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ABSTRACT

Poisson regression models are basically modelling for counts. There

are two strong assumptions for Poisson model to be checked: one is that events

occur independently over of time or exposure period, the other is that the condi-

tional mean and variance are equal. In practice, counts have greater variance than

the mean are described as overdispersion. This indicates that Poisson regression

is not adequate. There are two common causes that can lead to overdispersion are

additional variation to the mean or heterogeneity, an Negative Binomial model

is often used and other cause counts with excess zeros or zero-inflated Poisson

counts, since the excess zeros will give smaller conditional mean than the true

value, this can be modeled by using zero-inflated Poisson (ZIP).

This thesis concentrates on the use of ZIP model for analysis counts

data including maximum likelihood estimation for regression coefficients using

Fisher scoring method, compare between Poisson and ZIP models by various tests:

likelihood ratio test, score test, chi - square test, test based on a confidence in-

terval test and Cochran test presented in literature. Model selection using Akaike

information criteria (AIC) and checking adequacy of the model using half-normal

plots with a simulated envelope.

We developed a Wald test (Wω) for ZIP model in a single sample

case for detecting zero-inflation in Poisson model and conduct a small simulation

study in order to investigate sampling distribution of Wω and power of Wω. From

our study we found that its distribution is an equal mixture of a χ2
0 (a constant of

zero) and a χ2
1 distribution and can be used to detect the zero-inflation in counts.
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We applied presented procedure and our Wald test by using three

sets of data: the set of AIDS-related data for ZIP regression analysis with mean

counts display on covariate, the foetal lamb movement data and the death notice

data of women 80 years of age and over, on each day for three consecutive years

appearing in the London “Times”, as a single sample case. It is showed that ZIP

model is appropriate with the foetal lamb movement data and the death notice

data of London times but the set of AIDS-related data, ZIP model is not suitable.
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CHAPTER 1

Introduction

1.1 Background and Motivation

Linear regression analysis is a statistical method for investigating the

relationship between the variable to be predicted, called the response or dependent

variable and variables expected to be related to the response variable. The related

variables are called explanatory or independent variables. The response variable

must be continuous random variable which is assumed to have normal distribution

with constant variance. The explanatory variables can be either quantitative or

qualitative variables.

Gardner et al. (1995) characterized method of regression analysis in

terms of two ideas: (a) a model for the mean which says how the expected value

of the response variable depends on a set of explanatory variables and (b) a model

for the variation of the response variable scores around the expected value.

Counts of events occuring in a given time or exposure period are

discrete random variable having Poisson distribution. Even though, the Poisson

distribution can be approximated by the normal distribution when the mean count

is sufficient large, applying ordinary linear regression to count data is problematic

on those two ideas. That is the linear model relating the expected counts to

the predictors is likely to produce negative predicted values or the validity of

hypothesis tests in linear regression depending on constant variance assumption

of response variable is unlikely to be met in count data (Gardner et al., 1995).

Based on the basic concept of generalized linear models (glms), the relationship

between explanatory variables and response variable of Poisson counts can be

described by Poisson regression or log linear models. The Poisson model is formed

1
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under two principal assumptions: one is that events occur independently over

given time or exposure period and the other is that the conditional mean and

variance are equal. However, in practice, the equality of the mean and variance

rarely occurs; the variance may be either greater or less than the mean. If the

variance is greater than the mean, it means that counts are more variable than

specified by the Poisson events and are describe as overdispersion. If the variance

is less than the mean, it means that counts are less variable than specified by

the Poisson events and are describe as underdispersion. However, in practice,

underdispersion is less common (McCullagh and Nelder, 1989).

One general cause of overdispersion is cluster sampling, such as lit-

ters, families, households, etc. where there is additional variability between clus-

ters that produces response variance larger than the nominal value (McCullagh

and Nelder, 1989). Besides clustering, other possible causes of over dispersion,

for example, correlation between individual response that breaks the individual

independent assumption and aggregate level data which leads to compound dis-

tribution (Hinde and Demétrio, 1998). Moreover, overdispersion can be caused

by excess number of observed zero counts, since the excess zeros will give smaller

conditional mean than the true value. The count data with excess zeros, is known

as zero-inflated Poisson counts. Of course it is possible to have fewer zero counts

than expected, but this is less common in practice (Ritout et al., 1998).

When there is overdispersion or zero-inflation and we fail to take

it into account, it can lead to misinterpretion of the fitted model (Hinde and

Demet́rio, 1998), since the overdispersion or zero-inflation produces:

1) smaller standard errors of the parameter estimates than the true values.

Therefore we may incorrectly choose explanatory variables for the model

that are not required;

2) too large a reduction of deviance associated with model selection tests. This

leads to selecting more complicated models.

In the literature of statistical modelling for counts there are number



3

of models proposed to handle zero-inflated Poisson counts, for example, Hurdle

model (Germu et al., 1996), Two-part model (Heilbron, 1994), Zero-modified dis-

tributions (Dietz and Böhning, 2000), and Zero-inflated Poisson (ZIP) models

(Lambert, 1992). ZIP models are more widely used as all important statistical

inferences can be carried out more easily and conveniently than the others. Ap-

plications of ZIP models can be found in many areas, such as, agriculture (Ridout

et al., 1998), epidemiology (Böhning et al., 1999), biostatistics (Van den Broek,

1995) and industry (Lambert, 1992).

This thesis will be focussed only on ZIP models and will proposed

a Wald test for comparing between the standard Poisson and ZIP models.

1.2 Objectives

1. To explore some aspects of the analysis of counts with excess zeros;

2. To develop a Wald test for zero-inflation parameter used to compare between

Poisson and ZIP models;

3. To investigate the distribution and properties of the Wald test;

4. To investigate power of the Wald test and compare that with other tests for

zero-inflation parameter, presented in the literature.

1.3 Scope and Methodology

This thesis focuses on

1. studying characteristics, theories and properties of Generalize linear models

(glms) and ZIP regression models;

2. analysing counts with many zeros;

3. exploring various tests for zero-inflation parameter used to compare between

Poisson and ZIP models;
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4. develop a Wald test for zero-inflation parameter in the case of single ho-

mogenous sample, investigate its properties and compare with the others

explored in 3. by conducting simulation study;

5. example used in this thesis for illustrating the use of ZIP and the proposed

Wald test include the set of AIDS-related for ZIP regression analysis with

mean counts depending on covariate, the foetal lamb movement data and

the death notice data of London times, as single sample cases.

1.4 Advantages

1. Propose the Wald test for ZIP models in the literature related to statistical

modelling for zero-inflated counts;

2. We have a new alternative statistic test for comparing between Poisson and

ZIP models;

3. We have an idea to develop the Wald test for comparing between a Negative

Binomial model and Zero-inflated Negative Binomial model.
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1.5 Period and Plan of Study:

October 2008 - September 2009

Table 1.1: Plan of Study

Task 2008 2009

10 11 12 1 2 3 4 5 6 7 8 9

Select topic ∗
Study literature ∗ ∗ ∗
Write thesis proposal ∗ ∗ ∗
Present thesis proposal ∗
Study and research ∗ ∗ ∗ ∗
Create research draft ∗ ∗ ∗ ∗ ∗
Adjust draft report ∗ ∗ ∗ ∗ ∗
Write final report ∗ ∗ ∗
Present thesis ∗

1.6 Place of Study

Department of Mathematics, Faculty of Science,

Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.



CHAPTER 2

Review of Literature

Here we reviewed literature associated with generalized linear mod-

els, abbreviated by glms, Poisson regression and zero-inflated Poisson (ZIP) models

followed by test statistics for zero-inflation proposed in ZIP literatures.

2.1 Exponential Family Distributions

A random variable Y has a distribution within the exponential fam-

ily if the probability (mass) density function can be written in the canonical form

f(y; θ, φ) = exp

{
yθ − b(θ)

a(φ)
+ c(y, φ)

}
(2.1)

for some specific functions a(.), b(.) and c(.). θ is the natural or canonical pa-

rameter. a(φ) is called the scale or dispersion parameter, such as σ2 for normal

distribution. For known φ, this equation is the linear exponential family. The

canonical parameter θ is a function of the mean and so in turn can be related to

the linear predictor. A natural choice of link function is to take θ = η = g(µ),

which is known as the canonical link.

Given a vector of n observations y = (y1, . . . , yn)T of Y from the

exponential family distribution, the likelihood function, L = L(θ, φ;y) is

L(θ, φ;y) =
n∏

i=1

f(yi; θ, φ) = exp

[
n∑

i=1

{
yiθ − b(θ)

a(φ)
+ c(yi, φ)

}]
, (2.2)

and the corresponding log-likelihood function, ` = `(θ, φ;y) = lnL is

` = `(θ, φ;y) =
n∑

i=1

{
yiθ − b(θ)

a(φ)
+ c(yi, φ)

}
. (2.3)

6
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The log-likelihood function (2.3) has some elementary properties that play an

important role in the context of statistical modelling. These are

E

(
∂`

∂θ

)
= 0

E

(
∂2`

∂θ2

)
+ Var

(
∂`

∂θ

)
= 0. (2.4)

Simple calculation shows that the mean and variance of Yi are

E(Yi) = b
′
(θ) = µ

and

Var(Yi) = a(φ)b
′′
(θ) = a(φ)V (µ).

Here b
′
(θ) and b

′′
(θ) denote the first and second derivative of b(θ) with respect to

θ, respectively, and b
′′
(θ) can be defined as V (µ), because it depends on µ through

b
′
(θ) V (µ) is commonly known as the variance function of the model.

2.2 Generalized linear models

Generalized linear models abbreviated by glms, originally proposed

by Nelder and Wedderburn (1972) are statistical models, defined by following three

components:

1) The random part: responses Yi, i = 1, . . . , n is a random variable that its

distribution is within the linear exponential family distribution with mean

µi and the constant dispersion parameter a(φ);

2) The systematic part: the associated explanatory variables xi = (x0i, x1i, . . . , xpi)
T ,

i = 1, . . . , n, give a linear predictors

ηi = xi
T β, (2.5)

where β is a vector of p + 1 unknown parameters, x0i = 1, for all i to

include the constants or intercept term in model. In the case of defining the

systematic part in term of the vector of linear predictor, (2.5) is then

η = Xβ, (2.6)
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where X = [x1, . . . ,xn]T is an n× (p + 1) design, or covariate matrix;

3) The link function: a function g that links the mean of Y in 1) and the linear

predictor in 2) that is

g(µi) = ηi = xi
T β. (2.7)

The choice of link function depends upon the particular distribution.

Well-known distributions belong to the linear exponential family, such as the

following examples:

• If Y is a normal distributed random variable with mean µ and variance σ2,

which is commonly denoted by Y ∼ N(µ, σ2), its probability density function

(p.d.f) can be defined as

f(y; µ, σ2) =
1√

2πσ2
exp

{
1

2σ2
(y − µ)2

}
, −∞ < y < ∞

This can be rewritten as

f(y; µ, σ2) = exp





yµ− 1

2
µ2

σ2
+

(−y2

2σ2
− 1

2
ln(2πσ2)

)




. (2.8)

Here the distribution of Y is in the canonical exponential form with canonical

parameter θ = µ, b(θ) =
1

2
µ2, c(y, φ) =

−y2

2σ2
− 1

2
ln(2πσ2), scale parameter

a(φ) = σ2, E(Y ) = µ and the variance function ,V (µ) = 1. The canonical

link functionis the identity, then the ith linear predictor, g(µi) = µi = xi
T β.

That is the classical linear model or linear regression.

• If Y is a Poisson distributed random variable with mean µ which is normally

denoted by Y ∼ Pois(µ), its probability mass function (p.m.f) is

f(y; µ) =
e−µµy

y!
, y = 0, 1, 2, . . .

The distribution of Y can be written in the form

f(y; µ) = exp

{
ylnµ− µ

1
− lny!

}
, (2.9)



9

which is in the linear exponential family with canonical parameter θ = lnµ,

b(θ) = µ = eθ, c(y, φ) = lny! and a(φ) = 1, i.e. no unknown scale parameter,

E(Y ) = µ, and the variance function, V (µ) = µ. The canonical link function,

g(µi) = lnµi = xi
T β, leads to a log-linear model for Poisson counts.

• If Y is a binomial distributed random variable with probability of success,

π and number of trial, m which is generally denoted by Y ∼ Bin(m,π), its

p.m.f is

f(y; m,π) =

(
m

y

)
πy(1− π)(m−y), y = 0, 1, 2, . . . , m

This can be written as

f(y; π) = exp

{
yln

(
π

1− π

)
+ mln(1− π) + ln

(
m

y

)}
, (2.10)

which is in the linear exponential family with canonical parameter θ =

ln

(
π

1− π

)
, b(θ) = −mln(1 − π) = −mln

(
1

1 + eθ

)
, c(y, φ) = ln

(
m

y

)
and

a(φ) = 1, E(Y ) = mπ and the variance function, V (π) = π(1 − π). The

canonical link function is logit, defined by g(πi) = ln

(
πi

1− πi

)
= xi

T β. This

transforms the range for π from [0, 1] to [−∞,∞] giving a sensible scale for

modelling; giving standard logistic regression.

