

Downstream Signaling Pathway in Bone Stromal Cells Induced with

Basic Fibroblast Growth Factor (FGF2)

Paweena Wongwitwichot

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Pharmaceutical Sciences

Prince of Songkla University

2015

Copyright of Prince of Songkla University

Thesis Title	Downstream Signalir	ng Pathway in Bone Stromal Cells Induced
	with Basic Fibroblast	: Growth Factor (FGF2)
Author	Miss Paweena Wong	gwitwichot
Major Program	Pharmaceutical Scie	nces
Major Advisor		Examining Committee:
(Assoc. Prof. Dr. Jasadee Kaewsrichan)		Chairperson (Asst. Prof. Dr. Bhutorn Canyuk)
Co-advisor		(Dr. Danai Tiwawech)
(Asst. Prof. Dr. Potch	nanapond Graidist)	(Assoc. Prof. Dr. Chua Kien Hui)
		(Assoc. Prof. Dr. Jasadee Kaewsrichan)
		(Asst. Prof. Dr. Potchanapond Graidist)

The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Pharmaceutical Sciences.

> (Assoc. Prof. Dr. Teerapol Srichana) Dean of Graduate School

.....

This is to certify that the work here submitted is the result of the candidate's own investigations. Due acknowledgement has been made of any assistance received.

.....Signature

(Assoc. Prof. Dr. Jasadee Kaewsrichan) Major Advisor

.....Signature

(Miss Paweena Wongwitwichot) Candidate I hereby certify that this work has not been accepted in substance for any degree, and is not being currently submitted in candidature for any degree.

.....Signature

(Miss Paweena Wongwitwichot) Candidate

ชื่อวิทยานิพนธ์	การส่งต่อสัญญาณในเซลล์ตันกำเนิดกระดูกเมื่อถูกเหนี่ยวนำด้วย Basic
	Fibroblast Growth Factor (FGF2)
ผู้เขียน	นางสาวปวีณา วงศ์วิทย์วิโชติ
สาขาวิชา	เภสัชศาสตร์
ปีการศึกษา	2557

บทคัดย่อ

วิศวกรรมเนื้อเยื่อกระดูกจากเซลล์ดันกำเนิด เป็นเทคโนโลยีที่ถูกพัฒนาขึ้นเพื่อการ รักษาและทดแทนกระดูกที่สูญเสียไปในปริมาณมาก เกินความสามารถของร่างกายที่จะซ่อมแซมได้ เอง เซลล์ตันกำเนิดจากไขกระดูกเป็นแหล่งที่มาของเซลล์ที่เข้าถึงได้ง่าย และหากเป็นของผู้ป่วยเองก็ จะไม่มีปัญหาเรื่องการเข้ากันไม่ได้ของเนื้อเยื่อ แต่มีข้อจำกัดที่สำคัญคือปริมาณเซลล์ตันกำเนิดในไข กระดูกมีน้อยมาก กล่าวคือน้อยกว่า 0.01 เปอร์เซ็นต์ สำหรับการรักษาด้วยเทคนิคนี้ซึ่งต้องใช้เซลล์ ปริมาณมากจึงเป็นข้อเสียเปรียบที่สำคัญ การเพิ่มจำนวนเซลล์ในห้องทดลองถือได้ว่าเป็นทางเลือกที่ เหมาะสม แต่เกิดปัญหาที่ชัดเจนจากปฏิบัติการดังกล่าว นั่นคือเซลล์แบ่งตัวได้น้อยลงและไม่สามารถ คงความเป็นเซลล์ตันกำเนิดไว้ได้เมื่อผ่านการเพาะเลี้ยงหลาย ๆครั้ง จึงเป็นที่มาของงานวิจัยชิ้นนี้ ที่มุ่ง พัฒนาสภาวะสำหรับแยกเซลล์ตันกำเนิดจากไขกระดูก เพาะเลี้ยงเซลล์ในหลอดทดลอง กระตุ้นเซลล์ ด้วยสารกระตุ้นการเจริญ (growth factor) ที่เหนี่ยวนำให้เกิดการแบ่งเซลล์และเปลี่ยนแปลงเป็นเซลล์ กระดูก (osteoblasts) ให้มากขึ้น ศึกษาการสร้างกระดูกใหม่ส่วนนอก (ectopic bone) ในสัตว์ทดลองที่ ได้รับการปลูกเซลล์ดังกล่าวลงไป และศึกษากลไกการเหนี่ยวนำการสร้างกระดูกใหม่ระดับโมเลกุลของ สารกระตุ้นการเจริญเหล่านั้น โดยมีเป้าหมายที่จะลดค่าใช้จ่ายในการเตรียมเซลล์ตันกำเนิด และเพิ่ม ประสิทธิภาพของเทคนิควิศวกรรมเนื้อเยื่อกระดูกทางคลินิกให้สูงขึ้น

งานวิจัยชี้ให้เห็นว่า เทคนิคที่ใช้แยกเซลล์ต้นกำเนิดจากไขกระดูกมีประสิทธิภาพดี และง่ายหากจะนำไปใช้ในห้องปฏิบัติการทางคลินิก การกระตุ้นเซลล์ตามลำดับด้วย basic fibroblast growth factor (หรือ fibroblast growth factor 2; FGF2) ความเข้มข้น 2.5 ng/ml เสริมด้วยอินซูลิน ความเข้มข้น 60 ng/ml เป็นเวลา 1 วัน พักเซลล์เป็นเวลา 2 วัน กระตุ้นเซลล์ต่อด้วย Bone Morphogenetic Protein 2 (BMP2) ความเข้มข้น 10 ng/ml หรือ bone morphogenetic protein 7 (BMP7) ความเข้มข้น 10 ng/ml อีก 1 วัน ส่งผลเหนี่ยวนำให้เกิดการสร้างกระดูกใหม่ทั้งในหลอด ทดลองและในสัตว์ทดลอง การกระตุ้นเซลล์ช่วงแรกนอกจากจะส่งผลให้เซลล์แบ่งตัวเพิ่มขึ้นแล้ว ยัง สามารถชักนำเซลล์ต้นกำเนิดให้โน้มเอียงที่จะเปลี่ยนไปเป็นเซลล์ตัวอ่อนกระดูก (pre-osteoblast) เพิ่มขึ้นด้วย ส่วนการกระตุ้นเซลล์ช่วงหลังส่งผลให้เซลล์ตันกำเนิดทั้งหมดเปลี่ยนไปเป็นเซลล์ตัวอ่อน กระดูกที่พร้อมจะสะสมแคลเซียมและฟอสฟอรัส (mineralization) และเปลี่ยนเป็นกระดูกในที่สุด

พบว่าการเพิ่มจำนวนเซลล์เกิดจากการกระตุ้นผ่านวิถีของ Wingless and Int1 (WNT pathway) ส่วนการเพิ่มแนวโน้มให้เซลล์เปลี่ยนเป็นเซลล์ตัวอ่อนกระดูก เกิดจากการที่เซลล์ สร้าง Runt-related transcription factor 2 (Runx2) เพิ่มขึ้นเมื่อถูกกระตุ้นด้วย FGF2 Runx2 เป็นโปรตีนหลักที่ทำหน้าที่ในการการควบคุมการถอดรหัสของยืนที่เซลล์ สร้างเพิ่มขึ้น และจะส่งผลต่อให้เซลล์สร้างโปรตีนที่เกี่ยวข้องกับการสร้างกระดูกเพิ่มขึ้นด้วย ได้แก่ BMP2 และ alkaline phosphatase (ALP) ปริมาณการสะสมแคลเซียมและฟอสฟอรัสสามารถ ตรวจสอบด้วยเทคนิคสีย้อมจำเพาะ Alizarin Red S กลไกกระตุ้นระดับเซลล์เกิดจาก Runx2 จับกับ ส่วนของดีเอ็นเอ *ap1* ที่อยู่เหนือยีน *runx2* แล้วส่งผลเชิงบวกให้เซลล์สร้าง Runx2 เพิ่มขึ้น ตามด้วย การสร้าง BMP2 และ ALP ที่เพิ่มขึ้น

เทคนิคการเพาะเลี้ยงเซลล์ตันกำเนิดเพื่อใช้ในวิศวกรรมเนื้อเยื่อกระดูกที่พัฒนาขึ้น ใหม่นี้เป็นวิธีที่ง่าย ปลอดภัย มีค่าใช้จ่ายที่เหมาะสม และสามารถนำไปใช้ได้จริงทางคลินิก

Thesis Title	Downstream Signaling Pathway in Bone Stromal Cells Induced
	with Basic Fibroblast Growth Factor (FGF2)
Author	Miss Paweena Wongwitwichot
Major Program	Pharmaceutical Sciences
Academic Year	2014

ABSTRACT

Bone tissue engineering using mesenchymal stromal cells (MSCs) becomes a promising technique for treatment of severe bone defect. Bone marrow is an easily accessible source of MSCs, which are autologous if own to the patient. Because of the rare population of MSCs (< 0.01%), this has been the major drawback of the repair technique as it requires large cell numbers. *In vitro* propagation is generally applied to increase the numbers of cells. However, the cells grow with reduced rate and have lowered differentiation potential during the expansion. Accordingly, this research is aimed to (1) improve techniques of MSC separation and cultivation with enhanced growth rate and preserved differentiation potential, by using suitable bone growth-related factors; (2) to determine the ability of the induced cells to form new bone *in vitro* and *in vivo*; and (3) to clarify the induction mechanisms by the used growth factors at molecular levels.

Results showed that the cell isolation method developed was efficient and could be applied in clinics. Improved *in vitro* and *in vivo* bone formation was apparent when the cells were sequentially induced by using 2.5 ng/ml basic fibroblast growth factor (or fibroblast growth factor 2; FGF2) plus 60 ng/ml insulin for 1 day (the 1st induction), followed by cell starvation for 2 days, and finally challenged by 10 ng/ml bone morphogenetic protein 2 (BMP2) or 10 ng/ml bone morphogenetic protein 7 (BMP7) for 1 day (the 2nd induction). The increase of cell growth and pre-osteoblastic commitment was achieved by the 1st induction phase, while the improvement of osteoblastic differentiation and mineralization processes was accomplished by the 2nd induction phase.

The effect on cell proliferation was found to involve in the Wingless and Int1 (WNT) pathway. Instead, the cells trended to produce Runt-related transcription factor 2 (Runx2) after induced by FGF2, resulting in increased pre-osteoblastic commitment.

Since Runx2 was the principal transcription factor produced, it then positively regulated the synthesis of osteogenic proteins including BMP2 and alkaline phosphatase (ALP). The degree of mineralization was determined by Alizarin red s (ARS) staining. The proposed mechanism of Runx2 on accelerating new bone formation would be via the activation of *ap1* consensus sequence located up-stream of *runx2* gene by Runx2, resulting in increased production of BMP2 and ALP.

The newly developed method for cultivating MSCs isolated from bone marrow was simple, safe, cost-effective, and possible to be applied for bone tissue engineering in clinics.

CONTENTS

ABSTRACT (in Thai)	v
ABSTRACT (in English)	vii
ACKNOWLEDGEMENT	ix
CONTENTS	х
LIST OF TABLES	XV
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS AND SYMBOLS	хх

CHA	CHAPTER 1 INTRODUCTION			1
1.1	Background			1
	1.1.1	Bone		1
	1.1.2	Bone ce	lls	2
	1.1.3	Osteoge	enesis	4
		1.1.3.1	Bone tissue formation process	4
		1.1.3.2	Transcriptional regulation of osteogenesis	6
		1.1.3.3	Major signaling pathways controlling bone formation	10
		1.1.3.4	Signaling crosstalk in bone development	16
	1.1.4	Bone de	fects and treatment	17
		1.1.4.1	Defects of bone tissue	17
		1.1.4.2	Bone fracture healing process	18
		1.1.4.3	Treatments of lost bone tissue	19
	1.1.5	Tissue e	engineering	20
		1.1.5.1	The concept	20
		1.1.5.2	Osteogenic cells	21
		1.1.5.3	Scaffolds	22
		1.1.5.4	Growth factors	23
1.2	Resea	rch ration	ale	23
1.3	Object	ives		25

				Page
CHA	PTER 2	RESEAR	RCH METHODOLOGY	26
2.1	Materials			26
	2.1.1	Genera	I reagents	26
	2.1.2	Reagen	ts for cell isolation, culture, and characterization	26
	2.1.3	Reagen	ts for in vitro evaluation of induction conditions	27
	2.1.4	Reagen	ts for <i>in vivo</i> experiment	27
	2.1.5	Reagen	ts for plasmid construction	28
		2.1.5.1	Plasmids	28
	2.1.6	Reagen	ts for transfection experiment	32
	2.1.7	Laborat	ory animal	32
	2.1.8	Primers	and oligonucleotides	32
2.2	Experi	mental sc	heme	39
2.3	3 Methods		40	
	2.3.1	MSCs is	olation and culture	40
		2.3.1.1	Human bone marrow-derived MSCs (HBMSCs) isolation	40
		2.3.1.2	Rat bone marrow-derived MSCs (RBMSCs) isolation	41
		2.3.1.3	Cell culture technique	41
	2.3.2	HBMSC	s characterization and osteogenic induction	43
		2.3.2.1	Flow cytometry	43
		2.3.2.2	Induction of HBMSCs using FGF2 and BMP2	45
		2.3.2.3	Determination of the gene expression levels by using	
			real-time PCR (RT-PCR) technique	46
	2.3.3	Inductior	n for osteogenic differentiation of RBMSCs	48
	2.3.4	Efficienc	y of the induction conditions developed	51
		2.3.4.1	RT-PCR	51
		2.3.4.2	Proliferation assay	52
		2.3.4.3	Alkaline phosphatase (ALP) activity assay	53
		2.3.4.4	Mineralization of monolayer cells culture	53
		2.3.4.5	BMP2 immunoassay	54

xi

				Page
		2.3.4.6	Determination of protein concentration for cell lysates	55
	2.3.5	<i>In vivo</i> ir	nplantation	56
		2.3.5.1	Preparation of the cell-seeded constructs	56
		2.3.5.2	Implantation	56
		2.3.5.3	Tissue processing	58
		2.3.5.4	Histological staining	58
	2.3.6	Plasmid	construction	60
		2.3.6.1	Cloning of the 5'-UTR of <i>runx2</i> gene into pGEM [®] -T	
			easy vector	62
		2.3.6.2	Construction of pGL3-runx2-N and pGL3-runx2-F	
			reporter vector	70
		2.3.6.3	Construction of plasmids containing tandem repeats	
			of transcription factor binding site	78
	2.3.7	Dual luc	iferase reporter assay	83
		2.3.7.1	Preparation of the reporter vectors for transfection	83
		2.3.7.2	Plasmid concentration determination	84
		2.3.7.3	Transfection optimization	84
		2.3.7.4	Transfection	85
		2.3.7.5	Dual-luciferase measurement	87
2.4	Equipr	nent		88
СНА	PTER 3	RESULT	ſS	90
3.1	Chara	cterization	of the isolated HBMSCs	90
	3.1.1	Morphol	ogy	90
	3.1.2	Cell surf	ace markers	90
	3.1.3	The exp	ression of stem cell-specific genes	93
	3.1.4	Changes	s in stem cells-gene expression of induced HBMSCs	94
3.2	Chara	cterization	of the isolated RBMSCs	96
3.3	Growth	n factors t	o be determined for the effects on bone regeneration	96

				Page
	3.3.1	Cell prol	liferation	97
	3.3.2	mRNA e	expression of genes related to osteogenesis	97
		3.3.2.1	The effects of FGF2 and insulin	98
		3.3.2.2	The effects of BMP2 and BMP7	99
		3.3.2.3	The effects of proliferation factors (FGF2 and insulin)	
			and differentiation factors (BMP2 and BMP7)	100
	3.3.3	Alkaline	phosphatase (ALP) activity assay	103
	3.3.4	Calcium	deposition	103
	3.3.5	BMP2 p	roduction	106
3.4	In vivo	bone for	mation	107
3.5	Report	er vectors	s construction	111
	3.5.1	Cloning	of 5'-UTR of <i>runx2</i> gene	111
		3.5.1.1	Cloning of 5'-UTR of <i>runx2</i> gene and construction	
			of pGEM-U1557	111
		3.5.1.2	Analysis of U1557-DNA sequence	113
	3.5.2	Construe	ction of reporter vectors containing runx2 regulatory element	116
		3.5.2.1	Cloning of 2 regions of runx2 regulatory element	116
		3.5.2.2	Construction of pGEM-runx2-N and pGEM-runx2-F	117
		3.5.2.3	Construction of pGL3- <i>runx2</i> -N and pGL3- <i>runx2</i> -F	
			reporter vector	118
	3.5.3	Construe	ction of reporter vectors containing tandem repeat of	
		transcrip	otion factor binding site (pGL3-5X <i>ap1</i> and pGL3-5X <i>sry</i>)	122
3.6	Assay	of the luc	ciferase activity	125
	3.6.1	Prepara	tion of reporter vectors	125
	3.6.2	Transfee	ction optimization	127
	3.6.3	Lucifera	se reporter assay	129
СНА	PTER 4	DISCUS	SION	131
4.1			of HBMSCs	131
			-	

xiii

		Page
4.2	Osteogenic induction of HBMSCs	133
4.3	Characteristics of RBMSCs	134
4.4	Bone-related growth factors for RBMSCs	135
4.5	Sequential induction of RBMSCs using proliferation factor(s) followed	
	by differentiation factor(s)	138
4.6	In vivo bone formation	138
4.7	Analysis of the regulatory element of runx2 gene in controlling osteogenesis	140
4.8	Intracellular signaling pathway of FGF2 and insulin induction	141
СНА	PTER 5 CONCLUSION	142
REFI	ERENCES	145
APPI	ENDIX A PREPARATION OF SOLUTIONS AND BUFFERS	162
APPI	ENDIX B ELECTROPHEROGRAMS AND DNA SEQUENCES	169
APPI	ENDIX C SEQUENCE ALIGNMENT	185

APPENDIX D STATISTICAL ANALYSIS	192
VITAE	255

LIST OF TABLES

		Page
Table 2.1:	Sequences of oligonucleotides and annealing temperatures.	33
Table 2.2:	Real-time PCR primers.	35
Table 2.3:	The synthesized oligonucleotides for the transcription factor	
	binding site.	38
Table 2.4:	Surface area of the culture vessel, the volumes of culture	
	medium, and the volumes of trypsin used for trypsinization.	42
Table 2.5:	The components for cDNA synthesis.	47
Table 2.6:	The components for RT-PCR reaction (Bio-rad).	48
Table 2.7:	The used growth factors and their concentrations.	49
Table 2.8:	The components for RT-PCR reaction of RBMSCs.	52
Table 2.9:	Protocols for deparaffinization and of tissue sections.	59
Table 2.10:	The components for PCR reaction.	65
Table 2.11:	Thermal cycle for 5'-UTR of <i>runx2</i> gene cloning.	65
Table 2.12:	The concentration of agarose gel based on size of linear DNA	
	to be separated.	66
Table 2.13:	The components for ligation reaction.	67
Table 2.14:	Components and conditions for KpnI, BglII, NheI, and EcoRI	
	digestion.	69
Table 2.15:	Components and conditions for Kpnl and Nhel double digestion.	70
Table 2.16:	PCR components for runx2-N amplification.	73
Table 2.17:	Thermal cycle for runx2-N amplification.	73
Table 2.18:	PCR components for <i>runx2</i> -F amplification.	74
Table 2.19:	Thermal cycle for <i>runx2</i> -N amplification.	74
Table 2.20:	PCR components for pGL3-runx2-N and pGL3-runx2-F vector	
	verification.	77
Table 2.21:	Thermal cycle for pGL3- <i>runx2</i> -N and pGL3- <i>runx2</i> -F vector	
	verification.	77
Table 2.22:	The components for oligonucleotide annealing reaction.	79

LIST OF TABLES (continued)

		Page
Table 2.23:	The components used for proving the success in cloning of	
	pGL3-5X <i>ap1</i> .	81
Table 2.24:	Thermal cycle used for proving the success in cloning of	
	pGL3-5X <i>ap1</i> .	81
Table 2.25:	The components used for proving the success in cloning of	
	pGL3-5X <i>sry</i> .	82
Table 2.26:	Thermal cycle used for proving the success in cloning of	
	pGL3-5X <i>sry</i> .	82
Table 2.27:	Optimization conditions for transfection.	85
Table 2.28:	The components for transfection reactions. The ratio of	
	transfection reagent to DNA was 6:1.	86
Table 3.1:	Percentage of the cells expressing each specific surface marker.	93
Table 3.2:	The relative mRNA expression levels of osteogenic markers	
	for the RBMSCs initially induced by the proliferation factor(s)	
	(2.5 ng/ml FGF2 and 60 ng/ml insulin) and followed by the	
	differentiation factor(s) (10 ng/ml BMP2 and 10 ng/ml BMP7).	101
Table 3.3:	The results of relative ALP activity and relative calcium deposition	
	after proliferation induction.	104
Table 3.4:	The results of relative ALP activity and relative calcium deposition	
	of osteogenic induced RBMSCs using proliferation factor(s)	
	(2.5 ng/ml FGF2 and 60 ng/ml insulin) and followed by	
	differentiation factor(s) (10 ng/ml BMP2 and 10 ng/ml BMP7).	105
Table 3.5:	Potential transcription factor binding sites identified on U1557	
	sequence.	115
Table 3.6:	The recombinant plasmid purified by using QIAGEN plasmid	
	midi kit, and their corresponding concentrations.	126
Table 3.7:	The results for the optimization of transfection conditions.	128

xvi

LIST OF FIGURES

Figure 1.1:	Structure and anatomy of long bone.	2
Figure 1.2:	Four types of bone cells.	- 3
Figure 1.3:	Skeleton tissue formation by endochondral and intramembranous	Ū
	ossification.	5
Figure 1.4:	Transcriptional control of MSCs commitment.	6
Figure 1.5:	Osteoblastic commitment of MSCs with some of the known	
5	transcription factors.	8
Figure 1.6:	BMPs signal transduction pathway.	12
Figure 1.7:	FGFs signaling cascade in osteoblasts.	13
Figure 1.8:	Simplified view of insulin/IGFs signaling crosstalk.	14
Figure 1.9:	Canonical WNT signaling pathway.	16
Figure 1.10:	A four-stage model of fracture repair.	19
Figure 1.11:	Concept of bone tissue engineering.	21
Figure 2.1:	Circular map of pGEM [®] -T easy vector.	30
Figure 2.2:	Circular map of pGL3-Promoter vector.	30
Figure 2.3:	Circular map of pGL3-Control vector.	31
Figure 2.4:	Circular map of pRL-SV40 vector.	31
Figure 2.5:	Experimental workflow.	40
Figure 2.6:	Schematic configuration of flow cytometer.	44
Figure 2.7:	Induction scheme of HBMSCs.	45
Figure 2.8:	The scheme for induction conditions of RBMSCs.	50
Figure 2.9:	The hydrolysis reaction of pNPP as catalyzed by ALP producing	
	a yellow color para-nitrophenol.	53
Figure 2.10:	Timeline of RBMSCs induction and the measurement of BMP2	
	level in the medium supernatant.	55
Figure 2.11:	Procedures for preparing cell-seeded scaffold implants.	57
Figure 2.12:	The schematic representation of the implantation sites.	58
Figure 2.13:	The construction procedures of luciferase reporter vectors.	61
Figure 2.14:	Construction of pGEM-U1557 recombinant vector.	63

xvii

LIST OF FIGURES (continued)

Figure 2.15:	Construction of pGEM-runx2-N and pGEM-runx2-F cloning vector.	72
Figure 2.16:	Subcloning protocol for pGL3- <i>runx2</i> -N and pGL3- <i>runx2</i> -F vector	
	construction.	76
Figure 2.17:	Preparation of pGL3-5X <i>ap1</i> and pGL3-5X <i>sry</i> reporter vector.	80
Figure 2.18:	The plan of transfection experiment and luciferase assay.	86
Figure 2.19:	Bioluminescent reaction of firefly luciferase (a) and Renilla	
	luciferase (b).	87
Figure 3.1:	The morphology of HBMSCs (40x magnification).	91
Figure 3.2:	Surface markers of HBMSCs, analyzed by flow cytometry.	92
Figure 3.3:	The expression of stem cell-associated genes of HBMSCs in	
	passage 2 and 5.	94
Figure 3.4:	The mRNA expression of stem cell-associated and osteogenic	
	genes of HBMSCs, after sequential induction with 2.5 ng/ml FGF2	
	and 10 ng/ml BMP2.	95
Figure 3.5:	The morphology of RBMSCs (40x magnification).	96
Figure 3.6:	The result of MTT assay.	97
Figure 3.7:	Relative mRNA expression levels of osteogenic markers for the	
	RBMSCs induced with 2.5 ng/ml FGF2, 60 ng/ml insulin,	
	or FGF2 plus insulin for 1 day.	98
Figure 3.8:	Relative gene expression levels of RBMSCs treated with	
	10 ng/ml BMP2, 10 ng/ml BMP7, or the combination for 1 day.	99
Figure 3.9:	BMP2 levels produced by RBMSCs.	106
Figure 3.10:	The implanted tissues at 8 weeks post-operation.	107
Figure 3.11:	Tissue sections of 8-week after implantation, stained with H&E	
	and ARS (40x magnification). The figures represented the	
	groups of initially induced cells using FGF2.	108
Figure 3.12:	Tissue sections of 8-week after implantation, stained with H&E	
	and ARS (40x magnification). The figures represented the	
	groups of initially induced cells using insulin.	109

xviii

LIST OF FIGURES (continued)

		Page
Figure 3.13:	Tissue sections of 8-week after implantation, stained with H&E	
	and ARS (40x magnification). The figures represented the	
	groups of initially induced cells using FGF2 plus insulin.	110
Figure 3.14:	The PCR product, called U1557, amplified by using <i>runx2</i> -U1557	
	and <i>runx</i> 2-97 as the primers.	112
Figure 3.15:	Screening of plasmids containing U1557 fragment by using	
	EcoRI digestion.	113
Figure 3.16:	The nucleotide sequence of U1557 and transcription factor	
	binding sites.	114
Figure 3.17:	The results of <i>runx2</i> -N and <i>runx2</i> -F amplification and purification.	117
Figure 3.18:	Insertion analysis of pGEM-runx2-N and pGEM-runx2-F.	118
Figure 3.19:	KpnI and NheI digestion of pGEM-runx2-N and pGEM-runx2-F.	120
Figure 3.20:	Preparation of pGL3-Promoter vector.	121
Figure 3.21:	Insertion analysis of pGL3-runx2-N and pGL3-runx2-F.	122
Figure 3.22:	Preparation of pGL3-Promoter vector by sequential digestion	
	with <i>Kpn</i> I and <i>BgI</i> II.	123
Figure 3.23:	Screening and analysis of pGL3-5Xap1 by PCR using LUC-F	
	and LUC-R as the primers.	124
Figure 3.24:	Screening and analysis of pGL3-5X <i>sry</i> by PCR using LUC-F	
	and LUC-R as the primers.	124
Figure 3.25:	An example for preparating of pGL3-5X <i>ap1</i> plasmid for	
	transfection.	126
Figure 3.26:	Relative luciferase activity of RBMSCs transfected with	
	(a) pGL3- <i>runx2</i> -N, (b) pGL3- <i>runx2</i> -F, (c) pGL3-5X <i>ap1</i> , and	
	(d) pGL3-5X <i>sry</i> .	130
Figure 5.1:	The proposed mechanism of <i>runx2</i> gene regulation by FGF2,	
	insulin, BMP2, and WNT signaling pathway.	143

xix

LIST OF ABBREVIATIONS AND SYMBOLS

°c	Degree Celsius
α-MEM	Minimum essential medium ${\mathfrak a}$ medium
β-gp	eta-glycerophosphate
μg	- micrograms
μl	microliter
5'-UTR	5'-untranslate region
AA	Ascorbic acid
ALP	Alkaline phosphatase
ANOVA	Analysis of variance
AP1	Activator protein 1
APC	Adenomatous polyposis coli
ARS	Alizarin red s
AXIN2	Axis inhibition protein 2
BMPR	Bone morphogenetic protein receptor
BMPs	Bone morphogenetic proteins
BMP2	Bone morphogenetic protein 2
BMP7	Bone morphogenetic protein 7
BSA	Bovine serum albumin
BSP	Bone sialoprotein
BST1	Bone marrow stromal cell antigen 1
C/EBP	CCAAT/enhancer binding protein
CBFA1	Core-binding factor alpha 1
CDD	Cleidocranial dysplasia
cDNA	Complementary DNA
Cdx	Caudal homeobox gene
CK-1	Casein kinase-1
COL-I	Type I collagen
COX-2	Cyclooxygenase-2
DKKs	Dickkopts
Dlx5	Distal-less homeobox 5

LIST OF ABBREVIATIONS AND SYMBOLS (continued)

DNADeoxyribonucleic acidDPBSDulbecco's phosphate buffer salineDSHDisheveled	
DSH Disheveled	
E. coli Escherichia coli	
ERKs Extracellular signal-regulated kinases	
Evi-1 Ecotropic viral integration site 1	
FBS Fetal bovine serum	
FGFR Fibroblast growth factor receptor	
FGFs Fibroblast growth factors	
FGF2 Fibroblast growth factor 2 or basic fibroblast growth factor	or
FGF4 Fibroblast growth factor 4	
Fz firzzled receptor	
GAPDH Glyceraldehyde 3-phosphate dehydrogenase	
H&E Hematoxylin-eosin	
HA Hydroxyapatite	
HBMSCs Human bone marrow-derived MSCs	
IGFs Insulin-like growth factors	
IGF-1 Insulin-like growth factor-1	
IGF-2 Insulin-like growth factor-2	
Ihh Indian hedgehog	
lk2 lkaros 2	
IL-1 Interleukins-1	
luc+ luciferase+ transcriptional unit	
JNK Jun N-terminal kinase	
kb Kilobase pair	
kDa Kilodalton	
LRP5/6 Low-density lipoprotein receptor-related protein 5 or 6 co	-receptor
M Molar	

LIST OF ABBREVIATIONS AND SYMBOLS (continued)

MAPKs	Mitogen-activated protein kinases
MEF2	Myocyte-enhancer factor 2
mg	milligrams
ml	milliliter
Msx2	Msh homeobox 2
MTT	Mitochondrial toxicity test
mRNA	Messenger ribonucleic acid
MZF-1	Myeloid zinc finger
MSCs	Mesenchymal stromal cells
ng	nanograms
OCT1	Octamer-binding transcription factor 1
OCT4	Octamer-binding transcription factor 4
OC or OSC	Osteocalcin
OSE2	Osteoblastic-specific DNA-binding element
OSP	Osteopontin
OSX	Osterix
PCP	Planar cell polarity
PCR	Polymerase chain reaction
PDGF	Platelet-derived growth factor
PI3K	Phosphatidylinositol 3 kinase
PKA	Protein kinase A
PKC	Protein kinase C
PLB	Passive lysis buffer
PLC	Phospholipase C
pNPP	para-Nitrophenylphosphate
ΡΡΑRγ	Peroxisome proliferator-activated receptor $\boldsymbol{\gamma}$
RBMSCs	Rat bone marrow-derived MSCs
REX1	RNA exonuclease 1
RLUs	Relative light units
RNA	Ribonucleic acid

LIST OF ABBREVIATIONS AND SYMBOLS (continued)

RT-PCR	Real-time PCR
Runx2	Runt-related transcription factor 2
sFRPs	Secreted frizzled-related proteins
SOX2	Sex determining region y (SRY)-related high mobility group (HMG) box 2
SRY	Sex determining region y
STAT1	Signal transducers and activators of transcription-1
ТА	Triamcinolone acetonide
TCF/LEF	T-cell factor/lymphoid enhancer factor
TCP	Tricalcium phosphate
TERT	Telomerase reverse transcriptase
tgf-β	Transforming growth factor- eta
TNF-α	Tumor necrosis factor- $oldsymbol{lpha}$
Tsg	Twisted gastrulation
Tyr	Tyrosine
U	Units
USAG1	Uterine sensitization-associated gene 1
VEGF	Vascular endothelial growth factor
WNT	Wingless and Int1

CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Bone

Skeleton tissue is a supporting structure of an organism. Bone is not only a primary site of blood cell synthesis, but it also regulates mineral metabolism (such as calcium and phosphate) [1]. Bone related problems such as age-related disease (e.g. osteoporosis), osteosarcoma, and bone fracture can cause a serious impact on personal life and social.

Bone tissue composes of cells and matrix of organic materials (collagen fiber, proteins, and lipids) and inorganic elements (calcium, fluoride, phosphorus, etc.) [2-4]. About 95% of bone matrix is type I collagen (COL-I) and calcium phosphate crystal, called hydroxyapatite (HA). Whereas HA governs bone hardness, collagen fiber is responsible for elasticity of the tissue [5].

Structure of mature bone comprises of two parts: cortical (or compact) bone and cancellous bone, also called spongy or trabecular bone (Figure 1.1). Cortical bone is a hard outer layer, while spongy bone is a porous network tissue located at the end of long bone or at the inner part of flat bone and vertebral body. Porosity of compact bone and spongy bone are 10% and 50-90%, respectively [6]. The spaces between the spongy meshwork and the hollow core of long bone are occupied by bone marrow.

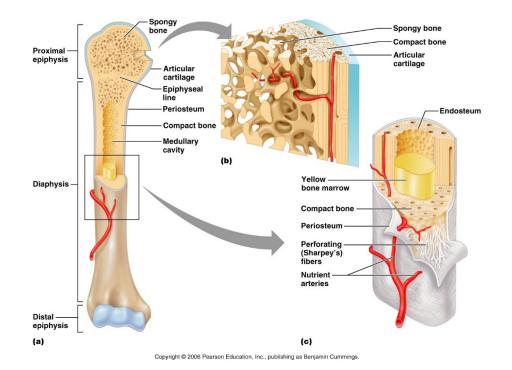


Figure 1.1: Structure and anatomy of long bone. The diagrams represent the structure of (a) long bone, (b) spongy bone, and (c) compact bone [7]. Diaphysis is a long tubular portion on bone consisted of cortical bone tissue. The end of long bone called epiphysis is filled with spongy bone. Articular cartilage covers the epiphysis where the joint between two bones occurs. The bone marrow is occupied in the cavity of long bone. The membranes covering outer and inner part of bone are periosteum and endosteum, respectively.

1.1.2 Bone cells

There are four cellular components of bone: osteoprogenitor cells, osteoblasts, osteocytes, and osteoclasts (Figure 1.2). Bone forming cells or osteoprogenitors are found in periosteum and endosteum, a connective tissue covered the outer and inner surface of bone, respectively (Figure 1.1). These cells have an osteogenic capability to develop to mature bone cells. Osteoblasts, the first cell type

developing form osteoprogenitors, are found at the boundaries of growing bone. They actively synthesize bone matrix components and enzymes to promote mineral deposition, such as alkaline phosphatase (ALP), bone sialoprotein (BSP), and COL-I. When these cells are entrapped in mineralized environment, osteoblasts become osteocytes. Another bone cells is osteoclasts. These multinucleated cells functions for bone resorption. Osteoclasts dissolve bone matrix by acid secretion and specialized proteinase enzymes. Dynamic of bone growth and resorption are under the subtle coordination of these cells [8].

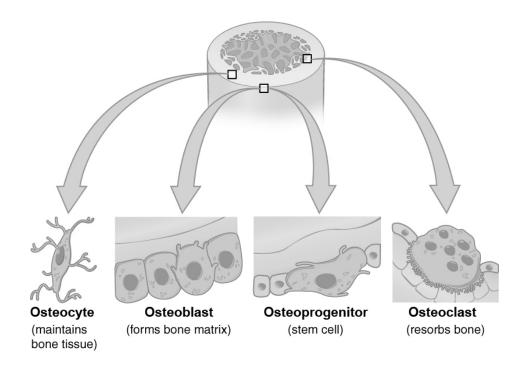


Figure 1.2: Four types of bone cells. Bone forming cells or osteoblasts are derived from osteoprogenitor cells. Osteocytes are mature bone cells trapped in mineralized matrix. Bone remodeling is controlled by bone resorption and bone replacement activity of osteoclasts and osteoblasts, respectively [9].

1.1.3 Osteogenesis

1.1.3.1 Bone tissue formation process

Osteogenesis or ossification initiates by a condensation of skeleton precursor cells or mesenchymal stromal cells (MSCs) to form a cartilaginous template (Figure 1.3). Cells in the center of template, then, become hypertrophy, when perichondrial cells differentiate to osteoblasts and construct bone collar. Mature hypertrophic chondrocytes produce mineralized matrix and undergo apoptosis, while blood vessel and osteoblast precursors invade to form a trabecular bone. Cortical bone is generated by osteoblasts at bone collar. Meanwhile, chondrocytes continuously proliferate to lengthen the bone. These processes are known as endochondral ossification which happen in long bone formation. For flat bone and skull, bone formation arises from intramembranous ossification process which osteoblast precursors directly condense and generate bone tissue termed woven bone. This bundle of erratically oriented collagen fiber and mineral, then, progressively remodels to mature lamellar bone.

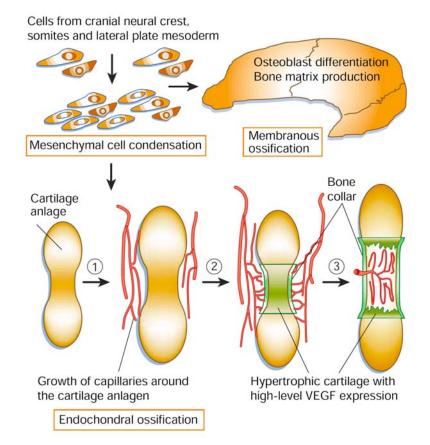


Figure 1.3: Skeleton tissue formation by endochondral and intramembranous ossification. MSCs accumulate and condense at the bone formation area. If intramembranous ossification occurs, stem cells directly turn into osteoblasts. In endochondral bone formation, cartilage model (anlagen) is formed first. After that, neovascular grows around the anlagen, while surrounding cells become osteoblasts and form bone collar. Chondrocytes in the bone collar mature to be hypertrophy. Finally, hypertrophic chondrocytes are replaced by bone [10].

1.1.3.2 Transcriptional regulation of osteogenesis

Differentiation of MSCs to a specific cell type is under the control of particular transcription factors (Figure 1.4). For osteogenic commitment, various bone specific molecules have been identified [11] such as runt-related transcription factor 2 (Runx2), osterix (OSX), and β -catenin. These DNA-binding proteins consequently activate their target genes for regulating cellular differentiation.

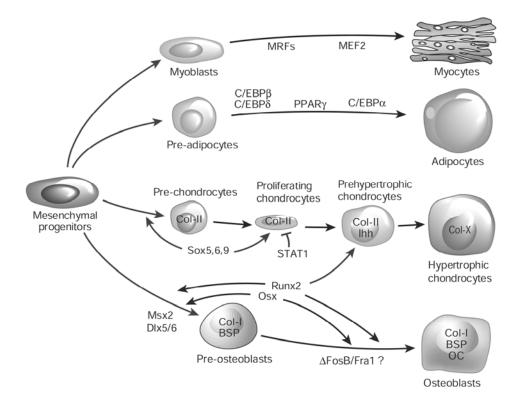


Figure 1.4: Transcriptional control of MSCs commitment. Each lineage requires gene activation signal from specific transcription factors. For example, chondrogenesis is directed by SOX proteins, while osteoblast differentiation needs the command from Runx2 and OSX [12].

1.1.3.2.1 Runt-related transcription factor 2 (Runx2)

Runx2/Cbfa1/Osf2/AML3 is recognized as a crucial regulator of osteoblastic commitment [13]. It is a skeleton cell specific protein, as it is found in only cells with osteo-chondroblastic phenotype. Runx2 belongs to Runt class of transcription factor that contains the DNA binding domain (128-amino acid domain) named Runt domain [14]. This protein binds to its binding site on DNA (sequence: PuACCPuCA [15, 16]) called osteoblastic-specific DNA-binding element (OSE2) which presents in the promoter region of osteogenic markers such as osteocalcin (OSC), osteopontin (OSP), BSP, and COL-I [17-20].

Human *runx2* gene locates on chromosome 6p21. Autosomal dominant of this gene is responsible for a congenital disorder named cleidocranial dysplasia (CDD) [21, 22]. This is a defective of endochondral and intramembranous ossification characterized by supernumerary teeth, underdeveloped or absent of clavicles, and open or delayed closure of calvarial sutures. *Runx2^{-/-}* mice have died after birth, and no bone or osteoblasts has been detected [23]. Runx2 also involves in chondrogenesis (Figure 1.4). Ectopically production of Runx2 has driven prematuration of chondroblasts, and chondrocyte terminal differentiation has been blocked in Runx2-null mice [24].

The expression of *runx2* gene is directed by autoregulation manner [25]. Drissi *et al.* has found that there have been at least 3 Runx2 recognition sites on its promoter region which have been able to regulate itself by negative feedback loop. However, some research groups have also discovered that *runx2* expression has been under the function of other proteins such as bone morphogenetic proteins (BMPs) and Wingless and Int1 (WNT) proteins [26].

Transcriptional activity of Runx2 is governed by several co-activator and co-repressor. Histone deacetylase 7 [27] and Twist proteins [28] has been reported as an inhibitor of Runx2 (Figure 1.5). By physical interaction of histone deacetylase 7 and carboxy terminus of Runx2 or the binding of Twist box and Runt domain, DNA binding capability of Runx2 has been demolished. In contrast, Smad 1 and Smad 5 have been identified as an enhancer of Runx2 transcriptional activity [29].

Another researcher has revealed that Runt domain has been associated with corebinding factor β protein to enhance its DNA binding ability [30].

Figure 1.5: Osteoblastic commitment of MSCs with some of the known transcription factors. Runx2 and its downstream target, OSX, are the major transcription factor for osteoblastogenesis. β -catenin regulated by WNT proteins also plays role in osteogenic commitment of stem cells. The activity of Runx2 is inhibited by Twist protein [31].

1.1.3.2.2 Osterix (OSX)

OSX or Sp7 is a zinc finger-containing protein acting downstream of Runx2 in osteoblast differentiation process. Nishio et al. has cloned the OSX promoter and found that its 5'-upstream region has contained Runx2 binding site [32]. This study strongly supports the function of Runx2 over OSX for regulating of bone formation. Frameshift mutation of *osx* caused by deletion of alanine base at position 1,052 is involved in osteogenic imperfecta patient. This condition is described by low bone mass and high fragility of bone [33].

Osteogenic roles of OSX have been proved by various studies. For example, Fu and colleagues has found that osteogenic gene markers (*osc*, *osp*, and *alp*) have been increased in OSX overexpressing cells [34]. Deletion of this gene has resulted in completely lack of bone tissue, while cartilage formation has been normal [35]. OSX is essential for both embryonic bone development and postnatal bone homeostasis, since OSX postnatal-null mice have showed a low level of bone markers and new bone formation [36]. In addition, OSX is not only a potent mediator for osteoblastic commitment, but also an inhibitor of chondrogenesis [37].

1.1.3.2.3 Activator protein 1 (AP1)

AP1 is a dimeric transcription factor composed of Fos (c-Fos, FosB, Fra-1, Fra-2), Jun (c-Jun, JunB, JunD), and ATF protein families [38]. AP1 involves in variety of biological processes such as differentiation, proliferation, and apoptosis. Many studies have indicated that AP1 proteins are a regulator of skeletogenesis. For instance, Bozec and co-workers have reported the role of Fra-2 in bone development. They have found that, in Fra-2 deficient cells, the osteoblastic markers (COL-I and OSC) have been decreased leading to a deficient in osteoblastic differentiation [39]. Mice lacking of JunB have showed an osteopenia phenotype caused by the abnormality of osteoblasts and osteoclasts activities [40]. Moreover, c-fos overexpression has been able to alter bone marker expression patterns and to induce osteosarcoma formation [41].

1.1.3.2.4 Sox proteins

SOX is a protein in the sex-determining region Y (SRY)related high mobility group (HMG) box family [42, 43]. SOX proteins are important for chondrogenesis, especially SOX9, L-SOX5, and SOX6. Akiyama and co-workers have found that osteo-chondroprogenitor cells have been originated from SOX9 expressing MSCs [44]. However, it has not been detected in hypertrophic chondrocytes and osteoblasts.

SOX9 is indispensable for the MSCs commitment to chondrocytes, since *sox9^{-/-}* cells did not express any chondrogenic markers [45]. Mutation of SOX9 gene is involved with Campomelic Dysplasia (CMDP), a skeleton malformation condition in human [46, 47]. Two other members of SOX protein, L-SOX5 and SOX6, also important for chondrocyte formation. These proteins cooperatively control the production of cartilage markers with SOX9 [48].

1.1.3.3 Major signaling pathways controlling bone formation

Osteoblastogenesis is regulated by various stimulating and inhibiting factors. To date, the control of osteogenic differentiation is partially known. Many studies have exhibited a potential use of growth factors, since self-repair property of bone cell together with stimulating molecules can increase the rate of tissue healing. Among them, BMPs signaling pathway, fibroblast growth factors (FGFs) signaling pathway, insulin and insulin-like growth factors (IGFs) signaling pathway, and WNT/ β -catenin signaling pathway are extensively investigated.

1.1.3.3.1 Transforming growth factor- β (TGF- β) and Bone morphogenetic proteins (BMPs) pathway

Transforming growth factor superfamily consists of more than 40 members including TGF- β isoforms, activins, and BMPs. These cytokines are crucial for various physiological process such as cell propagation, migration, differentiation, and extracellular matrix production [49].

TGF- β /BMPs proteins activate serine/threonine kinase receptor and transduce the signal through 2 distinct pathways, Smad dependent and independent pathway [50-52]. Phosphorylated Smad 2 and 3 are an effector of TGF- β , whereas Smad 1, 5, and 8 are stimulated by BMPs. These phosphorylated Smad proteins, then, bind with Smad 4 and translocate into nucleus. The complexes reveal a transcriptional activity by binding on their target DNA and stimulating gene expression (Figure 1.6). For Smad independent pathway, TGF- β transfers its signal via Jun Nterminal kinase (JNK), mitogen-activated protein kinases (MAPKs), and p38 pathway, while BMPs utilize TAK1 protein pathway as a signal transducer.

TGF- β is known as a chondrogenic differentiation factor [53]. Interestingly, the effect of this cytokine on bone formation seems to have conflict results. Mutation of this gene is responsible for Camurati-Engelmann disorder (CED), a genetic disorder associated with a heavily thickened bone [49]. Targeted disruption of *smad* 3 gene in mice has developed an abnormal synovial joint and spine, while the amount of hypertrophic chondrocytes in growth plate and articular cartilage has been

increased in mutant mice. These results have suggested that lacking of Smad 3 has been able to stimulate terminal differentiation of chondrocytes [54]. However, Mohammad and colleagues have found that inhibition of TGF- β receptor has increased bone mass and bone quality [55]. TGF- β has blocked the later phase of cell differentiation and mineralization [56-58]. Hence, TGF- β supports bone formation by recruiting osteoprogenitor cells, promoting cell proliferation, and inducing the early phase of differentiation process.

BMPs function in a variety of cell developmental process. They are well known as a major chondro/osteoblastic inducer [59]. The highest osteogenic potency BMPs are BMP2, 4, 5, 6, 7, and 9 [60]. Many targets of BMPs are osteoblastic transcription factors such as Runx2, OSX, DIx5, and Msx2. In addition, BMPs are able to up-regulate the production of OSC, collagens, and BSP. They also induce angiogenic factors synthesis such as vascular endothelial growth factor (VEGF) which can potentiate a new bone formation [61]. During bone fracture repair, exogenous BMP2 has stimulated both chondrogenesis and osteogenesis that have been found at the periosteum [62]. This phenomenon has implied that BMP2 has been able to regulate cell fate determination of periosteum stem cells. Mice lacking of Smad 1, 5, and 8 have a severe chondrodysplasia [63]. Therefore, BMP signaling is necessitated for endochondral bone formation.

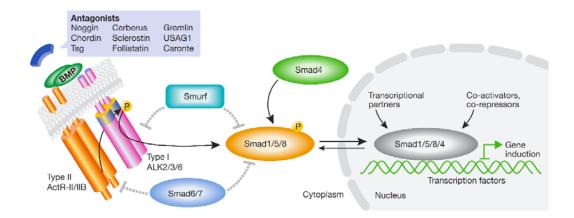


Figure 1.6: BMPs signal transduction pathway. BMPs bind a heterodimeric receptor and induce the intracellular signaling cascade. Group of phosphorylated Smad 1/5/8 and Smad 4 serves as a gene expression activator, whereas inhibitory Smads (Smad 6 and 7) and Smurf protein can block the intracellular signaling pathway. Receptor antagonists are listed in the figure [64].

1.1.3.3.2 Fibroblast growth factors (FGFs) pathway

The FGF family composes of 22 members that have amino acid identity about 30-70% and range in the size from 17 to 34 kilodalton (kDa) in vertebrate [65]. Among them, FGF2 or basic fibroblast growth factor (bFGF) is the most powerful factor for osteogenic cells. FGF2 regulates cell proliferation, tissue development, tissue repair, wound healing, and angiogenesis. FGF2 is known as a potent mitogen for stem cells. This growth factor has been able to maintain differentiation ability of bone marrow-derived MSCs and delay the senescence process of the cells [66, 67]. Many studies have proved that FGF2 has promoted distraction osteogenesis in rabbit model [68, 69]. Disruption of *fgf2* gene affects both bone mass and bone formation [70].

FGFs and FGF receptors (FGFRs) activate cell through protein kinase C (PKC), mitogen-activated protein (MAP), extracellular signal-regulated kinases (ERKs), and p38 MAP kinase [71]. These pathways are well known for controlling osteoblast replication, osteoblastic gene expression, and cell survival (Figure 1.7). Abnormalities in FGFRs involve in several skeletal disorders. For example, activation mutation of FGFR3 causes achondroplasia or dwarfism. Mutation of an extracellular part of FGFR2 receptor involves in the defect bone formation or premature skull suture closure in Apert syndrome, Crouzon syndrome, Jackson-Weiss syndrome, and Pfeiffer syndrome [72].

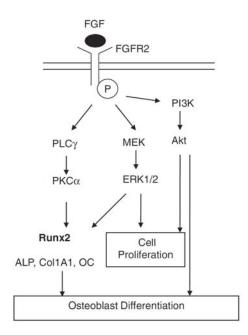


Figure 1.7: FGFs signaling cascade in osteoblasts. FGFs/FGFRs transduce signal via several pathways which responsible for cell proliferation and differentiation [71].

1.1.3.3.3 Insulin and insulin-like growth factors (IGFs) signaling pathway

Insulin and IGFs are actively associated with metabolism, growth, and development [73, 74]. Two IGFs have been identified including insulin-like growth factor-I (IGF-I) and insulin-like growth factor-II (IGF-II). In bone, IGF-II is the most abundant, but IGF-I has been found to be more potent. Intracellular signaling pathways of insulin and IGFs serve overlapping functions through phosphatidylinositol 3 kinase (PI3K)/Akt and MAPK pathway (Figure 1.8).

A number of studies have reported that insulin has improved bone formation by decreasing Runx2 inhibitor and inducing the production of OSC [74, 75]. The effects of IGFs have also shown to promote osteoblast proliferation and calvarial bone defect healing in a rat model. Insulin or IGFs deficiency contribute to the adverse effects on bone quality, such as reduced bone mineral density and increased risk of bone fracture. In addition, loss of their receptors in osteoblasts also cause retardation of bone formation, mineralization, and bone volume.

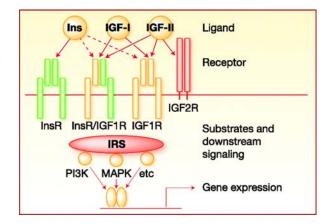


Figure 1.8 Simplified view of insulin/IGFs signaling crosstalk. Activation of insulin (InsR), IGFs (IGF1R and IGF2R), or hybrid (InsR/IGF1R) receptor tyrosine kinase subsequently phosphorylates Insulin receptor substrate (IRS) proteins creating signal transduction via effector molecules of PI3K/Akt and MAPK pathways. These signals stimulate variety downstream biological effects including gene expression, mitogenesis, and glucose metabolism [76].

1.1.3.3.4 Wingless and Int1 (WNT) pathway

The term of WNT is a combination of Wg and Int1, which stand for Wingless gene in Drosophila and gene from the integration site of mouse

mammary tumor virus, respectively. Secreted WNT proteins regulate many cellular processes, such as embryonic development and cell fate determination. WNT signaling is divided into 2 major pathways: canonical and non-canonical pathway [77].

 β -catenin is a central effector of WNT canonical pathway (Figure 1.9). In a resting stage, β -catenin is destroyed via a destruction complex of glycogen synthase kinase 3β (GSK3 β), axis inhibition protein 2 (AXIN2), casein kinase-1 (CK-1), and adenomatous polyposis coli (APC). This protein complex, then, phosphorylates β -catenin mediating proteasome digestion of β -catenin in cytoplasm. In the active stage, WNT proteins form a complex with firzzled (Fz) receptor and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6) co-receptor. Disheveled (DSH), then, binds to Fz and induces a protein complex formation of DSH, AXIN, GSK3 β , and APC. Activation of WNT receptor prevents β -catenin degradation. Consequently, β -catenin can accumulate in nucleus and interacts with T-cell factor/lymphoid enhancer factor (TCF/LEF) to stimulate target gene synthesis [78].

