Chapter 2
Methodology

This chapter describes the data selection, data structure, and methods used in
the study. The data selection comprises the variables selected, the source of data, the
frequency of data and the period of the study that the data were collected. The data

structure comprises the program and methods used in the study.
Data Selection and Sources of Data

The data comprise-cconomic indicators is collected from the weekly magazine
Far Eastern Ecornomic Review, which is released every Thursday. This magazine
contains regional, art & social, business and regular features. The data was taken from
a regular feature in this magazine, called prices & trends. The data consist of exports,

imports, trade balance, international reserves, money supply and economic growth. |

~ This stady involves the data for every last week of the month in Thailand and

Malaysia. The period of the study is from 1983 to 1996.
Daia Structure

This study used Microsoft Access to store and retricve the data. The economic
indicators data are recorded in a Microsoft Access database file called
dataindicators.mdb. The structure and relations for the economic indicator data are

given in Tigure 2.1.

There arc three tables in the database, which are data of Thailand, data of

Malaysia and calmonth
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The tables data of Thailand and data of Malaysia comprise the variables,
index, year, month, exports, itnports, international reserves, money supply and

econofnic growth. The table calmonth contain the variables month and adjmonth.

A guery is a question that is asked about the information stored in the tables.
The way to questions about this information is through use of the query tools.
Therefore queries were used to create the data structure appropriate for statistical

analysis in this study.

Figure 2.1 Relationships between tables in database
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Statistical Methods

The two-sample t-test (see McNeil, 1998b) and time serjes analysis (see
McNeil, 1998a and Del.urgio, 1998) are used in this study. The statistical analysis of
the tWo—sampIe t-test and time series are also described _ih niany texts such as McNeil
(1996), Rakpao (1996), Losunthor (1995), McNeil (1994), Lunn and McNeil (_1 991),

and Box and Jenkins (1976). These mcthods are summarised as follows.
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1. Two-sample t-test

The two-sample t-test takes the form

yl—;Z :
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In this formula, s is the pooled sample standard deviation, defined by

=

subtracting the sample mean from each sample to give a set of #; + n; residuals,
dividing the sum of the squares of these residuals by n; + 72 -2, and taking the square
root of the result. If s; and 5, denote the standerd deviations of the two samples,
respectively', it may be shown that the pooled sammple standard deviation is given by

the formula

_ \f (= 1) +{n, =153 @

notn, —2

A p-value is now obtained from the table of two-tailed t distribution with

n1 + nz ~2 degrees of freedom.

The two samples comprise confinuously varying responses and the
observations are independent of each other. There are two assumptions. The first
assumption is that the two populations [rom which the samples are drawn havc the
same spread. The second assumption that is the two populations are normally

distributed.

These assumptions may be assessed graphically. Box plots are useful for
coinparing spreads because they explicitly show the midspread (the distance between

the quartiles) for each sample.

The Asp function compar (See McNeil, 1998) is used to provide a graphical
analysis with the two-sample t-test using Matlab Version 5. This command gives a

p-value in the (anova) table, confidence intervals for means, as well as box plots.
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2. Time Series Analysis -

Economic data are appropriate for time series analysis. The data constitute a
set of numerical data measured sequentially in time with trends, cycles, seasonal
variation and random disturbance or irregular movements. So the statistical methods

used for the data analysis are based on time series.
2.1 Time Series Methods

A time series is a continuous set of numerical data measured sequentially in
time. The measurements are often equispaced in time or nearly so. Time series data
arise in economics and markeling, the physical sciences, engineering, biology and

demography, and in many other applications areas.

There are four important objectives of time series analysis. These are (1)
forecasting future values of a series, (2) estimating the trend or overall character of 2
time series, (3) modelling the dynamic relations between two or more time series, and

(4) summarising characteristic features of a time series.

A crucial assumption underlying many of the methods used in time series
analysis is stationarity, meaning that the statistical properties of the series do not
change with time. This means that the mean of the series should be approximately
constant aﬁd the variability should be homogeneous, or unrelated to its level. If a time

series is not stationary, making a transformation may help.
2.2 Common Time Series Patterns,

A trend is a general increase or decrease in a time series that persists. Trends
are caused by long-term population changes, growth during produ'ct and technology
introductions, changes in economic conditions, and so on. Trends are not necessarily
linear because there arc a large number.of nonlinear causal influences fh at yield

nonlincar scries.

Seasonal serics result from events that are periodic and recurrent (e.g.,
monthly changes recurring each year). Common seasonal influences are climate, -
human habits, holidays, repeated promotions, new-product announcements, and so on.

Seasonality can occur in many different ways, for example, by week of the year,
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month of the year, day of thc month, day of the week. When scasonal influences are

present, seasonal forecasting models should be used.