To obtain the maximum likelihood estimate, β̂ of β in (2.7), we need to find

the values of β that maximize `(β, φ;y), the log-likelihood function of β and φ

conditional on respones y via `(θ, φ;y), using the chain rule. Differentiating `

with respect to each βj in turn, we have the likelihood estimation equation

∂`

∂βj

=
∂`

∂θi

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂βj

giving
∂`

∂βj

=
n∑

i=1

(yi − µi)xij

Var(Yi)ǵ(µi)
= 0, j = 0, 1, . . . , p. (2.11)

In general, equations (2.11) are not linear in β, so that they need to be solved

by using an iterative scheme. The iterative schemes commonly used are either
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Newton-Raphson or Fisher scoring. Using these methods, current parameter esti-

mates are obtained by correcting the estimates of previous step using the first and

second derivatives of the log-likelihood function with respect to the parameters of

interest. Based on the log-likelihood (2.3) and the model (2.7), a Newton-Raphson

for β̂ at the (m + 1)th iteration is

β(m+1) = β(m) + [I(m)]−1s(m), (2.12)

where

s(m) =




∂`

∂β0
∂`

∂β1
...

∂`

∂βp




β=β(m)

and

I(m) =




− ∂2`

∂β2
0

− ∂2`

∂β0∂β1

· · · − ∂2`

∂β0∂βp

− ∂2`

∂β1∂β0

− ∂2`

∂β2
1

· · · − ∂2`

∂β1∂βp
...

...
...

− ∂2`

∂βp∂β0

− ∂2`

∂βp∂β1

· · · − ∂2`

∂β2
p




β=β(m)

s(m) and I(m) are the score vector and observed information matrix evaluated at

β = β(m), respectively. The method of Fisher scoring has the same idea as the

Newton-Raphson method except that I is replaced by I = −E(I), the expected

information matrix. That is

β(m+1) = β(m) + [I(m)]−1s(m). (2.13)

With good starting values β(0) the iterative scheme converges in a few step, con-

vergence is obtained with a stopping rule, such as |`(m+1) − `(m)| ≤ ε, where `(m)

and `(m+1) are the log-likelihood, ` evaluated using the estimates of β from the (m)

and (m+1) iterations, respectively. The asymtotic variance-covariance matrix for

β̂ is automatically provided in final iteration. The method of Newton-Raphson

and Fisher scoring are implemented in software package for fitting glms, such as

S-Plus, R etc. which include automatic calculation of starting values.
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2.3 Poisson regression model

Poisson regression models provide a standard framework for the

analysis of count data. Let Yi, i = 1, . . . , n represent counts of events occuring

in a given time or exposure periods with rate µi. Yi are Poisson random variables

which the p.m.f. is characterized by

f(yi; µi) =
e−µiµi

yi

yi!
, yi = 0, 1, 2, . . .

with

E(Yi) = Var(Yi) = µi.

The log-likelihood function is

`(µ) = `(µ;y) =
n∑

i=1

{yiln(µi)− µi − ln(yi!)}. (2.14)

Let X be an n× (p+1) matrix of explanatory variables. The relationship between

Yi and ith row vector of X, xi linked by g(µi) is

ln(µi) = ηi = xT
i β. (2.15)

This model is known as the Poisson regression or log-linear model. The maximum

likelihood estimate β̂ of β can be obtained via the method of Fisher scoring.

There are two principal assumptions in the Poisson model we need to

regard: one is that events occur independently over of time or exposure period, the

other is that the conditional mean and variance are equal (Cameron and Trivedi,

1986). The latter assumption is quite important. If it fails, the fitted model should

be reconsidered.

There are two basic criteria commonly used to check the presence

of overdispersion : the deviance, D(y; µ̂) or the Pearson (χ2) statistic be greater

than its degrees of freedom (Lindsey, 1999 and Hilbe, 2007). For the Poisson

regression, D(y; µ̂) and χ2 are respectively defined in expression (2.16) and (2.17)

D(y; µ̂) = 2×
n∑
i

{
yiln

(
yi

µ̂i

)
− (yi − µ̂i)

}
; (2.16)
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χ2 =
n∑

i=1

(yi − µ̂i)
2

µ̂i

. (2.17)

However, these two rules of thumb can yield misleading inference from a direct

likelihood point of view. Therefore, selecting between Poisson regression and an

overdispersed Poisson model should be performed using some appropriate mod-

elling procedure.

2.4 Zero-inflated poisson model: ZIP

Zero-inflated poisson (ZIP) model, well described by Lambert (1992)

is a simple mixture model for count data with excess zeros. The model is a combi-

nation of a Poisson distribution and a degenerate distribution at zero. Specifically

if Yi are independent random variables having a zero-inflated Poisson distribution,

the zeros are assumed to arise in to ways corresponding to distinct underlying

states. The first state occurs with probability ωi and produces only zeros, while

the other state occurs with probability 1−ωi and leads to a standard Poisson count

with mean λi and hence a chance of further zeros. In general, the zeros from the

first state are called structural zeros and those from the Poisson distribution are

called sampling zeros (Jansakul and Hinde, 2002). This two-state process gives a

simple two-component mixture distribution with p.m.f

Pr(Yi = yi) =





ωi + (1− ωi)e
−λi , yi = 0

(1− ωi)
e−λiλyi

yi!
, yi = 1, 2, . . . , 0 ≤ ωi ≤ 1

(2.18)

which we denote by Yi ∼ ZIP(λi, ωi). The mean and variance of Yi are

E(Yi) = (1− ωi)λi = µi

and

Var(Yi) = µi +

(
ωi

1− ωi

)
µ2

i , (2.19)

indicating that the marginal distribution of Yi exhibits overdispersion, if ωi > 0.

It is clear that this reduces to the standard Poisson model when ωi = 0.
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For positive values of ωi we have zero-inflation, however, it is poissible for ωi < 0

and to still obtain a valid probability distribution (this corresponds to a deficit of

zeros – zero-deflation) (Jansakul and Hinde, 2002).

For a random sample of observations y1, . . . , yn, the log-likelihood

function is given by

` = `(λ, ω;y) =
∑

i

{I(yi=0)ln[ωi + (1− ωi)e
−λi ]

+ I(yi>0)[ln(1− ωi)− λi + yilnλi − ln(yi!)]}, (2.20)

where I(.) is the indicator function for the specified event, i.e. equal to 1 if the

event is true and 0 otherwise. To apply the zero-inflated Poisson model in practical

modelling situations, Lambert (1992) suggested the following joint models for λ

and ω

ln(λ) = Xβ and ln

(
ω

1− ω

)
= Gγ, (2.21)

where X and G are covariate matrices and β,γ are (p + 1) × 1 and (q + 1) × 1

vectors of unknown parameters respectively.

In the case of single homogeneous sample (λ and ω are constant or

do not depend on X and G), the log-likelihood function (2.20) can be written as

`(λ, ω) = n0 ln
[
ω + (1− ω)e−λ

]
+

J∑
j=1

nj ln

[
(1− ω)

e−λλj

j!

]
, (2.22)

where J is the largest observed count value, nj is the frequency of each possible

count value, j = y = 0, 1, 2, . . . , J then n0 is the number of observed zeros and
J∑

j=0

nj = n, the total number of observations or the sample size.

2.5 Test statistics for zero-inflation proposed in ZIP liter-

ature

Within the family of ZIP models, testing if a Poisson model is ade-

quate corresponding to testing

H0 : ω = 0; H1 : ω > 0, (2.23)
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where ω here is taken a constant.

There are a number of test statistics proposed for testing the hypoth-

esis (2.23) including score test, likelihood ratio test, chi-square test, test based on

a confidence interval of probability zero-inflated counts and Cochran test. Those

are collected and investigated the properties by Xie et al. (2001). Most of the

tests mentioned were derived based on a single homogeneous sample, i.e. λ and ω

are not depend upon covariate or are constant. The expressions of the tests and

their sampling distributions are summarized in following subsections.

2.5.1 Likelihood ratio test

The Likelihood Ratio test is a test of a null hypothesis H0 against an

alternative H1 based on the ratio of two log-likelihood functions. The likelihood

ratio test for hypothesis (2.23) can be computed from the following formula:

Rω = −2× [`(λ̂)− `(λ̂, ω̂)] (2.24)

where `(λ̂) and `(λ̂, ω̂) are the maximized log-likelihood under the Poisson and the

ZIP regression model, respectively. From (2.14), (2.22) and (2.24) the likelihood

ratio test can be written as

Rω = 2

{
n0ln

(n0

n

)
+ (n− n0)

(
ln

(
ȳ

λ̂

)
− λ̂

)
+ nȳ(lnλ̂ + 1− lnȳ)

}
, (2.25)

where ȳ is the mean of the observations under H0 and λ̂ is the estimated positive

mean counts under H1. This test statistic Rω approximately follows chi-square

distribution on 1 degree of freedom (d.f) under the null hypothesis.

2.5.2 Score test

A score test for the hypothesis (2.23) is proposed by Van den broek
(1995). The test is derived based on the log-likelihood (2.22) to obtain the ratio

of the score vector,




∂`(λ, ω)

∂λ

∂`(λ, ω)

∂ω


 and minus expected information matrix,
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


−E

(
∂2`(λ, ω)

∂λ2

)
−E

(
∂2`(λ, ω)

∂λ∂ω

)

−E

(
∂2`(λ, ω)

∂ω∂λ

)
−E

(
∂2`(λ, ω)

∂ω2

)




, evaluated at ω = 0

or under H0 true. Using mathematical algebra, the score statistic is defined by

Sω =
(n0 − np0)

2

np0(1− p0)− nȳp2
0

, (2.26)

where p0 = e−λ̂0 , in which λ̂0 is the estimate of the Poisson parameter under the

null hypothesis or ȳ. This statistic will have an asymptotic chi-square distribution

on 1 d.f under the null hypothesis.

2.5.3 Chi-square test

The chi-square statistic χ2 is used to test if a sample of data came

from a population with a specific distribution. The χ2 is commonly defined by

χ2
ω =

c∑

k=1

(Ok − Ek)
2

Ek

(2.27)

where c denotes the number of classes(categories) decided for a given data set, Ok

and Ek are observed frequencies and expected frequencies under the null hypoth-

esis of the kth class, respectively. When the null hypothesis is valid, χ2
ω follows an

asymtotic chi-square distribution on c− 1 d.f.

2.5.4 Test based on a confidence interval of probability

zero-inflated counts

It is possible to derive a test based on asymtotic normality of the

estimate of the parameters. Following the statistical properties of ZIP,

E(Ȳ ) = E(Y ) = (1− ω)λ = µ

and

Var(Ȳ ) =
1

n
Var(Y ) =

1

n

{
(1− ω)µ + ωµ2

1− ω

}
.
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From the central limit theorem, the confidence interval can be written as

1−
ȳ − Zα/2

√
{ȳ + ȳ[λ̂− ȳ]}/n

λ̂
≤ ω ≤ 1−

ȳ + Zα/2

√
{ȳ + ȳ[λ̂− ȳ]}/n

λ̂
.

Hence, a test based on a positive one sided confidence interval of probability zero-

inflated counts can be obtained as

CIω = 1−
ȳ + Zα

√
{ȳ + ȳ[λ̂− ȳ]}/n

λ̂
, (2.28)

where λ̂ is the estimated positive mean counts under H1. The critical region of

this test method is simply CIω > 0. That is,when CIω > 0, we reject the null

hypothesis at α level of significance and the ZIP model should be used instead of

a Poisson model.

2.5.5 The Cochran test

An early test is proposed in Cochran (1954), and is commonly called

the C test. The C test is used to test the assumption of constant variance of the

residuals in the analysis of variance. This test is a ratio that relates the largest

empirical variance of a particular treatment to the sum of the variances of the

remaining treatments. The C test statistic for ZIP model was developed by Xie

et al. (2001) can be written as follows:

Cω =
(n0 − ne−ȳ)

[ne−ȳ(1− e−ȳ − ȳe−ȳ)]1/2
. (2.29)

Under the null hypothesis, the test statistic Cω is approximately normally dis-

tributed with zero mean and unit variance.

Following the relationship between N ∼ (0, 1) and χ2
1, we found that

C2
ω, can be obtained as

C2
ω =

(n0 − ne−ȳ)2

ne−ȳ(1− e−ȳ − ȳe−ȳ)
. (2.30)

C2
ω has the form exactly the same as Score test in (2.26), where the detail of this

is shown in Appendix 1.
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2.6 Basic idea of the Wald test

The Wald test is a statistical test, typically used to test whether an

effect exists or not. A Wald test can be used in a great variety of different models

including models for dichotomous or binary variables and models for continuous

variables. Under the aspect of the Wald statistical test, named after Abraham

Wald, the maximum likeilhood estimate θ̂ of parameter (s) of interest θ of the

random variable Y, with p.d.f or p.m.f f(y; θ) is compared with the proposed value

θ0 (H0 : θ = θ0), under the assumption that θ̂ − θ0 will be approximately normal.

Typically the square of the difference is compared to a chi-squared distribution.

In the univariate case, the Wald statistic is

W =
(θ̂ − θ0)

2

Var(θ̂)
. (2.31)

Under H0 true, W is a chi-square distribution on 1 d.f. Alternatively, the difference

can be compared to normal distribution. In this case the test statistic (2.31) is

rewritten as
θ̂ − θ0

s.e.(θ̂)

where s.e.(θ̂) is the standard error of the maximum likelihood estimate, θ̂. A

reasonable estimate of the standard error for the MLE is obtained by
1√
In(θ̂)

,

where In = − ∂2`

∂θ2
, evaluated at θ = θ̂, is the Fisher information of the

parameter (Wikipedia, the free encyclopedia). Using the elementary properties of

the log-likelihood displayed in (2.3), In can be replace by the expected information

I = −E

(
∂2`

∂θ2

)
.

In this thesis, we will use this basic idea to develop a Wald test for

ZIP model with constant λ and ω or for testing the hypothesis (2.23), where its

sampling distribution and power of the test are also investigated.



