Chapter 4

Estimation and Simulation

In Chapter 3 we examined the time scries of daily exchange rate returns for the
pound, the yen, and the deutsche mark (relative to the US dollar), over the period from
the beginning of January 1986 until April 1994. We found the three series were
correlated with cach other, and their distributions were longer tailed than the normal
distribution. By examining the moments of the distributions within 25-day and 50-day
stretches, we found that the three series of exchange rate returns were similar. We also
found evidence of non-constant volatility.

In this chapter we estimate the parameters in the simple modet for stochastic
volatility fitted to the data. We then assess the model by creating simulated time series

with these parameters, and thus compare the simulated series with the data.

Time series analysis of volatility

Refer to Figure 3.10, which shows the changing volatility of the three exchange
rate returns, based on 25-day and 50-day averages. First, we test the null hypothesis that
the volatility is constant.

Figure 4.1 gives a time series analysis of the volatilities, using periods of 25 days,
for the pound/dollar exchange rate. This series is ﬁtted well by a first-order
autoregression With parameter a = 0,368, The standard error of this estimate is 0.102, so
the z-statistic for testing the null hypothesis is z = 0.368/0.102 = 3.61, giving a small p-
value (0.0003).

Now if the volatility were constant, the time series of volatility estimates would comprise
a sequence of independent quantities, and would thus resemble white noise. Since the
volatility series is fitted by a first-order autoregression with parameter greater than 0, we

conclude that the volatility of the pound/dollar exchange rate return is not constant.

Figures 4.2 and 4.3 show the corresponding time series analyses for the yen/dollar and

deutsche mark/dollar returns, again using periods of 25 days to estimate the volatilities.
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Figure 4.1: Time series analysis of 25-day volatility for pound/dollar return
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Figure 4.2: Time series analysis of 25-day volatility for yen/dollar return
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Figure 4.3: Time series analysis of 25-day volatility for DM/dollar return
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For these currencies, the volatility series is again fitted well in each case by a first-order

autoregression, with parameters 0.241 and 0.289, respectively. Since the standard errors

of these estimates are 0.105 and 0.104, respectively, the z-statistics for testing the null

hypothesis of constant volatility are 2.30 and 2.78, respectively. The corresponding p-

values are 0.021 and 0.0054, so the null hypothesis is rejected in each case.

We have used periods of 25 days to estimate the volatility of cach series. Table 4.1 shows

results for periods ranging from 20 to 40 days. The highest autocorrelation coefficient is

obtained in each case when a period of 25 trading days is used to estimate the volatility.

Table 4.1: Estimates and standard errors of autoregressive parameters

Period Pound{dollar 100 yenfdollar DM@ollar
autocorrelation | SE | Autocorrelation| SE | autocorrelation | SE
20 0.322 0.093 0.186 0.095 0.269 0.094
25 0.368 0.102 0.241 0.105 0.289 0.104
30 0.313 0.114 0.233 0.121 0.15% G.119
40 0.268 0.134 0.045 0.144 0.144 0.137
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Estimation of parameters

We have shown that the volatility of the exchange rate returns is not constant. So
we now try to fit the stochastic model developed in Chapter 2, given by equations (20)
and (21). The moments of the distribution of a process that follows this model are given
by equations (26) — (29), and the autocorrelations of the squarcs of the time series at

ditferent lags are given by equation (30).

Since these equations are nonlinear, a numerical inversion procedure is required
in general. However, their solution is much simpler if we assume that the parameter ¢ is

close to 1, so we can use equations (31) — (35).

For the three series of exchange rate returns (for the pound, yen, and deutsche
mark rclative to the dollar), the cstimated standard deviations for the period from 4
January 1986 to 12 April 1994 were found to be 0.736, 0.745 and 0.766, respectively (see
Figure 3.12). The average is thus 0.749. The corresponding estimates of the overall
kurtosis over this period were 5.514, 5.363, and 5.290, respectively, averaging to 5.389.
Since the overall mcans are statistically indistinguishable from 0, we assume that g = 0.

Substituting these average values into equations (36) ~ (38), we find
6= 0.749° V(1.5 - 5.389/6) = 0.435,
£ = N©.749% - %) = 0.355. -

These estimates are the limiting values as @ — 1, and at this limit, d is 0. But
since & must be positive for the process to have variable volatility, so we need to choose a
vaiue of ¢ slightly below 1 to get a proper estimate for 8. Since 88 = k, where 8=

oN(1—-¢), it follows that § = Kl(1—a)/ex.

For example, if a= 0.9, §=0.355¥(1-0.9%)/0.9 = 0.172. Similarly, if ¢t = 0.95,
we find that 8 = 0.355v¥(1-0.95%/0.95 = 0.117.

The parameter o can be estimated from the autocorrelation function of the

squared returns, by fitting the theoretical function given by equation (35).
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Figure 4.4 shows this autocorrelation function for the pound/dolar returns,
together with the theoretical functions obtained by taking a = 0.95 (solid curve) and o=
0.90 (dotted curve).

Figure 4.4: Autocorrelation function of squared exchange rate returns for pound/dollar
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Note that the autocorrelations based on the data are mostly positive. However, tor
small lags, the theoretical values are higher than the values obtained for the data,
particularly for o =0.95. This indicates that the limiting model does not provide a

satisfactory fit.