Effect of β -catenin on osteogenic cell differentiation depends on the stage of target cells [79]. Canonical WNT signal triggers an osteogenic lineage commitment of MSCs, but terminal differentiation of mature osteoblasts is inhibited by WNT ligand. It is concluded that β -catenin acts as a molecular switch of MSCs, as it inactivates progenitor cells committed to chondorgenic lineage instead of osteoblasts [80]. Moreover, target deletion of β -catenin in mice has showed a reduction in both endochondral and intramembranous bone in embryo. Enhanced in osteogenic differentiation is a result of an up-regulation of osteoblastic transcription factors, Runx2 and OSX by WNT signal.

WNT pathway is controlled by several inhibitors such as sclerostin, dickkopts (DKKs), secreted frizzled-related proteins (sFRPs), and WNT inhibitory factors [81]. *Dkk1*-overexpressing cells have failed to express *runx2* [82]. Conversely, fracture healing process of $sFRP^{-/-}$ mice has been accelerated [83].

For non-canonical WNT or β -catenin independent pathway, a signal transduction is due to calcium flux, planar cell polarity (PCP), and protein kinase A (PKA) pathway. The function of this pathway in bone formation, however, is still unclear [77].

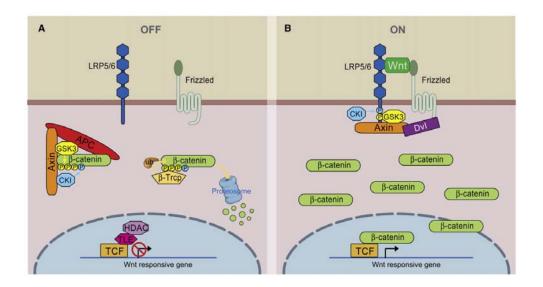


Figure 1.9: Canonical WNT signaling pathway. An activation of WNT/ β -catenin pathway by WNT proteins stabilizes β -catenin by blocking the ubiquitination degradation of β -catenin. Accumulated β -catenin and TCF/LEF complex, then, promotes target gene transcription [78].

1.1.3.4 Signaling crosstalk in bone development

The osteoblastic differentiation of stem cells is controlled by the action of transcription factors, cytokines, and hormones. By stimulating an intracellular signaling pathway, these molecules function in a precise time point, and their activation cascades appear in a complex system. There is a crosstalk among these signaling pathways. Here are some examples of relationships between the induction pathways which the whole picture still needs to be intensively studied.

BMP-induced osteoblastic differentiation has been inhibited by TGF- β . Moreover, addition of TGF- β to a confluent culture of rat calvarial cells has been able to block bone nodule formation, and down-regulate mRNA level of bone related gene, such as *bmp2*, *alp*, *osc*, and *col-I* [84].

 β -catenin and BMP2 have synergistically promoted osteoblast differentiation. Mbalaviele and coworkers have reported that β -catenin has constitutively activated by BMP2 in murine MSCs [85]. The groups have revealed that ALP activity,

osc gene expression, and mineralization matrix have been increased in BMP2 treated cells, while adipogenicity of the cells has been reduced. They have suggested that β -catenin has improved osteogenic capacity of the uncommitted cells. Therefore, these cells have been fully responded to the stimulating signal from BMP2. Moreover, progenitor cells derived from BMP2 deficient mice had reduced level of OSX and proteins in WNT signaling pathway (i.e. AXIN2, WNT1, and Lrp5) [86].

Runx2 expression has been regulated by BMPs and WNT pathway. BMP2 has positively up-regulated *runx2* expression level [26], and it has influenced the activity of Runx2 [87]. BMP2 has accelerated Runx2 acetylation which protected Runx2 from ubiquitination and degradation. In addition, Gaur and colleges have found that WNT/ β -catenin signaling has controlled osteogenic lineage commitment by stimulating the expression of *runx2* gene [88].

FGFs signaling pathway also crosstalks with WNT and BMPs pathway. Marked reduction of β -catenin and WNT10b mRNA and protein expression have been observed in *fgf2*^{-/-} mice, while exogenous FGF2 has been able to restored nuclear β -catenin level [89]. Effect of BMP2 on ectopic bone development has enhanced by the presence of low dose FGF2 [90]. Furthermore, FGF2 has been found to modulate *bmp2* gene expression through the activation of Runx2 [91].

1.1.4 Bone defects and treatment

1.1.4.1 Defects of bone tissue

Bone lost caused by trauma, infection or cancer is a complicate medical condition. Some of bone defects are a result of severe injury which the surrounding muscles and vascular tissues are also injured. Treatment of this condition, still, is a challenging task for orthopedic surgeon. Even though bone tissue can heal itself spontaneously, large defect still needs a medical intervention for appropriately restoration [92].

1.1.4.2 Bone fracture healing process

Fracture healing is an intricate event involving in 4 overlapping phases as revealed by a histological observation of human and animal model (Figure 1.10) [93-96]. These are, in chronological order, initial inflammation, formation of soft callus, hard callus development, and bone remodeling. This process takes more than 3 months to complete the healing. Aim of ongoing research is to clarify the fracture healing process in both cellular and molecular level. The understanding of this event can lead to an advance and effective treatment for patient.

Normally, bone fracture is associated with the damage of nearby tissues and the interruption of vascular function. These events lead to an inflammation cascade. An extravasation at the fracture site develops into hematoma during the first few hours. Then, platelets, macrophages, and inflammatory cells (such as lymphocytes, monocytes, granulocytes, and polymorphonuclear cells) migrate to the defected area. These cells secrete cytokines and factors that facilitate a recruitment of inflammatory cells and MSCs from periosteum, bone marrow, blood circulation, and surrounding tissues. Major signaling molecules that play a crucial role in this primary phase are tumor necrosis factor- α (TNF- α), cyclooxygenase-2 (COX-2), interleukins-1 (IL-1), IL-6, platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), FGFs, TGF- β , and BMPs. The second event of bone healing is soft callus or fibrocartilage formation. MSCs turn into chondrocytes which synthesize cartilaginous matrix and become cartilage, while fibroblasts replace a cartilage deficit region with fibrous tissue. In the final step of soft callus formation, chondrocytes become hypertrophy and mineralize before undergoing apoptosis. The proliferation and differentiation of fibroblast and chondrocytes are stimulated by many factors such as TGF- β , PDGF, FGF1, IGF, and BMPs family (BMP2, 4, 5, and 6). Angiogenesis also occurs in this step. The invasion of vascular endothelial cells into soft callus is controlled by VEGF, TGF- $\beta,$ BMPs, FGF1, and FGF2. Hard callus or primary bone formation is the next stage of fracture healing. A soft callus is gradually removed, while osteoprogenitor cells invade to this area through the neovascular. Osteoprogenitors subsequently mature to osteoblasts and osteocytes and form mineralized bone matrix which is known as hard callus. This process is recognized as endochondral ossification. Besides, hard callus can be formed

directly without first forming of cartilage. This process is known as intramembranous ossification. Most of fractures, nevertheless, heal by endochondral ossification process. BMPs and VEGF are up-regulated to stimulate an ossification and neo-angiogenesis, respectively. The final step of bone repair is the modifying of hard callus to original bone shape, structure, and mechanical strength. A neovascularization process is maintained, while the activity of osteoclasts is increased. They produce acid and proteinase to resorb the bone matrix. This phase is also known as a secondary bone formation.

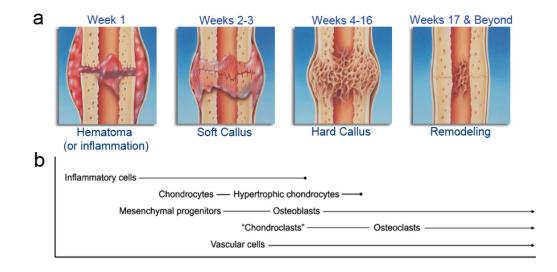


Figure 1.10: A four-stage model of fracture repair. (a) Chronological figures of fracture healing process. Inflammation response is immediately occurred followed by soft callus formation. Then, soft callus is replaced by hard callus. In the final step, hard bony callus is renovated to original bone structure. (b) A schematic of cellular contributions in fracture healing process [93].

1.1.4.3 Treatments of lost bone tissue

Treatment of damaged bone tissue requires a cast because broken bone needs to be set steadily. If there is a bone void, bone filler or bone graft will be used for small or large defects, respectively. Conventional therapy for severe bone injury is a surgical reconstruction which can be divided into 2 techniques: allografts and autografts. Allografts regularly use the tissue from other patients or cadaver. On the other hand, autografts utilize own tissue from another site of patient's body. Autografts may offer more advantages than allografts because it can reduce the risk of disease transmission and foreign graft rejection. Meanwhile, the successful of this method is hindered by the quality and amount of tissue supply. Autografts, however, can cause the donor site morbidity.

Since bone healing is a natural process, management of lost bone tissue is aimed to restore the scattered pieces of bone to their original position and maintain the correct pose along the intrinsic curative course. Bone healing takes about months to years depending on the severity of injury, associated vascular and tissue damage, method of treatment, and patients [97]. There are 6 million bone fracture patients reported each year in United States. However, approximately 5-10% of these do not heal properly [98, 99], and the rate of delayed or non-union fracture can be up to 40-100% for severe fracture.

1.1.5 Tissue engineering

1.1.5.1 The concept

In late 1980, Langer and Vacanti provided the concept of tissue engineering as "an interdisciplinary field that applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function" [100]. This strategy raises a great promise for lost bone tissue restoration. The principle of this technique for bone regeneration is the replacement of defected tissue using osteogenic cells controlled by osteoinductive factors and a proper material for creating suitable environment for the cells (Figure 1.11). Therefore, tissue engineering relies on 3 major components: osteoprogenitor cells, biomimetic/bioconductive scaffolds, and osteoinductive agents [101].

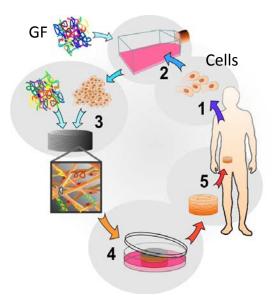


Figure 1.11: Concept of bone tissue engineering. Cells obtained from patient (1) are expanded (2) and seeded onto the scaffold (3). Growth factors (GF) are added in cell culture medium or the construct to enhance cell proliferation or induce osteogenic differentiation. Then, the construct (4) is implanted into the defect site (5) [102].

1.1.5.2 Osteogenic cells

One of the major components in bone tissue engineering is the osteogenic cells. However, methods used to prepare osteoblasts by either enzymatic digestion of bone tissue or explants culture are time consuming, and a yield is low [103, 104]. Besides, their proliferation potential is restricted. For these reasons, stem cells are more preferable. Mesenchymal stromal cells (MSCs) are an accessible source and have less ethical disagreement. They are non-hematopoietic multipotent stromal cells which can be obtained from many sources such as bone marrow, adipose tissue, and dental pulp. These cells exhibit the potential to become various cell sorts (Figure 1.4), including osteoblasts, chondroblasts, myoblasts, and adipocytes [105]. The quantity of MSCs, however, is very low. For example, stem cells comprise about 1 cell in 10^4 - 10^5 of bone marrow cell population [106-108]. They also lose their osteogenic capability

following culture and expansion [109]. Because MSCs are multipotent, culturing in a common condition may lead to a mixed cell phenotype. Moreover, glucocorticoid and ascorbic acid which are used as an inducer of osteogenesis are not specific for bone cells [110-112]. Hence, the method that can increase cell proliferation and maintain their osteogenic potential need to be investigated.

1.1.5.3 Scaffolds

Bone scaffold is developed under the concept of biocompatible and biodegradable. Ideal scaffold material should create an appropriate surrounding for bone cells and support capillary ingrowth (osteoconduction). It should favor cellular attachment and differentiation along the osteogenic lineage (osteoinduction). To generate a new bone properly, there must be a suitable porosity inside a scaffold for nutrient supply, waste removal, and vascularization. Moreover, it must be resorbable for newly formed tissue replacement [113]. Numerous materials, including bioactive ceramics, natural polymers, synthetic polymers, and the composite, have been fabricated. Chemical composition of the most widely used ceramics, tricalcium phosphate (TCP) and HA, are like the mineral bone matrix. They show an osteoconductive and osteoinductive properties. Although, HA and TCP provide sufficient mechanical strength of non-load bearing, they remain unchanged after 5 years of implantation [114]. Natural polymers (such as collagen, fibrin, chitosan, etc.) provide an innate biological environment for bone cells, but they are poor in mechanical stability [115]. Synthetic polymers such as polylactide (PLA), polycaprolactone (PCL), and poly(lactide-co-glycolide) (PLGA) copolymers can easily be chemically modified and controlled a degradation rate [116]. Moreover, they exhibit reproducible and predictable mechanical and physical properties. Nevertheless, their harmful degradation products, especially acidic substances, affect cell growth and induce inflammatory response. Nowadays, composite scaffold materials are considerably developed. Combination of 2 or more types of materials gives advantageous properties and counteracts poor features of each substance.

1.1.5.4 Growth factors

Bone repair process is likely organized by numerous cytokines and growth factors, so the successfulness of bone reconstruction using tissue engineering strategy requires an earnest consideration of these osteoinductive molecules. As discussed above, multiple factors interact with many cell types during the healing process. Growth factors work cooperatively or antagonistically at distinct stages of bone development. For instant, VEGF and BMP4 synergistically enhance the recruitment of MSCs and augment cartilage formation and resorption [117]. Interestingly, simultaneous treatment of primary calvarial bone cells with recombinant human FGF2 and recombinant human BMP2 failed to develop mineralized nodules, but sequential treatment stimulated mineralization [118]. Thus, a comprehensive exploration on the osteogenic activity of these factors needs to be elucidated.

1.2 Research rationale

Bone tissue engineering is a promising tool for reconstruction of damaged skeleton tissue. This strategy integrates a number of knowledge on molecular biology, cell biology, biochemistry, tissue engineering, material science, and medical transplantation. However, the application of this multidisciplinary science in clinics have not proceeded due to several limitations relating to the key components of this technique, such as osteogenic cells, scaffolds, and growth factors [101]. This study was focused to overcome the restrictions on the acquirement of osteogenic cells by using bone growth factors that potentiate their osteogenicity.

MSCs and ordinary bone cells (osteoblasts) are essential for bone regeneration. In contrast to MSCs, osteoblasts have a limited proliferation potential when subcultured [103]. MSCs exhibit capability to give rise to diverse tissues, including bone, cartilage, adipose tissue, tendon and muscle [105]. However, there is a restricted numbers of MSCs in human body. On *in vitro* expansion, the cells strongly lose potential [107, 109]. Since conditions for culturing these cells have been varied among research groups, and being difficult to compare [119, 120], this study was thus aimed to increase proliferation

capacity while maintaining their osteogenic potential as long as possible upon subculturing.

The medium supplemented with glucocorticoid (such as dexamethasone), ascorbic acid (AA), and β -glycerophosphate (β -GP) has been wildly used as an osteogenic culture medium [121]. This condition, however, is not specific for only osteogenic lineage, and the culture period can prolong to several weeks. The cell culture system using specific osteogenic induction factors is of interest. Since bone related growth factors are crucial in during MSCs to be differentiated into bone, it was necessary to choose the best one with an effective cost when applied clinically. Experimental evidences have shown that FGF2 has been critical for bone fracture healing [68, 69]. FGF2 has been reported to increase cell proliferation while maintaining the differentiation ability of bone marrow-derived MSCs [66, 67]. Nonetheless, economically limitation and incomplete activation pathway of FGF2 are major drawbacks of its clinical application. To improve an osteogenic culture system for MSCs, insulin becomes another induction factor, as its effects on osteo-chondroblastic cell proliferation and differentiation have been reported [75, 122]. It is postulated that cost of the treatment using insulin will be more economically-friendly than FGF2. In this study, the effects of FGF2, insulin, and their combination on stromal cell proliferation and osteogenic differentiation were compared. In vitro and in vivo experiments were carried out to evaluate the effectiveness of the developed conditions.

This study is also proposed to clarify the signal transduction pathways that control the differentiation of MSCs. Many publications strongly indicated that there is a complexity in cell signaling crosstalk between several pathways, and the coordination of these pathway is necessary to be well organized and balanced. To my knowledge, FGF2 and insulin pathway involve and are affected by others, as well. Whether FGF2 and insulin controls MSCs differentiation by activating *runx2* transcription and WNT pathway will be proven. To determine how these factors work, genetic approach and reporter gene assay will be applied. Identification of downstream FGF2 and insulin cascade may support the clinical use of these proteins in the future.

1.3 Objectives

The objectives of this work are

- 1) To establish the cost-effectiveness induction condition for MSCs osteogenic differentiation.
- To explore the molecular mechanisms of FGF2 and insulin on bone formation.
- To develop the potential therapeutic approach for the repair and regeneration of injured skeleton tissue.

CHAPTER 2

RESEARCH METHODOLOGY

2.1 Materials

2.1.1 General reagents

FGF2 was received from Merck (Darmstadt, Germany). Insulin was purchased from Novo Nordisk Pharmaceuticals Ltd. (Auckland, New Zealand). BMP2 and BMP7 were obtained from BioVision (Mountain View, CA, USA). Ascorbic acid (AA), triamcinolone acetonide (TA), β -glycerophosphate (β -GP), dimethyl sulfoxide (DMSO), Triton X-100, magnesium chloride (MgCl₂), ammonium acetate, and sodium dodecyl sulfate (SDS) were bought from Sigma-Aldrich (St. Louis, MO, USA). DNase/RNase free water, tris base, and dimethylformamide were purchased from Amresco (Solon, OH, USA). Sodium chloride (NaCl) was supplied from Lab-Scan Co., Ltd. (Bangkok, Thailand). Ethylenediamine tetra-acetic acid (EDTA) was received from Ajax Finechem Pty. Ltd. (Australia).

2.1.2 Reagents for cell isolation, culture, and characterization

Dulbecco's phosphate buffer saline (DPBS), Dulbecco's modified eagle medium: nutrient mixture F-12 (DMEM/F-12), minimum essential medium α medium (α -MEM), fetal bovine serum (FBS), 0.5% trypsin-EDTA (10x), and 100x antibioticantimycotic (10,000 units/mL of penicillin, 10,000 µg/mL of streptomycin, and 25 µg/mL of Fungizone[®]) solution were received from GibcoTM Invitrogen Corporation (Grand Island, NY, USA). Heparin (5,000 i.u./u.i./ml) was supplied from LEO Pharmaceutical Products (Ballerup, Denmark). Ficoll-Paque Plus was bought from GE Healthcare Bio-Sciences (Uppsala, Sweden). LymphoprepTM solution was obtained from Axis-shield (Oslo, Norway). Fluorescence-conjugated antibodies targeted against HLA-DR, CD10, CD13, CD14, CD29, CD34, CD44, CD45, CD73, and CD90 were purchased from BD Biosciences (San Jose, CA, USA).

2.1.3 Reagents for *in vitro* evaluation of induction conditions

MTT reagent and para-nitrophenyl phosphate (pNPP) were bought from Sigma-Aldrich (St. Louis, MO, USA). Tri Reagent[®] was supplied from Molecular Research Center, Inc. (Cincinnati, OH, USA). Qubit[™] dsDNA BR assay kits, SuperScript III first-strand synthesis, and SuperMix kit for two-step quantitative RT-PCR were received from Invitrogen (Carlsbad, CA, USA). RevoScript[™] RT premix (oligo (dT)15 Primer) was purchased from Intron Biotechnology (Gyeonggi-do, Korea). iScript Q PCR kit with SYBR Green was provided from Bio-Rad Laboratories (Hercules, CA, USA). Brilliant II SYBR[®] Green QPCR master mix was obtained from Agilent Technologies, Inc. (La Jolla, CA, USA). Complete protease inhibitor cocktail tablets was supplied from Roche (Mannheim, Germany). Pierce[®] BCA protein assay kit was purchased from Pierce (Rockford, IL, USA). Alizarin red s was bought from Sigma-Aldrich (St. Louis, MO, USA). Quantikine[®] BMP2 ELISA kit was provided from R&D Systems Inc. (Minneapolis, MN, USA).

2.1.4 Reagents for in vivo experiment

Xylazine (20 mg/ml) was received from Thai Nakorn Patana (Nonthaburi, Thailand). Zoletil[®] 100 (50 mg/ml Tiletamine and 50 mg/ml Zolazepam) was obtained from Virbac Pty Limited (Australia). Paraformaldehyde, sodium sulfate, alizarin red s, Meyer's hematoxylin solution, and eosin aqueous solution were bought from Sigma-Aldrich (St. Louis, MO, USA). Formic acid was supplied from Fisher Scientific UK (Leics, UK). Xylene, acetone, and sodium sulfate were purchased from RCI Labscan Limited (Bangkok, Thailand)

2.1.5 Reagents for plasmid construction

Taq DNA polymerase was purchased from Intron Biotechnology (Gyeonggi-do, Korea). X-gal was provided from Promega (Madison, WI, USA). Isopropyl β -D-1-thiogalactopyranoside (IPTG) was obtained from United States Biological, Inc. (Swampscott, MA, USA). HIT Competent CellsTM *E. coli* strain DH5 α was supplied from RBC Bioscience Corp. (New Taipei City, Taiwan). LB broth was received from Lab M Limited (Lancashire, UK). Bacteriological agar powder was provided from Bio Basic Inc (Amherst, NY, USA). NucleoSpin[®] plasmid and NucleoSpin[®] extract II were bought from Macherey-Nagel (Duren, Germany). Novel juice (6X Loading Buffer) was purchased from GeneDireX (Las Vegas City, NV, USA). DNA molecular weight marker XIV 100–1500 base pair (bp) was bought from Roche (Mannheim, Germany). One kb DNA ladder was received from SibEnzyme Ltd. (West Roxbury, MA, USA). Proteinase K, *Kpnl, Bg/II, Nhel*, T4 DNA ligase, and 1 kb DNA ladder were obtained from New England Biolabs, Inc. (Ipswich, MA, USA). Plasmids were received from Promega (Madison, WI, USA).

2.1.5.1 Plasmids

2.1.5.1.1 pGEM[®]-T easy vector

pGEM[®]-T easy vector was utilized as a cloning vector because T-overhangs at the insertion site (Figure 2.1) afford the ligation of PCR product. It also contains ampicillin resistance gene (Amp^r) and coding sequence of β -galactosidase (*lacZ*) which will be disrupted by the insertion of target DNA. Therefore, blue/white colony and ampicillin agar selection are applicable for positive clone screening.

2.1.5.1.2 pGL3-Promoter vector

pGL3-Promoter vector was used as an experimental reporter vector. To evaluate the proficiency of gene regulatory element, DNA fragments of interest were inserted at the upstream of promoter-*luciferase*+ transcriptional unit (*luc*+) (Figure 2.2) where the transcription of firefly luciferase gene was under the control of DNA insert and SV40 promoter. With the present of ampicillin resistance gene, positive clone identification can be selected using ampicillin as a selection marker.

2.1.5.1.3 pGL3-Control vector

pGL3-Control vector (Figure 2.3) contains SV40 promoter, firefly luciferase gene transcriptional unit, and SV40 enhancer sequence which can influence the strong expression of luciferase enzyme. Thus, it is applicable for inspecting of transcriptional activity in transfected eukaryotic cells. In this study, pGL3-Control vector was utilized for transfection efficiency monitoring in the optimization process.

2.1.5.1.4 pRL-SV40 vector

The pRL-SV40 vector contains a cDNA encoding for *Renilla* luciferase (*Rluc*) (Figure 2.4) which was applied as an internal control of transfection experiment. In a co-transfection with pGL3 reporter vector, the expression of experimental firefly luciferase was normalized with *Renilla* luciferase to reduce the variations in transfection efficiency.

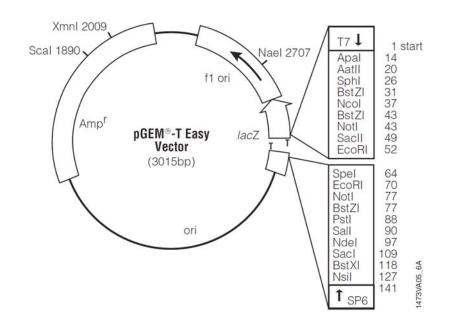


Figure 2.1: Circular map of pGEM[®]-T easy vector.

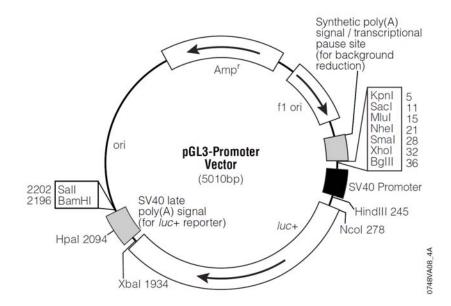


Figure 2.2: Circular map of pGL3-Promoter vector.

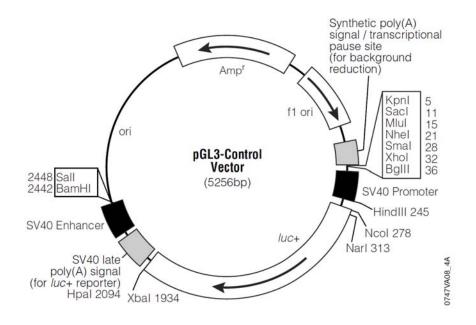


Figure 2.3: Circular map of pGL3-Control vector.

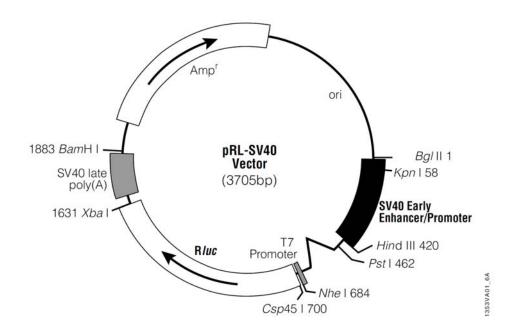


Figure 2.4: Circular map of pRL-SV40 vector.

2.1.6 Reagents for transfection experiment

QIAGEN plasmid midi and maxi kits was supplied from QIAGEN (Hilden, Germany). FuGENE[®] 6 transfection reagent was bought from Roche (Mannheim, Germany). Dual-Luciferase[®] reporter assay system was received from Promega (Madison, WI, USA).

2.1.7 Laboratory animal

Two-month-old male Wistar rats were used in this study. Rats were anesthetized by intramuscular injection using a mixture of 1: 1 volume ratio of xylazine (20 mg/ml) and Zoletil[®] (100 mg/ml) with a 0.2 ml per 250 gram body weight. When the experiment was completed, the animals were sacrificed by cervical dislocation. Care and use of laboratory animals was performed following the laboratory animal facility unit guideline of the Animal Ethic Committee, PSU.

2.1.8 Primers and oligonucleotides

The oligonucleotides used in this study were synthesized by Bio Basic Canada Inc. (Canada). Primers for DNA sequencing, *runx2* regulatory element cloning, real-time PCR, and tandem repeat of transcription factor binding site were summarized in the tables below.

Table 2.1:	Sequences of oligonucleotides and annealing temperatures. The primers for runx2 regulatory element were designed based
	on NCBI reference sequence database number NC_005108, and contain KpnI and NheI restriction sites (underlined).

Primers	Sequence (5'> 3')	Annealing temperature (°C)
DNA sequencing p	rimers	
Т7	TAA TAC GAC TCA CTA TAG GG	56
SP6	ATT TAg gTg ACA CTA TAg	48
U345-SEQ	gTg Agg CCT TCC Tgg CAT TCA	58
U1291-SEQ	ACA TAC TCT gTC TgC gTg CA	58
LUC-F	ACT gTT ggg AAg ggC gAT	56
LUC-R	Agg AAC CAg ggC gTA TCT C	56

Table 2.1 (Continued)

Primers	Sequence (5'> 3')	Annealing temperature (°C)
Insertion analysis pri	mers	
ap1-LUC	gAT CTC TgA CTC ATg gTA C	48
<i>sry-</i> LUC	gTA CTT TTg TTT ggT AC	50
Primers for runx2 reg	ulatory element cloning	
runx2-U1557	TCT gAg Tgg CgT ggA TAA ATg gC	57.5
runx2-97	Tgg CTg gTA gTg ACC TgC A	57.5
runx2-KPNI-U796	CgC <u>ggT ACC</u> TTA CAg TCA ATC CCg gCA Agg	64
runx2-NHEI-U73	gCC <u>gCT AgC</u> CAT gTg gTT TgT gAC CTC ACA g	64
runx2-KPNI-U1526	CgC <u>ggT ACC</u> Agg AAA TTg gTC TgC TCg CCT	58
runx2-NHEI-U630	gCC <u>gCT AgC</u> gTg ggT CAC ATC TTg ggA TTg	58

Nome of some [seference]		Drimer converse $(5^2 > 2^2)$	NCBI Reference	Product	Annealing
Name of gene [reference]		Primer sequence (5'> 3')	Sequence	size (bp)	temperature (°C)
Reference gene					
Human <i>gapdh</i> [123]	F	TCC CTg AgC TgA ACg ggA Ag	NM_002046	218	60
	R	ggA ggA gTg ggT gTC gCT gT			
Rat gapdh [124]	F	ACC ACA gTC CAT gCC ATC AC	NM_017008	179	59
	R	ACA Cgg AAg gCC ATg CCA gTg			
Stem cell-associated gene					
Human <i>fgf</i> 4 [125]	F	gAT gAg TgC ACg TTC AAg gA	NM_002007	118	60
	R	ggT TCC CCT TCT Tgg TCT TC			
Human <i>nanog</i> [126]	F	CTg TGA TTT gTg ggC CTg AA	NM_024865	151	60
	R	TgT TTg CCT TTg ggA CTg gT			
Human <i>oct4</i> [127]	F	AAg gAT gTg gTC CgA gTg Tg	NM_002701	180	60
	R	gAA gTg Agg gCT CCC ATA gC			
Human <i>sox2</i> [126, 127]	F	TTA CCT CTT CCT CCC ACT CCA	NM_003106	132	60
	R	ggT AgT gCT ggg ACA TgT gAA			

 Table 2.2:
 Real-time PCR primers. F and R stand for forward and reverse primer, respectively.

Table 2.2	(Continued)
-----------	-------------

Nome of some [seference]	Primer sequence (5'> 3')					21)		NCBI Reference	Product	Annealing
Name of gene [reference]								Sequence	size (bp)	temperature (°C)
Human <i>bst1</i> [127]	F	CgA TTA CO	CA ATC	CTg	CCC	TA		NM_004334	154	60
	R	TTT gAT g	g ATA	ggC	TCC	Tg				
Human <i>tert</i> [125]	F	AgA gTg T(CT ggA	gCA	AgT	TgC		NM_198253	183	60
	R	CgT AgT C	CA TgT	TCA	CAA	CCg				
Human <i>rex1</i> [126]	F	AAA ggT T	T CgA	AgC	Aag	CTC		NM_174900	185	60
	R	CTg CgA g(CT gTT	TAg	gAT	CTg				
Osteogenic gene										
Human <i>runx2</i> [128]	F	gCA gTT C	CC AAg	CAT	TTC	ATC		NM_001024630	182	60
	R	CAC TCT g	JC TTT	aaa	AAG	Ag				
Human osc	F	gTg CAg Ag	gT CCA	gCA	AAg	gТ		NM_199173	191	60
	R	CTg AAA g(CC gAT	gTg	gTC	Ag				
Human <i>osp</i>	F	CAC CTg Tg	gC CAT	ACC	AgT	TAA	AC	NM_001040058	220	60
	R	ATC CAT g	g gTC	ATg	gCT	TT				
Human <i>bsp</i>	F	ggg CAC C	C gAA	gAC	AAC	AA		NM_004967	209	60
	R	CTC ggT A	AT TgT	CCC	CAC	gA				

Table 2.2	(Continued)
-----------	-------------

Nome of some Instances		Primer sequence $(5^{2} - 2^{3})$				NCBI	Reference	Product	Annealing		
Name of gene [reference]		Primer sequence (5'> 3')							quence	size (bp)	temperature (°C)
Human <i>alp</i> [129]	F	gTA CTg	gCg	AgA	CCA	AgC	gCA	NM_	_000478	200	60
	R	Agg ggA	ACT	TgT	CCA	TCT	CC				
Rat <i>runx2</i>	F	ACA ACC	ACA	gAA	CCA	CAA	g	NM_0	01278483	106	55
	R	TCT Cgg	Tgg	CTg	gTA	gTg	A				
Rat osx	F	AAC Tgg	CTT	TTC	TgT	ggC	A	NM_0	01037632	237	57
	R	Cgg CTg	ATT	ggC	TTC	TTC	Т				
Rat bmp7	F	gAC AgA	TTA	CAg	ACT	CCC	ACA	XM_	_342591	215	54
	R	gTT gAT	gAA	gTg	AAC	CAg	ТдТ				
Rat axin2	F	ACg AgT	CAg	CCg	gCA	CCA	TC	NM_	_024355	165	57
	R	Tgg ggC	TTT	gAC	ACC	TCg	gC				
Rat dkk1	F	gCT gCC	CCg	ggA	ATT	ACT	gCA	NM_0	01106350	422	56
	R	gTg TCT	СТд	gCA	ggT	gTg	gAg C				
Rat eta -catenin	F	CgC CTT	TgC	aaa	AAC	Agg	gT	NM_	_053357	121	57
	R	Cgg ACg	CCC	TCC	ACg	AAC	Tg				

Table 2.3:The synthesized oligonucleotides for the transcription factor binding site. Sense and antisense strands were designed for
perfect ligation. In the reverse strand, five tandem repeats of consensus binding site (5X CTgACTCAT and 5X TTTgTTT)
were generated with a restriction enzyme overhangs. Overhangs of *Bg/*II at 5'-end and *Kpn*I at 3'-end were underlined.

Name of the oligonucleotide	Synthesized consensus binding site (Sequence 5'> 3')	Synthesized reverse strand (5X tandem repeats) (Sequence 5'> 3')
5Xap1	ATGAGTCAG	<u>gat CT</u> C tga CTC atC tga CTC atC tga CTC atC tga CTC atC tga CTC atg gta C
5Xsry	АААСААА	<u>gat Ct</u> t Ttg Ttt Ttt gtt ttt tgt ttt ttg ttt ttt

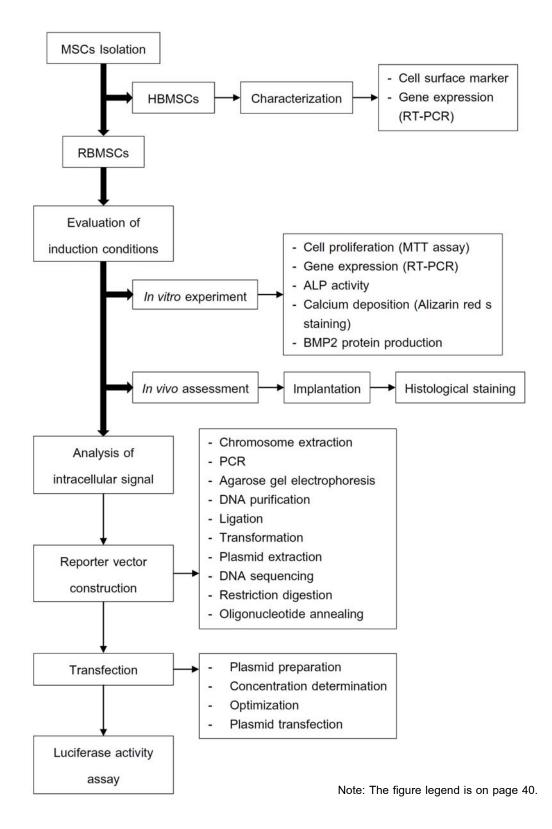


Figure 2.5: Experimental workflow. Bone marrow-derived MSCs were applied as a cell model in this study. First of all, the isolation of stem cells form human (HBMSCs) and rat (RBMSCs) bone marrow aspirate were achieved. HBMSCs were then subjected for characterization, and the cells were used for preliminary evaluation of osteogenic induction. The cell surface marker and gene expression profile were studied. RBMSCs were grown in the experimental culture conditions. Both *in vitro* and *in vivo* assessment were carried out to appraise the effect of induction factors. Finally, intracellular signaling pathway of the growth factors was analyzed using luciferase reporter assay.

2.3 Methods

2.3.1 MSCs isolation and culture

Bone marrow-derived MSCs were used in this experiment. However, the major obstacles limiting the clinical use of MSCs are the lack of standardized protocols to separate the cells and their heterogeneous population which results in poor reproducibility of clinical outcome. Thus, monitoring of stem cell biomarkers will improve the understanding of their biology and lead to their application in regenerative medicine.

In this study, the density gradient technique was used to isolate the MSCs from bone marrow aspirate, and the cell surface markers were identified by flow cytometry. The isolated cells were cultured, expanded, and stored for further experiments using aseptic cell culture technique.

2.3.1.1 Human bone marrow-derived MSCs (HBMSCs) isolation

Remnant bone marrow samples were aspirated from patients who had hematological disorder without malignancy at Hematology Laboratory, Hospital Universiti Kebangsaan Malaysia. The patients were signed consent before their bone marrow samples were taken for the study. Bone marrow-derived MSCs were isolated using ficoll solution by diluting the bone marrow with DPBS at a ratio of 1:1, and the mixture was layered over to the same volume of ficoll solution. After that, the samples was centrifuged at 2,000 rpm for 20 minutes at room temperature. The mononuclear cell layer at the liquid interface was collected and suspended in DPBS. The cells were precipitated by centrifugation at 6,000 rpm for 5 minutes. The aqueous layer was discarded and the cells were resuspended in DMEM/F-12 consisting of 10% FBS and 1% penicillin/streptomycin/amphotericin B. The cells were cultured in T-25 flask. Two days later, the medium was changed to remove the nonadherent cells. The culture condition was 37°C, 5% carbon dioxide, and 95% humidity.

2.3.1.2 Rat bone marrow-derived MSCs (RBMSCs) isolation

Bone marrow from femur and tibia bone of rats were aspirated and diluted with α -MEM containing heparin (10 units per 1 ml medium). MSCs were separated using density gradient technique. Equal volume of sample was layered over LymphoprepTM solution. Mononuclear cells at the interphase layer was collected after centrifugation at 800xg for 30 minutes at room temperature. Then, the cells were washed with DPBS and resuspended in α -MEM containing 10% FBS. The cells were cultured in T-25 flask. The nonadherent cells were removed on the next day by exchanging the culture medium. The culture condition was 37°C, 5% carbon dioxide, and 95% humidity.

2.3.1.3 Cell culture technique

2.3.1.3.1 Medium changing

The old medium was regularly replaced by the new one every 2-3 days. The procedures were in the following: supernatant was decanted from the flask. The cells were washed with DPBS prior to adding the new medium. Medium volume for each culture vessel was shown in Table 2.4.

Culture vessel	Surface area	Culture	0.25x trypsin in
	(cm²)	medium (ml)	DPBS (ml)
48-well plate	1	0.25-0.5	0.1
24-well plate	2	0.5	0.25
12-well plate	4	1	0.5
6-well plate	9.6	2	1
T-25 flask	25	3-5	2
T-75 flask	75	8-15	4

Table 2.4:Surface area of the culture vessel, the volumes of culture medium, and
the volumes of trypsin used for trypsinization.

2.3.1.3.2 Subculture

When the adherent cells reached 80-90% confluence, they were subcultured using 0.25x trypsin solution in DPBS. Cell culture medium was aspirated. The cells were washed with DPBS and incubated with diluted trypsin solution at 37°C for 3-5 minutes (volume of trypsin solution per culture flask was described in Table 2.4). Trypsinization was terminated by adding 2-3 volumes of medium containing serum. Detached cells were gathered by centrifugation at 800xg for 5 minutes. The cells were washed again with DPBS before they were plated into a new culture vessel.

2.3.1.3.3 Cryopreservation

To preserve the cells, the adherent cells were trypsinized and prepared for cryostorage. They were resuspended in medium containing 20% FBS and 5% DMSO to a concentration of 1-2x10⁶ cells per 1 ml per cryotube. The cells, then, were immediately frozen in liquid nitrogen tank for permanent storage.

2.3.1.3.4 Thawing and recovering of frozen stock

To recover the cells from cryostorage, cryotube was taken from liquid nitrogen tank and immediately immersed in a 37°C waterbath. After the stock was thawed, cell suspension was diluted with 10 ml of fresh medium. To remove DMSO, the suspension were centrifuged at 800xg for 5 minutes, and the cell pellet was collected. Finally, the cells were suspended in the medium and plated in a culture vessel.

2.3.2 HBMSCs characterization and osteogenic induction

To ensure the purity of the isolated HBMSCs, pattern of cell surface antigens were examined using flow cytometric analysis. The verified HBMSCs were then used for preliminary study of osteogenic induction. Since the sequential induction of 2.5 ng/ml FGF2 and 10 ng/ml BMP2 have shown to stimulate cell proliferation and osteogenic differentiation of rat MSCs within 7 days [130], the conditions were then used to investigate its impact on proliferation and differentiation of HBMSCs in this study. The acquired results would be an important information for osteogenic differentiation of stem cells from any sources in the future.

2.3.2.1 Flow cytometry

Flow cytometry is a laser-based biological technique employed for studying the information about each individual cell. By suspending the cells in a stream of fluid and force a single cell passes through a laser beam, the emerged light from each cell is captured (Figure 2.6). The data can be analyzed and reported as a cellular characteristic such as size, granularity, and phenotype. The general use of flow cytometry for determining cell property involves the use of fluorescent molecules. By using fluorescent-tagged antibody, cell surface antigen can be detected. The expression pattern of cell surface proteins is a useful information for cell type identification. For example, MSCs often express CD29, CD44, CD73, and CD90 and they do not present the hematopoietic markers such as CD14, CD34, and CD45 [131, 132]. Surface antigen characteristic of the isolated HBMSCs were identified in this study. Three colors flow cytometric detection was carried out using a BD FACSCalibur (Becton Dickinson, San Jose, CA, USA). Following CD markers were applied: phycoerythrin-conjugated (PE), perdinin chlorophyll protein-conjugated (PerCP), and fluorescence isothiocyanate-conjugated (FITC) antibodies targeted against HLA-DR, CD10, CD13, CD14, CD29, CD34, CD44, CD45, CD73, and CD90. Data analysis was evaluated by CellQuest[™] Pro software (Becton Dickinson).

For sample preparation, the cells were resuspended in DPBS containing 1% FBS and divided to $5x10^5$ cells per 50 µl per 1 reaction tube. Each reaction, then, was incubated with 1 to 3 types of fluorescent-tagged antibody at room temperature for 30 minutes, protected from light. Unbound antibody was removed by washing with DPBS. After centrifugation at 800xg for 5 minutes, cells were resuspended in 1 ml of DPBS containing 1% FBS. Finally, they were analyzed by flow cytometer. Samples could be fixed with 4% paraformaldehyde for further analysis.

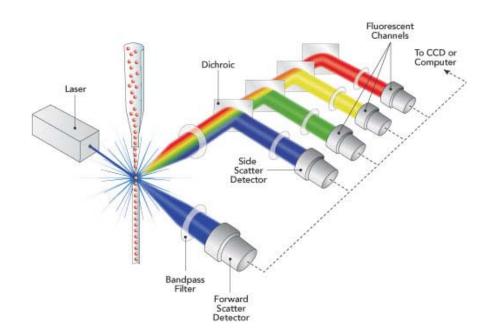


Figure 2.6: Schematic configuration of flow cytometer. The single cells flow through the flow chamber and pass the laser beam. Dichroic and filter gather and direct the emerged light to the specific light or fluorescent detectors. All signals are converted to digital data by computer system [133].

2.3.2.2 Induction of HBMSCs using FGF2 and BMP2

To evaluate the osteogenic differentiation of HBMSCs, sequential induction using FGF2 (2.5 ng/ml) and BMP2 (10 ng/ml) was used. HBMSCs were starved in DMEM/F12 supplemented with 2% FBS for 1 day, incubated with the medium containing FGF2 for 1 day, and starved again for 2 days. This was followed by the challenge with BMP2 for 1 day, and the expression of stem cell-specific genes and osteogenic genes were investigated. The schematic induction conditions and the time periods for measuring the gene expression was summarized in Figure 2.7.

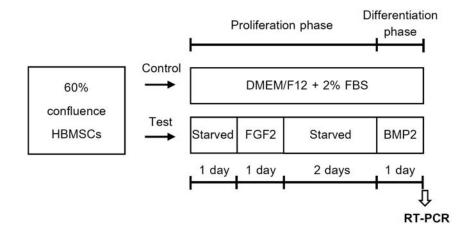


Figure 2.7: Induction scheme of HBMSCs. The cells of passage 2 at 60% confluence were starved in DMEM/F12 plus 2% FBS for 1 day, followed by the incubation with the medium containing FGF2 (2.5 ng/ml) for 1 day. The cells were starved for another 2 days and induced by 10 ng/ml BMP2 for 1 day. For the control, the cells were grown in DMEM/F12 supplemented with 2% FBS along the mentioned period. The expression level of stem cell-specific genes and that of osteogenic gene markers were determined and compared.

2.3.2.3 Determination of the gene expression levels using real-time PCR (RT-PCR) technique

Real-time PCR (RT-PCR) is a technique for quantification of transcription levels of the genes of interest. The method is based on recording the amount of PCR product in real time during the progression of PCR reaction using complementary DNA (cDNA) as a template. The expression level of the target genes was calculated as a fold change relative to that of an internal reference gene. Statistical analysis was performed by using one-way analysis of variance (ANOVA).

The pluripotency and self-renewal property of the stem cells have been reported to be controlled by many transcription factors and proteins. Since, octamer-binding transcription factor 4 (OCT4), SRY-related high mobility group (HMG) box 2 (SOX2), and Nanog have been indicated as a key transcriptional regulators of stem cells [134], it is important in this study to investigate these gene markers in HBMSCs. The cells of passage 2 and 5 were used for the test, and the results were evaluated during the cell expansion taking place.

To evaluate the osteogenic induction, HBMSCs of passage 2 were induced with FGF2 for 1 day followed by BMP2 for 1 day (Figure 2.7). The osteogenic markers were quantified by RT-PCR. The genes to be examined included *runx2*, *alp*, *osc*, *osp*, and *bsp* (Table 2.2).

2.3.2.3.1 Extraction of total RNA

Total RNA was separated from the cells of passage 2 and 5 grown in T-25 flask using Tri Reagent[®] according to the supplier's instruction. After the culture medium was aspirated, 2.5 ml of Tri Reagent[®] was directly added into the flask to lyse the cells. A 0.5 ml chloroform was added in the cell homogenate, mixed robustly for 15 seconds, incubated for 15 minutes at room temperature, and centrifuged at 12,000xg for 15 minutes at 4°C. Aqueous upper phase was collected and mixed with 1.25 ml isopropanol. After centrifugation at 12,000xg for 10 minutes at 4°C, total RNA was obtained. The RNA precipitate was washed with 75% ethanol by

centrifugation at 7,500xg for 5 minutes at 4°C. The RNA pellet was left for air-dry, dissolved with 20 µl of DNase/RNase free water, and converted to be cDNA.

2.3.2.3.2 cDNA synthesis

Total RNA was converted to be cDNA by using SuperScript III first-strand synthesis supermix kit (Invitrogen). It is a two-step quantitative RT-PCR kit. Components of which were shown in Table 2.5. The procedures were in according with the manufacturer. Briefly, the reaction of cDNA synthesis was conducted at 50°C for 30 minutes, but inactivated by heating at 85°C for 5 minutes. The synthesized product was kept at -20°C until use.

Table 2.5: The components for cDNA synthesis.

Components	Volume	Final concentration		
SuperScript III reaction mixture (2x)	10 µl	1x		
Reverse transcriptase enzyme mix (50 U/µI)	2 µl	5 U/µl		
Template RNA (0.5 μg/μl)	5 µl	0.125 µg/µl		
DNase/RNase free water	3 µl	-		
Total volume	20 µl			

2.3.2.3.3 RT-PCR conditions of HBMSCs

The RNA expression levels were quantified using iScript Q PCR kit with SYBR Green (Bio-rad). Components of the reaction were shown in Table 2.6. The RT-PCR template was the cDNA converted from total RNA (experiment 2.3.2.3.2). The experiment was performed on MyiQ single-color real-time PCR detection system (Bio-rad), and the data were analyzed by iQ5 optical system software version 2.0 (Bio-rad). The thermal cycles consisted of 40 cycles of denaturation at 95°C for 10 seconds and annealing at 60°C for 30 seconds. Then,

melting pattern for a gene was detected. Its expression level was calculated and normalized by that of the reference gene (glyceraldehyde 3-phosphate dehydrogenase; *gapdh*). Statistical analysis was carried out by using one-way ANOVA.

Componente	Volume	Final
Components	volume	concentration
iScript Q PCR reaction mixture (2x)	10 µl	1x
Forward primer (10 μM)	1 µl	0.5 µM
Reverse primer (10 µM)	1 µl	0.5 µM
cDNA (0.125 μg/μl)	2 µl	12.5 ng/µl
DNase/RNase free water	6 µl	-

Table 2.6: The components for RT-PCR reaction (Bio-rad).

2.3.3 Induction for osteogenic differentiation of RBMSCs

Total volume

Bone marrow-derived MSCs are an interesting cell source for bone tissue engineering, since they are multipotent and easily accessible. To date, there are numerous restrictions for their medical application, because specific inducers for the cells to become osteogenic lineage are still unclear. In addition, the yield of isolated MSCs is low, while long-term cultivation is not suitable, because the cells trends to lose their differentiation potential. Accordingly, it is necessary to maintain these properties during the expansion, while proper differentiation of the cells could be preserved in a robust conditions that developed.

20 µl

In this part, the cells derived from rat bone marrow (RBMSCs) were used as the cell model. The reasons behind were that (1) human bone marrow form patient without hematological disorder was scarcely available and (2) large numbers of the cells were required for this study. To investigate and improve the osteogenic induction condition, the cells were challenged with bone-related growth factors. The induction protocol was separated into 2 phases: the proliferation phase and the differentiation phase (Figure 2.8). Growth factors and their concentrations were summarized in Table 2.7. FGF2 and insulin were the growth factors used in the proliferation phase, while BMP2 and BMP7 were of the differentiation phase. It is hopeful to develop the cost-effective induction conditions for the MSCs. The osteogenic outcomes were examined using techniques such as RT-PCR, and the assay of bone-specific enzyme activity, mineralization, and bone-specific protein production.

Induction phases	Growth factors	Concentration
Proliferation	FGF2	2.5 ng/ml
	Insulin	60 ng/ml
Differentiation	BMP2	10 ng/ml
	BMP7	10 ng/ml

Table 2.7: The used growth factors and their concentrations.

The induction protocol was shown in Figure 2.8. The cells were starved in α -MEM supplemented with 2% FBS for 1 day, before inducing with 2.5 ng/ml FGF2, 60 ng/ml insulin, or FGF2 plus insulin for 1 day. The cells were starved again for 2 days followed by the addition of 10 ng/ml BMP2, 10 ng/ml BMP7, or BMP2 plus BMP7 for 1 day. After that, the cells were grown in the medium containing 10 mM β -GP for another 5 days. In the control group, the medium supplemented with 2% FBS was used in place of FGF2 or insulin, whereas TA (10 nM) plus AA (50 µg/ml) were used instead of BMP2 and BMP7. Then, cell proliferation and differentiation were assessed.

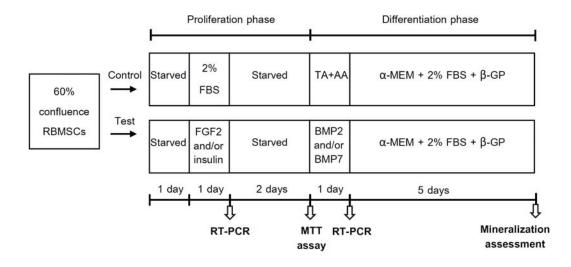


Figure 2.8: The scheme for induction conditions of RBMSCs. The cells were starved in α -MEM plus 2% FBS for 1 day. They were induced with 2.5 ng/ml FGF2, 60 ng/ml insulin, or their combination for 1 day. The cells were starved again for 2 days followed by differentiation induction using 10 ng/ml BMP2, 10 ng/ml BMP7, or their combination for 1 day. Next, the cells were allowed to grow in medium containing 2% FBS and 10 mM β -GP for 5 days. In the control group, α -MEM supplemented with 2% FBS was used instead of FGF2 or insulin, and 10 nM TA and 50 µg/ml AA (TA+AA) were used in place of BMP2 or BMP7. Proliferation of the cells was analyzed by MTT assay. Changes in gene expression were evaluated by RT-PCR. Bone formation was assessed at the end of the treatment by alkaline phosphatase (ALP) activity assay and calcium deposition measurement.

2.3.4 Efficiency of the induction conditions developed

2.3.4.1 RT-PCR

Changes in gene expression in response to the growth factors were measured by using RT-PCR. Target genes consisted of osteogenic transcription factors (*runx2* and *osx*), *bmp7*, and the genes translated to proteins in WNT signaling pathway (*axin2*, β -catenin, and *dkk1*).

2.3.4.1.1 Extraction of total RNA

Total RNA was separated from the cells of passage 4 grown in T-25 flask using Tri Reagent[®] according to the supplier's instruction. The RNA extraction protocol was previously described (topic 2.3.2.3.1).