CHAPTER 3

Zero-inflated Poisson Models

In this chapter we focuss on a zero-inflated (ZIP) model to take

account of zero-inflation in Poisson counts. We consider the use of Fisher scoring

method to obtain maximum likelihood estimates for the model. Moreover, we

develop the Wald test for single homogeneous ZIP sample with constant λ and ω

and conduct a small simulation study to investigate the sampling distribution and

power of the Wald test.

3.1 Maximum Likelihood Estimation for ZIP Regression

Models

Based on the ZIP model (2.18), the log-likelihood function (2.20) and

the model for λ and ω, displayed in (2.21), it is obvious that being a finite mixture

the ZIP distribution is not a member of the exponential family distribution and

so standard glm fitting procedures will not be adequate. To obtain the parameter

estimates of ZIP regression models, β̂ and γ̂, the Newton-Raphson method or the

method of Fisher scoring can be used. However, the method of scoring is more

appropriate for ZIP regression because the second derivative of `(λ, ω;y) can be

simplified by taking expectations.

18
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3.1.1 The Method of Fisher Scoring

Assuming that λ and ω in (2.21) are not functionally related. The

first and second derivatives of ` with respect to β and ω are

∂`

∂βj

=
∂`

∂λi

∂λi

∂βj

(3.1)

=
n∑

i=1

{
I(yi=0)

[ −(1− ωi)e
−λi

ωi + (1− ωi)e−λi

]
λi + I(yi>0)(yi − λi)

}
xij,

j = 0, 1, 2, . . . , p;

∂`

∂ωi

=
n∑

i=1

{
I(yi=0)

[
(1− e−λi)

ωi + (1− ωi)e−λi

]
+ I(yi>0)

[ −1

1− ωi

]}
; (3.2)

and

∂2`

∂βj∂βk

=
n∑

i=1

{
I(yi=0)

[−e−λi [(1− λi)ωi + (1− ωi)e
−λi ](1− ωi)λi

[ωi + (1− ωi)e−λi ]2

]

+ I(yi>0)(−λi)
}

xijxik, j, k = 0, 1, 2, . . . , p; (3.3)

∂2`

∂ω2
i

=
n∑

i=1

{
I(yi=0)

[ −(1− e−λi)2

[ωi + (1− ωi)e−λi ]2

]
+ I(yi>0)

[ −1

(1− ωi)2

]}
; (3.4)

∂2`

∂βj∂ωi

=
∂2`

∂ωi∂βj

=
n∑

i=1

{
I(yi=0)

[
λie

−λi

[ωi + (1− ωi)e−λi ]2

]}
xij. (3.5)

Using the fact that

E[I(yi=0)] = Pr(Yi = 0) = ωi + (1− ωi)e
−λi and

E[I(yi>0)] = Pr(Yi > 0) = (1− ωi)(1− e−λi)

we have

−E

[
∂2`

∂βj∂βk

]
=

n∑
i=1

{
e−λi [(1− λi)ωi + (1− ωi)e

−λi ](1− ωi)λi

ωi + (1− ωi)e−λi

+ λi(1− ωi)(1− e−λi)
}

xijxik; (3.6)

−E

[
∂2`

∂ω2
i

]
=

n∑
i=1

{
(1− e−λi)2

ωi + (1− ωi)e−λi
+

(1− e−λi)

(1− ωi)

}
; (3.7)

−E

[
∂2`

∂βj∂ωi

]
=

n∑
i=1

{ −λie
−λi

ωi + (1− ωi)e−λi

}
xij. (3.8)
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Hence the estimates of β and ω at the (m + 1)th iteration, denoted by β(m+1) and

ω(m+1), are given by

 β(m+1)

ω(m+1)


 =


 β(m)

ω(m)


 + [I(m)(β, ω)]−1s(m)(β, ω), (3.9)

where the score vector and the expected information matrix respectively, evaluated

at β = β(m) and ω = ω(m) are as follows.

s(β, ω) =


 sβ(β, ω)

sω(β, ω)


 =




∂`

∂β
∂`

∂ω


 , (3.10)

and

I(β, ω) =


 Iββ(β, ω) Iβω(β, ω)

Iωβ(β, ω) Iωω(β, ω)


 , (3.11)

where the elements Iββ, Iβω = Iωβ and Iωω are, respectively,

−E

[
∂2`

∂β∂βT

]
, −E

[
∂2`

∂β∂ω

]
and − E

[
∂2`

∂ω2

]
.

With good starting values β(0), ω(0) and hence λ(0), ω(0) the iterative scheme

converges in a few step, convergence is obtained with a stopping rule, such as

|`(m+1)−`(m)| ≤ ε, where `(m) and `(m+1) are the log-likelihood, `(λ, ω; y) evaluated

using the estimates of λ and ω from the (m) and (m + 1) iterations, respectively.

The asymtotic variance-covariance matrix for (β̂, ω̂) is automatically provided in

final iteration.

3.1.2 Maximum Likelihood Estimation for ZIP Models with

no Covariates

Based on the log-likelihood function (2.22), the respectively max-

imum likelihood estimates, λ̂ and ω̂ for λ and ω are the roots of the equations
∂`(λ, ω)

∂λ
= 0 and

∂`(λ, ω)

∂ω
= 0. Here we have

∂`(λ, ω)

∂λ
=
−n0(1− ω)e−λ)

[ω + (1− ω)e−λ]
−

J∑
j=1

nj +

∑J
j=1(nj × j)

λ
, (3.12)
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and
∂`(λ, ω)

∂ω
=

n0(1− e−λ)

[ω + (1− ω)e−λ]
−

∑J
j=1 nj

1− ω
. (3.13)

Setting each of these equal to zero gives

n0(1− ω̂)e−λ̂

[ω̂ + (1− ω̂)e−λ̂]
+

J∑
j=1

nj =

∑J
j=1(nj × j)

λ̂
, (3.14)

and
n0(1− ω̂)

ω̂ + (1− ω̂)e−λ̂
=

∑J
j=1 nj

(1− eλ̂)
(3.15)

Substituting (3.15) into (3.14) gives

e−λ̂
∑n

j=1 nj

(1− e−λ̂)
+

n∑
j=1

nj =

∑n
j=1(nj × j)

λ̂

n∑
j=1

nj

{
e−λ̂ + 1− e−λ̂

(1− e−λ̂)

}
=

∑n
j=1(nj × j)

λ̂

λ̂

(1− e−λ̂)
=

∑n
j=1(nj × j)∑n

j=1 nj

λ̂ =
(1− e−λ̂)

∑n
j=1(nj × j)∑n

j=1 nj

. (3.16)

Note that this does not depend on ω or n0. From (3.15),

n0(1− e−λ̂)(1− ω̂) = [ω̂ + (1− ω̂)e−λ̂]
n∑

j=1

nj

n0(1− e−λ̂)− ω̂n0(1− e−λ̂) = ω̂

n∑
j=1

nj + (1− ω̂)e−λ̂

n∑
j=1

nj

ω̂

n∑
j=1

nj − ω̂e−λ̂

n∑
j=1

nj + ω̂n0(1− e−λ̂) = n0(1− e−λ̂)− e−λ̂

n∑
j=1

nj

giving

ω̂ =
n0 − (n0 +

∑n
j=1 nj)e

−λ̂

(
∑n

j=1 nj + n0)− (
∑n

j=1 nj + n0)e−λ̂

=
n0 − ne−λ̂

n(1− e−λ̂)
. (3.17)

These lead to a simple scheme for obtaining the maximum likelihood estimates of

λ and ω :
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• Step 1: fit a standard Poisson model to obtain an initial value, λ(0) for λ ;

• Step 2: use an iterative scheme for λ̂

λ̂(m+1) =
(1− e−λ̂(m)

)
∑n

j=1(nj × j)∑n
j=1 nj

. (3.18)

The iterations are repeated until converge, using a stopping rule,

|λ̂(m+1) − λ̂(m)| < ε, whereλ̂(m) and λ̂(m+1) are estimates of λ at the (m)th

and (m + 1)th iteration, respectively.

• Step 3: obtain ω̂ by substituting λ̂ given by the final iteration of step 2 in

equation (3.17).

Note that this gives a closed form expression for ω̂ and hence no iteration

is required. Also (3.17) can be rewritten as n[ω̂ + (1 − ω̂)e−λ̂] = n0 which

shows that the observed and fitted zero frequencies are identical.

Estimated covariance matrix of λ̂ and ω̂, denoted by Cov(λ̂, ω̂) , can be simply

obtained using the expected information matrix, that is Cov(λ̂, ω̂) = I−1(λ̂, ω̂) ,

where

I(λ̂, ω̂) =


 Iλλ(λ, ω) Iλω(λ, ω)

Iωλ(λ, ω) Iωω(λ, ω)




λ=λ̂,ω=ω̂

. (3.19)

The elements Iλλ, Iλω = Iωλ and Iωω are, respectively,

−E

[
∂2`(λ, ω)

∂λ2

]
, −E

[
∂2`(λ, ω)

∂λ∂ω

]
, and − E

[
∂2`(λ, ω)

∂ω2

]
.

with

∂2`(λ, ω)

∂λ2
=

n0ω(1− ω)e−λ

[ω + (1− ω)e−λ]2
−

∑
j(nj × j)

λ2
;

∂2`(λ, ω)

∂λ∂ω
=

n0e
−λ

[ω + (1− ω)e−λ]2
;

∂2`(λ, ω)

∂ω2
=

−n0(1− e−λ)2

[ω + (1− ω)e−λ]2
−

∑
j nj

(1− ω)2
. (3.20)

Using the fact that

E[I(yi=0)] = Pr(Yi = 0) = ωi + (1− ωi)e
−λi

and E[I(yi>0)] = Pr(Yi > 0) = (1− ωi)(1− e−λi)
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we have

Iλλ = −E

[
∂2`(λ, ω)

∂λ2

]
= n

[
1− ω̂

λ̂
− ω̂(1− ω̂)e−λ̂

ω̂ + (1− ω̂)e−λ̂

]
;

Iωλ = −E

[
∂2`(λ, ω)

∂λ∂ω

]
=

−ne−λ̂

ω̂ + (1− ω̂)e−λ̂
;

Iωω = −E

[
∂2`(λ, ω)

∂ω2

]
=

n(1− e−λ̂)

(1− ω̂)[ω̂ + (1− ω̂)e−λ̂]
. (3.21)

Var(λ̂) and Var(ω̂) are obtained from I−1(λ, ω), in (3.19) using inverse of parti-

tioned matrix (Searle, 1966) as follow:

Var(λ̂) =
(Iλλ − IλωI−1

ωωIωλ

)−1
(3.22)

and

Var(ω̂) =
(Iωω − IωλI−1

λλ Iλω

)−1
. (3.23)

3.2 Model Selection

Selecting an appropriate model can be used a standard likelihood information

criteria, for example, Akaike information criteria (Akaike, 1973) or Baysians infor-

mation criteria (Raftery, 1986) abbreviated by AIC and BIC , respectively, where

AIC = −2× `(λ̂, ω̂) + 2(No.fitted parameters); (3.24)

BIC = −2× `(λ̂, ω̂) + ln(n)× (No.fitted parameters). (3.25)

The model with smallest value of AIC or of BIC is preferable.

3.3 The Wald test for ZIP Models

In this thesis, we will develop a Wald test for ZIP model with constant

λ and ω or for testing the hypothesis

H0 : ω = 0; H1 : ω > 0. (3.26)
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Based on the basic idea of obtaining the Wald test, it is

Wω =
ω̂2

Var(ω̂)
(3.27)

where ω̂ is the maximum likelihood estimate of ω under the ZIP given in (3.17).

That is

ω̂ =
n0 − ne−λ̂

n(1− e−λ̂)

and Var(ω̂) given in (3.23) is

Var(ω̂) =
(Iωω − IωλI−1

λλ Iλω

)−1
.

Then

Iωω − IωλI−1
λλ Iλω = n

{
(1− e−λ̂)

(1− ω̂)[ω̂ + (1− ω̂)e−λ̂]

− λ̂e−2λ̂

(1− ω̂)[ω̂ + (1− ω̂)e−λ̂]
{

[ω̂ + (1− ω̂)e−λ̂]− ω̂λ̂e−λ̂
}





=

{
[ω̂ + (1− ω̂)e−λ̂]− ω̂λ̂e−λ̂

}
− λ̂e−2λ̂

(1− ω̂)[ω̂ + (1− ω̂)e−λ̂]
{

[ω̂ + (1− ω̂)e−λ̂]− ω̂λ̂e−λ̂
}

(3.28)

Since ω̂ + (1− ω̂)e−λ̂ =
n0

n
and (1− ω) =

ȳ

λ̂
, (3.28) is simply defined as

Iωω − IωλI−1
λλ Iλω =

n2λ̂
{

(1− e−λ̂)[n0 − (λ̂− ȳ)ne−λ̂]− nλ̂e−2λ̂
}

n0ȳ(n0 − (λ̂− ȳ)ne−λ̂)
. (3.29)

Hence,

Var(ω̂) = (Iωω − IωλI−1
λλ Iλω)−1

=
n0ȳ[n0 − ne−λ̂(λ̂− ȳ)]

n2λ̂
{

(1− e−λ̂)[n0 − ne−λ̂(λ̂− ȳ)]− nλ̂e−2λ̂
} . (3.30)
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The Wald test for the ZIP is then

Wω =

(
n0 − ne−λ̂

n(1− e−λ̂)

)2

n0ȳ[n0 − ne−λ̂(λ̂− ȳ)]

n2λ̂
{

(1− e−λ̂)[n0 − ne−λ̂(λ̂− ȳ)]− nλ̂e−2λ̂
}

=
(n0 − ne−λ̂)2λ̂

{
(1− e−λ̂)[n0 − ne−λ̂(λ̂− ȳ)]− nλ̂e−2λ̂

}

n0ȳ(1− e−λ̂)2[n0 − ne−λ̂(λ̂− ȳ)]
. (3.31)

According to standard asymptotic theory, the sampling distribution of Wω should

be χ2
1 distribution under H0. However, for the ZIP model and the hypothesis (2.23)

the null hypothesis corresponds to ω being on the boundary of the parameter space

and the appropriate reference distribution is a mixture of chi-square distribution,

see Self and Kung-Yee Liang (1987). For the simple constant ω the appropriate

reference distribution is an equal mixture of a χ2
0 (a constant of zero) and a χ2

1

distribution, with p-value given by
1

2
[Pr{χ2

1 ≥ Wω}].

