both the
SMM+HTMM and the SMM~+HTMM+ TopView configurations.

3.9 Summary

This chapter begins with the experiments to find the best values of the top-view
preprocessing and feature extraction parameters. Then the effect of a reference point
location error to the system accuracy was revealed. The results of the reference point
error compensation are reported. Three matchers were implemented and the
performance of each matcher was evaluated. These three matchers were combined
together and the performance of each combination was evaluated. The average

computing time of the tested systems are also included in this chapter.



CHAPTER 4

CONCLUSIONS AND FUTURE WORK

4.1 Discussions

System accuracy is highly dependent on the precision of the reference point
location: if it cannot be detected by the autonomous detection algorithm, then the input
top-view image is rejected. The rejection rate of the proposed algorithm is 0.75
percent. During the enrolment process, if the top-view finger image is rejected, then
the user must re-enter the input feature. When the image is rejected during the
authentication process, the next step depends on the particular system’s requirements.
Re-entry is compulsory when both features are simultaneously required. On the other
hand, if the top-view finger image is just an additional feature used to augment system
accuracy, then a decision can be made when the bottom-view matcher gives a strong
enough match.

The average reference-point location error of the proposed algorithm is about
10 pixels. This error can be reduced by our compensation method, but the NailCode
matching time is increased by about 8 times compared to when only one reference
point is utilized. However, the computation time required for NailCode matching is
considerably less than for minutiae matching.

Since the ROC curve gives the overall accuracy of the system at different
thresholds, the selection of an appropriate threshold value for a specific system
depends on its application. In very high security applications, a system with very low
FAR is required at the expense of user convenience. Some genuine users with low
matching scores may be rejected by the system, and re-authentication is mandatory. On
the other hand, forensic applications require a low FRR to detect the criminal at the
expense of investigating large numbers of falsely accepted users. Civilian applications
need both low FAR and low FRR. The most appropriate operating point for civilian
applications is the EER [56]. The ROC curves shown in figures 3.20-3.22 reveal that
the combination of two or more matchers are more suitable for civilian and high
security applications than for forensic applications because all the operating points of
the combined system under the equal-error-line give better accuracy than a system

before combination.
79
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After combination, the NailCode feature reduces the verification error rate of
the system by 17.68%. This value is obtained by comparing the results at the EER
point between the HTMM+SMM and the HTMM+SMM+TopView configurations. In
identification mode, the system error is reduced by 6.82%. NailCode improves the
accuracy of the fingerprint matching system, while requiring very low computation
times, and being able to operate in both identification and verification modes. We
recommend that a NailCode matcher should be used to increase the accuracy of
fingerprint recognition systems.

Since the system using NailCode alone gives lower accuracy than
fingerprinting, we suggest that top-view finger imaging should not be used alone to
verify or identify individuals, especially when high security is required. Imaging
should be employed in conjunction with fingerprinting to improve overall recognition
accuracy. These two features can be easily utilized together as parts of one user
operation.

Cuts or incised wounds on the finger might affect system accuracy. However, it
is difficult to test this circumstance. Skin wrinkles on a finger will increase over time,
but at a slow rate. For example, it has been demonstrated that the same finger captured
990 days after its previous snapshot can still be correctly identified [55]. However, the
number of the tested fingers is too low for statistical analysis because the author did
not plan to test this issue during the earlier stages of the experiments. In order to keep
the top-view feature up-to-date, biometric updating should be used to overcome any
time variances. The simplest approach is to update the top-view feature when the
matching score of both top-view and bottom-view are greater than the pre-specified
thresholds. The update should be done at run-time to avoid user inconvenience.

The top-view finger image can be used to reduce the possibility of fake
fingerprints. In other words, it can be used to detect the liveness of fingerprint. To do
this, a combination strategy between the top-view and bottom-view must be employed
at the abstract level. When combined with one fingerprint matcher, the top-view and
bottom-view matchers simply report “yes” or “no”, and an AND operation is
employed to make a final decision. On the other hand, when NailCode is combined

with more than one fingerprint matcher, a majority vote rule can be utilized.
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Since we do not have the library to get a fingerprint image directly from a
digital Persona UareU4000B fingerprint sensor, modifications were carried out to
demonstration code from ITWORKS (http://www.itworksolutions.com, 2010) to get
the fingerprint image from the sensor. The code uses DLLs to interface with the
fingerprint sensor hardware, and the acquired image seems a little degraded compared
to the sample fingerprints from DB2 of FVC2004 [41], where the images are obtained
from the same sensor. It is believed that the accuracy of the implemented system
would be improved if the proper sensor interfacing library was used.

The finger inclination angle can be detected during top-view finger
preprocessing, and used to reduce the search space for fingerprint matching. However,
to ensure that the top-view and bottom-view features are statistically independent of

each other, the inclination angle is not utilized in the fingerprint matching module.

4.2 Research Contributions

This thesis proposes the use of top-view finger imaging to increase the
accuracy of fingerprint recognition systems without requiring extra work by the user.
Methods for preprocessing, feature extraction, and matching were invented for the top-
view finger image. The proposed method works well in both verification and
identification modes. Since top-view finger imaging needs very low computation time
compared to fingerprinting, it can be used as an indexing method for reducing the time
for large database searching. It also reduces the possibility of fraud by having

recognition rely on more than one feature.

4.3 Future Work

The skin wrinkles on a finger will increase over time, so it is recommended that
the systematic process of keeping the top-view feature up-to-date should be further
studied and developed.

Although NailCode matching can tolerate with the translation and rotation of
the finger, it cannot tolerate scaling of the top-view finger image. This means that
NailCode matching is a sensor-dependent feature, so the same sensor is required for
both the enrolment and authentication processes. A scaling ability must be developed

to overcome this limitation.
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A top-view finger image might be useful for reducing the use of fake
fingerprints. Fingerprint liveness detection using the top-view finger image should be

further developed.

Other feature extraction techniques should be investigated, so the need for a

reference point can be dropped.
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The Use of Top-View Finger Image for Personal Identification
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Abstract

This paper describes a feasibility study for wsing a

top-view finger image to increase the accuracy of

Jingerprint recognition without adding any new user
operations. A CCD camera captures a top-view finger
image while the user is touching a fingerprint sensor,
and the acquired gray scale image is preprocessed to
enhance the edges, the skin firrows, and the nail shape
before the image is filtered by a bank of Oriented-
Filters. 4 square tessellation 1s applied io the filtered
image to create a feature map, called a NailCode. The
NailCode is employed in the matching process by
emploving a Euclidean distance computation. The
experiment reveals that personal identification
accuracy using NailCode featuwre is 96.57%. 1t is
recommended  that NailCode is employed in
conjunction with fingerprint for multimodal biometric
[1] svstems will increase the identification accuracy.

1. Introduction

Personal 1dentificaion usmg fmgerprmt  1s
ubiquitous because fingerprints of each person are
umque and tune mvanant [2]. However, [ngerprit
recognifion remains a complex, challenging problem,
with the accuracy of fingerprint recognition having
reached a lmut which 1s difficult to mmprove. One
approach 1s mulumodal blometrics wlich combmes
more than one human feature for recognition purposes.
For example, Hong [3] employs the face in conjunction
with  fingerprints, Jam [4] uses speech, face and
fmgerprmts, and Marciahis [5] utihizes two differemt
types of fingerprint sensor. All of these methods have
the same purpose: augmenting recognition accuracy
which 1s otherwise lmmted by usmg only Ingerprit
detection. Their main drawback 1s that the additional
features increase the complexity of the user interaction.

