CHAPTER 2
METHODOLOGY

This chapter describes (a) the methods for data management, (b) graphical
presentation, (c) statistical modelling, and (d) reconstruction of the tide heights using

the {itted model.

1. Data management
1.1 Database creation
Tide tables in the Gulf of Thailand and the Andaman sea are produced by the
Hydrographic Department of the Royal Thai Navy (Figure 2.1 shows a typical page
from a tide table). Hourly heights are recorded each day of the year at 19 locations.
These data are stored in a database using Microsoft Access. Windows technology with
multitasking fabilitates viewing the data whereas an.al.ysing them was Ij'erforr_ned by

another program.
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Figure 2.1 Tide table for Bang Nara in January 1994
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The data from the tide tables is incorporated into a relational database as
follows. The database table has six columns. Column 1 is an identification number,
columns 2 and 3 are month and day of the year, respectively, column 4 is tide type
(0=low tide, 1=high tide), column § is the height of water predicted in decimeters
above the lowest low water, and column 6 is hour of the day. Figure 2.2 shows the

database table corresponding to the tide table shown in Figure 2.1.
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Figure 2.2 Database structure for Bang Nara

1.2 Data exploration and cleaning i

Cleaning a data set is claimed to be the first step by the data collector and the
keyboard operator. The data analyst should not assume that data are ready for
statistical analysis. There are always human errors. The best thing to do is to minimize
errors by preventing them. Diagnosis of the errors and proper treatment is always
essential. This can be done by using the functions describe and relate of Asp (McNeil
et al,, 1997) run under Matlab (MathWorks, 1994), which considers variables one or

two at a time.
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1.3 Data structure
Statistical data for analysis must be stored as a rectangular array of numeric

data with variables in columns. From Microsoft Access it is straight forward to export
data to an ASCII data file that is used to produce the analysis. Next, the characteristics
of the tides should be decomposed into the first high tide (H1), the first low tide (L1),
the second high tide (H2) and the second low tide (L2). In a uniform diurnal or
sermidiurnal tidal system, the greatest height to which the tide rises on any day is
known as high water, and the lowest point to which it drops is called low water. In a
mixed-tide system, it is necessary to refer to higher high water and lower low water,
as well as higher low water and lower low water. Tidal measurements taken from the
tidal data are used to describe the data into higher high water (HH), lower high water
(LH), higher low water (HL) and lower low water (LL) for semidiurnal or mixed
tides. So it is necessary to change column 4 in the database to separate the type of
tide as follows: 0 is the first high tide (H1), 1 is the first low tide (L.1), 2 1s the second
high tide (H2) and 3 is the second low tide (L2). With’ this restructuring, the data '_

summaries for Bang Nara, for all tides in 1994, are shown in Figure 2.3.

col variable size  mean stdev min max
1 D 1410 | 705.5 407.2 1 1410
2 mahnth 1410 6.524 3.449 1 12
3 : day 1410 15.76 8,786 1 an
4 tide type | 1410 | 1.429 | 1.118 0 3
] height 1244 5.744 2.598 1.8 12
6 hour 1244 12.04 | £.803 0 235

Bang Nara

Figure 2.3 Summaries of restructured data
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2. Graphical presentation

There are two reasons for graphing the tides separately as high-1, low-1,
high-2 and low-2. The first is based on the fact that the earth rotates in 24 hours, not in
12 houwrs. The second is for empirical reasons. There is a marked difference in the
characteristic patterns of the four tides when plotted. The data as structured in Figure
2.3 may be regarded as a bivariate set of outcomes for each tide type, indexed by a
positive integer identifying each successive tide. This index is synonymous with tunar
day, a period of 24 hours and 50.48 minutes. The two outcomes comprise the height h,
and the time of occurrence t; for the tide on lunar day. These outcomes may be
graphed as separate time series. For example, Figure 2.4 shows a graph of H; for the

first 58 tides of type L1 at Bang Nara in 1994,
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Figure 2.4 Height in decimeters of tide type L1 at Bang Nara in 1994

Note that there are no points plotted for indexes 20-24 and 48-53. The reason
for these gaps is that the tides at Bang Nara are a mixture of diurnal and semidiumal,
and at certain periods during the lunar month there are only two tides each lunar day

rather than four. Thus on lunar days 20, 21, 22, 23 and 24 in the first lunar month the
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first low tide does not occur, Similarly, there i1s no first low tide on the lunar days 48,

49, 50, 51, 52 and 53,

The time of occurrence of the first low tide in each lunar day may be graphed

in the same way. Figure 2.5 shows this graph for the first 58 tides of type L1 in 1994.