3.4 Simulation study of the Wald test

In this section we conduct a small simulation study using R (R

Development Core Team 2008) in order to investigate sampling distribution of

Wω and power of Wω, including comparing its power with other tests described in

section 2.5

3.4.1 Sampling distribution of Wω

In order to investigate distributional approximation of Wω, a small

simulation study was carried out using R (R Development Core Team 2008). We

explored single homogeneous samples and simulating as follow:

1. In the simulation, we explored for sample of size n = 25, 50, 100 and 200. For

each sample size n we simulated 3000 set of responses are generated under
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Poisson model with λ = 1.25, 1.50, 2.00 and 2.25, and fit a ZIP regression

model to calculate Wω.

2. In order to check whether the distribution of Wω is the expected asymptotic

χ2
1 distribution, we computed the half of proportion of number of Wω greater

than or equal the critical value, χ2
1,α. That is

∑3000
i=1 I(Wω≥χ2

1,α)

3000× 2
, (3.32)

α is the nominal size of the test. Here, we consider α = 0.01, 0.05. Results from

the study are presented in Table 3.1.

Table 3.1: Estimated upper tail probabilities for the Wald test at χ2
1,α based on

3000 samples

n λ = 1.25 λ = 1.50 λ = 2.00 λ = 2.25

α 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

25 0.004 0.002 0.003 0.018 0.009 0.024 0.009 0.035

50 0.004 0.017 0.004 0.024 0.005 0.024 0.007 0.033

100 0.006 0.023 0.004 0.028 0.005 0.024 0.009 0.025

200 0.004 0.025 0.007 0.027 0.005 0.026 0.006 0.028

From the results on estimated upper tail probabilities for the Wald

test we can see that the χ2
1 distribution can be used as a reference sampling

distribution in all situation studied here. For a fixed value of λ, estimate upper

tail probabilities for Wω at χ2
1 close to

α

2
when n increases. Similarly pattern is

also found for increasing value of λ and fixed n.

Noth here that

∑3000
i=1 I(Wω≥χ2

1,α)

3000× 2
is approximately equal to

∑3000
i=1 I(Wω≥χ2

1,α/2
)

3000
.
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3.4.2 Power of Wω and the compared test for ZIP

In order to investigate power of Wω and compare that with the other

tests reviewed in section 2.5, a small simulation study was carried out using R (R

Development Core Team 2008). For each sample size n = 25, 50, 100 and 200 we

simulate 3000 set of responses under ZIP model with λ = 1.25, 1.50, 2.00, 2.25 and

ω = 0.25, 0.35, 0.45, 0.55, 0.65, 0.75. For each set of generated data, a ZIP model is

fitted for calculating the Wω and the other mentioned tests in section 2.5 followed

by the powers of the tests. Results from the simulation study are presented in

Table 3.2-3.9.

From the results in Table 3.2-3.9, we can see that for a fixed value of

ω, the power of the those tests increases when sample size n increases. Similarly

pattern is also found for increasing value of ω and fixed n. It is interesting to note

that when the value of ω increases, number of excess zeros is large. The power of

those tests are also good for this the situation. For example, when sample size is

200, and parameters are 2.00 and 0.65 for λ and ω, respectively, the powers are

higher than 0.997.

Moreover, these tests are all good for comparing between Poisson

and ZIP models. It can be seen that the Wald test is as good as the cochran test,

but it is better than likelihood ratio test, score test and chi - square test. Thus,

the Wald test can be an alternative test for comparing between Poisson and ZIP

models.
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Table 3.2: The power of the six tests for λ = 1.25(α = 0.01)

ω 0.25 0.35 0.45 0.55 0.65 0.75

n = 25 Wald test 0.137 0.271 0.438 0.579 0.700 -

Likelihood ratio test 0.041 0.090 0.162 0.233 0.287 -

Score test 0.041 0.090 0.163 0.234 0.294 -

Chi-square test 0.093 0.142 0.203 0.273 0.316 -

Confidence interval test 0.127 0.277 0.478 0.637 0.769 -

Cochran test 0.063 0.126 0.219 0.314 0.412 -

n = 50 Wald test 0.260 0.494 0.686 0.826 0.879 0.927

Likelihood ratio test 0.110 0.251 0.411 0.544 0.603 0.628

Score test 0.117 0.263 0.426 0.593 0.656 0.719

Chi-square test 0.163 0.248 0.383 0.504 0.589 0.638

Confidence interval test 0.285 0.569 0.792 0.922 0.952 0.972

Cochran test 0.161 0.327 0.493 0.651 0.716 0.768

n = 100 Wald test 0.481 0.783 0.934 0.978 0.991 0.991

Likelihood ratio test 0.326 0.604 0.798 0.907 0.943 0.939

Score test 0.328 0.607 0.800 0.914 0.955 0.964

Chi-square test 0.292 0.486 0.685 0.812 0.899 0.912

Confidence interval test 0.563 0.859 0.973 0.995 0.998 0.999

Cochran test 0.416 0.694 0.857 0.937 0.969 0.977

n = 200 Wald test 0.816 0.975 0.999 1.000 1.000 1.000

Likelihood ratio test 0.712 0.945 0.993 0.999 0.999 1.000

Score test 0.710 0.945 0.993 0.999 0.999 1.000

Chi-square test 0.552 0.845 0.964 0.993 0.998 0.999

Confidence interval test 0.883 0.993 1.000 1.000 1.000 1.000

Cochran test 0.786 0.964 0.998 1.000 1.000 1.000

- The procedures gives missing values, because the probability of ω is closed to one.
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Table 3.3: The power of the six tests for λ = 1.25(α = 0.05)

ω 0.25 0.35 0.45 0.55 0.65 0.75

n = 25 Wald test 0.211 0.370 0.544 0.667 0.762 -

Likelihood ratio test 0.107 0.197 0.301 0.383 0.444 -

Score test 0.107 0.198 0.303 0.388 0.461 -

Chi-square test 0.136 0.191 0.266 0.343 0.398 -

Confidence interval test 0.262 0.456 0.653 0.781 0.864 -

Cochran test 0.186 0.307 0.427 0.526 0.595 -

n = 50 Wald test 0.385 0.634 0.803 0.905 0.920 0.942

Likelihood ratio test 0.272 0.462 0.615 0.742 0.778 0.790

Score test 0.271 0.462 0.615 0.750 0.800 0.837

Chi-square test 0.233 0.356 0.502 0.635 0.687 0.728

Confidence interval test 0.472 0.739 0.890 0.960 0.971 0.974

Cochran test 0.360 0.573 0.712 0.826 0.864 0.897

n = 100 Wald test 0.651 0.875 0.967 0.991 0.995 0.995

Likelihood ratio test 0.541 0.801 0.922 0.964 0.981 0.976

Score test 0.541 0.805 0.925 0.970 0.984 0.984

Chi-square test 0.410 0.631 0.804 0.897 0.943 0.952

Confidence interval test 0.753 0.945 0.991 0.998 0.999 0.999

Cochran test 0.650 0.867 0.961 0.984 0.991 0.990

n = 200 Wald test 0.910 0.992 1.000 1.000 1.000 1.000

Likelihood ratio test 0.872 0.984 0.999 1.000 1.000 1.000

Score test 0.868 0.983 0.999 1.000 1.000 1.000

Chi-square test 0.714 0.932 0.989 0.999 0.999 0.999

Confidence interval test 0.955 0.998 1.000 1.000 1.000 1.000

Cochran test 0.918 0.992 1.000 1.000 1.000 1.000

- The procedures gives missing values, because the probability of ω is closed to one.
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Table 3.4: The power of the six tests for λ = 1.50(α = 0.01)

ω 0.25 0.35 0.45 0.55 0.65 0.75

n = 25 Wald test 0.140 0.277 0.434 0.577 0.700 -

Likelihood ratio test 0.041 0.093 0.154 0.234 0.287 -

Score test 0.041 0.093 0.155 0.236 0.294 -

Chi-square test 0.097 0.142 0.203 0.277 0.316 -

Confidence interval test 0.129 0.282 0.468 0.644 0.769 -

Cochran test 0.062 0.135 0.217 0.319 0.412 -

n = 50 Wald test 0.240 0.476 0.681 0.821 0.893 0.928

Likelihood ratio test 0.109 0.245 0.399 0.538 0.622 0.637

Score test 0.115 0.252 0.417 0.579 0.685 0.735

Chi-square test 0.150 0.266 0.375 0.503 0.611 0.653

Confidence interval test 0.273 0.552 0.773 0.909 0.964 0.977

Cochran test 0.156 0.318 0.492 0.643 0.742 0.781

n = 100 Wald test 0.481 0.789 0.935 0.981 0.989 0.993

Likelihood ratio test 0.327 0.617 0.822 0.908 0.939 0.935

Score test 0.330 0.622 0.824 0.915 0.949 0.961

Chi-square test 0.267 0.482 0.689 0.811 0.893 0.914

Confidence interval test 0.568 0.870 0.974 0.995 0.998 0.998

Cochran test 0.410 0.702 0.870 0.941 0.969 0.972

n = 200 Wald test 0.801 0.978 0.999 1.000 1.000 1.000

Likelihood ratio test 0.777 0.945 0.992 0.999 1.000 1.000

Score test 0.699 0.945 0.992 0.999 1.000 1.000

Chi-square test 0.545 0.839 0.966 0.993 0.997 0.998

Confidence interval test 0.883 0.994 1.000 1.000 1.000 1.000

Cochran test 0.774 0.969 0.997 1.000 1.000 1.000

- The procedures gives missing values, because the probability of ω is closed to one.
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Table 3.5: The power of the six tests for λ = 1.50(α = 0.05)

ω 0.25 0.35 0.45 0.55 0.65 0.75

n = 25 Wald test 0.226 0.380 0.542 0.677 0.762 -

Likelihood ratio test 0.112 0.205 0.306 0.385 0.444 -

Score test 0.115 0.206 0.306 0.389 0.461 -

Chi-square test 0.139 0.207 0.271 0.349 0.398 -

Confidence interval test 0.282 0.464 0.648 0.791 0.864 -

Cochran test 0.203 0.324 0.432 0.531 0.595 -

n = 50 Wald test 0.385 0.616 0.786 0.891 0.933 0.945

Likelihood ratio test 0.258 0.447 0.617 0.736 0.793 0.801

Score test 0.258 0.447 0.617 0.740 0.812 0.852

Chi-square test 0.234 0.364 0.493 0.630 0.713 0.739

Confidence interval test 0.471 0.719 0.880 0.949 0.977 0.979

Cochran test 0.345 0.552 0.712 0.820 0.879 0.903

n = 100 Wald test 0.653 0.877 0.967 0.991 0.994 0.996

Likelihood ratio test 0.546 0.804 0.926 0.969 0.978 0.973

Score test 0.546 0.806 0.930 0.973 0.982 0.985

Chi-square test 0.405 0.641 0.809 0.893 0.942 0.951

Confidence interval test 0.754 0.944 0.989 0.998 0.999 0.999

Cochran test 0.651 0.867 0.963 0.985 0.989 0.991

n = 200 Wald test 0.906 0.993 1.000 1.000 1.000 1.000

Likelihood ratio test 0.861 0.986 0.999 1.000 1.000 1.000

Score test 0.858 0.985 0.999 1.000 1.000 1.000

Chi-square test 0.699 0.926 0.989 0.999 1.000 1.000

Confidence interval test 0.956 0.999 1.000 1.000 1.000 1.000

Cochran test 0.918 0.995 1.000 1.000 1.000 1.000

- The procedures gives missing values, because the probability of ω is closed to one.
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Table 3.6: The power of the six tests for λ = 2.00(α = 0.01)

ω 0.25 0.35 0.45 0.55 0.65 0.75

n = 25 Wald test 0.156 0.292 0.439 0.598 0.700 -

Likelihood ratio test 0.049 0.098 0.157 0.236 0.287 -

Score test 0.049 0.098 0.158 0.238 0.294 -

Chi-square test 0.100 0.152 0.206 0.269 0.316 -

Confidence interval test 0.148 0.298 0.474 0.658 0.769 -

Cochran test 0.070 0.140 0.213 0.332 0.412 -

n = 50 Wald test 0.250 0.477 0.670 0.808 0.884 0.925

Likelihood ratio test 0.111 0.240 0.392 0.533 0.611 0.648

Score test 0.117 0.248 0.413 0.574 0.671 0.746

Chi-square test 0.157 0.260 0.369 0.487 0.583 0.642

Confidence interval test 0.276 0.555 0.778 0.910 0.963 0.971

Cochran test 0.152 0.320 0.473 0.632 0.733 0.787

n = 100 Wald test 0.460 0.783 0.938 0.983 0.992 0.995

Likelihood ratio test 0.319 0.605 0.818 0.907 0.945 0.937

Score test 0.322 0.612 0.822 0.912 0.960 0.970

Chi-square test 0.271 0.492 0.687 0.827 0.898 0.917

Confidence interval test 0.555 0.865 0.974 0.996 1.000 0.999

Cochran test 0.329 0.689 0.872 0.942 0.973 0.977

n = 200 Wald test 0.796 0.979 1.000 1.000 1.000 1.000

Likelihood ratio test 0.694 0.945 0.993 0.999 1.000 1.000

Score test 0.691 0.945 0.993 0.999 1.000 1.000

Chi-square test 0.539 0.840 0.963 0.990 0.997 0.997

Confidence interval test 0.877 0.993 1.000 1.000 1.000 1.000

Cochran test 0.767 0.968 0.998 1.000 1.000 1.000

- The procedures gives missing values, because the probability of ω is closed to one.



