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ABSTRACT 

Due to the ever-increasing utilization of non-linear loads, voltage and 

current waveforms in an electric power system are not pure sinusoids. The distorted 

signal can be represented as a combination of the fundamental signal and harmonics 

in high frequency. Harmonics produce mechanical vibration on the electric motor and 

physical damage to aging cables insulation. The harmonic tracking is an essential part 

of the harmonic filtering process. In this thesis, the adaptive linear neural network 

(ADALINE), a version of ANN (Artificial Neural Network), is used to perform 

adaptive on-line tracking of the power system harmonics. Moreover, the adaptive 

learning parameters are also proposed for bringing the faster convergence. The 

proposed method has been implemented on a Xilinx Spartan3E-1200 FPGA (Field 

Programmable Gate Array). The hardware-in-the loop verification results show that 

the proposed ADALINE adaptive filter can accurately estimate the dynamic harmonic 

amplitudes and phases, and also adaptively track the dynamic fundamental frequency 

in the power system.  Moreover, the proposed adaptive learning parameters bring the 

faster and more stable convergence than the condition using the constant learning 

parameters. 

 

Keywords: ADALINE ； neural network ； harmonic tracking ； LMS ； 

amplitude tracking; adaptive learning rate; FPGA. 
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Chapter 1. Introduction 

1.1 Background and Problem Statement 

In the present AC power system, there is a obvious increase in harmonic 

currents and voltages. This is primarily due to the utilization of the non-linear loads in 

the power system. 

The incidence of harmonic is not often, but there is a strong necessity to be 

aware of harmonic issues. We all know that the more harmonics the more harmful. The 

harmonics in a power system will produce additional harmonic losses, reducing the 

efficiency of electrical equipment. Harmonics can also increase heating in the 

equipment, conductors and even can cause a fire. Harmonics produce mechanical 

vibration on the electric motor and physical damage to aging cables insulation. So 

reduction of harmonics is considered desirable. 

Active power-line filtering is conventionally performed by injecting equal-

but-opposite of the distortion into the line. The phenomenon motivated us to find some 

method to tracking the harmonic components so then eliminate them. Then it will help 

to increase power system reliability. In the usual approach, estimation of harmonic is 

done by using the FFT (Fast Fourier Transform) [1], Kalman Filter (KF) [2-3] and 

Artificial Neural Network (ANN) [4-7]. However, there are several performance 

limitations in the FFT application. If we fail to satisfy the certain conditions will result 

in aliasing, picket fence effects and leakage. In the KF approach, the state equations, 

measurement equations, and covariance matrices need to be correctly defined. In the 

ANN, it requires too much data to get trained and may lead to inaccurate results due to 

the random-like behavior and large variations in the harmonic components. In order to 

overcome the drawbacks above, we proposed a method based on the adaptive linear 

neurons (ADALINE) in this research. 

1.2 Objectives 

1) To apply ADALINE neural network to on-line tracking signal and harmonic 

components. 

2) To improve on-line harmonics tracking system for better speed and 

convergence performance. 

http://en.wikipedia.org/wiki/Electric_power_system
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3) To implement the ADALINE algorithm in FPGA to track a signal and 

harmonic components in the power system. 

1.3 Outcomes 

1) Obtain an ADALINE filter for tracking the harmonic components and the 

fundamental frequency with a faster and more accurate convergence speed. 

2) Obtain an FPGA prototyping for tracking the fundamental and the harmonic 

components in the power system.   

1.4 Overview of the Methods for Tracking the Harmonic Components  

The technology of electricity rectification has been widely used in the power 

system. However, the rectification device is a non-sinusoidal electrical equipment. The 

voltage through the rectifier turned to distortion. Harmonics generated by the rectifier 

accounts for nearly 40% of all the harmonics, which is the largest source of harmonics. 

The complex current waveform can be decomposed into a series of sinusoids 

with fundamental frequency and integer multiples of the fundamental frequency 

by Fourier series analysis. For the purpose, the distorted signal can be described as 

follows: 

y(t) =∑𝑋𝑙sin⁡(
𝑙2𝜋𝑡

𝑇
+ 𝜑𝑙)

∞

𝑙=1

+ 𝜖(𝑡), (1.1) 

where 

y(t) is the time domain function, 

l  is the harmonic number (only odd values of l are required), 

X𝑙 is the amplitude of the lth harmonic component, 

𝜑𝑙 is the phase of the lth harmonic component,  

T is the length of a cycle in seconds, 

and 𝜖(𝑡)  is the random noise and the DC decaying components. 

The common algorithm for tracking the harmonic components in the 

literature are based on the FFT, the KF and ANN. 

http://en.wikipedia.org/wiki/Fundamental_frequency
http://en.wikipedia.org/wiki/Fourier_series
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1.4.1 Fast Fourier Transform (FFT) [1] 

The Fast Fourier Transform (FFT) is always used as an analysis tool. 

However, there are three serious problems in the FFT application, i.e. aliasing, picket-

fence effect, and leakage. 

1.4.1.1 Aliasing 

If the sampling rate is too low. The high-frequency components of a time 

function can translate into low frequencies. And this is the phenomenon of aliasing. 

This problem may still be present even if the highest frequency component is higher 

than fs/2. 

Assume that we have a known input signal x(t). The sampling frequency of 

the signal is 1920 Hz. The signal consists of fundamental signal with frequency of 60 

Hz and a sinusoid of 1080 Hz. The 1080 Hz is higher than fs/2, and it resulted in the 

amplitude of 840 Hz is nonzero, as shown in Figure 1-1. Then we changed the sampling 

frequency to 3840 Hz. Then there is no aliasing and the spectrum is shown in Figure 1-

2 [1]. 

 

Figure 1- 1  Aliasing (f1=60 Hz, f2=1080 Hz, fs=1.92 kHz) [1]. 
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Figure 1- 2  Avoid aliasing with increasing the sampling frequency (f1=60 Hz, 

f2=1080 Hz, fs=3,84 kHz) [1]. 

1.4.1.2 Picket-Fence Effect  

The picket-fence effect occurs if the analyzed waveform includes a frequency 

which is not an integer times the fundamental frequency. A frequency lying between 

the nth and the (n+1)th harmonics affects the magnitudes of the nth and the (n+1)th 

harmonics and secondarily the magnitude of all other harmonics. Also, this frequency 

can cause leakage which in turn may cause pseudoaliasing. 

The picket-fence effect is illustrated by adding together three sinusoidal 

signals. The first has the fundamental frequency 60 Hz with a peak amplitude of unity; 

the second has a frequency of 75 Hz with a peak amplitude of 1/8; and the third has a 

frequency of 150 Hz with a peak amplitude of 1/8. To begin, the sampling frequency 

was 1092 Hz. Figure 1-3 shows the frequency spectrum. From this, it is obvious that 

the three frequencies cannot be resolved since the frequency sample interval is 60 Hz. 

The 75 and the 150 Hz components do not have an integer number of cycles in T; 

therefore, leakage occurs which in turn causes pseudoaliasing. 
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Figure 1- 3  Picket-Fence Effect (f1=60 Hz, f2=75 Hz, f2=150 Hz, fs=1.92 kHz, 

N=32) [1]. 

The sampling frequency was left the same, but the number of points was 

increased to 64. The results are shown in Figure 1-4. It is obvious that the 60 Hz and 

the 150 Hz components can be resolved since the frequency sample interval is 30 Hz. 

Since the 75 Hz component does not have an integer number of cycles with 30 Hz, it 

will cause leakage. 

 

Figure 1- 4  Picket-Fence Effect (f1=60 Hz, f2=75 Hz, f2=150 Hz, fs=1.92 kHz, 

N=64) [1]. 

The same sampling frequency was used with 128 points and the results is 

shown in Figure 1-5. Now, the frequency sample interval is 15 Hz and the 75 Hz 

component has an integer times of 15 Hz, also no aliasing was detected. 
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Figure 1- 5  Avoid of Picket-Fence Effect (f1=60 Hz, f2=75 Hz, f2=150 Hz, fs=1.92 

kHz, N=128) [1]. 

Therefore, the frequency component must be an integer multiple of the 

frequency sample interval in the FFT [1]. 

1.4.1.3 Leakage 

Due to the truncation of the time sequence such that a fraction of a cycle 

exists in the waveform that is subjected to the FFT. "leakage" will spread the energy 

from one frequency into adjacent ones.  

Use the same the sampling frequency, but decrease the frequency of a 60 Hz 

unity amplitude sine waveform by 1 Hz each time down to 55 Hz. The sampling 

frequency was 1.92 kHz. A frequency of 58 Hz aliasing was detected by the computer 

program. Figure 1-6 shows the spectrum of the 55 Hz waveform sampled at 1.92 kHz 

[1]. 

 
Figure 1- 6  Leakage (f=55 Hz, N=32) [1]. 
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So, there are many limitations in the FFT application. The performance 

limitation in the FFT application [1]: 

1) The signal must be stationary and periodic; 

2) The highest frequency of the signal is less than fs/2; 

3) The window length of data must be an exact integer multiple of power-

frequency cycles; 

4) Each frequency in the signal is an integer multiple of the fundamental 

frequency. 

1.4.2 Kalman Filter (KF) 

Another method for estimating harmonic components is KF. Due to KF is a 

time-domain stochastic optimal estimator. It’s suitable for tracking time-varying 

parameters of harmonic signals.  