Cyeclical patterns, economic and business expansions (increasing demand) and

contractions (recessions and depressions) are the most frequent causes of cyclical

~ influences on time series. These influences most often last for twao to five years and

recur, but with no known period. In the search for explaﬁations of cyclical

‘movements, many thcorics have been proposed, including sunspots, positions of the

planets, stars, long-wave movements in weather conditions, population life cycles,
growth and decay of new products and technoldgy (e.g.. phonograph records, tape

cassettes), product life cjcle's, and the economy. -

Random time series are the result of man y influences that act independently to
yield nonsystematic and nonrepeating patterns about some average value. Purely

random series have a constant mean and no systematic patterns.

Another pattern that is often scen in time series is a concépt called
autocorrelation. Correlation measures the degree of dependence or association
between two variables. The term autocorrelation means that the value of a series in
one time period is related to the value of itself in previoﬁs periods. With
autocorrelation, there is an automatic correlatioh between observations in a series.
Highly positive autocorrelated series without trends or seasonality are often random-
walk series. When the mean of the series is always changing, the series is called a

nonstationary series.
2.3 Removing a Trend

Many time series have a trend. In these situations it may be useful to fita
straight line, or possibly a quadratic function, and use the residuais as a basis for
further statistical analysis. Least squares regression may be used to simply fit a lincar

or quadratic trend to time series data.
2.4 Periodogram Analysis

A time series is stationary if its statistical properties do not change with time.
Tt is unlikely that a stationary time series will repeat itself exactly, but the series is

repeatable in a probabilistic sense. Another way of lookin g at this is to say that the
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character of the series persists as are moves forward or backward in time, and the only
aspect that changes is the sampling error, which does not contain useful information.
Of course these sampling fluctuations could be relatively large compared to the

persistent characteristic.

These ideas lead to the sinusoid and to the idea of measurin g the amount of
periodicity or repeatability in a time series by finding its covariance or correlation
with a sine wave having a given period. A sinusoid is characterised by the property
that taking a linear transformation of its argument only shifis its frequency and its

phase or position relative to some origin.

Since sinusoidal functions are periodic it is natural to use them as a basis for
approximating a stalionary time series. This basis comprises sine waves with different
fréquencies each defined on the time interval spanned by the data. The first
component appears exactly once on this time interval, the second comprises two
repeatéd sirtusoids, the third three sinuseids, and so on. These components are also
called harmonics. The functional form for (he i¥ harmonic is a cosine wave with some

phase ¢, that is, cos{2mj(t--1Y/n+d}, t= 1,2, ..., n

Using the mathematical thcorj of Fourier.analysis any tunction defined at n
equispaced points on a finite interval may be represented exactly by a constant plus
n-1 harmonics. The number of different frequencies in these components, m, is
(n-1)/2 or n/2 (depending on whether n is odd or even) since there is a sine and a

cosine harmonic at each frequency. If n is even this Fourier representation takes the

form
Y,=a, + Z[aj cos{ZTgi(t ~1)/np+ b, sin{2mj(t — 1)/71}]-!— a,, cos{(t— @

where the summation is from j=1 to j=m-1. (Since sin{n(t-1)} is O for all integers t, in
this casc there is no sine harmonic at the highest frequency.) A similar formula
applies if n is odd. Using the fact that a lincar combination of a sine function and a
cosine function at the same frequency méy be expressed as a single sinusoid with

some phase ¢, an alternative formula for the Fourier representation is

y, =aD+ZAJ co_s‘bfg(r—_l)/n-i-(,bj} (4)
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where the amplitude A; = V(3" + b;®) and the summation is from 1 to m.

This Fourier representation is sif‘nilar to linear regression analysis, where the
sinusoidal components play the role of determinants or predictor variables. Since the
number of parameters is exactly equal to number of data values, there is no residual
error: the rcgre'ssion.model provides a perfect fit to the data. Moreover it may be
shown that the sum of products or sine and/or cosine harmon.i'cs over the range of
frequencies is zero, which means that these harmonics are statistically uncorrelated
with each other. Consequently cach Fourier coetficient (a; or by} is the regression
coefficient of the time series y; on the corresponding harmonic. The formulas for

these coefficients (for n even) are as follows.

dy =-Zyr /‘n, ay ‘__Z(_I)Hyt /n
dj = (2/71)2 ¥, cos{Zn;f(r - 1)/ n}, b, = (2/?1)2 ¥, Sin{Zﬂj(r —'1)/m}

These formulas show that each Fourier coefficient may be interpreted as a
covariance between the data and a sinusoid at the given frequency. The periodogram
of a time series {1, j = 1,2, ..., m} is defined in terms of the amplituides of the

harmonics in the Fourier representation as
1, =(n/2)a +57) (3)

the multiplier n/2 ensures that the i periodogram value is equal to the component of
the variance in the data accounted for by a sinusoidal function with frequency j/n.

Since thehsinusoidal terms are uncorrelated with each other, it follows that .

>0, -Znsnf =30 - . ®

this useful formula is known as Parseval’s theorem.