Our approach nests on the idea that the skin
wrinkles and furrows on the top of a person’s fingers
are different. and that this information could be easily
captured with a small camera above the hngerprit

sensor, as shown in Fipure 1. The additional image
mionnation should merease the accuracy of the system
without adding anv extra tasks to the user. The question
15 “How well a top-view Ingers nuage can idenuly a
person?”. The contnbution of this paper ceuters on a
feasibility study of using a top-view finger image only
for personal identification. We will combine it with
fingerprint detection m a multimodal biometric system
i the future.

The rest of the paper is organized as follows: section
2 starts with a brief overview of personal 1dentfication
using a top-view finger image, followed by the detail
explamation of each step. Section 3 gives the detail of
feature extraction. Section 4 presents the matching
process. In section 3, the experimental results are given,
and section 6 concludes the paper.

CCD camera
]
Fingerprint
Sensor
\ ’\/—\
2/

Figure 1. Top-view Finger Image Identification.

2. Personal Identification using a Top-View
Finger Image

Our NailCode generation and matching process can
be sununarized in the following steps:

1) The acquured grey-scale top-view finger mage,
called Fg. of size 326%480 pixels 1s smoothed
using a Gaussian filter.

2) Adaptive thresholding [6] is  performed on the
resulting 1mage from step 1 to get a binary nnage,
I} The block size of the adaptive threshold is set to
25 pixels.



3) The color of image F; 1s verted using the
following condition:

0 if F(x.y)=255
Fy(x.3) = { 4%

-255  otherwise.

4

—

Small particles made up of white pixels less than the
threshold value are deleted. The resulting image, Fp,
1s shown m Figure 2(c).

The background of the finger unage 1s deleted using
the algorithm described in section 2.2.

The mnage 15 rotated to ensure that 1t 15 aligned
vertically with the x-axis of the image coordinate.
This is done using the ¢ value derived using the
algonthm described m section 2.3.

The rotated image is skeletonized [7]. features
extracted using the algorthm desenbed m section 3.
The derived features are matched against a database
to find the most likely matching finger using the
algonthm described m section 4.

5

—

6

—

7

—

8

—

2.1 Finger Alignment Parameter

When a finger is pressed on the fingerprint sensor, it
mav be up to  £45% away from the assumed vertical
onentation. The mclination 1s detected. and the mnage
rotated. The algorithm works as follows:

1) The Canny algorithm [8] 1s applied to the Fp image,
resulting m Fz.

2) Dy and Dy are the bottom left and right edge 1mages
(326480 pixels) of the finger. They are obtained by
copying some part of TFr using the following
conditions:

Fo(x.) 0<x<180,

FF(xy) .

20 340 < y <480 J

Dy(x,y) = 5
0 otherwise @
FoGry) (1465x<326,}

X))
340 < y <480

Dy(x.y) = { ! ®)

0 otherwise.

3) The parameter of the bottom-part left edge of the
finger are obtained by letting C be the set of
contours m Dy, where C ={C,, C;, C;,..., G} and
k= number of contours. A line-fitting algorithm [9]
1s applied to each contour C; to find the straight-line
parameter S; of that contour. For each S; we get:

s=Wi vioxp X)L i=Lk @
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where (V_ . ) is a normalized vector collinear to the line
and (\G Yo') 1s some point on the line.

4) The parameter Sy of the lefi-edge Iinger 1s selected
from the set of S, using the following condition:

1 V\J T . 3

i ] abs| tan | — || £— and (3)

Sip =8, where \ ¥/ 4
N, >N, forall j#i. i=1k

where N; is the number of white pixels in each
contour Ch.

5) The parameter S, of the right-edge finger can be
derived by applving steps 3-4 to Dy. The following
left and nght edge lmger parameters can be used for
finger alignment correction.

Sogn = Vs V. Xo 1) 7
2.2 Background Subtraction

The image from the CCD camera includes the
fingerprmt  sensor covered by the finger. The
background must be removed from the 1mage to ensure
that only the finger image 1s processed. Background
deletion 1s done as follows:

1) Image M;. wlich has the same size as Fg, 15
created using the following condition:

255 ({m,— <Oand yzmx+c¢)
M, (x.3) = {
0

where

or (m, >0and y <mx+¢,)
(8)

otherwise

v, V,X
m, :Viﬂ and ¢, =1, 7%
x!

Xl

2) Image Mg, which has the same size as Mg, 1s
created using the following condition:

(lm, <0and y<m,x+c,)
255 if (m. >0and yomsre)
MR(«\‘,)f){ or(m >0and y2mx+ec,

0 otherwise ()
V. V. X,
where m, == and ¢, =Y, -2
e e

3) F 1s the background-deleted mmage. It 1s created
from the operation:

Fr=My (1M1 Fp. (10
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(a)

2.3 Finger Alignment Correction

@ is the angle to rotate the finger image around the
or1gi:

0.5(u+4)
. JO.S(;:-%—/‘. -)

05u+A+m)

i pA<0

elsetif p=0and A z0

otherwise (11)

w and 4 are the angle of mclmation of the left and
right edges of the finger, defined as:

v, | (v, )

_ 1
A= tan [V

vl ) e )

(12)

3. Feature Extraction

To extract features from the finger image. the
skeletonized image is filtered using a bank of Oriented
Filters. which use different & values (0°, 22.5%, 45°,
67.5%, 90°, 112.5%, 135% and 157.5%) with respect to the
x-axis. Figure 3 shows the kernel Oriented Filters for
different & values.

|
11
LT
0 278
O I
a0 1125
o= -1 m=| 2

Figure 3. Kernel of Oriented Filters with different @
values.

The Oriented filters enhance the ridge lines along
the & angles while blurring the lines that lie in other
directions. Feature extraction 1s carrted out as follows:

[11% . (c) . . (d) .
1gure 2. Images obtamed m each step ol the preprocessmg.

(e) (f)

1) An image reference point is located at the middle of
the nail-base is defined. as shown in Figure 4(a).
To maximize the finger-image identification, the
reference pomnt was manually defined n tlus paper.

2) Qg1s the nnage filtered at @°. Oy 1s tessellated mto
H*V square cells of size W*I using the reference
pomt Rix,,y,), as shown m Figure 4(b).

3) The wvariance of the pixel intensity of each
tessellated cell 1s computed usimg:

d b ( R 3
ol =H%ZZP(,\‘.J')J - ‘H%ZZP(,\‘.J') ‘ (13)
/

x=¢ y=q \ i=¢ y=a

where
Ty = The vanance of the pixel mtensity for each
tessellated cell. # and v define the column
and row mumber of that cell,
h=0.9 v=-2-10._12;
p(x.¥) = The pixel intensity of image Q at location
)
H = The number of cells in each column:
V' = The number of cells m each row:
a=y,+ W
b=y +W(v+l)
c=x, +W(h-05H)
d=x +W(h-05H+1)

The appropriate value of W, H and 7 were
determined empirically to be 15 10 and I35
respectively.

Reference Point

(a) (b)
Figure 4. Reference pomt location and
square tessellation on the filtered image.