2.3.4.1.2 cDNA synthesis

Total RNA was converted to be cDNA by using RevoScript[™] RT premix (oligo (dT)15 Primer) (Intron Biotechnology). The procedures were in according to the manufacturer's instruction. RNA template and DNase/RNase free water was mixed into the tube containing RT premix to make a reaction volume of 20 µl. The reaction of cDNA synthesis was performed at 50°C for 60 minutes followed by reverse transcriptase enzyme inactivation at 95°C for 5 minutes. The cDNA product was stored at -20°C until use.

2.3.4.1.3 RT-PCR conditions

Osteogenic gene expression of RBMSCs was measured by using Brilliant II SYBR[®] Green QPCR master mix (Agilent Technologies), and performed on LightCycler[®] nano (Roche) using LightCycler[®] nano SW1.0 software (Roche). The template of RT-PCR reaction was the cDNA converted from the total RNA. Components of the reaction were shown in Table 2.8. The reaction volume was 25 μl with a 40-thermal cycle of denaturation at 95°C for 15 seconds, annealing at the specified temperature (Table 2.2) for 15 seconds, and extension at 72°C for 20 seconds. The melting curve was achieved at the end of the thermal cycle. The gene expression level was calculated and normalized by that of the reference gene (*gapdh*). Statistical analysis was performed by using one-way ANOVA.

Componente	Volume	Final	
Components	volume	concentration	
Brilliant II SYBR [®] Green QPCR reaction mixture (2x)	12.5 µl	1x	
Forward primer (10 µM)	1 µl	0.4 µM	
Reverse primer (10 µM)	1 µl	0.4 µM	
cDNA (0.125 µg/µl)	2 µl	10 ng/µl	
DNase/RNase free water	8.5 µl	-	
Total volume	25 µl		

Table 2.8: The components for RT-PCR reaction of RBMSCs.

2.3.4.2 Proliferation assay

Mitochondrial toxicity test (MTT) is a colorimetric method for quantifying viable cells. By incubating with cells in cultures, the yellowish MTT substrate is reduced to formazan by the active cells. The amounts of formazan product are proportional to the viable cell numbers.

The proliferative effect of FGF2, insulin, and their combination was compared after 1-day of the proliferation induction. Following the cultured medium was withdrawn, the adherent cells were incubated with 5 mg/ml MTT in DPBS in a CO₂ incubator for 4 hours. Then, MTT solution was aspirated, and the developed formazan crystal was dissolved in DMSO. The optical density at a wavelength of 570 nm was measured. The experiment was performed in triplicate. Statistical analysis was carried out by using one-way ANOVA.

2.3.4.3 Alkaline phosphatase (ALP) activity assay

Since ALP is an early marker for the progression of osteogenesis [135], increasing in the enzyme activity is a prominent indicator for successful osteogenic differentiation of the induced cells. ALP assists the conversion of colorless pNPP to yellowish para-nitrophenol and phosphate (Figure 2.9). The color intensity is directly proportional to the enzymatic activity. After the induction was completed, monolayer cells were wash with DPBS and lyzed with cell lysis buffer (containing 150 mM NaCl, 50 mM Tris pH 8.0, 1% triton X-100, and protease inhibitor). The cell lysate was centrifuged at 10,000xg at 4°C for 15 minutes to remove cell debris. ALP reaction consisted of 75 µl of the ALP reaction buffer (10 mM PNPP, 10 mM MgCl₂, 0.25 M Tris; pH 9.0) and 25 µl of the lysate. After incubation at 37°C for 1 hour, the reaction was terminated by adding 20 µl of 2 N NaOH. The absorbance at 405 nm was measured using a spectrophotometer. Data were normalized with the corresponding protein concentration before reporting. All experiments were done in triplicate. Statistical analysis was performed by using one-way ANOVA.

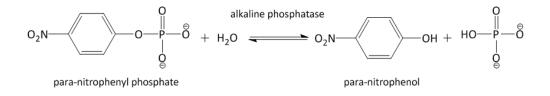


Figure 2.9: The hydrolysis reaction of pNPP as catalyzed by ALP producing a yellow color para-nitrophenol.

2.3.4.4 Mineralization of monolayer cells culture

In general, the progress in bone matrix production is related to the activity of osteoblasts, in which mineralization is a marker of osteogenesis. In this work, calcium deposition was evaluated by alizarin red s (ARS) staining method. The dye can form a chelation complex with calcium in cultured monolayer cells, resulting in a brick red stain. The induced cells were washed with DPBS and fixed with 4% paraformaldehyde in DPBS for 15 minutes. Once washing with excess distilled water, the cells were incubated in 2% ARS solution (pH 4.2) for 20 minutes at room temperature. The access dye was removed, and the cells were left for air-dry. The cell images were acquired by a microscope with Cell P Software (Olympus). The amount of calcium deposition was assessed by colorimetric technique. The stained dye was extracted by using the mixture of 10% acetic acid and 20% methanol in distilled water. After agitation for 20 minutes, the supernatant was collected, and the absorbance at 450 nm was measured. The OD value was proportional to the amount of the extracted ARS dye from the complex. All experiments were done in triplicate. Statistical analysis was performed by using one-way ANOVA.

2.3.4.5 BMP2 immunoassay

BMPs are identified as the key protein regulators of cartilage and bone formation, and the level of BMPs correlates with osteogenesis process. In this study, BMP2 concentration secreted by the cells into the cultured medium was measured using Quantikine[®] BMP2 ELISA kit (R&D Systems). To evaluate the effect of FGF2 and insulin on osteogenic lineage commitment, the level of BMP2 was measured after the cells were induced with these growth factors.

The culture supernatants were collected on day 1 and 3 after the proliferation induction (Figure 2.10). The cells were lyzed with lysis buffer (150 mM NaCl, 50 mM Tris pH 8.0, 1% triton X-100, and protease inhibitor), and the cell debris was removed by centrifugation at 12,000xg for 10 minutes. The supernatant was drawn out and incubated for 2 hours in BMP2 antibody pre-coated in the Quantikine[®] microplate (R&D Systems). The solution in the well was aspirated, and the well was rinsed 4 times with the washing buffer. Bound BMP2 was identified by incubating with horseradish peroxidase-conjugated BMP2 antibody for 2 hours. After several time washes, tetramethylbenzidine substrate was added, and the reaction was left for 30 minutes before stopping by adding the stop solution. The absorbance at 450 nm was quantified. The amount of BMP2 in the samples was extrapolated from a standard

curve of known concentrations of recombinant BMP2. The BMP2 level was normalized by protein concentration of the cell lysate before reporting. All experiments were done in triplicate. Statistical analysis was carried out by using one-way ANOVA.

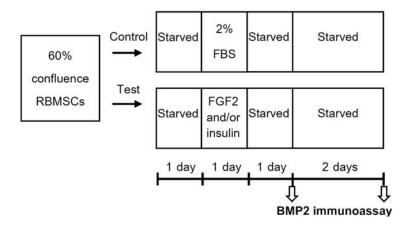


Figure 2.10: Timeline of RBMSCs induction and the measurement of BMP2 level in the medium supernatant. The starved cells were induced with 2.5 ng/ml FGF2, 60 ng/ml insulin, or FGF2 plus insulin for 1 day. BMP2 concentrations were measured at day 1 and day 3 after withdrawing the growth factors.

2.3.4.6 Determination of protein concentration for cell lysates

The concentration of proteins in cell homogenate was assessed by Pierce[®] BCA Protein Assay Kit (Pierce), according to the manufacturer instruction. The assay relies on the reduction of Cu^{2+} to Cu^{+} by any reducing proteins. Two molecules of bicinchoninic acid (BCA) chelate with 1 molecule of Cu^{+} ion, creating a purple-colored product. This complex is water-soluble and strongly absorbs light at wavelength of 570 nm.

Clear cell lysate was mixed with BCA working reagent at a 1:8 volume ratio. The color reaction was developed at 37°C for 30 minutes. The absorbance of purple-colored product was measured at 570 nm. The protein

concentration was determined by extrapolating with the standard curve of bovine serum albumin (BSA).

2.3.5 In vivo implantation

2.3.5.1 Preparation of the cell-seeded constructs

Osteogenic differentiation and bone tissue formation were studied *in vivo*. As this study aimed to develop the technique for clinical use, the effects of the growth factors in living organisms need to be considered. Wistar rats were used as the animal model. Hydroxyapatite (HA) scaffolds were seeded with RBMSCs of passage 4 at a density of 1×10^4 cells per scaffold and placed in a well-plate. After seeding, the cells were allowed to attach the scaffold for 1 hours before the culture medium was added in the culture plate. The seeded scaffolds were treated according to Figure 2.11. For the control group, cell-free scaffolds were immersed in α -MEM containing 2% FBS throughout the induction period.

2.3.5.2 Implantation

The rats were anesthetized with a combination of Zoletil[®] (40 mg/kg body weight) and xylazine (8 mg/kg body weight) before the operation. The cell-treated scafflods were implanted subcutaneously on the back of the rat (Figure 2.12). Suture closure of the skin incision was performed, and antibiotic ointment was applied on the wounds. Following surgery, post-operative monitoring was carried out. The observation included the animal activity and the wound healing. The animals were sacrificed at 8 weeks after the operation. Implanted tissues were processed for histological analysis. By using 2 histological staining techniques, bone tissue formation can be determined.



Figure 2.11: Procedures for preparing cell-seeded scaffold implants. The implants were divided into 3 groups including cell-free scaffolds, non-induced cell-seeded scaffolds, and induced cell-seeded scaffolds. RBMSCs seeded on scaffolds were induced with 2.5 ng/ml FGF2, 60 ng/ml insulin, or FGF2 plus insulin for 1 day followed by starvation for 2 days and induction with 10 ng/ml BMP2, 10 ng/ml BMP7, or BMP2 plus BMP7 for 1 day. For non-induced cell group, the cells were cultured in α-MEM plus 2% FBS. The control were the scaffolds being incubated with medium plus 2% FBS during the induction. The prepared constructs were implanted on the back of the rat (Figure 2.12). Bone formation was observed at 8 weeks post-implantation.

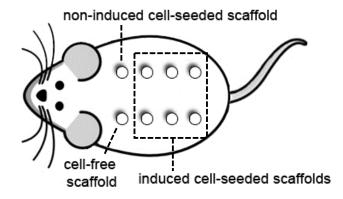


Figure 2.12: The schematic representation of the implantation sites. Eight constructs including one of cell-free scaffold, one of non-induced cell-seeded scaffolds, and six of induced cell-seeded scaffolds were subcutaneously implanted onto the dorsal part of Wistar rats.

2.3.5.3 Tissue processing

After 8 weeks post-implantation, the implants were removed and processed for histological analysis as follows. The implants were fixed by immersing in 4% Paraformaldehyde in DPBS for 24 hours. After several washes with distilled water, the fixed samples were decalcified in 10% formic acid (EDTA saturated) solution until soften, neutralized in 5% sodium sulfate solution for 24 hours, and embedded in paraffin block. The paraffin blocks were sectioned with thickness of 3-5 μ M using microtome and placed on glass slide.

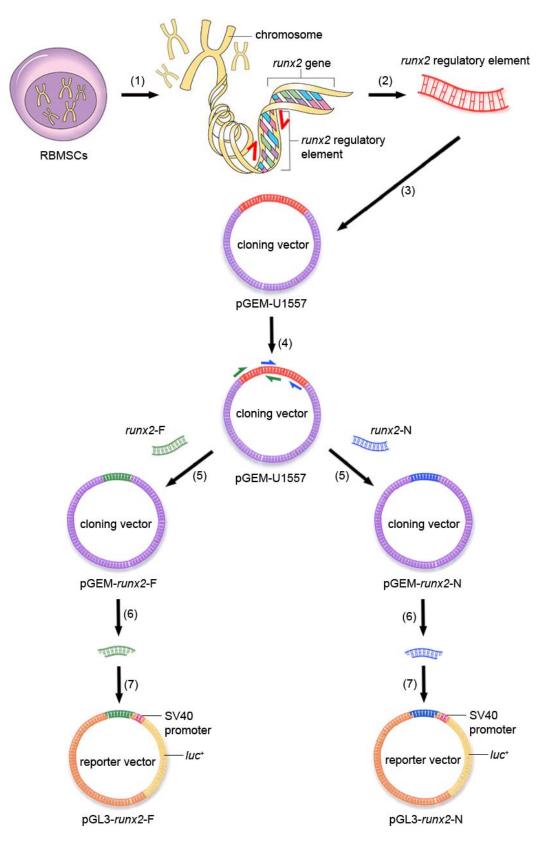
2.3.5.4 Histological staining

The tissue sections were dewaxed using xylene and ethanol series and rehydrated in distilled water before staining. The protocol for dewaxing was shown in Table 2.9. Two techniques of hematoxylin-eosin (H&E) and ARS staining were performed as generally noted [136]. The overall tissue morphology was revealed by H&E staining. The nucleus of the cells were stained by hematoxylin in which the color was purple-blue. The cytoplasm was colored by eosin as bright pink color. Since ARS is specific for calcium deposit in tissues, ARS staining was used to identify the site of mineralization resulting in orange-red color.

	Incubation time
Reagents	(minutes)
Xylene I	3
Xylene II	3
Absolute ethanol I	3
Absolute ethanol II	3
95% ethanol	3
70 % ethanol	3
Distilled water	5

 Table 2.9:
 Protocols for deparaffinization of tissue sections.

2.3.5.4.1 Hematoxylin and eosin (H&E) staining


The rehydrated section was incubated in Mayer's hematoxylin solution (1 g/L, Sigma-Aldrich) for 8 minutes, washed with running water for 10 minutes, and dipped in 95% ethanol. The sample was then stained with eosin solution (0.5% (w/v) in water, Sigma-Aldrich) for 30 seconds to 1 minute. After washing in 95% ethanol and absolute ethanol for 5 minutes, the slide was soaked in xylene and left for air dry. The resulting sample was inspected under a light microscope. Tissue images were acquired by Cell P Software (Olympus).

2.3.5.4.2 Alizarin Red S (ARS) Staining

The rehydrated sample was immersed in 2% w/v ARS solution (pH 4.1) for 30 seconds to 5 minutes. Excess dye was removed by dipping the slides in acetone. The section was then dehydrated in xylene and left for air dry. The prepared sample was checked microscopically under a light microscope. Tissue images were acquired by Cell P Software (Olympus).

2.3.6 Plasmid construction

To support the results acquired from *in vitro* and *in vivo* experiments, cellular cascade induced by FGF2 and insulin affecting on osteogenic differentiation was investigated. The technology of luciferase reporter assay was used to study gene regulation and intracellular signaling pathways that may involve. Since Runx2 acts as a molecular hub among pathways, the study was aimed to explore the influence of these growth factors on *runx2* expression as follows. Firstly, the regulatory element of *runx2* gene at 5'-untranslate region (5'-UTR) was cloned into *Kpn*I and *Nhe*I restriction sites of the luciferase reporter vector (Figure 2.13). Secondly, the potential transcription factor binding sites on *runx2* promoter were synthesized and introduced into *Kpn*I and *BgI*II restriction sites of the reporter vector. These response elements were identified by analysis of the obtained 5'-UTR sequence using a transcription factor binding site search tool. The constructed reporter vectors were then transfected into RBMSCs. After the induction, the expression of luciferase reporter gene was measured.

Note: The figure legend is on page 62.

Figure 2.13: The construction procedures of luciferase reporter vectors. (1) The chromosome of RBMSCs was extracted; (2) the regulatory element of runx2 gene was amplified using RBMSCs chromosome as a template in which the specific primers of 5'-UTR of runx2 were shown in red color; (3) the purified PCR product (U1557) was ligated into pGEM-T[®] easy vector (Figure 2.1), resulting in pGEM-U1557 cloning vector. The sequence of the inserted DNA was verified by DNA sequencing technique; (4) to construct the reporter vectors, runx2 element was prepared into two consecutive fragments, runx2-F and runx2-N. The specific primers for runx2-F and runx2-N were represented in green and blue color, respectively; (5) PCR amplicon of each fragments was inserted into pGEM-T[®] easy vector, resulting in pGEM-runx2-F and pGEM-runx2-N cloning vector, respectively. The inserted DNA was (6) digested with Kpnl and Bg/ll from the cloning vector and then ligated into pGL3-promoter vector that contains SV40 promoter luc⁺ transcription unit (7). The pGL3-runx2-N and pGL3-runx2-F vectors were subjected to sequencing analysis and used for transfection experiment.

2.3.6.1 Cloning of the 5'-UTR of *runx*2 gene into pGEM[®]-T easy vector

The 5'-UTR was amplified by polymerase chain reaction (PCR) using RBMSCs chromosome as a template. The expected product called U1557 with a size of 1.7 kilobase pair (kb) was inserted into pGEM[®]-T easy vector. The recombinant plasmid (called pGEM-U1557) was multiplied and sequenced. Various molecular techniques, including agarose gel electrophoresis, DNA purification, ligation, transformation, and plasmid extraction and digestion with restriction enzyme, had been performed for constructing the pGEM-U1557 cloning vector (Figure 2.14).

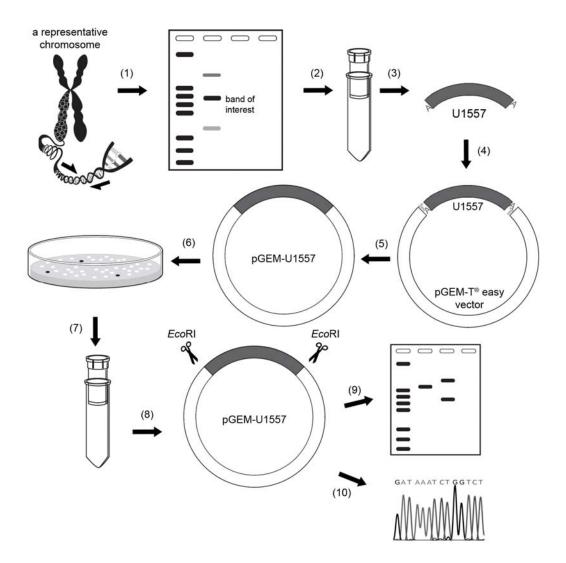


Figure 2.14: Construction of pGEM-U1557 recombinant vector. (1) 5'-UTR of *runx2* gene was amplified from RBMSCs chromosome. (2) The PCR products were separated on 0.7% agarose gel. (3) The selected band (called U1557) was purified using Nucleospin[®] extract II column and (4-5) ligated into pGEM-T[®] easy vector. The recombinant plasmid (called pGEM-U1557) was (6) transformed into *E. coli* strain DH5α. (7) White colonies were selected, and (8) extracted for the recombinant plasmid by using Nucleospin[®] plasmid column. (9) The extracted DNA was digested with *Eco*RI and examined for the inserted DNA by agarose gel electrophoresis. (10) Sequence of the insert was determined by DNA sequencing technique.

2.3.6.1.1 Chromosome extraction

The genomic DNA of RBMSCs (passage 4) was extracted by phase separation technique (Figure 2.13, step 1). The cells were grown in *Q*-MEM supplemented with 10% FBS until 90% confluence. The monolayer cells were trypsinized and collected by centrifugation at 700xg for 5 minutes. The cell pellet was digested in buffer containing 100 mM NaCl, 10 mM Tris-Cl (pH 8), 25 mM EDTA (pH 8), 0.5% SDS, and 0.1 mg/ml proteinase K (1 ml of digestion buffer per T-75 flask) at 50°C with gentle agitation for 15-17 hours. The cell homogenate was extensively mixed with an equal volume of phenol/chloroform/isoamyl alcohol solution. After centrifugation at 1700×g for 10 minutes, aqueous layer was collected. Two volume of absolute ethanol and half volume of 7.5 M ammonium acetate (calculated from the original amount of top layer) were added to precipitate the chromosome, and collected by centrifugation at 1700×g for 5 minutes. After washing with 70% ethanol, the precipitated DNA was left for air-dry and redissolved in DNase/RNase free water. Genomic DNA was preserved at 4°C until use.

2.3.6.1.2 Polymerase chain reaction (PCR)

PCR is used to generate a specific DNA fragment. The reaction required a DNA template and site-specific primers complementing to the corresponding end of the fragment. The components of PCR reaction were listed in Table 2.10. To amplify the 5'-UTR of *runx2*, the extracted chromosome was used as a template (Figure 2.14, step 1). *Runx2*-U1557 and *runx2*-97 (Table 2.2) were used as forward and reverse primers, respectively. Thermal cycle was indicated in Table 2.11. The PCR product was separated on 0.7% agarose gel electrophoresis (Figure 2.14, step 2). The band of interest with a sized of 1.7 kb (called U1557) was then purified by using gel purification technique.

Table 2.10: The components for PCR reaction.
--

Components	Volume	Final concentration
MgCl ₂ free PCR Buffer (10x)	5 µl	1x
MgCl ₂ (50 mM)	2.5 µl	2.5 mM
dNTP mix (10 mM)	2.5 µl	0.5 mM
runx2-U1557 (forward primer; 10 μ M)	3 µl	0.6 µM
<i>runx2</i> -97 (reverse primer; 10 μM)	3 µl	0.6 µM
Tag DNA polymerase (5 U/µl)	0.5 µl	0.05 U/µI
DNA template (2.5 µg/µl)	2 µl	0.1 µg/µl
DNAse/RNAse free water	31.5 µl	-
Total volume	50 µl	

Table 2.11:Thermal cycle for 5'-UTR of *runx2* gene cloning.

Step	Temperature	Time	Number of cycles
Initial denaturation	95°C	5 minutes	1 cycle
Denaturation	95°C	30 seconds)
Annealing	57.5°C	30 seconds	35 cycles
Extension	72°C	90 seconds	J
Final extension	72°C	10 minutes	1 cycle
Hold	4°C	00	

2.3.6.1.3 Agarose gel electrophoresis

Agarose gel electrophoresis was used to separate DNA based on sizes. The concentrations of the gel were according to Table 2.12. Running buffer was Tris Acetate EDTA (TAE) buffer (40 mM Tris, 20 mM acetic acid, and 1 mM EDTA). To prepare electrophoresis sample, 1 µl of Novel Juice (6X Loading Buffer) was combined with 5 µl of DNA sample. Electrophoresis was performed at 90-100 mA at room temperature. DNA marker (0.5-1 µg/lane) was run in parallel. The separated DNA bands were photographed using UV transilluminator equipped with a digital camera (Kodak EasyShare P880).

Table 2.12:The concentration of agarose gel based on size of linear DNA to be
separated.

	Optimum resolution
% agarose gel	for linear DNA
0.5	1,000–30,000 bp
0.7	800–12,000 bp
1.0	500–10,000 bp
1.2	400–7,000 bp
1.5	200–3,000 bp
2.0	50–2,000 bp

2.3.6.1.4 DNA extraction from agarose gel

A specific band on agarose gel (at 1.7 kb) was excised and extracted from the gel (Figure 2.14, step 3) by using NucleoSpin[®] extract II (Macherey-Nagel) as followed. The band was dissolved in buffer NT (200 μ I for 100 mg of gel) at 50°C, loaded into the NucleoSpin[®] extract II column, and centrifuged at 11,000xg for 1 minute. Bound DNA was washed with 700 μ I of wash buffer (buffer NT3) and eluted with DNase/RNase free water. The purified DNA called U1557 was verified by agarose gel electrophoresis and kept at -20°C until use.

2.3.6.1.5 Ligation

Ligation between the prepared DNA fragment (U1557) and the pGEM-T[®] easy vector was achieved by using T4 DNA ligase enzyme. The components of ligation reaction were shown in Table 2.13, and carried out at 4°C overnight (Figure 2.14, step 4-5).

Table 2.13: The components for ligation reaction.

		Final
Components	Volume	concentration
Ligation buffer (10x)	1 µl	1x
T4 DNA ligase (20 U/μl)	1 µl	2 U/µI
Vector (50 ng/µl)	0.5 µl	2.5 ng/µl
Purified insert DNA (0.5 µg/µl)	2 µl	0.1 µg/µl
DNAse/RNAse free water	5.5 µl	-
Total volume	10 µl	

2.3.6.1.6 Transformation

Transformation of the recombinant plasmid into HIT Competent CellsTM *E. coli* strain DH5 α (RBC Bioscience Corp.) was performed according to the manufacturer's protocol. The frozen bacterial cells were thawed, and the ligation mixture with a volume of less than 10% of the cell volume was added. The mixed DNA-cell was vortexed for 1 second and incubated on ice for 1-10 minutes. Finally, the mixture was spread on LB agar (containing 0.8 mg X-gal, 0.8 mg IPTG, and 100 µg/ml ampicillin) and incubated at 37°C for 15-17 hours (Figure 2.14, step 6). The

positive clone of recombinant pGEM-T[®] easy vector was selected by blue/white colony screening based on an interruption of β -galactosidase gene by the DNA insert. The recombinant plasmid failed to express this gene and could not form blue colonies on X-gal agar plate.

2.3.6.1.7 Plasmid extraction

White colonies were selected and separately grown in LB liquid medium containing 100 μ g/ml ampicillin at 37°C for 15-17 hours (Figure 2.14, step 7). Recombinant plasmid namely pGEM-U1557 was extracted (Figure 2.14, step 8) from transformed *E. coli* using NucleoSpin[®] Plasmid (Macherey-Nagel) as followed. Bacterial cells from 5 ml of saturated *E. coli* culture were collected. The cell pellet was resuspended in 250 μ l buffer A1 (containing RNase), lyzed in 250 μ l buffer A2 by upturning the tube 6-8 times, incubated for 5 minutes, and neutralized with 300 μ l buffer A3. The mixture was thoroughly mixed by flipping the tube 6-8 times and centrifuged at 11,000xg for 2 minutes. Clear lysate was loaded into DNA binding column, washed with 600 μ l buffer A4, and eluted with DNase/RNase free water. The purified plasmid was verified by agarose gel electrophoresis and kept at -20°C until use.

2.3.6.1.8 Digestion with specified restriction enzyme

Digestion with restriction enzyme was used for screening of the recombinant plasmid and was carried out to generate compatible ends, able to be ligated into a selected plasmid. Components and conditions for a desired enzyme were explained in Table 2.14 and 2.15.

Components	<i>Kpn</i> l reaction <i>Bg/</i> II reaction <i>Nhe</i> l reaction		EcoRI reaction	Final concentration	
NEBuffer (10x)	1 µl	1 µl	1 µl	1 µl	1x
	(Buffer 1)	(Buffer 3)	(Buffer 1)	(EcoRI Buffer)	
BSA (10 mg/ml)		1	μΙ		1 mg/ml
Enzyme (10 U/µI)		1	μl		1 U/µl
Plasmid (0.5 µg/µl)		1	μl		50 ng/µl
DNAse/RNAse free water		6	μl		-
Total volume		10	μl		
Incubation temperature	37°C	37°C	37°C	37°C	
Incubation time	6-8 hours	6-8 hours	6-8 hours	overnight	

 Table 2.14:
 Components and conditions for KpnI, BglII, NheI, and EcoRI digestion.

Componento	Kpnl and Nhel	Final
Components	reaction	concentration
NEBuffer 1 (10x)	1 µl	1x
BSA (10 mg/ml)	1 µl	1 mg/ml
<i>Kpn</i> I (10 U/µI)	0.5 µl	0.5 U/µl
Nhel (10 U/µl)	0.5 µl	0.5 U/µl
Plasmid (0.5 μg/μl)	1 µl	50 ng/µl
DNAse/RNAse free water	6 µl	-
Total volume	10 µl	
Incubation temperature	37°C	
Incubation time	6-8 hours	

Table 2.15: Components and conditions for *Kpn*I and *Nhe*I double digestion.

2.3.6.1.9 DNA sequencing

The sequences of all constructed plasmid were verified by ABI3730XL Platform using specific primers shown in Table 2.1. Electropherograms were analyzed by Sequencing Analysis Software (BioEdit version 7.0.8.0 and FinchTV version 1.4). The sequence of U1557 was aligned with those deposited in NCBI database using Clustal Omega, a Multiple Sequence Alignment tool.

2.3.6.2 Construction of pGL3-*runx2*-N and pGL3-*runx2*-F reporter vector

One of the gene regulation mechanism is the control of gene transcription by enhancer or repressor molecules. These regulatory proteins usually bind their specific DNA sequence located at upstream or downstream region of the promoter. In this study, the mechanism of *runx2* regulation through the upstream regulatory element of the gene was performed using luciferase reporter gene assay. By

constructing the DNA fragment of interest into the upstream of luciferase gene, the reporter vector was able to evaluate the influence of the insert DNA on reporter gene expression.

To investigate the influence of FGF2 and insulin on *runx2* expression, 5'-UTR of *runx2* (U1557) was the DNA of interest for constructing the reporter vector. Because the expression of *runx2* has been shown to be regulated by several factors [26, 88], it was hypothesized that a shorter sequence of U1557 would provide more precise mechanism in controlling the gene regulation. Moreover, the length of PCR products has been limited by fidelity. Therefore, the U1557 sequence was divide into two consecutive fragments for easier amplification and improving fidelity. Two half of the *runx2* regulatory element, called *runx2*-N and *runx2*-F, were generated by PCR technique (Figure 2.13, step 4), and each fragment was separately cloned into the reporter vector. The cloning vectors containing these DNA were created before the DNA inserts were subcloned into the reporter vectors (Figure 2.13, step 5 to 7). Then, the recombinant plasmids were proven by sequencing and utilized as the reporter vectors for gene regulation analysis.

2.3.6.2.1 Cloning of *runx2*-N and *runx2*-F into pGEM[®]-T easy vector

pGEM-U1557 was used as а template for amplification of runx2-N and runx2-F. The primers were designed to have the restriction site for KpnI or Nhel digestion (Table 2.2). PCR components and condition were described in Table 2.16 to 2.19. The PCR products were separated on 0.7% agarose gel. The obtained DNA at 723 bp (runx2-N) and 896 bp (runx2-F) were purified by using NucleoSpin® extract II. The purified runx2-N and runx2-F were ligated with pGEM-T[®] easy vector resulting in pGEM-runx2-N and pGEM-runx2-F cloning vector. The recombinant plasmids were separately propagated in *E. coli* strain DH5 α , extracted from bacterial culture by using NucleoSpin® plasmid, and verified by Kpnl and Nhel digestion (Figure 2.15).

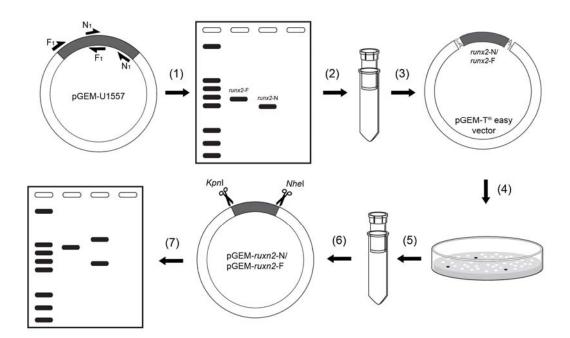


Figure 2.15: Construction of pGEM-*runx2*-N and pGEM-*runx2*-F cloning vector. The fragments of *runx2* regulatory element, *runx2*-F and *runx2*-N, were amplified using pGEM-U1557 as a template. The specific primers for each fragment were labeled as F_1 and N_1 . These primers were designed to contain the restriction site for *Kpn*I or *Nhe*I digestion. The PCR product was (1) separated on agarose gel, and (2) the specific bands were purified by Nucleospin[®] extract II column. (3) The PCR products were ligated with pGEM-T[®] easy cloning vector and (4) transformed into *E. coli* strain DH5 α . (5-6) The recombinant plasmids were extracted from bacterial culture of the selected white colony and (7) examined by *Kpn*I and *Nhe*I digestion.

Components	Volume	Final concentration
MgCl ₂ free PCR Buffer (10x)	5 µl	1x
MgCl ₂ (50 mM)	1.5 µl	1.5 mM
dNTP mix (10 mM)	2.5 µl	0.5 mM
<i>runx</i> 2-KPNI-U796 (forward primer; 10 μM)	3 µl	0.6 µM
<i>runx2</i> -NHEI-U73 (reverse primer; 10 µM)	3 µl	0.6 µM
Tag DNA polymerase (5 U/μl)	0.5 µl	0.05 U/µl
pGEM-U1557 (0.5 µg/µl)	2 µl	20 ng/µl
DNAse/RNAse free water	32.5 µl	-
Total volume	50 µl	

 Table 2.16:
 PCR components for *runx2*-N amplification.

Table 2.17:Thermal cycle for *runx2*-N amplification.

Step	Temperature	Time	Number of cycles
Initial denaturation	94°C	5 minutes	1 cycle
Denaturation	94°C	30 seconds)
Annealing	64°C	30 seconds	35 cycles
Extension	72°C	40 seconds	J
Final extension	72°C	10 minutes	1 cycle
Hold	4°C	∞	

Components	Volume	Final concentration
MgCl ₂ free PCR Buffer (10x)	5 µl	1x
MgCl ₂ (50 mM)	1.5 µl	1.5 mM
dNTP mix (10 mM)	2.5 µl	0.5 mM
runx2-KPNI-U1526 (forward primer; 10 μ M)	3 µl	0.6 µM
<i>runx2</i> -NHEI-U630 (reverse primer; 10 μM)	3 µl	0.6 µM
Tag DNA polymerase (5 U/µl)	0.5 µl	0.05 U/µl
рGEM-U1557 (0.5 µg/µl)	2 µl	20 ng/µl
DNAse/RNAse free water	32.5 µl	-
Total volume	50 µl	

 Table 2.18:
 PCR components for *runx2*-F amplification.

Table 2.19:Thermal cycle for *runx2*-N amplification.

Step	Temperature	Time	Number of cycles
Initial denaturation	94°C	5 minutes	1 cycle
Denaturation	94°C	30 seconds)
Annealing	58°C	30 seconds	35 cycles
Extension	72°C	45 seconds	J
Final extension	72°C	10 minutes	1 cycle
Hold	4°C	∞	

2.3.6.2.2 Subcloning of *runx2*-N and *runx2*-F into pGL3-Promoter vector.

runx2-N and runx2-F ware subcloned into pGL3-

Promoter vector (Figure 2.16). These fragments were isolated from pGEM-*runx2*-N and pGEM-*runx2*-F by *Kpn*I and *Nhe*I digestion and geI electrophoresis. The digested DNA was then purified from agarose geI by using NucleoSpin[®] extract II. The obtained *runx2*-N and *runx2*-F were ligated with pGL3-Promoter vector and transformed into *E. coli* strain DH5α. The recombinant plasmids called pGL3-*runx2*-N and pGL3-*runx2*-F were multiplied and inspected for the DNA insert by *Kpn*I and *Nhe*I digestion and by PCR technique using specific primers (LUC-F and LUC-R). The obtained PCR product at 800-900 bp was verified by agarose geI electrophoresis. The components and condition of PCR analysis was shown in Table 2.20 and 2.21.

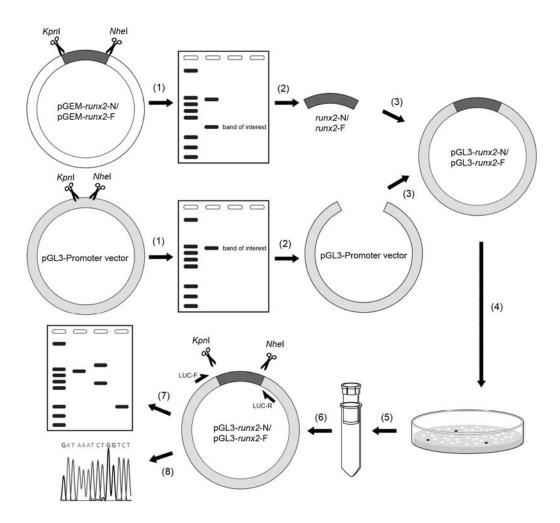


Figure 2.16: Subcloning protocol for pGL3-*runx2*-N and pGL3-*runx2*-F vector construction. (1) pGEM-*runx2*-N plasmid, pGEM-*runx2*-F plasmid, and pGL3-Promoter vector were separately digested with *Kpn*I and *Nhe*I. (2) The desired bands on agarose gel were extracted. The digested pGL3-Promoter vector and the purified *runx2*-N and *runx2*-F fragments were (3) ligated and (4) transformed into *E. coli* strain DH5α. (5) The positive clones were selected and (6) extracted for the recombinant plasmid which were then double digested with *Kpn*I and *Nhe*I. (7) Products determined by using LUC-F and LUC-R primers were examined on 0.7% agarose gel electrophoresis. (8) The recombinant plasmids were subjected to DNA sequencing.

Components	Volume	Final concentration
MgCl ₂ free PCR Buffer (10x)	5 µl	1x
MgCl ₂ (50 mM)	1.5 µl	1.5 mM
dNTP mix (10 mM)	2.5 µl	0.5 mM
LUC-F (forward primer; 10 µM)	3 µl	0.6 µM
LUC-R (reverse primer; 10 µM)	3 μΙ	0.6 µM
Tag DNA polymerase (5 U/μl)	0.5 µl	0.05 U/µl
Plasmid DNA template (0.5 µg/µl)	2 µl	20 ng/µl
DNAse/RNAse free water	31.5 µl	-
Total volume	50 µl	

Table 2.20:	PCR	components	for	pGL3- <i>runx2</i> -N	and	pGL3- <i>runx2</i> -F	vector	
	verifica	ation.						

Table 2.21: Thermal cycle for pGL3-*runx2*-N and pGL3-*runx2*-F vector verification.

Step	Temperature	Time	Number of cycles
Initial denaturation	94°C	5 minutes	1 cycle
Denaturation	94°C	30 seconds)
Annealing	57°C	30 seconds	35 cycles
Extension	72°C	30 seconds	J
Final extension	72°C	10 minutes	1 cycle
Hold	4°C	∞	

2.3.6.3 Construction of plasmids containing tandem repeats of transcription factor binding site

This experiment was aimed to study the specific targets of FGF2 and insulin signaling cascade on *runx2* promoter. The DNA binding sites of the particular transcription factors on U1557 sequence were identified, and the selected response elements were commercially synthesized as five tandem repeats. These oligonucleotides were ligated with reporter vector which the recombinant reporter plasmids were used for studying the signaling pathway in the cells. It was proposed that the growth factors were able to activate the cells through the elements of interest which the repetitive binding site intensified the reporter gene expression.

2.3.6.3.1 Transcription factor binding site

Transcription factor is a protein that controls the gene transcription. It recognizes a specific sequence on DNA called a consensus sequence. In this study, the possible transcription factor binding sites on the obtained *runx2* promoter (U1557) were characterized by using the TFSEARCH database, a consensus binding site of transcription factor search tool [137]. The remarkable consensus sequences with the threshold score above 90.0 were selected concerning on the regulation of bone formation. Among these *ap1* and *sry* were chosen. Sense or coding strand and its complementary or antisense strands of five tandem repeats of *ap1* and *sry* consensus binding site were commercially synthesized (called 5X*ap1* and 5X*sry*, respectively). A strand of oligonucleotide was designed to contain 5'-*Kpn*I and 3'-*BgI*II restriction sites, both were the overhang ends (Table 2.3).

2.3.6.3.2 Preparation of double stranded oligonucleotides

Sense and antisense strands of 5X*ap1* and 5X*sry* binding site (Table 2.3) were mixed in buffer containing 50 mM NaCl, 10 mM Tris, and 1 mM EDTA (pH 8.0) and incubated at above 95°C for 5 minute. The heat-treated

mixture was gradually cooled to room temperature (more than 1 hour) in which annealing of two complementary strands could occur. The reaction components were described in Table 2.22.

Components	Volume	Final concentration
Annealing buffer (10x)	2 µl	1X
Sense strand (100 µM)	15 µl	75 µM
Antisense strand (100 µM)	3 µl	15 µM
Total volume	20 µl	-

Table 2.22: The components for oligonucleotide annealing reaction.

2.3.6.3.3 Preparation of reporter vector

According to Figure 2.17, pGL3-Promoter vector was digested with *Kpn*I and *BgI*II (Table 2.14), purified by gel purification column, and ligated with 5Xap1 or 5Xsry at 4°C overnight. The recombinant plasmids were separately transformed into *E. coli* strain DH5 α and cultured on LB agar plate containing ampicillin at 37°C for 16 hours. The positive clones were selected and further expanded for plasmid extraction. The recombinant plasmids were verified by PCR (Table 2.23 to 2.26), agarose gel electrophoresis, and DNA sequencing, resulting in pGL3-5X*ap1* and pGL3-5X*sry*.

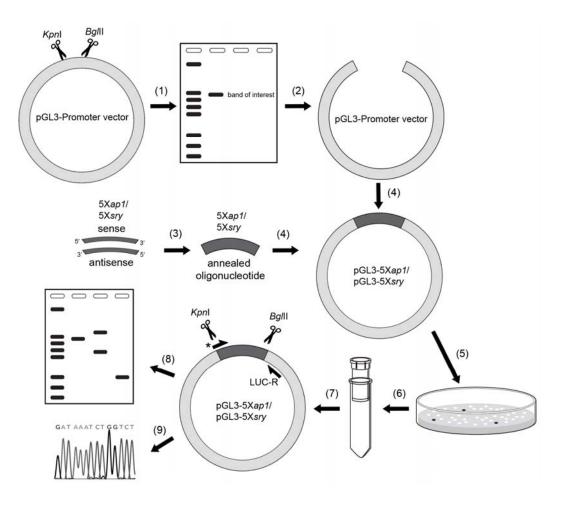


Figure 2.17: Preparation of pGL3-5X*ap1* and pGL3-5X*sry* reporter vector. (1-2) The pGL3-Promoter vector was digested with *Kpn*I and *Bgl*II, separated, and purified by Nucleospin[®] extract II column. (3) 5X*ap1* and 5X*sry* sense and antisense strand were annealed to generate the double-stranded inserts and (4) ligated with pGL3-Promoter vector. (5) The plasmids were transformed into *E. coli* strain DH5α. (6-7) The recombinant plasmids were extracted from the selected colonies. The isolated pGL3-5X*ap1* and pGL3-5X*sry* were proved by *Kpn*I and *Bgl*II digestion and PCR analysis using LUC-F and specific primer* (*ap1*-LUC or *sry*-LUC) as forward primer and reverse primer, respectively. (8) The digestion and PCR reaction were inspected on 0.7% agarose gel electrophoresis. (9) The proven plasmids were subjected to DNA sequencing.

Components	Volume	Final concentration
MgCl ₂ free PCR Buffer (10x)	5 µl	1x
MgCl ₂ (50 mM)	1.5 µl	1.5 mM
dNTP mix (10 mM)	2.5 µl	0.5 mM
LUC-F (forward primer; 10 μ M)	3 μΙ	0.6 µM
<i>ap1-</i> LUC (reverse primer; 10 μM)	3 µl	0.6 µM
Tag DNA polymerase (5 U/μl)	0.5 µl	0.05 U/µl
pGL3-5Х <i>ар1</i> (0.5 µg/µl)	2 µl	20 ng/µl
DNAse/RNAse free water	31.5 µl	-
Total volume	50 µl	

Table 2.23:The components used for proving the success in cloning of pGL3-
5Xap1.

Table 2.24: Thermal cycle used for proving the success in cloning of pGL3-5Xap1.

Step	Temperature	Time	Number of cycles
Initial denaturation	94°C	5 minutes	1 cycle
Denaturation	94°C	25 seconds	
Annealing	50°C	25 seconds	35 cycles
Extension	72°C	25 seconds	J
Final extension	72°C	7 minutes	1 cycle
Hold	4°C	S	

Components	Volume	Final concentration
MgCl ₂ free PCR Buffer (10x)	5 µl	1x
MgCl ₂ (50 mM)	1.5 µl	1.5 mM
dNTP mix (10 mM)	2.5 µl	0.5 mM
LUC-F (forward primer; 10 µM)	3 µl	0.6 µM
<i>sry</i> -LUC (reverse primer; 10 μM)	3 µl	0.6 µM
Tag DNA polymerase (5 U/µl)	0.5 µl	0.05 U/µl
pGL3-5Х <i>sry</i> (0.5 µg/µl)	2 µl	20 ng/µl
DNAse/RNAse free water	31.5 µl	-
Total volume	50 µl	

Table 2.25: The components used for proving the success in cloning of pGL3-5Xsry.

Table 2.26: Thermal cycle used for proving the success in cloning of pGL3-5X*sry*.

Step	Temperature	Time	Number of cycles
Initial denaturation	94°C	5 minutes	1 cycle
Denaturation	94°C	25 seconds	
Annealing	48°C	25 seconds	35 cycles
Extension	72°C	25 seconds	J
Final extension	72°C	7 minutes	1 cycle
Hold	4°C	S	

2.3.7 Dual luciferase reporter assay

Dual luciferase reporter assay is a system used for analysis of gene regulation at a transcriptional level. This system utilizes two types of vector including the experimental vector and the internal control vector. The experimental vector carries a firefly luciferase as a reporter gene, while the control vector contains a *Renilla* luciferase. The experimental vector is prepared by insertion of the DNA fragment of interest at the upstream of firefly luciferase gene in which the activity of firefly luciferase depends on the transcriptional potential of the inserted DNA fragment.

To investigate the effect of FGF2 and insulin on *runx2* gene regulation and their activation target on the gene promoter, two sets of the recombinant reporter plasmids namely pGL3-*runx2*-N and pGL3-*runx2*-F which utilized for the study of *runx2* regulation, and pGL3-5X*ap1* and pGL3-5X*sry* which used to specify the signaling cascade of the growth factor induction were separately transfected into RBMSCs. The cells were induced with 2.5 ng/ml FGF2, 60 ng/ml insulin, or FGF2 plus insulin for 1 day. The luciferase activity produced by the reporter vector was evaluated by dual luciferase reporter assay technique. The plasmids used in this study needed to be aplenty prepared, and the transfection needed to be optimized before starting the experiment.

2.3.7.1 Preparation of the reporter vectors for transfection

For transfection experiment, the reporter vectors including pGL3-Control vector, pGL3-Promoter vector, pGL3-*runx2*-N, pGL3-*runx2*-F, pGL3-5X*ap1*, pGL3-5X*sry*, and pRL-SV40 were isolated from its corresponding recombinant *E. coli* by using QIAGEN Plasmid Midi and Maxi Kits (QIAGEN) as followed. The bacteria was harvested from 50 ml culture by centrifugation at 6,000xg for 15 minutes at 4°C. The cells were resuspended in 4 ml of buffer P1 containing RNase, lysed in 4 ml of buffer P2, and neutralized in 4 ml of buffer P3. The mixture was combined immediately by robustly inverting 4-6 times, placed on ice for 15 minutes, and centrifuged at 20,000xg for 30 minutes at 4°C. Clear supernatant was filled into QIAGEN-tip in which the DNA was captured by the resin. The column was rinsed twice using 10 ml of buffer QC to remove all contaminants. The bound plasmid was then eluted by using 5 ml of elution buffer (buffer QF). The eluted DNA was precipitated by adding 0.7 volumes of isopropanol and centrifuged immediately at 15,000xg, 15 minutes, 4°C. The precipitate was rinsed with 70% ethanol and centrifuged again at 15,000xg for 15 minutes at 4°C. The DNA was left for air-dry, and redissolved in a suitable volume of DNase/RNase free water. The purified DNA was examined on 0.7% agarose gel electrophoresis and kept at -20°C until use.

2.3.7.2 Plasmid concentration determination

The plasmid concentration was quantified by using Qubit[™] dsDNA BR Assay Kits (Invitrogen) and performed on using Qubit[®] 2.0 Fluorometer (Invitrogen). After mixing 1-20 µl of sample with Qubit[™] working solution to a final volume of 200 µl, the reaction was incubated at room temperature for 2 minutes. Then, the fluorescence signal was recorded, and the plasmid concentration was calculated.

2.3.7.3 Transfection optimization

Optimization for transfection conditions is critical for the reporter assay, as the luciferase signal is limited by the delivery method for DNA to mammalian cells which depends on several factors [138]. This experiment was aimed to balance between the maximal DNA uptake (which then express as much protein as possible) and the minimal impact on cell viability.

The condition for transfection was optimized using pGL3-Control vector as an experimental vector and pRL-SV40 vector as an internal control. The ratio of FuGENE[®] 6 transfection reagent to the experimental vector were varied from 3:1 to 6:1. The amounts of the experimental vector were of 0.2 μ g or 0.4 μ g, and the ratio of this vector to the control vector were of 50:1 and 200:1. The transfection efficiency was considered from firefly and *Renilla* luciferase activities and protein concentration of the

cell lysate which referred to viability. The most efficient condition was used for gene regulation analysis. The optimization conditions were described in Table 2.27.

Table 2.27: Optimization conditions for transfection.

Conditions	Ratio of transfection reagent and DNA (volume; µl/weight; µg)	Amount of DNA	Ratio of experimental vector and internal control
1		0.2 ч.е	50:1
2	2.1	0.2 µg	200:1
3	3:1 -	0.4	50:1
4		0.4 µg	200:1
5		0.2 ч.е	50:1
6	6:1	0.2 µg	200:1
7	0.1	0.4.4.4	50:1
8		0.4 µg	200:1
9	Non-transfection control		

2.3.7.4 Transfection

RBMSCs of passage 4 at a density of 60% confluence in 24-well plates were transfected by using FuGENE[®] 6 Transfection Reagent. As shown in Table 2.28, FuGENE[®] 6 was diluted in α -MEM (without serum) and incubated for 5 minutes at room temperature. The experimental vectors (including pGL3-*runx2*-N, pGL3-*runx2*-F, pGL3-5X*ap1*, pGL3-5X*sry*, and pRL-SV40) and control vector (pRL-SV40 vector) were added into the mixture and incubated for 15 minutes at room temperature. The complex was slowly dropped on to the cells cultured in a well and incubated for 4 hours in a CO₂ incubator. After that, the culture supernatant was removed and replaced by α -MEM supplemented with 2% FBS. After 24 hours of incubation, the cells were induced

with 2.5 ng/ml FGF2, 60 ng/ml insulin, or FGF2 plus insulin for 24 hours. The reporter assay was performed after 24 hours of incubation in 2% FBS medium (Figure 2.18).

Table 2.28:The components for transfection reactions. The ratio of transfectionreagent to DNA was 6:1.

Components	Volume	Final concentration
Serum free medium	95.35 µl	-
FuGENE [®] 6 reagent	2.4 µl	-
Experimental vector (0.2 µg/µl)	2 µl	4 ng/µl
pRL-SV40 vector (8 ng/µl)	0.25 µl	0.02 ng/µl
Total volume	100 µl	

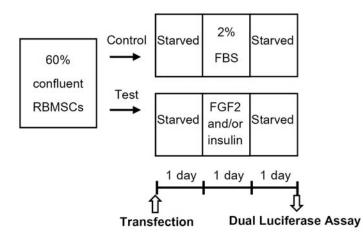


Figure 2.18: The plan of transfection experiment and luciferase assay. The cells were transfected with the experimental vectors (including pGL3-*runx2*-N, pGL3-*runx2*-F, pGL3-5X*ap1*, pGL3-5X*sry*, and pRL-SV40) and pRL-SV40 control vector and starved for 1 day post-transfection. The old medium was replaced by growth factor containing medium (2.5 ng/ml FGF2, 60 ng/ml insulin, or FGF2 plus insulin) for 1 day. After starvation for 1 day, the luciferase activity was measured.

Luciferase activity was quantified by using Dual-Luciferase[®] reporter assay kit (Promega) and performed on GloMax[®] 20/20 Luminometer (Promega). The luminescent signal of firefly luciferase was firstly determined followed by the signal of *Renilla* luciferase. Luciferin and coelenterazine were the substrate of firefly and *Renilla* luciferase, respectively (Figure 2.19). The cells were induced by FGF2 and insulin, by which related transcription factors were presumed to be activated and bound to the inserted DNA fragment on the reporter vector, resulting in increased luciferase production.

To measure the dual-luciferase activity, the cells were lyzed in Passive Lysis Buffer (PLB) with gently rocking for 15 minutes at room temperature (200 μ I of PLB per well of 24-well plate). One hundred microliter of Luciferase Assay Reagent II was pre-dispensed into the reaction tubes and mixed with 20 μ I of PLB lysate by pipetting. The firefly luciferase activity of the experimental vector was recorded. Afterwards, 100 μ I of Stop & Glo[®] Reagent was added and mixed by vortexing. The *Renilla* luciferase activity was then measured. Data was reported as a ratio of firefly luciferase activity and *Renilla* luciferase activity. Statistical analysis was performed by using one-way ANOVA.

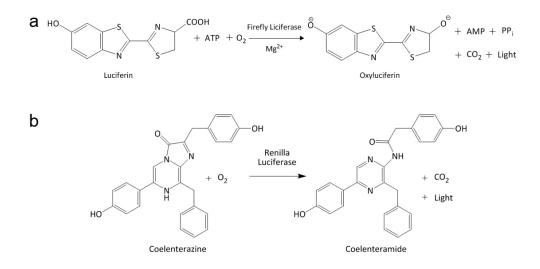


Figure 2.19: Bioluminescent reaction of firefly luciferase (a) and Renilla luciferase (b).