Hour of occurrence (in solar day) of first low tide

204 4
15| o - ]
o.'. ot

10} - . ]
L [ ]
*e ..

5L *° .* |

..... . an
L
0 | L L 1 1 1 i
0 10 20 30 40 50 60

Lunar day of the year

Figure 2.5 Times of occurrence of tide type L1 at Bang Nara in 1994

Note that there is a positive trend in Figure 2.5. Due to the fact that the interval
between two occurrences of a tide of given type is on average, 24 hours and 50.48
minutes rather than 24 hours. Figure 2.6 shows the graph of the times of occurrence in
the Junar day for the first 58 tides of type L1 in 1994. Recall that the lunar day 1s
defined as a period of 24 hours and 50.48 minutes. For definiteness, we have taken the

midnight on December 31, 1993 as the origin of the first lunar day in the year.
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Hour of occurrence (in lunar day) of the first low tide
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Figure 2.6 Times of occurrence of tide type L1 in the lunar day at Bang Nara in 1994

The information in F igures 2.4 and 2.6 may be combined, by replacing the
curve joining the points in Figure 2.6 by two curves in which the vertical distance
separating themn corresponds to the height of the tide, and the average of the two
curves corresponds to the time of occurrence (as in Figure 2.6). This graph may be
called a ribbon graph, and is a useful method for simultaneously showing both the
height of a tide and its time of occurrence. Its construction is shown in Figures 2.7 and
2.8. The thickness of the ribbon is chosen on aesthetic grounds. This method also

enables the four tides to be graphed together, and thus easily compared.
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Hour of ocourrence (in lunar day) and height of the first low tide

o
T

O - N W s,
T T
—_—
—_—

L 1 T

20

30 40
Lunar day of the year

50 60

Figure 2.7 Times of occurrence of tide type L1 at Bang Nara during the lunar day with

the corresponding heights shown as vertical bars
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Figure 2.8 Ribbon graph obtained by joining and filling the bars in Figure 2.7
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The function plotride.m that runs under Matlab is used to produce a ribbon
graph. It requires that the data structure be changed so that columns 2-3 become day
of year by using a function days.m. Files containing the text labels, (eg. bang.dn,
bang.fn, bang.lab) are also needéd, as showﬁ in Figure 2.9. The function bang.m. that
runs under Matlab is then used to produce the ﬁbbon graph for Bang Nara.

Note that missing tides (observed from Figure 2.3) are included in the

Bang.num file, with heights and time of occurrence denoted as nan (Matlab’s code for

missing data).
bang.num bang.fn
1 1 1 1 4 4.5 ID
2 1 1 3 6 9.5 month
3 1 1 0 2 14.5 day
4 1 1 2 10 225 tide type
5 1 2 1 4 5.5 height
6 1 2 3 nan  nan | " hour
bang.dn
1243 12 31 1 3.5 12.5 Bang Nara
1244 12 31 3 11 19.5
bang.lab

2,1 Jan,2 Feb,3 Mar,4 Apr,5 May,6 Jun,7 Jul,8 Aug,9 Sep,10 Oct,11 Nov,12 Dec
40L1,1 H1,21.2,3 H2

Figure 2.9 Data structure used for producing a ribbon graph
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3. Statistical modelling

Time series analysis based on fitting harmonic components, is used to model
both the heights and time of occurrence of each four tides. This method requires that
each outcome comprises a sequence of the form I(YI, y2, ..., ¥,) with no gaps. Thus
the method may be applied directly to pure semidiurnal tides. However, mixed tides
have gaps (as seen in Figures 2.4 and 2.6), so the method is not directly applicable to
them.

A function tsplot.m (Asp User’s manual, McNeil et al., 1997) 1s used to fit a
time series model to data with no gaps. For data with gaps, an alternative function
(tsploti.m) is used. This function uses the E-M algorithm to handle the gaps. The

method is described as follow.