1.4.2.1 An adaptive Kalman filter for dynamic estimation of harmonic signals [2] 

The standard KF algorithm can be used to estimate the state variable vector 

i.e. for tracking the harmonic components. 

However, the performance of KF algorithm is strongly dependent on the a 

priori information of the process and measurement noise. On the other hand, KF often 

suffers from “dropping off” which make it lose the ability to match abrupt parameter 

changes. Another major problem of KF application is that we should define the noise 

covariance matrix Q and the measurement noise variance value rk carefully. 

There are two adaptive techniques for adjusting the KF. The first basic idea 

to improve the steady-state performance of KF is to find a way for estimating the actual 

value of measurement variance rk additionally. Another usage of the correlation 

function of the innovation process is to perform an optimality and stationary test for the 

KF.  

Although the estimation of measurement variance rk can improve the 

stationary performance of the KF, the question of filter “dropping off” can not be 

avoided. Once we detected a transient, we should assume a large estimation error 

covariance Pk, i.e. to reset the value of Pk to the predefined value. An obvious error 

covariance will increase the sensitivity of the KF, and the new parameter variations can 

be matched quickly. By this way a drop off of the used filter can be solved. The 
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recursive algorithm which based on the adaptive KF is able to detect abrupt changes of 

harmonic parameters [2].  

1.4.2.2 A digital recursive measurement scheme for on-line tracking of power 

system harmonics [3] 

An optimal measurement scheme for tracking the harmonics in power system 

voltage and current waveforms does not require an integer number of samples in an 

integer number of cycles. It is not limited to stationary signals, and it can track 

harmonics with time-varying amplitudes. The scheme is based on KF theory for the 

optimal estimation of the parameters of time-varying harmonics. The recursive optimal 

estimator based on KF is suitable for on-line applications. The parameters and a 

measurement equation that relates the discrete measurement to the state variables which 

to be estimated require a state variable model. The KF can be applied for any number 

of samples over a half cycle. The KF algorithm would track dynamic magnitude after 

the initialization stage (half a cycle). 

The paper presented the basic assumptions in the FFT algorithms and the 

principles of KF in tracking the time variation of power system harmonics. The pitfalls 

in the FFT are illustrated by two examples. It is obvious that the KF algorithm is more 

accurate but is not sensitive to a certain sampling frequency. If we use the KF gain 

vector as the time-varying magnitudes, the estimator can make the tracking of 

harmonics come true [3]. 

1.4.3 Artificial Neural Network 

The artificial neural network (ANN) technique requires to train a lot of data. 

And it is based on backpropagation. The neural method of estimating harmonics uses 

the optimization technique to minimize error.  

1.4.3.1 An adaptive linear combiner for on-line tracking of power system 

harmonics [4] 

In the paper, a Fourier linear combiner is used for adaptive estimation of 

harmonics. The linear combiner using the ADALINE. The weight vector of the 

ADALINE generates the Fourier coefficients of the signal using a nonlinear weight 

adjustment algorithm. 
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The approach is essentially different from the backpropagation method and 

allows well control the stability and speed of convergence by appropriate choice of 

parameters of the error difference equation. Further, the estimation method is highly 

adaptive and is capable of tracking the variations of amplitudes of the harmonic 

components. The performance of the method is compared with the KF, it shown the 

superiority in on-line tracking power system harmonics. 

The amplitude vector of the ADALINE is updated with using Widrow-Hoff 

delta rule as 

W(k + 1) = W(k) + α
𝑒(𝑘)𝑋(𝑘)

𝑋𝑇(𝑘)𝑋(𝑘)
⁡. (1.2) 

In order to produces a fast convergence and introduces nonlinearity to the 

learning technique. Another adaptation algorithm for the weight adaptation of 

ADALINE is adapted as 

W(k + 1) = w(k) +
𝛼𝑒(𝑘)𝜃𝑘(𝑋)

𝜆 + 𝑋𝑇𝜃𝑘(𝑋)
⁡, (1.3) 

where the value of 𝜆 is chosen very nearly zero (𝜆 = 0.01). 

The method is based on the weight vector estimation of an ADALINE which 

based on the Least Mean Squares (LMS). An adaptive learning step α is used to bring 

a faster convergence and noise rejection in tracking the harmonics. 

The results shows the good accuracy and convergence speed of the method 

when compare with the DFT. Furthermore, the adaptive algorithm is more suitable for 

tracking harmonics with time varying amplitude [4]. 

1.4.3.2 Modular approach to active power-line harmonic filtering [5] 

The method is based on the extraction of harmonic components with using 

an ADALINE. A neural network is a system of inputs and outputs and many processing 

elements called neurons. The weights are adjusted when we are training the neural 

network. The weight vector is updated as follow 

W(k + 1) = W(k) + α
𝑒(𝑘)𝑋(𝑘)

𝑋𝑇(𝑘)𝑋(𝑘)
⁡. (1.4) 

The main advantages of ADALINE are speed and noise rejection. It is proved 

to be superior to KF technique in tracking the magnitudes and phases of the harmonics. 

It will be capable of tracking the harmonic distortion in a time-vary in a nonlinear load 
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environment. It improves the reliability of the active power filters and it saves the costs 

compared to the conventional method of filtering all the harmonics using converters. 

However, the algorithm presented in these two papers are adaptive and we should 

assume that the fundamental frequency is known apriori [5]. 

1.4.3.3 On-line tracking and mitigation of power system harmonics using 

ADALINE-based active power filter system [6] 

The paper presents an improved method for online tracking of amplitudes 

which combines the fundamental frequency tracking with an ADALINE. The proposed 

method used two ADALINEs to process the signals obtained from the power-line. The 

first ADALINE extracts the harmonic components of the distorted signal and the 

second ADALINE estimates the fundamental frequency of the voltage signal.  

In the original ADALINE algorithm, it is assumed that the fundamental 

frequency is known. In this paper, the ADALINE algorithm has been modified to track 

both the fundamental frequency and the harmonic amplitudes.  

The theoretical expectations are verified by digital simulation using EMTDC 

(Electric Magnetic Transient of Direct Current) simulation package. The proposed 

scheme exhibits better performance of noise rejection, fast and accurate tracking of 

harmonic components and system frequency of the signal with noise and decaying DC 

components when compared with KF and FFT approaches. [6]. 

1.4.3.4 Neural network for estimation of harmonic components in a power system 

[7] 

In this paper, the author proposed two neural optimization approaches to find 

the optimum point that minimizes the mean square error. One is based on the 

measurements done in a time window. It uses massive parallel processing of the 

information taken within one time window, and delivers the solution in real time. The 

other one uses the neural optimization approach to find the optimum point then built 

the appropriate circuitry that minimizes the instantaneous mean square error. 

The first solution used the principle of parallel processing of many samples 

of the line signal. Thus the speed of estimation is very high. At the same time, the 

complexity of circuitry is proportional to the number of samples. The higher this 
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number is, the more parallel branches of the circuit are needed, and the higher is the 

cost of implementation of the circuit. 

The second approach has already been simulated and investigated on 

microcomputer and the results have proved its capabilities of estimating the parameters 

of harmonics and the adaptation time kept below one period T of the fundamental 

harmonic in the power system. But the adaptive way of estimation is slower [7]. 
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1.4.4 Summary 

 Table 1-1  Summary of Literature Review. 

A. Analysis studying 

B. MATLAB Simulation  

C. EMTDC simulation (Electric Magnetic Transient of Direct Current)  

Algorithm Advantage Disadvantage  

FFT 

[1] [14] 

[15] 

It converts time to 

frequency, we can see the  

spectrum directly. 

The signal should be stationary and 

periodic. 

 

The sampling frequency must be 

twice greater than the signal. 

 

The window length of data must be an 

exact integer multiple of power-

frequency cycles. 

 

It causes computational error and may 

lead to inaccurate results if the signal 

is contaminated by noise or the DC 

component. 

 

A 

KF 

[2] [3] 

[13] 

The Kalman filter 

technique estimates the 

harmonic components by 

utilizing a small number of 

samples in a relatively short 

time. 

The state equations, measurement 

equations, and covariance matrices 

need to be correctly defined. 

 

The proposed KF in the literature can 

not track the fundamental frequency. 

 

B 

ANN 

[4] [5] 

[6] [7] 

The delta rule which 

minimizes the mean square 

error between the signal 

sample and the estimate 

signal over all the time, can 

simplified the calculation. 

Requires too much data to get trained 

and may lead to inaccurate results due 

to the random-like behavior and large 

variations in the harmonic 

components. 

 

Weight adaption algorithm is not 

perfect. 

 

B 

C 

ADALIN

E 

[9] [12] 

[11] [25] 

[20][22] 

Can on-line tracking the 

harmonic components. 

 

There is no need to training 

the data. 

Fundamental frequency should be 

fixed. 

 

The convergence of tracking the 

amplitude is slow. 

 

B 

C 
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1.5 Research Methodology 

In this research, an ADALINE based on the algorithm least-mean-square 

(LMS) shows better dynamic tracking capability of harmonic amplitudes and the 

fundamental frequency in the power system. The LMS-based ADALINE is very easy 

and simple to implement on FPGA. However, there is a trade-off between the 

convergence speed and the state-steady-misadjustment error. So, in order to balance the 

trade-off, we also proposed an appropriate method for adaptive updating the learning 

parameters. 