2.4 Equipment

Equipment	Model
Aspirator	Flask-trap Aspirator FTA-1, Biosan (Latvia)
Autoclave	SA-300VF-F-A500, Sturdy (Taiwan)
Balances	300A (max 350 g, min 0.01 g), Precisa (Switzerland);
	T-203 (max 200 g, min 0.001 g), Denver Instrument
	(Germany)
Centrifuge	Allergra [®] X-15R, Beckman Coulter (CA, USA);
	Z383K, Hermle (Germany);
	Universal 16R, Hettich Lab Technology (Germamy);
	VS-15000N, Vision (Korea);
	Centrifuge CF-5, Daihan Scientific (Korea)
CO ₂ incubator	2323-2, Shel Lab (OR, USA);
	3111, Thermoscientific (MA, USA)
DNA electrophoresis	i-MyRun, Cosmo Bio CO., LTD (Japan);
	MJ-105, Major Science (CA, USA)
DNA sequencer	Applied Biosystems 3730XL, Life Technologies
	Corporation (CA, USA)
Flowcytometer	BD FACSCalibur, BD Biosciences (CA, USA)
Fluorescent Microscope	BX61 Motorized System Microscope, Olympus (Japan)
Fluorometer	Qubit [®] Fluorometer, Life Technologies Corporation (CA,
	USA)
Hot air oven	Schutzart DIN 40050-IP20, Mommert (Germany)
Hot plate and stirrer	C-MAG HS7, IKA [®] (Malaysia)
Laminar air flow cabinet	Ultrasafe 48, Faster S.r.I (Italy);
	Aristream class II BSC, Esco Technologies, Inc (PA, USA)
Light Microscope	CK2, Olympus (Japan)
Luminometer	Glomax [™] 20/20 Luminometer, Promega (WI, USA)

Equipment	Model
Macropipette	Acura [®] Manual 835 1-10 ml, Socorex (Switzerland)
Micropipettes	Labnet: 0.1-2.5 µl, and 0.5-10 µl (NY, USA);
	Biohit: 0.5-10 μl, 5-50 μl, and 10-100 μl (Finland);
	Pipet-Lite XLS 100-1,000 µl, Rainin (OH, USA)
Microplate reader	DTX 880 Multimode Detector, Beckman Coulter (Austria)
Microwave oven	NN-NX21WX, Panasonic (Thailand)
Orbital shaker	Mini Shaker PSU-2T, Biosan (Latvia)
pH meter	Mettler Toledo (Switzerland)
Pipette Motorized Controller	PipetteBoy Pro, Integra (Switzerland);
	Pipet-aid, Drummond (PA, USA)
Power supply	EC 105 LVD, E-C Apparatus Corporation (CT, USA)
Real-time PCR Machine	MyiQ Single-color Real-time PCR Detection System, Bio-
	rad (CA, USA);
	LightCycler [®] Nano, Roche (Germany);
Refrigerator	Tiara (4°C and -20°C), Mitsubishi (Thailand);
	Low Temperature Freezer (-40°C), Haier (Thailand);
	SCL510 Scanlaf UTL Freezer (-80°C), Labogene
	(Denmark)
Shaker	Rocker platform, Bellco Biotechnology (NJ, USA)
Shaking incubator	VS-8480S, Vision Scientific CO., LTD (Korea)
Spectrophotometer	Diode Array Spectrophotometer 8452A, Hewlett Packard
	(CA, USA)
Thermal cycler	G-Strom GS00482, Gene Technology LTD (England)
UV transilluminator	TCX-26.M, Vilber Lourmat (France);
	Benchtop UV transilluminator M-15E, UVP (CA, USA)
	equipped with camera (Kodak EasyShare P880)
Vortex	Vortex-Genie 2 G-560E, Scientific Industries (NY, USA)

CHAPTER 3

RESULTS

3.1 Characterization of the isolated HBMSCs

3.1.1 Morphology

HBMSCs isolated from human bone marrow (passage 0) were apparent as fibroblast-like cells (Figure 3.1a). Their size was gradually increased up on culturing. The mononuclear cells adhered and reached confluence after 2 weeks. The cells in passage 2 to 3 were used for the induction experiment. Beyond the passage 5 of culturing, the cells took longer time periods to reach confluence, while changes in cell morphology was observed (Figure 3.1d).

Osteogenic differentiation was induced by the addition of 2.5 ng/ml FGF2 in DMEM/F12 for 24 hours followed by starvation with the medium supplemented with 2% FBS. Then, 10 ng/ml BMP2 was added into the medium for 24 hours before the induced cells were taken for use (Figure 2.7). The cells had more spindle-liked morphology in FGF2 containing medium, whereas BMP2 might cause size enlargement of the cells. By the sequential induction, the cells produced extracellular matrix as could be determined under a microscope (Figure 3.1b and 3.1c).

3.1.2 Cell surface markers

To investigate specific characteristics of the isolated HBMSCs, surface antigens for the cells of passage 2 were identified using fluorochrome-labeled antibody against such the surface markers and analyzed by flow cytometry (Figure 3.2). As shown in Table 3.1, the majority of the cells in monolayer exhibited the surface antigen pattern of MSCs. These markers included CD13, CD29, CD44, CD73, and CD90, revealed by 76-100% of cell population. However, one of the hematopoietic cell markers, such as CD45, was also detected. About 62% of the HBMSCs were CD45 positive. Other makers such as CD14, CD34, and HLA-DR were identified in less than 30% of the cell population.

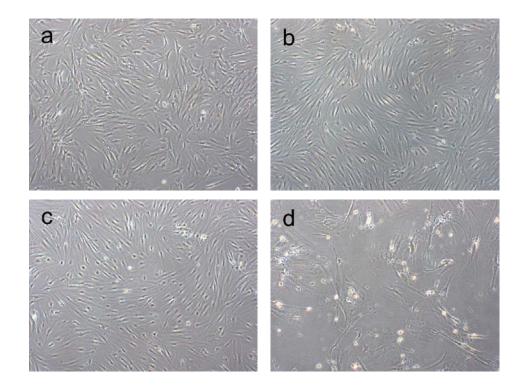


Figure 3.1: The morphology of HBMSCs (40x magnification). (a) The cells of passage 2 grown in normal medium (10% FBS in DMEM/F12). Osteoinduction for the cells were conducted using (b) 2.5 ng/ml FGF2 for 24 hours followed by (c) 10 ng/ml BMP2 for 24 hours. (d) Dramatic changes in cell morphology were observed in the cells of passage 5.

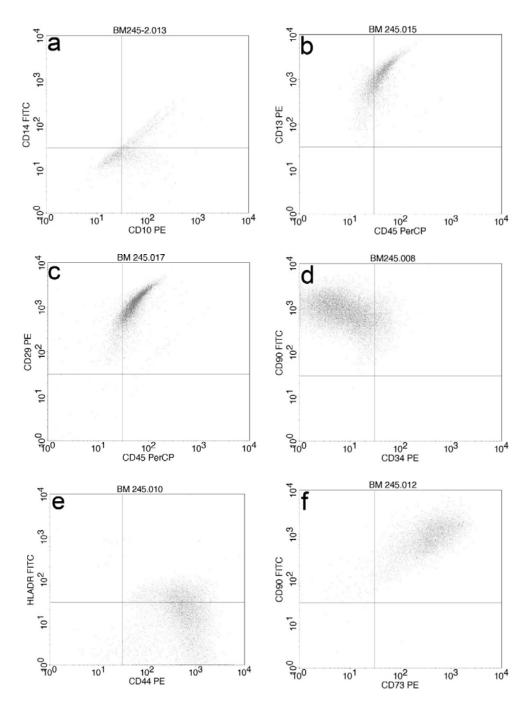


Figure 3.2: Surface markers of HBMSCs, analyzed by flow cytometry. The scatter plots of 2 markers: (a) CD10 and CD14, (b) CD45 and CD13, (c) CD45 and CD29, (d) CD34 and CD90, (e) CD44 and HLA-DR, and (f) CD73 and CD90.

Surface Marker	Expression	% Positive
CD10	+	76.28
CD13	+	100
CD29	+	99.64
CD44	+	99.34
CD73	+	98.11
CD90	+	99.86
CD14	-	26.01
CD34	-	7.7
CD45	-	62.36
HLA-DR	-	19.63

Table 3.1: Percentage of the cells expressing each specific surface marker.

3.1.3 The expression of stem cell-specific genes

MSCs in bone marrow cell population have been estimated to be 1 cell in 10⁴-10⁵ cells [106-108]. These cells can be expanded by serial subculture to a desired number. For clinical application of tissue engineering, large amounts of the cells are needed. Therefore, the subculture step is very important. This manipulation should not be to disturb the self-renewal and differentiation potentials of the cells. Numerous factors that control the cells proliferation and maintain their multipotency have long been studied. However, little is known for the mechanism at molecular levels. Among these factors, OCT4, SOX2, Nanog, FGF4, REX1, BST1, and TERT have been reported and proven to be specific for the stem cells [139-144].

To investigate the expandability of HBMSCs, the stem cell-associated genes were serially followed up by using RT-PCR technique. The quantitative changes in the stem cell gene expressions for the cells of passage 2 and 5 were compared. The stem cell-associated genes to be tested included *oct4*, *sox2*, *nanog*, *fgf4*, *rex1*, *bst1*, and *tert*. These genes were found to express in the isolated HBMSCs. In comparison, the genes of *oct4*, *sox2*, *nanog*, and *fgf4* were significantly lowered for the cells of

passage 5. The difference in *rex1* expression for these two passages was not significant, while the expression levels of *tert* and *bst1* were enhanced (Figure 3.3).

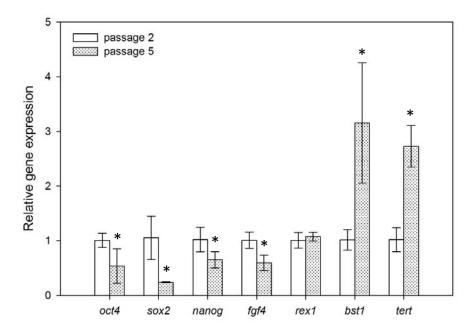


Figure 3.3: The expression of stem cell-associated genes of HBMSCs in passage 2 and 5. Decreased expression of the core transcription factors such as *oct4*, *sox2*, *nanog*, and *fgf4* were identified. Almost 3-fold increase of *tert* and *bst1* genes were observed. * indicates significant differences (*p*<0.05) as calculated by t-test.

3.1.4 Changes in stem cells-gene expression of induced HBMSCs

Based on the previous study, the induction effects of FGF2 and BMP2 for improving bone regeneration were further examined using another cell source. The robustness of culturing protocols that might influence the stem cell properties after this induction was verified. HBMSCs were firstly induced by 2.5 ng/ml FGF2 for 1 day, followed by 10 ng/ml BMP2 for 1 day (Figure 2.7) before the determination of osteogenic gene markers were carried out. These important markers included *runx2*,

alp, *osc*, *opn*, and *bsp* which involves in either differentiation or mineralization process of bone regeneration.

After induction, increase in *fgf4*, *sox2*, and *bst1* mRNA levels by almost 2.5-folds was detected. The levels of *opn*, and *bsp* were significantly increased by 2.5 and 3.5-flod, respectively. However, the expression of *nanog*, *rex1*, and *runx2* were not changed. The levels of *tert*, *oct4*, *osc*, and *alp* were decreased significantly. (Figure 3.4).

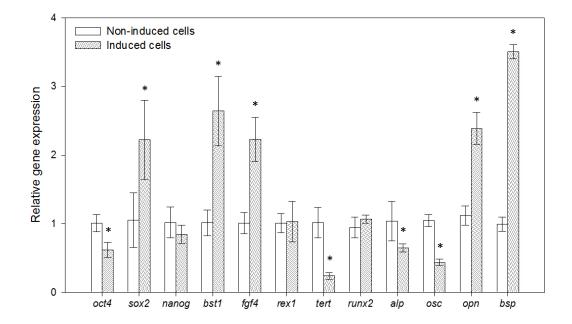


Figure 3.4: The mRNA expression of stem cell-associated and osteogenic genes of HBMSCs, after sequential induction with 2.5 ng/ml FGF2 and 10 ng/ml BMP2. The expression of *sox2*, *bst1*, *fgf4*, *opn*, and *bsp* were increased, while *oct4*, *tert*, *alp*, and *osc* were decreased. The level of *nanog*, *rex1*, and *runx2* were not affected by the induction. * indicates significant differences (*p*<0.05) as calculated by t-test compared to the gene levels of the non-induced cells.</p>

3.2 Characterization of the isolated RBMSCs

The isolated RBMSCs showed a spindle-liked shape. After isolation, the cells reached confluence within 2 weeks. The rate of proliferation was decreased when subculturing to passage 8, and the cell morphology was changed to be a flattened epithelial shape (Figure 3.5).

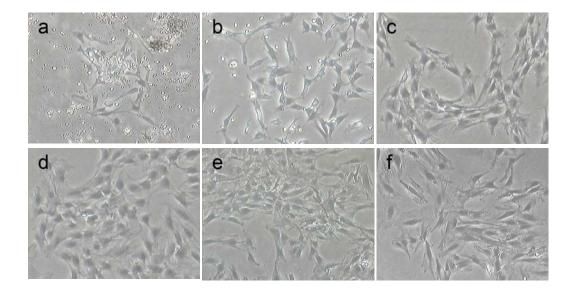


Figure 3.5: The morphology of RBMSCs (40x magnification). The cells of passage 0 at (a) day 1 and (b) day 3 post-isolation. A colony of adherent cells could be detected at the first day. The size of the cells at (c) passage 2, (d) passage 4, (e) passage 8, and (f) passage 8 gradually increased upon culturing.

3.3 Growth factors to be determined for the effects on bone regeneration

The induction by growth factors were divided into two subsequent phase: proliferation and differentiation phases, respectively. The growth factors for the former phase included FGF2 and insulin, while for the later phase these were BMP2 and BMP7. In the control group, the cells were treated with 10 nM TA and 50 µg/ml AA

(TA+AA) in addition to 2% FBS. The summation of the used growth factors and their concentration was shown in Table 2.7 (Page 49).

3.3.1 Cell proliferation

In the proliferation phase, improved growth was not revealed by FGF2 induction (Figure 3.6). In contrast, the number of cells was increased by 1.2- to 1.3-fold when insulin was used as an inducer.

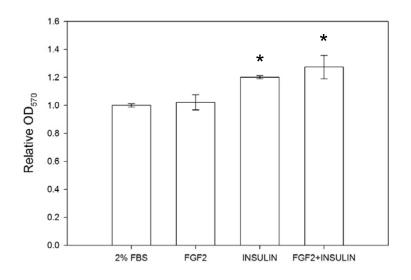


Figure 3.6: The result of MTT assay. Relative cell viability of RBMSCs after incubation with 2.5 ng/ml FGF2, 60 ng/ml insulin, or FGF2 plus insulin for 24 hours. The cells cultured in α -MEM plus 2% FBS were of the control. * indicates significant differences (*p*<0.05) as calculated by ttest.

3.3.2 mRNA expression of genes related to osteogenesis

In this experiment, the expression levels of genes related to osteogenesis were measured. The tested genes were divided into 3 groups including the genes of osteogenic transcription factors, *runx2* and *osx*; the gene of osteogenic protein, *bmp7*; and the genes of WNT pathway proteins, *axin2*, β -catenin, and *dkk1*.

3.3.2.1 The effects of FGF2 and insulin

The cells of passage 4 were challenged with 2.5 ng/ml FGF2, 60 ng/ml insulin, or FGF2 plus insulin for 24 hours. Results showed that the expression levels of *runx2*, *osx*, *bmp7*, *axin2*, β -catenin, and *dkk1* were significantly increased by the co-treatment. In contrast, FGF2 decreased the expression levels of all genes under investigated. The level of bmp7 mRNA was up-regulated by insulin, while it did not influence the remaining genes (Figure 3.7).

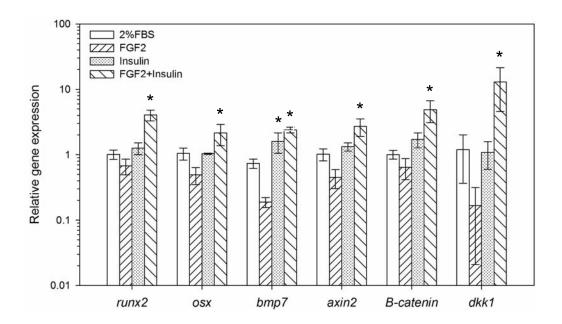


Figure 3.7: Relative mRNA expression levels of osteogenic markers for the RBMSCs induced with 2.5 ng/ml FGF2, 60 ng/ml insulin, or FGF2 plus insulin for 1 day. The control group was the cells cultured by α-MEM plus 2% FBS. * indicates significant differences (*p*<0.05) as calculated by t-test.

3.3.2.2 The effects of BMP2 and BMP7

The cells of passage 4 were challenged by 10 ng/ml BMP2, 10 ng/ml BMP7, or BMP2 plus BMP7. Those cultured in the medium containing 10 nM TA and 50 µg/ml AA (TA+AA) were of the control group. The levels of *runx2* and *osx* mRNA were increased by 2- to 3-fold when induced with BMP7, whereas BMP2 lowered these genes (Figure 3.8). Both BMPs inhibited *bmp7* gene expression. The levels of *axin2* and β -catenin, were enhanced by BMP7, but blocked by BMP2. The expression of *dkk1* was inhibited by BMP2 and BMP7. Especially, BMP7 strongly suppressed *dkk1* mRNA expression, by 25 folds.

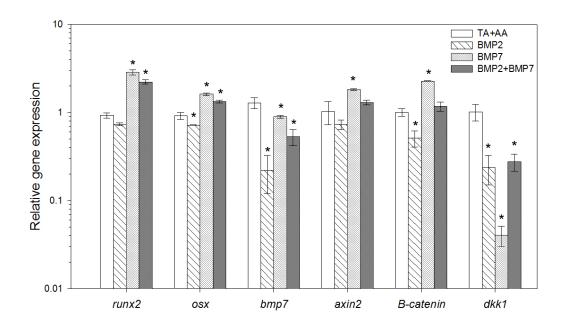


Figure 3.8: Relative gene expression levels of RBMSCs treated with 10 ng/ml BMP2, 10 ng/ml BMP7, or their combination for 1 day. The cells cultured in TA (10 nM) and AA (50 μg/ml) containing medium were of the control group. * indicates significant differences (*p*<0.05) as calculated by t-test.</p>

3.3.2.3 The effects of proliferation factors (FGF2 and insulin) and differentiation factors (BMP2 and BMP7)

The cells of passage 4 were induced by the proliferation factor(s) for 1 day followed by starvation in medium plus 2% FBS for 2 days and stimulation with the differentiation factor(s) for 1 day before the expression of osteogenic markers were investigated (Table 3.2).

The results showed that *runx2* expression of FGF2 pre-treatment group was significantly down-regulated by TA+AA, BMP2, and BMP7, but not in the BMPs combination treatment. For insulin induction followed by BMP2, *runx2* mRNA was decreased by 0.6-fold. When the combination of the proliferation factors was used, the expression of *runx2* was also lowered by these differentiation factors. The expression level of *osx* was up-regulated by TA+AA or BMP7 in the insulin pre-induction group, while the combination of BMP2 and BMP7 promoted *osx* mRNA level in FGF2 and the combination of FGF2 and insulin pre-treatment. *Osx* expression was decreased by BMP2 in all of the pre-induction groups. For *bmp7* gene, the expression level was increased by 2-fold in insulin followed by TA+AA group. In the remaining groups, down-regulation of *bmp7* expression was observed. The level of *bmp7* was lowered by 0.07-fold in FGF2 followed by TA+AA group.

For the genes in WNT pathway, the expression of *axin2* was not affected by any induction conditions. The expression of β -catenin was increased by BMP7 when the cells were pre-treated with insulin. However, the opposite result was observed in FGF2 pre-treatment followed by BMP7 that the level of β -catenin was decreased by 0.56-fold. The presence of BMP2 improved β -catenin expression in FGF2 and insulin combination group. In FGF2 followed by TA+AA, β -catenin mRNA was significantly down-regulated by 0.4-fold. The down-regulation of *dkk1* expression was observed in almost all treatment group, excepted for the group treated with insulin followed by TA+AA.

Table 3.2: The relative mRNA expression levels of osteogenic markers for the RBMSCs initially induced by the proliferation factor(s) (2.5 ng/ml FGF2 and 60 ng/ml insulin) and followed by the differentiation factor(s) (10 ng/ml BMP2 and 10 ng/ml BMP7). The cells treated by the condition A1 were of the control group. * indicates significant differences (*p*<0.05) as calculated by one-way ANOVA.

Proliferation		Differentiation	Relative expression level (±SD)					
induction		induction	runx2	osx	bmp7	axin2	eta-catenin	dkk1
A 2% FBS	1	TA+AA	0.93±0.06	0.92±0.09	1.29±0.18	1.03±0.31	1.00±0.10	1.02±0.22
	2	BMP2	0.74±0.03*	0.72±0.01*	0.22±0.10*	0.73±0.09	0.51±0.11*	0.24±0.09*
	3	BMP7	2.87±0.20*	1.62±0.05*	0.90±0.03*	1.81±0.05	2.28±0.02*	0.04±0.01*
	4	BMP2+BMP7	2.22±0.13*	1.34±0.05*	0.53±0.11*	1.30±0.08	1.17±0.14	0.28±0.06*
B FGF2	1	TA+AA	0.28±0.04*	0.48±0.03*	0.07±0.02*	0.65±0.06	0.40±0.04*	0.15±0.08*
	2	BMP2	0.74±0.01*	0.59±0.07*	0.26±0.07*	1.13±0.02	0.77±0.09	0.11±0.01*
	3	BMP7	0.56±0.02*	0.66±0.01*	0.20±0.03*	0.83±0.03	0.56±0.02*	0.23±0.01*
	4	BMP2+BMP7	1.19±0.00	1.22±0.07*	0.66±0.03	1.44±0.24	1.27±0.22	0.32±0.15*

Table 3.2	(Continued)
-----------	-------------

Proliferation		Differentiation			Relative expres	sion level (±SD)		
induction		induction	runx2	osx	bmp7	axin2	eta-catenin	dkk1
C Insulin	1	TA+AA	1.13±0.19	1.33±0.06*	2.29±0.58*	1.47±0.21	1.22±0.12	1.23±0.21
	2	BMP2	0.61±0.01*	0.85±0.10	0.22±0.03*	0.89±0.14	0.75±0.05	0.13±0.03*
	3	BMP7	1.24±0.20	1.29±0.15*	0.20±0.12*	1.44±0.78	1.83±0.05*	0.77±0.46
	4	BMP2+BMP7	1.30±0.19	1.03±0.06	1.08±0.39	1.21±0.13	1.21±0.16	0.06±0.00*
D FGF2+Insulin	1	TA+AA	1.19±0.07	0.65±0.09*	0.70±0.36	1.89±0.83	1.09±0.24	0.39±0.09*
	2	BMP2	0.90±0.02*	0.89±0.10	0.70±0.21	1.47±0.37	1.38±0.18*	0.47±0.36*
	3	BMP7	0.68±0.06*	0.98±0.07	0.15±0.06*	1.34±0.54	0.85±0.07	0.41±0.34*
	4	BMP2+BMP7	0.66±0.02*	1.41±0.06*	0.31±0.13*	1.20±0.03	1.51±0.23*	0.76±0.23

3.3.3 Alkaline phosphatase (ALP) activity assay

For the cells treated with the proliferation factor(s), ALP activity was raised by either FGF2 or insulin, but significantly decreased when the combined growth factors were used (Table 3.3). The effect of insulin on ALP activity was stronger than FGF2.

The sequential effects of the proliferation factor(s) and the differentiation factor(s) on ALP activity were also investigated (Table 3.4). The enzyme activity was slightly promoted by FGF2 or insulin. Followed by BMP2, BMP7, or BMP2 plus BMP7 induction, the enzyme activity was significantly increased (1.18 to 1.36-fold increment). Enhanced ALP activity was only found for the cells treated with FGF2 plus insulin, followed by BMP2 plus BMP7 (1.05-fold), while the remaining treatment groups were not affected by these growth factors.

3.3.4 Calcium deposition

In table 3.3, slight increment of calcium deposition was determined for the cells treated with the used proliferative growth factors, compared to the control group. The degree of calcium deposition was not different among these treatment groups, but significantly higher than that of the control. When the cells were subsequently induced by the differentiation growth factors (BMP2 and/or BMP7), improved calcium deposition was detected (Table 3.4). However, the higher degree of calcium deposition was found for the cells previously cultured in 2% FBS and subsequently induced by either BMP2 or BMP7.

Table 3.3: The results of relative ALP activity and relative calcium deposition after proliferation induction. RBMSCs were cultured in medium supplemented with 2.5 ng/ml FGF2, 60 ng/ml insulin, or the combination for 1 day. The control group was the cells cultured by α -MEM plus 2% FBS. Calcium deposition was estimated from the OD values at 450 nm by which ARS dye forms complexes with Ca²⁺, generating brick-red color. * indicates significant differences (*p*<0.05) as calculated by one-way ANOVA.

Proliferation	Relative ALP	Relative Calcium
induction	activity (±SD)	deposition (±SD)
2% FBS	1.00±0.06	1.00±0.03
FGF2	1.11±0.01*	1.90±0.09*
Insulin	1.17±0.02*	2.01±0.15*
FGF2+Insulin	0.95±0.01*	1.92±0.05*

Table 3.4: The results of relative ALP activity and relative calcium deposition of osteogenic induced RBMSCs using proliferation factor(s) (2.5 ng/ml FGF2 and 60 ng/ml insulin) and followed by differentiation factor(s) (10 ng/ml BMP2 and 10 ng/ml BMP7). The cells treated by the condition A1 were of the control group. Calcium deposition was estimated from the OD values at 450 nm by which ARS dye forms complexe with Ca²⁺, generating brick-red color. * indicates significant differences (*p*<0.05) as calculated by one-way ANOVA.

	Proliferation		Differentiation	Relative ALP	Relative Calcium
	induction		induction	activity (±SD)	deposition (±SD)
А	2% FBS	1	TA+AA	1.00±0.01	1.00±0.05
		2	BMP2	1.06±0.06*	2.54±0.19*
		3	BMP7	1.10±0.03*	2.48±0.06*
		4	BMP2+BMP7	1.09±0.00*	2.10±0.31*
в	FGF2	1	TA+AA	1.27±0.01*	1.65±0.05*
		2	BMP2	1.18±0.01*	1.90±0.12*
		3	BMP7	1.36±0.01*	1.82±0.16*
		4	BMP2+BMP7	1.27±0.01*	1.78±0.29*
С	Insulin	1	TA+AA	1.10±0.00*	1.72±0.03*
		2	BMP2	1.25±0.02*	2.01±0.22*
		3	BMP7	1.31±0.01*	2.18±0.02*
		4	BMP2+BMP7	1.23±0.03*	2.00±0.20*
D	FGF2+Insulin	1	TA+AA	0.87±0.01*	1.71±0.03*
		2	BMP2	1.00±0.01	1.92±0.08*
		3	BMP7	1.00±0.00	1.88±0.21*
		4	BMP2+BMP7	1.05±0.01*	1.55±0.07*

Following the induction with FGF2, insulin, or FGF2 plus insulin for 1 day, the production of BMP2 by the induced cells was quantified. In Figure 3.9, the levels of BMP2 was increased within the 24 hours post-induction, which significantly affected by insulin. However, the protein levels were decreased when determined at 72 hours post-induction.

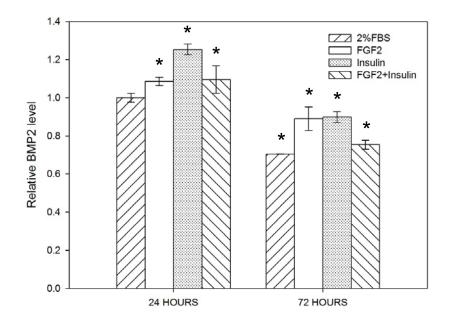


Figure 3.9: BMP2 levels produced by RBMSCs. The cells were induced with 2.5 ng/ml FGF2, 60 ng/ml insulin, or FGF2 plus insulin for 24 hours, and the level of BMP2 was detected after 24 and 72 hours post-induction. The cells grown in 2% FBS containing medium were used as the control.
* indicates significant differences (*p*<0.05) as calculated by one-way ANOVA.

3.4 In vivo bone formation

RBMSCs at a density of 10⁴ cells/scaffold were seeded onto scaffold samples and cultured in the induction conditions previously studied (Experiment 2.3.5, Figure 2.11). The cell-seeded constructs cultured in 2% FBS containing medium were used as the control. The prepared constructs were implanted subcutaneously on the back of the rats for the study of ectopic bone formation (Figure 2.12). The implants were removed after 8 weeks post-operation and proceeded for histological analysis. The staining dyes including H&E and ARS were utilized for microscopic investigation.

After 8 weeks of implantation, the scaffolds were remained undegraded (Figure 3.10). For the scaffolds without cells and with non-induced cells, fibrous tissue was found to cover the implant surfaces. The newly formed bone was detected inside the implants, previously induced with FGF2, followed by BMP2 or BMP7 (Figure 3.11). In contrast, the new bony tissue was not apparent for insulin treated samples (Figure 3.12). The bone tissue was formed inside the constructs treated with the combination of the proliferation and differentiation factors (Figure 3.13).

Figure 3.10: The implanted tissues at 8 weeks post-operation. The constructs were subcutaneously implanted into the dorsal part of 2-month-old Wistar rats and harvested after 8 weeks of implantation. All samples were persisted at the implantation site.

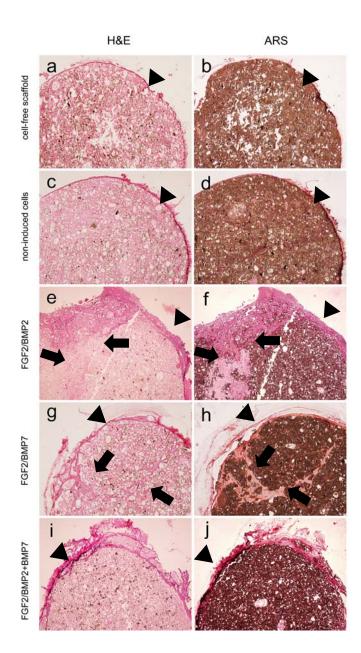


Figure 3.11: Tissue sections of 8-week after implantation, stained with H&E and ARS (40x magnification). The figures represented the groups of initially induced cells using FGF2 followed by differentiation induction using BMP2 (e and f), BMP7 (g and h), and the combination (i and j). The cell-free scaffolds (a and b) and cell-seeded constructs cultured in 2% FBS containing medium (c and d) were used as the control. Symbols: (→) newly formed bone tissue and (▲) fibrous tissue.

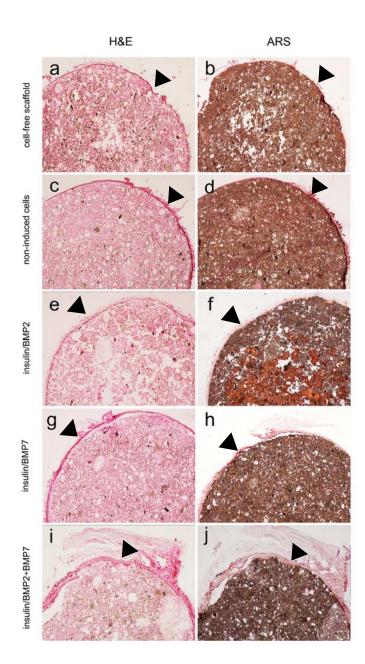


Figure 3.12: Tissue sections of 8-week after implantation, stained with H&E and ARS (40x magnification). The figures represented the groups of initially induced cells using insulin followed by differentiation induction using BMP2 (e and f), BMP7 (g and h), and the combination (i and j). The cell-free scaffolds (a and b) and cell-seeded constructs cultured in 2% FBS containing medium (c and d) were used as the control. Symbols: (➡) newly formed bone tissue and (▲) fibrous tissue.

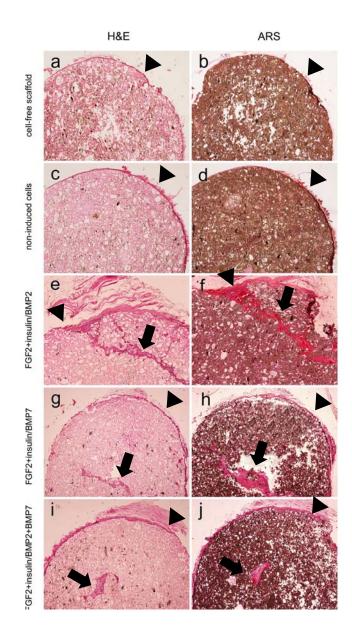


Figure 3.13: Tissue sections of 8-week after implantation, stained with H&E and ARS (40x magnification). The figures represented the groups of initially induced cells using FGF2 plus insulin, followed by differentiation induction using BMP2 (e and f), BMP7 (g and h), and the combination (i and j). The cell-free scaffolds (a and b) and cell-seeded constructs cultured in 2% FBS containing medium (c and d) were used as the control. Symbols: (→) newly formed bone tissue and (▲) fibrous tissue.

3.5 Reporter vectors construction

As *runx2* expression was up-regulated by FGF2 and insulin induction, the mechanisms at molecular levels of this transcription factor on osteogenesis need to be clarified. Luciferase reporter gene assay was performed for such the objective.

The 5'-UTR of *runx2* (-1557 to +97, namely U1557) was amplified using the genomic DNA isolated from RBMSCs as a template by PCR and cloned into pGEM-T[®] easy vector (the cloning vector). After extraction and purification from transformed *E. coli*, the recombinant plasmid was used as a template using two pairs of primers to amplify two consecutive fragments of *runx2*-5'-UTR. These two fragments were cloned into the cloning vector and subcloned into pGL3-Promoter vector (the reporter vector). Two different clones, namely pGL3-*runx2*-N and pGL3-*runx2*-F, were then obtained. The sequence of *runx2*-N and *runx2*-F were presumed as targets of particular transcription factors.

In addition, by aligning with database using TFSEARCH program, consensus sequence, namely *ap1* and *sry*, were identified. Five repeats of each consensus sequence were designed, chemically synthesized, and prepared for cloning into pGL3-Promoter vector. Luciferase gene is located 3'-downstream of the repeat sequence. Increased luciferase activity could be detected if any transcription factors bound specifically to the repeat.

3.5.1 Cloning of 5'-UTR of runx2 gene

3.5.1.1 Cloning of 5'-UTR of *runx2* gene and construction of pGEM-U1557

Genomic DNA isolated from RBMSCs of passage 4 was utilized as a template for PCR reaction using *runx2*-U1557 forward primer and *runx2*-97 reverse primer to amplify the U1557 fragment (Figure 2.14, step 1). The expected PCR product was located about 1.7 kb band (Figure 3.14a). The selected band was purified by gel purification column (Figure 2.14, step 2 to 3) and analyzed again on 0.7% agarose gel (Figure 3.14b). The verified band was used for the next cloning after gel purification.

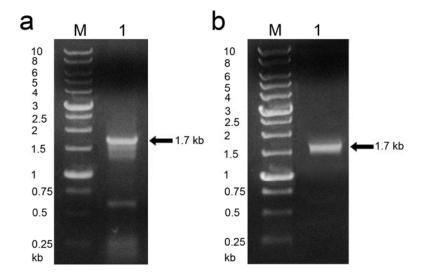


Figure 3.14: The PCR product, called U1557, amplified by using *runx2*-U1557 and *runx2*-97 as the primers (a, lane 1). The corresponding band after gel purification using Nucleospin[®] extract II column (b, lane 1). M: 1 kb DNA marker.

The purified U1557 was cloned into pGEM-T[®] easy vector (Figure 2.14, step 4) and transformed into competent *E. coli* strain DH5 α (Figure 2.14, step 6). The white single colony was picked and separately cultured overnight in LB liquid medium supplemented with 100 µg/ml ampicillin after which the recombinant plasmid was isolated. The isolated plasmid was digested with *Eco*RI and subjected to 0.7% agarose gel electrophoresis (Figure 2.14, step 7 to 9). Two DNA bands located at 3 kb and 1.7 kb were found (Figure 3.15, lane 4). The purified plasmid was subjected to DNA sequencing to acquire the sequence of DNA insert.

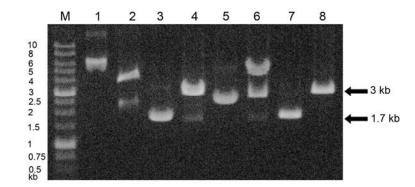


Figure 3.15: Screening of plasmids containing U1557 fragment by using *Eco*RI digestion. Undigested plasmids (odd lanes) and *Eco*RI digested plasmids (even lanes). In lane 4, a 3 kb band represents a linearized pGEM-T[®] easy vector and a 1.7 band denotes an insert DNA fragment. M: 1 kb DNA marker.

3.5.1.2 Analysis of U1557-DNA sequence

The U1557 inserted fragment was sequenced. On aligning the U1557 sequence with the sequence 2,000 bases 5'-upstream of *runx2* gene, the result revealed that these sequences were of 99% similarity (Appendix C). There were 7 mismatch points (at positions +1, -204, -603, -768, -989, -1104, and -1327) and 1 insertion mutation (at a position -980) found in the amplified fragment of U1557. This recombinant clone was used as the template for the next cloning.

Possible transcription factor binding sites were determined for the U1557 sequence (Figure 3.16). Each consensus sequence and its proposed functions were listed in Table 3.5. Among these sequences, *ap1* and *sry* were selected for further analysis because of their association with osteo-chondrogenesis [145-147].

-1558	GAGTGGCGTGGATAAATGGCAAGAAATGCCTAGGAAATTGGTCTGCTCGCCTTTATAATGTTTGTT
-1477	c-Ets GCTCCCAACTGATGAAAAACAGGAAGCTCTATTCATAAATGTGAAATTCACTGCCTATGATATAATCATCCTAATAAGAA
-1396	1 AP1 AATGAGCTCTAGACATACATGTCCAAGAGGGGCAAAAGAAGAAGAGATAGTTTCCCAAAGATGGTTTCAATTCTCTTGAATCA
-1315	
-1234	1 SRY AAAGCTTCCATTATAAACAAAAAAATACAGTTTCTGTTAACCCACTCTATTCTGAACTATGGAAACTACTGAATATCTCAT
-1153	Nkx-2
-1072	5 SRY GAGATAAAATCCAGTCATGCAGAAAATTAACACTATTCCAACAACCTGTATCCTGCAGGTCTTGACATTTGTTTTTTTGG
-991	2 3 4 SRY SRY SRY GTTTTTTTTCGTTTGTTTGTTTTTTTAAGATCTTCAAAGTAACCAAGGGATGATGGTAAAAATAATATAAATGATAC
-910	6 SRY C/EBP TAATTACATTTAATCTTTATTGTAAGAGCTACCACCTAATAAAAAAATCAACTACAACGAGTCATGATTTAGTATTTGTAAAG
-829	C/EBP
-748	IK2 AAACTGTTTTACAATGAGTTACAGATCTACAAGCTTAGGAAGAAGCAGGAAAGAAGCAGCCACCCTGGGAAATCCGAAG
-667	CAGCCCTGAAAGTGATACAATCCCAAGATGTGACCCACTGCGAAGCAGCAGTTGTTCAGAACGCTGCACTCACT
-586	Oct-1 Evi-1 GTTTTGCTCACTTTTCCATAGACATAATAATGAAGGAAGG
-505	MZF1 Cbfa1 Nkx-2 AAGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
-424	2 AP1 ACAGGAGTGTGGGGCTCCTTCAGCATTTGTATTCTATCCAAAATCCTCATGAGTCACAAAAATTAAAAAAGCTATAACCTTCTG
-343	MZF1
-262	MZF1 GGAAGGGAGAGAGAGAGACCCCATAAGTAAAGAGACAGAAGGGAAGGGAAGGGAGAGGAGAGAGA
-181	$\begin{array}{c} C/EBP{-}\beta & MZF1 & Cbfa1 \\ GGGGAGAAAAAAGATTGAGAAAGAGGGGGAGGGGAGAGAAAAGGGGGG$
-100	TATA TGAGTACTGTGAGGTCACAAACCACATGATTCTGTCTCTCCAGTAATAGTGCTTGCAAAAAATAGGAGTTTTTAAAGCTTTT RUNX2-NHEI-U73
-19	Transcription start site GCTTTTTTTGGATTGTGTGAGTGCTTCATTCGCCTCACAAACAA

+63 GGACAGCAAGGAGGCCCTGGTGTTTAAATGGTTAATCTCTGCAGGTCACTACCAGCCA

Figure 3.16: The nucleotide sequence of U1557 and transcription factor binding sites. The broken line depicts the consensus binding sites for known transcription factors. +1 states the transcription start site. The singleheaded arrows represent the annealing site of forward and reverse primers for the amplification of 2 consecutive regions of *runx2* regulatory element.

Table 3.5:Potential transcription factor binding sites identified on U1557 sequence.The consensus sequence and the functional role of each regulatory
element were presented.

Transcription factor	Response element (5'> 3')	Functional role	Reference
c-Ets	RCCGGAWGY	Cell proliferation, differentiation, and oncogenesis	[148]
AP1	TGASTCAG	Osteoblast Differentiation	[146, 147]
C/EBP	NTKTGGWNANN	Adipocyte differentiation	[146]
с/евр-β	NRTKNNGMAAKNN	Regulation of adipocytic and osteoblastic genes	[146]
SRY and SOX	WWCAAW	Control of cell developmental processes, such as sex determination, neurogenesis, and skeletogenesis	[145]
Nkx-2	TYAAGTG	Cardiogenic differentiation	[149]
CdxA	MTTTATR	Development of intestinal epithelium	[150]
lk2	NNTTGGGAWNNC	Development of lymphoid lineage	[151]

Transcription	Response element	Functional role	Reference
factor	(5'> 3')		
Oct-1	WNAWTKWSATRYN	Transcriptional control of various genes	[152]
Evi-1	GAYAAGATAA	Cell development and organogenesis	[153]
MZF-1	AGTGGGGA and CCGNGAGGGGGAA	Myeloid differentiation	[154, 155]
Cbfa1	TGYGGT	Osteoblast Differentiation and Bone Development	[156]
Nucleotide codes W: A or T S: C or G R: A or G Y: C or T K: G or T M: A or C	B: C, G, D: A, G, H: A, C, V: A, C, N: A, C,	or T or T	

3.5.2 Construction of reporter vectors containing runx2 regulatory element

3.5.2.1 Cloning of 2 regions of *runx2* regulatory element

The fragment of 5'-UTR of *runx2* gene (called U1557) were successfully cloned. It was used for studying signaling pathway related to *runx2* transcription. To decrease errors on PCR amplification, the U1557 fragment was divided into two consecutive parts called *runx2*-N and *runx2*-F. The primers for *runx2*-F amplification consisted of *runx2*-KPNI-U796 (forward primer) and *runx2*-NHEI-U73 (reverse primer), while the primers for *runx2*-F amplification included *runx2*-KPNI-U1526 (forward primer) and *runx2*-NHEI-U630 (reverse primer) (Figure 2.15, step 1).

The single sharp bands of *runx2*-N and *runx2*-F was located at 0.7 and 0.9 kb, respectively (Figure 3.17a). To decontaminate any impurities, the PCR products were purified by gel purification (Figure 3.17b).

Figure 3.17: The results of *runx2*-N and *runx2*-F amplification and purification. (a) Amplification of 2 regions of *runx2* regulatory element using pGEM-U1557 as a template. Two sets of primers were used, and 2 PCR products, *runx2*-N (lane 1) and *runx2*-F (lane 2), were obtained. (b) The purified *runx2*-N and *runx2*-F bands in lane 1 and lane 2, respectively. M: 1 kb DNA marker.

3.5.2.2 Construction of pGEM-runx2-N and pGEM-runx2-F

The purified *runx2*-N and *runx2*-F were ligated with pGEM-T[®] easy cloning vector to result in the recombinant plasmids named pGEM-*runx2*-N and pGEM-*runx2*-F, respectively (Figure 2.15, step 3). These recombinant plasmids were separately transformed into *E. coli* strain DH50, multiplied, and extracted by using Nucleospin[®] Plasmid column, and analyzed for DNA insertion by restriction enzyme digestion (Figure 2.15, step 4 to 7). The purified plasmids were digested with *Kpn*I and *Nhe*I and separated on 0.7% agarose gel (Figure 3.18). Linearized pGEM-T[®] easy vector was obtained at 3 kb, while the DNA inserts of *runx2*-N and *runx2*-F were located at 0.7 kb and 0.9 kb, respectively.

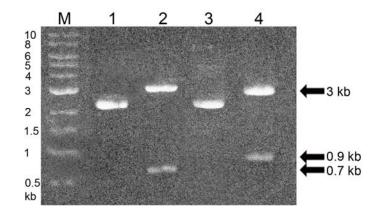


Figure 3.18: Insertion analysis of pGEM-*runx2*-N and pGEM-*runx2*-F. The *Kpn*I and *Nhe*I digestion resulted in a fully cut of the pGEM-*runx2*-N (lane 2) and pGEM-*runx2*-F (lane 4) compared to the undigested plasmids (lane 1 and 3). M: 1 kb DNA marker.

3.5.2.3 Construction of pGL3-*runx2*-N and pGL3-*runx2*-F reporter vector

runx2-N and *runx2*-F fragments from the cloning vector were subcloned into the reporter vector (pGL3-Promoter vector). These DNA fragments were previously digested with *Kpn*I and *Nhe*I, separated on 0.7% agarose geI, and purified by geI purification column (Figure 2.16, step 1 and 2). Figure 3.19 revealed the bands of *Kpn*I and *Nhe*I digested pGEM-*runx2*-N (Figure 3.19a) and that of pGEM-*runx2*-F (Figure 3.19b) at 0.7 kb and 0.9 kb, respectively. Single bands of *runx2*-N and *runx2*-F were obtained by geI purification (Figure 3.19c).

To generate compatible ends for efficient ligation, the pGL3-Promoter vector was digested with *Kpn*I and *Nhe*I as well. The digestion reaction was separated on 0.7% agarose gel, and the selected bands were cut and purified (Figure 2.16, step 1 and 2). The size of *Kpn*I and *Nhe*I treated pGL3-Promoter vector was 5 kb (Figure 3.20a). After purification, the digested vector were examined by gel electrophoresis (Figure 3.20b, lane 2). PCR analysis of the vector was performed using LUC-F and LUC-R primer. These primers were designed to annealed at the upstream and downstream of multi-cloning site of the vector which the amplification covered the digested region. The resulted PCR product of undigested pGL3-Promoter vector was 0.7 kb (Figure 3.20b, lane 3), while the product of the digested vector was not obtained (Figure 3.20b, lane 4).

runx2-N and runx2-F fragments were then ligated with pGL3-Promoter vector, transformed into *E. coli* strain DH5 α , isolated from bacterial transformants, and examined by Kpnl and Nhel digestion and PCR analysis (Figure 2.16, step 3 to 7). The digestion of recombinant plasmids called pGL3-runx2-N and pGL3-runx2-F revealed the insert bands at 0.7 kbp (Figure 3.21, lane 2) and 0.9 kbp (Figure 3.21, lane 4), respectively. On analyzing by PCR using LUC-F and LUC-R as the primers, different sizes of PCR products were obtained. For the pGL3-Promoter vector, the product was located at 0.7 kb (Figure 3.21, lane 5). For pGL3-runx2-N and pGL3-runx2-F, the product sizes were of 1.4 kb and 1.6 kb, respectively (Figure 3.21, lane 6 and lane 7). The sequences of runx2-N and runx2-F inserts were verified by DNA sequencing (Figure 2.16, step 8). By performing sequence alignment, a 100% similarity between U1557 and the DNA inserts was demonstrated (Appendix C). The nucleotide sequence of runx2-N was correspond to the position of -796 to -73 from runx2 transcription start site, and that of runx2-F was identical at the position of -1526 to -630 from the start site. These reporter vectors were successfully cloned and used for further transfection experiment.

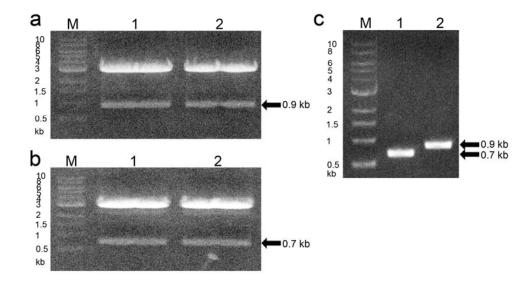


Figure 3.19: *Kpn*I and *Nhe*I digestion of pGEM-*runx2*-N and pGEM-*runx2*-F. The digestion products of pGEM-*runx2*-N (a) and pGEM-*runx2*-F (b). Bands of interest were purified bands using NucleoSpin[®] Extract II column. The purified *runx2*-N (c, lane 1) and *runx2*-F (c, lane 2). M: 1 kb DNA marker.

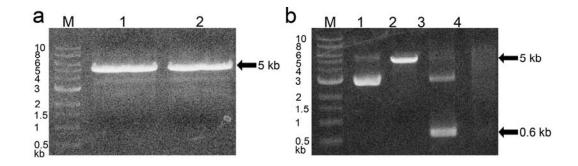


Figure 3.20: Preparation of pGL3-Promoter vector. (a) The pGL3-Promoter vector was digested with *Kpn*I and *Nhe*I resulting in a linearized vector at the size of 5 kb. The uncut pGL3-Promoter vector (b, lane 1), the digested vector (b, lane 2), and the PCR analysis of undigested and digested vector (b, lane 3 and 4). The PCR reaction using LUC-F and LUC-R primers and the uncut pGL3-Promoter vector as a template resulted in 0.7 kb PCR product, but the digested vector did not provide any product. M: 1 kb DNA marker.

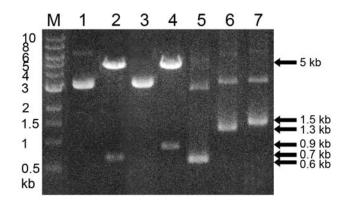


Figure 3.21: Insertion analysis of pGL3-*runx2*-N and pGL3-*runx2*-F. Lane 1 and 3 were the extracted pGL3-*runx2*-N and pGL3-*runx2*-F, respectively. Lane 2 and 4 were *Kpn*I and *Nhe*I digested product of these plasmids. Lane 5-7 were the bands from PCR using pGL3-Promoter vector, pGL3-*runx2*-N, and pGL3-*runx2*-F as a template, respectively. LUC-F and LUC-R primers were used as a forward and reverse primer, respectively. Insertion of *runx2*-N and *runx2*-F in the vector resulted in an increase of the product size, compared to the reaction using pGL3-Promoter vector without DNA insert. M: 1 kb DNA marker.

3.5.3 Construction of reporter vectors containing tandem repeat of transcription factor binding site (pGL3-5X*ap1* and pGL3-5X*sry*)

The pGL3-Promoter vector was firstly digested with *Kpn*I and *Bg*/II and purified by gel purification technique (Figure 2.17, step 1 and 2). The resulted products were about 5 kb (Figure 3.22c). The synthesized double-strand oligonucleotides of tandem repeat for *ap1* (called 5Xap1) and for *sry* (called *sry*X5) were ligated with the prepared pGL3-Promoter vector, transformed into *E. coli* strain DH5 α , multiplied, and extracted from transformants by using Nucleospin[®] Plamid column (Figure 2.17, step 4 to 6).

The positive colony was selected by PCR-based screening using LUC-F and LUC-R as the primers. In Figure 3.23a, lane 3 and Figure 3.24a, lane 3, the length of PCR product was increased. After that, these recombinant plasmids were further analyzed by *Kpn*I and *BgI*II digestion aiming to obtain a product of 5 kb. For PCR analysis, specific reverse primers for pGL3-5X*ap1* (named *ap1*-LUC) and pGL3-5X*sry* (named *sry*-LUC) and the LUC-F forward primer were used, and the PCR products were obtained at 0.5 kb (Figure 3.23b and Figure 3.24b). Finally, the pGL3-5X*ap1* and pGL3-5X*sry* were proved by DNA sequencing.

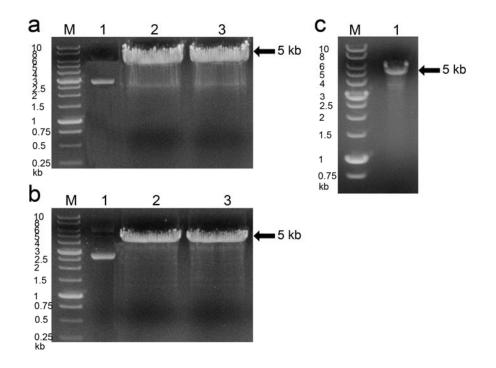


Figure 3.22: Preparation of pGL3-Promoter vector by sequential digestion with *KpnI* and *Bg/II*. (a) pGL3-Promoter vector in lane 1 and *KpnI* single cut plasmid in lane 2 and 3. (b) Purified *KpnI*-cut vector in lane 1 and *KpnI* and *Bg/II* digested product in lane 2 and 3. (c) Purified pGL3-Promoter vector containing *KpnI* and *Bg/II* overhang. M: 1 kb DNA marker.