This relation js just an analysis of variance for a time series. So the sum of the
periodogram ordinates 15 equal to the total squared error of the datﬁ, and consequently
‘the periodogram shows how much of the squared error of the data is accounted for by
each various harmonics. For this reason it is useful to graph the scaled periodogram,
obtained by dividing the periodogram by its sum. The scaled periodogram thus shows

what proportion of the squared crror is associated with each harmonic.
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Note that the frequency j/n is expressed in terms of the number of cycles per
unit time. Since the valuesofjare 1, 2, ..., m, the lowest frequency is 1/n,
corresponding lo a period equal to the whole range of the data, and the hi ghest
frequency is close to 0.5 (exactly 0.5 if n is even), éorrcsponding to cycles of length 2
with the data oscillating from one value to the next. A [ unct'ion tsplot in the Asp

library (McNéil, 1998a) may be used to show a periodogram of a time series.
2.5 Decomposition of a Time Series

A time series may be written in the form

Y= pts

(7)
where p, is a trend (usually linear or quadratic), s, is a stationary signal having the
Fourier series representation given by Equation (6), and z, is the residual, or noise
series. In classical time series analysis, it is assumed that z; has a normal distribution.

In the simplest case, the terms in the process z, are mutually uncorrclated, in which

casc the noise is called white noise.

Provided the noise is normally distributed, it may be shown that the -
periodagram coefficients are exponentially distributed. Now an exponential
distribution has the property that its standard deviation is equal to its mean. However,
the logarithm of an exponential distribution has approximately constant standard
deviation. For this reason, it is useful, when analysing time scries data, to plot the

- logarithm of the periodogram.
2.6 Autoregressive Models

Another uscful graphical tool is the correlogram, or sample autocorrelation
function, which comprises the set of estimated correlation coefficients between the
series and itself at various spacings. Thus the (auto) correlation coefficient at spacing

(or lag) s may be estimated from the formula

bk
S5 -

=L (8)

k)
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and the correlogram is a graph of the series (15, s=1, 2, ..., S) against the spacing s.
Since the number of terms used to calculate the correlation coefficient at lag s is n-s
where 1 is the length of the time series, the maximum spacing S should be

substantially less than n.

Due to statistical theory, when the sample size n is large the standard error of a
correlation coefficient is approximately normally distributed with standard deviation
1/4n, which tends to O as n gets large. This means that as the length of an observed

time series increases, the sample autocorrelation function of a stationary time series

stabiliscs, approaching a smooth curve.

For a white noisc process the theoretical correlation between observations at
different 5pacih gs is zero, so we would expect the graph .of its sample autocorrelation
function to approach the horizontal axis r = 0 as n gets large. Based on the normal
distribution which has 95% of its probability within 1.96 standard deviations of its
mean, a 95% confitdence interval for the autocorrelation at lag s ranges from
~1.96A/(n-s) to 1.96/(n-s). In contrast, the periodogram values of a white noise
process, being exponentially distributed with constant standard deviation, do not settle
down as the length ol the series increases. Instead they become more densely packed.

Ljung & Box (1978) suggested using the statistic

= n(n + 2)2
se=i B8 . - . (9)
where m is a specified integer substantially less than the series length n, to test the
hypothesis that a time series is a sample from a white noise process. If it is necessary
to fit a linear model involving p parameters to transform the series to a white noise
process, where these parameters are estirhated from the data, then Q is distributed

approximately as a chi}—squared distribution with m-p degrees of freedom.

Now et us consider more general models for describing a noise process Z A

simple model, 1nv01v1nc just a single paramectcr, takes the form

Z =Wz, W, (10)
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where w, is a while noise process. This process is called a simple Markov process, and
is characterised by the fact that the best forecast of its next value, z;..; is based only on
the current value, z,. Note that this process reduces to white noise when the pa.rameter
.is 0. This leads us to consider introducing a second parameter, extending the simple

Markov process to the second-order autoregressive model, which takes the form

zf = alzr—i + azzf-z + WI

(A
the general anoregressive process of order p takes the form
z; =2“;‘Z:—j W, |
j=1 _ . (12)

where the surmmation goes from j=1 ta j=p. It may be shown that an autoregressive

process is stationary if and only if all of the roots of the characteristic polynomial

P(z):l—ia_,.zf (13)

J=1

are outside the unit circle lzl=1 in the plane of complex numbers z. In particular, this
means that a simple MarkoV process is stationary if lajl< 1. The condition for a
second-order autoregressive process is rather more complicated, but it rnay be shown

that necessary and sufficient conditions are
y+am<l,ap—a <1, | a2|< 1.

Autoregressive moving average (arma) models. The Asp function tsplot used to
analyse of a univariate time series. It shows the periodogram, the base 10 logarithm of
the periodogram, and the autocorrelation function of a time series. It also has (he
capability of removing a linear or 'quadratic trend, fitting specified h@irmonics terms,

and estimating autoregressive coefficients at specified lags.
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