Figure1-7 shows the flowchart of the overall process of methodology works. 

We verified the learning parameters by simulated the LMS algorithm on MATLAB, 

then the design has been done by using Xilinx System Generator in Simulink. Finally, 

we implemented the proposed method on a Xilinx Spartan3E-1200 FPGA (Field 

Programmable Gate Array). The hardware-in-the loop verification results show that the 

proposed ADALINE adaptive filter can accurately estimate the dynamic harmonic 

amplitudes and adaptively track the dynamic fundamental frequency in the present AC 

power system. Moreover, the adaptive learning parameters bring the faster and more 

accurate convergence. 

Tracking Fundamental signal and harmonics 

with the adaptive learning parameters

Tracking Fundamental signal and harmonics 

with the adaptive learning parameters

Comparison in the MATLABComparison in the MATLAB

Implement on FPGA boardsImplement on FPGA boards

Hardware-in-the-loop verificationHardware-in-the-loop verification

Tracking Fundamental signal and harmonics 

with the constant learning parameters

Tracking Fundamental signal and harmonics 

with the constant learning parameters

 

Figure 1- 7  Flowchart of the overall process of methodology works. 
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1.6 Research Scopes 

1) Assume that the fundamental frequency and the amplitude of the fundamental 

voltage or current is known apriori. 

2) It focuses on tracking the fundamental frequency and the amplitude of power 

system whose possible deviation is in a small allowable range. 

3) Due to accumulate in the FPGA design, we have to scale the fix-point number. 

So, we may get some errors between the estimate results and the actual 

situation. 

1.7 Research Plan 

Table 1-2  Research Plan. 

Activities 

 Period  

Month (2014) Month (2015) 

1-3 4-6 7-11 10-12 1-3 3-6 

1. Study Verilog Hardware 

Description Language 
      

2. Study a commercial software 

(Xilinx System Generator) 
      

3. Study neural network       

4. Design a algorithm for the 

research 
      

5. Simulation in MATLAB and 

improve the algorithm 
      

6. Implement the algorithm on 

the FPGA and improve it 
      

7. Analyze and Conclusion       

8. Report       
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Chapter 2. Theory 

2.1. Neuron Model  

We already have a rudimentary understanding of biological neural network, 

so people constructed some artificial “neurons” and train them to perform certain 

functions, and they are artificial neural networks. The history of artificial neural 

networks is filled with colorful, and they are creatively utilized in many different fields. 

Application areas include the system identification and control, quantum chemistry, 

pattern recognition, visualization, e-mail spam filtering and so on. 

A single-input neuron is shown in Figure 2-1. The scalar input p is multiplied 

by the scalar weight w to form wp. The other input, 1, is multiplied by a bias b and then 

passed to the summer. The summer output n goes into a transfer function f which 

produces the scalar neuron output a. 

w

b

n a
fp

1

a=f(wp+b)



Inputs General Neuron

  
Figure 2- 1  Single-Input Neuron.  

The neuron output is calculated as  

𝑎 = 𝑓(𝑤p + 𝑏). (2.1) 

Typically, a neuron has more than one input. A neuron with R inputs is shown 

in Figure 2-2. The individual inputs 1
p , 2

p , 3
p ,…, R

p  are each weighted by 

corresponding elements 1
w

, 2
w

,…, R
w  of the weight matrix W. 
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b

n a
f

1

a=f(Wp+b)



Inputs Multiple-Input Neuron

...

1p

2p

3p

pR
w
R

1
w

 
Figure 2- 2  Multiple-Input Neuron.  

The neuron has a bias b, the output expression can be written: 

𝑎 = 𝑓(𝑛) = 𝑓(𝑤1𝑝1 +𝑤2𝑝2 +⋯+𝑤𝑅𝑝𝑅 + b) = 𝑓(W𝐩 + 𝑏). (2.2) 

Fortunately, neural networks can often be described with matrices. 

The actual output depends on the particular transfer function that been chosen. 

We can also see the bias as a constant input of 1. However, if we do not want to have a 

bias in a particular neuron, it can be omitted. 

Note that weight vectors and bias are both adjustable scalar parameters of the 

neuron. Typically the transfer function is chosen by the designer. And we have different 

transfer functions for different purposes. 

The transfer function in Figure 2-1 may be a liner or a nonlinear function. A 

particular transfer function is chosen to satisfy some specifications of the problem so 

that the neuron is attempting to solve. 

The output of a linear transfer function is equal to its input: 

𝑎 = 𝑛 = 𝑤p + 𝑏. (2.3) 

As illustrated in Figure 2-3, neurons with this transfer function are used in 

the ADALINE networks, which are discussed in this thesis.  

a
+1

a=purelin(n)

-1

0
n

a
+b

a=purelin(wp+b)

-b/w
0

p

Linear Transfer Function Single-Input purelin Neuron
 

Figure 2- 3  Linear Transfer Function. 
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The output (a) versus input (p) characteristic of a single-input linear neuron 

with a bias is shown on the right side of Figure 2-3. 

2.2 ADALINE Network  

2.2.1 ADALINE Network 

The ADALINE network is illustrated in Figure 2-4.  

n
a

1

Input

+

W

b

P

R

a=purelin(WP+b)

Linear Neuron

Rx1

 
Figure 2- 4  ADALINE network. 

The output of the network is given by  

𝑎 = purelin(𝐖𝑷+ 𝑏) = 𝐖𝑷+ 𝑏. (2.4) 

2.2.2 Mean Square Error 

The LMS algorithm is an example of supervised training. The learning rule 

is provided with a series of examples of expected network behavior: 

{𝑝1,𝑡1},{𝑝2,𝑡2},…, {𝑝𝑄,𝑡𝑄}. 

Where 𝑝𝑞  is an input to the network, and 𝑡𝑞  is the corresponding target 

output. Once each input is fed into the network, the output of the network will be in 

comparison with the target. 

In the LMS algorithm, the weights and the biases of the ADALINE is 

adjusted to minimize the mean square error, in which the error of the target output 

differs from the network output. 

To simplify our development, we will lump all the parameters and bias 

adjusted into one vector: 
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X = [
𝐰
𝑏
]. (2.5) 

Similarly, we include the bias input “1” as a component of the input vector: 

Z = [
𝐩
1
]. (2.6) 

Now the network outputs are often written in the form: 

a = 𝐰𝑇𝐩 + 𝑏 = XTZ⁡. (2.7) 

This allows us to conveniently write out an expression for the mean square 

error of ADALINE network, which we used it as the performance index in the neural 

network: 

F(x) = E[e2] = E[(t − a)2] = E[(t − XTZ)2]. (2.8) 

The expression is expanded as follows: 

F(x) = E[t2 − 2tXTZ + XTZZTX] ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

= E[t2] − 2XTE[tZ] + XTE[ZZT]X.⁡ 
(2.9) 

It can be written in the convenient form: 

F(x) = c − 2XTh + XTRX,⁡ (2.10) 

where  

c = E[t2], h = E[tZ]⁡and⁡R = E[ZZT].                 (2.11) 

Here the vector h gives the cross-correlation between the input vector and its 

associated target, while R is the input correlation matrix. The diagonal elements of this 

matrix are equal to the mean square values of the elements of the input vectors. 

Compare equation (2.9) with the general form of the quadratic function: 

F(x) = c + dTx +
1

2
xTAx⁡. (2.12) 

We can see the mean square error performance index for the ADALINE 

network is a quadratic function, where 

d = −2h⁡and⁡A = 2R. (2.13) 

We know the characteristics of the quadratic function depend primarily on 

the Hessian matrix A. For example, if the eigenvalues of the Hessian are all positive, 

then the function will have one unique global minimum. 
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In this case the Hessian matrix is twice the correlation matrix R, and it can 

be shown that all correlation matrices are either positive definite or positive semi-

definite, which means that they can never have negative eigenvalues. We are left with 

two possibilities. If the correlation matrix has only positive eigenvalues, the 

performance index will have one unique global minimum. If the correlation matrix has 

some zero eigenvalues, the performance index will either have a weak minimum or no 

minimum, depending on the vector d=-2h. 

Now let’s locate the stationary point of the performance index. From our 

previous discussion of quadratic function we know that the gradient is  

∇F(x) = ∇ (c + dTx +
1

2
xTAx) = d + Ax = −2h + 2Rx. (2.14) 

The stationary point of F(x) can be found by setting the gradient equal to zero: 

−2h + 2Rx = 0. (2.15) 

Therefore, if the correlation matrix is positive definite there will be a unique 

stationary point, which will be a strong minimum: 

x∗ = R−1h. (2.16) 

The existence of a unique solution depends only on the correlation matrix R. 

Therefore the characteristics of the input vectors determine whether or not a unique 

solution exits. 

2.2.3 LMS Algorithm  

Now that we have analyzed our performance index, the next step is to design 

an algorithm to locate the minimum point. If we could calculate the statistical quantities 

h and R, we could find the minimum point directly from equation (2.16). If we did not 

want to calculate the inverse of R, we could use the steepest descent algorithm with the 

gradient calculated from equation (2.14). In general, however, it is not desirable or 

convenient to calculate h and R. For this reason, we will use an approximate steepest 

descent algorithm, in which we use an estimated gradient. 

