Chapter 2

Methodology
Data Source

The data were collected retrospectively during the period 1978- 1997 in order
to study the climatic factors related to the incidence of DHF, and to compare the

climatic factors between the West and East coasts of Southern Thailand.

The variables in this study are the monthly incidence of DHF, temperature,
humidity, rainfal! and rain days in the Southem Thailand. These are taken from two
provinces in the West coast and two provinces in the East coast of the Southern
Thailand during 1978 - 1997.

The selection criteria was as follows:
- The South of Thailand is divided into two sides the West and East coasts.

- The two provinces having the highest incidence of DHF in each side was selected.
Data Collection and Data Management

The data for the incidence of DHF were collected over the 20-year period
1978 to 1997 from Epidemiological reports at the Division of Epidemiology, Ministry
of Public Health. The climatic factors are collected at the same period from the

Meteorological Department, Ministry of Transport and Communications.

The data were stored in Microsoft Excel, and recorded, where necessary using,
PFE (programmers filc editor). Matlab version 5 ( Hanselman and Littlefield et al,
1997) and Asp (McNeil et al, 1998) were used for graphical presentation and

statistical analysis.
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Schematic Diagram
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Using the conceptual framework shown in Figure 2.1, we can investigate the

relation between climatic factors and the incidence of DHF of the southern part of

Thailand, The climatic factors used in this study include rainfall, rain days, humidity

and temperature from the selected provinces. The variables listed as “other factors”

are relevant, but not included in this study.

Figure 2.1: Conceptual framework representation of DHF incidence and factors

related to DHF incidence
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Graphical Methods

The following graphical methods were used in this study.

1. Histograms and statistics for variables before and after transformation using

logarithms and cube roots.

2. Comparison between the outcome and determinants by location.

3. Scatterplot matrix showing relationships between the outcome and determinants
by location.

4. Time series plots of the variables (univariate).

5. Bivarniate time series plot displaying association between DHF incidence and

rainfall.
Statistical Methods

The statistical methods used for the data analysis may be described as follows.
1. Correlation analysis

The correlation is used to measure the linear association between an
independent variable (x) and a dependent variable (¥). The correlation coefficient is a
measure of the strength of the linear, or straight-line, relationship between the

variables. The correlation coefficient is defined as (McNeil et al, 1998, page 181)

yu Z(x:‘_f)(yr_?)
VS -3P Y -3

(2.1)

It has been shown that r ranges from a minimum of -1 to a maximum value of
1. A correlation coefficient equal to ) indicates no linear relationship between the two

vartables. In the analysis, the correlation between variables recorded at different times

will be investigated.
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2. Periodogram analysis

A timc series is stationary if its statistical properties do not change with time.
It is unlikely that a stationary time series will repeat itself exactly, but the series is
repeatable in a probabilistic sense. The only aspect that changes is the sampling error,
which does not contain useful information. These sampling fluctuations could be

relatively large compared to the persistent characteristic.

These ideas Icad to the sinusoid (the simplest function that repeats itself) and
to the idea of measuring the amount of pericdicity or repeatability in a time series by
finding its covariance or correlation with a sine wave having a given period. A
sinusoid is characterised by the property that taking a linear transformation of its
argument only shifts its frequency and its phase or position relative to some origin.
The cosine function is just a sine function whose argument is shifted by 7 /2, that is

cos(x) = sin{x + 7 /2) (2.2)
Since sinusoidal functions are periodic it is natural to use them as a basis for
approximating a stationary time series. This basis comprises sinusoidal waves with
different frequencies each defined on the time interval spanned by thc data. The first
component appears exactly once on this time interval, the second comprises two
repeated sinusoids, the third three sinusoids, and so on. These components are also
called harmonics. The functional form for the j harmonic is a cosine wave with some

phase ¢, that is, cos {27 j(t-1)/n+¢}, t= 1,2, ..., 1.

