Chapter 4

Statistical Analysis and Modelling

In this chapter, we further investigate the results in chapter 3 using time series

analysis and fit models for predicting the data. The results may be classified as
follows.

1. Univariate Time Series Analyses for DHF Incidence

2. Univariate Time Series Analyses for Rainfall

3. Time Series Analyses of DHF Incidence Using Regression Analysis with
Other Variables as Determinants.

Univariate Time Series Analyses for DHF Incidence

A preliminary time series analysis of the log-transformed monthly DHF
incidence rate in Krabi is depicted in Figure 4.1.

Figure 4.1: Preliminary time series analysis of DHF incidence in Krabi
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Tt is observe that the scaled periodogram contains a spike at the 16™ harmonic,
which accounts for 40% of the variation in the time serics. This frequency
corresponds to the seasonal pattern of variation during the year, seen in Figures 3.5
and 3.6. In addition, the logarithm of the periodogram has a decreasing trend, which

suggests that the residuals follow a simple autoregressive model.

Figure 4.2 shows the result of fitting a model comprising a sinusoidal signal
with period 12 months and modelling the residuals (i.e., the notse) as a second-order

autoregression.

Figure 4.2; Further time series analysis of DHF incidence in Krabi
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For this model, most of the periodogram values are inside the 95% confidence
band, and the Ljung-Box p-values for testing that the filtered noise is white are all
non-significant. So we concludedthat this model provides a satisfactory fit to the
monthly DHF incidences in Krabi. The model says that, on a logarithmic scale, the

DHF incidence follows a sinusoidal seasonal signal with residuals that follow a
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simple random walk process with parameter 0.6. The signal accounts for 41.4% of the

variation, and the autoregressive parameter accounts for a further 38.4%, giving a

total goodness-of-fit equal to 80%.

Figure 4.3 shows the result of fitting the samc model to the data for Nakhon Si

Thammarat.

Figure 4.3: Initial time series analysis of DIIF incidence in Nakhon Si Thammarat
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From Figure 4.3, it is clear that the model does not provide a satisfactory fit.
Even though the signal explains 37.9% of the variation and the autoregressive
parameter accounts for a further 46.2%, most of the Ljung-Box p-values are

statistically significant.

Figure 4.4 shows a further time series analysis of the DHF incidence in
Nakhon Si Thammarat, in which the number of parameters fitted to the noise
increased to two. The result shows a much more satisfactory fit for the residual noise:
the Ljung-Box p-values up to lag 20 months are all non-significant. The fitted
parameters in the second-order autoregression are a; = 1.07 and a; = —0.24. The final

model has a total goodness-of-fit of 84.9%, comprising 38.5% for the signal and
46.4% for the noise.
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The result of fitting the same model to the monthly DHF incidence series for

Trang over the 20-year period is shown in Figure 4.5.

Figure 4.4: Further time scries analysis of DHF incidence in Nakhon Si Thammarat
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Figure 4.5: Initial time series analysis of DHF incidence in Trang
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It is clear from Figure 4.5 that there is an increasing trend in the DHF
incidence at Trang. Figure 4.6 shows the result after fitting a signal containing both a

linear trend and the seasonal periodic harmonic components.

Figure 4.6: Further time series analysis of DHF incidence in Trang
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The trend has a slope of 0.0048 per month, so the model says that the DHF
incidence at Trang increased by just over 5% per annum over the 20-year period. In
this model, the signal explains 56.8% of the variation, and the noise accounts for a

further 28,12%, giving a total goodness-of-fit of 84.92%,

Finally, Figure 4.7 shows the time series analysis of the DHF incidence in

Songkla province, using the same model as developed for Nakhon Si Thammarat.

For this model, it is clear that the model provides a satisfactory fit. The signal
explains 24.6% of the variation and the autoregressive parameter accounts for 55.9%,

giving a total goodness-of-fit equal to 80.5%.
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Figure 4.7:Time series analysis of DHF incidence in Songkhla
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Univariate Time Series Analyses for Rainfall

In this section we apply the methods used in the preceding section to the

monthly rainfall series.

Figure 4.8 shows a preliminary time series analysis of the cubc root
transformed monthly rainfall in Krabi. It was found that the scaled periodogram
contains a large spike at the 16™ harmonic and a smaller one at the 32" harmonic,
which account for approximately 65% and 10%, respectvely, of the variation in the
time series. These frequencies correspond to the seasonal pattern of variation during
the year, seen in Figures 3.9 and 3.10. We also observe that the logarithm of the

periodogram is flat, (apart from the two spikes) which suggests that the residuals

follow a while noise process.