The key insight of Widrow and Hoff was that they could estimate the mean 

square error F(x) by 

F(x) = (t(k) − a(k))
2
= 𝑒2(𝑘), (2.17) 
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where the expectation of the squared error has been replaced by the squared error at 

iteration k. Then, we have a gradient estimate of the form at each iteration  

∇F(x) = ∇𝑒2(𝑘). (2.18) 

The first R elements of ∇𝑒2(𝑘) are derivatives with respect to the network 

weights, while the (R+1)st element is the derivative with respect to the bias. Thus we 

have  

[∇𝑒2(𝑘)]𝑗 =
𝜕𝑒2(𝑘)

𝜕𝑤𝑗
= 2𝑒(𝑘)

𝜕𝑒(𝑘)

𝜕𝑤𝑗
⁡⁡(𝑓𝑜𝑟⁡𝑗 = 1,2, … , 𝑅) (2.19) 

and  

[∇𝑒2(𝑘)]𝑅+1 =
𝜕𝑒2(𝑘)

𝜕𝑏
= 2𝑒(𝑘)

𝜕𝑒(𝑘)

𝜕𝑏
. (2.20) 

Now let’s consider the partial derivative terms at the ends of these equations. 

First evaluate the partial derivative of e(k) with respect to the weight 𝑤𝑗: 

𝜕𝑒(𝑘)

𝜕𝑤𝑗
=
𝜕[𝑡(𝑘) − 𝑎(𝑘)]

𝜕𝑤𝑗
=

𝜕

𝜕𝑤𝑗
[𝑡(𝑘) − (𝒘𝑇𝒑(𝑘) + 𝑏)] ⁡

=
𝜕

𝜕𝑤𝑗
[𝑡(𝑘) − (∑𝑤𝑗𝑝1(𝑘) + 𝑏

𝑅

𝑖=1

)], 

(2.21) 

where 𝑝𝑖(𝑘) is the ith element of thr input vector at the kth interation. This simplifies 

to 

𝜕𝑒(𝑘)

𝜕𝑤𝑗
= −𝑝𝑗(𝑘).⁡⁡⁡ (2.22) 

In a similar way, we can obtain the final element of the gradient: 

𝜕𝑒(𝑘)

𝜕𝑏
= −1.⁡                                           (2.23) 

Note that 𝑝𝑗(𝑘)and 1 are the elements of the input vector also the gradient 

of the squares error at iteration k can be written as 

∇𝐹(𝑥) = ∇𝑒2(𝑘) = −2𝑒(𝑘)𝑍(𝑘). (2.24) 

To calculate this approximate gradient, we need only multiply the error and 

the input. This approximation of ∇F(x)  can now be used in the steepest descent 

algorithm. The steepest descent algorithm which with learning rate is 

⁡⁡xk+1 = xk − α∇F(x)|x=xk .                                                   (2.25) 
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If we substitute⁡∇𝐹(𝑥), from equation (2.24), we find 

     xk+1 = xk + 2αe(k)Z(k).⁡                                      (2.26) 

Then the LMS algorithm can be written conveniently in matrix notation： 

𝐰(k + 1) = 𝐰(k) + 2αe(k)𝐩𝑇(𝑘),                                                         (2.27) 

and  

b(k + 1) = b(k) + 2αe(k).⁡                                                                      (2.28) 

Note that the error e and the bias b are now vectors. This is also referred to 

as the delta rule or the Widrow-Hoff learning algorithm. 

2.3 Xilinx System Generator 

Xilinx System Generator is a tool for model-based design. Mathematic 

algorithms can be directly mapped to the arithmetic operations of Xilinx blocksets. For 

the more complicated arithmetic functions, such as sine and cosine, the CORDIC 

SINCOS in Figure 2-5 is provided. In addition, the MATLAB function can be written 

in the Xinlinx MCode block shown in Figure 2-6 to provide the control flow condition. 

 
Figure 2- 5  CORDIC SINCOS Xilinx Block. 

The Xilinx CORDIC SINCOS reference block implements Sine and Cosine 

generator circuit using a fully parallel CORDIC algorithm. Given input angle z, it 

computes the output cosine(z) and sine(z). The CORDIC processor is implemented 

using building blocks from the Xilinx blockset. 

 
Figure 2- 6  MCode Xilinx Block. 
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The Xilinx MCode block is a container for executing a user supplied 

MATLAB function within Simulink. The block executes the M-code to calculate block 

outputs during a Simulink simulation. The same code is translated in a straightforward 

way into equivalent behavioral VHDL/ Verilog when the hardware is generated. 

The simulation can be done within Simulink environments. The test vectors 

are generated by signal blocks. Finally, Xilinx System Generator generates the 

Hardware Description Language (HDL) codes in both Verilog HDL and VHDL for the 

FPGA implementation which be done by the Xilinx ISE tool.  

2.4 Lyapunov Function 

2.4.1 Theory of Lyapunov 

Various types of asymptotic stability have been discussed for the solutions 

of differential equations describing dynamical systems. The most important type is that 

concerning the stability of solutions near to a point of equilibrium. This has been 

discussed by the theory of Lyapunov. The Russian mathematician Aleksandr 

Mikhailovich Lyapunov proposed two methods for demonstrating stability. The first 

method developed the solution in a series which was then proved convergent within 

limits. The second method, which is widely used nowadays, makes use of a Lyapunov 

function V(x) which has an analogy to the potential function of classical dynamics. It is 

introduced as follows for a system having a point of equilibrium at x=0. Consider a 

function 𝑉(𝑥): ⁡ℝ𝑛 → ℝ  such that 

𝑉(𝑥) ≥ 0 with equality if and only if⁡𝑥 = 0  (positive definite). 

𝑉(𝑥) =
𝑑

𝑑𝑡
𝑉(𝑥) ≤ 0  with equality is not constrained to only ⁡𝑥 =

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 (negative semidefinite).  

Then V(x) is called a Lyapunov function candidate and the system is stable 

in the sense of Lyapunov, whereas there is no general technique for constructing 

Lyapunov functions for ordinary differential equations (ODEs).  

2.4.2 Lyapunov Advantages 

In this research, the error in the ADALINE is the difference between the 

estimate output and reference signal. The error in ADALINE will reduce corresponding 

to iterations until the error is almost equal to zero. So the system should be global 

http://en.wikipedia.org/wiki/Stability_theory
http://en.wikipedia.org/wiki/Differential_equation
http://en.wikipedia.org/wiki/Dynamical_system
http://en.wikipedia.org/wiki/Russia
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Aleksandr_Lyapunov
http://en.wikipedia.org/wiki/Aleksandr_Lyapunov
http://en.wikipedia.org/wiki/Positive-definite_function
http://en.wikipedia.org/wiki/Definite_quadratic_form
http://en.wikipedia.org/wiki/Lyapunov_function
http://en.wikipedia.org/wiki/Ordinary_differential_equations
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asymptotic stability. As we know, the Lyapunov function is widely used in control 

system for providing stability and fast convergence of the system oscillations to their 

steady state values. So if we define a suitable Lyapunov function depends on the error, 

we can make the error reduce to zero faster and more accurate.      
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Chapter 3. Research Methodology  

In the present AC power system, the amplitudes and phase of the currents 

and voltages are dynamic. On the other hand, we also should take the possible deviation 

of the fundamental frequency of the power system into consideration. To obtain the 

solution for on-line estimation of the harmonics, we proposed the ADALINE approach 

to the problem. As shown in Figure 3-1. The method provided the block for tracking 

the amplitudes and the block for tracking the fundamental frequency. We also proposed 

adaptive learning parameters block for bring a better and more accurate convergence 

in tracking the harmonic components. Due to we simulated in different cases with 

different reference fundamental frequency. We can get the convergence in the certain 

time, so we should reset the amplitude registers and the fundamental register every 

certain time. 

 Reset Amplitude vector and 
Fundamental frequency 

Start

Initial learning parameters and 
C1 C2

e(k)=0 ?

Compute error 
e(k)=estimate signal-reference signal

Amplitude Adaptation Algorithm Frequency Adaptation Algorithm

Adaptive update learning parameters

End

N

Y
 

Figure 3- 1  Flowchart of research methodology. 

We verified the learning parameters by simulated the proposed algorithm on 

MATLAB, then the design has been implemented and simulated in Xilinx System 

Generator running in Simulink environments. Computer simulation experiments 

showed that the proposed algorithm can estimate the signal faster and more accurately. 

Then, we implemented the method on a Xilinx Spartan3E-1200 FPGA (Field 

Programmable Gate Array). The hardware-in-the loop verification results show that the 

proposed ADALINE adaptive filter can accurately estimate the dynamic harmonic 
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amplitudes and phases, and adaptively track the dynamic fundamental frequency in the 

present AC power system. Moreover, the adaptive learning parameters bring the faster 

and more stable convergence. 

3.1 ADALINE  

In recent years, a modified ADALINE structure has been proposed in which 

the fundamental frequency has been treated as unknown parameter and simultaneously 

estimates it with the tracking of the harmonic components.  