Using the mathematical theory of Fourier analysis, any function defined at n
equispaced points on a finite interval may be represented exactly by a constant plus
n—1 harmonics. The number of different frequencies in these components, m, is
(n—1)/2 or n/2 {(depending on whether n is odd or even) since (here is a sine and a
cosine harmonic at each frequency. If n is even, this Fourier representation takes the
form

y(t) = ap + X[a; cos{2mj(t-1)/n}+b; sin{2mj(t-1}/n}] + apcos{m(t-1)}  (2.3)

where the summation is from j=1 to j=m-1. (Since sin{®(t-1)} is O for all integers t, in
this case there is no sine harmonic at the highest frequency). A similar result applics if

n is odd. Using the fact that a linear combination of a sine function and a cosine
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function at the same frequency may be expressed as a single sinusoid with some phase

0, an alternative formula for the Fourier representation is

y(t) = ap + TA; cos{2mj(t-1)/n+d; } (2.4)
where the amplitude A;= (af + bf) and the summation is from 1 to m.

This Fourier represcntation is similar to linear regression analysis, where the
sinusoidal components play the role of determinants or predictor variables. Since the
number of parameters is exactly equal to number of data values, there is no residual
error: the regression model! provides a perfect fit to the data. Moreover it may be
shown that the sum of products of sine and/or cosine harmonics over the range of
frequencies is zero, which means that these harmonics are statistically uncorrelated
with each other. Consequently each Fouricr coefficient (g; or b;) is the regression
coefficient of the time series y; on the corresponding harmonic. The formulas for

these coefficients (for n even) are as follows.
ay =3 yO)/n
a, =2, D" y0in
a, =(2/n)Y y()cos{2mi(t ~ 1)/ n}
b, =(2/n)Y y(t)sin{2mj(z — 1)/ n)
We can see from thesc formulas that each Fourier coefficient may be
interpreted as a covariance between the data and a sinusoid at the given frequency.
The periodogram of a time scries {1, j=1, 2, ..., m}is defined in terms of the
amplitudes of thc harmonics in the Fourier representation as
1, =(n/2)a}+b}) (2.5)
The multiplier n/2 ensures that the j™ periodogram value is equal to the component of

the variance in the data accounted for by a sinusoidal function with frequency j/n.

Since the sinusoidal terms are uncorrelated with each other, it follows that
D 0=y /n) =31, (2.6)

This useful formula is known as Parseval’s theorem.
This relation is just an analysis of variance for a time series. So the sum of the

periodogram ordinates is equal to the total squared error of the data, and consequently



15

the periodogram shows how much of the squared error of the data is accounted for by
the various harmonics. For this reason it is useful to graph the scaled periodogram,
obtained by dividing the periodogram by its sum. The scaled periodogram thus shows

what proportion of the squared error is associated with each harmonic.

3. Autoregressive models

Anather useful graphical tool is the correlogram, or sample autocorrelation
function, which comprises the set of estimated correlation cofficients between the
series and itself at various spacing. Thus the (auto) corrclation coefficient at spacing

(or lag) s may be estimated from the following formula
n=3 vt -5 yt+s -5 Yoo @)
t=l1 t=1
and the carrelogram is a graph of the series (r,, s = 1, 2, ..., S} against the spacing s.
Since the number of terms used to calculate the correlation coefficient at lag s is n-s
where n is the length of the time series, the maximum spacing S should be

substantially less than n.

According to statistical theory, when the sample size n is large the standard
error of a correlation coefficient is approximately normally distributed with standard
deviation 1/9n, which tends to 0 as n gets Jarge. This means that as the length of an
observed time series increases, the sample autocorrelation function of a stationary

time series stabilises, approaching a smooth curve.

For a white noise process the theoretical correlation between observations at
different spacing s is zero, so we would expect the graph of its sample autocorrelation
function to approach the horizontal axis r = () as n gets large. Based on the normal
distribution which has 95% of its probability within 1,96 standard deviation of its
mean, a 95% confidence interval for the autocorrelation at lag s ranges from
—1.96/(n-s) to 1.96/ v{n-s). In contrast, the periodogram values of white noise
process, being exponentially distributed with constant standard deviation, become
more denscly packed as the length of the series increases.