The result of fitting a model comprising a periodic signal having the two

components is depicted in Figure 4.9. The presence of the second harmonic indicates
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that the seasonal pattern is slightly morc complex than just a simple sine wave. This

can also be scen from the left panel of Figure 3.10.

Figure 4.8: Preliminary time series analysis of rainfall in Krabi
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For this model, most of the periodogram values are inside the 95% confidence
hand. But the Ljung-Box p-values for testing the whiteness of the filtered noisc are
statistically significant at lags 1 and 2 months, so this model does not provide a
statistically satisfactory fit to the monthly rainfall in Krabi. The situation is not
improved by fitting a higher order autoregressive model. The estimated autoregressive
parameter a; = -0.152 is barely statistically significant (z = ~0.152/0.0725 = -2.10, p-
valuc = 0.036). The signal accounts for a high proportion (75%}) of the variation, but
the autoregressive model explains fess than 1%. This mcans that we can predict the
rainfall at Krabi quite well in the long term, but not in the short term. Since the
autoregressive parameter is negative, it means that after allowing for the seasonal
pattern there is slightly negative correlation between the rainfall in successive months.

The explanation of this could be that a delay is needed after a storm before another

one oCccurs.
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Figure 4.9: Further time serles analysis of rainfall in Krabi
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Figure 4.10 shows the result of fitting the same model to the data for Nakhon Si

Thammarat.

Figure 4.10: Initial time series analysis of rainfall in Nakhon 81 Thammarat
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From Figure 4.10, it is clear that the model does not provide a satisfactory fit.
Even though the signal explains 60% of the variation, most of the Ljung-Box p-values
are statistically significant, and the autoregressive parameter is not statistically
different from 0. After the annual and biannua! harmonic components have been
removed, the scaled periodogram of the residuals has two more substantial spikes, at
frequencies corresponding to 45 and 60 cycles in the 20-year period. It is difficult to
explain the first of these periodic components, but the second one corresponds to a

triannual cycle (that is, three times a year).

Figure 4.11 shows a further time series analysis of the rainfall in Nakhon Si
Thammarat, in which the redundant autoregressive parameter is omitted and the fitted
signal comprises a combination of the annual scasonal components and its two
harmonics. The result shows a satisfactory fit for the residual noise: the Ljung-Box p-
values at most fags up to 24 months are non-significant. The final model has a

goodness-of-fit of 62.8%.

Figure 4.11: Further time scries analysis of rainfall in Nakhon Si Thammarat
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From Figure 3.10, we know that the seasonal patterns of rainfall in Krabi and
Trang are very similar. Figure 4.12 shows the result of fitting the same model to the

monthly rainfall series for Trang as we did for Krabi.

Figure 4.12: Initial time series analysis of rainfall in Trang
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It 1s clear from Figure 4.12 that the fitted model is satisfactory. The signal
explains 65.8% of the variation, but the model for the noise accounts for only 1%. As

for the Krabi ranfall, the autoregressive parameter is negative.

From Figure 3.10, we also know that the seasonal patterns of rainfall in
Nakhon Si Thammarat and Songkhla are very similar, Figure 4.13 shows the result of
fitting the same model to the monthly rainfall series for Songkhla as we did for
Nakhon Si Thammarat.

It is clear from Figurc 4.13 that the fitted model is satisfactory. The signal
explains 63.9% of the variation. Note that thc mysterious spike in the periodogram at

frequency 45 cycles per 20 years we saw for Nakhon Si Thammarat did not occur for
Songkhla.
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Figure 4.13: Time scries analysis of rainfall in Songkhla
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Time Series Analyscs of DHF Incidence Using Regression Analysis

In this section we apply the time series regression methods described in
Chapter 2 to the monthly DHF incidence and other variables including rainfall, rain

days, maximum temperature and minimum temperature and humidity.

Figure 4.14 shows the model for DHF incidence in Krabi and the most
appropriate predictor variable, which is maximum temperature (labeled x;). This
model is obtained by starting with the univariate model obtained in Section 1 of this

chapter, and adding maximum temperature as a predictor variable.