ADALINE is a two-layer neural network with n inputs and a single output, 

which is a linear combination of the inputs. The most common power system is 3-phase 

at 50 Hz. Then the algorithm has been modified to estimate the 3-phase voltages or 

currents simultaneously using ADALINE which consists of three neurons (one neuron 

per phase) [6] as shown in Figure 3-2. The output from the neural estimator for phase-

a is: 

𝑉̂𝑎(𝑡) = 𝑊𝑎
𝑇𝑋, (3.1) 

where 𝑊𝑎⁡ denotes the weight vector for the phase-a voltage or current and X is the 

input vector given by : 

X = [sinω𝑘t𝑘⁡⁡cosω𝑘t𝑘⁡sinNω𝑘t𝑘⁡⁡cosNω𝑘t𝑘⁡, 

… , sinNω𝑘t𝑘⁡⁡cosNω𝑘t𝑘⁡⁡1⁡⁡ − k𝑇𝑠⁡]
𝑇 .                                          

(3.2) 

After final convergence is reached, the three phase Fourier coefficients for 

the estimated signals are computed as: 

𝑨𝒍,𝒋 = √𝒘𝒐.𝒋
𝟐 (𝟐𝒍 − 𝟏) + 𝒘𝒐.𝒋

𝟐 (𝟐𝒍)⁡⁡, (3.3) 

𝝋𝒍,𝒋 = 𝒂𝒓𝒄𝒕𝒂𝒏 [
𝒘𝒐,𝒋(𝟐𝒍)

𝒘𝒐,𝒋(𝟐𝒍 − 𝟏)
] ⁡⁡⁡⁡𝒇𝒐𝒓⁡⁡𝒋 = 𝒂, 𝒃, 𝒄. (3.4) 
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Figure 3- 2  Block diagram of the ADALINE for estimating 3-phase voltages or 

currents (3-Phase ADALINE) [6]. 

Let us assume that the power system is distorted by the presence of higher 

harmonics of unknown magnitudes and phases. The general form of the line voltage is 

predicated as 

x(t) =∑𝑋𝑙 sin(𝑙𝜔𝑘𝑡𝑘 + φ𝑙)+∈ (𝑘),

𝑁

𝑙=1

 (3.5) 

where 𝑋𝑙 and φ𝑙are the magnitude and the phase of 𝑙th harmonic component (𝑙 =

1,2,3, … , N). Equation (3.5) may be substituted by the following description which is 

more suitable for our purposes: 

x(t) =∑(𝐴𝑙𝑠𝑖𝑛𝑙𝜔𝑘𝑡𝑘 + 𝐵𝑙𝑐𝑜𝑠𝑙𝜔𝑘𝑡𝑘)+∈ (𝑘),

𝑁

𝑙=1

 (3.6) 

where 𝐴𝑙 = 𝑋𝑙𝑐𝑜𝑠φ𝑙 and 𝐵𝑙 = 𝑋𝑙𝑠𝑖𝑛φ𝑙 .Knowledge of 𝐴𝑙  and 𝐵𝑙  determine both 

the magnitude 𝑋𝑙 and phase φ𝑙 of the 𝑙th harmonic, according to  

𝑋𝑙 = √𝐴𝑙
2 + 𝐵𝑙

2⁡, (3.7) 

φ𝑙 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝐵𝑙
𝐴𝑙

 (3.8) 
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3.2 Tracking of the Amplitudes of the Fundamental Signal and Harmonics 

Amplitude Vector M(k)
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Figure 3- 3  Block diagram of the ADALINE for estimating harmonic components 

and fundamental frequency.  

 
Figure 3- 4  Data flow of the proposed ADALINE. 

To obtain the solution for on-line estimation of the harmonics, we proposed 

the neural approach to the problem. The block diagram are shown in Figure 3-3. 

Flowchart in Figure 3-4 is drawn according to Figure 3-3. Let us assume that the 

measurements are made a time window and that the sample y(𝑘) are taken at time 

instance 𝑡𝑘(k=1, 2,…,n) where n is the number of samples in the window. The samples 

may be equally distributed within the window, and the width of the window is 
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dependent on the designer. According to the neural concept, we define the performance 

index function as 

ξ = e2 = [∑(𝐴𝑙𝑠𝑖𝑛𝑙𝜔𝑘𝑡𝑘 + 𝐵𝑙𝑐𝑜𝑠𝑙𝜔𝑘𝑡𝑘) + A𝑁+1 − k𝑇𝑠B𝑁+1 ⁡− y𝑘]
2.

𝑁

𝑙=1

 (3.9) 

If we assume that ω⁡is known and the time instants 𝑡𝑘 are fixed, the terms 

𝑠𝑖𝑛𝑙𝜔𝑘𝑡𝑘  and 𝑐𝑜𝑠𝑙𝜔𝑘𝑡𝑘  form the coefficients of the unknown optimized variables 

𝐴𝑙 , 𝐵𝑙⁡⁡(𝑙 = 1,2,3, … , N)  and the terms 1 and −kT𝑠  form the coefficients of DC 

components and DC decaying components are denoted here in vector notation as 

X(k) = [𝑠𝑖𝑛ω𝑘𝑡𝑘⁡⁡⁡𝑐𝑜𝑠ω𝑘𝑡𝑘⁡⁡⁡𝑠𝑖𝑛2ω𝑘𝑡𝑘⁡⁡co𝑠2ω𝑘𝑡𝑘
⁡⁡⁡⁡⁡⁡⁡⁡…… 𝑠𝑖𝑛𝑁ω𝑘𝑡𝑘⁡⁡⁡𝑐𝑜𝑠𝑁ω𝑘𝑡𝑘⁡⁡1⁡ − kT𝑠]

𝑇 ⁡. (3.10) 

We also define the variables 𝐴𝑙 , 𝐵𝑙⁡⁡(l = 1,2,3, … , N) in vector notation as 

M(k) = [A1(k)⁡⁡B1(k)⁡⁡A2(k)⁡⁡B2(k)⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡…… ⁡A𝑁(k)⁡⁡⁡B𝑁(k)⁡⁡⁡A𝑁+1(k)⁡⁡⁡B𝑁+1(k)]
𝑇⁡. (3.11) 

The optimization problem is quadratic and its minimum can be easily found. 

This provides the Hessian corresponding to the objective function equation (3.9) is at 

least positive semidefinite. The approximation of ∇ξ(k)    can be used in the steepest 

descent approach [8] as 

M(k + 1) = M(k) − α∇ξ(k)⁡, (3.12) 

where α denotes the constant of integration and ∇ξ is the gradient of the objective 

function ξ with respect to amplitude as 

∇ξ(k)𝑀 =
𝜕[𝑒2(𝑘)]

𝜕𝑀
= 2𝑒(𝑘)

𝜕𝑒(𝑘)

𝜕𝑀
= 2𝑒(𝑘)𝑋(𝑘),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (3.13) 

where the error between the estimate signal and the actual signal is: 

𝑒(𝑘) = 𝑦̂(𝑘) − 𝑦(𝑘) = M𝑇(𝑘)X(𝑘) − 𝑦(𝑘)⁡. (3.14) 

Combining equation (3.12) with equation (3.13), we can get the equation for 

update the weight vector 

M(k + 1) = M(k) − 2αe(k)𝑋(k). (3.15) 
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3.3 Tracking of the Fundamental Frequency 

We also can use the method of steepest descent method to iterative calculate 

the frequency as: 

ω(k + 1) = ω(k) − α𝜔∇ξ(k)𝜔. (3.16) 

The gradient of the mean square error with respect to phase frequency is： 

∇ξ(k)𝜔 = 2𝑒(𝑘)
𝜕𝑒(𝑘)

𝜕𝜔
⁡

= 2𝑒(𝑘)∑[𝑙𝑡𝑘A𝑙cos⁡(𝑙𝜔𝑘𝑡𝑘) − 𝑙𝑡𝑘𝐵𝑙sin⁡(𝑙𝜔𝑘𝑡𝑘)]

𝑁

𝑙=1

. 

(3.17) 

If we also want to take into account the deviation of frequency from the 

nominal value, we can apply a similar steepest descent towards to ω. Then, we have 

the equation for update the fundamental frequency as follow: 

ω(k + 1) − ω(k)

= −2α𝜔𝑒(𝑘)∑[𝑙𝑡𝑘A𝑙 cos(𝑙𝜔𝑘𝑡𝑘) − 𝑙𝑡𝑘𝐵𝑙 sin(𝑙𝜔𝑘𝑡𝑘)]

𝑁

𝑙=1

. 
(3.18) 

The initial value of the angular frequency should be set to the nominal one. 

We know that the actual ω value is a little departure from the nominal value. In the 

further stage of adaptation, when both 𝐴𝑙 ⁡and⁡⁡𝐵𝑙 , as well as ω , are close to the 

optimum values. There is a fine tuning process of these parameters leading to the global 

minimum of the objective function. 

3.4 Adaptive Variation of the Learning Parameters 𝛂 

As we mentioned in the previous part, it should determine the learning rate 

α⁡⁡and⁡αω to find the balance between the convergence speed and the state-steady-

misadjustment error. An alternative method for tuning the learning parameter ⁡⁡α⁡⁡is 

derived here by using a Lyapunov function. The Lyapunov energy function is widely 

used in control system for providing stability and fast convergence of the system 

oscillations to their steady state values. A Lyapunov function 𝑉(k) is thus defined as 

𝑉(k) = 𝑒2(𝑘). (3.19) 
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Here at each instant, the Lyapunov function depends on error and its 

derivative, which are dependent on the distorted signals superimposed over the actual 

signal to be estimated. The change in the Lyapunov function⁡𝑉(k) is calculated as 

∆𝑉(k) = 𝑉(k) − 𝑉(k − 1)⁡.⁡ (3.20) 

The value of the learning parameter α(k) is chosen as 

α(k) = 𝛼0 + 𝑐1 ∗ SGN(∆𝑉(𝑘)) ∗ 𝑉(k),⁡⁡⁡⁡⁡⁡⁡(𝑐1 > 0). (3.21) 

Then we used it again for update learning parameter α𝜔(k)： 

α𝜔(k) = 𝛼1 + 𝑐2 ∗ SGN(∆𝑉(𝑘)) ∗ 𝑉(k),⁡⁡⁡⁡⁡⁡(𝑐2 > 0). (3.22) 

Also constant values of c1⁡, c2⁡⁡are chosen according to amplitude of current 

or voltage in the actual situation. To find the change in the fundamental frequency,⁡⁡ω 

is initially set to the nominal value [7].
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3.5 MATLAB Code  

List 3- 1  Using adaptive Learning parameters in MATLAB. 