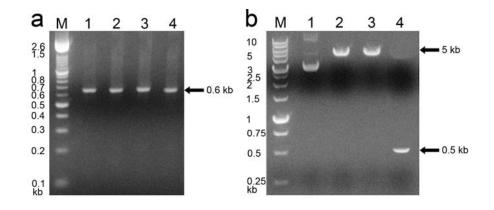
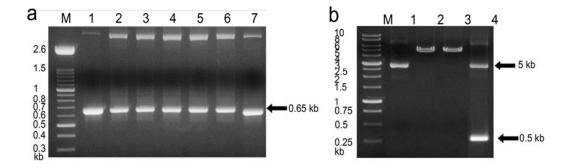
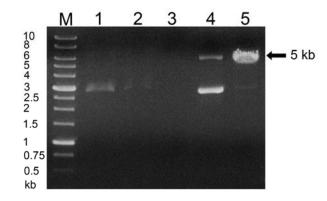


Figure 3.23: Screening and analysis of pGL3-5X*ap1* by PCR using LUC-F and LUC-R as the primers. PCR screening of pGL3-Promoter vector (a, lane 1) and the extracted pGL3-5X*ap1* plasmids from different clones (a, lane 2-4). The *Kpn*I digestion (b, lane 2), *BgI*II digestion (b, lane 3), and PCR using LUC-F forward primer and *ap1*-LUC reverse primer (b, lane 4) of the pGL3-5X*ap1* plasmid from a selected clone. M: 1 kb DNA marker.




Figure 3.24: Screening and analysis of pGL3-5X*sry* by PCR using LUC-F and LUC-R as the primers. PCR screening using pGL3-Promoter vector (lane 1 and 7) and the extracted pGL3-5X*sry* plasmids from different clones (lane 2-6) as a template. Further analysis of the selected clone by *Kpn*I digestion (b, lane 2), *Bg*/II digestion (b, lane 3), and PCR using LUC-F forward primer and *sry*-LUC reverse primer (b, lane 4). M: 1 kb DNA marker.

3.6 Assay of the luciferase activity

The effects of FGF2 and insulin on *runx2* gene expression were determined by using luciferase reporter assay. RBMSCs of passage 4 were co-transfected with the experimental vector (pGL3-*runx2*-N, pGL3-*runx2*-F, pGL3-5X*ap1*, or pGL3-5X*sry*) and the internal control plasmid (pRL-SV40 vector). After that, the transfected cells were treated with FGF2, insulin, or FGF2 plus insulin for 1 day followed by starvation in medium plus 2% FBS for 1 day. The cells were lyzed in PLB. In the same sample, the firefly luciferase activity of the experimental vector was firstly detected and quenched before the *Renilla* luciferase activity of the control vector was measured.

3.6.1 Preparation of reporter vectors

To prepare the reporter vectors including pGL3-Control vector, pGL3-Promoter vector, pGL3-*runx2*-N, pGL3-*runx2*-F, pGL3-5X*ap1*, pGL3-5X*sry*, and pRL-SV40, midi scale plasmid extraction using QIAGEN plasmid midi kits was performed (Experiment 2.3.7.1). The plasmid DNA was extracted from transformed *E. coli* strain DH5 α using procedures as recommended by the manufacturer (QIAGEN). The isolated plasmids were analyzed by *Kpn*I digestion, and the plasmid concentration was determined. The results were shown in Table 3.6.

- Figure 3.25: An example for preparating of pGL3-5X*ap1* plasmid for transfection. The plasmid was extracted from transformed *E. coli* strain DH5α using QIAGEN plasmid midi kit. Lane 1-3 show the appearances from the cleared cell lysate, the flow-through fraction, and the wash fraction from QIAGEN-tip, respectively, on 0.7% agarose gel. The eluted plasmid and the *Kpn*I digested plasmid are in lane 4 and 5. M: 1 kb DNA marker.
- Table 3.6:The recombinant plasmid purified by using QIAGEN plasmid midi kit,
and their corresponding concentrations.

Plasmid	Concentration (µg/µl)		
pRL-SV40 vector	1.8		
pGL3-Control vector	1.2		
pGL3-Promoter vector	1.45		
pGL3- <i>runx2</i> -N	0.92		
pGL3- <i>runx2</i> -F	0.97		
pGL3-5X <i>ap1</i>	1.36		
pGL3-5Xs <i>ry</i>	1.5		

3.6.2 Transfection optimization

To optimize transfection condition, the pGL3-Control vector and pRL-SV40 vector were used as the experimental vector and the internal control vector, respectively. The ratio of FuGENE® 6 transfection reagent to DNA and of the experimental vector to the control vector were varied. After transfection, the cells were cultured in the medium supplemented with 2% FBS for 1 day, and the activities of firefly and Renilla luciferase were measured and expressed as the relative light units (RLUs). Which condition is suited was judged by balancing between transfection efficiency and cytotoxicity. Transfection efficiency was evaluated from these luciferase activities, while the cell viability was estimated from the total protein content of the cell lysate. The results of this optimization were shown in Table 3.5. The highest transfection efficiency were obtained by the condition 7. The ratio between the experimental vector and the control vector was set at 50:1. When the amount of the former vector was 0.4 µg, the amount of the later vector was calculated to be of 8 ng. In consequence, the transfecting reagent to be added to the mixture was 2.4 µl. By using this condition, the cell viability was not strongly affected, because the lysate samples of transfected and non-transfected cells contained similar protein concentration (Table 3.7). Thus, this condition was used for further experiment.

Table 3.7:The results for the optimization of transfection conditions. The optimal condition gave the highest firefly and *Renilla* luciferase
activities with no impact on cell viability (highlighted in bold).

Optimization conditions						
Conditions	Reagent to DNA ratio	Amount of experimental vector (μg)	Experimental vector to control vector ratio	RLUs (firefly luciferase)	RLUs (<i>Renilla</i> luciferase)	Protein concentration (µg/ml)
1	3:1	0.2 µg	50:1	64	189	27.80
2			200:1	111	191	55.76
3		0.4 µg	50:1	4641	488	47.11
4			200:1	75555	811	41.06
5	6:1	0.2 µg	50:1	6450	131	25.21
6			200:1	15422	225	27.80
7		0.4 µg	50:1	215607	14768	39.04
8			200:1	74	175	43.94
9	9 Non-transfection control			73	172	37.60

3.6.3 Luciferase reporter assay

Luciferase reporter assay is one of the tools for studying gene expression. The DNA fragment of interest is inserted upstream of luciferase gene in which the expression is controlled by the target sequence. In this study, the role of FGF2 and insulin on *runx2* gene transcription was evaluated by cloning two consecutive regulatory elements of *runx2* into pGL3-Promoter vector. Two plasmids were obtained, namely pGL3-*runx2*-N and pGL3-*runx2*-F. To specify the intracellular signaling pathway induced by FGF2 and insulin, another two vectors containing five repeats of *ap1* and *sry* binding motif were constructed. The resulting plasmids called pGL3-5X*ap1* and pGL3-5X*sry* were acquired. There were four reporter plasmids (pGL3-*runx2*-N, pGL3-*runx2*-F, pGL3-5X*ap1*, and pGL3-5X*sry*) to be used in transfection experiment as the experimental vectors, while pRL-SV40 vector was used as the internal control vector. A pair of the experimental vector and the control vector was co-transfected into RBMSCs of passage 4. The transfected cells were induced with 2.5 ng/ml FGF2, 60 ng/ml insulin, or FGF2 plus insulin for 1 day before the activities of firefly and *Renilla* luciferase were measured and reported as RLUs.

In pGL3-*runx2*-N transfected cells, the RLUs were increased by 4 and 3.5 folds when the cells were respectively induced by insulin and FGF2 plus insulin (Figure 3.26a). The lower RLUs (1.5-2.5 folds) were found for the cells transfected with pGL3-*runx2*-F regardless of the used inducers (Figure 3.26b). By transfected with pGL3-5X*ap1*, the RLUs were increased by 2 folds after induced by FGF2 plus insulin (Figure 3.26c). In contrast, the RLUs were reduced for the cells transfected with pGL3-5X*sry* following challenged by FGF2 (Figure 3.26d).

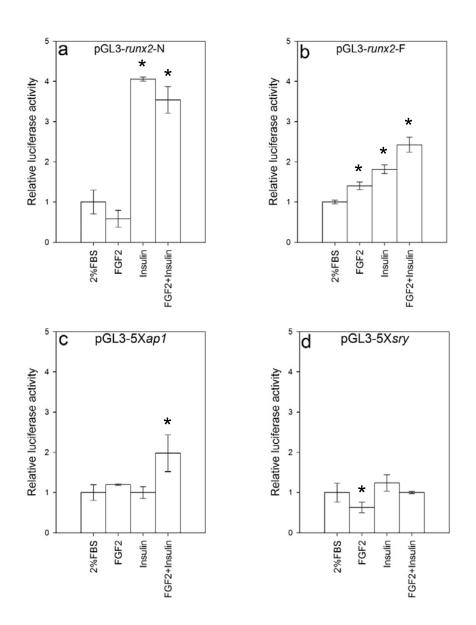


Figure 3.26: Relative luciferase activity of RBMSCs transfected with (a) pGL3-runx2-N, (b) pGL3-runx2-F, (c) pGL3-5Xap1, and (d) pGL3-5Xsry. The transfected cells were induced with 2.5 ng/ml, 60 ng/ml insulin, or FGF2 plus insulin for 1 day followed by starvation for 1 day using medium plus 2% FBS. The cells grown in 2% FBS containing medium were used as the control. Luciferase activity assay was carried out for the induced cells after 1 day of starvation in the medium supplemented with 2% FBS. * indicates significant differences (p<0.05).</p>

CHAPTER 4

DISCUSSION

4.1 Characteristics of HBMSCs

In the 1960s, Friedenstein and colleagues have discovered multipotent progenitor cells or MSCs in bone marrow. The adherent cell fraction expanded and established the colonies initiated from a single cell which were defined as colony-forming unit fibroblasts [157-159]. The investigators have found that these cells differentiated under appropriate conditions to various types of connective tissue including bone, cartilage, adipose tissue, and muscle, which appeared to be a promising tool for experimental and clinical study. However, worldwide use of MSCs in regenerative medicine is hindered by their characteristics which are inconsistent among the research groups. Several methods have been developed for cell isolation from adult tissues resulting in heterogeneous population of the cells. In addition, differences in animal strain or cell culture condition also affect the cell properties [119, 120]. Variation in these laboratory techniques lead to a question of whether the isolated cells can be compared with other reports. Therefore, cautious characterizations of the cells are very important.

In this study, mononuclear cell fraction from human marrow aspirate was isolated by using density gradient centrifugation. The separation is based on the differences in cell density. After centrifugation, erythrocytes and granulocytes were sedimented through the density centrifugation medium, while the mononuclear cells were accumulated between the layer of plasma and density centrifugation medium. The cells in this interphase layer was collected and cultured in a plastic culture flask. The nonadherent cells were removed simultaneously with discarding the culture medium. The adherent cells (or HBMSCs) showed fibroblastic-like shape (Figure 3.1). This cell morphology was maintained at early stages of cultures. After continuously subcultured, the cells trended to lose their phenotype, as revealed that the cells of passage 5 changed from the spindle shape to be large polygonal or cuboidal cells (Figure 3.1d). In addition, the growth rate was shown to be altered. These findings were in an agreement with the previous reports [160, 161]. The long term culture of MSCs would result in cell aging for which morphological deterioration and reduced proliferation and differentiation capacity were observed.

The keys advantages of MSCs are self-renewal and multipotency. However, the properties have been controlled by several factors. For example, OCT4, SOX2, and Nanog have been determined as the core transcriptional factors that regulate the differentiation potency of stem cells [134, 140]. FGF4 and REX1 have been reported as a multipotent marker of stem cells. These factors have been proven to be a target of OCT4 transcriptional activation [139, 144]. The self-renewal property of stem cells has been controlled by the activity of TERT in a prevention of telomere shortening [143]. Moreover, BST1 found in bone marrow stromal cells has been described to be involved with hematopoietic progenitor cell proliferation [141-142]. In this study, the expression of stem cell-associated genes including oct4, sox2, nanog, fgf4, rex1, bst1, and tert were measured upon the subculturing. The RT-PCR results revealed that the expression of oct4, sox2, nanog and, fgf4 were decreased in HBMSCs of passage 5 (Figure 3.3). Changes in the gene expression of the major transcription factors denoted the reduction of the undifferentiated stage of stem cells in the later passage [162-164]. However, increased expressions for tert and bst1 gene were observed. The impact of tert expression has been reported to be positive on cell proliferation and telomere length [165], resulting in cancer development [166]. Thus, the abnormal cell morphology for HBMSCs of passage 5 might be relative to the higher level of tert mRNA. The loss of stem cell properties in this study might also contribute by the nature of the cells, in which the bone marrow samples were obtained from hematological disorder patients. As a result, HBMSCs should be grown by subculturing for less than 5 passages.

The surface antigen markers of HBMSCs of passage 2 was examined by flow cytometry technique. About 76-100% of the isolated HBMSCs population expressed CD10, CD13, CD29, CD44, CD73, and CD90 (Figure 3.2 and Table 3.1). Twenty six percent of the cell population showed CD14, CD34, and HLA-DR, but 60% of the cell population had CD45. The expression of CD29, CD44, CD73, and CD90 by MSCs has been reported [167], whereas CD14, CD34, and CD45, which are the hematopoietic markers, have been undetected. Thus, the isolated HBMSCs had a surface antigen pattern of stem cells, although the hematopoietic markers were also detected. This

might be due to the isolation method in that all of mononuclear cells were collected. Since the mononuclear cells in bone marrow consist of the cells in hematopoietic lineage [168] (such as lymphoid progenitors and monocytic progenitors), these cells were in accompany with other mononuclear cells during isolation. This finding was consistent with the previous study [169], indicating that the isolated MSC from rat bone marrow has been a mixture of cells expressing CD45 up to 75% of the cell population. To improve the homogeneity of the cells isolated, antibody-based isolation methods such as immunodepletion and fluorescence-activated cell sorting (FACS) might be suggested.

4.2 Osteogenic induction of HBMSCs

MSCs in bone marrow cell population have been estimated to be less than 0.01% [106-108]. These cells can be expanded by serial subculture to a desired number. For clinical application of bone tissue engineering, large amounts of the cells are needed. Although, MSCs are multipotent, that be able to differentiate into various lineages, the specific differentiation strictly depends on culture conditions. Therefore, the cell culture step is very important. This manipulation should not be to disturb the self-renewal and differentiation potential of the cells. Many studies have exhibited a potential use of growth factors to enhance the osteogenic differentiation of MSCs [170, 171]. At different stage of osteogenesis, it is orchestral governed by several factors. The combination or subsequent induction by growth factors have been developed to imitate the natural process [130].

HBMSCs were treated with FGF2 followed by BMP2 (Figure 2.7), and the expression level of stem cell-associated genes and osteogenic genes were measured. The mRNA levels of *fgf4*, *sox2*, and *bst1* were significantly elevated, while *oct4* and *tert* were decreased after the activation (Figure 3.4). Numerous factors that control the cells proliferation and maintain their multipotency have long been studied. However, little is known for their mechanisms at molecular levels. Among these factors, OCT4, SOX2, Nanog, FGF4, REX1, BST1, and TERT have been proven to be specific for the stem cells [139-144]. The reduction of *oct4* expression has been suggested to be an indicator of somatic differentiation of MSCs [164]. The results indicated that FGF2 and BMP2

affected the undifferentiated stage of stem cells by inducing differentiation. For osteogenic gene expressions, mRNA level of runx2 was not changed (Figure 3.4). The up-regulation of opn and bsp were significantly detected, but the levels of osc and alp mRNAs were down-regulated. ALP is known as an early marker of osteoblastic differentiation [135], and OSC which is a non-collagenous protein in mineralized bone matrix, is secreted by osteoblasts [172]. OPN and BSP are normally found in the differentiated osteoblasts, involving in calcium phosphate crystal formation and osteoblast adhesion to the formed matrix [173, 174]. A decrease in alp expression might reflect a terminal differentiation stage of osteoblastic lineage, in agreement with the previous study [175]. These gene expression patterns might be the induction signal of FGF2 and BMP2 that following activated the osteogenic differentiation of HBMSCs. The sequential induction using FGF2 and BMP2 has been explored using MSCs derived from rat [130], suggesting the improvement of osteogenic differentiation by increasing the expression of runx2, bmp2, alp, and bsp genes. The expression of runx2 and alp were incomparable between human and rat MSCs, so different cell source might influence the responses of the cells to the growth factors.

4.3 Characteristics of RBMSCs

Since the availability of human bone marrow aspirates from healthy donors have not been sustained. MSCs derived from rat bone marrow (RBMSCs) was used as the cell model for the next investigations. These cells were separated from granulocytes and red blood cells by using density gradient centrifugation technique and cultured in plastic culture vessel. After the medium was discarded, the non-adherent cells were removed remaining the spindle-liked cells attached to the flask. These cells proliferated and grew to form colonies (Figure 3.5). During continuous passaging, the cells morphology was enlarged, while the growth rate was significantly decreased, in consistent with that of the HBMSCs culture (Figure 3.1d). It was suggested that the cells of higher passage was differentiated or aged. The changes in cell properties might be consequences of prolong culturing and the effect of serum supplemented in the culture medium. Therefore, the method for stem cell culture that can sustain the cell properties needs to be developed. It might be that for properly used, the cells should not be grown exceeding the 7th passage. Accordingly, RBMSCs of passages between 2 and 4 were used for all experiments.

4.4 Bone-related growth factors for RBMSCs

Bone marrow-derived MSCs are an easily accessible cell source. Due to their multipotential property, these cells is beneficial for bone tissue engineering. Unfortunately, they are found in a very rare number among the cells of bone marrow. To be applicable in tissue engineering technique, it is needed to increase the cell numbers and maintain their osteogenic differentiation potential. In the previous study, the sequential induction condition using FGF2 followed BMP2 has been developed [130]. The strategy has based on using FGF2 to initiate cell proliferation and osteogenic commitment. The full induction to obtain osteogenic differentiation has been achieved by using BMP2. Since very low concentrations of these growth factors have been inoculated, the method has provided interesting results on improving bone formation in vivo. However, the cost of treatment has been still high. Finding a new inducing factor with comparable or improved osteoinduction property is thus interesting. Many studies have reported the impacts of insulin on bone development. For example, localized insulin treatment had promoted diabetic fracture healing in rat model [176]. Thus, insulin became a candidate for proliferation induction in this study. If it be effective, the treatment cost using insulin is much lower than using FGF2. FGF2, insulin, and their combination were determined for proliferative effect and directing MSCs to be cells ready to become osteoblast. The supportive property of FGF2 and insulin on proliferation and osteoblastic commitment was determined by measuring the numbers of growing cells, the expression levels of osteoblastic genes, and BMP2 protein, ALP activity, and mineralization. BMP2, BMP7, and their combination were tested for differentiation induction effect in the second phase, and the markers for osteoblastic differentiation including the expression levels of osteoblastic genes, ALP activity, and mineralization were determined.

After the cells were treated with FGF2 (2.5 ng/ml for 1 day), the numbers of growing cells were comparable with the control group. Even though the proliferative and angiogenic effects of FGF2 were expected, these require very high dose of FGF2 [177].

The mRNA levels of osteogenic transcription factors (including *runx2* and *osx*), osteogenic protein (*bmp7*), and WNT pathway-related proteins (consisted of *axin2*, β -*catenin*, and *dkk1*) were slightly decreased by FGF2 induction (Figure 3.7). These results were not consistent with the previous study [130], because *runx2* expression has been increased by FGF2. The inconsistency might be due to the different cell type and cell stage. However, BMP2 protein, ALP activity and calcium deposition were evaluated by FGF2 induction (Figure 3.9 and Table 3.3). These parameters donated the osteogenic differentiation of the treated cells. In summation, FGF2 (2.5 ng/ml) was able to direct RBMSCs to be osteoblasts, although its proliferative effect was scant.

For insulin treatment (60 ng/mf for 1 day), significantly improved cell propagation was observed, indicating the effect on RBMSCs. However, all of tested genes were not affected by insulin, excepted for *bmp7* that be enhanced (Figure 3.7). Interestingly, insulin had positive effect on BMP2 synthesis at 24-hours post-induction (Figure 3.9). It might be that insulin mediated osteogenic commitment via BMPs. In addition, the ALP activity and calcium deposition were increased by insulin (Table 3.3). Therefore, insulin functioned as a mitogen and osteoblastic inducer on RBMSCs.

In the presence of FGF2 and insulin, the cell numbers were significantly increased compared to those treated with FGF2 alone. All of tested genes were significantly upregulated (Figure 3.7). The increase of runx2 and osx transcription was demonstrated. This activation would be via WNT signaling affecting on cell growth. Since β -catenin and insulin have been shown to increase runx2 and osx expression [88, 178]. The upregulation of bmp7 gene and BMP2 protein level by FGF2 plus insulin suggested the mechanisms regulating osteogenic differentiation by both BMP2-dependent and BMP2independent manners [179]. FGF2 and insulin might cooperatively stimulate cell proliferation via WNT pathway because of the up-regulation of β -catenin [80]. The negative feedback loop for balancing the activation of B-catenin was assumed to occur due to the stimulated expression of WNT inhibitors, axin2 and dkk1. These results were consistent with the previous studies [180, 181]. These finding confirmed the presence of multi-molecular network for controlling osteogenesis. However, ALP activity was lowered by this treatment, whereas mineralization was increased (Table 3.3). Indeed, a low but functional level of ALP activity has been found to support mineralization of preosteoblasts [182]. The decreased ALP activity could be defined for the termination of osteoblastic differentiation in agreement with the previous report [175]. Taken together, used of FGF2 in combined with insulin was able to induce cell growth and sensitize RBMSCs to be osteoblasts.

The property on inducing RBMSCs differentiation of BMP2 and BMP7 were determined. The expression levels of *runx2* and *osx* were not enhanced by BMP2 (10 ng/ml for 1 day; Figure 3.8). This result was in contrast to the previous reports, indicating the stimulated expression of the genes by BMP2 [183, 184]. The expression of *bmp7* was also suppressed by BMP2. The effect was supposed to be via the negative feedback loop of BMP signaling pathway, as suggested by Heldin, *et al* [185]. β -catenin and *dkk1* mRNA were reduced by BMP2 that was not in agreement with the previous study [186]. It might be influenced by the cell stage difference, which responses to BMP2 in different ways.

By treated with BMP7 (10 ng/ml for 1 day), the expression levels of *runx2* and *osx* were increased (Figure 3.8), indicating an effective osteogenic factor of BMP7 on RBMSCs. The reduction of *bmp*7 gene expression was apparent. This might involve in controlling *bmp*7 expression via the auto-regulation loop of BMPs [185]. The expression levels of *axin2* and β -catenin were up-regulated, while *dkk1* level was strongly suppressed. This could be explained by that BMP7 has had a direct effect on WNT pathway by interfering the production of WNT inhibitor but stimulating other transcription mediators [187].

When BMP2 and BMP7 were combined, the up-regulation of *runx2* and *osx* was observed (Figure 3.8). Similarly, *bmp*7 gene expression was down-regulated. The expression of *dkk1*, while the level of β -catenin was not changed. It could be that the effect of BMP7 on WNT pathway was hindered by BMP2, since the level of β -catenin using the combination growth factors was lower than that of using BMP7 alone. Although, ALP activity and calcium content were enhanced by treated with BMP2 and BMP7 (Table 3.4, group A), the results were lower than those of using BMP2 or BMP7 alone. Thus, cautions should be made when applying the BMPs combination to osteogenic culture system.

4.5 Sequential induction of RBMSCs using proliferation factor(s) followed by differentiation factor(s)

By inducing RBMSCs with proliferation factors (FGF2 and insulin) followed by differentiation factors (BMP2 and BMP7) according to Figure 2.8, the expression of runx2 was increased by the treatment of FGF2 or insulin followed by BMP7 (Table 3.2). In contrast, the level of runx2 was reduced by FGF2 plus insulin followed by BMP7. It might be that the expression of runx2 reached the peak level before the detection date, suggesting the accelerating effect for osteoblastic commitment of insulin. For osx, the gene expression was enhanced by FGF2 or FGF2 plus insulin followed by BMP2 plus BMP7. The synergistic effect of BMP2 and BMP7 has been due to the activity of heterodimeric BMP2/BMP7 which is higher than the homodimeric form, e.g. BMP2/BMP2 and BMP7/BMP7 [188]. Bmp7 gene expression was down-regulated in all treated conditions suggesting to trigger the negative feedback loop by BMPs addition. By these treatments, the expression level of axin2 was not affected (Table 3.2). The expression of β -catenin gene was enhanced by insulin followed by BMP7. In contrast, the level of β -catenin mRNA was elevated by FGF2 plus insulin, followed by BMP2. Thus, the activity of BMPs was influenced by the proliferation condition. The expression level of dkk1 was down-regulated by all treatment conditions, suggesting to be controlled by WNT pathway via the reduction of WNT inhibitor. The highest level of ALP activity was determined for FGF2 or insulin followed by BMP7 (Table 3.4). The degree of calcium deposition was comparable in all tested groups.

4.6 In vivo bone formation

To evaluate the effectiveness of the induction conditions in developed biological environment, an ectopic bone formation in rat model was carried out. A scaffold was seeded by RBMSCs at a density of 1×10^4 cells. The seeded construct was induced with each induction condition developed previously (Figure 2.11). Then, eight constructs were subcutaneously implanted into the dorsal part of Wistar rats (Figure 2.12). After 8 weeks post-implantation, new bone formation was estimated by histological techniques.

All constructs remained undegraded within the period of implantation (8 weeks) (Figure 3.10). Fibrous tissue was observed around the scaffold surface of all groups. This might be an immunological response of the rat against the scaffolds, in which host fibroblasts were accumulated to cover the foreign material. Bone tissue was not detected in the cell-free scaffolds and non-induced cell-seeded scaffolds (Figure 3.11 to 3.13). A considerable new bone tissue and mineralization was observed when treated the seeded cells with FGF2 followed by BMP2 or BMP7 (Figure 3.11) and those treated with FGF2 plus insulin followed by BMP2 and/or BMP7 (Figure 3.13). No major change in forming new bone occurred in the insulin pre-treated groups (Figure 3.12). The results indicated that insulin could accelerate the activity of FGF2 on bone tissue formation in vivo. In addition, blood vessels were identified for cell-seeded constructs formerly induced with FGF2 plus insulin. It was suggested that insulin could preserve the angiogenic effect of low dose FGF2. For insulin pre-induction, the results of in vitro experiments were contrast to those acquired from the in vivo test. Since native mechanisms that regulate osteogenic differentiation are highly complicated, it might be that numerous intervening factors in the animal contributed to this variation. The synergistic effect of BMP2 and BMP7 was not clearly demonstrated. Therefore, either BMP2 or BMP7 was sufficient for use as the bone differentiation growth factor. In summary, the most efficient in vivo osteoinduction condition would be of FGF2 plus insulin pre-treatment, followed by BMP2 or BMP7.

FGF2 has been reported to promote the expression of bone morphogenetic protein receptor-1B and pSmad 1 mRNA and protein [90], resulting in increased bone formation. Therefore, pre-treatment the cells with FGF2 might improve the cellular response to the secondary induction phase by increasing the BMPs receptor and the intracellular mediator. As revealed previously, FGF2 stimulated in bone formation that might be mediated by Runx2 transcription factor (Figure 3.7). Tou and co-workers [189] have also reported the up-regulation of *runx2* in response to BMP7 induction. Accordingly, increased expression of *runx2* might be contributed by FGF2 and BMP7 (Figure 3.8). Instead, the activation of WNT signaling pathway by insulin could enhance the rate of cell proliferation and differentiation. It was suggested that, for fully osteogenic response, both FGF2 and insulin should be used as a combination for pre-sensitizing the cells, regardless of whether the later inducer was.

4.7 Analysis of the regulatory element of *runx2* gene in controlling osteogenesis

Runx2 is a master regulator of osteogenesis, acting as a molecular hub of several osteogenic signaling pathways. The results showed that *runx2* expression level was increased by the induction of FGF2 plus insulin (Figure 3.7), resulting in increased amount of calcium deposition (Table 3.3 and 3.4) and the *in vivo* bone formation (Figure 3.13). In accordance, FGF2 and insulin action on stimulating bone formation might involve *runx2*.

To prove this hypothesis, the promoter region at positions -1557 to +97 from the transcription start site of *runx2* gene was cloned (namely U1557, Figure 3.14) using the chromosomal DNA as the template. The sequence of U1557 was verified and aligned with NCBI database sequences of rat *runx2* promoter. The alignment result revealed a 99% similarity. On identification using TFSEARCH tool for possible transcription factor binding sites [137], several potential transcription factor binding sites were recognized (Figure 3.16). Each binding motif and its functional role was summarized in Table 3.3. Two AP1 binding regions were identified, and the SRY motif were presented of at least 5 consensuses. Two conserved region of CBFA1 recognition motifs were demonstrated. Drissi and co-workers [25] have indicated that there are at least 3 CBFA1 binding sites on murine *runx2* promoter. These consensuses are responsible for negative feedback of *runx2* expression, and they are known as a target of BMP2 signaling pathway [190]. Other response elements of adipogenic, cardiogenic, and others lineage specific transcription factors were located, such as C/EBP (an adipocyte differentiation factors binding site)

Interestingly, due to that *sry* motif shares the same core binding site with SOX proteins, although these transcription factor are responsible for chondrogenesis [145], possible roles of this binding site in osteogenic cells lineage is thus interesting to be proven. In addition, function of AP1 transcription factor on osteoblastic differentiation has been reported [146-147], suggesting the contribution of *ap1* motif in FGF2 and insulin induction pathway.

4.8 Intracellular signaling pathway of FGF2 and insulin induction

For the cells transfected with pGL3-runx2-N vector, the activity of the reporter vector were significantly increased in compared to those of pGL3-runx2-F. The runx2-N DNA (-73 and -796 fragment of 5' upstream of runx2 gene) consisted of one C/EBPetaconsensus (at position -155), one AP1 binding site (at position -369), and two CBFA1 motifs (at positions -199 and -475), while the runx2-F DNA (-630 and -1526 fragment of 5' upstream of runx2 gene) contained three binding sites of C/EBP β (at position -749, -828, and -1239), six SRY/SOX motifs (at positions -860, -965, -973, -999, -1166, and -1214), and one AP1 binding site (at position -1315). The impact of C/EBPeta was suggested to be insignificant because the binding consensus was found on both DNA fragments. It had been reported that CBFA1 site was a target of TGF β and BMP2 signaling pathway [190]. Therefore, the binding site of CBFA1 might contribute to an increasing of pGL3-runx2-N activity. The presence of SRY/SOX motifs had a negative effect on the reporter gene expression (Figure 3.26d), since the RLUs of cells transfected with five repeats of this binding site were markedly reduced. In addition, FGF2 inhibited the activity of sry-dependent luciferase activity. This binding site has been reported as the target of SOX9 in reducing runx2 expression [191]. The repression of pGL3-5Xsry reporter activity might indicate the preference of FGF2 for the cells of osteogenic by indirectly reducing the activity of sry site. For the cells transfected with five repeats of AP1 binding motif, the luciferase activity was dramatically improved by the co-treatment using FGF2 plus insulin (Figure 3.26c). The co-induction was also induced the activity of pGL3-runx2-N and pGL3-runx2-F reporter vectors which was in an agreement with the runx2 gene expression (Figure 3.7). It was concluded that the FGF2 and insulin corporately promoted runx2 transcription by the activation of the gene promoter. Furthermore, it was expected that FGF2 and insulin co-activated their intracellular signaling pathway, at least in part, through the ap1 site, in agreement with the previous study [38].

CHAPTER 5

CONCLUSION

Bone tissue engineering is a technique for regeneration of extensive bone loss. Cell-based approach using MSCs is currently developed to engineer the ideal bone graft. However, a major drawback of this approach is that the MSCs is very rare population. In addition, to be successful in bone repair, sufficient cell numbers with osteogenic capacity are needed. In this study, bone marrow-derived MSCs from human (HBMSCs) and rat (RBMSCs) were used as cell models. The identifications of stem cell characteristic for HBMSCs were carried out. The cells were isolated from bone marrow aspirate by using density gradient centrifugation. The selected cells showed stem cell specific surface antigens and expressed many stem cell-associated genes. After challenged by 2.5 ng/ml FGF2 followed by 10 ng/ml BMP2, the cells were activated to be osteogenic cells. Due to being high cost of the treatment, insulin was an alternative for substituting or combining with FGF2 for the induction. RBMSCs were used instead of HBMSCs because of freely available. Insulin was an efficient mitogen compared to FGF2. It also increased ALP activity. However, in combining with FGF2, increased proliferation was also achieved. Many bone related genes were strongly activated. The genes of WNT pathway as well as mineralization were enhanced. In addition, FGF2 and insulin were able to stimulate BMP2 production. Thus, using these combination growth factors, RBMSCs were accelerated to commit into osteoblasts. BMP7 was an effective osteogenic factor for RBMSCs, as the expression of runx2 and osx were significantly increased. Its activity on WNT signaling pathway was observed by the increase of β catenin expression. ALP activity and mineralization were also enhanced by BMP7. The patterns of gene expressions were varied when the cells were treated with the proliferation factor(s) followed by the differentiation factor(s). Calcium deposition was comparable among the treatment. ALP activity was not enhanced by the BMP2 or BMP7, after pre-treated with FGF2 plus insulin. In contrast, the other remaining treatment groups were able to promote the enzyme activity. Indeed, the activity of BMP2 and BMP7 was influenced by FGF2 and insulin pre-treatment. The effect of these growth factors on an ectopic bone formation was evaluated. Improved bone tissue formation was observed by induced with FGF2 and insulin followed by BMP2 and/or BMP7.

The expression level of *runx2* was strongly increased by FGF2 plus insulin suggesting that Runx2 might be a primary mediator for this induction. By using the reporter gene assay, FGF2 and insulin were found to regulate *runx2* transcription. AP1 was proposed as a transcription factor in signaling cascade of *runx2* expression (Figure 5.1). This expression has been reported to directly regulate by BMPs-Smad signaling pathway and WNT/ β -catenin signaling pathway in which cross-talks between these signals have occurred in nucleus. The level of β -catenin was up-regulated by BMP7, suggesting that BMPs signaling pathway might accelerate WNT/ β -catenin signaling.

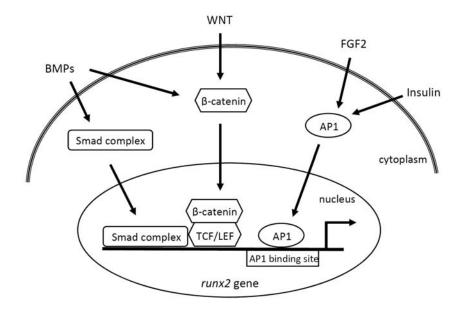


Figure 5.1: The proposed mechanism of *runx2* gene regulation by FGF2, insulin, BMP2, and WNT signaling pathway. BMPs and WNT signaling pathway directly control the runx2 expression via Smad protein complex and β catenin, respectively. The common cross-talk of BMPs and WNT signaling pathway occurs in the nucleus. AP1 transcription factor is proven to be one of the mediator of FGF2-insulin co-induction. The *in vitro* and *in vivo* results indicated the combined effect of FGF2 and insulin on stimulating cell proliferation, mineralization, BMP2 protein production, and new bone formation. Therefore, this use could encourage RBMSCs proliferation along with osteogenic commitment providing the potential induction condition for MSCs. The induced condition would be advantageous in developing of cost-effectiveness condition for preparing cells to be used in bone tissue engineering in the future.

In summary, by comprehensively performing the research to achieve the expected aims, there are points that can be made conclusions as follow

- 1) Insulin could be used in combination with FGF2 as a cost-effectiveness induction condition for MSCs osteogenic differentiation.
- 2) Either BMP2 or BMP7 was sufficient for directing osteogenesis.
- The molecular mechanisms of FGF2 and insulin on bone formation was likely governed by diverse signaling pathway.
- 4) The combination of FGF2 and insulin promoted *runx2* gene expression by activating the intracellular signal through AP1 binding motif on 5'-upstream of *runx2* gene.

REFERENCES

- 1. Hing KA. Bone repair in the twenty-first century: biology, chemistry or engineering? Phil Trans R Soc Lond A 2004;362:2821-50.
- Hollinger JO, Einhorn TA, Doll BA, Sfeir C, editors. Bone tissue engineering. 1st ed. New York: CRC Press; 2004.
- Cowin SC, editor. Bone mechanics handbook. 2nd ed. New York: CRC Press; 2001.
- Bilezikian JP, Martin TJ, Raisz LG, editors. Principles of bone biology. 3rd ed. New York: Academic Press. Inc; 2008.
- 5. Ritchie RO, Buehler MJ, Hansma P. Plasticity and toughness in bone. Phys Today. 2009;62(6):41-7.
- Buckwalter J, Glimcher M, Cooper R, Recker R. Bone biology. J Bone Joint Surg Am. 1995;77(8):1256-75.
- 7. Martini FH. Fundamentals of anatomy & physiology. 6 th ed. San Francisco: Pearson; 2004.
- Sims NA, Gooi JH. Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol 2008;19(5):444-51.
- 9. College O. Bone structure. OpenStax_CNX; 2013; Available from: http://cnx.org/content/m46281/latest/?collection=col11496/latest.
- 10. Zelzer E, Olsen BR. The genetic basis for skeletal diseases. Nature 2003;423(6937):343-8.
- Karsenty G. Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet. 2008;9:183-96.
- Harada S-i, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003;423(6937):349-55.
- Sudhakar S, Li Y, Katz MS, Elango N. Translational regulation is a control point in RUNX2/Cbfa1 gene expression. Biochem Bioph Res Co. 2001;289(2):616-22.
- Wheeler JC, Shigesada K, Peter Gergen J, Ito Y. Mechanisms of transcriptional regulation by Runt domain proteins. Semin Cell Dev Biol. 2000;11(5):369-75.

- Otto F, Lübbert M, Stock M. Upstream and downstream targets of RUNX proteins. J Cell Biochem. 2003;89(1):9-18.
- Kamachi Y, Ogawa E, Asano M, Ishida S, Murakami Y, Satake M, et al. Purification of a mouse nuclear factor that binds to both the A and B cores of the polyomavirus enhancer. J Virol. 1990;64(10):4808-19.
- Schinke T, Karsenty G. Characterization of osf1, an osteoblast-specific transcription factor binding to a critical cis-acting element in the mouse osteocalcin promoters. J Biol Chem. 1999;274(42):30182-9.
- Roca H, Phimphilai M, Gopalakrishnan R, Xiao G, Franceschi RT. Cooperative interactions between RUNX2 and homeodomain protein-binding sites are critical for the osteoblast-specific expression of the bone sialoprotein gene. J Biol Chem. 2005;280(35):30845-55.
- 19. Kern B, Shen J, Starbuck M, Karsenty G. Cbfa1 contributes to the osteoblastspecific expression of type I collagen genes. J Biol Chem. 2001;276(10):7101-7.
- 20. Ducy P, Zhang R, Geoffroy Vr, Ridall AL, Karsenty Gr. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89(5):747-54.
- 21. Otto F, Kanegane H, Mundlos S. Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Hum Mutat. 2002;19(3):209-16.
- Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, et al. Mutations involving the transcription factor cbfa1 cause cleidocranial dysplasia. Cell. 1997;89(5):773-9.
- 23. Yoshida CA, Furuichi T, Fujita T, Fukuyama R, Kanatani N, Kobayashi S, et al. Core-binding factor β interacts with Runx2 and is required for skeletal development. Nat Genet. 2002;32(4):633-8.
- Hecht J, Seitz V, Urban M, Wagner F, Robinson P, Stiege A, et al. Detection of novel skeletogenesis target genes by comprehensive analysis of a Runx2^{-/-} mouse model. Gene Expr Patterns. 2007;7(1):102-12.
- Drissi H, Luc Q, Shakoori R, Chuva De Sousa Lopes S, Choi J-Y, Terry A, et al. Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene. J Cell Physiol. 2000;184(3):341-50.

- Jensen ED, Gopalakrishnan R, Westendorf JJ. Bone morphogenic protein 2 activates protein kinase d to regulate histone deacetylase 7 localization and repression of Runx2. J Biol Chem. 2009;284(4):2225-34.
- Jensen ED, Schroeder TM, Bailey J, Gopalakrishnan R, Westendorf JJ. Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner. J Bone Miner Res. 2008;23(3):361-72.
- Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, et al. A twist code determines the onset of osteoblast differentiation. Dev Cell. 2004;6(3):423-35.
- Komori T. Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem. 2005;95(3):445-53.
- Backstrom S, Wolf-Watz M, Grundstrom C, Hard T, Grundstrom T, Sauer UH. The RUNX1 Runt domain at 1.25a resolution: a structural switch and specifically bound chloride ions modulate DNA binding. J Mol Biol. 2002;322(2):259-72.
- Aubin JE. Chapter 4 Mesenchymal stem cells and osteoblast differentiation. In: Bilezikian J, Raisz L, Martin TJ, editors.Principles of Bone Biology (Third Edition). San Diego: Academic Press; 2008. p. 85-107.
- 32. Nishio Y, Dong Y, Paris M, O'Keefe RJ, Schwarz EM, Drissi H. Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene. 2006;372(0):62-70.
- Lapunzina P, Aglan M, Temtamy S, Caparros-Martin JA, Valencia M, Leton R, et al. Identification of a frameshift mutation in osterix in a patient with recessive osteogenesis imperfecta. Am J Hum Gen. 2010;87(1):110-4.
- Fu H, Doll B, McNelis T, Hollinger JO. Osteoblast differentiation in vitro and in vivo promoted by Osterix. J Biomed Mater Res A. 2007;83A(3):770-8.
- Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17-29.
- Zhou X, Zhang Z, Feng JQ, Dusevich VM, Sinha K, Zhang H, et al. Multiple functions of osterix are required for bone growth and homeostasis in postnatal mice. Proc Natl Acad Sci USA. 2010;107(29):12919-24.
- Kaback LA, Soung DY, Naik A, Smith N, Schwarz EM, O'Keefe RJ, et al. Osterix/Sp7 regulates mesenchymal stem cell mediated endochondral ossification. J Cell Physiol. 2008;214(1):173-82.

- Wagner E. Functions of AP1 (Fos/Jun) in bone development. Ann Rheum Dis. 2002;61(suppl 2):ii40-ii2.
- Bozec A, Bakiri L, Jimenez M, Schinke T, Amling M, Wagner EF. Fra-2/AP-1 controls bone formation by regulating osteoblast differentiation and collagen production. J Cell Biol. 2010;190(6):1093-106.
- Kenner L, Hoebertz A, Beil FT, Keon N, Karreth F, Eferl R, et al. Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J Cell Biol. 2004;164(4):613-23.
- Grigoriadis A, Schellander K, Wang Z, Wagner E. Osteoblasts are target cells for transformation in c-fos transgenic mice. J Cell Biol. 1993;122(3):685-701.
- 42. Hattori T, Müller C, Gebhard S, Bauer E, Pausch F, Schlund B, et al. SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development. 2010;137(6):901-11.
- 43. Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development. 2013;140(20):4129-44.
- Akiyama H, Kim JE, Nakashima K, Balmes G, Iwai N, Deng JM, et al. Osteochondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci USA. 2005;102(41):14665-70.
- 45. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999;22(1):85-9.
- 46. Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer Jr, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79(6):1111-20.
- Cameron FJ, Hageman RM, Cooke-Yarborough C, Kwok C, Goodwin LL, Sillence DO, et al. A novel germ line mutation in SOX9 causes familial campomelic dysplasia and sex reversal. Hum Mol Genet. 1996;5(10):1625-30.
- Han Y, Lefebvre V. L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer. Mol Cell Biol. 2008;28(16):4999-5013.
- Dallas SL, Alliston T, Bonewald LF, John PB, Lawrence GR, T. John MartinA2 -John P. Bilezikian LGR, et al. Chapter 53 - Transforming growth factor-β. In: Principles of Bone Biology (Third Edition). San Diego: Academic Press; 2008. p. 1145-66.

- 50. Massagué J, Chen Y-G. Controlling TGF- β signaling. Gene Dev. 2000;14(6):627-44.
- 51. Chen G, Deng C, Li YP. TGF- β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272-88.
- 52. Zhang YE. Non-smad pathways in TGF- β signaling. Cell Res. 2009;19(1):128-39.
- 53. Joyce ME, Roberts AB, Sporn MB, Bolander ME. Transforming growth factor- β and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol. 1990;110(6):2195-207.
- 54. Yang X, Chen L, Xu X, Li C, Huang C, Deng C-X. TGF-β/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol. 2001;153(1):35-46.
- 55. Mohammad KS, Chen CG, Balooch G, Stebbins E, McKenna CR, Davis H, et al. Pharmacologic inhibition of the TGF- β type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS ONE. 2009;4(4):e5275.
- 56. Alliston T, Choy L, Ducy P, Karsenty G, Derynck R. TGF-β-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J. 2001;20(9):2254-72.
- 57. Maeda S, Hayashi M, Komiya S, Imamura T, Miyazono K. Endogenous TGF-β signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J. 2004;23(3):552-63.
- 58. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, et al. TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15(7):757-65.
- 59. Kang Q, Song WX, Luo Q, Tang N, Luo J, Luo X, et al. A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev. 2009 May;18(4):545-59.
- Xiao Y-T, Xiang L-X, Shao J-Z. Bone morphogenetic protein. Biochem Bioph Res Co. 2007;362(3):550-3.
- Ten Dijke P, Fu J, Schaap P, Roelen BA. Signal transduction of bone morphogenetic proteins in osteoblast differentiation. J Bone Joint Surg. 2003;85(suppl_3):34-8.

- Yu YY, Lieu S, Lu C, Colnot C. Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair. Bone. 2010;47(1):65-73.
- Retting KN, Song B, Yoon BS, Lyons KM. BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development. 2009;136(7):1093-104.
- Simic P, Vukicevic S. Bone morphogenetic proteins: from developmental signals to tissue regeneration. EMBO rep. 2007;8(4):327-31.
- Itoh N, Ornitz DM. Functional evolutionary history of the mouse Fgf gene family. Dev Dyn. 2008;237(1):18-27.
- Bikfalvi A, Klein S, Pintucci G, Rifkin DB. Biological roles of fibroblast growth factor-2. Endocr Rev. 1997;18(1):26-45.
- Bianchi G, Banfi A, Mastrogiacomo M, Notaro R, Luzzatto L, Cancedda R, et al. Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res. 2003;287(1):98-105.
- Abbaspour A, Takata S, Sairyo K, Katoh S, Yukata K, Yasui N. Continuous local infusion of fibroblast growth factor-2 enhances consolidation of the bone segment lengthened by distraction osteogenesis in rabbit experiment. Bone. 2008;42(1):98-106.
- Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010;46(4):1156-61.
- Montero A, Okada Y, Tomita M, Ito M, Tsurukami H, Nakamura T, et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest. 2000;105(8):1085-93.
- 71. Marie PJ. Fibroblast growth factor signaling controlling bone formation: an update. Gene. 2012;498(1):1-4.
- 72. Ornitz DM. FGF signaling in the developing endochondral skeleton. Cytokine Growth F R. 2005;16(2):205-13.
- 73. Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone biology and clinical applications. J Bone Joint Surg. 2002;84(6):1032-44.

- 74. Zhang W, Shen X, Wan C, Zhao Q, Zhang L, Zhou Q, et al. Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ERK. Cell Biochem Funct. 2012;30(4):297-302.
- 75. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142(2):309-19.
- 76. Yee D. How to train your biomarker. Clin Cancer Res. 2010;16(12):3091-3.
- 77. Chen Y, Alman BA. Wnt pathway, an essential role in bone regeneration. J Cell Biochem. 2009;106(3):353-62.
- 78. MacDonald BT, Tamai K, He X. Wnt/ β -catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9-26.
- 79. Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells. Gene. 2009;433(1-2):1-7.
- Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8(5):739-50.
- Galli C, Passeri G, Macaluso G. Osteocytes and WNT: the mechanical control of bone formation. J Dent Res. 2010;89(4):331-43.
- Kim J-B, Leucht P, Lam K, Luppen C, Ten Berge D, Nusse R, et al. Bone regeneration is regulated by wnt signaling. J Bone Miner Res. 2007;22(12):1913-23.
- Gaur T, Wixted JJ, Hussain S, O'Connell SL, Morgan EF, Ayers DC, et al. Secreted frizzled related protein 1 is a target to improve fracture healing. J Cell Physiol. 2009;220(1):174-81.
- 84. Harris S, Bonewald L, Harris M, Sabatini M, Dallas S, Feng J, et al. Effects of transforming growth factor β on bone nodule formation and expression of bone morphogenetic protein 2, osteocalcin, osteopontin, alkaline phosphatase, and type I collagen mRNA in long-term cultures of fetal rat calvarial osteoblasts. J Bone Miner Res. 1994;9(6):855-63.
- 85. Mbalaviele G, Sheikh S, Stains JP, Salazar VS, Cheng SL, Chen D, et al. β-Catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J Cell Biochem. 2005;94(2):403-18.

- Rosen V. BMP2 signaling in bone development and repair. Cytokine Growth F R. 2009;20(5-6):475-80.
- Jeon E-J, Lee K-Y, Choi N-S, Lee M-H, Kim H-N, Jin Y-H, et al. Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem. 2006;281(24):16502-11.
- Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PVN, Komm BS, et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 2005;280(39):33132-40.
- Fei Y, Xiao L, Doetschman T, Coffin DJ, Hurley MM. Fibroblast Growth factor 2 stimulation of osteoblast differentiation and bone formation is mediated by modulation of the WNT signaling pathway. J Biol Chem. 2011;286(47):40575-83.
- Nakamura Y, Tensho K, Nakaya H, Nawata M, Okabe T, Wakitani S. Low dose fibroblast growth factor-2 (FGF-2) enhances bone morphogenetic protein-2 (BMP-2)-induced ectopic bone formation in mice. Bone. 2005;36(3):399-407.
- Choi KY, Kim HJ, Lee MH, Kwon TG, Nah HD, Furuichi T, et al. Runx2 regulates FGF2-induced Bmp2 expression during cranial bone development. Dev Dyn. 2005;233(1):115-21.
- 92. Gersbach CA, Phillips JE, Garcia AJ. Genetic engineering for skeletal regenerative medicine. Annu Rev Biomed Eng. 2007;9(1):87-119.
- Schindeler A, McDonald MM, Bokko P, Little DG. Bone remodeling during fracture repair: The cellular picture. Semin Cell Dev Biol. 2008;19(5):459-66.
- Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA. Growth factor regulation of fracture repair. J Bone Miner Res. 1999;14(11):1805-15.
- 95. Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005;36(12):1392-404.
- Bronner F, Farach-Carson MC, Mikos AG, Gerstenfeld L, Edgar C, Kakar S, et al. Osteogenic growth factors and cytokines and their role in bone repair. In: Bronner F, Farach-Carson MC, editors.Engineering of Functional Skeletal Tissues: Springer London; 2007. p. 17-45.
- LaStayo PC, Winters KM, Hardy M. Fracture healing: Bone healing, fracture management, and current concepts related to the hand. J Hand Ther. 2003;16(2):81-93.

- Zimmermann G, Moghaddam A. Trauma: non-union: new trends. In: European Instructional Lectures: Springer; 2010. p. 15-9.
- 99. Phillips JE, Gersbach CA, Garcia AJ. Virus-based gene therapy strategies for bone regeneration. Biomaterials. 2007;28(2):211-29.
- 100. Langer R, Vacanti J. Tissue engineering. Science. 1993 May 14;260(5110):920-6.
- 101. Ikada Y. Challenges in tissue engineering. J R Soc Interface. 2006;3(10):589-601.
- George JHS. Engineering of fibrous scaffolds for use in regenerative medicine: Imperial College London; 2009.
- 103. Marie P, Lomri A, Sabbagh A, Basle M. Culture and behavior of osteoblastic cells isolated from normal trabecular bone surfaces. In Vitro Cell Dev-PL. 1989;25(4):373-80.
- 104. Declercq H, Van den Vreken N, De Maeyer E, Verbeeck R, Schacht E, De Ridder L, et al. Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials. 2004;25(5):757-68.
- 105. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7(6):259-64.
- Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem. 2011;112(12):3491-501.
- Hipp J, Atala A. Sources of stem cells for regenerative medicine. Stem Cell Rev. 2008;4(1):3-11.
- 108. Dawson JI, Oreffo ROC. Bridging the regeneration gap: Stem cells, biomaterials and clinical translation in bone tissue engineering. Arch Biochem Biophys. 2008;473(2):124-31.
- 109. Bonab M, Alimoghaddam K, Talebian F, Ghaffari S, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 2006;7(1):14.
- 110. Grigoriadis AE, Heersche JN, Aubin JE. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol. 1988;106(6):2139-51.
- 111. Franceschi RT. The Role of ascorbic acid in mesenchymal differentiation. Nutr Rev. 1992;50(3):65-70.