From the model of DHF incidence in Figure 4.2, when applying each variable
in the model we found that the model provides the most satisfactory {it when
maximum temperature is included with the regression coefficient of 0.0055 (p-value
0.05). However, rainfall, rain days, minimum temperature and humidity are not
significant, having regression coefficients of —0.0067, 0.0033, -0.0003 and 0.0073,

respectively. The annual seasonal effect has two harmonics, the 16th harmonic
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(having period equal to 12 months) and the 32nd harmonic, with period equal to 6

months. Comparing Figure 4.2 and this figure, it was found that the annual seasonal

values at the 16th and 32nd harmonics increascd from 0.52 to 0.58 and from Q.12 to
0.14, respectively. Most of the Ljung-Box p-value are non-significant. The signal

| explains 44% of the variation, and the autoregressive parameter accounts for 36%,

giving a total goodness-of-fit equal to 80%.

Figure 4.14: Time series analysis of DHF incidence with max temp in Krabi
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Figure 4.15 shows the model for DHF incidence in Nakhon Si Thammarat and

the most appropriate predictor variable, which is rain days (labeled x,).

From the model of DHF incidence in Figure 4.4, when applying each variable
in the model, we found that the number of rain days is most appropriate predictor,
having regression coefficient of -0.005 (p-value 0.10). The rainfall, maximum
temperature, minimum temperature and humidity are not significant, having
regression coefficients of — 0.0058, 0.0018, — 0.00163 and — 0.005, respectively. For
rain days, the annual seasonal effect has one harmonic at the 20th harmonic (having
period equal to 12 months). Comparing Figure 4.4 and this figure, it was found that
the annual seasonal value at the 20th harmonic increases from 0.46582 to 0.0,.48816.

Most of the Ljung-Box p-values are non-significant. The signal explains 38% of the



variation, and the autorcgressive parameters account for 46.9%, giving a total

goodness-of-fit equal to 84.9%.

Figure 4.15: Time series analysis of DHF incidence with rain days in NST
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For Trang province, when applying each variable in the model we found that
all of the other variables, rainfall, rain days, maximum and minimum temperature and
humidity are not significant with the regression coefficients of —0.0072, -0.0052,
0.0001, -0.0024 and —0.0086, respectively (p-valucs > 0.05).

Figure 4.16 shows the model for DHF incidence in Songkhla with the most

appropriate predictor variable, which is rain days (labeled xy).

From the model of DHF incidence in Figure 4.7, when applying each variable
in the model, we found that rain days is most appropriate, having regression
cocfficient of 0.006 (p-value <0.10). The rainfall, maximum temperature, minimum
temperature and humidity are not significant, having regression coefficients of 0.004,
0.0034, - 0.0013 and - 0.01, respectively. For rain days, the annual seasonal effect has
onc harmonic, the 20th harmonic (having period equal to 12 months). Comparing

Figure 4.7 and this figure, it was found that the annual seasonal value at the 20th
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harmonic decreased from 0.35 to 0.32. Most of the Ljung-Box p-values are non-
significant. The signal explains 25% of the variation, and the autoregressive

parameters for 56.2%, giving a total goodness-of-fit equal to 81.2%.

Figure 4.16: Time series analysis of DHF incidence with rain days in Songkhla
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Summary of Results

Table 4.1 presents the models for predicting DHF incidence with variables in

each province (the result in section 1 of this chapter).

Table 4.1: The full model of time series analysis of DHF incidence

Province{ Trend Signal Noise | Raindays | Max temp | Total r*
Krabi T 1 (058.014) [(058,026)| - 0.0055 | 0.44+0.36
Trang 0.0049 | (0.38,0.12) [(0.89,-0.12) - - 0.58+0.30
NST - (0.5,0) (1.08,-0.25)] -0.005 - 0.38+0.47
Songkhla - (0.32,0) (0.96,-0.11) 0.006 - 0.25+0.56




From Table 4.1, it shows the number of rain days and maximum temperature

are not significant related with DHF incidence (p-value 0.05), so the model can be

reduced to be that shown in Table 4.2

Table 4.2: The final model of time scries analysis of DHF incidence

Province Seasonal Noise Total r* -
Krabi (0.52,0.12) {0.59,0.25) 0.4140.38
Trang (0.37,0.12) (0.89,-0.12) 0.56+0.28

NST (0.46,0) (1.06,-0.23) 0.38+0.46

Songkhla (0.35,) (0.93,-0.11) 0.25+40.56