Using Adaptive Learning Parameters 

1 t=0.00001:0.0002:0.3; 

2 for i=1:length(t)  

3 y(i)=1.5*sin(100*pi.*t(i)+pi*29.3/180)+0.068*sin(5*100*pi.*t(i) 

4 +pi*141.6/180) +0.024*sin(7*100*pi.*t(i)+pi*66.2/180) 

5 +0.02*sin(11*100*pi.*t(i)+pi*(-99.4)/180); 

6 end 

7 c=[1 -1 5 -5 7 -7 11 -11 ];               

8 a=0.0179;    a0=a;    

9 aw=12.5;    a1=aw; 

10 m=50.05*pi*2; 

11 c1=20.33;       c2=3.70; 

12 w=[ 1.2 0.7 -0.045 0.04 0.006 0.02 -0.001 -0.010 ]'; 

13 s=size(t);  s=s(2);   

14 v=w; f=0;l=0; 

15 for i=1:s   

16 X=[sin(m*t(i))  cos(m*t(i))  sin(5*m*t(i))  cos(5*m*t(i))  sin(7*m*t(i))  

17 cos(7*m*t(i))  sin(11*m*t(i))  cos(11*m*t(i)) ]; 

18 e=X*w-y(i); 

19 w=w-a0*e*X';    

20 x=[cos(m*t(i))  sin(m*t(i))  cos(5*m*t(i))  sin(5*m*t(i))  cos(7*m*t(i))  

21 sin(7*m*t(i))  cos(11*m*t(i))  sin(11*m*t(i))];  

22 q=t(i)*((x.*(c))*v); 

23 m=m-a1*e*q;   

24 L=e^2; 

25 T=L-f^2; 

26 a0=a+sign(T)*c1* L;    

27 a1=aw+sign(T)*c2* L;   

28 g(:,i)=w;   F(i)=m;  E(i)=e;  v=w;  f=e;  l=L; 

29 end 

In the List 3-1, line 1~6 is for generating the reference signal. The sample 

time of the signal is 0.0002s. Line 7 is the order numbers of the harmonics. Then, we 

initialized the learning parameters for amplitude tracking and fundamental frequency 
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tracking in line 8~9. Line 10 is for initializing the fundamental frequency. Line 11 is 

for setting the constant parameters for adaptive update the learning parameters in 

equation (3.21) and equation (3.22). Line 12 is for initializing the amplitude vectors. 

Line 18 is for computing the error between the estimate signal and the reference signal. 

Line 19 is according to equation (3.15) for tracking the amplitudes. Line 23 is according 

to equation (3.18) for tracking the fundamental frequency. Line 24~27 is for adaptive 

updating the learning parameters. Line 26 is for getting the adaptive learning parameter 

for amplitude tracking, it is according to the equation (3.21). Line 27 is for getting the 

adaptive learning parameter for fundamental frequency tracking, it is according to the 

equation (3.22). Vectors in line 28 is used for store the data. ‘g’ is for storing the 

amplitudes. ‘F’ is for storing the fundamental frequency. ‘E’ is for storing the error.
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List 3- 2  Using constant Learning parameters in MATLAB. 

Using Constant Learning Parameters 

1 t=0.00001:0.0002:0.3; 

2 for i=1:length(t)  

3 y(i)=1.5*sin(100*pi.*t(i)+pi*29.3/180)+0.068*sin(5*100*pi.*t(i) 

4 +pi*141.6/180) +0.024*sin(7*100*pi.*t(i)+pi*66.2/180) 

5 +0.02*sin(11*100*pi.*t(i)+pi*(-99.4)/180); 

6 end 

7 c=[1 -1 5 -5 7 -7 11 -11 ];               

8 a=0.0179;   aw=12.5;   m=50.05*pi*2; 

9 w=[ 1.2 0.7 -0.045 0.04 0.006 0.02 -0.001 -0.010 ]'; 

10 s=size(t);  s=s(2);   

11 v=w; f=0;l=0; 

12 for i=1:s   

13 X=[sin(m*t(i))  cos(m*t(i))  sin(5*m*t(i))  cos(5*m*t(i))  sin(7*m*t(i))  

14 cos(7*m*t(i))  sin(11*m*t(i))  cos(11*m*t(i)) ]; 

15 e=X*w-y(i); 

16 w=w-a0*e*X';    

17 x=[cos(m*t(i))  sin(m*t(i))  cos(5*m*t(i))  sin(5*m*t(i))  cos(7*m*t(i))  

18 sin(7*m*t(i))  cos(11*m*t(i))  sin(11*m*t(i))];  

19 q=t(i)*((x.*(c))*v); 

20 m=m-a1*e*q;   

21 g(:,i)=w;   F(i)=m;  E(i)=e;  v=w;  f=e;  

22 end 

In the List 3-2, line 1~6 is also for generating the reference signal. Line 7 is 

the order numbers of the harmonics. Then, we initialized the learning parameters for 

amplitude tracking and fundamental frequency tracking and the fundamental frequency 

in line 8. Line 9 is for initializing the amplitude vectors. Line 17 is for computing the 

error. Line 18 is according to equation (3.15) for tracking the amplitudes. Line 22 is 

according to equation (3.18) for tracking the fundamental frequency. Vectors in line 23 

is used for store the data. ‘g’ is for storing the amplitudes. ‘F’ is for storing the 

fundamental frequency. ‘E’ is for storing the error. 
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3.6 FPGA Implementation 

Figure 3- 5  Total Xilinx design for tracking fundamental and harmonics. 
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According to the Figure 3-3, we can apply every part into FPGA 

implementation as shown in Figure 3-5. The details of Xilinx model design of each part 

are as follow.  

 

Figure 3- 6  Adaptive model for update learning parameters. 

As shown in Figure 3-6, the Xilinx model is for adaptive update the learning 

parameters. We use the error between the estimate output from neural network and the 

actual signal as the input. Then we compare the error with the error in the last one 

instant by using the MCode block. According to equation (3.21) and equation (3.22), 

the function in the Mblock is below 

function  z = xlmax(x, y)  

 if      x > y  

     z = 1;  

 elseif   x <y 

     z = -1;  

else 

     z = 0; 

 end 

 
Figure 3- 7  Model for generating dynamic input vectors (Sin, Cos). 

Figure 3-7 is for generate dynamic input vectors (Sin, Cos). At the first 

multiply, one input is time. So the results from first multiply will be very big number 
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finally. And as we know, Sinφ = Sin(φ + 2kπ), Cos(φ) = Cos(φ + 2kπ). So we use 

the result from the first multiply to divide 2π, then we keep the fractional part left. Use 

the fractional part times 2π, then we will get the number smaller than 2π. Then we 

can get the target keep the number in a certain bits. 

 
Figure 3- 8  Model for accumulating weight vectors. 

x(k + 1) = x(k) + 𝑎. (3.23) 

In the design, we will use equation (3.15) and equation (3.18) to adaptive 

tracking the amplitude and fundamental frequency. We have equation (3.23) similar as 

equation (3.15) and equation (3.18). Using 𝑎 as the input 𝑏 and using x(k) as the 

input 𝑎, then we will get the output 𝑎 + 𝑏 i.e. x(k+1). Due to we will set the initial 

value x(0), so we use the register with latency is 1. So the output from register is x(k) 

i.e. 𝑎. Then we can make the accumulate compute come true. 

 
Figure 3- 9  Xilinx design for tracking the amplitude. 

The design in Figure 3-9 is according to equation (3.15). This part is for 

tracking the amplitudes of the fundamental signal and harmonics. 
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Figure 3- 10  Xilinx design for tracking the fundamental frequency.  

The design in Figure 3-10 is according to equation (3.18). This part is for 

tracking the fundamental frequency. 

 
Figure 3- 11  Xilinx design for tracking the fundamental frequency. 

The design in Figure 3-11 is according to equation (3.21) and equation (3.22). 

This part is for adaptively get the learning parameters for the amplitude tracking and 

fundamental frequency tracking. 
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Chapter 4. Results and Discussions 

Figure 4-1 shows the flowchart of experiments to validate the proposed 

method. We used constant learning parameters and adaptive learning parameters for the 

comparison objects. In order to evaluate the performance of the ADALINE in estimating 

amplitudes, the phase of the harmonics and the fundamental frequency, numerical 

experiments using MATLAB software have been performed. At the same time, the 

design has been implemented on Xilinx Spartan3E-1200 FPGA (Field Programmable 

Gate Array). The hardware-in-the-loop verification results show that the proposed 

ADALINE adaptive filter can not only accurately estimate the harmonic amplitudes and 

phases but also adaptively track the dynamic fundamental frequency in the present AC 

power system. 

