Contents

	Page
Abstract (Thai)	(3)
Abstract (English)	(5)
Acknowledgement	(7)
Contents	(8)
List of Tables	(13
List of Figures	(14
List of Abbreviations	(17
Chapter	1
1. Introduction	1
Literature Review	2
1. Surfactants	2
2. Nature of surfactants	3
3. Synthetic surfactants	4
4. Types of surfactants	5
4.1 Hydrophilic groups	5
4.1.1 Anionics	5
4.1.2 Cationics	5
4.1.3 Zwitterionic surfactants	5
4.1.4 Non-ionic surfactants	5
4.1.5 Combinations	6
5. Biosurfactants	7
Biosurfactant classification	8
5.1 Glycolipids	8
5.1.1 Rhamnolipids	8
5.1.2 Trehalolipids	8

		Page
	5.1.3 Sophorolipids	8
	5.2 Lipopeptides and lipoproteins	9
	5.3 Fatty acids, phospholipids and neutral lipids	10
	5.4 Polymeric surfactants	11
	6. Medium components and factors affecting on growth and	14
	6.1 Carbon sources	14
	6.2 Nitrogen sources	16
	6.3 Salt and minerals	17
	6.4 Environmental factors	18
	6.4.1 pH	18
	6.4.2 Temperature	20
	6.4.3 Agitation and aeration	21
	7. Recovery of biosurfactants	21
	8. Potential application of biosurfactants	24
	8.1 Oil industry	25
	8.2 Biodegradation of hydrocarbon contaminants	25
	8.3 Food industry	26
	8.4 Cosmetics industry	27
	8.5 Biosurfactant as therapeutic agents	27
	Objectives	28
2. Mat	erials and Methods	29
	Materials	29
	Analytical Methods	30
	Methods	33

		Page
1.	Effect of carbon and nitrogen sources on growth and	33
	biosurfactant production	
	1.1 Time course of biosurfactant producing by <i>Bacillus</i>	33
	MUV4 in shake-flask cultivation	
	1.2 Effect of carbon sources	34
	1.3 Effect of nitrogen sources	34
	1.4 Effect of yeast extract and bacto peptone	34
	1.5 Time course on growth and biosurfactant production	35
	under optimal medium in shake-flask cultivation	
2.	Effect of environmental conditions on growth and	35
	biosurfactant production.	
	2.1 Effect of pH	35
	2.2 Effect of aeration rates	35
	2.3 Time course of biosurfactant production under optimal	35
	condition	
3.	Properties of the partially purified biosurfactant	36
	3.1 Solubility of the acid precipitated biosurfactant	36
	3.2 pH stability of biosurfactant	36
	3.3 NaCl concentration stability of biosurfactant	36
	3.4 Temperature stability of biosurfactant	37
4.	Extraction and partial purification of biosurfactant	37
	4.1 Extraction of biosurfactant	37
	4.2 Adsorption chromatography	37
	4.3 Analysis the components of the partially purified	38
	biosurfactant	
5.	Application of biosurfactant	39

	Page
5.1 Applied for oil recovery	39
5.2 Applied for antimicrobial activity	39
3. Results and Discussion	40
1. Optimization for growth and biosurfactant production	40
Time course on growth and biosurfactant production 39	
by Bacillus MUV4 in shake flask cultivation	
1.2 Effects of nutrients on biosurfactant production	40
1.2.1 Carbon sources	40
1.2.2 Concentrations of carbon source	46
1.2.3 Nitrogen sources	46
1.2.4 Effect of monosodium glutamate concentrations	50
1.2.5 Effect of yeast extract and bacto peptone	50
concentrations	
1.3 Time course of growth and biosurfactant production	53
under optimal medium in shake-flask cultivation	
2. Effect of environmental condition on biosurfactant productio	n 55
in fermentor	
2.1 Effect of pH	55
2.2 Effect of aeration rates	55
2.3 Time course on growth and biosurfactant production of	56
Bacillus MUV4 under optimal condition in fermentor	
3. Properties of biosurfactant	60
3.1 Solubility of the acid precipitated biosurfactant	60
3.2 pH stability of biosurfactant	61
3.3 NaCl concentration stability of biosurfactant	62
3.4 Temperature stability of biosurfactant	63

	Page
4. Analysis of the components of biosurfactant	68
5. Application of biosurfactant	72
5.1 Antimicrobial activity	72
5.2 Sandpack column test	73
4. Conclusion	75
Suggestions	76
References	77
Appendics	87
Publication	106
Vitae	107

List of Tables

Ta	Γable	
1	Types of microbial surfactants	
2	Downsteam process for recovery of important biosurfactants	23
3	Solubility test of the acid precipitated biosurfactant in various	
	solvents	
4	The activity (ODA cm ² , %EA and % EC) of culture broth and	68
	acid precipitated biosurfactant	
5	Chemical test of each spots from TLC plate	71
6	Emulsification activity and antimicrobial activity of each spots	71
	from TLC plate	
7	Antimicrobial activity of the biosurfactant from Bacillus MUV4	72
	against microorganisms in agar-diffusion test	
8	Oil released from sandpack column test with various samples	74