4) After applymg step 3 to every hiltered unage, we
get:

NailCode {VD‘V_!z.:nV45=Vs'J.:=K)U‘V112.3‘V155=Vm.3 } (14)
where
[ 2 2 2 1
G202 ez 211
2 2 2
O 1,0 C -1y T (1,1
2 2 2
Vo= S Trony o FoH-1
& 2 2 2
TaoyTany > Foun
2 > 2
| T30 Tz Tosmoy |

4. The Matching Process

The Euclidean distance is computed i order to
match the extracted features from the mput image with
those kept in our enrolled database. E, is the Euclidean
distance between the input image and the n™ finger
mnage stored m the database, wlile the database
consists of & enrolled fingers. By calculating the
Fuclidean distance between the mput finger and each
enrolled finger image. we get:

E={E, Ey E; ..., E}. (15)

The input finger is said to match with the i
database finger if and only if*

E o<k forallizjl<i<k 1<j<k (16)
S. Experimental Results

The testing system consists of a Creative VF0080
CCD  camera equpped with a Digital Persona
UareU4000B fingerprint sensor m a light controlled
environment. The system code was written in Visual
Ctt usmg OpenCV to capture the finger umage
whenever the fingerprint sensor was pressed. Our
finger image database consists of 800 finger images
from 100 different finpers with 8 images per individual.
One mmage of each mdividual was employed to enroll
the system, while the other 7 images were used to test
the system. The reference pomt of each nnage was set
manually. When assessing the accuracy of the system.
we found that 676 finger images were correctly
recogmized wlnle 24 [inger nuages were nnsinterpreted.
In other words, the accuracy of the system 15 96.57%.

6. Conclusions

This paper describes a feasibility study for a new
technique which increases the accuracy of fingerprint
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() (b)
Figure 5. Finger images filtered at (a) 0° and (b) 90°.

idenfification  without requiring the user to do
additional tasks. Our results show that a top-view
finger image will enhance a fingerprint recognition
system. Omne drawback 1s that finger image 1s not time
mvartant, but we can use runtune biometrie updating
[10] to overcome this problem. The reference point
detection algorithm 1s described m another paper [11].
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Abstract

This paper describes an algorithm for automatic
reference point detection in a top-view finger image
recognition system. In tests of 700 finger images, only
6 images were rejected by our algorithm. A reference
point location error correction technique was
developed to improve the recognition accuracy. When
using the proposed algorithm, the accuracy of the top-
view finger image identification system was only
reduced to 93.80% compared to 96.57% when using a
manually defined reference point. This shows the
Jfeasibility of using fop-view finger images to increase
the recognition accuracy of fingerprint identification.

1. Introduction

Fingerprint recognition is one of the most prominent
biometric identification methods, partly due to its cost
benefits when compared to other biometric systems (e.g
w1s, retina, DNA). There have been many attempts to
combine other features with fingerprmt system to
merease the 1identification accuracy. [1] These
multimodal biometrics, include Jain [2] which uses
speech and face features i comjunction with
fingerprints, Hong [3] which employs both fingerprints
and face features, and Marcialis [4] which utilizes two
fingerprint images from different types of sensor. The
drawback of these systems is that they require the user
to carry out additional tasks.

Our paper [5] shows that top-view finger image 1s
very possible to be used for improving the accuracy of
fingerprint 1dentification, but the system nests on a
good reference pomt location for extracting features. A
manually determined reference point is an extra user
task and so has the same problem as described before.

This paper proposes an autonomous reference-point
detection methodology for the top-view finger image
identification system, so no additional tasks need to be
carried out by the user.

The rest of the paper is organized as follows:
section 2 starts with a brief overview of top-view finger
image recognition. Section 3 gives details on our
proposed reference-point detection algorithm. Section 4
presents  the reference pomt location  error
compensation. Experimental results appear i section 5,
and section 6 concludes the paper.

CCD camera

S e AR A
Fingerprint
Sensor

Figure 1. The Multimodal biometric system using
finger image and fingerprint

2. Personal Identification using a Top-View
Finger Image

A gray scale top-view finger image captured from a
CCD camera 1s smoothed, binarized, and inverted, as
shown m Figure 2(a). The umage 1s rotated so it is
vertically oriented. The immage is skeletonized and
filtered with a bank of Oriented Filters, the resulting
unages were extracted for features using a reference
pomt during NailCode [5] generation. The NailCode 1s
employed in the matching process by employing a
Euclidean distance computation.



Figure 2. Top-view finger images for each step of the
reference pomt detection algorithm.

2. Reference Point Detection Algorithm

The reference point of a top-view finger image is
located at the midpoint of the finger’s nail-base, as
shown m Figure 3. The steps for reference pomt
detection can be summarized as follows:

1) Let Sip and Sy, are the inclination parameters of
the left and right edge of the finger:

Srgﬁ:(Vd- Vi Xops Yo;)

S»'fgm = (er ’ V}: 4 ‘X'Or > YOr )

(V. Vi) 1s a normalized vector collinear to the line,
and (X, Yy 1s some pomt on the line.

2) Image M, as shown in Figure 2(c), is the same
size as the gray-scale top-view iput umage. It is
created using the followmg condition:

(m, <0and yzmx+c)

255
M, (x.y) = or (m, >0and y<mx+ec,)
0 otherwise
(D
] V.,X
where m, = and ¢, =¥, -2 oi
Va v,

3) Image Mg, as shown i Figure 2(b), 1s the same
size as Mp. It is created using the following

condition:
. (m, <Oand y <m,x+c,)
255 ( O and v> ) )
M (%, )= or\m, >0and y=mx+c,
0 otherwise 2)
Vs = Ve Xo,
where m, =— and ¢, =Y, ———
V. |4

h
—

7)

8)
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Reference Point

Figure 3. Reference pomt and tessellated
top-view finger image.

Image Fp. as shown in Figure 2(a). 1s the top-view
finger image after being thresholded and inverted
using the algorithm m [5]. It 1s employed to create
image Fy, using the following condition:
Fe=WM.NM,NF) U~M,NM,). 3)
The Fy, as shown n Figure 2(d), 1s dilated using a
square-shaped structure element of size 3*3 [6].
The color of the dilated image 1s inverted using:

0 if F(x,y)=255
Fr(x,y)=

255  otherwise. 4

The image 1s rotated to ensure that it i1s exactly
vertically oriented, resulting in Fr.
L 1s the set of contours found in the image Fy:

L= {Iz, Ly Ly, ..., Lf}
where f1s the number of contours detected m the
image. The reference point location can be derived
by applying the algorithm described in Figure 4 to
F., using the following parameters in each
iteration:

N; = The number of white pixels i each contour Z;

BR; = The bounding rectangle [7] of each contour
L;. Each rectangle contains the parameters:

BR _BR _ BR 7 BR
{x. I R Ty }

where

- ratio; =

BR : .
¥; y coordinate of top most rectangle corner

BR . ~ -
X" = x coordinate of left most rectangle corner

wP = width of rectangle
h® = height of rectangle
W R =y BR



9) L; is the selected contour derived from the
algorithm shown in Figure 4. The reference point
can be computed on the chosen contour Z; by usmg
the following equation:

R(x.y)= (J‘fﬁ + U.Su'f“.y_f”‘ + ;'?_f”‘) (5)
no_loop=0
found ref pt = false
do
t
find contours from image F,
for each contour L;
1f (Ny>threshold and rafiog=0.6)
found ref pt=true
add L; in the list
else
erode umage Fy
no_loop++
if (found rel’ pt=true)
select contour L; from the list with the largest ratio
¥
while (no_loop=MAX_LOOPS and found_ref_pt=false)
if (no_loop<MAX_LOOPS)
extract reference pomt from contour I;
else
report that reference point can not be found

Figure 4. Automatic reference point
detection algorithm.