Implemented the proposed method on FPGA boards
Get the simulation results

Implemented the proposed method on FPGA boards
Get the simulation results

Hardware-in-the-loop verificationHardware-in-the-loop verification

Compare tracking performance between adaptive 

and constant  in MATLAB

Compare tracking performance between adaptive 

and constant  in MATLAB

To show the performance of  Dynamic tracking of the 

proposed  ADALINE  in MATLAB

To show the performance of  Dynamic tracking of the 

proposed  ADALINE  in MATLAB

To show on-line dynamic trackingTo show on-line dynamic tracking

 

Figure 4- 1  Flowchart of experiments. 

Here, we are presenting some illustrative results to show the accurate tracking 

capability of the neural estimator in MATLAB simulation and on FPGA fashion. 

We assume that there is a nominal distorted signal as 

y(t) = 1.5 sin(100πt + 29.3°) + 0.068 sin(5 × 100πt + 141.6°)⁡⁡⁡ 

⁡⁡⁡⁡⁡⁡⁡⁡+0.024 sin(7 × 100πt + 66.2°) ⁡+ 0.02 sin(11 × 100πt − 99.4°), 

(4.1) 

and the signal waveforms are shown in Figure 4-2. 
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Figure 4- 2  Distorted Signal (Fundamental,5th, 7th, 11th)(time=2T). 

4.1 MATLAB Simulation Results 

  

(a) Amplitude Tracking of Fundamental signal.  (b) Amplitude Tracking of 5th harmonic. 

  

(c) Amplitude Tracking of 7th  harmonic. (d) Amplitude Tracking of 11th harmonic. 

Figure 4- 3  Amplitude Tracking of Fundamental signal and harmonics (5th, 7th, 

11th ) in MATLAB simulation (comparison case). 
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Figure 4- 4  Tracking of Fundamental Frequency in MATLAB simulation 

(comparison case). 

 

Figure 4- 5  Tracking of Mean Square Error in MATLAB simulation (comparison 

case). 

Figure 4-3，Figure 4-4 and Figure 4-5 show the performance using ADALINE 

with adaptive step parameters (blue line), whereas and the performance using 

ADALINE with constant step parameters (red line). They show the tracking results 

when the fundamental frequency and amplitude change. We initialized the amplitude 

vectors to some values, set the initial fundamental angle frequency as 50.05Hz. When 

the fundamental frequency increased, the proposed ADALINE can track the change of 
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fundamental frequency. Even though, both of the two situations can track the 

fundamental frequency and amplitude of the harmonics. But if we compare the results, 

the ADALINE with adaptive learning parameters brings more stable and faster 

convergence, especially in the situation of tracking the amplitudes. We summary the 

convergence time of amplitudes and mean square error in details in the Table 4-1. 

Table 4-1  Convergence Time. 

Amplitude of 

Signal and Harmonics 

Convergence Time 

Adaptive (Blue Line) Constant (Red Line) 

Fundamental 0.02 s 0.085 s 

5th 0.05 s 0.072 s 

7th 0.06 s 0.08 s 

11th 0.043 s 0.058 s 

Mean Square Error(0-0.002) 0.005 s 0.023 s 

From the Table 4-1, we macroscopically know that the convergence speed of 

the amplitude when using adaptive learning parameters is faster. On the other hand, the 

mean square error is the real performance index in the application of ADALINE. If we 

assume that we get convergence when the mean square error within 0.0002. Then from 

the convergence speed of mean square error, we can make sure the condition using 

adaptive learning parameters is much better than the condition using constant learning 

parameters. From Figure 4-4, we can see obviously that the convergence change of the 

frequency tracking with using adaptive learning parameters (blue) is more stable than 

the condition using constant learning parameters. 

We did the MATLAB simulation in two cases. Both of the two cases used the 

same initial fundamental frequency as 50.05 Hz. In case 1, the fundamental frequency 

suddenly changed to 50.1 Hz. Set the initial amplitude vector as w=[ 1.2  0.7  -0.045  

0.04  0.006  0.02  -0.001  -0.010 ]' which different from the reference signal.
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Case 1 in MATLAB: 

Set the initial fundamental frequency (f=50.05 Hz) , the reference fundamental 

frequency (f=50.1 Hz), 

w=[ 1.2 0.7 -0.045 0.04 0.006 0.02 -0.001 -0.010 ]'.  

  

(a) Amplitude Tracking of Fundamental signal.  (b) Amplitude Tracking of 5th harmonic. 

  

(c) Amplitude Tracking of 7th harmonic. (d) Amplitude Tracking of 11th harmonic. 

Figure 4- 6  Amplitude Tracking of Fundamental signal and harmonics (5th, 7th, 11th). 

  

Figure 4-7  Tracking of Fundamental Frequency.   Figure 4-8  Tracking of Mean Square Error. 
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In case 2 we also set the initial fundamental frequency as 50.05 Hz, and the 

fundamental frequency suddenly change to 49.9 Hz. We also set the initial amplitude 

vector as w=[ 1.2  0.7  -0.045  0.04  0.006   0.02   -0.001  -0.010 ]' which is 

same the situation in case 1. 
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Case 2 in MATLAB:  

Set the initial fundamental frequency (f=50.05 Hz) , the reference fundamental 

frequency (f=49.9 Hz),  

w=[ 1.2 0.7 -0.045 0.04 0.006 0.02 -0.001 -0.010 ]'. 

  

(a) Amplitude Tracking of Fundamental signal.  (b) Amplitude Tracking of 5th harmonic. 

  

(c) Amplitude Tracking of 7th harmonic. (d) Amplitude Tracking of 11th harmonic. 

Figure 4- 9   Amplitude Tracking of Fundamental signal and harmonics (5th, 7th, 11th ). 

 
 

Figure 4-10  Tracking of Fundamental Frequency.  Figure 4-11  Tracking of Mean Square Error. 
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Table 4-2  Convergence Time in case 1 and case 2. 

Amplitude of 

Signal and Harmonics 

Convergence Time 

Case1 Case2 

Fundamental 0.02 s 0.02s 

5th 0.05 s 0.048s 

7th 0.06 s 0.05s 

11th 0.043 s 0.055 s 

Mean Square Error(0-0.002) 0.005s 0.007s 

Fundamental Frequency

（0-0.01 Hz） 
0.25s 0.15s 

From the results in the Table 4-2, we can know that the proposed method can 

track not only the amplitude of signal and harmonics but also the fundamental frequency 

of the distorted signal.     

4.2 FPGA Implementation results 

After we verified the method in the MATLAB. We implemented it on the 

FPGA fashion. Figure 4-12 shows the total Xilinx design for tracking fundamental and 

harmonics components. 

 

Figure 4- 12  Total Xilinx design for tracking fundamental and harmonics. 
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Table 4-3  Device Utilization Summary (Xilinx Spartan3E-1200 FPGA). 

Logic Utilization Used Available Utilization 

Number of Slice Flip Flops 588 17,344 3% 

Number of 4 input LUTs 12,442 17,344 71% 

Number of occupied 6,529 8,672 75% 

Total Number of 4 input LUTs 12,831 17,344 73% 

Number of bonded IOBs 166 250 66% 

Number of BUFGMUXs 1 24 4% 

Number of MULT18X18SIOs 24 28 85% 

Average Fanout of Non-Clock Nets 2.23   

Table 4-4  Static Timing Analysis Report (Xilinx Spartan3E-1200 FPGA). 

Source Clock 
Src: Rise 

Dest: Rise 

Src: Fall 

Dest: Rise 

Src: Rise 

Dest: Fall 

Src: Fall 

Dest: Fall 

clk 95.609    

Design statistics: 

Minimum period:95.609 ns{1}  (Maximum frequency:10.459 MHz) 

Table 4-5  Device Utilization Summary (xc6slx100-3fgg484 FPGA). 

 Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 3016 126,576 2% 

Number of Slice LUTs 12,342 63,288 19% 

Number used as logic 12,278 63,288 19% 

Number used as Memory 4 15,616 1% 

Number used exclusively as route-thrus 60   

Number of occupied Slices 4,258 15,822 26% 

Number of MUXCYs used 9,200 31,644 29% 

Number of LUT Flip Flop pairs used 12,344   

Number of bonded IOBs 166 326 50% 

Number of BUFG/BUFGMUXs 1 16 1% 

Number of ILOGIC2/ISERDES2s 16 506 3% 

Number of DSP48A1s 24 180 13% 

Average Fanout of Non-Clock Nets 2.89   

Table 4-6  Static Timing Analysis Report (xc6slx100-3fgg484 FPGA). 

Source Clock 
Src: Rise 

Dest: Rise 

Src: Fall 

Dest: Rise 

Src: Rise 

Dest: Fall 

Src: Fall 

Dest: Fall 

clk_1 75.590    

Design statistics: 

Minimum period:95.609 ns{1}  (Maximum frequency:13.229 MHz) 

From the resource Table 4-3 and Table 4-5 of the two FPGA boards, we can 

know that the Spartan6 can help us save the resources. Then we can track the signal with 
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more kinds of harmonics. As shown in Table 4-4 and Table 4-6, we know that the 

minimum period in Spartan6 is shorter, then we can get the convergence faster. 

Case 1 in Xilinx System Simulation: 

Set the initial fundamental frequency (f=50 Hz ). 

Set the reference fundamental frequency (f=50.1Hz ).  