33

Table 3.7: The power of the six tests for λ = 2.00(α = 0.05)

ω 0.25 0.35 0.45 0.55 0.65 0.75

n = 25 Wald test 0.234 0.389 0.546 0.683 0.762 -

Likelihood ratio test 0.121 0.208 0.301 0.401 0.444 -

Score test 0.122 0.209 0.302 0.405 0.461 -

Chi-square test 0.139 0.209 0.271 0.341 0.398 -

Confidence interval test 0.284 0.470 0.650 0.801 0.864 -

Cochran test 0.204 0.324 0.437 0.545 0.595 -

n = 50 Wald test 0.388 0.617 0.786 0.894 0.929 0.940

Likelihood ratio test 0.258 0.447 0.598 0.724 0.785 0.806

Score test 0.258 0.447 0.599 0.731 0.807 0.851

Chi-square test 0.232 0.366 0.480 0.611 0.693 0.730

Confidence interval test 0.469 0.727 0.887 0.949 0.975 0.973

Cochran test 0.351 0.550 0.705 0.811 0.868 0.900

n = 100 Wald test 0.640 0.880 0.967 0.991 0.998 0.997

Likelihood ratio test 0.519 0.798 0.930 0.969 0.982 0.979

Score test 0.520 0.800 0.934 0.973 0.986 0.986

Chi-square test 0.404 0.645 0.812 0.902 0.948 0.955

Confidence interval test 0.747 0.942 0.990 0.999 1.000 1.000

Cochran test 0.639 0.871 0.960 0.986 0.993 0.994

n = 200 Wald test 0.909 0.992 1.000 1.000 1.000 1.000

Likelihood ratio test 0.863 0.985 1.000 1.000 1.000 1.000

Score test 0.858 0.985 1.000 1.000 1.000 1.000

Chi-square test 0.694 0.925 0.987 0.998 0.999 0.999

Confidence interval test 0.955 0.999 1.000 1.000 1.000 1.000

Cochran test 0.918 0.994 1.000 1.000 1.000 1.000

- The procedures gives missing values, because the probability of ω is closed to one.
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Table 3.8: The power of the six tests for λ = 2.25(α = 0.01)

ω 0.25 0.35 0.45 0.55 0.65 0.75

n = 25 Wald test 0.156 0.292 0.439 0.598 0.700 -

Likelihood ratio test 0.049 0.098 0.157 0.236 0.287 -

Score test 0.049 0.098 0.158 0.238 0.294 -

Chi-square test 0.100 0.152 0.206 0.269 0.316 -

Confidence interval test 0.148 0.298 0.474 0.658 0.769 -

Cochran test 0.070 0.140 0.213 0.332 0.412 -

n = 50 Wald test 0.248 0.488 0.670 0.818 0.894 0.926

Likelihood ratio test 0.117 0.236 0.397 0.536 0.616 0.637

Score test 0.125 0.245 0.411 0.575 0.675 0.732

Chi-square test 0.154 0.256 0.378 0.498 0.599 0.640

Confidence interval test 0.280 0.561 0.773 0.913 0.961 0.974

Cochran test 0.157 0.314 0.489 0.645 0.739 0.780

n = 100 Wald test 0.458 0.770 0.940 0.979 0.990 0.994

Likelihood ratio test 0.297 0.589 0.813 0.907 0.944 0.934

Score test 0.298 0.596 0.816 0.917 0.956 0.969

Chi-square test 0.259 0.467 0.685 0.819 0.889 0.916

Confidence interval test 0.544 0.851 0.978 0.992 0.999 0.999

Cochran test 0.388 0.670 0.872 0.944 0.970 0.979

n = 200 Wald test 0.804 0.974 0.998 1.000 1.000 1.000

Likelihood ratio test 0.703 0.940 0.992 0.998 0.999 0.999

Score test 0.702 0.940 0.992 0.999 1.000 1.000

Chi-square test 0.546 0.847 0.963 0.991 0.998 0.999

Confidence interval test 0.875 0.990 0.999 1.000 1.000 1.000

Cochran test 0.775 0.961 0.997 1.000 1.000 1.000

- The procedures gives missing values, because the probability of ω is closed to one.
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Table 3.9: The power of the six tests for λ = 2.25(α = 0.05)

ω 0.25 0.35 0.45 0.55 0.65 0.75

n = 25 Wald test 0.234 0.389 0.546 0.683 0.762 -

Likelihood ratio test 0.121 0.208 0.301 0.401 0.444 -

Score test 0.122 0.209 0.302 0.405 0.461 -

Chi-square test 0.139 0.209 0.271 0.341 0.393 -

Confidence interval test 0.284 0.470 0.650 0.801 0.864 -

Cochran test 0.204 0.324 0.437 0.545 0.595 -

n = 50 Wald test 0.388 0.627 0.791 0.895 0.934 0.942

Likelihood ratio test 0.261 0.463 0.610 0.731 0.797 799

Score test 0.261 0.463 0.611 0.741 0.820 0.848

Chi-square test 0.241 0.360 0.486 0.623 0.702 0.734

Confidence interval test 0.471 0.744 0.883 0.950 0.973 0.974

Cochran test 0.352 0.568 0.705 0.819 0.879 0.898

n = 100 Wald test 0.633 0.870 0.969 0.987 0.994 0.996

Likelihood ratio test 0.514 0.782 0.929 0.969 0.978 0.978

Score test 0.515 0.785 0.931 0.971 0.983 0.987

Chi-square test 0.384 0.628 0.806 0.900 0.936 0.951

Confidence interval test 0.738 0.943 0.992 0.998 0.999 1.000

Cochran test 0.638 0.858 0.964 0.983 0.990 0.993

n = 200 Wald test 0.902 0.991 0.999 1.000 1.000 1.000

Likelihood ratio test 0.863 0.982 0.998 1.000 1.000 1.000

Score test 0.860 0.982 0.998 1.000 1.000 1.000

Chi-square test 0.702 0.928 0.987 0.997 1.000 1.000

Confidence interval test 0.949 0.998 0.999 1.000 1.000 1.000

Cochran test 0.913 0.992 1.000 1.000 1.000 1.000

- The procedures gives missing values, because the probability of ω is closed to one.
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3.5 Model Diagnostics

Firstly, Half-normal plots proposed by Atkinson (1985) are very use-

ful graphical method for verifying those model diagnostic using residuals. The plot

developed from the Q-Q plot by using the absolute values of the normal linear

model residuals. Superimposed with simulated envelope the plot can be applied

to detect both the systematic departure from the model and influential values.

Such a plot is particular valuable when trying to decide whether an

unacceptably large deviance is due to a small number of outlying observations

(with only the largest residuals lying above the upper envelope) or a more general

lack of fit or overdispersion (with both large and small residual lying above the

upper envenlope). The graphic is obtained by drawing some ordered absolute

values of a suitable diagnostic measure, d(i) against the half-normal scores or the

expected ordered statistics.

Half-normal plots with a simulated envelope can be used to check

the adequacy of the selected ZIP regression model, especially, the model for λ. For

the model for ω, it is known that overdispersion cannot occour in the binary data

(Jansakul, 2005). Here, diagnostic quantities, the standardized Pearson residual

will be used as. For given ω̂i the ith term of this residual is

• Standardized Pearson residual can be written as

ṙzip,i =
yi − µ̂i√

µ̂i

(
1 +

ω̂i

1− ω̂i

µ̂i

) . (3.33)

Using this residual for construction of the half-normal plot with simulated envelope

are given below.

1. Calculate the ordered absolute value of a diagnostic measurement denoted

by d(i) from a selected ZIP regression model with λ̂ and ω̂.

2. Simulate 19 sample for the response variable, Yji ∼ ZIP(λ̂i, ω̂i),

j = 1, 2, . . . , 19; i = 1, 2, . . . , n by simulating pairs of random variables
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Ypj,i ∼ Pois(λ̂i) and Zji ∼ Bin(1, ω̂i) and then forming

Yji = 0× Zji + (1− Zji)× Ypj,i.

3. Refit the model using the same explanatory variables to each sample and

calculate the ordered absolute value of a diagnostic of interest, d∗j(i).

4. For each i calculate the minimum, mean and maximum of d∗j(i).

5. Plot these values and the observed d(i) against the half-normal order statis-

tics.

If the selected model is appropriate, the observed d(i) should lie within the simu-

lated envelope.



CHAPTER 4

Applications

This chapter illustrates the use of ZIP and the proposed Wald test

using three sets of data: the set of AIDS-related data discussed in Heilbron (1994)

for ZIP regression analysis with mean counts depending on covariate, the foetal

lamb movement data and the death notice data of London times (Gupta et al

1996), as single sample cases. In these three example, the authors showed that a

standard Poisson model is not adequate because the data have many zeros and

have gone on to consider the use of ZIP.

4.1 AIDS-related Data

The set of AIDS-related data discussed in Heilbron (1994). The

study involved 1115 respondents aged 18-49. The response variable was the self-

reported number of times that the respondents had anal intercourse with opposite

sex partners during the study period classified by to dichotomous explanatory

variables; sex (male, female) and having a risky (yes, no) main sexual partner.

The data are presented in Table 4.1 with sex and risk are dummy variable:

sex =





0 male

1 female

and

risk =





0 no

1 yes

38
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Table 4.1: AIDS-related Data

Gender

Male Female

Risky Partner No Yes No Yes

Y

0 541 102 238 103

1 19 5 8 6

2 17 8 . 4

3 16 2 2 2

4 3 1 1 .

5 6 4 1 1

6 5 1 1 .

7 2 . 1 .

10 6 . . .

12 1 . . .

15 . 1 1 .

20 3 . . .

30 1 . . .

37 . 1 . .

50 . . . 1

n 620 125 253 117

Mean 0.56 0.87 0.20 0.64

Variance 5.43 13.76 1.46 21.72
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Fitting all possible Poisson models, the model with smallest value

of AIC is the full interaction model, see Table 4.2.

Table 4.2: AIDS-related Data: all possible Poisson models

Models Residual d.f −2` AIC

(ln(λ)) deviance

β̂0 3182.0 1114 3564.11 3566.1

β̂0 + β̂1sex 3143.8 1113 3525.86 3529.9

β̂0 + β̂1risk 3151.9 1113 3533.96 3538.0

β̂0 + β̂1sex + β̂2risk 3099.5 1112 3481.57 3487.6

β̂0 + β̂1sex + β̂2risk + β̂3sex : risk 3087.0 1111 3469.78 3477.8

Where the maximum likelihood estimates of the linear predictor

coefficients and their standard error are displayed in equation (4.1).

ln(λ) = −0.575− 1.027(sex) + 0.438(risk) + 0.719(sex : risk) (4.1)

(0.054) (0.150) (0.110) (0.212)

However, the half-normal plots with a simulated envelope, Figure 4.1

indicates that the Poisson model (4.1) is not appropriate. It shows overdispersion.
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Figure 4.1: Half normal plot of AIDS-related Data

We tried fitting all possible ZIP regression with constant ω, we

found that the interaction model for λ gives smallest value of AIC, and the value

of −2` is reduced nearly to a half of one given by the model (4.1), see Table 4.3.

Table 4.3: AIDS-related Data: all possible ZIP models

Model

ln(λ) ω d.f −2` AIC

β̂0 0.865 1113 1869.3 1873.3

β̂0 + β̂1sex 0.865 1112 1869.1 1875.1

β̂0 + β̂2risk 0.865 1112 1866.0 1872.0

β̂0 + β̂1sex + β̂2risk 0.865 1111 1865.2 1873.2

β̂0 + β̂1sex + β̂2risk + β̂3sex : risk 0.865 1110 1860.9 1870.9

However, the half-normal plots, Figure 4.2 indicates that the ZIP

model is not consistent with the data.
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ZIP model 
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Figure 4.2: Half normal plot of AIDS-related Data

From above result show that the observed counts include many ze-

ros, but the ZIP model is not still suitable. It indicates that the observed zeros

are not structural zeros. They occur under Poisson state and have additional vari-

ation to the mean or heterogeneity. An appropriate model for this data might be

an Negative Binomial model (NB).

Following Natchadamon (2006), we fitted linear mean variance neg-

ative binomial (NB1) model to this set data and present all possible NB1 model

in Table 4.4.

Table 4.4: AIDS-related Data: all possible NB1 models

Model

ln(λ) d.f −2` AIC

β̂0 1113 1407.7 1411.7

β̂0 + β̂1sex 1112 1403.9 1409.9

β̂0 + β̂2risk 1112 1404.3 1410.3

β̂0 + β̂1sex + β̂2risk 1111 1392.8 1400.8

β̂0 + β̂1sex + β̂2risk + β̂3sex : risk 1110 1392.3 1402.3
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The procedure worked well and selected model indicated by AIC of

1400.8 is

ln(λ) = −0.584− 0.685(sex) + 0.489(risk) α̂ = 9.934 (4.2)

(0.152) (0.213) (0.196) (1.765)

The half-normal plots of NB1 model (4.2) displayed in Figure 4.3

indicates that the model is consistent with the data.
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Figure 4.3: Half normal plot of AIDS-related Data
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4.2 foetal lamb movement data

Foetal lamb movement data are number of movements made by a

foetal lamb in each of 240 consecutive 5-second intervals which are summarized in

Table 4.5.