- 112. Oshina H, Sotome S, Yoshii T, Torigoe I, Sugata Y, Maehara H, et al. Effects of continuous dexamethasone treatment on differentiation capabilities of bone marrow-derived mesenchymal cells. Bone. 2007;41:575-83.
- Schieker M, Seitz H, Drosse I, Seitz S, Mutschler W. Biomaterials as scaffold for bone tissue engineering. Eur J Trauma. 2006;32(2):114-24.
- Mastrogiacomo M, Muraglia A, Komlev V, Peyrin F, Rustichelli F, Crovace A, et al. Tissue engineering of bone: search for a better scaffold. Orthod Craniofacial Res. 2005;8(4):277-84.
- 115. Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11(5):18-25.
- 116. Hollinger JO, Battistone GC. Biodegradable bone repair materials synthetic polymers and ceramics. Clin Orthop Relat R. 1986;207:290-306.
- 117. Peng H, Wright V, Usas A, Gearhart B, Shen H-C, Cummins J, et al. Synergistic enhancement of bone formation and healing by stem cells expressed VEGF and bone morphogenetic protein-4. J Clin Invest. 2002;110(6):751-9.
- 118. Fakhry A, Ratisoontorn C, Vedhachalam C, Salhab I, Koyama E, Leboy P, et al. Effects of FGF-2/-9 in calvarial bone cell cultures: differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 and noggin, and enhancement of osteogenic potential. Bone. 2005;36(2):254-66.
- 119. Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood. 2004;103(5):1662-8.
- 120. Shahdadfar A, Frønsdal K, Haug T, Reinholt FP, Brinchmann JE. In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem cells. 2005;23(9):1357-66.
- 121. Vater C, Kasten P, Stiehler M. Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater. 2011;7(2):463-77.
- 122. Quarto R, Campanile G, Cancedda R, Dozin B. Modulation of commitment, proliferation, and differentiation of chondrogenic cells in defined culture medium. Endocrinology. 1997;138(11):4966-76.

- 123. Ruszymah B, Lokman B, Asma A, Munirah S, Chua K, Mazlyzam A, et al. Pediatric auricular chondrocytes gene expression analysis in monolayer culture and engineered elastic cartilage. Int J Pediatr Otorhi. 2007;71(8):1225-34.
- 124. Ma XI, Liu Zp, Ma Jx, Han C, Zang Jc. Dynamic expression of Runx2, Osterix and AJ18 in the femoral head of steroid-induced osteonecrosis in rats. Orthop Surg. 2010;2(4):278-84.
- 125. Fariha MMN, Chua KH, Tan GC, Lim YH, Hayati AR. Endogenous and induced angiogenic characteristics of human chorion-derived stem cells. Cell Biol Int. 2012;36(12):1145-53.
- 126. Harun MHN, Sepian SN, Chua K-H, Ropilah AR, Ghafar NA, Che-Hamzah J, et al. Human forniceal region is the stem cell-rich zone of the conjunctival epithelium. Hum Cell. 2013;26(1):35-40.
- 127. Ishak M, Chua K, Asma A, Saim L, Aminuddin B, Ruszymah B, et al. Stem cell genes are poorly expressed in chondrocytes from microtic cartilage. Int J Pediatr Otorhi. 2011;75(6):835-40.
- 128. Tingart M, Beckmann J, Opolka A, Matsuura M, Wiech O, Grifka J, et al. Influence of factors regulating bone formation and remodeling on bone quality in osteonecrosis of the femoral head. Calcified Tissue Int. 2008;82(4):300-8.
- Choong P, Mok P, Cheong S, Leong C, Then K. Generating neuron-like cells from BM-derived mesenchymal stromal cells in vitro. Cytotherapy. 2007;9(2):170-83.
- 130. Kaewsrichan J, Wongwitwichot P, Chandarajoti K, Chua K, Ruszymah B. Sequential induction of marrow stromal cells by FGF2 and BMP2 improves their growth and differentiation potential in vivo. Arch Oral Biol. 2011;56(1):90-101.
- Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 2004;8:301-16.
- Pountos I, Corscadden D, Emery P, Giannoudis PV. Mesenchymal stem cell tissue engineering: Techniques for isolation, expansion and application. Injury. 2007;38(Supplement 4):S23-S33.
- Semrock. Filters for flow cytometry. Available from: http://www.semrock.com/flowcytometry.aspx.

- Young Richard A. Control of the embryonic stem cell state. Cell. 2011;144(6):940-54.
- Stein GS, Lian JB, Owen TA. Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J. 1990;4(13):3111-23.
- 136. An YH, Martin KL. Handbook of histology methods for bone and cartilage: Springer; 2003.
- 137. Akiyama Y. TFSEARCH: Searching transcription factor binding sites. Available from: http://www.cbrc.jp/research/db/TFSEARCH.html.
- 138. Schagat T, Kopish K. Optimize transfection of cultured cells. Promega Corporation; 2010; Available from: http://worldwide.promega.com/resources/pubhub/optimize-transfection-of-culturedcells.
- 139. Yuan H, Corbi N, Basilico C, Dailey L. Developmental-specific activity of the FGF4 enhancer requires the synergistic action of Sox2 and Oct-3. Gene Dev.
 1995;9(21):2635-45.
- 140. Shenghui H, Nakada D, Morrison SJ. Mechanisms of Stem Cell Self-Renewal. Annu Rev Cell Dev Bi. 2009;25(1):377-406.
- Podestà M, Benvenuto F, Pitto A, Figari O, Bacigalupo A, Bruzzone S, et al. Concentrative uptake of cyclic ADP-ribose generated by BST-1+ stroma stimulates proliferation of human hematopoietic progenitors. J Biol Chem. 2005;280(7):5343-9.
- 142. Kaisho T, Ishikawa J, Oritani K, Inazawa J, Tomizawa H, Muraoka O, et al. BST-1, a surface molecule of bone marrow stromal cell lines that facilitates pre-B-cell growth. Proc Natl Acad Sci USA. 1994;91(12):5325-9.
- Flores I, Benetti R, Blasco MA. Telomerase regulation and stem cell behaviour. Curr Opin Cell Biol. 2006;18(3):254-60.
- 144. Ben-Shushan E, Thompson JR, Gudas LJ, Bergman Y. Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent site. Mol Cell Biol. 1998;18(4):1866-78.

- 145. Lefebvre V, Dumitriu B, Penzo-Méndez A, Han Y, Pallavi B. Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int J Biochem Cell B. 2007;39(12):2195-214.
- Marie PJ. Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys. 2008;473(2):98-105.
- Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 2011;13(1):27-38.
- 148. Nye JA, Petersen JM, Gunther CV, Jonsen MD, Graves BJ. Interaction of murine ets-1 with GGA-binding sites establishes the ETS domain as a new DNA-binding motif. Gene Dev. 1992;6(6):975-90.
- 149. Sepulveda JL, Belaguli N, Nigam V, Chen C-Y, Nemer M, Schwartz RJ. GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression. Mol Cell Biol. 1998;18(6):3405-15.
- 150. Suh E, Chen L, Taylor J, Traber PG. A homeodomain protein related to caudal regulates intestine-specific gene transcription. Mol Cell Biol. 1994;14(11):7340-51.
- 151. Molnár A, Georgopoulos K. The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol. 1994;14(12):8292-303.
- 152. Herr W, Sturm R, Clerc R, Corcoran L, Baltimore D, Sharp P, et al. The POU domain: a large conserved region in the mammalian pit-1, Oct-1, Oct-2 and Caenorhabditis elegans unc-86 gene products. Gene Dev. 1988;2:1513-6.
- 153. Hirai H. The transcription factor Evi-1. Int J Biochem Cell B. 1999;31(12):1367-71.
- 154. Morris JF, Hromas R, Rauscher FJ. Characterization of the DNA-binding properties of the myeloid zinc finger protein MZF1: two independent DNA-binding domains recognize two DNA consensus sequences with a common G-rich core. Mol Cell Biol. 1994;14(3):1786-95.
- 155. Hromas R, Morris J, Cornetta K, Berebitsky D, Davidson A, Sha M, et al. Aberrant expression of the myeloid zinc finger gene, MZF-1, is oncogenic. Cancer Res. 1995;55(16):3610-4.
- 156. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89(5):765-71.
- 157. Deans RJ, Moseley AB. Mesenchymal stem cells: Biology and potential clinical uses. Exp Hematol. 2000;28(8):875-84.

- 158. Friedenstein A, Chailakhjan R, Lalykina K. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Proliferat. 1970;3(4):393-403.
- 159. Friedenstein AJ, Petrakova KV, Kurolesova AL, Frolova GP. Heterotopic transplants of bone marrow. Transplantation. 1968;6(2):230-47.
- 160. Fehrer C, Lepperdinger G. Mesenchymal stem cell aging. Exp Gerontol. 2005;40(12):926-30.
- Liu L, Rando TA. Manifestations and mechanisms of stem cell aging. J Cell Biol. 2011;193(2):257-66.
- 162. Hyslop L, Stojkovic M, Armstrong L, Walter T, Stojkovic P, Przyborski S, et al. Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells. 2005;23(8):1035-43.
- 163. Xiang R, Liao D, Cheng T, Zhou H, Shi Q, Chuang TS, et al. Downregulation of transcription factor SOX2 in cancer stem cells suppresses growth and metastasis of lung cancer. Br J Cancer. 2011;104(9):1410-7.
- 164. Pesce M, Schöler HR. Oct-4: Gatekeeper in the beginnings of mammalian development. Stem Cells. 2001;19(4):271-8.
- 165. Yang C, Przyborski S, Cooke MJ, Zhang X, Stewart R, Anyfantis G, et al. A key role for telomerase reverse transcriptase unit in modulating human embryonic stem cell proliferation, cell cycle dynamics, and in vitro differentiation. Stem Cells. 2008;26(4):850-63.
- 166. Artandi SE, Alson S, Tietze MK, Sharpless NE, Ye S, Greenberg RA, et al. Constitutive telomerase expression promotes mammary carcinomas in aging mice. Proc Natl Acad Sci USA. 2002;99(12):8191-6.
- 167. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7.
- 168. Phinney DG, Kopen G, Isaacson RL, Prockop DJ. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: Variations in yield, growth, and differentiation. J Cell Biochem. 1999;72(4):570-85.

- Harting MT, Jimenez F, Pati S, Baumgartner J, Cox Jr CS. Immunophenotype characterization of rat mesenchymal stromal cells. Cytotherapy. 2008;10(3):243-53.
- 170. Gerstenfeld LC, Edgar CM, Kakar S, Jacobsen KA, Einhorn TA. Osteogenic growth factors and cytokines and their role in bone repair. Engineering of functional skeletal tissues: Springer; 2007. p. 17-45.
- 171. Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone biology and clinical applications. J Bone Joint Surg. 2002;84(6):1032-44.
- 172. Nefussi JR, Brami G, Modrowski D, Obcuf M, Forest N. Sequential expression of bone matrix proteins during rat calvaria osteoblast differentiation and bone nodule formation in vitro. J Histochem Cytochem. 1997;45(4):493-503.
- 173. Bernards MT, Qin C, Ratner BD, Jiang S. Adhesion of MC3T3-E1 cells to bone sialoprotein and bone osteopontin specifically bound to collagen I. J Biomed Mater Res A. 2008;86(3):779-87.
- 174. Yang Y, Cui Q, Sahai N. How does bone sialoprotein promote the nucleation of hydroxyapatite? A molecular dynamics study using model peptides of different conformations. Langmuir. 2010;26(12):9848-59.
- 175. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 1997;64(2):295-312.
- 176. Gandhi A, Beam HA, O'Connor JP, Parsons JR, Lin SS. The effects of local insulin delivery on diabetic fracture healing. Bone. 2005;37(4):482-90.
- 177. Kottakis F, Polytarchou C, Foltopoulou P, Sanidas I, Kampranis SC, Tsichlis PN. FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Mol Cell. 2011;43(2):285-98.
- 178. Yang J, Zhang X, Wang W, Liu J. Insulin stimulates osteoblast proliferation and differentiation through ERK and PI3K in MG-63 cells. Cell Biochem Funct. 2010;28(4):334-41.
- 179. Hie M, litsuka N, Otsuka T, Tsukamoto I. Insulin-dependent diabetes mellitus decreases osteoblastogenesis associated with the inhibition of Wnt signaling through increased expression of Sost and Dkk1 and inhibition of Akt activation. Int J Mol Cell Med. 2011;28(3):455-62.

- 180. Jho E-h, Zhang T, Domon C, Joo C-K, Freund J-N, Costantini F. Wnt/βcatenin/Tcf signaling induces the transcription of axin2, a negative regulator of the signaling pathway. Mol Cell Biol. 2002;22(4):1172-83.
- 181. Niida A, Hiroko T, Kasai M, Furukawa Y, Nakamura Y, Suzuki Y, et al. DKK1, a negative regulator of Wnt signaling, is a target of the β-catenin//TCF pathway. Oncogene. 2004;23(52):8520-6.
- 182. Beck GR, Sullivan EC, Moran E, Zerler B. Relationship between alkaline phosphatase levels, osteopontin expression, and mineralization in differentiating MC3T3-E1 osteoblasts. J Cell Biochem. 1998;68(2):269-80.
- 183. Lee M-H, Kim Y-J, Kim H-J, Park H-D, Kang A-R, Kyung H-M, et al. BMP-2induced Runx2 expression is mediated by DIx5, and TGF-β1 opposes the BMP-2induced osteoblast differentiation by suppression of DIx5 expression. J Biol Chem. 2003;278(36):34387-94.
- 184. Lee M-H, Kwon T-G, Park H-S, Wozney JM, Ryoo H-M. BMP-2-induced Osterix expression is mediated by DIx5 but is independent of Runx2. Biochem Bioph Res Co. 2003;309(3):689-94.
- 185. Heldin C-H, Miyazono K, ten Dijke P. TGF- signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390(6659):465-71.
- 186. Chen Y, Whetstone HC, Youn A, Nadesan P, Chow EC, Lin AC, et al. β-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. J Biol Chem. 2007;282(1):526-33.
- Kamiya N. The role of BMPs in bone anabolism and their potential targets SOST and DKK1. Curr Mol Pharmacol. 2012;5(2):153-63.
- 188. Zheng Y, Wu G, Zhao J, Wang L, Sun P, Gu Z. rhBMP2/7 heterodimer: an osteoblastogenesis inducer of not higher potency but lower effective concentration compared with rhBMP2 and rhBMP7 homodimers. Tissue Eng Pt A. 2010;16(3):879-87.
- 189. Tou L, Quibria N, Alexander JM. Transcriptional regulation of the human Runx2/Cbfa1 gene promoter by bone morphogenetic protein-7. Mol Cell Endocrinol. 2003;205(1):121-9.

- 190. Lee K-S, Kim H-J, Li Q-L, Chi X-Z, Ueta C, Komori T, et al. Runx2 is a common target of transforming growth factor β 1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol. 2000;20(23):8783-92.
- 191. Yamashita S, Andoh M, Ueno-Kudoh H, Sato T, Miyaki S, Asahara H. Sox9 directly promotes Bapx1 gene expression to repress Runx2 in chondrocytes. Exp Cell Res. 2009;315(13):2231-40.

APPENDIX A

PREPARATION OF SOLUTIONS AND BUFFERS

DMEM/F12 1	Dissolve powdered media and 2.438 g sodium bicarbonate with 800-900 ml of Milli-Q water.
2'	Stir until dissolved.
,	Add 10 ml of 100x antibiotic-antimycotic solution.
	Adjust pH to 7.1-7.2 using 1 N HCl or 1 N NaOH.
	Add additional Milli-Q water to bring the solution to
σ,	final volume of 1000 ml.
6)	Sterilize immediately by filtration using 0.22 microns
- ,	membrane filter. Store at 4°C.
α-мем 1.	Dissolve powdered media and 2.2 g sodium
	bicarbonate with 800-900 ml of Milli-Q water.
2.	Stir until dissolved.
3.	Add 10 ml of 100x antibiotic-antimycotic solution.
4.	Adjust pH to 7.1-7.2 using 1 N HCl or 1 N NaOH.
5.	Adjust the volume to 1000 ml.
6.	Sterilize immediately by filtration through 0.22 microns membrane filter. Store at 4°C.
DPBS 1)	Dissolve powdered media with 800-900 ml of Milli-Q water and stir until dissolved.
2`	Adjust pH to 7.1-7.2 using 1 N HCl or 1 N NaOH.
	Bring the final volume to 1000 ml.
	Sterilize immediately by filtration through 0.22
,	microns membrane filter. Store at 4°C.
•••	0.25x trypsin solution was diluted from 10x trypsin-
ł	EDTA solution using sterilized DPBS.
1 µM Triamcinolone 1)	Dissolve 8.69 mg triamcinolone acetonide in 1 ml of
Acetonide (TA)	absolute ethanol. (A)
2)	Dilute (A) 200:1 with Milli-Q water. (B)
3)	Dilute (B) 100:1 with Milli-Q water.
4)	Sterilize by filtration using 0.22 microns membrane filter.
5)	

Cell culture medium and reagents (Continued)

Ascorbic acid stock solution	1) Dissolve 50 mg ascorbic acid in 5 ml of Milli-Q water.
(5 mg/ml)	 Sterilize using 0.22 microns membrane filter. Store at 4°C. Protect from light.
1 M β -glycerophosphate	1) Dissolve 1.53 g β -glycerophosphate in 5 ml of Milli- Q water.
	2) Sterilize by filtration through 0.22 microns membrane filter.
	3) Store at 4°C. Protect from light.
Assay buffers	
Cell lysis buffer	1) Dissolve 8.766 g Tris base in 800 ml of distilled water.
	2) Add 10 ml Triton X-100 and 50 ml of 1 M Tris-HCl (pH 8.0)
	3) Adjust pH to 8.0 using HCl or NaOH solution.
	 Add additional distilled water to bring the solution to final volume of 1000 ml.
	5) Aliquot and store at -20°C.
	 Add 1 tablet of cocktail protease inhibitor per 10 ml buffer before use. This solution can be store at 4°C.
MTT solution (50 mg/ml)	Dissolve 0.5 g MTT in 10 ml of DPBS.
	The solution needs to be prepared freshly each time.
1 M Tris-HCl, pH 9.0	1) Dissolve 121.1 g Tris base in 800 ml distilled water.
	2) Adjust the pH 9.0 with concentrated HCI.
	3) Adjust the volume to 1000 ml with distilled water.
	4) Store at room temperature.
0.1 M PNPP	Dissolve 37.112 g PNPP in 1000 ml of distilled water.
	Store at room temperature.

Assay buffers (Continued)

0.1 M MgCl ₂	Dissolve 9.521 g MgCl ₂ in 1000 ml of distilled water. Store at room temperature.
2 N NaOH	Dissolve 80 g NaOH in 1000 ml of distilled water. Store at room temperature.
2% w/v Alizarin red s solution, pH 4.1-4.2	 Dissolve 2 g alizarin red s in 100 ml of distilled water. Adjust pH 10 4.1-4.3 using 0.5% ammonium hydroxide Store at room temperature. Protect from light.
0.5% Ammonium hydroxide	Dissolve 0.5 g ammonium hydroxide in 100 ml of distilled water. Store at room temperature.
10% Acetic acid and 20% Methanol	Mix 10 ml of glacial acetic acid and 20 ml of methanol with 70 ml distilled water. Store at room temperature.

Anesthetic drug

Mixture of Zoletil [®] and	1)	Aseptically	mix	1	volume	of	Zoletil®	100	with	1
xylazine at 1:1 volume ratio		volume of x	ylazi	ne	(20 mg/r	nl).				
	2)	Store at 4°	C and	l p	rotect for	m li	ght.			
	The	e mixture ne	eds to	b b	e prepare	əd fi	reshly ea	ch tin	ne.	

Reagents for tissue processing and staining

4% Paraformaldehyde	1)	Dissolve 4 g Paraformaldehyde in 100 ml of DPBS.
in DPBS	2)	Heat the solution to 70°C.
	3)	Add NaOH solution until the mixture is clear.
	4)	Check pH with pH stripe (should be 7.2-7.4).
	5)	Aliquot and store at -20°C. Thawed solution should
		be kept at 4°C and used within a week.

Reagents for tissue processing and staining (Continued)

10% Formic acid,	1) Mix 10 ml of formic acid with 90 ml of distilled
EDTA saturated	water.
	2) Add EDTA until saturate.
	3) Store at room temperature. Protect from light.
5% Sodium sulfate	Dissolve 5 g sodium sulfate in 100 ml of distilled water. Store at room temperature.

Bacterial culture mediums and reagents

LB liquid media	1)	Dissolve 6.25 g LB broth in 250 ml of distilled water.
	2)	Sterilized by autoclave.
	3)	Allow the agar solution to cool to 50-60°C.
	4)	Add antibiotic stock solution (if desire).
	5)	Store at 4°C.
LB agar	1)	Dissolve 6.25 g LB broth in 250 ml of distilled water.
LD agai	,	Ũ
	2)	Add 3.75 g bacteriological agar.
	3)	Sterilized by autoclave.
	4)	Allow the agar solution to cool to 50-60°C.
	5)	Add antibiotic stock solution (if desire).
	6)	Pour 20-25 ml of LB agar per 10 cm polystyrene
		Petri dish.
	7)	Allow the agar to solidified before inverting the plate
		and Leave at room temperature for several hours
	8)	Store at 4°C.
X-gal/IPTG LB agar	1)	Incubate the LB agar plate at 37°C for 2 hours.
X-yal/IF IG LB ayal		
	2)	Add 40 µl of X-gal stock solution, 4 µl of IPTG stock
		solution, and 50 μI of LB liquid media on the top of
		agar.
	3)	Spread the solution over the agar.
	4)	Incubate the plate at 37°C for few hours before use.

Bacterial culture mediums and reagents (Continued)

Ampicillin stock solution	1)	Dissolve 1 g of ampicillin sodium in 10 ml of distilled
(100 mg/ml)		water.
	2)	Sterilize by filtering
	3)	Aliquot and stored at -20°C. Protect from light.
X-gal stock solution	1)	Dissolve 0.1 g of X-gal in 5 ml of
(20 mg/ml)		dimethylformamide.
	2)	Aliquot and store at -20°C. Protect from light.
IPTG stock solution	1)	Dissolve 1 g of IPTG in 5 ml of distilled water.
(200 mg/ml)	2)	Filter through 0.22 μm membrane to sterilize.
	3)	Aliquot and store at -20°C. Protect from light.

Buffers and reagents for plasmid construction

50x Tris acetate EDTA	1) Dissolve 242 g Tris base in distilled water
(TAE) buffer	2) Add 57.1 ml of glacial acetic acid and 100 ml of 0.5
	M EDTA (pH 8.0) solution.
	3) Adjust volume to 1 L.
	4) Store at room temperature.
	Dilute this stock solution with distilled water to make a 1x
	working solution.
0.5 M EDTA, pH 8.0	1) Stir 186.1g EDTA into 800 ml of distilled water.
	2) Add NaOH pellets while stirring to bring the pH to
	8.0
	3) Dilute the solution to 1 L with distilled water.
	4) Sterilize in an autoclave.
	5) Store at room temperature.
1 M Tris-HCl, pH 8.0	1) Dissolve 121.1 g Tris base in 800 ml of distilled
	water.
	2) Adjust the pH 8.0 with concentrated HCI.
	3) Adjust the volume to 1000 ml with distilled water.
	4) Store at room temperature.

Buffers and reagents for plasmid construction (Continued)

Digestion buffer for	1) Dissolve 58.44 g NaCl in distilled water.
chromosome extraction	2) Add 10 ml of 1 M Tris-HCl (pH 8.0), 50 ml of 0.5 M
	EDTA (pH 8.0), and 50 ml of 10% SDS.
	3) Add additional distilled water to bring the solution to
	final volume of 1000 ml.
	4) Store at room temperature.
	5) Add 5 µl of 20 mg/ml Proteinase K per 1 ml
	digestion buffer before use.
10% SDS	Dissolve 10 g SDS in 100 ml of distilled water. Heat to 60°C if necessary. Store at room temperature.
7.5 M Ammonium acetate	Dissolve 578.1 g Ammonium acetate in 1000 ml
	distilled water. Store at room temperature.
10x Annealing buffer	1) Dissolve 12.11 g Tris base, 3.72 g EDTA, and
	29.22 g NaCl in 800 ml distilled water.
	2) Adjust pH to 8.0 using HCl or NaOH solution.
	3) Bring the solution to final volume of 1000 ml.
	4) Store at room temperature.

APPENDIX B

ELECTROPHEROGRAMS AND DNA SEQUENCES

1. pGEM-U1557

1.1. Electropherogram of pGEM-U1557 sense strand sequenced with SP6 primer

		Signal Strengths: Lane/Cap#: Matrix: Direction:	n/a
AT TOO TO	CO CO FTO DO AGO TO TOCOLO TAT DO TOCOLO TO		A GT G AT T GC CA G AT C T G AG T G GC GT G G AT AAAT G GC AA
	CCG CG TTG GGAGCTCTCCCATAT GGTCGACCTG		when the second s
	ATT G GT CT GC TC GC CT TT AT AAT GT TT G T GAAAA	ATCCTCCATCGCTCCCAAC 150 160	
110	120 130 140	150 160	170 180 190 200
MAMAM	MMMMMMMMMMM	mmmmmm	NMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
CTGCCTATGATA	TA TAAT CAT CC TAATAAG AAAATG AG CT CT AG AC/ 220 230 240 250	TACAT GTCCAAGAGGGCAA 260 270	AAGAAGAGATAGTTTCCCAAAGATGGTTTCAATTCCT 280 290 300 310
210	220 230 240 250		280 290 300 310
WWWW	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MMMMMM	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
CTGAATCAGAAT	A G C A A A T C G A G A C G A C T A C A T A C T C T G T C T G C G 330 340 350	TGCATTATTCCTTACTACA	CACAGCATTTTGTAATTTATTTCAAAGCTTCCATTATA 380 390 400 410
March Ann		A	
wwwww		<u>alwaana marka ahaana ah</u>	
	GTTTCTGTTAACCCACTCTATTCTGAACTATGGA 0 440 430 460	470 460	ATATATGCAGAGCTGAAGCCCAAAGTCCTGTTACAGT 490 500 510 520
	and a land a land a star and a star and a star	and and hands and a	annals land and rear approximation
<u>wwwwwwww</u>		<u>withith in the second se</u>	
CTTCCAAGTGGA 530	CTAAAGAATCATACAAAACGTTTCTTTTAGAGATA 540 550 560	AAAATCCAGTCATGCAGAAA 570 580	ATTAACACTATTCCAACAACCTGTATCCTGCAGGTCTT 590 600 610 620
MmmM	mannamannah	mmanhah	manmanahanhahan
ACAT TT GTTTTTT 630 64	0 650 660 670	680 690	G G G AT G AT G G T A A A AT A AT A AT
	manna Mannam	Marga and An	Mr.M.M. marsh and M. marsh
M. M.		2441001~2100000	
TTAATCTTTATT 740	STAA GAGCTAC CAC CT AAT AAAAAAAT CAACTACAC 750 760 770 780	AGTCATGATTTAGTATTTG	A A A G A A T C C C A G G C T A A C A C T T T G T G A C A G C C A A T 810 820 830 840
	1 Marine marine marine	mmmmm	mmmmmmmmm
CAGTCAATCCCGC 850	CAAGGAGTTTGCGAGCAGACCTTTGGAAAGGTAAA 860 870 880 890	CT GTTTTACAATGAGTTACA 900 910	GATCTACAAGCTTA GGAAGACAAGCAGGAAAGAAGAAGCAG 920 930 940
	6000001mb00000	200000000	Anonomalanda
ACCC TG GG AAAT	CC GAA GCA GCCC TG AAAGT GATA CAA TCCC AAGAT 970 980 990	GT GACCCACTGCG AAGCAG 1000 1010	CAG TTOTT CA GAA C G C TGC AC TCAC TT G AAACA G TTT 1020 1030 1040 1050
000	60000000000	<u>2000000000000000000000000000000000000</u>) () () () () () () () () () () () () ()
CTCAC TTTT CC	TA G ACAT AATAA T G A CG AAAG AG A GGA GGGGG 1070 1080 1090 11	GGAG AAAA GAG AA G AAAG	AĞČĞÂČGCGÂĞAĞ 1120 1130
\sim	a mana		$\wedge \wedge$
AN A	and and a second	tim	Hall M

1.2. Electropherogram of pGEM-U1557 sense strand sequenced with SEQ_U1291 primer

Sample Name: Mobility: Spacing: Comment:		al Strengths: A = 937, C = 726, G = 68 Lane/Cap#: 29 Matrix: n/a Direction: Native	1, T = 1065
TTTCCCCCGCA		A GTTTCT GTTAACCCACT CTATTCT GAACTAT	G G AAACTACT G AATAT 90 100
	man	- AAAAAA MAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	MARAMANAA
CATTATATAT GC	120 130 140 150	1	200
<u></u>		MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MAMAAAA
210 220	ATTCCAACAACCTGTATCCTGCAGGTCTTGACATTTGTTTT 230 240 250 260	G G G G T T T C G T T G T G T T G T	TTAAGATCTTCAAAGT 300 310
AMMMMA	Minimum	MMAMMAMAMAMAM	Mallmann
C CAAGGGATGA	G G T AAAAATAATATATAAAT G ATAC TAAT TACAT T TAAT C T T TA 330 340 350 360	ТТ G T A A G A G C T A C C A C C T A A T A A A A A A A A	CTACACAG TCATGAT
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Mannan Mannan Mannan Mannan	Mumhamman	MAAAAAAA
	V LEGY TELEVISION OF A CACTAC ACT TT GT GACAGCCAA TA CACTAC A CT TT GT GACAGCCAA TA CACTAC A CT TT GT GACAGCCAA TA CAGTCA 30 440 450 460 470	ATCCCGGCAAGGAGTTGCGAGCGAGCCTTC 480 490 500	GAAAGGTAAACTGTT
1		ANANA MANANA ANA ANA ANA	Manhanala
ACAATGAGTTAC			610 620
<u>/////////////////////////////////////</u>			<u> ////////////////////////////////////</u>
CCACTGCGAAGC 630	A GC A GT T GT T C A G A A C GC T GC A C T C A C A C A GT T T G C T C 640 650 660 670 680	ACTTTTCCATAGACATAATAATGAAGGAAAGA 660 700 710	GAGGAGGGGTAGAGA 720 73
malino	when have been the manufacture and the	ammalananally Mid	and mark
GAGAAGAAGAG 740	C A G A C G A G G G A A G G A A G G G A A G G G A A G G G A A G G A A G G A A G G A A G G A A G G A A G A	A GGAAAACCCTTAGCTGCAGAGTTCTGCTCT 790 800 810 82	CAAGTGCTTAACCTT
andala	all and a second a	My Deseth Albertation	D00000
GG AGTGT GGGC	CC TTC AGCATTT GTATTCCTATCCAAATCCTCATGAGTCACAAA S0 850 870 880 880 880	A TT A A A G CT AT AA CC TT CTG AA TG CC A GGA 900 910 920	AA GGCCTCACCACAA G 930 940
Alaca	001	hand hand a grant and	200000000
HTTGTCAGAGA	GGG A GAAA GGG A GG GG G A GG AA GGG 960 970 980		
mn	manne		

Samula Mama	ZB02250603(pGEM-U1557)T7	Signal Steangthan	www.geospiza.c A = 478, C = 591, G = 481, T = 699
	KB 3730 POP7 BDTv3.mob	Lane/Cap#:	
Spacing:	16.4435	Matrix:	n/a
Comment:		Direction:	Native
GTTTGGCG ÁG TC 10	S CATE C T CC G G CCGCCATE G CC G CC CC G G G AATTO	GATTCGGAAGCTTTGGCTGGTA 50 60 70	GT GACCT G CA GAG AT TAACCA TT TAAACACCA G G C C T CC 80 90 100 11
And	ala Charten Marca Calle	hammen man has	March
TGTCCTCCTGGAG 120	AAAGTTTGCACCGCACTTGTGGTTCTGTGGTTGTT 130 140 150 160	TGTGAGGCGAATGAAGCACTCAC 170 180	ACAATCCAAAAAGCAAAAGCATTAAAACTCCTATTTT 190 200 210 220
WWWWW	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MMMMMMM	March Mar
AGCACTATTACTG 230 240	SAGAGACAGAATCATGTGGTTTGTGACCTCACAGTA 250 260 270	CT CAAAGTAAAGTGGGACTGCC 280 290 3	TACCACTG TG GCTTCCCCCTTTCTCTCTCCCCTCCCTCT 00 310 320 330
mmm	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	Manna Manna	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
CAATCTTTTCCT 350	TCTCCCCTCCCTCCTCTCTCTCTCTGTCGTCC 360 370 380 390		totttActtAtG6G4Gctctctctcctccttcctccttcc 420 430 440 450
MMMMM	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MMMMMMMM	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
	CCCCCTCCCTTTCTCCCCTCTCTGACAAAAGGCTTG 470 480 490 500	TGGTGAGGCCTTCCTGGCATTC 510 520	A G A A G G T T A T A G C T T T T A A T T T T G T G A C T C A T G A G G A 530 540 550 560
www.Mw	mmmmmmmmm	MMMMMMM	Manmanana
570 580	T GCTG AAGGAGCCCACACTCCTG TAAGGTTAAGCA 590 600 610	CTTGGAGAGCAGAACTCTGCAGC 620 630	CTAAGGGTTTTCCTTTCTACCACCTCCCTACTCCCCCCT 640 650 680 670
WWWWW	montermanter	Multon harrow	when when when when when when when when
CCTTCCCTCGTCT 690	00000000000000000000000000000000000000	TATTATGTCTATGGAAA 740 750	AGT G AG CAAAACT G TTTCAA GT G AGT G CAG C G TTCT G AA 760 770 780 790
Manaha	hannen han	What when the second second second	Marcal Marcalla Contraction
GC GC CCCCAG 800 810	GGGTCACATCTTGGGATTGTATCACTTTCA GGGCTGG 820 830 840	TTCG GATTTCCCAGGGTGGCTGC 850 860 870	TTCTTCCTGCTTGTCTTCCTAAGCTTGTAGATCTGTAAC 880 890 900 910
Ababaa	Marine Malana Carlos	020020000	00000000000000000000000000000000000000
GTAAAA CAGTTTA 920 93	CCTTTCC AAAGGTCTGCTCGCAAACTCCTTGCC GGG/ 940 950 860	ATTGACTGTAATTGGCTGTCACAA 970 980 99	MAA GT GTT A GCCTG G G G ATT CC TTTAAAAA TACT AAATCA 1000 1010 1020 1
4000	000000000000000000000000000000000000000	0000000000	200000000000000000000000000000000000000
TGTGTAGTTGA T 1040	1050 1060 1070	AAA TGT GA TTA GTA TGAA TTTATA 1080 1090 1100	ATTAAT TTTTTA CCA TCA TCCCCTTGG TTACT T GAAAGAT
buch	- Dedected	200000	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>
A Å Å ÅCC Å ÅC			
1			

1.3. Electropherogram of pGEM-U1557 antisense strand sequenced with T7 primer

1.4. Electropherogram of pGEM-U1557 antisense strand sequenced with SEQ_U345 primer

annia Manai	ZB02250605(pGEM-U1557)SEQ_U345(Tm=5S)ign	al Canan ath a	A = 1225 C = 1422 C =	www.geospiza.com
Mobility:	KB_3730_POP7_BDTv3.mob	Lane/Cap#:		1079, 1 – 1960
Spacing:		Matrix:		
Comment:	n/a	Direction:	: Native	
TĠĂÎĠĊŤŤŤ 10	A TTT TT GT GACT CAT GAG GA TT G GATA GAATACAAAT GCT GAAGGAG 20 30 40 50	CCCACACTCCT	GTAAGGTTAAGCACTTGGAGAGCAG	AACT CT GCAGC TA AGG GT T 100 110
220	~_aaaada MMManamm MMMM	MMMM	how how many when we have a second sec	MMMMMM
120	TCCCTACTCCCCCCTTCCTTCCTTCCTCGTCTGCTCTTCTTCTTCT	180	TCCTCTCTTCCTTCATTATTATG 190 200 210	CTATGGAAAAGTGAGCAA 220
MMMM	www.www.www.www.www.www.www.www.www.ww	MMMMM	MMMMMMM	MMMMM
ACTGTTTCAAGT	GAGTGCAGCGTTCTGAACAACTGCTGCTTCGCAGTGGGTCACATCTT 250 280 270 280 270 280 2	GGGATTGTATC	ACTTTCAGGGCTGCTTCGGATTTC	CCAGGGTGGCTGCTTCTT
0 240		90 300 MMMMM	5 310 320	330 340 MMMMMM
CTGCTTGTCTTC 350	CTAAGCTTGTAGATCTGTAAACCAAGTTTACCTTTCCA 360 370 380 390 400	AAGGTCTGCTC 410	GCAAACTCCTTGCCGGGATTGACT 420 430	GTAATTGGCTGTCACAAA 440 450
wwww	mmMMMmmMmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	MMM	mmmhmhmhm	how how how has a second
460 4	G ATTCCTTTACAAATACTAAATCATGACTGTGTGTGATTTTTTTA 0 480 490 500 510	TTAGGTGGTAG 520	GC TC TTA CAATAAA GATTAAAT GTA 530 540 550	ATTAGTATCATTTATATTA 560 570
MMMW	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MMM	mmmmhm	www.www
TTTTACCATCAT 580	CCCTT G GTT ACTTT G A G AT CTT A A A A A A A A A A C A A C A A C A A C A A C A A A C A C	AAAACCCAAAA 640	A A A A C A A A T G T C A A G AC C T G C A G G A 650 660	TACAGGTTGTTGGAATAG
MMMM	mpmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	<u> </u>	A MARTIN TRACTING	how how have
STTAATTTTCTGC 690 700	ATGACTG GATTTTATCTCTAAAAGAAACGTTTTGTATGATTCTTTAGTC 710 720 730 740	750 76	GACTGTAACAGGACTTTGGGCTTC	AGCTCTGCATATATAATGA 790 800
hanna	allahmanna montalimed	20077000	<u> Ilidhau Aliamiai</u>	<u></u>
ATATTCAGTAGTT 810	1 1	ATAATG GAAGC 870	TTTGAAATAAATTACAAAATGCTGT 880 890 900	GTGTA GTAA GGAA TAA T GO 910 920
house	2000 and and a Data Data Data Data	000000	0.00000000000	0.0000000000000000000000000000000000000
C GC AG AC AG AG T	LTG TT AG TC GTC CC GATTT GC TAA TTC TG ATTC A GAA GA GAA GA GAA A 640 950 960 970 980	CCATCTTT GGG 990	AAACTATCTCTTCTTTTGCCCTCT 1000 1010	T GG ACATGTATGTCTAGA 1020 1030
applied	<u>x0xx1x2x0xx0xx0xx0xx10x2~20x0</u>	0.000	0.0000000000000000000000000000000000000	<u> </u>
C TCA TTTTCTT A	T A GGAT GA TTATATATATATAT CATA GGCAG TG AA TTT CACA TTT ATGGA 1050 1060 1060 000 000 000 000 000 000 000	TAGAGC TT CO	TGTTTTTCATCAG TT GGG AGGCG	AT G G A G G A TTTTT C A A 1130 1140
XX	<u>2010-2000000000000000000000000000000000</u>	22C	XUxXX	XXX
AAA CAAT TAAT AA 1150	й GGC GĂ/GCAGĂĂ/CCAĂA 1160 1170			
	mon			

1.5. U1557 sequence

U1557

1678 bp

1 GAGTGGCGTG GATAAATGGC AAGAAATGCC TAGGAAATTG GTCTGCTCGC CTTTATAATG 61 TTTGTTGAAA AATCCTCCAT CGCTCCCAAC TGATGAAAAC AGGAAGCTCT ATTCATAAAT 121 GTGAAATTCA CTGCCTATGA TATATAATCA TCCTAATAAG AAAATGAGCT CTAGACATAC 181 ATGTCCAAGA GGGCAAAAGA AGAGATAGTT TCCCAAAGAT GGTTTCAATT CTCTTCTGAA 241 TCAGAATTAG CAAATCGAGA CGACTAACAT ACTCTGTCTG CGTGCATTAT TCCTTACTAC 301 ACACAGCATT TTGTAATTTA TTTCAAAGCT TCCATTATAA ACAAAAAAAT ACAGTTTCTG 361 TTAACCCACT CTATTCTGAA CTATGGAAAC TACTGAATAT CTCATTATAT ATGCAGAGCT 421 GAAGCCCAAA GTCCTGTTAC AGTCACTTCC AAGTGGACTA AAGAATCATA CAAAACGTTT 481 CTTTTAGAGA TAAAATCCAG TCATGCAGAA AATTAACACT ATTCCAACAA CCTGTATCCT 541 GCAGGTCTTG ACATTTGTTT TTTTTGGGTT TTTTTTCGT TTGTTTGTTT GTTTTTAAG 601 ATCTTCAAAG TAACCAAGGG ATGATGGTAA AAATAATATA AATGATACTA ATTACATTTA 661 ATCTTTATTG TAAGAGCTAC CACCTAATAA AAAAATCAAC TACACAGTCA TGATTTAGTA 721 TTTGTAAAGG AATCCCCAGG CTAACACTTT TGTGACAGCC AATTACAGTC AATCCCGGCA 781 AGGAGTTTGC GAGCAGACCT TTGGAAAGGT AAACTGTTTT ACAATGAGTT ACAGATCTAC 841 AAGCTTAGGA AGACAAGCAG GAAAGAAGCA GCCACCCTGG GAAATCCGAA GCAGCCCTGA 901 AAGTGATACA ATCCCAAGAT GTGACCCACT GCGAAGCAGC AGTTGTTCAG AACGCTGCAC 961 TCACTTGAAA CAGTTTTGCT CACTTTTCCA TAGACATAAT AATGAAGGAA AGAGAGGAGG 1021 GGTAGAGAAA AGAGAAGAAA GAGCAGACGA GGGAAGGAGG GAAGGGGGGG GTAGGGAGGT 1081 GGTAGAAAGG AAAACCCTTA GCTGCAGAGT TCTGCTCTCC AAGTGCTTAA CCTTACAGGA 1141 GTGTGGGCTC CTTCAGCATT TGTATTCTAT CCAAATCCTC ATGAGTCACA AAAATTAAAA 1201 AGCTATAACC TTCTGAATGC CAGGAAGGCC TCACCACAAG CCTTTTGTCA GAGAGGGAGA 1321 GTAAAGAGAC AGAAGGAAGG GAAGGGAGAG GACAACAGAA GAGAAAGAGG GAGGGGAGGG 1441 GGCAGTCCCA CTTTACTTTG AGTACTGTGA GGTCACAAAC CACATGATTC TGTCTCTCCA 1501 GTAATAGTGC TTGCAAAAAA TAGGAGTTTT AAAGCTTTTG CTTTTTTGGA TTGTGTGAGT 1561 GCTTCATTCG CCTCACAAAC AACCACAGAA CCACAAGTGC GGTGCAAACT TTCTCCAGGA 1621 GGACAGCAAG GAGGCCCTGG TGTTTAAATG GTTAATCTCT GCAGGTCACT ACCAGCCA

2. pGL3-runx2-N

2.1. Electropherogram of pGL3-runx2-N sense strand sequenced with LUC_F primer

		Signal Strengths: Lane/Cap#: Matrix: Direction:	n/a
	att 1,25 t at at an angle and a an a		
210 220	230 240 250	260 270	GCAGACCTTTGGAAAGGTAAACTGTTTTACAATGAGTT 280 290 300 310
Mandalan	Mar Mar Marken Ma	MMMMMM	and man and and and and and and
	T A G G A A G A C A A G C A G G A A A G A A G C A G C C A C C C T G G 330 340 350 360 360		TG A A A GT G AT A CAAT C C C A A G AT GT G A C C C A C T G C G A A
320	2 T A G G A A G A C A A G C A G G A A A G A A G C A G C C A C C C T G G 330 340 350 360	GAAATCCGAAGCAGCCC 370 380	390 400 410
www	M.M.W. Markan M.M. Markan M.M.M.	MMMMMM	NWWWWWWWWWWWWWWWW
	GAACGCTGCACTCACTTG AAACAGTTTTGCTCACTT 440 450 460		
430	440 450 460	470 480	490 500 510 520
MMM		MMMMMW	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
GCAGACGAGGG 530	A A G G A G G G A A G G G G G G A G T A G G G A G G T G G T A G A A A G 540 550 560 570	GAAAACCCTTAGCTGCAG 580 59	3 A G T T C T G C T C T C C A A G T G C T T A A C C T T A C A G G A G T G T G 10 600 610 620
A.A.	A A A A A A A A A A A A A A A A A A	Λ	A section A have no Al
WWWWW	MANA WANTA MANA MANA	1 mm	
GCTCCTTCAGCA 30 640	TTTGTATTCTATCCAA ATCCTCATGAGTCACAAAAAT 650 660 670	TAAAAAGCTATAACCTTC 680 690	TGAAT GCCAG GAAG GCCTCACCACCAGCCTTTTGTCAG 700 710 720 730 730
	and management and and an and	A0. 000.000.000.000	and and and and and and
MICK (mac		X~~~XXXXX~X~X~X	
A GG G A G A A A G G 740	5 A G G G G G A G G G A A G G G A G A G	G G A G A G A G A G A G C A C C C A T A 790 800	A G T AAA G A G A C A G A A G G A A G G G A A G G G A G A
Mahan	Mandalaman	And Andrewson	man Andra Man
A G A G A A A G A G G G G 850	AG G G AG G G G AG AA G G AA AA G AT T G AG AA A G AG G G A 860 870 880 890	GGGGAGAGAGAAAGGGGG 900	AAG CCACAG TO GTAGG CAGTCCCACTTTACTTTG AGTAG 910 920 930 940
Mah	1 M M M M M M M M M M M M M M M M M M M	(XAVAA X)	<u>0,000,000,000,000,000</u>
G T G A G G T C A C A A 50 960	ACCACATOG CTAG CCCGGGCTCGAGATCTGCGATCT 970 980 990	GCATCTCAATTAGTCAGO 1000 1010	CAA CCATAGTC C G CCCC TAACT CC G CCCAT CCC G CC 1020 1030 1040 1040
Josephan Carlor	<u>xandanddanalladada</u>	1.10000.ctv	D-010-040-0-0x12400
TAACTCC G CCC 1060	ĂG TT C G CCC ĂT TC TCC G C C Ă T C 1070 1080		
mm	mmm		
MANA	Man Man Man Market		

2.2. Electropherogram of pGL3-runx2-N antisense strand sequenced with LUC_R

primer

Geospiza www.geospiza.com File: pGL3-RUNX2-N5-LUC-R_H11.ab1 Sample Name: pGL3-RUNX2-N5-LUC-N Mobility: KB_3730_POP7_BDTv3.mob Signal Strengths: A = 504, C = 753, G = 690, T = 759 Lane/Cap#: 81 Spacing: 17.1344 Comment: n/a Matrix: n/a Direction: Native NNN N NNN NGN TOCTCTCAGCGG

2.3. runx2-N sequence

runx2_N

724 bp

3. pGL3-runx2-F

3.1. Electropherogram of pGL3-runx2-F sense strand sequenced with LUC_R primer

	pGL3-RUNX2-F5-LUC-F		A = 1188, C = 1123, G = 1001, T = 1473	col
Mobility: Spacing:	KB_3730_POP7_BDTv3.mob	Lane/Cap#: Matrix:		
Comment:		Direction:		
N N G NNNTTGO	NT ACG COAG C C A G C TACCATG ATAA GTAA GTAA	AT TAA G GTAC G G G AG GTA	ACTTG GAGCGGCCGCAATAAAATATCTTTATTTCA 70 80 90	
m'	20 30 40	50 60	70 80 90	10
14	De Cochellin Minning	Manhanna	MMMMMMMMMM	W
	GTTTTTTGTGTGGAATCGATAGTACTAACATACGCT 120 130 140	CTCCATCAAAACCAAAACGAA	А АСАА А АСА А АСТА 6 ССА А АТА 6 6 СТ 6 ТССССА 6 Т6 170 180 190 200	
110 	120 130 140	150 160	170 180 190 200	
MWWWW	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MMMMMM	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	M
TGCAGGTGCCAG 210	A A C A T T T C T C T A T C G A T A G G T A C C A G G A A A T T G G T 220 230 240 250	CTGCTCGCCTTTATAATGT	TTGTTGAAAAATCCTCCATCGCTCCCAACTGATGAA 280 290 300 3	310
1 1 1				
NWWWW		www.www	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	M
GGAAGCTCTATT 320	CATAAATGTGAAATTCACTGCCTATGATATATAT 330 340 350 360	CAT C CTAATAA GAAAAT GAO 370 38	GCTCTAGACATACATGTCCAAGAGGGCAAAAGAAGA 80 390 400 410	GA
the share			not walk all all	
www.www		MMMMMM		N
GTTTCCCAAAGA 20 430	T G G T T T C A A T T C T C T T C T G A A T C A G A A T T A G C A A A 440 450 460	TCGAGACGACTAACATACT 470 480	CTGTCTGCGTGCATTATTCCTTACTACACACAGCA 490 500 510 520	++
Ashes . A	to an all have been been a	in sele hall when	Al ala A advander a	. 1
WWWWW		<u>NMMMMMMM</u>		M
GTAATTTATTC 530	AAAGCTTCCATTATAAACAAAAAAAAAAAAAAGGTTTCT 540 550 560 570	GTTAACCCACTCTATTCTG 580 59	0 600 610 620	CA
A Arabababa	handada Marine marine and	Anna Maria Mariana	No. and a margare france and a margare	
WAAAAAAAAAA	MMAINMAINAAAAMMMAAAAMMMAAAA	MANAN MANAN		1
GCTGAAGCCCAA 30 640	A G T C C T G T T A C A G T C A C T T C C A A G T G G A C T A A A G A 650 660 670	AT CATACAAAACGTTTCTT 680 690	TTAGAGATAAAATCCAGTCATGCAGAAAATTAACAC 700 710 720 730	TA
and anno	and have a superior of the second states of	hannan	ma Albuman Ash. Arman	
				1
CCAACAACCTGT 740	ATC CTGCAG GTCTTGACAT TTGTTTTTTTGGGTT 750 760 770 780	790 800	TGTTTTTTAAGATCTTCAAAGTAACCAAGGGATGAT	66
mmunh	mhanhamm	month	Amalimmondal	4
850	ATGATACTAATTACATTTAATCTTTATTGTAAGAG 860 870 880	CTACCACCTAATAAAAAAA 890 900	TCAACTACACAGTCATGATTTAGTATTTGTAAAGGA 910 920 930 940	AT
	Monorman		mannally	X
			ila dunthitidhumitidut	
950	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1000 1010 1010	TTT GG AAA GG TAAA CT G TTTT AC AA T G A G TT A CAA 1020 1030 1030 1040	JA
Diaxoo	044200000000000000000000000000000000000	0400Aab	000000000000000000000000000000000000000	D
	GAAGAAAAGCA GG N 0 1070			
10				
March and	X a X an X			

		Signal Strengths: Lane/Cap#: Matrix: Direction:	n/a
	ă C T C T C A G C G G T T C A T C T C A G C G G A T A G A A 40		AT GTTTTT G GC GTC TTCCA TG G TG GC TTTAC CAA CAG
10	20000000000000000000000000000000000000	Mwww.www.	**************************************
	астттт GCAAAA GCCTA G GCCTCCAAAAAA GCCT 120 130 140	CC TCAC TAC TTCT GG AAAAC	
0 110	120 130 140	150 160	170 180 190 200
MMMM	WMMwmMMwmMM	//////////////////////////////////////	MAMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
AAAAATTA GTCA 210	G C G A T G G G C G G A G A A T G G G C G G A A C T G G G C G G 220 230 240 250	AG TTAGGGGCGGGATGGGCG 260 27	GAGTTAGGGGCGGGACTATGGTTGCTGACTAATTGAG 0 280 290 300
ANDANA A.	antally and the analyse and	A	Manager Margara Margara Margana Margara
10 S20	TCTCGAGCCCGGGCTAGCGTGGGTCACATCTTGG 330 340 350	GATTGTATCACTTTCAGGGC	1 G CT T C G G A T T T C C C A G G G G G G C T G C T C T T C C T G G 380 390 400 410
MAN MANA	Mananalananalanananalan	Mamman	Martin Martin Martin Martin
GTCTTCCTAAG	430 440 450 450 450 450 450 450 450 450 45		GCAAACTCCTTGCCGGGATTGACTGTAATTGGCTGT
GTCTTCCTAAGC 420		CCTTTCCAAAGGTCTGCTCC	480 500 500 500 500 510 510 510 510 510 51
MMM	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MMMMMMM	www.WwW.www.WwW.wwW.wwW.wwW.wwW.wwW.WwW.WwW.WwW.WwW.WwW.WwW.WwW.WwW.WwW.WwW.WwW.Ww
AAAGTGTTAGC 520	CTGGGGATTCCTTTACAAATACTAAATCATGAC 530 540 550 560	T G T G T A G T T G A T T T T T T A T 570 580	TAGGTGGTAGCTCTTACAATAAAGATTAAATGTAATT 590 600 610
www.	MMMMMMMMM	Amphany	mannahan
TATCATTTATAT	TATTTTTACCATCATCCCTTGGTTACTTTGAAG/ 640 650 660	тстталаласаласаласа 670 680	690 700 710 720
AMMAM	mannamhann	mmmmm	mound and and
CAGGATACAGG 730	T G T T G G A A T A G T G T T A A T T T C T G C A T G A C T G G A 740 750 760 770	780 790	TTT GTAT GATT CTTT A GTCCACTT GGAA GTGACT GTA 800 810 820 830
borloor	Mallalla March and Ache	million when	malanaansaalaala
GGACTTTGGGC	TCAGCTCTGCATATATAATGAGATATTCAGTAGT 850 860 870 880	TCCATAGTTCAGAATAGAGT 890 900	G G GTTAA C A G A A A C T G T A T T T T T T T G T T A T AA T GG AA 910 920 930 9
AA MA	Δ.Δ.		And And many An
200150		Dalo and palo	COULDING MOROLL
950	A CAAAAT GCT GT GT AGT AA GG AAT AAT GCACG 960 970 980	990 1000	STCTCGATTTGCTAATTCTGATTCAGAAGAGAATTGA 1010 1020 1030 1040
0,0,0(<u>m_daaaaaadadaaaaaadadaaaaaaaaaaaaaaaaaa</u>	mana	<u>x04107x00x00x00x00x00x00x0</u>
	AACTATCTCT		