4. Reference Point Location Error
Compensation

If the denved reference pomt location 1s meorrect.
then the 1dentification accuracy will be affected. Table
1 shows that an increasing reference point location
error reduces identification accuracy. The table was
obtained bv trying to tessellate the filtered image with a
translated version of the reference point moved in eight
directions with a distance value of &

The effect of reference point location errors are
reduced i our algorithm by translating the reference
point into eight directions around its original point,
Nine NailCodes are generated for nine reference pomts.

Tablel.  Identification  accuracy  of  personal
wdentification with different reference-powmt location
eITorS.

Reference point error Identification accuracy
(m pixels) (percent)

0 96.57
5 §89.10
8 78.00
10 65.90

51.90
15 32.00
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Figure 5. Fight points for
relerence point error colpensation

5. Modified NailCode Matching

The effects of reference pomt location errors are
handled by a modified version of our NailCode
matching process [5]:

1) TLet Ry(x.y) 1s the reference pomt obtained by the
algontlun described m section 3. The 8 trauslated
versions are R;-Rg. each of which 15 a distance &
away from Ry, as shown in figure 5. The NailCode
values for nine reference poiuts are

Extracted Features = {N yy.Npy.Npyoo.. Npo |

Np; 1s the NailCode for the reference point R;.

2) The Euchdean distance between the NaillCode Ng;
and each finger in the database 1s represented by:

EFEF. Ef... EP
. Er, Ef, B E
EE, EF, EP.., EX
where
g = The number of fingers m the database

E® =The Euclidean distance between the r™ finger
in the database and the input finger tessellated

using reference pomt R .

3) Toreach E™. the two smallest Euclidean distances
EX and E® are found such that :

E¥ <E < Ef..[\/(m #n. m#pand n#p) ]

l=m=g.l=n=<qg. lsp=g
(6)



4) The distance between EX and EX is calculated

Ri B : Ri
torevery E™  resultingin D, :

D) =E}-EY @)
where

DRS)_

D¥ (D™, D®, D®...

The input finger matches with the v™ finger in the
database finger if and only if:

n
—

B~ D¥ forallizj. <i<8 0<;<8.
Df' Df' nNi=j,0 8 0<;7<8 )

6. Experimental Results

A gray scale finger image was captured from a
Creative VF0080 CCD camera whenever the user
touched the fingerprint sensor. Our top-view finger
mmage database consists of 800 finger image from 100
different fingers, with eight images per individual. One
mmage from each individual was employed to enroll the
system, while the other seven umnages were used to test.
This means that there were 700 test images in the
database. Only 6 test images were rejected by our
reference point detection algorithm. When manual
reference pomt were utilized, the 1dentification
accuracy was 96.57%, which dropped to 73.78% when
only a single automatic reference point, Ry, was used.
Table 2 shows that additional points R;-R;. improved
the accuracy of the system dramatically, especially
when & was 9 or 10 pixels. In those cases, the
identification accuracy was 93.80% .

Table 2. Identification accuracy with different reference
point markings.

Reference point marking method | Reject | Accuracy
Manual 0 96.57 %
Automatic using RO only 6 73.78 %
Automatic using R0-R8 (5=5) 6 87.03 %
Automatic using RO-R8 (§=8) 6 92.51 %
Automatic using R0-R8 (§=9) 6 93.80 %
Automatic using R0-R8 (5=10) 6 93.80 %
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7. Conclusions

This paper shows the feasibility of using finger
mmages for mereasing the recoguition accuracy of
fingerprint  identification without the need for
additional user tasks. In particular, the user does not
need to manually find the finger’s reference pomt as
required i [5]. We now plan to construct a personal
identification system that uses finger images together
with fingerprint data.

The average reference-pomt location error m our
algorithun 1s about 10 pixels. This error is reduced by
our compensation method, but processing time is
mcreased by about 8 times compared to when only one
reference point 1s utilized. This suggests that the
algorithm 1s not suitable for an environment with
limited CPU performance, such as embedded systems.
In such an environment, reference point location
accuracy must be improved to avoid the need for
compensation.
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Abstract

This paper describes the use of a top-view finger
image to improve the accuracy of the fingerprint
verification system. A CCD camera is used to capture
the top-view finger umage while the user press their
finger on the fingerprint sensor without the need of
additional interaction with the system. The feature
map called NailCode 1is extracted from the top-view
data and minutia features are extracted from the
fingerprint image. By using the likelihood ratio that 1s
calculated from the matching score from both top-
view and fingerprint matcher, the improvement of the
matching accuracy 1s obtained.
Keywords: Multimodal Biometric, NailCode,
Fingerprint verification, Finger image.

1. Introduction

Personal verification using fingerprint is widely
used because of it has been proved that fingerprint of
each person is unique and time invariant. Many
publication papers tried to umprove the accuracy of
fingerprint matching until the limitation have reached.
To further improve the system accuracy, other
biometric features have been used in conjunction with
fingerprint to improve the matching accuracy, such as,
Hong[1] employs the face in conjunction with
fingerprints,  Jam[2] uses speech, face and
fingerprints, Marcialis[3] utilizes two different types
of fingerprint sensors and Phrabhakar[4] uses 2
mnpressions of the same fingerprnt. All of these
approach give the unproved matching accuracy
compared to the one that used only fingerprint feature,
but the drawback of these systems are that they
require additional feature that need more user
mteraction with the system.

Our approach nests on the idea that the skin
wrinkles and furrows on the top of a person’s fingers
are different, and that this mnformation could be easily
captured with a small camera above the fingerprint
sensor, The additional mmage information should
merease the accuracy of the system without adding
any extra tasks to the user.

2. Feature extraction from Top-View finger
image

The mput top-view finger image is smoothed
using a Gaussian filter before the mclination angle of
the finger is detected usmg a Line-fitting algorithm
[5], the obtained angle value 1s needed to rotate the
mmage to be up right respect to the x-axis. Background
deletion is done before applying the adaptive
threshold to obtain a binary image. The filterbank
with the setting value of 8 different degrees are
applied to the image, each filtered image 1s tessellated
respective to the reference point to create a feature
map, called NailCode [6]. Figure 1 shows the the
example of the image preprocessed and filtered at 0",
A reference pomt is located at the nuddle-bottom of
the nail of the finger image, as shown i figure 1, a
technique for locating reference point was presented
m [7]. In the matching process, a Euclidean distance
1s computed from the mput and the template
NailCode. The detail algorithm of the top-view finger
nmage processing was presented in [6].

Figure 1. Preprocessing and feature extraction
of the top-view finger image.



3. Fingerprint Feature extraction and
matching system
Fingerprint preprocessing is done to the image
using the techniques proposed by Hong[3]. Minutia
features are extracted and post-processed by the
algorithm proposed in [9]. Matching process can be
summarized in the following steps:
1) Let P and Q are the minutia set of the template
and the mput fingerprint respectively.

0 :{(xf__ylg..(9;‘))-.--”(:(,?'-)5‘6’"@)}

2) The score table of size m™n is created and all
value are set to be zero, m and » stand for the
number of mmutia n P and Q respectively.

3) Perform the algorithm shown m Figure 2.

for i=1 tom
forj=1 ton
]
1
find the translation vector (Ax, Ay)'

fax] x| |xF
Ay =¥/ |-|»7
0 0 0
translate all minutias in O, keep the result in 4
[ x* x? Ax
y =y |+ Ay
9.1 9(1 0

for (A6=-30" :A0<30:460+=5")
R is the rotated minutias in 4 using:

X cosAf —sinAf 0] |[x*
y*|=|sinA@ cosa@ 0| |y
e"| |0 0 1 o

Let S;j:,. is the number of paired minutia
between R and P

pair

score table[ij] = arg max §2°
1 ’ A
]

macthing _score =arg max score _tablei, j]
L)

Figure 2. Matching algorithm for minutia feature.