Table 4.5: movements made by a foetal lamb in 240 consecutive 5-second intervals.

Number of movements 0 1 2 3 4 5 6 7

Number of intervals 182 41 12 2 0 2 0 1

The mean and variance under the constant Poisson model are 0.3667

and 0.7269, respectively. It shows overdispersion. To check whether the overdis-

persion made by excess zeros or zero-inflation, we calculate the Wald test and the

others mentioned here with and the MLE forλ and ω under ZIP model: λ̂ = 0.8999

and ω̂ = 0.5927, respectively. The computed test statistics are presented in Table

4.6

Table 4.6: Test statistics for the foetal lamb movement data at α = 0.05

Test Test statistics P-value Reject/not reject H0

Likelihood ratio test 24.7867 0.000001 Reject

Score test 27.9372 0.000000 Reject

Chi-square test∗ 17.6341 0.000523 Reject

Confidence interval test 0.4674 - Reject

C test 5.2856 0.000000 Reject

Wald test 86.9585 0.000000 Reject

* We defined the classes for this data are {{0}, {1}, {2}, {3 and above}}.

The results from Table 4.6 show that the ZIP model with λ̂ = 0.8999

(0.155) and ω̂ = 0.5927 (0.0636) is consistent with the data. The quantities in

parentheses are estimated standard errors. The half-normal plots for the Poisson
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fit and the ZIP model are displayed in Figure 4.4 and 4.5 respectively, Show that

the ZIP model is a better fit than the Poisson model, although there are some

outliers.
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Figure 4.4: Half normal plot of foetal lamb movement data

ZIP model
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Figure 4.5: Half normal plot of foetal lamb movement data
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4.3 Death Notice Data of London Times

The set of Death Notice Data of London Times (Gupta et al, 1996)

shown in Table 4.7 presents the number of death notice, yk of women 80 years of

age and over, appearing in the London “Times”on each day for three consecutive

years with the frequency, fk for each k = 0, 1, 2, . . . .

Table 4.7: Death Notice Data of London Times

Number of Death notices, yk Frequency (fk)

0 162

1 267

2 271

3 185

4 111

5 61

6 27

7 8

8 3

9 1

The mean and variance under the constant Poisson model are 2.1569

and 2.6073, respectively. It shows overdispersion. To check whether the overdis-

persion made by excess zeros or zero-inflation, we calculate the Wald test and

the others mentioned here with and the MLE forλ and ω under ZIP model: λ̂ =

2.2693 and ω̂ = 0.0495, respectively. The computed test statistics are presented

in Table 4.8.
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Table 4.8: Test statistics for Death Notice Data of London Times at α = 0.05

Test Test statistics Critical region Reject/not reject H0

Likelihood ratio test 14.7832 0.000121 Reject

Score test 15.4085 0.000087 Reject

Chi-square test∗ 30.8484 0.000066 Reject

Confidence interval test 0.0156 - Reject

C test 3.9254 0.000008 Reject

Wald test 13.7581 0.000208 Reject

* We defined the classes for this data are {{0}, {1}, {2},{3},{4}, {5}, {6}, {7 and

above}}.

The results from Table 4.8 show that the ZIP model with λ̂ = 2.2693

(0.0543) and ω̂ = 0.0495 (0.0134) is consistent with the data. The quantities in

parentheses are estimated standard errors.

The half-normal plots for the Poisson fit and the ZIP model are

displayed in Figure 4.6 and 4.7 respectively, show that the ZIP model is a better

fit than the Poisson model.
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Figure 4.6: Half normal plot of Death Notice Data of London Times

ZIP model
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Figure 4.7: Half normal plot of Death Notice Data of London Times



CHAPTER 5

Conclusion and Discussion

In this thesis, we studied characteristics, theories and properties of

glms and ZIP regression models and explore various tests for zero-inflation pa-

rameter used to compare between Poisson and ZIP models proposed in literature.

Moreover, we developed a Wald test for a ZIP model in the case of single homoge-

nous sample for testing the hypothesis (2.23). In order to investigated its sampling

distribution and compared power of the test between Wω and the others a small

simulation study is conducted using R (R Development Core Team 2008).

5.1 Conclusion

Even though Poisson regression or log linear model is a basic model

for count data analysis, in practice, it is commonly replaced by more complicated

models. This because of the equality of mean and variance assumption under

Poisson distribution fails. Counts that have greater variance than the mean are

described as overdispersed Poisson counts (McCullagh and Nelder 1989, Hilbe

2007). Counts with less variance than the mean are termed underdispersed Poisson

counts but this phenomenon is rarely occurred in real data (McCullagh and Nelder

1989). There are various causes that can lead to overdispersion, such as litters,

families, households, etc. Furthermore, overdispersion can be caused by excess

number of observed zero counts, since the excess zeros will give smaller conditional

mean than the true value. When the data present too many zeros, Poisson model

might not be appropriate and a ZIP model is commonly used as an alternative.

In this thesis we reviewed the procedure of fitting ZIP regression and developed

a Wald test for detecting zero-inflation in Poisson model. From our investigation

by conducting simulation study, we found that its distribution follows mixture of

49
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a χ2
0 (a constant of zero) and a χ2

1 distribution and it can be used to detect the

zero-inflation in counts.

5.2 Discussion

1. Our developed Wald test for ZIP model with constant λ and

ω for compared between Poisson and ZIP models can be extended to a general

situation on where the λ and ω is allowed to depend on covariates.

2 In some set of count data with excess zero, the ZIP model might

not be appropriate because of showing overdispersion, then other model, such as

the zero-inflated Negative Binomial model (ZINB) ( Ridout et al., 2001) or zero-

inflated random effect model can be used (Jansakul and Hinde, 2009).

3 A further extensions of the ideas in this thesis is to develop the

Wald test for comparing between a Negative Binomial model and Zero-inflated

Negative Binomial model.
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APPENDIX A

Test statistics for zero-inflation

In the case of single homogeneous sample, the log-likelihood function

(2.20) can be written as

`(λ, ω) = n0 ln
[
ω + (1− ω)e−λ

]
+

J∑
j=1

nj ln

[
(1− ω)

e−λλj

j!

]
,

where J is the largest observed count value, nj is the frequency of

each possible count value, j = y = 0, 1, 2, . . . , J then n0 is the number of zeros in

the observed and
J∑

j=0

nj = n, the total number of observations or the sample size.

1. Likelihood ratio test for ZIP model

The Likelihood ratio test based on the ratio of two log-likelihood

functions can be written as.

Rω = −2× [`(λ̂)− `(λ̂, ω̂)] (1)

where `(λ̂) and `(λ̂, ω̂) are the maximized log-likelihood under the

Poisson and the ZIP regression model, respectively. This can be computed from
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the following formula:

Rω = −2

{
n∑
i

{yiln(µi)− µi − ln(yi!)} − n0 ln
[
ω + (1− ω)e−λ̂

]

−
J∑

y=1

ny ln

[
(1− ω)

e−λ̂λ̂y

y!

]}

= −2

{∑
i

lnµi −
∑

i

µi −
∑

i

lnyi!− n0ln
[
ω + (1− ω)e−λ̂

]

−
J∑

y=1

ny ln

[
(1− ω)

e−λ̂λ̂y

y!

]}

= −2

{
nȳlnȳ − nȳ −

∑
i

lnyi!− n0 ln
[
ω + (1− ω)e−λ̂

]

−
J∑

y=1

ny ln

[
(1− ω)

e−λ̂λ̂y

y!

]}

= −2

{
nȳlnȳ − nȳ − n0ln

(n0

n

)
−

∑
y

ny[ln(1− ω)− λ̂]− nȳlnλ̂

}

= −2

{
nȳ[lnȳ − 1− lnλ̂]− n0ln

(n0

n

)
− (n− n0)

(
ln

(
ȳ

λ̂

)
− λ̂

)}

= 2

{
n0ln

(n0

n

)
+ (n− n0)

(
ln

(
ȳ

λ̂

)
− λ̂

)
+ nȳ(lnλ̂ + 1− lnȳ)

}

where ȳ is the mean of the observations under H0 and λ̂ is the estimated positive

mean counts under H1. This test statistic Rω approximately follows chi-square

distribution on 1 degree of freedom (d.f).

2 Score test for ZIP models

Based on the log-likelihood function given in (2.22) the score vector

is

S(λ, ω) =


 Sλ(λ, ω)

Sω(λ, ω)


 =




∂`(λ, ω)

∂λ
∂`(λ, ω)

∂ω




where

∂`(λ, ω)

∂λ
=
−n0(1− ω)e−λ)

[ω + (1− ω)e−λ]
−

J∑
j=1

nj +

∑J
j=1(nj × j)

λ
, (2)
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and

∂`(λ, ω)

∂ω
=

n0(1− e−λ)

[ω + (1− ω)e−λ]
−

∑J
j=1 nj

1− ω
. (3)

The expected information matrix I(β, γ) can be partitioned as

I(λ, ω) =


 Iλλ(λ, ω) Iλω(λ, ω)

Iωλ(λ, ω) Iωω(λ, ω)




where the elements Iλ,λ, Iλω = Iωλ and Iωω are, respectively,

−E

[
∂2`(λ, ω)

∂λ2

]
, −E

[
∂2`(λ, ω)

∂λ∂ω

]
, and − E

[
∂2`(λ, ω)

∂ω2

]

with

∂2`(λ, ω)

∂λ2
=

n0ω(1− ω)e−λ

[ω + (1− ω)e−λ]2
−

∑
j(nj × j)

λ2
;

∂2`(λ, ω)

∂λ∂ω
=

n0e
−λ

[ω + (1− ω)e−λ]2
;

∂2`(λ, ω)

∂ω2
=

−n0(1− e−λ)2

[ω + (1− ω)e−λ]2
−

∑
j nj

(1− ω)2
.

Using the fact that

E[I(yi=0)] = Pr(Yi = 0) = ωi + (1− ωi)e
−λi

and E[I(yi>0)] = Pr(Yi > 0) = (1− ωi)(1− e−λi)

we have

Iλλ = −E

[
∂2`(λ, ω)

∂λ2

]
= n

[
1− ω̂

λ̂
− ω̂(1− ω̂)e−λ̂

ω̂ + (1− ω̂)e−λ̂

]
;

Iωλ = −E

[
∂2`(λ, ω)

∂λ∂ω

]
=

−ne−λ̂

ω̂ + (1− ω̂)e−λ̂
;

Iωω = −E

[
∂2`(λ, ω)

∂ω2

]
=

n(1− e−λ̂)

(1− ω̂)[ω̂ + (1− ω̂)e−λ̂]
. (4)

Under the null hypothesis, ω = 0, the general score test is then

Sω = ST
ω (λ̂, 0)C−1Sω(λ̂, 0), (5)
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where λ̂ is the maximum likelihood estimate under the Poisson model and

Sω(λ̂, 0) =

[
n0 − ne−λ̂

e−λ̂

]
, (6)

C = Iω(λ̂, 0)− Iλω(λ̂, 0)I−1
λλ (λ̂, 0)Iωλ(λ̂, 0)

with

Iλλ(λ̂, 0) =
n

λ̂
,

Iλω(λ̂, 0) = −n

Iωω(λ̂, 0) =
n(1− e−λ̂)

e−λ̂
. (7)

Score test for ZIP model is

Sω =
(n0 − ne−λ̂)2

ne−λ̂(1− e−λ̂)− nλ̂e−2λ̂
. (8)

Under the null hypothesis, from (2) we have

−n0 − (n− n0) +

∑J
j=1(nj × j)

λ̂
= 0;

−n +

∑n
i yi

λ̂
= 0;

λ̂ = ȳ. (9)

Hence, Sω in (8) we can rewritten as:

Sω =
(n0 − ne−ȳ)2

ne−ȳ(1− e−ȳ)− nȳe−2ȳ

=
(n0 − np0)

2

np0(1− p0)− nȳp2
0

where p0 = e−ȳ.

Under the null hypothesis this statistic will have asymptotic chi-squared distribu-

tion with 1 degree of freedom (Van den broek, 1995).

3 Confidence interval test for ZIP models

It is possible to derive a test based on asymtotic normality of the

estimate of the parameters. Following the statistical properties of ZIP model we

have

E(Ȳ ) = E(Y ) = (1− ω)λλ̂ = µ
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and

Var(Ȳ ) =
1

n
Var(Y )

=
1

n

{
(1− ω)µ + ωµ2

1− ω

}

=
1

n

{
(1− ω)λ + ω(1− ω)λ2

}

=
1

n
{(1− ω)λ + (1− ω)λωλ}

=
1

n
{(1− ω)λ + (1− ω)λ(λ− (1− ω)λ)} .

From the central limit theorem, the confidence interval can be written as

−Zα/2 ≤ Ȳ − (1− ω)λ√
Var(Ȳ )

≤ Zα/2

−Zα/2

√
Var(Ȳ ) ≤ Ȳ − (1− ω)λ ≤ Zα/2

√
Var(Ȳ )

−Ȳ − Zα/2

√
Var(Ȳ )

λ
≤ −(1− ω) ≤ −Ȳ + Zα/2

√
Var(Ȳ )

µ

−Ȳ − Zα/2

√
Var(Ȳ )

λ
≤ ω − 1 ≤ −Ȳ + Zα/2

√
Var(Ȳ )

λ

1−
Ȳ − Zα/2

√
1
n

{
(1−ω)µ+ωµ2

1−ω

}

λ
≤ ω ≤ 1−

Ȳ + Zα/2

√
1
n

{
(1−ω)µ+ωµ2

1−ω

}

λ

can be obtained as

1− Ȳ − Zα/2

√
{E(Y ) + E(Y )[λ− E(Y )]}/n

λ

≤ ω ≤ 1− Ȳ + Zα/2

√
{E(Y ) + E(Y )[λ− E(Y )]}/n

λ
.