3.2. Electropherogram of pGL3-runx2-F antisense strand sequenced with LUC_R primer

3.3. runx2-F sequence

*runx2_*F 830 bp

AGGAAATTGG TCTGCTCGCC TTTATAATGT TTGTTGAAAA ATCCTCCATC GCTCCCAACT
GATGAAAACA GGAAGCTCTA TTCATAAATG TGAAATTCAC TGCCTATGAT ATATAATCAT
CCTAATAAGA AAATGAGCTC TAGACATACA TGTCCAAGAG GGCAAAAGAA GAGATAGTT
CCCAAAGATG GTTTCAATTC TCTTCTGAAT CAGACATAGC AAATCGAGAC GACTAACATA
CCCATTATAAA CAAAAAATA CAGTTCTGT TAACCCACTC TATTCTGAAC TATGGAAACT
ACTGAATACC TCATTATA TGCAGAGCTG AAGCCCAAAG TCCTGTTACA GTCACTTCCA
ACTGGACTAA AGAATCATAC AAAACGTTTC TTTTAGAGAT AAAATCCAGT CATGCAGAAA
ATTAACACTA TCCCAACAAC CTGTATCAG CAGGTCTTGA CATTTGTTTT TTTTGGGTTT
TTTTTCGTT TGTTTGTTTG TTTTTAAGA TCTTCAAAGT AACCAAGGA TGATGGTAAA
AATAATATAA ATGATACTAA TACATTAA TCTTTATTGT AAGAGCTACC ACCTAATAAA
AAAATCAACT ACACAGTCA GATTTAGTAT TTGTAAAGGA ATCCCCAGGC TAACACTTT
GTGACAGCCA ATTACAGTCA ATCCCGGCAA GGAGTTTGCG AGCAGACCTT TGGAAAGGTA
CTGTTTTA CAATGAGTTA CAGATCTAAA AGCTTAGGAA GAAAGCAGGA

4. pGL3-5Xap1

4.1. Electropherogram of pGL3-5X*ap1* sense strand sequenced with LUC_F primer

ample Name: pGL3-AP1X5-LUC-DS38-LUC_F Mobility: KB_3730_POP7_BDTv3.mob Spacing: 17.2329 Comment: n/a	Signal Strengths: Lane/Cap#: Matrix: Direction:	n/a
NIGG N NNN NTT/CGCCAG CC NA GCTACCAT G ATAA GTAA GTAA ATAA	TAA G GTAC G G G AG GTAC	TTG G AGC G GC C GC AATAAAATAT C TTTATTT CAT TA 70 80 90 100
2000 and and a construction of the constructio	WWWWWWW	NANWANNANA
LINING TTTTTTGTGTGAATCGATAGTACTAACATACGCTCT		
110 120 130 140 150	160 170	
CAG G T G C C A G A A C A T T T C T C T A T C G A T A G G T A C C A T G A G T C A G A T G A G A T C A G A T C A G A T C A G A T G A G T C A G A T G A G T C A G A T G A G T C A G A T G A G T C A G A T G A G T C A G A T G A G A T C A G A T	CAGATGAGTCAGATGAGT	CA GATGAGTCAGAGATCTGCGATCTGCATCTCAATTAG 280 290 300 310
GCAACCATAGTCCCGCCCCTAACTCCGCCCCTAACTCCG 300 340 350 360 360	CCAGTTCCGCCCATTCTC 370 380	CGCCCCATCGCTGACTAATTTTTTTTTTTTTTTTTTTTT
	www.www.	mmmhhhhmmhh
GAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCG 430 4450 460 470	480 490	TTGCAAAAAGCTTGGCATTCCGGTACTGTTGGTAAAGC 500 510 520 53
Manamananananananananananananananananana	mmhmhn	mmmhanmhalama
CAT G G AAG AC GC CAA AAAACAT AAAG GAAAG GC CCG G G G G C CAT T CT AT G S40 550 560 570 580	CGCTGGAAGATGGAACCG	CTGGAGAGCAACTGCATAAGGCTATGAAGAGATACGC 600 610 620 630
when how how have been some	www.Amm	and hand have black
GGTTCCTG GAACAATTGCTTTTTACAGATGCACATATCGAGGTGGACAT 640 650 660 670 680	CACTTACGCTGAGTACT 690 700	TCGAAATGTCCGTTCGGTTGGCAGAAGCTATGAAACG 710 720 730 74
<u> </u>	000000000000000000000000000000000000000	1
TGGGCTGAATCAAAATCACAGAAATCGCGTGTGAAAACTCC 750 7760 770 770 770 770 770 770 770 770 7	TT CAATTCTTTATG CC G	G TG TT G G G C G C G TT AT TT AT C G G A G T G C A G TT G C A G T
10000000000000000000000000000000000000	2010010100	
G CG AA CG AC ATTTA TAA TG AA CG TG AA TT GC TCAA CA G TAT G G GC A 850 880 870 880 890		
		. Indeantinatio
950 960 970 980 990	TT C TAAAAC GG ATT ACCA 1000 10	NG G G A TTT CA G TC G AT G TA C A 10 1020 1030

Sample Name: pGL3-AP1X5-LUC-DS38-LUC_R Mobility: KB_3730_POP7_BDTv3.mob Spacing: 17.3422 Comment: n/a	Lane/Cap#: Matrix: Direction:	n/a
Comment: n/a		
	Direction:	Native
NNN NNN 100 1166 16 16 16 16 16 16 16 16 16 16 16 1	50 GGCCTTTCTTTA	GTTTTT GGC GTCTTCCATGG TG GCCTTTACCAACA GTACC
	M MMM	
G AAT GCCAAG CTTTTT GCAAAAGCCTAG GCCTCCCAAAAAAGCCTCCTCACT, 110 120 130 140 150	ACTTCTGGAATAGCTCA 160 170	G A G G C C G A G G C G G C C T C G G C C T C G G C T C T
AM AMAMAMANA MAMAMANA	MMMMM	
TAGTCAGCGATGGGGCGGAGATGGGCGGAACTGGGCGGAGTTAGGGGC 220 230 240 250 250	GGATGGGCGGAGTTAGG 270 280	GGC GGG ACTATG GTTGCTG ACTAATTG AG ATGC AG ATCG
MANNA MANA MANA MANA MANA MANA MANA MAN		MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
GATCTCTGACTCATCTGACTCTGACTCATCTGACTCATCTGACTCATCTGACTCATCTGACTCATCTGACTCATC	GTACCTATCGATAGAG 380 3	AAATGTTCTGGGCACCTGCACTTGCACTGGGGACAGCCTA 90 400 410 420
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MMMMM	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
TT GC TA G TTT G TTTT GTTT C G TTTT G TTT GA TG G A G A G C G TA TG TT A G 10 440 450 460 470 48	ACTATCGATTCACACA	AAAAACCAACACACACAGATGTAATGAAAATAAAGATATT 500 510 520 530
MmmMmmMMMMMMMm	MMMMM	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
T G C G C C C C C A A G T A C T C C C G T A C T A AT A T T A C T A C T A T T A C T T A C T	GGTAGCTTGGGCTGG 590 600	CG T A A T A G C G A A G A G G G C C C G C A C C G A T C G C C C T C C C A 610 620 630 640
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	himlinh	www.Mannahamman
AG T T G C G C A G C C T G A A T G G C G A A T G G C A A A T G G C G A T G G C A A A T G T A A G C G T T A A T A T T T T 650 660 670 680 690	GTTAAAATTCGCGTTA 700	ААТТТТТ GTTAAATCA GCTCATTTTTTTTAACCAATAGGC 710 720 730 740
and have been have a second	000000000000000000000000000000000000000	
ВАААТ С G G CAAA AT C C C T AT AAAT CAAA AG AAT AG AC C G AG AT AG G G T 750 760 770 780 790	G AGTGTTGTTCCAG	TT G G A A C A A G A G T C C A C T A T T A A A G A A C G T G G A C T C C 820 830 840
		contrine Committee (CAC
SO BEO BTO BOOM STOLEN	900 910	CAAGTTTTTTGGGGGCCGAGGGGCCGTAAAGCACTAA 920 930 940

4.2. Electropherogram of pGL3-5Xap1 antisense strand sequenced with LUC_R primer

4.3. 5Xap1 sequence (overhangs of Bg/II at 5'-end and KpnI at 3'-end were underlined)

5X*ap1* 55 bp

1 <u>GATCT</u>CTGAC TCATCTGACT CATCTGACTCA TCTGACTCAT

5. pGL3-5Xsry

5.1. Electropherogram of pGL3-5X*sry* sense strand sequenced with LUC_F primer

Mobility:	pGL3-SRYX5-LUC-DS3-LUC_F KB_3730_POP7_BDTv3.mob 17.0978 n/a	Signal Strengths: Lane/Cap#: Matrix: Direction:	n/a
N NN NN TTGC 10	NTTACE C NG C C A G C TACCA T & AT AA G		TT G G AG C G G C C C C A T A A A T AT C T T A T T T T
<u>A</u>	<u>~~~~~~~~~~</u>	manan haw When	MMMMMMMMMMMM
110	GTTTTTTGTGTGAATCGATAGTACTAAC/ 120 130 140	TACGCTCTCCATCAAAACAAAACGAA 150 180 170	ACAAAACAAACTAGCAAAATAGGCTGTCCCCAGTGCA 0 180 190 200
		MMMMMMMM	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
GCAGGTGCCAG 220	AACATTTCTCTATCGATAGGTACCAAACA 230 240 25	A AAAACAAAAAACAAAAAACAAAAAACA 260 270	ААА GATC T G C G A T C T G C A T C T C A A T T A G T C A G C A A C C 280 290 300 310
AWWM			mlimmini
GTCCCGCCCCT 320 3:	ACTCCGCCCATCCCGCCCTAACTCCGC 30 340 350	CCAGTCCGCCCATCCGCCCCATC 360 370 380	SCTGACTAATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
MMMM		www.www.www.www.www.www.www.www.www.ww	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
TCGGCCTCTG	AGCTATTCCAGAAGTAGTGAGGAGGCTTT 440 450 460	TTTGGAGGCCTAGGCTTTTGCAAAAAC 470 480 490	CTTGGCATTCCGGTACTGTTGGTAAAGCCACCATGG 500 510 520
WWWW	MMMMMMMMM	MMMMMMM	Mmmmmmh
AC GC CAAAAAC		G C T G G A A G A T G G A A C C G C T G G A G A G C 580 590	AACTGCATAAGGCTATGAAGAGATACGCCCTGGTTC 600 610 620 630
hann	mannonmann	multiment	mahanhanhanahar
GAACAATTGCT 640	TTACAGAT GCACATAT CGAGGT GGACAT 650 660 670	CACTTACGCTGAGTACTTCGAAATGT 680 690 700	C C G T T C G G T T G G C A G A A G C T A T G A A A C G A T A T G G G C 710 720 730
borcho	mandellanamentella	an manhann mh	control has bellevel not have the
ATACAAATCAC	AGAATC GTCGTATGCAGTGAAAACTCTC 760 770 780	790 800	GCGTTATTATCGGAGTTGCAGTTGCGCCCCGCGAAC 810 820 830 840
	Manadama man	mana	
	ACGTGAATT GCTCAACAGTATGGGCATT 560 870 880		CCAAAAA GGGGTGCAAAAAATTTTGAACGTGCAAA
850	860 870 880	890 900 9	10 920 930 940
mont	and approximate Date	month	

	pGL3-SRYX5-LUC			Signal Strengths		C = 5702, G =	3525, T = 5902	2
	KB_3730_POP7_BI	DTv3.mob		Lane/Cap#				
Spacing:				Matrix				
Comment:	n/a			Direction	: Native			
C TAGADAG CTGC	TO T CAG CG G TTCOAT CTTC	CA G C G G AT A G AAT G	GC GCCG GGCC		GC GT CT T CCATG G	GGCTTTACCAACA	GTACCGGAATGCCA	AGCT
20 A	20 30	MMM	50 MMM					M
							CGATGGGGCGGAGA	
130	140 150	160 1			200	210 220	230	240
			111111111111		1111111111111			
250	TTAGGGGCGGGATGGGCGGAG 260 270	280 290	ATGGTTGCTGA 300	CTAATTGAGATGCAGA 310	320 330	340	350	360
MAMA		MMMM		MMMM	WWW	WWW	WWWWW	W
CCTATCGATAGA	GAAATGTTCTGGCACCTGCA		AGCCTATTTG	CTAGTTTGTTTGTTT		TGGAGAGCGTAT	TTAGTAC TATCGAT	
370 : WWWWW	, oec osi	410 AND	420	430 44 MMMMMMM	0 450 MMMMMM	wwww	470 48	••• •••
490 50	0 510 52		540	550 560	570	580	590 600	
www.ww	mmmm	WIT - HEITED		www.www	NUL DI LUCI	TTAL TITLY	hormon	01°
CCCGCACCGATC	GCCCTTCCCAACAGTTGCGC/ 630 640	GCCTGAATGGCGAA 650	TGGCAAATTGT	AAGCGTTAATATTTTG 670 680	TTAAAATTCGCGT	700 71	ATCAGCTCATTTTT	TAAC
510 620	630 640	650	660	670 660	690	100 11	0 720	
month	and management	manno	Amore			man		
			GGGGTT G AGTG					
740	750 760	770 780	790	600 61	10 820	630	640 650	
Amm		Non Denne	man	m			~~~~^	
GTCTATCA GOOC 870	SATGGCCCACTACGTGAACCAT 880 890	CACCCTAATCAAGTTT 900 91		GGTGCC GTAAAGCACTA	940 950			
<u></u>	100000000000000000000000000000000000000			040		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~
<u></u>		<u></u>		040				

5.2. Electropherogram of pGL3-5Xsry antisense strand sequenced with LUC_R primer

5.3. 5Xsry sequence (overhangs of Bg/II at 5'-end and KpnI at 3'-end were underlined)

5X*sry* 45 bp

1 <u>GATCT</u>TTTGT TTTTTGTTTT TTGTTTTTG TTTTTGTTT <u>GGTAC</u>

APPENDIX C

SEQUENCE ALIGNMENT

The alignment of U1557 sequence with the sequence 2,000 bases 5'-upstream of runx2 gene and the gene promoter reported by Drissi et al. [25] (1 indicates the mismatch position between U1557 and database;)

reported database U1557	GAAGTCTAACATGCAAATTCAGAGTGGCGTGGATAAATGGCAAGAAATGCCTAGGAAATT GAGTGGCGTGGATAAATGGCAAGAAATGCCTAGGAAATT
reported database U1557	GGTCTGCTCGCCTTTATAATGTTTGTTGAAAAATCCTCCATCGCTCCCAACTGATGAAAA GGTCTGCTCGCCTTTATAATGTTTGTTGAAAAAATCCTCCATCGCTCCCAACTGATGAAAA
reported database U1557	CAGGAAGCTCTATTCATAAATGTGAAATTCACTGCCTATGATATATAATCATCCTAATAA CAGGAAGCTCTATTCATAAATGTGAAATTCACTGCCTATGATATAATAATCATCCTAATAA
reported database U1557	GAAAATGAGCTCTAGACATACATGTCCAAGAGGGGCAAAAGAAGAGATAGTTTCCCAAAGA GAAAATGAGCTCTAGACATACATGTCCAAGAGGGGCAAAAGAAGAGATAGTTTCCCAAAGA
reported database U1557	TGGTTTCAATT T TCTTCTGAATCAGAATTAGCAAATCGAGACGACTAACATACTCTGTCT TGGTTTCAATT C TCTTCTGAATCAGAATTAGCAAATCGAGACGACTAACATACTCTGTCT
reported database U1557	GCGTGCATTATTCCTTACTACACACAGCATTTTGTAATTTATTT
reported database U1557	AACAAAAAATACAGTTTCTGTTAACCCACTCTATTCTGAACTATGGAAACTACTGAATA AACAAAAAATACAGTTTCTGTTAACCCACTCTATTCTGAACTATGGAAACTACTGAATA
reported database U1557	TCTCATTATATATGCAGAGCTGAAGCCCAAAGTCCTGTTACAGTCACTTCCAAG C GGACT TCTCATTATATATGCAGAGCTGAAGCCCAAAGTCCTGTTACAGTCACTTCCAAG T GGACT
reported database U1557	AAAGAATCATACAAAACGTTTCTTTTAGAGATAAAATCCAGTCATGCAGAAAATTAACAC AAAGAATCATACAAAACGTTTCTTTTAGAGATAAAATCCAGTCATGCAGAAAATTAACAC
reported database U1557	TATTCCAACAACCTGTATCCTGCAGGTCTTGACATTTGTTTTTTTGGG G TTTTTTT - G TATTCCAACAACCTGTATCCTGCAGGTCTTGACATTTGTTTTTTTT
reported database U1557	TTTGTTTGTTTGTTTTTAAGATCTTCAAAGTAACCAAGGGATGATGGTAAAAATAATAT TTTGTTTGTTTGTTT

reported database U1557	АААТGАТАСТААТТАСАТТТААТСТТТАТТGTAAGAGCTACCACCTAATAAAAAAATCAA АААТGАТАСТААТТАСАТТТААТСТТТАТТGTAAGAGCTACCACCTAATAAAAAAATCAA
reported database U1557	CTACACAGTCATGATTTAGTATTTGTAAAGGAATCCCCAGGCTAACACTTTTGTGACAGC CTACACAGTCATGATTTAGTATTTGTAAAGGAATCCCCAGGCTAACACTTTTGTGACAGC
reported database U1557	CAATTACAGTCAATCCCGGCAAGGAGTTTGC A AGCAGACCTTTGGAAAGGTAAACTGTTT CAATTACAGTCAATCCCGGCAAGGAGTTTGC G AGCAGACCTTTGGAAAGGTAAACTGTTT
reported database U1557	TACAATGAGTTACAGATCTACAAGCTTAGGAAGACAAGCAGGAAAGAAGCAGCCACCCTG TACAATGAGTTACAGATCTACAAGCTTAGGAAGACAAGCAGGAAAGAAGCAGCCACCCTG
reported database U1557	AGCA GGAAATCCGAAGCAGCCCTGAAAGTGATACAATCCCAAGATGTGACCCACTGCGAAGCAG GGAAATCCGAAGCAGCCCTGAAAGTGATACAATCCCAAGATGTGACCCACTGCGAAGCAG
reported database U1557	CTGTTGCTCAGAACGC C GCACTCACTTGAAACAGTTTTGCTCACTTTTCCATAGACATAA CAGTTGTTCAGAACGC C GCACTCACTTGAAACAGTTTTGCTCACTTTTCCATAGACATAA CAGTTGTTCAGAACGC T GCACTCACTTGAAACAGTTTTGCTCACTTTTCCATAGACATAA * **** ********
reported database U1557	TAATGAAGGAAAGAGAGGGGGGTAGAGAAAAGAGAAGAAG
reported database U1557	GGAAGGGGGGAGTAGGGAGGTGGTAGAAAGGAAAACCCTTAGCTGCAGAGTTCTGCTCTC GGAAGGGGGGAGTAGGGAGGTGGTAGAAAGGAAAACCCTTAGCTGCAGAGTTCTGCTCTC GGAAGGGGGGGAGTAGGGAGGTGGTAGAAAGGAAAACCCTTAGCTGCAGAGTTCTGCTCTC ****************************
reported database U1557	CAAGTGCTTAACCTTACAGGAGTGTGGGCTCCTTCAGCATTTGTATTCTATCCAAATCCT CAAGTGCTTAACCTTACAGGAGTGTGGGCTCCTTCAGCATTTGTATTCTATCCAAATCCT CAAGTGCTTAACCTTACAGGAGTGTGGGCTCCTTCAGCATTTGTATTCTATCCAAATCCT **********************
reported database U1557	CATGAGTCACAAAAATTAAAAAAGCTATAACCTTCTGAATGCCAGGAAGGCCTCACCACAA CATGAGTCACAAAAATTAAAAAAGCTATAACCTTCTGAATGCCAGGAAGGCCTCACCACAA CATGAGTCACAAAAATTAAAAAAGCTATAACCTTCTGAATGCCAGGAAGGCCTCACCACAA ****************************
reported database U1557	GCCTTTTGTCAGAGAGGGAGAAAGGGAGGGGGGGGGGGG
reported database U1557	AGGGAGAGAGAGCACCCATAAGTAAAGAGACAGAAGGAAG
reported database U1557	– AGAGAAAGAGGGAGGGGAGGGGGAGAAGGAAAAAGATTGAGAAAGAGGGAGGGGAGGGGAGAGAG AGAGAAAGAGGGAGGGGAGGGGGAGAAGGAAAAAGATTGAGAAAGAGGGAGGGGGG

reported database U1557	AAGGGGGAAGCCACAGTGGTAGGCAGTCCCACTTTACTTTGAGTACTGTGAGGTCACAAA AAGGGGGAAGCCACAGTGGTAGGCAGTCCCACTTTACTTTGAGTACTGTGAGGTCACAAA AAGGGGGAAGCCACAGTGGTAGGCAGTCCCACTTTACTTTGAGTACTGTGAGGTCACAAA ********************************
reported database U1557	CCACATGATTCTGTCTCTCCAGTAATAGTGCTTGCAAAAAATAGGAGTTTTAAAGCTTTT CCACATGATTCTGTCTCTCCAGTAATAGTGCTTGCAAAAAATAGGAGTTTTAAAGCTTTT CCACATGATTCTGTCTCTCCCAGTAATAGTGCTTGCAAAAAATAGGAGTTTTAAAGCTTTT *********************************
reported database U1557	GCTTTTTTGGATTGTGTGAATGCTTCATTCGCCTCACAAACAA
reported database U1557	CGGTGCAAACTTTCTCCAGGAGGACAGCAAGGAGGCCCTGGTGTTTAAATGGTTAATCTC CGGTGCAAACTTTCTCCAGGAGGACAGCAAGGAGGCCCTGGTGTTTAAATGGTTAATCTC CGGTGCAAACTTTCTCCAGGAGGACAGCAAGGAGGCCCTGGTGTTTAAATGGTTAATCTC *******************************
reported database U1557	TGCAGGTCACTACCAGCCA TGCAGGTCACTACCAGCCACC TGCAGGTCACTACCAGCCA **********

2. The alignment of *runx2*-N sequence with the U1557 sequence

U1557 runx2_N	GAGTGGCGTGGATAAATGGCAAGAAATGCCTAGGAAATTGGTCTGCTCGCCTTTATAATG
U1557 runx2_N	TTTGTTGAAAAATCCTCCATCGCTCCCAACTGATGAAAACAGGAAGCTCTATTCATAAAT
U1557 runx2_N	GTGAAATTCACTGCCTATGATATATAATCATCCTAATAAGAAAATGAGCTCTAGACATAC
U1557 runx2_N	ATGTCCAAGAGGGCAAAAGAAGAGAGATAGTTTCCCAAAGATGGTTTCAATTCTCTTCTGAA
U1557 runx2_N	TCAGAATTAGCAAATCGAGACGACTAACATACTCTGTCTG
U1557 runx2_N	ACACAGCATTTTGTAATTTATTTCAAAGCTTCCATTATAAACAAAAAAATACAGTTTCTG
U1557 runx2_N	TTAACCCACTCTATTCTGAACTATGGAAACTACTGAATATCTCATTATATATGCAGAGCT
U1557 runx2_N	GAAGCCCAAAGTCCTGTTACAGTCACTTCCAAGTGGACTAAAGAATCATACAAAACGTTT

U1557 runx2_N	CTTTTAGAGATAAAATCCAGTCATGCAGAAAATTAACACTATTCCAACAACCTGTATCCT
U1557 runx2_N	GCAGGTCTTGACATTTGTTTTTTTTGGGTTTTTTTTCGTTTGTTT
U1557 runx2_N	ATCTTCAAAGTAACCAAGGGATGATGGTAAAAATAATATAAATGATACTAATTACATTTA
U1557 runx2_N	ATCTTTATTGTAAGAGCTACCACCTAATAAAAAAATCAACTACACAGTCATGATTTAGTA
U1557 runx2_N	TTTGTAAAGGAATCCCCAGGCTAACACTTTTGTGACAGCCAATTACAGTCAATCCCGGCA TTACAGTCAATCCCGGCA ****************
U1557 runx2_N	AGGAGTTTGCGAGCAGACCTTTGGAAAGGTAAACTGTTTTACAATGAGTTACAGATCTAC AGGAGTTTGCGAGCAGACCTTTGGAAAGGTAAACTGTTTTACAATGAGTTACAGATCTAC *********
U1557 runx2_N	AAGCTTAGGAAGACAAGCAGGAAAGAAGCAGCCACCCTGGGAAATCCGAAGCAGCCCTGA AAGCTTAGGAAGACAAGCAGGAAAGAAGCAGCCACCCTGGGAAATCCGAAGCAGCCCTGA ************************************
U1557 runx2_N	AAGTGATACAATCCCAAGATGTGACCCACTGCGAAGCAGCAGTTGTTCAGAACGCTGCAC AAGTGATACAATCCCAAGATGTGACCCACTGCGAAGCAGCAGTTGTTCAGAACGCTGCAC *******
U1557 runx2_N	TCACTTGAAACAGTTTTGCTCACTTTTCCATAGACATAATAATGAAGGAAAGAGAGGAGG TCACTTGAAACAGTTTTGCTCACTTTTCCATAGACATAATGAAGGAAAGAGAGGGGG *****************
U1557 runx2_N	GGTAGAGAAAAGAGAAGAAAGAGCAGACGAGGGAAGGAGGGAAGGGGGG
U1557 runx2_N	GGTAGAAAGGAAAACCCTTAGCTGCAGAGTTCTGCTCTCCAAGTGCTTAACCTTACAGGA GGTAGAAAGGAAAACCCTTAGCTGCAGAGTTCTGCTCTCCAAGTGCTTAACCTTACAGGA *********************************
U1557 runx2_N	GTGTGGGCTCCTTCAGCATTTGTATTCTATCCAAATCCTCATGAGTCACAAAAATTAAAA GTGTGGGCTCCTTCAGCATTTGTATTCTATCCAAATCCTCATGAGTCACAAAAATTAAAA ************************
U1557 runx2_N	AGCTATAACCTTCTGAATGCCAGGAAGGCCTCACCACAAGCCTTTTGTCAGAGAGGGAGA AGCTATAACCTTCTGAATGCCAGGAAGGCCTCACCACAAGCCTTTTGTCAGAGAGGGAGA ***************************
U1557 runx2_N	AAGGGAGGGGGAGGAGGAGGGAGAGAGAGGAGGAGGAGG
U1557 runx2_N	GTAAAGAGACAGAAGGAAGGGAAGGGAGAGAGACAACAGAAGA
U1557 runx2_N	GAGAAGGAAAAAGATTGAGAAAGAGGGAGGGGGGGGAGAGAAAGGGGGAAGCCACAGTGGTA GAGAAGGAAAAAGATTGAGAAAGAGGGGAGGGGGGAGAGAAAGGGGGG
U1557 runx2_N	GGCAGTCCCACTTTACTTTGAGTACTGTGAGGTCACAAACCACATGATTCTGTCTCTCCA GGCAGTCCCACTTTACTTT

U1557 runx2_N	GTAATAGTGCTTGCAAAAAATAGGAGTTTTAAAGCTTTTGCTTTTTTGGATTGTGTGAGT
U1557 runx2_N	GCTTCATTCGCCTCACAAACAACCACAGAACCACAAGTGCGGTGCAAACTTTCTCCAGGA
U1557 runx2_N	GGACAGCAAGGAGGCCCTGGTGTTTAAATGGTTAATCTCTGCAGGTCACTACCAGCCA

3. The alignment of *runx2*-F sequence with the U1557 sequence

U1557	GAGTGGCGTGGATAAATGGCAAGAAATGCCTAGGAAATTGGTCTGCTCGCCTTTATAATG
runx2_F	AGGAAATTGGTCTGCTCGCCTTTATAATG

U1557	TTTGTTGAAAAATCCTCCATCGCTCCCAACTGATGAAAACAGGAAGCTCTATTCATAAAT
runx2_F	TTTGTTGAAAAATCCTCCATCGCTCCCAACTGATGAAAACAGGAAGCTCTATTCATAAAT

U1557	GTGAAATTCACTGCCTATGATATAATCATCCTAATAAGAAAATGAGCTCTAGACATAC
runx2_F	GTGAAATTCACTGCCTATGATATATAATCATCCTAATAAGAAAATGAGCTCTAGACATAC

U1557	ATGTCCAAGAGGGCAAAAGAAGAGATAGTTTCCCAAAGATGGTTTCAATTCTCTTGAA
runx2_F	ATGTCCAAGAGGGCAAAAGAAGAGAGATAGTTTCCCAAAGATGGTTTCAATTCTCTTCTGAA

U1557	TCAGAATTAGCAAATCGAGACGACTAACATACTCTGTCTG
runx2_F	TCAGAATTAGCAAATCGAGACGACTAACATACTCTGTCTG

U1557	ACACAGCATTTTGTAATTTATTTCAAAGCTTCCATTATAAACAAAAAAAA
runx2_F	ACACAGCATTTTGTAATTTATTTCAAAGCTTCCATTATAAACAAAAAAATACAGTTTCTG

U1557	TTAACCCACTCTATTCTGAACTATGGAAACTACTGAATATCTCATTATATATGCAGAGCT
runx2_F	TTAACCCACTCTATTCTGAACTATGGAAACTACTGAATATCTCATTATATATGCAGAGCT

U1557	GAAGCCCAAAGTCCTGTTACAGTCACTTCCAAGTGGACTAAAGAATCATACAAAACGTTT
runx2_F	GAAGCCCAAAGTCCTGTTACAGTCACTTCCAAGTGGACTAAAGAATCATACAAAACGTTT

U1557	CTTTTAGAGATAAAATCCAGTCATGCAGAAAATTAACACTATTCCAACAACCTGTATCCT
runx2_F	CTTTTAGAGATAAAATCCAGTCATGCAGAAAATTAACACTATTCCAACAACCTGTATCCT

U1557	GCAGGTCTTGACATTTGTTTTTTTGGGTTTTTTTTCGTTTGTTT
runx2_F	GCAGGTCTTGACATTTGTTTTTTTGGGTTTTTTTTCGTTTGTTT

U1557	ATCTTCAAAGTAACCAAGGGATGATGGTAAAAAATAATATAAATGATACTAATTACATTTA
runx2_F	ATCTTCAAAGTAACCAAGGGATGATGGTAAAAATAATAATAAATGATACTAATTACATTTA

U1557	ATCTTTATTGTAAGAGCTACCACCTAATAAAAAAATCAACTACACAGTCATGATTTAGTA
runx2_F	ATCTTTATTGTAAGAGCTACCACCTAATAAAAAAATCAACTACACGGTCATGATTTAGTA

U1557 runx2_F	TTTGTAAAGGAATCCCCAGGCTAACACTTTTGTGACAGCCAATTACAGTCAATCCCGGCA TTTGTAAAGGAATCCCCAGGCTAACACTTTTGTGACAGCCAATTACAGTCAATCCCGGCA **********
U1557 runx2_F	AGGAGTTTGCGAGCAGACCTTTGGAAAGGTAAACTGTTTTACAATGAGTTACAGATCTAC AGGAGTTTGCGAGCAGACCTTTGGAAAGGTAAACTGTTTTACAATGAGTTACAGATCTAA ***********
U1557 runx2_F	AAGCTTAGGAAGACAAGCAGGAAAGAAGCAGCCACCCTGGGAAATCCGAAGCAGCCCTGA AAGCTTAGGAAGAAAAGCAGGN ************* ******
U1557 runx2_F	AAGTGATACAATCCCAAGATGTGACCCACTGCGAAGCAGCAGTTGTTCAGAACGCTGCAC
U1557 runx2_F	TCACTTGAAACAGTTTTGCTCACTTTTCCATAGACATAATAATGAAGGAAAGAGAGGAGG
U1557 runx2_F	GGTAGAGAAAAGAGAAGAAGAAGAGCAGACGAGGGAAGGAGGGAAGGGGGG
U1557 runx2_F	GGTAGAAAGGAAAACCCTTAGCTGCAGAGTTCTGCTCTCCAAGTGCTTAACCTTACAGGA
U1557 runx2_F	GTGTGGGCTCCTTCAGCATTTGTATTCTATCCAAATCCTCATGAGTCACAAAAATTAAAA
U1557 runx2_F	AGCTATAACCTTCTGAATGCCAGGAAGGCCTCACCACAAGCCTTTTGTCAGAGAGGGAGA
U1557 runx2_F	AAGGGAGGGGGGGGGAGGGGGGGGGGGGGGGGGGGGGGG
U1557 runx2_F	GTAAAGAGACAGAAGGAAGGGAAGGGAGAGACAACAGAAGAGAGAGGGAGGGGAGGG
U1557 runx2_F	GAGAAGGAAAAAGATTGAGAAAGAGGGGAGGGGAGAGAGAAAGGGGGAAGCCACAGTGGTA
U1557 runx2_F	GGCAGTCCCACTTTACTTTGAGTACTGTGAGGTCACAAACCACATGATTCTGTCTCTCCA
U1557 runx2_F	GTAATAGTGCTTGCAAAAAATAGGAGTTTTAAAGCTTTTGCTTTTTGGATTGTGTGAGT
U1557 runx2_F	GCTTCATTCGCCTCACAAACAACCACAGAACCACAAGTGCGGTGCAAACTTTCTCCAGGA
U1557 runx2_F	GGACAGCAAGGAGGCCCTGGTGTTTAAATGGTTAATCTCTGCAGGTCACTACCAGCCA

APPENDIX D

STATISTICAL ANALYSIS

Abbreviation:

A1	2%FBS/TA+AA	C1	Insulin/TA+AA
A2	2%FBS/BMP2	C2	Insulin/BMP2
A3	2%FBS/BMP7	C3	Insulin/BMP7
A4	2%FBS/BMP2+BMP7	C4	Insulin/
B1	FGF2/ TA+AA	D1	FGF2+insulin/TA+AA
B2	FGF2/BMP2	D2	FGF2+insulin/BMP2
B3	FGF2/BMP7	D3	FGF2+insulin/BMP7
B4	FGF2/BMP2+BMP7	D4	FGF2+insulin/BMP2+BMP7

1. T-test of the expression of stem cell-associated genes of HBMSCs after serial passaging.

Group Statistics					
	group	Ν	Mean	Std. Deviation	Std. Error Mean
oct4	passage2	4	1.0578	.06550	.03275
	passage5	4	.5371	.14251	.07125
sox2	passage2	4	1.0541	.32425	.16213
	passage5	4	.2366	.07871	.03936
nanog	passage2	4	1.0192	.22460	.11230
	passage5	4	.6512	.12322	.06161
bst1	passage2	4	1.0129	.18715	.09358
	passage5	4	2.9249	.16409	.08204
fgf4	passage2	4	1.0080	.15183	.07591
	passage5	4	.5943	.00787	.00393
rex1	passage2	4	1.0069	.11523	.05762
	passage5	4	1.0746	.31395	.15697
tert	passage2	4	1.0192	.22097	.11048
	passage5	4	2.7254	.89911	.44956

Group Statistics

		Levene's Equality of \				t-test f	or Equality of	Means		
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interva of the Difference	
							Difference	Dillerence	Lower	Upper
oct4	Equal variances assumed	1.965	.210	6.640	6	.001	.52071	.07842	.32882	.71259
	Equal variances not assumed			6.640	4.213	.002	.52071	.07842	.30726	.73415
sox2	Equal variances assumed	1.587	.255	4.901	6	.003	.81758	.16683	.40935	1.22581
	Equal variances not assumed			4.901	3.352	.012	.81758	.16683	.31685	1.31831
nanog	Equal variances assumed	2.801	.145	2.873	6	.028	.36797	.12809	.05454	.68140
	Equal variances not assumed			2.873	4.656	.038	.36797	.12809	.03124	.70470
bst1	Equal variances assumed	.438	.533	-15.364	6	.000	-1.91201	.12445	-2.21653	-1.60749
	Equal variances not assumed			-15.364	5.899	.000	-1.91201	.12445	-2.21780	-1.60622
fgf4	Equal variances assumed	5.642	.055	5.443	6	.002	.41373	.07601	.22773	.59973
	Equal variances not assumed			5.443	3.016	.012	.41373	.07601	.17255	.65491
rex1	Equal variances assumed	2.632	.156	405	6	.699	06773	.16721	47689	.34142
	Equal variances not assumed			405	3.794	.707	06773	.16721	54211	.40664
tert	Equal variances assumed	2.861	.142	-3.686	6	.010	-1.70616	.46293	-2.83891	57340
	Equal variances not assumed			-3.686	3.361	.029	-1.70616	.46293	-3.09380	31851

Independent Samples Test

 T-test of the expression of stem cell-associated genes and osteogenic genes of HBMSCs induced with FGF2 and/or insulin.

	group	Ν	Mean	Std. Deviation	Std. Error Mean
oct4	non-induced	4	1.0578	.06550	.03275
	induced	4	.6452	.10412	.05206
sox2	non-induced	4	1.0541	.32425	.16213
	induced	4	2.2217	.57778	.28889
nanog	non-induced	4	1.0192	.22460	.11230
	induced	4	.8443	.13239	.06619
bst1	non-induced	4	1.0129	.18715	.09358
	induced	4	2.8920	.64383	.32192
fgf4	non-induced	4	1.0080	.15183	.07591
	induced	4	2.2288	.26043	.13022
rex1	non-induced	4	1.0069	.11523	.05762
	induced	4	1.0287	.29551	.14776
tert	non-induced	4	1.0192	.22097	.11048
	induced	4	.2394	.04550	.02275
OSC	non-induced	6	1.0433	.05538	.02261
	induced	6	.4350	.04637	.01893
alp	non-induced	6	1.0350	.28933	.11812
	induced	6	.6483	.04070	.01662
runx2	non-induced	6	.9433	.13515	.05518
	induced	6	1.0700	.04980	.02033
opn	non-induced	6	1.1183	.08727	.03563
	induced	6	2.3883	.14552	.05941
bsp	non-induced	6	.9883	.09218	.03763
	induced	6	3.5100	.04427	.01807

Group Statistics

		Levene's	s Test for	-	-					
		Equality of	Variances			t-tes	st for Equality of	of Means		
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confide of the Dif	
							Billoronice	Billoronee	Lower	Upper
oct4	Equal variances assumed	.292	.608	6.708	6	.001	.41259	.06151	.26209	.56309
	Equal variances not assumed			6.708	5.053	.001	.41259	.06151	.25498	.57020
sox2	Equal variances assumed	6.957	.039	-3.525	6	.012	-1.16759	.33127	-1.97819	35700
	Equal variances not assumed			-3.525	4.719	.019	-1.16759	.33127	-2.03463	30056
nanog	Equal variances assumed	2.215	.187	1.342	6	.228	.17495	.13036	14403	.49393
	Equal variances not assumed			1.342	4.860	.239	.17495	.13036	16307	.51297
bst1	Equal variances assumed	2.180	.190	-5.605	6	.001	-1.87910	.33524	-2.69940	-1.05879
	Equal variances not assumed			-5.605	3.503	.007	-1.87910	.33524	-2.86429	89390
fgf4	Equal variances assumed	.515	.500	-8.099	6	.000	-1.22081	.15073	-1.58963	85200
	Equal variances not assumed			-8.099	4.828	.001	-1.22081	.15073	-1.61246	82917
rex1	Equal variances assumed	1.999	.207	137	6	.895	02177	.15859	40983	.36629
	Equal variances not assumed			137	3.892	.898	02177	.15859	46696	.42343
tert	Equal variances assumed	2.978	.135	6.913	6	.000	.77984	.11280	.50382	1.05585
	Equal variances not assumed			6.913	3.254	.005	.77984	.11280	.43619	1.12348
OSC	Equal variances assumed	.045	.837	20.631	10	.000	.60833	.02949	.54263	.67403
	Equal variances not assumed			20.631	9.700	.000	.60833	.02949	.54236	.67431
alp	Equal variances assumed	48.202	.000	3.242	10	.009	.38667	.11928	.12089	.65244
	Equal variances not assumed			3.242	5.198	.022	.38667	.11928	.08352	.68981
runx2	Equal variances assumed	3.858	.078	-2.154	10	.057	12667	.05880	25769	.00435
	Equal variances not assumed			-2.154	6.333	.072	12667	.05880	26874	.01540
opn	Equal variances assumed	.227	.644	-18.333	10	.000	-1.27000	.06927	-1.42435	-1.11565
	Equal variances not assumed			-18.333	8.185	.000	-1.27000	.06927	-1.42912	-1.11088
bsp	Equal variances assumed	1.683	.224	-60.404	10	.000	-2.52167	.04175	-2.61468	-2.42865
	Equal variances not assumed			-60.404	7.190	.000	-2.52167	.04175	-2.61985	-2.42348

Independent Samples Test

3. ANOVA analysis of the MTT assay

ANOVA

MTT					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.162	3	.054	42.153	.000
Within Groups	.010	8	.001		
Total	.172	11			

Multiple Comparisons

MTT Tukey HSD

		Mean			95% Confide	ence Interval
(I) group	(J) group	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
2%FBS	FGF2	02198	.02924	.874	1156	.0717
	INSULIN	20113 [*]	.02924	.001	2948	1075
	FGF2+INSULIN	27347 [*]	.02924	.000	3671	1798
FGF2	2%FBS	.02198	.02924	.874	0717	.1156
	INSULIN	17915 [*]	.02924	.001	2728	0855
	FGF2+INSULIN	25150 [*]	.02924	.000	3451	1578
INSULIN	2%FBS	.20113*	.02924	.001	.1075	.2948
	FGF2	.17915*	.02924	.001	.0855	.2728
	FGF2+INSULIN	07234	.02924	.139	1660	.0213
FGF2	2%FBS	.27347*	.02924	.000	.1798	.3671
+INSULIN	FGF2	.25150 [*]	.02924	.000	.1578	.3451
	INSULIN	.07234	.02924	.139	0213	.1660

*. The mean difference is significant at the 0.05 level.

4. ANOVA analysis of the relative gene expression levels of RBMSCs induced with FGF2 and/or insulin.

		AN	IOVA			
		Sum of Squares	df	Mean Square	F	Sig.
runx2	Between Groups	21.722	3	7.241	41.167	.000
	Within Groups	1.407	8	.176		
	Total	23.129	11			
osx	Between Groups	4.348	3	1.449	9.303	.005
	Within Groups	1.246	8	.156		
	Total	5.594	11			

		AN	AVOI			
		Sum of Squares	df	Mean Square	F	Sig.
bmp7	Between Groups	8.422	3	2.807	51.610	.000
	Within Groups	.435	8	.054		
	Total	8.858	11			
axin2	Between Groups	8.354	3	2.785	26.271	.000
	Within Groups	.848	8	.106		
	Total	9.202	11			
eta-catenin	Between Groups	33.630	3	11.210	12.957	.002
<i>'</i>	Within Groups	6.921	8	.865		
	Total	40.551	11			
dkk1	Between Groups	334.761	3	111.587	6.266	.017
	Within Groups	142.473	8	17.809		
	Total	477.234	11			

Multiple Comparisons

Tukey HSD

Dependent			Mean	Std.		95% Confide	ence Interval
Variable	(I) group	(J) group	Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound
runx2	2%FBS	FGF2	.33637	.34243	.763	7602	1.4329
		INSULIN	25150	.34243	.881	-1.3481	.8451
		FGF2+INSULIN	-3.04128 [*]	.34243	.000	-4.1379	-1.9447
	FGF2	2%FBS	33637	.34243	.763	-1.4329	.7602
		INSULIN	58787	.34243	.376	-1.6844	.5087
		FGF2+INSULIN	-3.37765 [*]	.34243	.000	-4.4742	-2.2811
	INSULIN	2%FBS	.25150	.34243	.881	8451	1.3481
		FGF2	.58787	.34243	.376	5087	1.6844
		FGF2+INSULIN	-2.78978 [*]	.34243	.000	-3.8864	-1.6932
	FGF2	2%FBS	3.04128*	.34243	.000	1.9447	4.1379
	+INSULIN	FGF2	3.37765^{*}	.34243	.000	2.2811	4.4742
		INSULIN	2.78978^{*}	.34243	.000	1.6932	3.8864
OSX	2%FBS	FGF2	.55398	.32226	.375	4780	1.5860
		INSULIN	.01153	.32226	1.000	-1.0205	1.0435
		FGF2+INSULIN	-1.10186 [*]	.32226	.037	-2.1339	0699
	FGF2	2%FBS	55398	.32226	.375	-1.5860	.4780
		INSULIN	54244	.32226	.391	-1.5744	.4896
		FGF2+INSULIN	-1.65583 [*]	.32226	.004	-2.6878	6238
	INSULIN	2%FBS	01153	.32226	1.000	-1.0435	1.0205
		FGF2	.54244	.32226	.391	4896	1.5744
		FGF2+INSULIN	-1.11339 [*]	.32226	.035	-2.1454	0814
	FGF2	2%FBS	1.10186 [*]	.32226	.037	.0699	2.1339
	+INSULIN	FGF2	1.65583^{*}	.32226	.004	.6238	2.6878

Dependent			Mean	Std.		95% Confide	ence Interval
Variable	(I) group	(J) group	Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound
		INSULIN	1.11339*	.32226	.035	.0814	2.1454
bmp7	2%FBS	FGF2	.54642	.19043	.080	0634	1.1562
		INSULIN	86296*	.19043	.008	-1.4728	2531
		FGF2+INSULIN	-1.65366 [*]	.19043	.000	-2.2635	-1.0438
	FGF2	2%FBS	54642	.19043	.080	-1.1562	.0634
		INSULIN	-1.40937 [*]	.19043	.000	-2.0192	7995
		FGF2+INSULIN	-2.20008*	.19043	.000	-2.8099	-1.5902
	INSULIN	2%FBS	.86296*	.19043	.008	.2531	1.4728
		FGF2	1.40937*	.19043	.000	.7995	2.0192
		FGF2+INSULIN	79071 [*]	.19043	.014	-1.4005	1809
	FGF2	2%FBS	1.65366*	.19043	.000	1.0438	2.2635
	+INSULIN		2.20008*	.19043	.000	1.5902	2.8099
	-	INSULIN	.79071*	.19043	.014	.1809	1.4005
axin2	2%FBS	FGF2	.56784	.26583	.221	2835	1.4191
		INSULIN	30720	.26583	.668	-1.1585	.5441
		FGF2+INSULIN	-1.69849*	.26583	.001	-2.5498	8472
	FGF2	2%FBS	56784	.26583	.221	-1.4191	.2835
		INSULIN	87504*	.26583	.044	-1.7263	0237
		FGF2+INSULIN	-2.26633*	.26583	.000	-3.1176	-1.4150
	INSULIN	2%FBS	.30720	.26583	.668	5441	1.1585
		FGF2	.87504 [*]	.26583	.044	.0237	1.7263
.		FGF2+INSULIN	-1.39129*	.26583	.003	-2.2426	5400
	FGF2	2%FBS	1.69849	.26583	.001	.8472	2.5498
	+INSULIN	FGF2	2.26633*	.26583	.000	1.4150	3.1176
		INSULIN	1.39129*	.26583	.003	.5400	2.2426
eta-catenin	2%FBS	FGF2	.36571	.75945	.961	-2.0663	2.7977
		INSULIN	70759	.75945	.789	-3.1396	1.7244
.		FGF2+INSULIN	-3.87598*	.75945	.004	-6.3080	-1.4440
	FGF2	2%FBS	36571	.75945	.961	-2.7977	2.0663
		INSULIN	-1.07330	.75945	.526	-3.5053	1.3587
		FGF2+INSULIN	-4.24169*	.75945	.002	-6.6737	-1.8097
	INSULIN	2%FBS	.70759	.75945	.789	-1.7244	3.1396
		FGF2	1.07330	.75945	.526	-1.3587	3.5053
		FGF2+INSULIN	-3.16839 [*]	.75945	.013	-5.6004	7364
	FGF2	2%FBS	3.87598 [*]	.75945	.004	1.4440	6.3080
	+INSULIN		4.24169 [*]	.75945	.002	1.8097	6.6737
-11-1-4	00/ 550	INSULIN	3.16839*	.75945	.013	.7364	5.6004
dkk1	2%FBS	FGF2	1.02403	3.44569	.990	-10.0103	12.0583
		INSULIN	.10328	3.44569	1.000	-10.9310	11.1376
		FGF2+INSULIN	- 11.78709 [*]	3.44569	.037	-22.8214	7528
•	FGF2	2%FBS	-1.02403	3.44569	.990	-12.0583	10.0103
		INSULIN	92075	3.44569	.993	-11.9551	10.1135

Dependent			Mean	Std.		95% Confide	ence Interval
Variable	(I) group	(J) group	Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound
		FGF2+INSULIN	-	3.44569	.024	-23.8454	-1.7768
			12.81112 [*]				
	INSULIN	2%FBS	10328	3.44569	1.000	-11.1376	10.9310
		FGF2	.92075	3.44569	.993	-10.1135	11.9551
		FGF2+INSULIN	-	3.44569	.035	-22.9247	8561
			11.89037*				
	FGF2	2%FBS	11.78709 [*]	3.44569	.037	.7528	22.8214
	+INSULIN	FGF2	12.81112 [*]	3.44569	.024	1.7768	23.8454
		INSULIN	11.89037*	3.44569	.035	.8561	22.9247

5. ANOVA analysis of the relative gene expression levels of RBMSCs induced with 10 ng/ml BMP2, 10 ng/ml BMP7, or a combination of BMPs.

		Sum of Squares	df	Mean Square	F	Sig.
runx2	Between Groups	9.470	3	3.157	420.904	.000
	Within Groups	.060	8	.007		
	Total	9.530	11			
OSX	Between Groups	1.484	3	.495	318.024	.000
	Within Groups	.012	8	.002		
	Total	1.497	11			
bmp7	Between Groups	1.900	3	.633	89.657	.000
	Within Groups	.057	8	.007		
	Total	1.957	11			
axin2	Between Groups	1.899	3	.633	24.555	.000
	Within Groups	.206	8	.026		
	Total	2.105	11			
eta-catenin	Between Groups	4.995	3	1.665	256.215	.000
,	Within Groups	.052	8	.006		
	Total	5.047	11			
dkk1	Between Groups	1.648	3	.549	38.929	.000
	Within Groups	.113	8	.014		
	Total	1.761	11			

ANOVA

Multiple Comparisons

Dependent	(I)	(J)	Mean	Std.	Sia	95% Confide	ence Interval
Variable	GROUP	GROUP	Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound
runx2	A1	A2	.18878	.07071	.106	0377	.415
		A3	-1.94037*	.07071	.000	-2.1668	-1.713
		A4	-1.29442 [*]	.07071	.000	-1.5209	-1.068
	A2	A1	18878	.07071	.106	4152	.037
		A3	-2.12914 [*]	.07071	.000	-2.3556	-1.902
		A4	-1.48320 [*]	.07071	.000	-1.7096	-1.256
	A3	A1	1.94037*	.07071	.000	1.7139	2.166
		A2	2.12914 [*]	.07071	.000	1.9027	2.355
		A4	.64594*	.07071	.000	.4195	.872
	A4	A1	1.29442*	.07071	.000	1.0680	1.520
		A2	1.48320 [*]	.07071	.000	1.2568	1.709
		A3	64594*	.07071	.000	8724	419
osx	A1	A2	.19629*	.03220	.001	.0932	.299
		A3	70298*	.03220	.000	8061	599
		A4	42089*	.03220	.000	5240	317
	A2	A1	19629*	.03220	.001	2994	093
		A3	89927*	.03220	.000	-1.0024	796
		A4	61717*	.03220	.000	7203	514
	A3	A1	.70298*	.03220	.000	.5999	.806
		A2	.89927*	.03220	.000	.7961	1.002
		A4	.28210*	.03220	.000	.1790	.385
	A4	A1	.42089*	.03220	.000	.3178	.524
		A2	.61717*	.03220	.000	.5140	.720
		A3	28210 [*]	.03220	.000	3852	179
bmp7	A1	A2	1.06285*	.06863	.000	.8431	1.282
		A3	.38795*	.06863	.002	.1682	.607
		A4	.75427*	.06863	.000	.5345	.974
	A2	A1	-1.06285*	.06863	.000	-1.2826	843
		A3	67489*	.06863	.000	8947	458
		A4	30857*	.06863	.009	5284	088
	A3	A1	38795 [*]	.06863	.002	6077	168
		A2	.67489*	.06863	.000	.4551	.894
		A4	.36632*	.06863	.003	.1465	.586
	A4	A1	75427 [*]	.06863	.000	9741	534
		A2	.30857 [*] 36632 [*]	.06863	.009	.0888	.528
avin?	۸1	A3		.06863	.003	5861	146
axin2	A1	A2 A3	.29466 78562 [*]	.13110 .13110	.190 .001	1252 -1.2054	.714 365
		A3 A4	78502	.13110	.001	6951	.144
	A2	A4 A1	27324	.13110	.232	7145	.144
	/ \2	A3	-1.08029*	.13110	.000	-1.5001	660

Dependent	(I)	(J)	Mean	Std.	Sia	95% Confide	ence Interval
Variable	GROUP	GROUP	Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound
		A4	56990*	.13110	.011	9897	1501
	A3	A1	.78562*	.13110	.001	.3658	1.2054
		A2	1.08029*	.13110	.000	.6605	1.5001
		A4	.51039*	.13110	.019	.0906	.9302
	A4	A1	.27524	.13110	.232	1446	.6951
		A2	.56990 [*]	.13110	.011	.1501	.9897
		A3	51039 [*]	.13110	.019	9302	0906
eta-catenin	A1	A2	.49128 [*]	.06582	.000	.2805	.7021
		A3	-1.27307*	.06582	.000	-1.4839	-1.0623
		A4	16538	.06582	.132	3762	.0454
	A2	A1	49128 [*]	.06582	.000	7021	2805
		A3	-1.76435 [*]	.06582	.000	-1.9751	-1.5536
		A4	65666*	.06582	.000	8674	4459
	A3	A1	1.27307*	.06582	.000	1.0623	1.4839
		A2	1.76435 [*]	.06582	.000	1.5536	1.9751
		A4	1.10769 [*]	.06582	.000	.8969	1.3185
	A4	A1	.16538	.06582	.132	0454	.3762
		A2	.65666*	.06582	.000	.4459	.8674
		A3	-1.10769*	.06582	.000	-1.3185	8969
dkk	A1	A2	.77743*	.09698	.000	.4669	1.0880
		A3	.97461*	.09698	.000	.6640	1.2852
		A4	.73966*	.09698	.000	.4291	1.0502
	A2	A1	77743 [*]	.09698	.000	-1.0880	4669
		A3	.19718	.09698	.253	1134	.5077
		A4	03776	.09698	.979	3483	.2728
	A3	A1	97461 [*]	.09698	.000	-1.2852	6640
		A2	19718	.09698	.253	5077	.1134
		A4	23494	.09698	.150	5455	.0756
	A4	A1	73966*	.09698	.000	-1.0502	4291
		A2	.03776	.09698	.979	2728	.3483
		A3	.23494	.09698	.150	0756	.5455

6. ANOVA analysis of the relative gene expression levels after RBMSCs were sequentially treated with proliferation and differentiation factors.