Initial amplitude vector: 

w=[ 1.2  0.7  -0.045  0.04  0.006  0.02  -0.001  -0.010 ]'.  

  
(a) Amplitude Tracking of Fundamental 

signal. 

(b) Amplitude Tracking of 5th 

harmonic. 

  
(c) Amplitude Tracking of 7th harmonic. (d) Amplitude Tracking of 11th 

harmonic. 

  
(e) Tracking of Fundamental Frequency. (f) Tracking of Mean Square Error. 

Figure 4- 13  Xilinx Simulation in Case 1.  
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Case 2 in Xilinx System Simulation:  

Set the initial fundamental frequency (f=50 Hz ). 

Set the reference fundamental frequency (f=49.9Hz ).  

Initial amplitude vector: 

w=[ 1.2  0.7  -0.045  0.04  0.006  0.02  -0.001  -0.010 ]'. 

  
(a) Amplitude Tracking of Fundamental 

signal. 

(b) Amplitude Tracking of 5th 

harmonic. 

  
(c) Amplitude Tracking of 7th 

harmonic. 

(d) Amplitude Tracking of 11th 

harmonic. 

  
(e) Tracking of Fundamental Frequency. (f) Tracking of Mean Square Error. 

Figure 4- 14  Xilinx Simulation in Case 2. 

In this thesis, we implemented the method on Xilinx Spartan3E-1200 FPGA. 

From the results from Xilinx system, they show the tracking results when the 

fundamental frequency and amplitude changed. In case 1 when the fundamental 

frequency increased, the proposed ADALINE can track the change of frequency. In case 

2 when the fundamental frequency reduced, the proposed ADALINE also can track the 

change of frequency. 



49 

 

 

From the results from MATLAB code simulation and Xilinx system 

simulation, the results are almost same. So we know that the method proposed can work 

well not only in the MATLAB simulation but also in the Xilinx simulation. Next step, 

in order to make sure it can work in the real system, we will do the hardware in-the loop 

in next step. 

4.3 On-line Dynamic Tracking 

The learning parameter determine the convergence speed in the LMS 

algorithm. The learning parameter larger, we can get convergence faster. However, if 

we make the learning parameter too large, the algorithm will become unstable. Then, 

we would like to use a big learning parameter during the convergence stage. On the other 

hand, we would like to use a small learning parameter during the tracking stage. In order 

to get different learning parameter in different stage, we used equation (3.21) and 

equation (3.22) for adaptively update learning parameter in this thesis. For example in 

equation (3.21), we can make the α0 small for convergence and make the c1 very big 

for tracking. However, if c1 is too big, even 𝑉(𝑘) is very small,⁡c1 ∗ 𝑉(𝑘) will be 

very big, it’s very hard to keep the stable in the tracking stage. In the present power 

system, the fundamental frequency is dynamic. So, in order to dynamic track the 

fundamental frequency and make sure that we can get a good ability of tracking, we will 

use registers with reset port in Figure 4-15. 

 

Figure 4- 15  Register with reset port. 

We also get the results for tracking different fundamental frequency in Figure 

4-16 to Figure 4-23. Here, we set the same initial values of amplitudes and fundamental 

frequency in every case. 
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Case a: f=50.2Hz 

 
Figure 4- 16  Case a (Reference fundamental frequency is 50.2 HZ). 

Case b: f=50.15Hz 

 
Figure 4- 17  Case b (Reference fundamental frequency is 50.15 HZ). 

Case c: f=50.1Hz 

 

Figure 4- 18  Case c (Reference fundamental frequency is 50.1 HZ). 

Case d: f=50.05Hz 

 
Figure 4- 19  Case d (Reference fundamental frequency is 50.05 HZ). 

Case e: f=49.95Hz 

 
Figure 4- 20  Case e (Reference fundamental frequency is 49.95 HZ). 
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Case f: f=49.9Hz 

 

Figure 4- 21  Case f (Reference fundamental frequency is 49.9 HZ). 

Case g: f=49.85Hz 

 
Figure 4- 22  Case g (Reference fundamental frequency is 49.85 HZ). 

Case h: f=49.8Hz 

 
Figure 4- 23  Case h (Reference fundamental frequency is 49.8 HZ). 

From the figures, we know that the amplitudes and fundamental frequency 

both get the convergence in 0.4s. And we used the registers with reset port, so we can 

reset the register every 0.4s. Then we can track the distorted signal with dynamic 

fundamental frequency.  
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4.4 Hardware-in-the-Loop Verification 

 
Figure 4- 24  Complete Design Ready for the Hardware-in-the-Loop Simulation. 

In order to make sure that the proposed algorithm can work on the FPGA 

board. We also did the hardware-in-the-loop verification. The design of hardware-in-

the-loop has been shown in the Figure 4-24. 

In the FPGA experiments, we use Simulink model built the distorted signal 

show in Figure 4-25. 

 
 Figure 4- 25  Model design of the distored signal. 
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In the signal model, we use the sampling time is 0.0002s, and the sampling 

time is same as the FPGA simulation time.  

Case1:  

Set the initial fundamental frequency (f=50 Hz ). 

Set the reference fundamental frequency (f=50.1Hz ).  

Initial amplitude vector: 

w=[ 1.2  0.7  -0.045  0.04  0.006  0.02  -0.001  -0.010 ]'. 

  

(a) Amplitude Tracking of Fundamental 

signal  

(b) Amplitude Tracking of 5th harmonic  

  

(c) Amplitude Tracking of 7th harmonic (d) Amplitude Tracking of 11th harmonic 

Figure 4- 26  Simulation result showing simlator output on top and hardware output 

at the bottom (Amplitude Tracking). 

 
Figure 4- 27  Simulation result showing simlator output on top and hardware output 

at the bottom (Frequency Tracking). 
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Figure 4- 28  Simulation result showing simlator output on top and hardware output 

at the bottom (Error). 

Case2: 

Set the initial fundamental frequency (f=50 Hz ). 

Set the reference fundamental frequency (f=49.9Hz ).  

Initial amplitude vector: 

w=[ 1.2  0.7  -0.045  0.04  0.006  0.02  -0.001  -0.010 ]'. 

  

(a) Amplitude Tracking of Fundamental 

signal  

(b) Amplitude Tracking of 5th harmonic  

  

(c) Amplitude Tracking of 7th harmonic (d) Amplitude Tracking of 11th harmonic 

Figure 4- 29  Simulation result showing simlator output on top and hardware output 

at the bottom (Amplitude Tracking). 



55 

 

 

 
Figure 4- 30  Simulation result showing simlator output on top and hardware output 

at the bottom (Frequency Tracking). 

 
Figure 4- 31  Simulation result showing simlator output on top and hardware output 

at the bottom (Error). 

After we implemented the proposed method on a Xilinx Spartan3E-1200 

FPGA (Field Programmable Gate Array). The hardware-in-the loop verification results 

show that the proposed ADALINE adaptive filter can not only accurately estimate the 

dynamic harmonic amplitudes and phases but also adaptively track the dynamic 

fundamental frequency in the present AC power system. Due to the limitation of 
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resource, we need to reduce the bits of some part. The amplitudes of high order harmonic 

maybe a little different from the simulation. But the higher order of the harmonics, the 

amplitude will be smaller. So we can ignore the difference between the results of 

simulation and the results from hardware-in-the-loop. Then we can get the target of 

tracking the components of the harmonics. 
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Chapter 5. Conclusions, Problems and Suggestions 

5.1 Conclusions 

This thesis has presented the adaptive linear neural network (ADALINE) 

based on the LMS algorithm which is used for minimizing the mean-square-error for 

tracking power system harmonics. The learning parameters were verified by simulating 

the LMS algorithm on MATLAB. Then, the design has been implemented by Xilinx 

System Generator running in the Simulink environments. The simulation experiments 

showed that the weight adaptation along with an adaptive algorithm can accurately 

and simply estimate the signal. The adaptive parameters was also used in bringing a 

better convergence and in tracking the harmonic components. 

Finally, we successfully implemented the proposed method on a Xilinx 

Spartan3E-1200 FPGA (Field Programmable Gate Array). The hardware-in-the loop 

verification results show that the proposed ADALINE adaptive filter is not only 

accurately estimate the dynamic harmonic amplitudes and phases but also adaptively 

track the dynamic fundamental frequency in the present AC power system. Moreover, 

the adaptive learning parameters bring the faster and more accurate convergence. 

5.2  Problems and Suggestions 

1) Due to amplitude of the distorted voltage in the real power system is different, 

so we should define different values of α, α𝜔 , c1, c2⁡⁡ in the different 

conditions. For example, we should define different values for the motors with 

different rated voltage. 

2) In order to get a faster convergence, we’d better to set the initial values of the 

amplitudes and the fundamental frequency close the values of the rated voltage. 

However, the values of⁡⁡α, α𝜔 , c1, c2  is related to the initial values of the 

registers. So the values of⁡⁡α, α𝜔 , c1, c2 would be different in the conditions 

with different initial values. 

3) Due to the amplitude of random noise is very small and the amplitudes of the 

higher order harmonics are also very small. It is very hard to track the random 

noise. So, in this thesis, we have to ignore the random noise. Then we will get 

some errors in the real system. However, the proposed method in this thesis can 
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make sure the error of the voltage within the allowable range. Then, we can make 

the electronic devices work in the safe situations.               
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