CONTENTS

	Page
บทคัดย่อ	(3)
ABSTRACT	(5)
ACKNOWLEDGEMENT	(8)
CONTENTS	(9)
LIST OF TABLES	(10)
LIST OF FIGURES	(11)
ABBREVIATIONS AND SYMBOLS	(12)
1. INTRODUCTION	1
2. LITERATURE REVIEW	4
2.1 PARACETAMOL	4
2.2 REACTIVE OXYGEN SPECIES (ROS)	20
2.3 ANTIOXIDANT DEFENSE SYSTEMS	29
2.4 PARKIA SPECIOSA HASSK.	37
3. MATERIALS AND METHODS	42
4. RESULTS	47
5. DISCUSSION	57
BIBLIOGRAPHY	
APPENDIX	
VITAE	101

LIST OF TABLES

Ta	Table	
1.	Effect of fresh P. speciosa seeds on	
	paracetamol-induced hepatotoxicity	48
2.	Effect of boiled <i>P. speciosa</i> seeds on	
	paracetamol-induced hepatotoxicity	49
3.	Effect of fresh <i>P.speciosa</i> seeds on the hepatic reduced glutathione	
	contents in liver after paracetamol pretreatment in rats	51
4.	Effect of boiled <i>P. speciosa</i> seeds on the hepatic reduced glutathione	
	contents in liver after paracetamol pretreatment in rats	52
5.	Effect of fresh P. speciosa seeds on hepatic lipid peroxidation	
	in rats at 3 hours and 12 hours after paracetamol administration	54
6.	Effect of boiled <i>P. speciosa</i> seeds on hepatic lipid peroxidation	
	in rats at 3, 12 and 24 hours after paracetamol administration	55

LIST OF FIGURES

Figu	ure	Page
1.	Molecular structure of paracetamol	4
2.	Pathways of paracetamol metabolism	7
3.	Proposed oxidation-reduction cycle for PAR semiquinone	
	and associated production of superoxide	10
4.	Summary of oxidative stress that can produce cell injury by	
	multiple pathways	26
5.	Schematic process of lipid peroxidation, chain reactions	
	resulting in the formation of many lipid peroxide radicals	28
6.	Chain reaction of vitamin E with lipid radicals and vitamin C	31
7.	Structure of glutathione	33
8.	Glutathione synthesis and metabolism	34
9.	Photograph of Parkia speciosa	38
10.	Formation of thiazolidine-4-carboxylic acid (TCA) and	
	N-nitrosothiazolidine-4-carboxylic acid	40
11.	EC ₅₀ values of crude extract of <i>P. speciosa</i> by DPPH assay	53
12.	Representative H&E-stained liver section of rats	56
13.	Metabolism of thiazolidine-4-carboxylic acid (TCA)	60
14.	Reduced glutathione standard curve	99
15.	1.1.3.3 tetramethoxypropane standard curve of malondialdehyde	100

ABBREVIATIONS AND SYMBOLS

ALT = alanine aminotransferase

ALP = alkaline phosphatase

AST = aspartate aminotransferase

BHT= butylated hydroxytoluene

DPPH = 1,1 diphenyl-2-picrylhydrazyl

DTNB = 5.5' dithio-bis (2-nitrobenzoic acid)

 EC_{50} = efficient concentration

GPx = glutathione peroxidase

GSH = reduced glutathione

GSSG = glutathione disulfide

GST= glutathione S-transferase

 H_2O_2 = hydrogen peroxide

HO = hydroxyl radical

i.p. = intraperitoneal

I.U. = international unit

LO = lipidalkoxyl radical

LOO = lipidperoxyl radical

LOOH = lipidhydroperoxide

LPO= lipid peroxidation

M = molar

MDA = malondialdehyde

Min = minute

mM = milimolar

NAPQI = N-acetyl-p-benzoquinoneimine

ABBREVIATIONS AMD SYMBOLS (Continued)

NAPSQI = N-acetyl-p-benzosemiquinoneimine

nm = nanometer

nmole = nanomole

NO' = nitric oxide

ONOO = peroxynitrite

 O_2^{\bullet} = superoxide anion

PAPS = 3[']-phosphoadenosine-5[']-phosphosufate

P = P value

p.o = per os

rpm = round per minute

S.E.M = standard error of mean

SOD = superoxide dismutase

TCA= thiazolidine-4-carboxylic acid

TBA = thiobarbituric acid

TMP = 1,1,3,3 tetramethoxypropane

UDPGA = uridine diphospho glucuronic acid

 μ I = microlitre

 μM = micromolar

 μ mole = micromole

vs = versus