3.1 E-M Algorithm
If a time series has missing data the E-M algorithm (Dempster et al., 1977)
may be use_d to fit a harmonic model. This method may bé described as follow :
(1) Replace all missing data by the niean of the non-missing data. o
(2) Fit the model,
(3) Replace all missing data by comresponding values given by the fitted
model.
(4) Repeat steps (2) and (3) until the estimates cover.
The term E-M algorithm arises from the fact that missing data are Estimated using the
Means given by the model. Figure 2.10 shows an example of a time series (in this
case heights of L1 tide at Pak Phun) where the missing values are replaced by the
overall mean. Figure 2.11 shows the same data after using the E-M algorithm to

estimate the missing values,
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Figure 2.10 Time series of heights of low-1 tide at Pak Phun where missing data were

replaced by the mean

F1gure 2.11 shows the result of fitting a model contammg harmonic-

components using the E-M algonthm
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Figure 2.11 Time series of heights of low-1 tide at Pak Phun where missing data were

replaced by fitted model
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3.2 Time series : harmonic analysis

A time series is stationary if its statistical properties do not change with time.
It is unlikely that a stationary time series will repeat itself exactly, but the series is
assumed to be fepeatable in a probabilistic sense. Another way of looking at this is to
say that the character of the series persists as you move forward or backward in time,
and the only aspect that changes is the sampling error, which does not contain useful
information. Of course these sampling fluctuations could be relatively large compared
to the persistent characteristic.

These ideas lead to the sinusoid (the simplest function that repeats itself) and
to the idea of measuring the amount of periodicity or repeatability in a time series by
finding its covariance or correlation with a sine wave having a given period. A
sinusoid is characterized by the property that taking a linear transformation of its
argument only shifis its frequency and its phase or position relative to some origin.
The cosine function is just a sine function whose argument is shifted by n/2, that is

| cos(x) = sin{x+ n/2) _
Since sinusoidal functions are periodic it is natural to use them as a basis for
approximating a stationary time series. This basis comprises sine waves with different
frequencies each defined on the time interval spanned by the data. The first
component appears exactly once on this time interval, the second comprises two
repeated sinusoids, the third three sinusoids, and so on. These components are also
called harmonics. The functional form for the j™ harmonic is a cosine wave with some
phase ¢, that is, cos{2xj(t-1)/n+¢}, t=1, 2, ..., n.

Using the mathematical theory of Fourier analysis any function defined at n
equispaced points on a finite interval may be i'epresented exactly by a constant plus
n-1 harmonics. The number of different frequencies in these components, m, is (n-1)/2
or /2 (depending on whether n is odd or even) since there is a sine and a cosine
harmonic at each frequency. If n is even this Fourier representation takes the form

V.= agt2[acos{2nj(t-1)/u}+bsin {2mj(t-1)/n} [ +a,cos {n(t-1)}
where the surnmation is from j=1 to j=m-1. { Since sin{=(t-1)} is O for all integers t, in
this case there is no sine harmonic at the highest frequency). A similar formula applies

if n is odd. Using the fact that a linear combination of a sine function and a cosine
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function at the same frequency may be expressed as a single sinusoid with some phase
¢, an alternative formula for the Fourier representation is

y, = a, T ZAcos{2xj(t-1)/n}+d;}
where the amplitude A; = \f(af +b%) and the summation is from 1 to m (see, for
example, Chatfield, 1989).

This Fourier representation is similar to linear regression analysis, where the
sinusoidal components play the role of determinants or predictor variables. Since the
number of parameters is exactly equal to number of data values, there is no residual
error, the regression model provides to the perfect data. Moreover, it may be shown
that the sum of products of sine and/or cosine harmonics over the range of frequencies
is zero, which means that these harmonics are statistically uncorrelated with each
other. Consequently each Fourier coefficient ( a; or b; ) is the regression coefficient of
the time series y, on the corresponding harmonic. The formulas for these coefficients
(for n even) are as follow.

| 8, =Xy, /m,a, =2 (-1)"y/n, |
a =(2/m)Zycos{2rj(t-1)n}, b, =(2m)Eysin{2nj(t-1)/n}
It can be seen from these formulas that cach Fourier coefficient may be interpreted as
a covariance between the data and a sinusoid at the given frequency.
The periodogram of a time series ( I, j = 1, 2, .., m} is defined in terms of the
amplitudes of the harmonics in the Fourier representation as
L =@2)@’ + b))
The multiplier n/2 ensures that the j* periodogram value is equal to the component of
the variance in the data accounted for by a sinusoidal function with frequency j/n.
Since the sinusoidal terms are uncorrelated with each other, it follows that
ZyeZydn)’ = Z(I)
This useful formula is known as Parseval’s theorem.