The two minutias are said to be paired if and only if
the spatial distance(sd) and the direction distance(dd)
are less than the the threshold fh,; and thy,
respectively. The two distance values can be
computed using:

sd=(F =)+ 0" -y O
dd = minQBR S 271'7‘6"'t fﬁp‘) #)
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The derived matching score 1s actually the number of
matched minutias between the input fingerprint and
the template. This value cannot be directly compared
to the distance value from the top-view matcher
because they are i the different domain.

4. Combination Scheme

To combine the 2 biometric features, we decided
that the fusion 1s to be done at the confidence level.
Figure 3 shows the block diagram of our implemented
system, the decision is not perform at the 2 matchers,
this means that the top-view and bottom-view matcher
only send the matching score to the fusion module
and the decision 1s made 1 this module at once.

Feature
Extraction
Module

/

Fingerprint
Matching module Stz

Database

.. distance value
Decision

Fusion
Module

final decision

Figure3. Personal verification using top-view
and bottom-view finger image.

The expected result of decision fusion is to
derive the improvement of matching accuracy that 1s
the top-view matcher gives the wrong result while the
bottom-view matcher gives the right one, and vice
versa. Let us suppose that the input top-view and
botom-view 1mages are to be classified to the 2
possible classes, @, and @,, where the first one stands
for the 1mposter class and the another stands for the
genuine class. Let us define that x; is the distance
value derived from the top-view matcher and x; 1s the
matching score come from the bottom-view matcher.

The design goal of the biometric system depends
on its application. In high security access applications,
the low value of false acceptance rate (FAR) i1s
required while the forensic applications need the low
value of false rejection rate (FRR). Our design goal is
to minimize both false acceptance rate (FAR) and
false rejection rate (FRR), however, it is difficult to
get an extremely low value of these 2 rates at the
same time, so the approach that most designers



choose to mmplement the system is to minimize the
equal error rate(ERR: the point that the system has
FAR and FRR value at the same level) [10] as much
as possible.

If we use top-view feature alone to verify
person, the FAR and FRR value can be computed
using:

thrgp
FAR,, = [P(x, | @)dx, 3)
FRR,, = jP(xl | @,)dx, )
thigp

In contrast, if we use bottom-view feature alone
to verify person, the FAR and FRR value can be
calculated using:

FAR,, = [P(x, | @)dx, (5)
g
g

FRR,,, = jP(xz | @, )dx, (6)

The value thy,, and th,, are the threshold value
set at the top-view and bottom-view matcher
respectively. Equations 3-6 state that the threshold
value of both top-view and bottom-view matcher have
the effect on the FAR and FRR values. If we adjust
the threshold to imcrease the FAR value, the FRR
value 1s decreased, and vice versa.

The final decision of the fusion module m
figure 3 1s made usmg:

> |
decision ={

@;  otherwise. @)

if (L || X1 <thip || X2 thsey)

The use of ORing operation i equation 7
increases the value of FAR ,pineq but decreases the
value of FRR ,mpineq- By setting the value of #h,, and
thye, to get very small value of FAR,, and FARy,,
respectively, the low value of FAR mpmea can be
achieved. The likelihood ratio L can be calculated
using:

L:PC’C],X}

@) | P(x;.x;

@y (8)

The equation 8 tells us that if L 1s high, the mput
data 1s more likely to come from class @, the S value
1s the threshold value to decide that the mput 1s the
genune person or not, this value is empirically
determined. It 1s obvious that the joint probability m
equation 8 1s difficult to get directly from the tramning
data set, by assuming that x; and x, are statistically
independent, the jomt probability density can be
estimated using:

P(xlwx: |(Uk):P(X1 @;) p(x, | @) 9
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Figure 4. The estimated distribution for
the top-view matcher.

5. Experimental Result

The test database was collected from 800
different fmgers. One snapshort of each finger
contains both top-view and bottom-view data. Seven
snapshorts were collected from each finger, each of
which was used to enrolled into the database while the
other 6 snapshorts were used to test the system. To
approximate the top-view and bottom-view matching
score distribution, 200 fingers were rendomly selected
and gaussian model was used. Figure 4 shows the
example of the estimated top-view distribution.

Table 1 shows the false rejection rate of the
system at the prespecified values of FAR. The
fingerprint feature gives more performance than the
top-view feature. At the FAR value from 0.01% to
1%, the combined system gives the improved FRR
values, however, the use of ORing operation 1n
equation 7 makes the FAR values of the combined
system increasing, when we tested with our database,
the FAR of the combined system could not be lower
than 0.0107%.

Tablel FRR of the system at different values of FAR.

False Rejection Rate (FRR)
, Using Using
L1 Top-View fingerprint Combined
feature alone alone
1% 5.4% 2.6% 1.9%
0.1% 9.1% 5.9% 3.5%
0.01% 13.5% 10.5% 4.1%
0.001% 21.4% 7.5% -

The recerver operating characteristic (ROC)

curves [10] were plotted m Figure 5. The genuine
acceptance rate m the ROC 1s actually the value of
I-FRR. When fingerprint feature was use in the



system alone, the ERR is at 1.75% while the top-view
feature alone gave 3.9% of ERR. After combination,

the accuracy of the system was 1mproved so 1t had an
ERR of 1.36%.

6. Conclusion

By using the additional top-view finger image,
the performance of the personal verificaiton system
using fingerprint is improved. Owr implemented
system met the goal of making a system with the
lowest ERR wvalue, however, the combination
mechanism has a limitation that it cannot give very
small value of FAR(lower than 0.01%). This means
that the combination mechanism must be further
improved.

-
(=]
(=]

—— Using Top-View feature alone
—@— Using fingerprint alone

—a— Combined

Genuine Acceptance Rate(%)

«©
o

—— Equal-Error line
4 6 8 10
False Acceptance Rate(%0)

o
[}S)

Figure 5. Performance of our personal
verification system.
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Abstract

Our multimodal biometric system combines fingerprinting with a top-view finger nnage captured by a CCD camera
without user intervention. The greyscale image 1s preprocessed to enhance its edges, skin furrows, and the nail shape betore
being manipulated by a bank of oriented filters. A square tessellation is applied to the filtered image to create a feature map.
called a NailCode, which is emploved in Euclidean distance computations. The NailCode reduces system errors by 17.68%
in the verification mode, and by 6.82% in the identification mode.

Keywords: fingerprints, top-view finger images, multimodal biometrics, nailcode, image processing

1. Introduction

Person recognition by fingerprinting 1s ubiquitous
because of 1ts uniqueness and tune m nece (Maltom ef al.,
2003). As a biometric feature, fingerprints offer high accu-
racy even when cheap sensors are utilized. However, finger-
prnt recognition accuracy has reached a limt which 1s
difficult to surpass. One approach 1s multimodal biometrics,
which combines multiple human features in the recoguition
process. For example, Hong and Jamn (1998) employs the
face in conjunction with fingerprints, Jain ef al. (1999a) uses
speech, face. and fingerprints. Marcialis and Roli (2004)
utilize two different fingerprint sensors. while Prabhakar and
Jain (2002) exanuine two fingers. All these methods augment
recognition accuracy, with the drawback that the additional
features increase the complexity of user interaction with the
systenn.