Ljung & Box (1978) suggested using the statistic

2
s

0= n(n+2)i

=1 — 3

(2.8)
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where m is a specified integer substantially less than the series length n, (o test the
hypothesis that a time series is a sample from a white noise process. If it is necessary
to fit a linear model involving p parameters to transtorm the scries to a white noise
process, where these parameters are estimated from the data, then Q is distributed

approximately as a chi-squared distribution with m-p degrees of freedom.

4. Forecasting

Forecasting a time series is easy if the noise component is white noise. If the
noise is modelled using an autoregressive process, the forecasting procedure is more
complicated. From the model it can be seen that the s-step forecast (that is, the
forccast at s time units in the future) of a noise series z(t) may be obtained recursively.
For a first-order auloregressive process — called an ar(1) process for short — the
forecastin g formula is quite simple. If T is the time index of the last value observed,
the ncxt value of the time series is

z(T+1) =a z(T) + w(T+1) (2.9)
Since w(t) is white noise, the forccast of w(T+1) is O, so the forecast of z(T+1} is just
zdT+1) =a z(T).
Similarly, the forecast at t = T+2 is
Z(T+2) = a zf(T+1) + w{T+2)
=a’ z(T).
Continuing in this way, the general {ormula for forecasting the value at lcad s is
zd(T+s) = a° z(T).

The torecasting formula for the ar(2) process is rather more complicated.
However numerical values for the forecasts at any lead s for an autoregressive process
of any order p, can be obtained by using computer program. So if estimates of the
autoregressive coefficients aj, ag, ..., 8, are available, we can forecast ahead as far as

wc wish using the observed values of the time series.

5. Moving average process

Another type of model for a time scries called a moving average model is used
for smoothing a time series when it fluctuates a lot.
If the original series (of elevations) is denoted by z(t), t = 1, 2, ..., a smoothed

series could take the simple form
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x(t) = {z(t-1) + z(t) + z(t+1) }/3 (2.1)

This is called a three-term equally-weighted moving average. It involves
replacing the series by the average of each obscrvation and its two adjacent
observations.This formula is natural if the direction is unimportant, that is, if there 18
no difference between increasing and decreasing values of t. But in timc series
analysis it is more natural {or a smoothing formula to involve only present and past
values ol the serics (since the future is usually not yet observed). So the formula for
the 3-term equally weighted moving average becomes

x(0) = {2(0) + z(t-1) + z(t-2)}/3 (2.11)

6. Bivariate time series analysis

Bivariate time scries analysis is used to show the association between two
stationary time series processes. Bivariate time series have two functions the squared
coherence and the crosscorrelation obtained by using the function rsbiplot function in
ASP. The squared coherence, like the periodogram of a univariate time series, is a
function of frequency. If two series are independent, the squared cohcrence should be
constant on average limit is O and which contains each squared coherence with

probability 0.95, assuming the scries are independent.

Like periodogram values, the squared coherences are mutually independent.
So we would expect 5% of them to be outside a 95% confidence interval, indicated by

dotted lines on the graph, when the null hypothesis of independence is true.

The cross-correlation function is similar to the autocorrelation function of a univariate
time series. Dotted lines corresponding to the limits of intervals centered at 0
containing each crosscorrelation with probability 0.95, are uscd to assess the

independence hypotheses.

7. Time series analysis with predictor variable using regression analysis

The model of time series analysis can be used to predict the dependent
variable. And this medel is similar the model of multiple regression analysis. It can
describe the relationship between dependent and independent variables in each the

time period. For example, a forecast of the incidence of DHF may be based on a
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relationship with epidemiologic factors such as environmental, host and agent factors.
These variables are called predictor or independent variables and the incidence of

DHEF is referred to as the predicted or dependent variable.
Steps in establishing a model of time series regression analysis are as follows:

1. Starting with the univariate model, the incidence of DHF over time for each

province is assessed.

2. Upon completion of the univariate analysis, we enter each predictor variable
of interest in the model obtained. Then dividing it by its standard error assesses the
regression coefficient obtained from each model. If the resulting value is greater than

2, this indicates that the variable of interest is significant (p-value = 0.10).

3. For a model having more than one significant variable, all significant

variables should be included in the model.