This relation is just an analysis of variance for a time series. So the sum of the
periodogram ordinates is equal to the total squ.ared error of the data, and consequently
the periodogram shows how much of the squared error of the data is accounted for by

the various harmonics. For this reason it is useful to graph the scaled periodogram,
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obtained by dividing the periodogram by its sum. The scaled periodogram thus shows
what proportion of the squared error is associated with each harmonic.

Note that the frequency j/n is expressed in terms of the number of cycles per
unit time. Since the values of j are 1, 2, ..., m, the lowest freﬁuency 1s 1/m,
corresponding to a period equal to the whole range of the data, and the highest
frequency is close to 0.5 (exactly 0.5 if n is even), corresponding to cycles of length 2
with the data oscillating from one value to the next.

Often a periodogram has a large component which dominates the graph to
such an extent that it is difficult to discern any pattern in the rest of the periodogram.
For this reason, it is better to show the periodogram on a logarithmic scale. Lines on a
graph of the base 10 logarithm of the periodogram give 95% confidence intervals for
individual periodogram values. Another, possibly more important, reason for graphing
the logarithms of the periodogram values is that the variance of the periodogram is
stabilized by taking logarithms, making it easier to compare values of the
periodogram at differ_ént frequencies. o ' _

The model fitted to a time series is called the signal, and the residual series
after subtracting this signal is called the noise. To gain some understanding of the
periodogram as a graphical method for analysing time series data, it is instructive to
look at the periodogram of a purely random series. A series that is purely random, in
the sense that future values are completely unpredictable, is called a white noise
series.

If significantly more than 5% of the periodogram values fall outside the
theoretical 2.5 and 97.5 percentile limits, there is evidence that the time series does
not behave like a white noise process. If the time series is not a white noise process
the height of the periodogram should be different at different frequencies, but the
values will still be exponentially distributed, with different means at different
frequencies. An exponential distribution has the property that its variance is equal to
its mean, whereas the logarithm of an exponential distribution has a constant variance.
This is the main reason why graphing the logarithm of the pericdogram makes it
easier to detect the nature of the harmonic pattern in a time series, which in turn

facilitates the modelling process.
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So far time series models containing a signal is considered, which could
comprise a linear term and one or more harmonics at different frequencies, and a
residual or noise series, which could be white noise. If the residual series locks like
white noise, it is easy to forecast the future values of the scries,'pro{’ided it is
stationary, as follow:

(a) future values of the signal may be forecasted simply by extrapolating the
linear and harmonic functions for values of extending beyond the range of the data;

(b) since the (white) noise series is completely unpredictable, it does not
contribute to the forecast.

Thus the forecasts of the time serics are simply obtained by extrapolating the
fitted signal. If the residual series does not resemble white noise, it is of interest to
describe its properties, and to have a model that may be used for forecasting (McNeil

et al., 1997).
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4. Reconstruction of water heights

Having fitted appropriate simple harmonic models separately to the heights
and time of occurrence during the lunar day, the tide table may be reconstructed using
the model by recombining the components from all four tide types. The steps in this
synthesis method are as follow.

(a) Fit the harmonic models. Suppose that H is the fitted value of the height
of tide type j on lunar day i, and that T,"® is its corresponding time of occurrence
during the lunar day. |

(b) Convert the fitted times of occurrence to times in hours after midnight on
December 31, 1993. Suppose that T\¥ is the converted time of occurrence for the tide
of type j on lunar day i. Since a lunar day is 0.841 hours longer than a solar day;, it
follows that

TO =T,9+0.8411i

(¢) Create a vector with two columns of the form (T, H) where T contains all
' thé times of occurrence of all fbur-tides‘, and H contains the correspbnding heights.

(d) These data may now be plotted to give the reconstructed heights (on the
vertical axis) versus the time of occurrence.

Note that where tides are missing, as in the case of mixed diurnal/semidiurnal
tides, it will be necessary to omit the records in the array (T, H) where these tides are

absent,