Our approach rests on the idea that the skin wrinkles
and furrows on top of each person’s fingers are different,
along with the size and shape of the fingers and finger nails.
Utilizing these attributes will increase the accuracy of a
multimodal biometric system without requiring extra work

*Comrespondmg author.
Email address: {panyavot, montri} (@coe.psu.ac.th

by the user since the details can be captured with a small,
mexpensive camera positioned above the fingerprint sensor,
as shown m Figure 1. Top-view finger imaging also reduces
the possibility of fraud by having recognition relying on more
than one feature.

This paper is organized as follows: section 2 starts with
an overview of biometric operation modes. Section 3 desenibes
top-view finger image preprocessing, feature extraction, and
matching. Section 4 outlines implementations for the finger-
print matching algorithms used by the top-view feature, while
section 5 presents the decision fusion mechanism. Experi-
mental results are given m section 6. and section 7 concludes
the paper.

Fingerprint
Sensor

Fignre 1. Top-view image and fingerprint recognition system.
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2. Biometric Operation Modes

There are three main operational modes in biometric
systems: classification. verification. and 1dentification.
Classification partitions the mput pattern mto n sep:
classes to reduce the search space in very large databases. For
example, Jain er al. (1999b) classify fingerprints into six
types: twin-loop. lefi-loop, right-loop, whorl, arch, and tented
arch.

ated

The mput pattern is verified against templates to
determine whether features come from the same individual
or not. Computation time 1s not an issue because only 1:1
comparison 1s requured.

Identification evaluates the input features to find the
best matches with the templates in the database. The compu-
tation time must be as small as possible so that real tume
response can be achieved.

A good biometric system should ideally combine high
accuracy with low computation time, though 1t 1s difficult to
satisty both demands. In a multimodal biometric classifier.
the designer typically selects a low accuracy classifier with
low computation time to identify the most n-probable match
items from the database. Then the system switches to a high
accuracy classifier, with a larger computation time, to check
the n-candidate items to find the best match.

Our proposed multimodal biometric uses two features:
fingerprinting and NailCodes. A NailCode is a feature map
extracted from the top-view finger image using techniques
described m section 3. The NmlCode matcher performs well
mn both the verification and 1dentification modes.

3. Top-view Finger Image Processing
3.1 Preprocessing

The greyscale top-view finger image obtained from
the CCD camera 1s T, and has size IWxL (see Figure 3(a)).
Its preprocessing flowchart is shown in Figure 2. The main
steps include:

1) Smoothing. Due to the presence of noise and non-
uniform illumination in the image, a smoothing Gaussian
filter is applied to T,

2) Binarization. The greyscale image is converted
mto two color image (black = 0 and white = 255) using an
adaptive threshold (Gonzalez and Woods, 2002). The binar-
1zed unage 1s inverted before the next step, as shown in Fig-
wre 3(b).

3) Small Particle Deletion. Small particles made up
of white pixels less than the threshold value are deleted. The
resulting image. T, is shown in Figure 3(c).

4) Background Deletion. The background of the
finger image is deleted using a parameter described in section
3.3. Figure 3(d) shows the resulting image.

5) Finger Inclination Correction. The inage 1s
rotated to align it vertically with the x-axis of the image, as
shown in Figure 3(e).

6) Skeletonization. Athinning operation is applied to
the image to create a skeleton for the remaining lines in the
1mage, as shown in Figure 3(f).

7) FilterBank. The skeletonized image is manipul-
ated by a filterbank holding eight different filtering directions.
The result is eight umages ready for feature extraction. Details
are elaborated in section 3.5,

3.2 Finger image alignment parameter

When a finger is pressed on the fingerprint sensor, it
may be up to £30° away from the assumed vertical orienta-
tion. The mclhnation is detected, and the unage 1s rotated as
follows:

1) The Canny algorithm (Canny, 1986) is applied to
the T image, producing 7., which 1s copied into two nnages
named 7, and T, using the conditions:

s i Small Particles ’ iy
lop-view finger — — 3 — Skeletonization
= Deletion
mage 7
c° G
Ty
L
Image Background : ]
1 2 FilterBank
Smoothing Deletion
) ey
Y
Finger 8 Filtered
Binarzation — Inclimation  — I 2es
Caorrection

Figwre 2. Flowchart of the preprocessing algorithm.

Images obtamed m each preprocessing step.

Figure 3.
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Osx<W/2 f(m, <0and y<mx+c,)
T (x,y), h 255
T (x.y)= . Li2<zy<L (1 My(xy)= or(m >0and yzmx+c,)| (8)
0, otherwise 0 otherwise
o . . v VX!
T.(x.v) Wilsx<W where m_ = "r and ¢, = }.;]r ! . el
T(x,y)=4 77 Li2<sy<L ) 2 v
r Y] 2% f
0 otherwise. 3) The background-deleted image. T, 1s created from

2) The parameters for the left-edge of the finger are
obtained by letting € be the set of contours in T, where € =
{C,C,C,..C, J and k= number of contours. A line-fitting
algorithm (Bradski and Kaehler, 2008) is applied to each
contour C, to find its straight-line parameter S, For each S,
we have:

S, =(V . VI.X.T}). i=1.k 3)

where (V7)) is a normalized vector parallel to the fitted

line and (X 3 5 YJ )isa point on that line (Bradski and Kaehler,
2008).

3) The parameter S, . of the left-edge finger is
selected from the set of S, using the condition:

where

. :«11‘15;([;«111_'(V“r IV y<a/6 and
S =9, ' 4

N,>N forall j=i, i=1.k
where N, is the number of white pixels in each contour C,.
4) The parameter S, of theright-edge finger can be
derived by applying steps 3-4to T,

Sip = V.V, X0, 1)) (5)

Sy =V V] X0, )) (6)

right
3.3 Background deletion

The CCD camera unage mcludes the background
fingerprint sensor device which must be removed so that
only the finger image 1s processed. Background deletion is
achieved as follows:

1) Image M,. which has the same size as T, is created
using the condition:

C[m <0and y =mx+c)

255
M (x.y)= or (m >0and y <mpx+¢) ) (7)
0 otherwise
1 1571
vher: _ V.r o= Y{ V\ "10
where m, i and ¢; = ¥ 1

2) Image fn’x_ which has the same size as }I.JL_ 18
created using the condition:

the operation:
T=M"MnNT, 9)

where M 1s a pixelwise-intersection operation, applied to
equal-sized images.

3.4 Finger image inclination correction

1) Let g and A be the angles of inclination of the left
and right edges of the finger respectively, defined by:
A rr
47 a -1 ( 5 )
p=tan” |5l A=tan i = |,
J x A J/' /

2) The rotation of the finger around the origin 1s
calculated using:

0.5(u+4) if (uxA<0)
elseif (u=0and 2 20)

otherwise.

@=105(u+i-m)
05(u+Ai+m)

3.5 Filterbank

The skeletonized rop-view finger image is manipul-
ated using a bank of oriented filters, with eight different &
values (0°, 22.5°,45°, 67.5°, 90°, 112.5°, 135° and 157.57)
with respect to the x-axis. The oriented filters enhance the
ridge lines along the specified 8 angles while blurring the
lines that lie in other directions (see Figure 4(a)).

3.6 Feature Extraction

Feature extraction is carried out as follows:

1) The top-view finger image reference point, which
is located in the middle of the nail base, is obtained using the
algorithm described 1 section 3.7, and shown i action m
Figure 4(a) and Figure 5(c).