List of Figures

Figure		Page
1	Amphipathic structure of surfactant containing hydrophobic	3
	and hydrophillic moiety in one molecule a) surfactant monomer	
	b) circular micelle, c) rod-shaped micelle, d) micellar layer	
	e) vesicle representation	
2	Structure of glycolipid biosurfactants	9
	(A) Rhamnolipids from Pseudomonas aeruginosa	
	(B) Trehalolipid from Rhodococcus erythropolis	
	(C) Sophorolipid from Torulopsis bombicola	
3	Structure of cyclic lipopeptide surfactin produced by	10
	Bacillus subtilis	
4	Structure of phosphatidylethanolamine, a potent biosurfactant	11
	produced by Acinetobacter sp. R1 and R2 are hydrocarbon	
	chains of fatty acids.	
5	Growth and biosurfactant production by Bacillus MUV4 in	42
	Mckeen medium under shake-flask cultivation (200 rpm, 30 °C)	
6	Effect of carbon sources (2.0%) on growth and biosurfactant	43
	production by Bacillus MUV4 in Mckeen medium under	
	shake-flask cultivation (200 rpm, 30 °C) for 48 h	
7	Effect of hydrophobic carbon source (0.1%) on growth and	44
	biosurfactant production by Bacillus MUV4 in Mckeen medium	
	under shake-flask cultivation (200 rpm, 30 °C) for 48 h	
8	Effect of concentration of weathered oil on growth and	45
	biosurfactant production by Bacillus MUV4 in Mckeen medium	
	under shake-flask cultivation (200 rpm 30 °C) for 48 h	

Lists of Figures (continued)

Fl	gure	rage
9	Effect of glucose concentrations on growth and biosurfactant	48
	production by Bacillus MUV4 in shake-flask cultivation	
	(200 rpm, 30 °C) for 48 h	
10	Effect of nitrogen sources (0.5%) on growth and biosurfactant	49
	production by Bacillus MUV4 in shake-flask cultivation	
	(200 rpm, 30 °C) for 48 h	
11	Effect of monosodium glutamate concentrations on growth	51
	and biosurfactant production by Bacillus MUV4 in shake-flask	
	cultivation (200 rpm, 30 °C) for 48 h	
12	Effect of yeast extract and bacto peptone on growth (A) and	52
	biosurfactant production (B) by Bacillis MUV4 in shake-flask	
	cultivation (200 rpm, 30 °C) for 48 h (M+Y1=Medium+0.1%	
	yst extract, M+Y3=Medium+0.3%yst extract, M+Y5=Medium+	
	0.5% yst extract, M+P1=Medium+0.1% bacto peptone, M+P3 =	
	Medium+0.3%bacto peptone and A+P5=Medium+0.5% bacto	
	peptone, M=Medium contained 2.5% glucose as carbon source and	
	1.0% monosodium glutamate as nitrogen source)	
13	Growth and biosurfactant production by Bacillus MUV4 when	54
	cultivated in the optimal medium (2.5%glucose as carbon source,	
	1.0% monosodium glutamate and 0.3% yeast extract as nitrogen source	e)
	in shake-flask cultivation (200 rpm, 30 °C)	
14	Growth (A) and biosurfactant production (B) by Bacillus MUV4	57
	during cultivation under uncontrolled pH (open symbol) and	
	controlled pH (closed symbol) in the fermentor (200 rpm and 0.5 vvm)

Lists of Figures (continued)

Figure		Page
15	Effect of aeration rates on growth (A) and biosurfactant production	58
	(B)by Bacillus MUV4 during cultivation in (agitation speed 200 rpm,	
	30 °C)	
16	Growth and biosurfactant production by Bacillus MUV4 during	59
	cultivation in fermentor at 30 °C with agitation speed 200 rpm and	
	aeration rate 1.0 vvm	
17	Effect of pH on stability of culture broth (A) and acid precipitated	64
	biosurfactant (B) from Bacillus MUV4(culture broth was adjusted	
	with 1 M HCl or 1 M NaOH to pH 2-14 and allowed to stand for	
	24 h at 4 °C before measuring ODA, EA and EC values)	
18	Effect of NaCl concentrations on stability of culture broth (A) and	65
	acid precipitated biosurfactant from Bacillus MUV4 (NaCl was	
	added to culture broth to final concentration 0-30% and allowed	
	to stand for 20 min at 25 °C before measuring the ODA, EA and EC	
	values)	
19	Effect of temperature on ODA (A), %EA (B) and %EC (C) stability	66
	Of culture broth from <i>Bacillus</i> MUV4 (incubation the culture broth	
	at various temperature for 48 h)	
20	Effect of temperature on ODA (A), %EA (B) and %EC (C) stability	67
	of acid precipitated biosurfactant from <i>Bacillus</i> MUV4 (incubation the of acid precipitated biosurfactant solution at various temperature	
	for 48 h)	
21	Thin-layer chromatography of biosurfactant when developed	70
	in solvent system : chloroform/methanol/acetic acid/water	
	(25/15/4/2 v/v/v/v)	

List of Abbreviations

°C = degree Celsius

CFU/ml = colony forming unit per millilitre

Da = Dalton g = gram

 \times g = gravitational force

h = hour 1 = litre

mg/l = milligram per litre

 $\begin{array}{lll} \text{min} & = & \text{minute} \\ \text{ml} & = & \text{millilitre} \\ \mu l & = & \text{microlitre} \\ \text{mM} & = & \text{millimolar} \end{array}$

mN/m = millinuton per metre

nm = nanometre

OD = obtical density

rpm = rounds per minutes

s = second

v/v = volume by volume w/v = weight by volume w/w = weight by weight

% = percent

vvm = volume of air per volume of medium per

minute