In practice, a set of data, can compute the above confidence interval

by substituting λ and E(Y ) by the maximum likelihood estimate of λ, say λ̂ and

the sample mean ȳ, respectively. Thus, the confidence interval can be written as

1−
ȳ − Zα/2

√
{ȳ + ȳ[λ̂− ȳ]}/n

λ̂
≤ ω ≤ 1−

ȳ + Zα/2

√
{ȳ + ȳ[λ̂− ȳ]}/n

λ̂
.

Hence, a test based on a positive one sided confidence interval of

probability zero-inflated counts can be obtained as

CIω = 1−
ȳ + Zα

√
{ȳ + ȳ[λ̂− ȳ]}/n

λ̂
, (10)
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where λ̂ is the estimated positive mean counts under H1. The critical region of

this test method is simply CIω > 0.

4 Cochran test for ZIP models

First, it is well known that if one random variable X ∼ χ2
1 then

√
X ∼ N(0, 1). In fact, the Cocharn test is transformed their original their original

Chi-square from into its corresponding standard normal form. Cochran(1954)

proposed to test any single deviation (fi − mi) when m ia estimated from the

data,

from χ2 =
L2

Var(L)
=⇒ Cω =

L√
Var(L)

∼ N(0, 1)

L = (fi −mi) : Var(L) = mi − m2
i

N

{
1 +

(i−m)2

m

}

set i = 0 let f0 = n0,m0 = ne−ȳ,m = ȳ, N = n

L = n0 − ne−ȳ

Var(L) = Var(n0 − ne−ȳ)

= ne−ȳ − (ne−ȳ)2

n
{1 + ȳ}

= ne−ȳ − ne−2ȳ{1 + ȳ}
= ne−ȳ − ne−2ȳ − nȳe−2ȳ

= ne−ȳ(1− e−ȳ − ȳe−ȳ)

The C test statistic written by the symbols used here is as follows:

Cω =
L√

Var(L)

=
n0 − ne−ȳ

√
Var(n0 − ne−ȳ)

=
(n0 − ne−ȳ)

[ne−ȳ(1− e−ȳ − ȳe−ȳ)]1/2
∼ N(0, 1)

Under the null hypothesis, the test statistic Cω is approximately normally dis-

tributed with zero mean and unit variance.
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Following the relationship between N ∼ (0, 1) and χ2
1, we found that

C2
ω, can be obtained as

C2
ω =

(n0 − ne−ȳ)2

ne−ȳ(1− e−ȳ − ȳe−ȳ)
. (11)

Under null hypothesis C2
ω approximately follows chi-square distribution

on one d.f. Moreover, C2
ω has the form exactly the same as Score test as follow:

C2
ω =

(n0 − ne−ȳ)2

ne−ȳ(1− e−ȳ − ȳe−ȳ)

=
(n0 − ne−ȳ)2

ne−ȳ(1− e−ȳ)− nȳe−2ȳ

=
(n0 − np0)

2

np0(1− p0)− nȳp2
0

= Sω where p0 = e−ȳ.
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APPENDIX B 

R functions 

# A function for creating a simulated envelope and drawing the 

graph.

# use standardized deviance residual

hnp <- function(object,models=c("Normal","Poisson","Binomial")) 

 { 

    rmax <- 0;    drmax <- 0 

 rme <- 0;     drme <- 0 

 minr <- 0;    dminr <- 0 

  models<-match.arg(models) 

  if(models=="Poisson"){ 

  resids <- hnp.pois(object) 

  } 

  else if (models=="Binomial"){ 

  resids <- hnp.logit(object) 

  } 

  else { 

  resids <- hnp.norm(object) 

  } 

  r.sim <- resids 

  sres <- r.sim[[1]] 

  #++++++++++++++++ simulated envelope +++++++++++++ 

    for(i in 1:nrow(r.sim[[2]])) { 

          rmax[i] <- max(r.sim[[2]][i,] ) 

  rme[i]  <- mean(r.sim[[2]][i,] ) 

  minr[i] <- min(r.sim[[2]][i,] ) 

            } 

  rmin <- minr; rmax <- rmax;  rmean <- rme 

  sres <- sres 

      n <- length(sres) 

 i <- seq(1, n, by = 1 ) 

 nd <- qnorm((i + n - 0.125)/(2*n + 0.5)) 
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# A function for creating a simulated envelope and drawing the 

graph. (Continuous) 

# use standardized deviance  residual 

 mi.y <- min(as.integer(sres)) #1 

 ma.y <- max(as.integer(c(sres,rmax)))+0.5 #1 

 mi.x <- min(as.integer(nd)) - 0.5 #1 

 ma.x <- max(as.integer(nd))+0.5 #1 

 par(pty= "s") 

 plot(nd, sres, xlab = "Half-normal scores",  

           main = "Poisson model ", 

      ylab = "standardizes Residuals", type = "n",  

           axes = FALSE, ylim = c(mi.y, ma.y)) 

      axis(1,at=seq(mi.x, ma.x, by=0.5)) #x-axis 

      axis(2,at=seq(mi.y, ma.y, by=0.25)) #y-axis 

      points(nd, sres, pch=4, mkh=0.06) 

      lines(nd, rmin, lty=1) 

      lines(nd, rmean, lty=12) 

      lines(nd, rmax, lty=1) 

             } 
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# A function for calculating standardize residuals of Poisson 

regression.

hnp.pois<- function(object) { 

    #  object : a diagnosted fitted model 

 mu <- fitted(object) 

 n <- length(mu) 

 r.sim <- matrix(0,n,19) 

 rmax <- 0 

 rme <- 0 

 minr <- 0 

 ys <- 0

  y<-object$y 

  hii<-lm.influence(object)$hat 

  rdot<-resid(object)/sqrt(1-hii) 

  rdot<-ifelse(is.na(rdot),0,rdot) 

sres <- sort(abs(rdot))

    #  Observed standardized Pearson 

# ++++++++   Simulated envelop   ++++++++++++++ 

for(i in 1:19) 

      {   

     ys <- rpois(n,mu) 

     object$model[,1] <- ys 

     ys.glm <- glm(object$model,family=poisson) 

  hii<-lm.influence(ys.glm)$hat 

  rdot<-resid(ys.glm)/sqrt(1-hii) 

  rdot<-ifelse(is.na(rdot),0,rdot) 

     r.sim[,i] <- rdot 

     r.sim[,i] <- sort(abs(rdot)) 

 } 

 resids <- list(sres = sres, r.sim = r.sim) 

 resids 

  } 
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#  The method of Fisher Scoring and ZIP Regression Models 

fisher.ZIPW1 <- function(formula,X.mat) 

 { 

        S.E <- 0; y <- NULL; llikf <- 0 

        y.pois <- glm(formula, family = poisson) 

        y <- y.pois$y 

         z<-ifelse(y==0,1,0) 

      beta <- coefficients(y.pois) 

     lamda <- fitted(y.pois) 

     omega <- mean(z) 

 # Calculate -2 x logL for a Poisson model 

    plikf <- -2*sum(y*log(lamda)-lamda-lgamma(y+1)) 

 # Initial value

  # Calculate (I(y)) 

    ll.old<-abs(logLik(y.pois)) 

    ll.diff<-ll.old 

    ll.diff<-ifelse(is.na(ll.diff),0,ll.diff) 

    beta.omega <- c(beta,omega) 

      i<-0 

     while(ll.diff > 0.001) { 

 # Gradient vectios 

        d <- omega+((1-omega)*exp(-lamda))

 s11 <- -z*(1-omega)*exp(-lamda)*lamda 

        s12<- (1-z)*(y-lamda) 

        s1 <- (s11/d)+s12 

   S1 <- t(X.mat)%*%s1 # for beta 

 s2 <- z*(1-exp(-lamda)/d) - ((1-z)*(1/(1-omega))) 

 S2 <- sum(s2) # for omega 

 # Creat a score vector

       S <- c(S1, S2) 
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# The method of Fisher Scoring and ZIP Regression Models 

   (Continuous)

 # Create minus the 2nd derivative & information matrices 

    c1 <- exp(-lamda)*((1-lamda)*omega+(1-omega)* 

          exp(-lamda))*(1-omega)*lamda 

    c2 <- omega+(1-omega)*exp(-lamda) 

    c3 <- lamda*(1-omega)*(1-exp(-lamda)) 

    c  <- (c1/c2)+c3 

    I1 <- (t(X.mat) %*%diag(c[1:length(c)]))%*%X.mat #for beta 

   i21 <- (1-exp(-lamda))^2/d 

        i22 <- (1-exp(-lamda))/(1-omega) 

   I2  <- i21+i22 

   I2  <- sum(I2)  #for omega 

    i12 <- -lamda*exp(-lamda)/d 

I12 <- t(X.mat)%*%i12 # for beta,omega

 # Creat a score vector and partitioned information matrix 

 PI1 <- c(I12, I2) 

 PI2 <- rbind(I1, t(I12)) 

 PI <- cbind(PI2, PI1) # completed infomation matrix 

 PI.inv <- solve(PI) 

         S.E <- sqrt(PI.inv) 

         S.E <-diag(S.E)  

 beta.omega <- beta.omega + PI.inv%*%S  

  # The fisher scoring method 

    beta <- beta.omega[1:length(beta)] 

        lamda <- exp(X.mat%*%beta) # Fitted vales 

  omega1 <- beta.omega[length(beta.omega)] 

         omega2<-ifelse(omega1<=0,0,omega1) 

        omega2<-ifelse(omega1>=1,0.92,omega1) 

    omega<-round(omega2,3) 

       d <- omega+(1-omega)*exp(-lamda) 

   ll.new<-sum(z*log(d)+(1-z)*(log(1-omega)-lamda+y* 

            log(lamda)-lgamma(y+1))) 

  ll.diff<-abs(ll.old-ll.new) 

   ll.old<-ll.new 

        i<-i+1

 }  

 d <- omega+(1-omega)*exp(-lamda) 

 ll<-sum(z*log(d)+(1-z)*(log(1-omega)-lamda+y* 

          log(lamda)-lgamma(y+1)))

   

   result <-list(beta.zip=beta,omega=omega, 

lamda.zip=lamda,SE.beta=S.E,log_like=ll,fitted.values=lamda,

model=y.pois$model,formula=y.pois$formula,iteration=i)

  return(result) 

}
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#  The method of Fisher Scoring and ZIP Regression Model 

   With no covariate. 

ZIP.bothconstant.var<- function(y) { 

       lamda <-mean(y) 

  nj<-c(table(y)) 

  n<-sum(nj) 

        no<-nj[1] 

        nj<-c(table(y))[2:length(nj)] 

        j<-as.numeric(names(nj)) 

 lamda.old <-lamda 

     lamda.diff<-lamda.old 

     lamda.diff<-ifelse(is.na(lamda.diff),0,lamda.diff) 

       i<-0  ; Omega<-NULL ;Lamda<-NULL 

        

 while(lamda.diff > 0.001) { 

 lamda<-((1-exp(-lamda))*sum(nj*j))/(sum(nj)) 

 lamda.new<-lamda 

        lamda.diff<-abs(lamda.old-lamda.new) 

        lamda.old<-lamda.new 

         i<-i+1 

 omega<-(no-n*exp(-lamda))/(n*(1-exp(- lamda))) 

        } 

 ll<-no*log(omega+(1-omega)*exp(-lamda))+(sum(nj*log((1-omega) 

    *exp(-lamda)*lamda^j/factorial(j)))) 

# Create minus the 2nd derivative & information matrices 

        d <- omega+(1-omega)*exp(-lamda) 

 i21 <- n*(1-exp(-lamda))/((1-omega)*d) #for omega 

    i12 <- (-exp(-lamda)/d)*n   # for lambda,omega 

    I12 <- n*(((1-omega)/lamda)-((omega*(1-omega)*exp(-lamda))/d))  

              # for lambda 

 # Creat a  partitioned information matrix 

 PI1 <- c(i12,i21) 

 PI2 <- rbind(I12, t(i12)) 

 PI <- cbind(PI2, PI1) # completed infomation matrix 

 I.inv <- solve(PI) 

 var<-diag(I.inv) 

 var.lambda<-var[1:length(lamda)] 

 var.omega<-var[length(var)] 

 se<-sqrt(diag(I.inv)) 

 se<-round(se,4) 

 se.lambda<-se[1:length(beta)] 

 se.omega<-se[length(se)] 

   result <-

list(lamda.zip=lamda,omega=omega,log_like=ll,var.omega=var.omega,

      se.omega=se.omega, se.lambda= se.lambda ,iteration=i) 

return(result)
 } 
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# A function for creating a simulated envelope and drawing the 

graph Half normal plot for  ZIP Regression Model

hnp.zip<-function(y.zip, X.mat) 

 { 

  source("function_ZIPW1.txt") 

      

   y<-y.zip $model[[1]] 

          n<-length(y) 

    lamda<-y.zip$fitted.values ; omega<-y.zip$omega 

    dr.sim<-matrix(0,n,19) 

                 dminr<-0 ; drmax<-0 ; drmean<-0 

   mu<-(1-omega)*lamda  

                 odres<-(y-mu) 

    odres<-odres/sqrt(mu*(1+(omega/(1-omega)*mu))) 

    sres<-sort(sqrt(abs(odres))) 