2) 6 is the degree setting on the oriented filter. The
filtered mmage O, 1s tessellated using the reference point
{x.y) into HxV (10x15) square cells of size wxw (15x15),
as shown in Figure 4(c). p(xy) denotes the pixel mtensity
at location (x,y) of Q. The variance for each square cell at
location (h,v) is calculated using (Chaikan and Karnjana-
decha, 2007):
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X
\ RO i
MX “ s
SRR
R7
(a) (b) (©)

Figure 4. (a) Fmger unage filtered at 90° (b) Eight locations for reference pomt error compensation (¢) square tessellation on the filtered

image.

@7, ) 7,

Figure 5. Top-view finger images for each step of the reference
pomt detection algorithm.

ZZP(A‘-.‘-*)] (10)

xme ymg

) I 2 1
o (hv)=— (X, v) —
()= 5 TPy | 5
where a =y +wvw
b=y +w(vtl)
¢=x +w(h-0.5H)
d=x_+wh-0.5H+1).

The tessellated area should cover the shape and the
width of the nail base while avoiding problems with finger
nail length variation. For that reason. we selected /i to range
from0.1...., -1 and v torange from -2,-1,0,....F-3.

3) After applying step 2 to every filtered image, the
extracted feature, called a NailCode, and denoted by ', 1s
calculated. ¥'for the images using reference point R, is
defined by:

i{!" :{qj:)’w;!.i"wi W;?.S"W;D"ilylill.ﬁ‘I)U:SF"UJ:ST_S} (ll)

45

where

{2 2 2 2
¥, —{01 203,00, ‘"""UHXV}'

4) Due to the possibility of a reference point detec-
tion error, a compensation technique is used. If R is the
reference point obtained by using the algorithm described in
section 3.7, then there are eight translated versions, Rl-Rs.
each §(10) pixels from R, as shown in Figure 4(b). In the
enrollment module. only ¥° is extracted from the input
top-view finger image. In the authentication module, the
NailCode EF’:{'PO,SV'.?T!,...‘SVG} 1s extracted from the

mput top-view finger inage.
3.7 Automatic detection of reference point location

The reference point of a top-view finger image 1s
located at the midpoint of the finger’s nail base. The steps
for its detection are:

1) Let ™, ' and ' denote the intersection, union and
inversion operations respectively. Image 7. as shown i
Figure 3(c). 1s employed to create umage T, . using the condi-
tion:

T,=(M,AM,NT,) W (M,AM)y (12)

2) The mnage T, as shown m Figure 5(a). 1s dilated
and inverted before being rotated to be exactly vertical.
resultingin 7,

3) Let £ be the set of contours found in the image
g

L ={L,L,L,...L}
where f1s the number of contours detected in the image. The
reference point location can be derived by applying the algo-
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num_loop=0
ref_pt_found = false
do
i
all values in - are deleted, giving -{' = {}
find contours from image T, putting all the results in A
for each contour L,
if (N;>threshold and  ratio>r,)
ref pt_found = true
else
remove L, from L

if (ref_pt_found =tme)
select contour L , from £ with the largest ratio
else
perform erosion operation on image 7,
num_loop++
}
while (mum_loop<MAX_LOOPS and ref pi_ found =false)

if (num_loop<MAX_LOOPS)
extract the reference pomt from the contour I-_,
else
the reference pomt can not be found, and the unage 15 rejected

Figure 6. Reference point detection algorithm.

rithm described in Figure 6 to image 7T, using the following
parameters in each iteration:
N, = The number of white pixels in each contour L,
BR = The bounding rectangle (Bradski and Kachler,
2008) of each contour L. Each rectangle contains the para-
meters:

BR _BR BR ;BR
1 ’uJ 2 ?r

BR .
where ¥, = v coordinate of top most rectangle corner

BR . .
X, = xcoordinate of left most rectangle corner

BR .
w = width of rectangle

BR . -
h7" = height of rectangle.

N,

1

rafio, ‘_l‘;'m x hr_BR

As shown in Figure 5(b). our algorithm tries to find
the largest contours in the top-view finger image which are
expected to be the nail. To avoid the contours that are larger
than the nail, the ratio of the width and the length of the
bounding rectangle is calculated. and contours with a ratio
less than r (0.6) are thrown away.

4) L 1s the selected contour obtained from the algo-
rithm in Figure 6. The reference point R(x.) is computed on
L with:

R(x.y) = (x5 + 05wy + 1% (13)

3.8 Matching

The Euclidean distance is computed as part of the
matching operation. Let ’P; be a NailCode template m the
database and ¥ = |¥),. ¥, ¥p,.... ¥ | be the NailCode
extracted from the mput top-view finger nmage. Each E, n
the Euclidean distance £ = {E. E,...... E.} is the distance
between EVTO and ¥,,. The matching score between the
input and the template is:

(14)

ma!chr'ng_.w.'mwmp = 1I]iIl(E9, E,..E)
4. Fingerprint Matching Algorithms

Fingerprint matching algorithms can be classified as
minutiae-based and texture-based. We have developed two
fingerprint matching systems based on minutiae matching:
the first uses Hough transform-based matching while the
other uses our own algorithm. They are combined with the
top-view finger image matching system as described in
section 5.

4.1 Hough transform-based minutine matching (Algo-

rithm Hough)

This algorithm tries to find the best transformation
parameter (1.e. translation and rotation) berween the input
and the template minutiae. Each discretized transformation
estimation 1s stored in an accumulator array, and the transla-
tion and rotation parameter are obtained by detecting the
highest peak in the array. Since this algorithm uses an accu-
mulator array 1 a smular way to a typical Hough transform,
this algorithm is called Hough transform minutiae matching.
The details of this algorithm can be found in Maltoni er al.,
2003.

Hough transform-based minutiaec matching executes
quickly but with low accuracy tolerances (compared to the
other minutiae matching algorithms). Work by Prabhakar and
Jaim (2002) confirm these characteristics.

4.2 Our proposed minutiae-based fingerprint matching

(Algorithm Simple)

Minutiae matching can be sununarized by the follow-
ng steps:

1) Let Zand R be the minutiae sets for the template
and the mput fingerprint,

Z = {GE2E 07, (05|

R=(xF, vk 0F ),....(.\'f._,‘.‘f._O,‘_Q)} .

2) A score table of size zxr 15 created. with all its
values set to zero. - and r stand for the number of minutiae
m Zand R.

3) Execute the algorithm (shown in Figure 7).
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fori=1toz
for /=1 tor
!
i
find the translation vector (Av, Ay)T

_ R
Ax -";z X J
Ay |=| ¥ |-| ¥f
0 0 0

translate all minutiae in R , storing the result in 4

X X Ax
v =R |+ Ay
9.-1 6}{ 0

for (40=-D@: AG=D; A0+=))
R is the rotated version of all minutiae in 4 vsing:

x| [cosA@ -sinA8 0] |x*
_1‘“‘ =|smmAf cosAf 0 ¥
o | o 0 1 0*

A8 S .
Let Spm-,. be the mumber of paired minutiae berween R* and 7
score_table[ij] =arg max ‘;;;’”

}

marching _score, = arg max score tableli, j|
i

Figure 7. Our Simple mimutiae matching algonthm.

Two minutiae are paired if and only if their direction
distance and spatial distance are less than the threshold
values. The derived matching score 1s the number of matched
minutiae between the mput fingerprint and the templates.
Because of its simplicity. this algorithm is called Simple.

5. Decision Fusion

Decision fusion derives an improvement i matching
accuracy when the top-view matcher gives the wrong result
while the bottom-view matcher gives the right one, or vice
versa.

Suppose that an mput feature can be a member of two
possible classes, @, and ¢,, where the first i1s the imposter
and the other 1s the genuine class.