Figure 4.5 shows simulations of the volatility based on 25-day and 50-day
stretches, with o = 0.9 (top three plots) and o = (.95 (bottom three plots). This figure
shows that the estimated standard deviation coefficients of these simulated exchange rate
returns {average of 0.7488 for a= 0.9, average of 0.7301 for &x = 0.95) are closc to those
for the data (average of 0.749).



Figure 4.5: Simulation volatility of standard deviations for exchange rate returns
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When compared with the standard deviations coefficients of 25 days with &= 0.9
shown in Figure 3.10, it can be seen that the volatility series based on the simulation

looks just like the volatility series bascd on the data (Figure 4.6)

Figure 4.6 : Simulation volatility of standard deviations compared with the volatility on

the data basis for exchange rate returns
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The series of skewnesses based on the simulated data, again using periods of 25
days and 50 days, for &z =10.9 (top three plots) and o= 0.95 (bottom three plots)
(Figure 4.7}

Figure 4.7 shows that the skewness coefficients based on the simulations (range
of -0.11 to 0.03, average absolute value of (.06) are less than the estimate overali
skewness coefficients of the data (range of ~0.17 to 0.25, average absolute value of 0.17)

(see Figure 3.11).
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Figure 4.7: Simulation volatility of skewnesses for exchange rate retums
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These plots with 25 days and « of 0.9 are compared with those shown in Figure

3.11 as presented in Figure 4.8.

Figure 4.8 : Simulation volatility of skewnesses compared with the volatility on

the data basis for exchange rate returns

skewnesses of 25-day data(black)&25-day simulations samples{grey) of % returns{alpha=0.8)
2 [pound/dollar: overall skéwness = 0.24672  sim{fation 17 overall Skewneds = -0.10821

0 200 400 600 800 1000 1200 1440 1600 1800 2000
Trading day from 4 January 1986

Figure 4.9 show the series of kurtosis coefficients based on the simulations, again
using periods of 25 day and 50 days, for o= 0.9 (top three plots) and o= 0.95 (bottom
three plots). These plots should be compared with Figure 3.12. This figure shows that the
overall kurtosis coefficients based on the simulations (average 5.38 for o= 0.9, 5.40 for

o = 0.95) are close to the overall kurtosis coefficients of the data (average of 5.39)
(Figure 3.12),



Figure 4.9: Simulation volatility of kurtoses for exchange rate returns
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When compared with the kurtosis coefficients of 25-day with o= 0.9 shown in
Figure 3.12, it can be seen that the kurtosis series based on the simulations is somewhat

similar to the kurtosis series based on the data (Figure 4.10).

Figure 4.10 : Simulation volatility of kurtoscs compared with the volatility on

the data basis for exchange rate returms
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Time series analysis of the simulation volatility

Figures 4.11 and 4.12 show the time series analyses for the volitility series based

on the simulated data, for & = 0.9 and & = 0.95, respectively.

Figure 4.1 shows the time series analysis of the volatility of the first simulation
series for ¢ = 0.9, for exchange rate returns based on 25-day averages. First, we test the

null hypothesis that the simulation of volatility is constant.

This series is fitted well by a first-order autoregression with estimated parameter a
= (0.295. The standard error of this estimate is 0.104, so the z-statistic for testing the null

hypothesis is z = 0.295/0.104 = 2.8365, giving a very small p-vaiue (0.0046).

Figure 4.11: Time series analysis of 25-day volatility for simulated data with oo = 0.9
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Figure 4.12 shows the time series analysis of the volatility of the first simulation
series for o = 0.95, for exchange rate returns based on 25-day averages. Again, we test
the null hypothesis that the simulation of volatility is constant. The series is fitted well by

a first-order autoregression with estimated parameter @ = 0.523. The standatd error of this
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estimate is 0.0.093, so the z-statistic for testing the null hypothesis is z = 0.523/0.093 =
5.62, giving a very small p-value (0).

Figure 4.12; Time series analysis of 25-day volatility for simulated returns with o = 0.95
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In both Figures 4.8 and 4.9 the small p-values indicate that the volatility is not
constant. However, when o = (.95 the fitted autoregressive parameter is substantially

larger than those obtained for the data. This suggests that o = 0.9 may be the better

choice for the parameter.
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Summary

We have compared the actual data and the simulated data by using simple model

for stochastic volatility.

First we have found that the time series of the volatility for the pound, the yen and
the deutsche mark relative to the US dollar are not constant (p-values of 0.0003, 0.021
and 0.0054, respectively).

Sccond we plot the autocorrelation function of the squared exchange rate returns
for pound/dollar, together with theoretical functions obtained o= 0.95 and a = 0.9, for
which (he autocorrelations based on the data are mostly positive. The theoretical values
are higher than the values abtained for the data for small lags, particularly for o= 0.95.

This indicates that the limiting model does not provide a satisfactory fit.

Third we estimate the standard deviation and kurtosis coefficients of these
simulated exchange rate returns. The volatilities look just like the volatility series based

on the data but the estimated skewness coefficients are lees than those of the data.

Finally we have found that in the simnlations for the pound, the yen and the

deutsche mark relative to the dollar are not constant (p-values of 0.0003, 0.021 and

0.0054, respectively).