  # ++++++++   Simulated envelop   ++++++++++++++ 

 for(i in 1:19) 

      { 

  # Generate ZIP data

                 ybin <- rbinom(n,1, omega)

                 y1 <- rpois(n,lamda) 

                 y <- 0*ybin + (1-ybin)*y1 

               model<-y.zip$model ; model[[1]]<-y 

  formula<-y.zip$formula 

                z<-ifelse(ys==0,1,0) 

                ysim.zip<-fisher.ZIPW1(formula,X.mat) 

     lamda.sim <- ysim.zip$fitted.values 

     omega.sim <- ysim.zip$omega   

 # Simulate standardize deviance residual 

   

             mu1<-(1-omega.sim)*lamda.sim

          drsim<-(y-mu1) 

          drsim<-drsim/sqrt(mu1*(1+(omega.sim/ 

                (1- omega.sim)*mu1))) 

          dr.sim[,i]<-sort(sqrt(abs(drsim))) 

 } 
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# A function for creating a simulated envelope and drawing the 

graph Half normal plot for  ZIP Regression Model  (continuous) 

#  envelope 

          for(i in 1:nrow(dr.sim)){ 

         drmax[i]<-max(dr.sim[i,]) 

         drmean[i]<-mean(dr.sim[i,]) 

         dminr[i]<-min(dr.sim[i,]) 

         } 

  # Half normal plot 

        n<-length(sres) 

  i <- seq(1, n, by = 1 ) 

 nd <- qnorm((i + n - 0.125)/(2*n + 0.5)) 

 mi.y <- min(as.integer(sres)) #1 

 ma.y <- max(as.integer(c(sres,drmax)))+0.5 #1 

 mi.x <- min(as.integer(nd)) - 0.5 #1 

 ma.x <- max(as.integer(nd))+1 #1 

        par(pty= "s") 

 plot(nd, sres, xlab = "Half-normal scores", main = "ZIP 

model ",ylab = "Standardizes Deviance Residual ", type = "n", 

axes = FALSE, ylim = c(mi.y, ma.y)) 

  axis(1,at=seq(mi.x, ma.x, by=0.5)) #x-axis 

  axis(2,at=seq(mi.y, ma.y, by=0.25)) #y-axis 

  points(nd, sres, pch=4, mkh=0.06) 

 lines(nd, dminr, lty=1) 

 lines(nd, drmean, lty=12) 

 lines(nd, drmax, lty=1) 

}
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# A function for creating a simulated envelope and drawing the 

graph Half normal plot for  ZIP Regression Model  with no 

covariate.

hnp.zip.conts<-function(y.zip) { 

     source("function_ZIP_bothconstant.txt") 

             y<-y.zip$y 

   n<-length(y) 

    

 lambda<-y.zip$lamda.zip ; omega<-y.zip$omega 

    dr.sim<-matrix(0,n,19) 

        dminr<-0 ; drmax<-0 ; drmean<-0 

          mu<-(1-omega)*lambda  

                 odres<-(y-mu) 

     

            odres<-odres/sqrt(mu*(1+(omega/(1-omega)*mu))) 

    sres<-sort(sqrt(abs(odres))) 

  # ++++++++   Simulated envelop   ++++++++++++++ 

       for(i in 1:19) 

      { 

  # Generate ZIP data

                 ybin <- rbinom(n,1, omega)

                 y1 <- rpois(n,lambda) 

                 y <- 0*ybin + (1-ybin)*y1 

  ysim.zip<-ZIP.bothconstant(y) 

     lambda.sim <- ysim.zip$lamda.zip 

      omega.sim <- ysim.zip$omega 

             omega.sim <- ifelse(omega.sim<=0,0.05,omega.sim) 

 # Simulate standardize deviance residual 

        

            mu1<-(1-omega.sim)*lambda.sim

          drsim<-(y-mu1) 

          drsim<-drsim/sqrt(mu1*(1+(omega.sim/ 

                (1-omega.sim)*mu1))) 

      dr.sim[,i]<-sort(sqrt(abs(drsim))) 

                } 
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# A function for creating a simulated envelope and drawing the 

graph Half normal plot for ZIP Regression Model with no 

covariate.(continuous)

  #  envelope 

          for(i in 1:nrow(dr.sim)){ 

         drmax[i]<-max(dr.sim[i,]) 

         drmean[i]<-mean(dr.sim[i,]) 

         dminr[i]<-min(dr.sim[i,]) 

         } 

# Half normal plot 

       n<-length(sres) 

 i <- seq(1, n, by = 1 ) 

     nd <- qnorm((i + n - 0.125)/(2*n + 0.5)) 

 mi.y <- min(as.integer(sres)) #1 

 ma.y <- max(as.integer(c(sres,drmax)))+0.5 #1 

 mi.x <- min(as.integer(nd)) - 0.5 #1 

 ma.x <- max(as.integer(nd))+1 #1 

        par(pty= "s") 

 plot(nd, sres, xlab = "Half-normal scores", main = "ZIP 

model",ylab = "Standardizes Pearson Residual ", type = "n", axes 

= FALSE,ylim = c(mi.y, ma.y)) 

  axis(1,at=seq(mi.x, ma.x, by=0.5)) #x-axis 

 axis(2,at=seq(mi.y, ma.y, by=0.25)) #y-axis 

  points(nd, sres, pch=4, mkh=0.06) 

 lines(nd, dminr, lty=1) 

 lines(nd, drmean, lty=12) 

 lines(nd, drmax, lty=1) 

}
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# The score test 

score_test<-function(y) {        

   nj<-c(table(y)) 

    n<-sum(nj) 

            no<-nj[1] 

            nj<-c(table(y))[2:length(nj)] 

             j<-as.numeric(names(nj)) 

   

  ymean<-sum(y)/n 

     y.pois<-glm(y~1,family=poisson) 

         mu<-ymean 

          p<-exp(-mu) 

            S1<- (no-n*p)^2 

            S2<-(n*p*(1-p))-(n*ymean*(p^2)) 

             S<-S1/S2 

       result<-list(S=S) 

      return(result) 

}

# The Likeilhood Ratio Test

LRT_test<-function(y){        

nj<-c(table(y))

  n<-sum(nj) 

          n0<-nj[1] 

          nj<-c(table(y))[2:length(nj)] 

           j<-as.numeric(names(nj)) 

   

    ymean<-sum(y)/n 

       y.pois<-glm(y~1,family=poisson) 

      source("function_ZIP_bothconstant.txt") 

  y.zip<-ZIP.bothconstant(y) 

 lamda1<-y.zip$lamda.zip 

 l1<- n0*log(n0/n)+(n-n0)*(log(ymean/lamda1)-lamda1) 

      l2<-n*ymean*(log(lamda1)+1-log(ymean)) 

      LRT<-2*(l1+l2) 

 result<-list(LRT=LRT) 

 return(result) 
}
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# The chi-square test

chiq_test<-function(y) {        

   nj<-c(table(y)) 

    n<-sum(nj) 

             no<-nj[1] 

              j<-as.numeric(names(nj)) 

           C<-j 

           O<-nj 

       ymean<-sum(y)/n 

           E<-dpois(C,ymean)*n 

 chi<-sum((O-E)^2/E) 

      

    result<-list(chi=chi) 

    return(result) 

        } 

# The Confidence interval test

CI_test<-function(y,level){        

   nj<-c(table(y)) 

     n<-sum(nj) 

             no<-nj[1] 

             nj<-c(table(y))[2:length(nj)] 

              j<-as.numeric(names(nj)) 

   

      ymean<-sum(y)/n 

              z<-qnorm(level,0,1,lower.tail = TRUE) 

        source("function_ZIP_bothconstant.txt") 

           y.zip<-ZIP.bothconstant(y) 

          lamda1<-y.zip$lamda.zip 

 ci1<- ymean+z*sqrt((ymean+ymean*(lamda1-ymean))/n) 

       CI<-1-(ci1/lamda1) 

       result<-list(CI=CI) 

     return(result) 

       } 
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# The Cochran test 

C_test<-function(y){        

  nj<-c(table(y)) 

   n<-sum(nj) 

       no<-nj[1] 

    ymean<-sum(y)/n 

        c1<- (no-n*exp(-ymean)) 

        c2<-sqrt(n*exp(-ymean)*(1-exp(-ymean) 

            -ymean*exp(-ymean))) 

         c<-c1/c2 

       result<-list(c=c) 

       return(result) 

       } 

# The Wald test 

wald.zip<-function(y){

 ybar<-mean(y)  

 nj<-c(table(y)) 

  n<-sum(nj) 

  n0<-nj[1] 

      source("function_ZIP_bothconstant.txt") 

       y.zip<-ZIP.bothconstant(y) 

 lamda<-y.zip$lamda.zip 

 ome1<-y.zip$omega 

 up1<-n0-n*exp(-lamda) 

 down1<-n*(1-exp(-lamda)) 

 ome2<-up1/down1 

# Compute the Wald test 

 up2<-n0*ybar*(n0-n*exp(-lamda)*(lamda-ybar)) 

 down2<-n^2*lamda*((1-exp(-lamda))*(n0-(n*exp(-lamda)* 

             (lamda-ybar)))-(n*lamda*exp(-2*lamda))) 

 Var<-up2/down2 

 W2<-ome2^2/Var 

#Compute Wald test from formula 

 up3<-(n0-n*exp(-lamda))^2*lamda*((1-exp(-lamda))* 

           (n0-(n*exp(-lamda)*(lamda-ybar))) 

           -(n*lamda*exp(-2*lamda))) 

    down3<-n0*ybar*(1-exp(-lamda))^2*(n0-n*exp(-lamda)* 

           (lamda-ybar)) 

 W3<-up3/down3 

  result <- list(Wald.test2=W2,Wald.test3=W3) 

  return(result) 

 } 
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# Simulation study for distribution of the Wald test 

wald.test<-function(n,lamda,level=0.95){

 R<-3000 

 W<-NULL 

     source("function_ZIP_bothconstant.txt") 

 for(i in 1:R){ 

 y<-rpois(n,lamda) 

     source("function_ZIP_bothconstant.txt") 

 y.zip<-ZIP.bothconstant(y) 

 ybar<-mean(y)  

 nj<-c(table(y)) 

  n<-sum(nj) 

      n0<-nj[1] 

       omega<-y.zip$omega 

 lamda1<-y.zip$lamda.zip 

#Compute Wald test

   up<-(n0-n*exp(-lamda1))^2*lamda1*((1-exp(-lamda1))* 

       (n0-(n*exp(-  lamda1)*(lamda1-ybar)))-(n*lamda1* 

       exp(-2*lamda1))) 

 down<-n0*ybar*(1-exp(-lamda1))^2*(n0-n*exp(-lamda1)* 

       (lamda1-ybar)) 

 Wald<-up/down 

    W<-c(W,Wald) 

 } 

 wald <- sum(W>=qchisq(level,1))/R 

 wald<-round(wald,3) 

result<-list(omega=omega,wald.test=wald)

return(result)

 } 
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# The power of the six tests 

power.test<-function(n,lamda,ome,level=0.95){

   source("function_ZIP_bothconstant.txt") 

   source("function_LRT.txt") 

   source("function_scoretest.txt") 

   source("function_chi_test.txt") 

   source("function_CI_test.txt") 

   source("function_ctest.txt") 

  W<-NULL;  L<-NULL ; S<-NULL;   

     Chi<-NULL ; CI<-NULL ; C<NULL;  y <- NULL 

for(i in 1:R){ 

       ybin <- rbinom(n,1,ome)

         y1 <- rpois(n, lambda) 

          y <- 0*ybin + (1-ybin)*y1 

 y.zip<-ZIP.bothconstant(y) 

 ybar<-mean(y)  

   nj<-c(table(y)) 

    n<-sum(nj) 

   n0<-nj[1] 

      omega<-y.zip$omega 

 omega<-ifelse(omega<= 0,0, omega)  

#Compute Wald test

   lamda1<-y.zip$lamda.zip 

 up<-(n0-n*exp(-lamda1))^2*lamda1*((1-exp(-lamda1))* 

          (n0-(n*exp(-lamda1)*(lamda1-ybar)))-(n*lamda1* 

           exp(-2*lamda1))) 

     down<-n0*ybar*(1-exp(-lamda1))^2*(n0-n*exp(-lamda1)* 

          (lamda1-ybar)) 

     Wald<-up/down 

      W <- c(W,Wald) 
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# The power of the six tests (continuous)

# various test for compare between Poisson and ZIP models 

    LRT<-LRT_test(y) 

 L<-c(L,LRT) 

  score<-score_test(y) 

      S<-c(S,score) 

  chisq<-chiq_test(y) 

    Chi<-c(Chi,chisq) 

   conf<-CI_test(y,level) 

     CI<-c(CI,conf) 

  cochran<-C_test(y) 

        C<-c(C,cochran) 

     } 

        W.power<-sum(W>=qchisq(level,1))/R 

   W.power<-round(W.power,3) 

        L.power<-sum(L>=qchisq(level,1))/R 

   L.power<-round(L.power,3) 

   S.power<-sum(S>=qchisq(level,1))/R 

   S.power<-round(S.power,3) 

        Chi.power<-sum(Chi>=qchisq(level,5))/R 

   Chi.power<-round(Chi.power,3) 

        CI.power<-sum(CI>0)/R 

   CI.power<-round(CI.power,3) 

        C.power<-sum(C>=qnorm(level))/R 

   C.power<-round(C.power,3) 

result<-

list(Wald.power=W.power,LRT.power=L.power,score.power=S.power,

chi.power=Chi.power,CI.power=CI.power,Cochran.power=C.power)

result

}
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