Define X'= { x,x,, .., x } asthe matching score used
in biometric verification. To make a final decision between
the classes, the likelihood ratio L (Duda er al., 2000;
Prabhakar and Jain, 2002) is:

L=P(X|o)/ PX|®) (15)

It L 1s high, then the mput data is more likely to come
from the genuine class. We decide that the input comes from
the genuine class if L=/, where 3 is an empirically determ-
med threshold value. The joint probability in equation 15 1s
difficult to obtain directly from traming data, but by assum-
ing that each x, is statistically independent of each other, the
joint probability density can be estimated using: (Duda er
al.. 2000)

P(x,x5,00,%, | @)= 1"_'[I P(x, |(oj] (16)

6. Experimental Results

The system hardware 1s a Creative VF0080 CCD
camera in a light controlled environment, combined with a
Digital Persona UareU4000B fingerprint sensor. C++ sofi-
ware using the OpenCV library captures the top-view finger
1mage whenever the fingerprint sensor i1s pressed. The test
database holds details on 800 different fingers. A snapshot of
a finger comprises both top and bottom-views. Eight snap-
shots were collected for each finger: one was added to the
database while the other seven were used ro test system per-
formance.

Three matchers were mmplemented: (1) a Hough
matcher using the Hough transform-based minutiae matching
techmque, (2) a Simple matcher utilizing our matching
algorithm. and (3) a TopFiew matcher which employs the
NailCode feature. The scores from these three matchers were
combined to make a multimodal biometric system using the
algorithm described m section 5.

6.1 Performance in the verification mode

The FAR (False Acceptance Rate) and FRR (False
Rejection Rate) values were plotted on a Receiver Operating
Characteristic (ROC) curve (Prabhakar and Jain, 2002) to
Judge the performance of the system. The genuine accept-
ance rate can be obtained from ROC as 1-FRR. For the FAR,
4,474,400 (800*799*7) matches were evaluated, and 5,600
(800%7) matches were examined to find the FRR.

We tested the verification performance against three
conditions, with each condition using only one score from its
respective matcher. There was no combination of these three
systems. Figure 8 shows that the Simple matcher gives better
accwracy than the other two maichers at every operating
point. At low FARs, the Topliew matcher gives higher
accuracy than the Hough matcher, but the Hough matcher
surpasses TopFiew at higher FAR values.

We combined the three matchers into pairs, and the
likelihood ratio was used to perform decision fusion. System
accuracy increased. as shown in Figure 9. The combination
TopViewtSimple gives the best accuracy. Also, the Simple
matcher alone has better accuracy than a combination of
TopViewtHough at all operating points with FARs lower
than 7%. Since biometric system needs to operate at a low
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Figure 8. Verification performance of individual matchers.
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Figure 9. Verification performance of all combmations.

FAR value. this made us decide to use our nunutiae match-
ing algorithm to improve system accuracy in the identifica-
tion mode.

Finally, we combined the matching scores of all three
matchers, TopView+Hough+Simple. It outperformed all the
paired matcher combimations at low FAR values, but for
FARs greater than 2%. the TopFiew+Simple combination had
lower rejection rates.

The Equal Error Rate (EER) (Malton ef al., 2003)
was used to measure the strength of performance gains. The
ToplView, Hough and Simple matcher alone vield EERs of
3.91%, 3.80% and 1.86% respectively. The combinations of
TopView+Simple, Hough+Simple, TopView+Hough yield
EERs of 1.52%, 1.64% and 2.35% respectively. The combi-
nation of all three matchers gives the best EER of 1.35%.

As shown in Table 1. most of the computing time of
the top-view finger image processing is spent on the pre-
processing while the NailCode matchig process requures
considerably low computation time. The average computing
time used to perform verification for NailCode matching and
Hough transform-based minutiae matching were 20 ms and
3.125 ms respectively. The average tune for performing veri-
fication using our Simple minutiae matching algorithm was
135.8 ms. This reveals that Simple is not suitable for directly
searching the entire database because of its time-consuming
behavior. However, due to its higher accuracy compared to
TopView and Hough, we do use the Simple matcher to
improve personal identification accuracy.

6.2 Performance in the identification mode

To evaluate the performance of the identification
mode, the 800 finger details in our database were divided
mto four databases of 200 details each. A total of 22.400
(800*7*4) 1dentification operations were evaluated. When
the system used a Hough matcher alone its EER was 2.27%,
while the TopFiew matcher’s EER was 2.84%.

We combined the Hough and Simple matchers, but
the likelihood ratio was not utilized. Instead. the Hough
matcher was used to match the mput feature agamst all the
templates in the database to find the best ten finger details.
The Simple matcher was then employed to re-verify these
ten details to find the best match. Figure 10 shows that this
combimation had an EER of 1.76%.

Table 1. Average computing time for one test on a 2.4 GHz Pentium 4.

Source Process Computing time (ms)

Preprocessing 193.95

Top-view Feature Extraction 4.01
fngerimage  Matching 0.02
Reference point detection 19.05

Preprocessing 119.64

Feature Extraction 1.68

Fingerprint Post Processmg 281.45
Matching (Algorithm Howugh) 313

Matching (Algorithm Simple) 135.80
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Figure 10. Performance in the identification mode.

Table 2. Equal Error Rate of the tested configurations.

Mode of Operation Test Configuration EER(%)

TopTiew 391

Hough 3.80

Simple 1.86

Verification Hough+Simple 1.64
TopView+Simple 1.52

TopView+Hough 2,35
TopView+Hough+Simple 1.35

Hough 2.27

Identification Topliew 2.84
Hough+Simple 1.76
TopView+Hough+Simple 1.64

When we combined the three matchers, we used the
TopTView matcher to verify the extracted input feature against
all the templates i the database. The five best finger details
from the 7opFiew matcher were obtained and added to a
candidate list. The Hough matcher was also utilized to search
the database to find the five finger details with the highest
matching scores, and they were also put into the candidate
list. The Simple matcher re-verified all the finger details in
the hist. and the best match was found. Tlns configuration
had an EER of 1.64%. The Equal Error Rates of all experi-
ments are summarized in Table 2.

The average computation tune to perform 1:200
matches in the identification operation for the TopJFiew and
Hough matchers was 4 ms and 625 ms respectively. The
Simple matcher requured 1.358 seconds to perform 1:10 veri-
fications in both the Simple~Hough and the Simple+Hough
+TopView configurations.

7. Discussion and Conclusions

The NailCode feature reduces the venrfication error

(a) (b)

Figure 11. Finger unage captures at different tunes: (a) the wutial
image; (b) the same finger captured after 990 days had
passed.

rate of the system by 17.68%. This value is obtained by
comparing the results between the Hough+Simple and
Hough+Simple+Topliew configurations. In the idenrifica-
tion mode, the system error is reduced by 6.82%. NailCode
improves the accuracy of the fingerprint marching systen.
while requiring very low computation times, and being able
to operate in both the identification and verification modes.
We recommend that the NailCode matcher be used to
increase the accuracy of fingerprint recognition systems.

Skin wrinkles on a finger will increase over tune, but at
a slow rate. For example. we have demonstrated that the same
finger captured 990 days after its previous snapshot
(see Figure 11) can still be correctly identified.

Since NailCode has lower accuracy than fingerprint-
ing. 1t 1s recommended that top-view finger imaging should
not be used alone to verify or identify individuals: it should
be employed m conjunction with fingerprinting to improve
overall recogmtion accuracy. These two features can be
easily utilized together as part of one user operation. To keep
the top-view feature up-to-date. biometric updating is recom-
mended ro overcome any time variances.
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