6.1 *runx2*

ANOVA

runx2										
	Sum of Squares	df	Mean Square	F	Sig.					
Between Groups	5.690	15	.379	54.754	.000					
Within Groups	.222	32	.007							
Total	5.912	47								

Multiple Comparisons

runx2 Tukey HSD

(I) GROUP	(J)	Mean	Std. Error	Sig.	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Stu. Entr	Siy.	Lower Bound	Upper Bound
A1	A2	1.06285*	.06796	.000	.8108	1.3149
	A3	.38795*	.06796	.000	.1359	.6400
	A4	.75427*	.06796	.000	.5023	1.0063
	B1	1.00519^{*}	.06796	.000	.7532	1.2572
	B2	.54785 [*]	.06796	.000	.2958	.7999
	B3	.72457*	.06796	.000	.4726	.9766
	B4	.09376	.06796	.988	1582	.3458
	C1	.15139	.06796	.673	1006	.4034
	C2	.67120 [*]	.06796	.000	.4192	.9232
	C3	.04843	.06796	1.000	2036	.3004
	C4	01467	.06796	1.000	2667	.2373
	D1	.09418	.06796	.987	1578	.3462
	D2	.38434*	.06796	.000	.1323	.6363
	D3	.60434*	.06796	.000	.3523	.8563
	D4	.62955 [*]	.06796	.000	.3775	.8816
A2	A1	-1.06285*	.06796	.000	-1.3149	8108
	A3	67489 [*]	.06796	.000	9269	4229
	A4	30857*	.06796	.006	5606	0566
	B1	05765	.06796	1.000	3097	.1944
	B2	51499*	.06796	.000	7670	2630
	B3	33828*	.06796	.002	5903	0863
	B4	96908*	.06796	.000	-1.2211	7171
	C1	91145*	.06796	.000	-1.1635	6594
	C2	39165 [*]	.06796	.000	6437	1396
	C3	-1.01442 [*]	.06796	.000	-1.2664	7624
	C4	-1.07752 [*]	.06796	.000	-1.3295	8255

203

	(J)	Mean		0 in	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	D1	96867 [*]	.06796	.000	-1.2207	7167
	D2	67851 [*]	.06796	.000	9305	4265
	D3	45851*	.06796	.000	7105	2065
	D4	43330 [*]	.06796	.000	6853	1813
A3	A1	38795 [*]	.06796	.000	6400	1359
	A2	.67489 [*]	.06796	.000	.4229	.9269
	A4	.36632 [*] .61724 [*]	.06796	.001 .000	.1143	.6183
	B1 B2	.01724	.06796 .06796	.000	.3652 0921	.8692 .4119
	B2 B3	.33662*	.06796	.002	.0921	.5886
	B3 B4	29419 [*]	.06796	.002	5462	0422
	C1	23656	.06796	.084	4886	.0154
	C2	.28324 [*]	.06796	.016	.0312	.5352
	C3	33952*	.06796	.002	5915	0875
	C4	40263 [*]	.06796	.000	6546	1506
	D1	29378 [*]	.06796	.011	5458	0418
	D2	00361	.06796	1.000	2556	.2484
	D3	.21639	.06796	.157	0356	.4684
	D4	.24159	.06796	.071	0104	.4936
A4	A1	75427*	.06796	.000	-1.0063	5023
	A2	.30857*	.06796	.006	.0566	.5606
	A3	36632*	.06796	.001	6183	1143
	B1	.25092	.06796	.052	0011	.5029
	B2 B3	20642 02970	.06796 .06796	.209 1.000	4584 2817	.0456 .2223
	вз В4	66051 [*]	.06796	.000	2017 9125	4085
	C1	60288 [*]	.06796	.000	8549	3509
	C2	08308	.06796	.996	3351	.1689
	C3	70584 [*]	.06796	.000	9578	4538
	C4	76895 [*]	.06796	.000	-1.0210	5169
	D1	66010 [*]	.06796	.000	9121	4081
	D2	36993 [*]	.06796	.001	6219	1179
	D3	14993	.06796	.687	4019	.1021
	D4	12473	.06796	.885	3767	.1273
B1	A1	-1.00519 [*]	.06796	.000	-1.2572	7532
	A2	.05765	.06796	1.000	1944	.3097
	A3	61724*	.06796	.000	8692	3652
	A4	25092	.06796	.052	5029	.0011
	B2	45734 [*]	.06796	.000	7093	2053
	B3 B4	28062 [*] 91143 [*]	.06796 .06796	.018	5326 -1.1634	0286
	в4 С1	91143 85380 [*]	.06796	.000 .000	-1.1634	6594 6018
	C1 C2	85380 33400 [*]	.06796	.000	-1.1058 5860	0820
	C2 C3	33400 95676 [*]	.06796	.002	-1.2088	7048
	C3 C4	-1.01987 [*]	.06796	.000	-1.2719	7679
	U 7	-1.01307	.00790	.000	-1.2/19	1019

	(J)	Mean		Qia	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	D1	91102 [*]	.06796	.000	-1.1630	6590
	D2	62085*	.06796	.000	8729	3688
	D3	40085*	.06796	.000	6529	1488
	D4	37565*	.06796	.000	6277	1236
B2	A1	54785 [*]	.06796	.000	7999	2958
	A2	.51499*	.06796	.000	.2630	.7670
	A3 A4	15990 .20642	.06796 .06796	.592 .209	4119	.0921 .4584
	A4 B1	.45734*	.06796	.209	0456 .2053	.7093
	B3	.17672	.06796	.432	0753	.4287
	B3 B4	45409*	.06796	.000	7061	2021
	C1	39646*	.06796	.000	6485	1445
	C2	.12334	.06796	.893	1287	.3753
	C3	49942 [*]	.06796	.000	7514	2474
	C4	56253 [*]	.06796	.000	8145	3105
	D1	45368 [*]	.06796	.000	7057	2017
	D2	16351	.06796	.557	4155	.0885
	D3	.05649	.06796	1.000	1955	.3085
	D4	.08169	.06796	.997	1703	.3337
B3	A1	72457*	.06796	.000	9766	4726
	A2	.33828*	.06796	.002	.0863	.5903
	A3	33662*	.06796	.002	5886	0846
	A4	.02970	.06796	1.000	2223	.2817
	B1 B2	.28062 [*] 17672	.06796 .06796	.018 .432	.0286 4287	.5326 .0753
	B2 B4	17072 63081 [*]	.06796	.432	4207 8828	3788
	C1	57318 [*]	.06796	.000	8252	3212
	C2	05337	.06796	1.000	3054	.1986
	C3	67614 [*]	.06796	.000	9281	4241
	C4	73924 [*]	.06796	.000	9912	4872
	D1	63039 [*]	.06796	.000	8824	3784
	D2	34023 [*]	.06796	.002	5922	0882
	D3	12023	.06796	.910	3722	.1318
	D4	09502	.06796	.986	3470	.1570
B4	A1	09376	.06796	.988	3458	.1582
	A2	.96908*	.06796	.000	.7171	1.2211
	A3	.29419*	.06796	.011	.0422	.5462
	A4	.66051*	.06796	.000	.4085	.9125
	B1	.91143 [*]	.06796	.000	.6594	1.1634
	B2	.45409 [*]	.06796	.000	.2021	.7061
	B3	.63081 [*]	.06796	.000	.3788	.8828
	C1 C2	.05763 .57743 [*]	.06796 .06796	1.000	1944	.3096
	C2 C3	.04533	.06796	.000 1.000	.3254 2973	.8294 .2067
	C3 C4	04535 10843	.06796	.958	2973	.1436
	04	10643	.00190	.908	3004	. 1430

	(J)	Mean		Qia	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	D1	.00041	.06796	1.000	2516	.2524
	D2	.29058*	.06796	.012	.0386	.5426
	D3	.51058 [*]	.06796	.000	.2586	.7626
	D4	.53579*	.06796	.000	.2838	.7878
C1	A1	15139	.06796	.673	4034	.1006
	A2	.91145*	.06796	.000	.6594	1.1635
	A3 A4	.23656 .60288 [*]	.06796 .06796	.084 .000	0154 .3509	.4886 .8549
	A4 B1	.85380*	.06796	.000	.6018	1.1058
	B2	.39646*	.06796	.000	.1445	.6485
	B3	.57318*	.06796	.000	.3212	.8252
	B4	05763	.06796	1.000	3096	.1944
	C2	.51980*	.06796	.000	.2678	.7718
	C3	10296	.06796	.972	3550	.1490
	C4	16607	.06796	.532	4181	.0859
	D1	05722	.06796	1.000	3092	.1948
	D2	.23295	.06796	.095	0191	.4850
	D3	.45295*	.06796	.000	.2009	.7050
	D4	.47815*	.06796	.000	.2261	.7302
C2	A1	67120 [*]	.06796	.000	9232	4192
	A2	.39165*	.06796	.000	.1396	.6437
	A3	28324*	.06796	.016	5352	0312
	A4 B1	.08308 .33400 [*]	.06796 .06796	.996 .002	1689 .0820	.3351 .5860
	B1 B2	12334	.06796	.002	3753	.1287
	B3	.05337	.06796	1.000	1986	.3054
	B0 B4	57743 [*]	.06796	.000	8294	3254
	C1	51980*	.06796	.000	7718	2678
	C3	62277 [*]	.06796	.000	8748	3708
	C4	68587 [*]	.06796	.000	9379	4339
	D1	57702 [*]	.06796	.000	8290	3250
	D2	28686 [*]	.06796	.014	5389	0349
	D3	06686	.06796	1.000	3189	.1851
	D4	04165	.06796	1.000	2937	.2104
C3	A1	04843	.06796	1.000	3004	.2036
	A2	1.01442*	.06796	.000	.7624	1.2664
	A3	.33952*	.06796	.002	.0875	.5915
	A4	.70584*	.06796	.000	.4538	.9578
	B1	.95676 [*] .49942 [*]	.06796	.000	.7048	1.2088
	B2 B3	.49942 .67614 [*]	.06796 .06796	.000 .000	.2474 .4241	.7514 .9281
	вз B4	.04533	.06796	.000 1.000	.4241 2067	.9281
	Б4 С1	.04535	.06796	.972	2067 1490	.2973
	C1 C2	.62277*	.06796	.000	.3708	.8748
	C2 C4	06310	.06796	1.000	3151	.1889
	04	00310	.00190	1.000	5151	.1009

(I) GROUP	(J)	Mean	Otd Ermon	0 i a	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	D1	.04575	.06796	1.000	2063	.2978
	D2	.33591*	.06796	.002	.0839	.5879
	D3	.55591*	.06796	.000	.3039	.8079
0.1	D4	.58112*	.06796	.000	.3291	.8331
C4	A1	.01467	.06796	1.000	2373	.2667
	A2 A3	1.07752 [*] .40263 [*]	.06796 .06796	.000 .000	.8255 .1506	1.3295 .6546
	A3 A4	.76895*	.06796	.000	.5169	1.0210
	B1	1.01987*	.06796	.000	.7679	1.2719
	B1 B2	.56253*	.06796	.000	.3105	.8145
	B3	.73924 [*]	.06796	.000	.4872	.9912
	B4	.10843	.06796	.958	1436	.3604
	C1	.16607	.06796	.532	0859	.4181
	C2	.68587*	.06796	.000	.4339	.9379
	C3	.06310	.06796	1.000	1889	.3151
	D1	.10885	.06796	.956	1432	.3609
	D2	.39901*	.06796	.000	.1470	.6510
	D3	.61901*	.06796	.000	.3670	.8710
	D4	.64422*	.06796	.000	.3922	.8962
D1	A1	09418	.06796	.987	3462	.1578
	A2 A3	.96867 [*] .29378 [*]	.06796	.000	.7167	1.2207
	A3 A4	.29378 .66010 [*]	.06796 .06796	.011 .000	.0418 .4081	.5458 .9121
	B1	.91102 [*]	.06796	.000	.6590	1.1630
	B2	.45368*	.06796	.000	.2017	.7057
	B3	.63039*	.06796	.000	.3784	.8824
	B4	00041	.06796	1.000	2524	.2516
	C1	.05722	.06796	1.000	1948	.3092
	C2	.57702 [*]	.06796	.000	.3250	.8290
	C3	04575	.06796	1.000	2978	.2063
	C4	10885	.06796	.956	3609	.1432
	D2	.29016*	.06796	.012	.0382	.5422
	D3	.51016*	.06796	.000	.2582	.7622
	D4	.53537*	.06796	.000	.2834	.7874
D2	A1	38434*	.06796	.000	6363	1323
	A2	.67851 [*]	.06796	.000	.4265	.9305
	A3 A4	.00361 .36993 [*]	.06796	1.000 .001	2484	.2556
	A4 B1	.62085 [*]	.06796 .06796	.001	.1179 .3688	.6219 .8729
	B1 B2	.16351	.06796	.557	0885	.4155
	B3	.34023*	.06796	.002	.0882	.5922
	B4	29058*	.06796	.012	5426	0386
	C1	23295	.06796	.095	4850	.0191
	C2	.28686*	.06796	.014	.0349	.5389
	C3	33591 [*]	.06796	.002	5879	0839

(I) GROUP	(J)	Mean	Std. Error	Sig.	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Slu. Enoi	Sig.	Lower Bound	Upper Bound
	C4	39901*	.06796	.000	6510	1470
	D1	29016*	.06796	.012	5422	0382
	D3	.22000	.06796	.141	0320	.4720
	D4	.24521	.06796	.063	0068	.4972
D3	A1	60434*	.06796	.000	8563	3523
	A2	.45851*	.06796	.000	.2065	.7105
	A3	21639	.06796	.157	4684	.0356
	A4	.14993	.06796	.687	1021	.4019
	B1	.40085*	.06796	.000	.1488	.6529
	B2	05649	.06796	1.000	3085	.1955
	B3	.12023	.06796	.910	1318	.3722
	B4	51058 [*]	.06796	.000	7626	2586
	C1	45295*	.06796	.000	7050	2009
	C2	.06686	.06796	1.000	1851	.3189
	C3	55591*	.06796	.000	8079	3039
	C4	61901 [*]	.06796	.000	8710	3670
	D1	51016 [*]	.06796	.000	7622	2582
	D2	22000	.06796	.141	4720	.0320
	D4	.02521	.06796	1.000	2268	.2772
D4	A1	62955*	.06796	.000	8816	3775
	A2	.43330*	.06796	.000	.1813	.6853
	A3	24159	.06796	.071	4936	.0104
	A4	.12473	.06796	.885	1273	.3767
	B1	.37565 [*]	.06796	.000	.1236	.6277
	B2	08169	.06796	.997	3337	.1703
	B3	.09502	.06796	.986	1570	.3470
	B4	53579 [*]	.06796	.000	7878	2838
	C1	47815 [*]	.06796	.000	7302	2261
	C2	.04165	.06796	1.000	2104	.2937
	C3	58112*	.06796	.000	8331	3291
	C4	64422*	.06796	.000	8962	3922
	D1	53537*	.06796	.000	7874	2834
	D2	24521	.06796	.063	4972	.0068
	D3	02521	.06796	1.000	2772	.2268

ANOVA

OSX					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	5.126	15	.342	123.004	.000
Within Groups	.089	32	.003		
Total	5.215	47			

Multiple Comparisons

osx Tukey HSD

(I) GROUP (J)	Mean	Std. Error Sig.	95% Confidence Interval		
(I) GROUP GROUP	Difference (I-J)	Slu. Enor	Siy.	Lower Bound	Upper Bound
A1 A2	.19629*	.04304	.006	.0367	.3559
A3	70298 [*]	.04304	.000	8626	5434
A4	42089*	.04304	.000	5805	2613
B1	.43948 [*]	.04304	.000	.2799	.5991
B2	.32400*	.04304	.000	.1644	.4836
B3	.25117*	.04304	.000	.0916	.4108
B4	30582 [*]	.04304	.000	4654	1462
C1	41645 [*]	.04304	.000	5760	2569
C2	.06725	.04304	.964	0923	.2268
C3	37316 [*]	.04304	.000	5327	2136
C4	11839	.04304	.344	2780	.0412
D1	.26502*	.04304	.000	.1054	.4246
D2	.03013	.04304	1.000	1295	.1897
D3	06578	.04304	.970	2254	.0938
D4	49740 [*]	.04304	.000	6570	3378
A2 A1	19629 [*]	.04304	.006	3559	0367
A3	89927*	.04304	.000	-1.0588	7397
A4	61717 [*]	.04304	.000	7768	4576
B1	.24319 [*]	.04304	.000	.0836	.4028
B2	.12771	.04304	.238	0319	.2873
B3	.05489	.04304	.994	1047	.2145
B4	50211*	.04304	.000	6617	3425
C1	61273 [*]	.04304	.000	7723	4532
C2	12904	.04304	.225	2886	.0305
C3	56945 [*]	.04304	.000	7290	4099
C4 D1	31468 [*]	.04304	.000	4743	1551
D1 D2	.06874 16616 [*]	.04304 .04304	.957 .035	0908 3257	.2283 0066
D2 D3	16616 26207 [*]	.04304	.000	4216	1025
D3 D4	69369 [*]	.04304	.000	4210	1025

(I) GROUP	(J)	Mean	Std. Error	Sig	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Slu. Enor	Sig.	Lower Bound	Upper Bound
A3	A1	.70298	.04304	.000	.5434	.8626
	A2	.89927*	.04304	.000	.7397	1.0588
	A4	.28210 [*]	.04304	.000	.1225	.4417
	B1	1.14246*	.04304	.000	.9829	1.3020
	B2	1.02698*	.04304	.000	.8674	1.1866
	B3	.95416 [*]	.04304	.000	.7946	1.1137
	B4	.39716*	.04304	.000	.2376	.5567
	C1 C2	.28654 [*] .77023 [*]	.04304 .04304	.000 .000	.1270 .6107	.4461 .9298
	C2 C3	.32982*	.04304	.000	.0107	.9298
	C3 C4	.58459*	.04304	.000	.4250	.7442
	D1	.96801*	.04304	.000	.8084	1.1276
	D2	.73311*	.04304	.000	.5735	.8927
	D3	.63720*	.04304	.000	.4776	.7968
	D4	.20558*	.04304	.003	.0460	.3652
A4	A1	.42089*	.04304	.000	.2613	.5805
	A2	.61717*	.04304	.000	.4576	.7768
	A3	28210 [*]	.04304	.000	4417	1225
	B1	.86036*	.04304	.000	.7008	1.0199
	B2	.74489 [*]	.04304	.000	.5853	.9045
	B3	.67206 [*]	.04304	.000	.5125	.8316
	B4	.11506	.04304	.388	0445	.2746
	C1	.00444	.04304	1.000	1551	.1640
	C2	.48814*	.04304	.000	.3286	.6477
	C3	.04773	.04304	.999	1118	.2073
	C4	.30249 [*] .68591 [*]	.04304	.000	.1429	.4621
	D1 D2	.45102 [*]	.04304 .04304	.000 .000	.5263 .2914	.8455 .6106
	D2 D3	.35511*	.04304	.000	.1955	.5147
	D3 D4	07651	.04304	.907	2361	.0831
B1	A1	43948*	.04304	.000	5991	2799
	A2	24319 [*]	.04304	.000	4028	0836
	A3	-1 .14246 [*]	.04304	.000	-1.3020	9829
	A4	86036*	.04304	.000	-1.0199	7008
	B2	11548	.04304	.382	2751	.0441
	B3	18830 [*]	.04304	.009	3479	0287
	B4	74530 [*]	.04304	.000	9049	5857
	C1	85592 [*]	.04304	.000	-1.0155	6963
	C2	37223*	.04304	.000	5318	2127
	C3	81264 [*]	.04304	.000	9722	6531
	C4	55787*	.04304	.000	7174	3983
	D1	17445*	.04304	.022	3340	0149
	D2	40935 [*]	.04304	.000	5689	2498
	D3	50526 [*]	.04304	.000	6648	3457
	D4	93688*	.04304	.000	-1.0965	7773

	(J)	Mean		0 i m	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	A1	32400*	.04304	.000	4836	1644
	A2	12771	.04304	.238	2873	.0319
	A3	-1.02698*	.04304	.000	-1.1866	8674
	A4	74489*	.04304	.000	9045	5853
	B1	.11548	.04304	.382	0441	.2751
	B3	07282	.04304	.934	2324	.0868
	B4	62982 [*]	.04304	.000	7894	4702
	C1	74045*	.04304	.000	9000	5809
	C2	25675*	.04304	.000	4163	0972
	C3	69716 [*]	.04304	.000	8567	5376
	C4	44239 [*]	.04304	.000	6020	2828
	D1	05897	.04304	.988	2186	.1006
	D2	29387*	.04304	.000	4534	1343
	D3	38978 [*]	.04304	.000	5494	2302
	D4	82140 [*]	.04304	.000	9810	6618
	A1	25117*	.04304	.000	4108	0916
	A2	05489	.04304	.994	2145	.1047
	A3	95416 [*]	.04304	.000	-1.1137	7946
	A4 B1	67206 [*] .18830 [*]	.04304 .04304	.000 .009	8316 .0287	5125 .3479
	B2	.07282	.04304	.934	0868	.2324
	Б2 В4	.07282 55700 [*]	.04304	.934	7166	3974
	Б4 С1	66762 [*]	.04304	.000	8272	5080
	C1 C2	18393 [*]	.04304	.000	3435	0243
	C3	62433 [*]	.04304	.000	7839	4648
	C4	36957*	.04304	.000	5291	2100
	D1	.01385	.04304	1.000	1457	.1734
	D2	22105	.04304	.001	3806	0615
	D3	31696*	.04304	.000	4765	1574
	D4	74857*	.04304	.000	9082	5890
	A1	.30582*	.04304	.000	.1462	.4654
	A2	.50211*	.04304	.000	.3425	.6617
	A3	39716 [*]	.04304	.000	5567	2376
	A4	11506	.04304	.388	2746	.0445
	B1	.74530*	.04304	.000	.5857	.9049
	B2	.62982 [*]	.04304	.000	.4702	.7894
	B3	.55700 [*]	.04304	.000	.3974	.7166
	C1	11062	.04304	.450	2702	.0490
	C2	.37307*	.04304	.000	.2135	.5327
	C3	06733	.04304	.964	2269	.0922
	C4	.18743*	.04304	.010	.0279	.3470
	D1	.57085 [*]	.04304	.000	.4113	.7304
	D2	.33595*	.04304	.000	.1764	.4955
	D3	.24004*	.04304	.000	.0805	.3996
	D4	19158 [*]	.04304	.008	3512	0320

	(J)	Mean	Otd. Ermon	Cirr	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
C1	A1	.41645	.04304	.000	.2569	.5760
	A2	.61273*	.04304	.000	.4532	.7723
	A3	28654 [*]	.04304	.000	4461	1270
	A4	00444	.04304	1.000	1640	.1551
	B1	.85592*	.04304	.000	.6963	1.0155
	B2	.74045*	.04304	.000	.5809	.9000
	B3	.66762*	.04304	.000	.5080	.8272
	B4 C2	.11062 .48370 [*]	.04304 .04304	.450 .000	0490	.2702
	C2 C3	.04329	.04304	1.000	.3241 1163	.6433 .2029
	C3 C4	.29805*	.04304	.000	.1385	.2029
	D1	.68147*	.04304	.000	.5219	.8410
	D2	.44658*	.04304	.000	.2870	.6062
	D3	.35067*	.04304	.000	.1911	.5102
	D4	08095	.04304	.866	2405	.0786
C2	A1	06725	.04304	.964	2268	.0923
	A2	.12904	.04304	.225	0305	.2886
	A3	77023 [*]	.04304	.000	9298	6107
	A4	48814 [*]	.04304	.000	6477	3286
	B1	.37223*	.04304	.000	.2127	.5318
	B2	.25675*	.04304	.000	.0972	.4163
	B3	.18393*	.04304	.012	.0243	.3435
	B4	37307*	.04304	.000	5327	2135
	C1	48370*	.04304	.000	6433	3241
	C3	44041*	.04304	.000	6000	2808
	C4	18564*	.04304	.011	3452	0261
	D1	.19778*	.04304	.005	.0382	.3574
	D2	03712	.04304	1.000	1967	.1225
	D3 D4	13303	.04304 .04304	.189 .000	2926	.0265
C3	D4 A1	56465 [*] .37316 [*]	.04304	.000	7242 .2136	4051 .5327
00	A2	.56945*	.04304	.000	.4099	.7290
	A3	32982*	.04304	.000	4894	1702
	A4	04773	.04304	.999	2073	.1118
	B1	.81264 [*]	.04304	.000	.6531	.9722
	B2	.69716 [*]	.04304	.000	.5376	.8567
	B3	.62433*	.04304	.000	.4648	.7839
	B4	.06733	.04304	.964	0922	.2269
	C1	04329	.04304	1.000	2029	.1163
	C2	.44041*	.04304	.000	.2808	.6000
	C4	.25477*	.04304	.000	.0952	.4143
	D1	.63818 [*]	.04304	.000	.4786	.7978
	D2	.40329*	.04304	.000	.2437	.5629
	D3	.30738*	.04304	.000	.1478	.4670
	D4	12424	.04304	.275	2838	.0353

	(J)	Mean	Otd. Ermon	Cia	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	A1	.11839	.04304	.344	0412	.2780
	A2	.31468*	.04304	.000	.1551	.4743
	A3	58459*	.04304	.000	7442	4250
	A4	30249*	.04304	.000	4621	1429
	B1	.55787*	.04304	.000	.3983	.7174
	B2	.44239*	.04304	.000	.2828	.6020
	B3	.36957*	.04304	.000	.2100	.5291
	B4 C1	18743 [*] 29805 [*]	.04304 .04304	.010 .000	3470 4576	0279 1385
	C1 C2	29805 .18564 [*]	.04304	.000	4576 .0261	.3452
	C2 C3	25477 [*]	.04304	.000	4143	0952
	D1	.38342*	.04304	.000	.2238	.5430
	D2	.14852	.04304	.090	0111	.3081
	D3	.05261	.04304	.996	1070	.2122
	D4	37901*	.04304	.000	5386	2194
D1	A1	26502 [*]	.04304	.000	4246	1054
	A2	06874	.04304	.957	2283	.0908
	A3	96801 [*]	.04304	.000	-1.1276	8084
	A4	68591 [*]	.04304	.000	8455	5263
	B1	.17445*	.04304	.022	.0149	.3340
	B2	.05897	.04304	.988	1006	.2186
	B3	01385	.04304	1.000	1734	.1457
	B4	57085*	.04304	.000	7304	4113
	C1	68147*	.04304	.000	8410	5219
	C2	19778 [*]	.04304	.005	3574	0382
	C3	63818 [*]	.04304	.000	7978	4786
	C4	38342 [*]	.04304	.000	5430	2238
	D2	23490 [*]	.04304	.000	3945	0753
	D3 D4	33080 [*] 76242 [*]	.04304 .04304	.000 .000	4904 9220	1712 6028
	D4 A1	03013	.04304	1.000	1897	.1295
	A2	.16616*	.04304	.035	.0066	.3257
	A3	73311*	.04304	.000	8927	5735
	A4	45102*	.04304	.000	6106	2914
	B1	.40935*	.04304	.000	.2498	.5689
	B2	.29387*	.04304	.000	.1343	.4534
	B3	.22105*	.04304	.001	.0615	.3806
	B4	33595 [*]	.04304	.000	4955	1764
	C1	44658 [*]	.04304	.000	6062	2870
	C2	.03712	.04304	1.000	1225	.1967
	C3	40329 [*]	.04304	.000	5629	2437
	C4	14852	.04304	.090	3081	.0111
	D1	.23490*	.04304	.000	.0753	.3945
	D3	09591	.04304	.673	2555	.0637
	D4	52753 [*]	.04304	.000	6871	3679

	(J)	Mean		0	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
D3	A1	.06578	.04304	.970	0938	.2254
	A2	.26207*	.04304	.000	.1025	.4216
	A3	63720 [*]	.04304	.000	7968	4776
	A4	35511 [*]	.04304	.000	5147	1955
	B1	.50526*	.04304	.000	.3457	.6648
	B2	.38978*	.04304	.000	.2302	.5494
	B3	.31696*	.04304	.000	.1574	.4765
	B4	24004 [*]	.04304	.000	3996	0805
	C1	35067*	.04304	.000	5102	1911
	C2	.13303	.04304	.189	0265	.2926
	C3	30738 [*]	.04304	.000	4670	1478
	C4	05261	.04304	.996	2122	.1070
	D1	.33080*	.04304	.000	.1712	.4904
	D2	.09591	.04304	.673	0637	.2555
	D4	43162 [*]	.04304	.000	5912	2720
D4	A1	.49740 [*]	.04304	.000	.3378	.6570
	A2	.69369*	.04304	.000	.5341	.8533
	A3	20558 [*]	.04304	.003	3652	0460
	A4	.07651	.04304	.907	0831	.2361
	B1	.93688*	.04304	.000	.7773	1.0965
	B2	.82140 [*]	.04304	.000	.6618	.9810
	B3	.74857*	.04304	.000	.5890	.9082
	B4	.19158 [*]	.04304	.008	.0320	.3512
	C1	.08095	.04304	.866	0786	.2405
	C2	.56465*	.04304	.000	.4051	.7242
	C3	.12424	.04304	.275	0353	.2838
	C4	.37901*	.04304	.000	.2194	.5386
	D1	.76242*	.04304	.000	.6028	.9220
	D2	.52753*	.04304	.000	.3679	.6871
	D3	.43162*	.04304	.000	.2720	.5912
	20	.45102	.04004	.000	.2720	.0012

6.3 *bmp7*

bmp7

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	33.482	15	2.232	93.361	.000
Within Groups	.765	32	.024		
Total	34.247	47			

Multiple Comparisons

bmp7

Tukey HSD	(J)	Mean		0	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
A1	A2	.18878	.12625	.975	2794	.6569
	A3	-1.94037*	.12625	.000	-2.4085	-1.4722
	A4	-1.29442 [*]	.12625	.000	-1.7626	8263
	B1	.85426*	.12625	.000	.3861	1.3224
	B2	.66799*	.12625	.001	.1998	1.1361
	B3	.72547*	.12625	.000	.2573	1.1936
	B4	.27009	.12625	.729	1981	.7382
	C1	-1.36393 [*]	.12625	.000	-1.8321	8958
	C2	.70755*	.12625	.000	.2394	1.1757
	C3	.72849 [*]	.12625	.000	.2603	1.1966
	C4	15303	.12625	.997	6212	.3151
	D1	.23079	.12625	.888	2374	.6989
	D2	.22569	.12625	.903	2425	.6938
	D3	.77805 [*]	.12625	.000	.3099	1.2462
	D4	.61751*	.12625	.002	.1494	1.0857
A2	A1	18878	.12625	.975	6569	.2794
	A3	-2.12914*	.12625	.000	-2.5973	-1.6610
	A4	-1.48320*	.12625	.000	-1.9513	-1.0151
	B1	.66549*	.12625	.001	.1973	1.1336
	B2	.47921*	.12625	.041	.0111	.9474
	B3	.53669*	.12625	.013	.0685	1.0048
	B4	.08131	.12625	1.000	3868	.5495
	C1	-1.55271*	.12625	.000	-2.0209	-1.0846
	C2	.51877*	.12625	.019	.0506	.9869
	C3	.53971*	.12625	.012	.0716	1.0079
	C4	34181	.12625	.369	8100	.1263
	D1	.04201	.12625	1.000	4261	.5102
	D2	.03691	.12625	1.000	4312	.5051
	D3	.58928*	.12625	.004	.1211	1.0574
A3	D4 A1	.42873 1.94037 [*]	.12625	.101 .000	0394 1.4722	.8969 2.4085
AJ	A1 A2	2.12914 [*]	.12625	.000	1.6610	2.4003
	A2 A4	.64594*	.12625	.000	.1778	1.1141
	B1	2.79463 [*]	.12625	.000	2.3265	3.2628
	B1 B2	2.60835*	.12625	.000	2.1402	3.0765
	B3	2.66584*	.12625	.000	2.1977	3.1340
	B4	2.21045	.12625	.000	1.7423	2.6786
	C1	.57644*	.12625	.006	.1083	1.0446
	C2	2.64792 [*]	.12625	.000	2.1798	3.1161
	C3	2.66886*	.12625	.000	2.2007	3.1370
	C4	1.78733 [*]	.12625	.000	1.3192	2.2555

(I) GROUP	(J)	Mean	Std Error	Sig	95% Confide	ence Interval
	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	D1	2.17116*	.12625	.000	1.7030	2.6393
	D2	2.16605*	.12625	.000	1.6979	2.6342
	D3	2.71842*	.12625	.000	2.2503	3.1866
	D4	2.55788*	.12625	.000	2.0897	3.0260
A4	A1	1.29442*	.12625	.000	.8263	1.7626
	A2	1.48320 [*]	.12625	.000	1.0151	1.9513
	A3	64594 [*] 2.14869 [*]	.12625	.001	-1.1141	1778
	B1 B2	2.14669 1.96241 [*]	.12625 .12625	.000 .000	1.6805 1.4943	2.6168 2.4306
	B2 B3	2.01989 [*]	.12625	.000	1.4943	2.4300
	B3 B4	1.56451 [*]	.12625	.000	1.0964	2.4000
	C1	06951	.12625	1.000	5377	.3986
	C2	2.00197*	.12625	.000	1.5338	2.4701
	C3	2.02291*	.12625	.000	1.5548	2.4911
	C4	1.14139 [*]	.12625	.000	.6732	1.6095
	D1	1.52521*	.12625	.000	1.0571	1.9934
	D2	1.52011 [*]	.12625	.000	1.0520	1.9883
	D3	2.07248 [*]	.12625	.000	1.6043	2.5406
	D4	1.91193 [*]	.12625	.000	1.4438	2.3801
B1	A1	85426 [*]	.12625	.000	-1.3224	3861
	A2	66549*	.12625	.001	-1.1336	1973
	A3	-2.79463*	.12625	.000	-3.2628	-2.3265
	A4	-2.14869*	.12625	.000	-2.6168	-1.6805
	B2	18628	.12625	.978	6544	.2819
	B3	12879	.12625	.999	5969	.3394
	B4	58418 [*]	.12625	.005	-1.0523	1160
	C1 C2	-2.21820 [*] 14671	.12625 .12625	.000. .998	-2.6863 6149	-1.7500 .3214
	C2 C3	12577	.12625	1.000	5939	.3214
	C4	-1.00730*	.12625	.000	-1.4754	5391
	D1	62347*	.12625	.002	-1.0916	1553
	D2	62858*	.12625	.002	-1.0967	1604
	D3	07621	.12625	1.000	5444	.3919
	D4	23676	.12625	.868	7049	.2314
B2	A1	66799 [*]	.12625	.001	-1.1361	1998
	A2	47921 [*]	.12625	.041	9474	0111
	A3	-2.60835 [*]	.12625	.000	-3.0765	-2.1402
	A4	-1.96241*	.12625	.000	-2.4306	-1.4943
	B1	.18628	.12625	.978	2819	.6544
	B3	.05748	.12625	1.000	4107	.5256
	B4	39790	.12625	.168	8660	.0703
	C1	-2.03192*	.12625	.000	-2.5001	-1.5638
	C2	.03957	.12625	1.000	4286	.5077
	C3	.06051	.12625	1.000	4076	.5287
	C4	82102*	.12625	.000	-1.2892	3529

(I) GROUP	(J)	Mean	Otd. Ermon	Cia	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	D1	43719	.12625	.087	9053	.0310
	D2	44230	.12625	.080	9104	.0259
	D3	.11007	.12625	1.000	3581	.5782
	D4	05048	.12625	1.000	5186	.4177
B3	A1	72547*	.12625	.000	-1.1936	2573
	A2	53669*	.12625	.013	-1.0048	0685
	A3	-2.66584*	.12625	.000	-3.1340	-2.1977
	A4	-2.01989*	.12625	.000	-2.4880	-1.5517
	B1	.12879	.12625	.999	3394	.5969
	B2	05748	.12625	1.000	5256	.4107
	B4	45538	.12625	.063	9235	.0128
	C1	-2.08940*	.12625	.000	-2.5575	-1.6213
	C2	01792	.12625	1.000	4861	.4502
	C3	.00302 87850 [*]	.12625	1.000	4651	.4712
	C4		.12625	.000	-1.3467	4104
	D1	49468 [*]	.12625	.030	9628	0265
	D2	49978 [*]	.12625	.027	9679	0316
	D3 D4	.05258 10796	.12625 .12625	1.000 1.000	4156	.5207
B4	A1	27009	.12625	.729	5761 7382	.3602 .1981
D4	A2	08131	.12625	1.000	5495	.3868
	A3	-2.21045*	.12625	.000	-2.6786	-1.7423
	A4	-1.56451*	.12625	.000	-2.0327	-1.0964
	B1	.58418	.12625	.005	.1160	1.0523
	B2	.39790	.12625	.168	0703	.8660
	B3	.45538	.12625	.063	0128	.9235
	C1	-1.63402*	.12625	.000	-2.1022	-1.1659
	C2	.43746	.12625	.087	0307	.9056
	C3	.45840	.12625	.060	0097	.9266
	C4	42312	.12625	.111	8913	.0450
	D1	03930	.12625	1.000	5074	.4289
	D2	04440	.12625	1.000	5125	.4237
	D3	.50797*	.12625	.023	.0398	.9761
	D4	.34742	.12625	.344	1207	.8156
C1	A1	1.36393*	.12625	.000	.8958	1.8321
	A2	1.55271*	.12625	.000	1.0846	2.0209
	A3	57644 [*]	.12625	.006	-1.0446	1083
	A4	.06951	.12625	1.000	3986	.5377
	B1	2.21820 [*]	.12625	.000	1.7500	2.6863
	B2	2.03192*	.12625	.000	1.5638	2.5001
	B3	2.08940*	.12625	.000	1.6213	2.5575
	B4	1.63402 [*]	.12625	.000	1.1659	2.1022
	C2	2.07148*	.12625	.000	1.6033	2.5396
	C3	2.09242*	.12625	.000	1.6243	2.5606
	C4	1.21090*	.12625	.000	.7428	1.6790

(I) GROUP	(J)	Mean	Std. Error	Sig	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)		Sig.	Lower Bound	Upper Bound
	D1	1.59472*	.12625	.000	1.1266	2.0629
	D2	1.58962*	.12625	.000	1.1215	2.0578
	D3	2.14199*	.12625	.000	1.6738	2.6101
	D4	1.98144*	.12625	.000	1.5133	2.4496
C2	A1	70755*	.12625	.000	-1.1757	2394
	A2	51877 [*]	.12625	.019	9869	0506
	A3	-2.64792 [*]	.12625	.000	-3.1161	-2.1798
	A4 B1	-2.00197 [*] .14671	.12625 .12625	.000. .998	-2.4701 3214	-1.5338 .6149
	B1 B2	03957	.12625	1.000	5077	.4286
	B3	.01792	.12625	1.000	4502	.4861
	B0 B4	43746	.12625	.087	9056	.0307
	C1	-2.07148*	.12625	.000	-2.5396	-1.6033
	C3	.02094	.12625	1.000	4472	.4891
	C4	86058 [*]	.12625	.000	-1.3287	3924
	D1	47676 [*]	.12625	.043	9449	0086
	D2	48186 [*]	.12625	.039	9500	0137
	D3	.07050	.12625	1.000	3976	.5387
	D4	09004	.12625	1.000	5582	.3781
C3	A1	72849 [*]	.12625	.000	-1.1966	2603
	A2	53971*	.12625	.012	-1.0079	0716
	A3	-2.66886*	.12625	.000	-3.1370	-2.2007
	A4	-2.02291*	.12625	.000	-2.4911	-1.5548
	B1	.12577	.12625	1.000	3424	.5939
	B2	06051	.12625	1.000	5287	.4076
	B3	00302	.12625	1.000	4712	.4651
	B4 C1	45840 -2.09242 [*]	.12625 .12625	.060 .000	9266 -2.5606	.0097 -1.6243
	C1 C2	-2.09242	.12625	1.000	-2.5000	.4472
	C2 C4	88152 [*]	.12625	.000	-1.3497	4134
	D1	49770 [*]	.12625	.000	9658	0296
	D2	50280*	.12625	.026	9710	0347
	D3	.04956	.12625	1.000	4186	.5177
	D4	11098	.12625	1.000	5791	.3572
C4	A1	.15303	.12625	.997	3151	.6212
	A2	.34181	.12625	.369	1263	.8100
	A3	-1.78733 [*]	.12625	.000	-2.2555	-1.3192
	A4	-1.14139 [*]	.12625	.000	-1.6095	6732
	B1	1.00730 [*]	.12625	.000	.5391	1.4754
	B2	.82102*	.12625	.000	.3529	1.2892
	B3	.87850 [*]	.12625	.000	.4104	1.3467
	B4	.42312	.12625	.111	0450	.8913
	C1	-1.21090*	.12625	.000	-1.6790	7428
	C2	.86058*	.12625	.000	.3924	1.3287
	C3	.88152*	.12625	.000	.4134	1.3497

(I) GROUP	(J)	Mean	Std. Error	Sig	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)		Sig.	Lower Bound	Upper Bound
	D1	.38382	.12625	.208	0843	.8520
	D2	.37872	.12625	.224	0894	.8469
	D3	.93109*	.12625	.000	.4629	1.3992
54	D4	.77054*	.12625	.000	.3024	1.2387
D1	A1	23079	.12625	.888	6989	.2374
	A2 A3	.04201- 2.17116 [*]	.12625 .12625	1.000 .000	5102 -2.6393	.4261 -1.7030
	A3 A4	-2.17110 -1.52521 [*]	.12625	.000	-2.0393	-1.0571
	B1	.62347*	.12625	.000	.1553	1.0916
	B1 B2	.43719	.12625	.087	0310	.9053
	B3	.49468*	.12625	.030	.0265	.9628
	B4	.03930	.12625	1.000	4289	.5074
	C1	-1.59472 [*]	.12625	.000	-2.0629	-1.1266
	C2	.47676 [*]	.12625	.043	.0086	.9449
	C3	.49770 [*]	.12625	.028	.0296	.9658
	C4	38382	.12625	.208	8520	.0843
	D2	00510	.12625	1.000	4733	.4630
	D3	.54726*	.12625	.010	.0791	1.0154
	D4	.38672	.12625	.199	0814	.8549
D2	A1	22569	.12625	.903	6938	.2425
	A2	03691	.12625	1.000	5051	.4312
	A3	-2.16605 [*]	.12625	.000	-2.6342	-1.6979
	A4 B1	-1.52011 [*] .62858 [*]	.12625 .12625	.000 .002	-1.9883 .1604	-1.0520 1.0967
	B1 B2	.02030	.12625	.002	0259	.9104
	B2 B3	.44230	.12625	.080	.0239	.9679
	B3 B4	.04440	.12625	1.000	4237	.5125
	C1	-1.58962*	.12625	.000	-2.0578	-1.1215
	C2	.48186 [*]	.12625	.039	.0137	.9500
	C3	.50280*	.12625	.026	.0347	.9710
	C4	37872	.12625	.224	8469	.0894
	D1	.00510	.12625	1.000	4630	.4733
	D3	.55237*	.12625	.009	.0842	1.0205
	D4	.39182	.12625	.184	0763	.8600
D3	A1	77805*	.12625	.000	-1.2462	3099
	A2	58928*	.12625	.004	-1.0574	1211
	A3	-2.71842*	.12625	.000	-3.1866	-2.2503
	A4	-2.07248*	.12625	.000	-2.5406	-1.6043
	B1	.07621	.12625	1.000	3919	.5444
	B2	11007	.12625	1.000	5782	.3581
	B3 B4	05258 50797 [*]	.12625 .12625	1.000 .023	5207 - 9761	.4156 0398
	Б4 С1	50797 -2.14199 [*]	.12625	.023	9761 -2.6101	-1.6738
	C1 C2	-2.14199 07050	.12625	1.000	-2.6101 5387	.3976
	C2 C3	04956	.12625	1.000	5177	.4186
I	00	04900	.12020	1.000	5177	.4100

(I) GROUP	(J)	Mean	Otal Erman	Cirr.	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	C4	93109 [*]	.12625	.000	-1.3992	4629
	D1	54726 [*]	.12625	.010	-1.0154	0791
	D2	55237*	.12625	.009	-1.0205	0842
	D4	16055	.12625	.994	6287	.3076
D4	A1	61751 [*]	.12625	.002	-1.0857	1494
	A2	42873	.12625	.101	8969	.0394
	A3	-2.55788 [*]	.12625	.000	-3.0260	-2.0897
	A4	-1.91193 [*]	.12625	.000	-2.3801	-1.4438
	B1	.23676	.12625	.868	2314	.7049
	B2	.05048	.12625	1.000	4177	.5186
	B3	.10796	.12625	1.000	3602	.5761
	B4	34742	.12625	.344	8156	.1207
	C1	-1.98144 [*]	.12625	.000	-2.4496	-1.5133
	C2	.09004	.12625	1.000	3781	.5582
	C3	.11098	.12625	1.000	3572	.5791
	C4	77054 [*]	.12625	.000	-1.2387	3024
	D1	38672	.12625	.199	8549	.0814
	D2	39182	.12625	.184	8600	.0763
	D3	.16055	.12625	.994	3076	.6287

6.4 axin2

ANOVA

axin2									
	Sum of Squares	df	Mean Square	F	Sig.				
Between Groups	5.727	15	.382	3.807	.001				
Within Groups	3.210	32	.100						
Total	8.937	47							

Multiple Comparisons

axin2

Tukey HSD

(I) GROUP	(J) GROUP	Mean	Std. Error	Sig.	95% Confidence Interval		
		Difference (I- J)			Lower Bound	Upper Bound	
A1	A2	.29466	.25859	.998	6642	1.2535	
	A3	78562	.25859	.209	-1.7445	.1732	
	A4	27524	.25859	.999	-1.2341	.6836	

	(1)	Mean			95% Confide	ence Interval
(I) GROUP	(J) GROUP	Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
	B1	.38227	.25859	.977	5766	1.3411
	B2	09807	.25859	1.000	-1.0569	.8608
	B3	.19744	.25859	1.000	7614	1.1563
	B4	41142	.25859	.959	-1.3703	.5474
	C1	44365	.25859	.927	-1.4025	.5152
	C2	.13981	.25859	1.000	8190	1.0987
	C3	40906	.25859	.960	-1.3679	.5498
	C4	17812	.25859	1.000	-1.1370	.7807
	D1	86030	.25859	.117	-1.8192	.0986
	D2	43932	.25859	.932	-1.3982	.5195
	D3	31027	.25859	.992	-1.2691	.6486
	D3 D4	16900	.25859	1.000	-1.2091	.7899
A2	A1	10900	.25859	.998	-1.1279	.6642
, <u> </u>	A3	-1.08029*	.25859	.000	-2.0391	1214
	A4	56990	.25859	.688	-1.5288	.3890
	B1	.08760	.25859	1.000	8713	1.0465
	B2	39273	.25859	.972	-1.3516	.5661
	B3	09722	.25859	1.000	-1.0561	.8616
	B4	70608	.25859	.356	-1.6649	.2528
	C1	73831	.25859	.290	-1.6972	.2205
	C2	15485	.25859	1.000	-1.1137	.8040
	C3	70372	.25859	.361	-1.6626	.2551
	C4	47278	.25859	.888	-1.4316	.4861
	D1	-1.15496 [*]	.25859	.007	-2.1138	1961
	D2	73398	.25859	.298	-1.6928	.2249
	D3 D4	60493 46366	.25859 .25859	.600 .901	-1.5638 -1.4225	.3539
A3	A1	.78562	.25859	.901	-1.4225	.4952 1.7445
A3	A2	1.08029*	.25859	.209	.1732	2.0391
	A4	.51039	.25859	.822	4485	1.4692
	B1	1.16789*	.25859	.006	.2090	2.1267
	B2	.68755	.25859	.397	2713	1.6464
	B3	.98306*	.25859	.040	.0242	1.9419
	B4	.37421	.25859	.981	5847	1.3331
	C1	.34197	.25859	.992	6169	1.3008
	C2	.92544	.25859	.067	0334	1.8843
	C3	.37656	.25859	.980	5823	1.3354
	C4	.60751	.25859	.594	3514	1.5664
	D1	07468	.25859	1.000	-1.0335	.8842
	D2	.34630	.25859	.991	6126	1.3052
	D3	.47536	.25859	.884	4835	1.4342
A.4	D4	.61663	.25859	.571	3422	1.5755
A4	A1	.27524	.25859	.999	6836	1.2341

	(J)	Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
	A2	.56990	.25859	.688	3890	1.5288
	A3	51039	.25859	.822	-1.4692	.4485
	B1	.65750	.25859	.468	3014	1.6164
	B2	.17717	.25859	1.000	7817	1.1360
	B3	.47268	.25859	.888	4862	1.4315
	B4	13618	.25859	1.000	-1.0950	.8227
	C1	16841	.25859	1.000	-1.1273	.7904
	C2	.41505	.25859	.956	5438	1.3739
	C3	13382	.25859	1.000	-1.0927	.8250
	C4	.09712	.25859	1.000	8617	1.0560
	D1	58506	.25859	.651	-1.5439	.3738
	D2	16408	.25859	1.000	-1.1229	.7948
	D3	03503	.25859	1.000	9939	.9238
	D4	.10624	.25859	1.000	8526	1.0651
B1	A1	38227	.25859	.977	-1.3411	.5766
	A2	08760	.25859	1.000	-1.0465	.8713
	A3	-1.16789*	.25859	.006	-2.1267	2090
	A4	65750	.25859	.468	-1.6164	.3014
	B2	48034	.25859	.876	-1.4392	.4785
	B3	18483	.25859	1.000	-1.1437	.7740
	B4	79368	.25859	.197	-1.7525	.1652
	C1	82592	.25859	.154	-1.7848	.1329
	C2	24245	.25859	1.000	-1.2013	.7164
	C3	79133	.25859	.200	-1.7502	.1675
	C4	56038	.25859	.711	-1.5192	.3985
	D1	-1.24257*	.25859	.003	-2.2014	2837
	D2	82159	.25859	.160	-1.7804	.1373
	D3	69253	.25859	.385	-1.6514	.2663
	D4	55126	.25859	.733	-1.5101	.4076
B2	A1	.09807	.25859	1.000	8608	1.0569
	A2	.39273	.25859	.972	5661	1.3516
	A3	68755	.25859	.397	-1.6464	.2713
	A4	17717	.25859	1.000	-1.1360	.7817
	B1	.48034	.25859	.876	4785	1.4392
	B3	.29551	.25859	.998	6633 -1.2722	1.2544
	B4 C1	31334	.25859	.997		.6455
	C1 C2	34558	.25859 .25859	.991 1.000	-1.3044	.6133 1.1967
	C2 C3	.23789 31099			7210 -1.2698	.6479
			.25859	.997		
	C4	08004	.25859	1.000	-1.0389	.8788
	D1	76223	.25859	.247	-1.7211	.1966
	D2 D2	34125	.25859	.992	-1.3001	.6176
	D3	21219	.25859	1.000	-1.1711	.7467
	D4	07092	.25859	1.000	-1.0298	.8879

	(J)	Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
B3	A1	19744	.25859	1.000	-1.1563	.7614
	A2	.09722	.25859	1.000	8616	1.0561
	A3	98306 [*]	.25859	.040	-1.9419	0242
	A4	47268	.25859	.888	-1.4315	.4862
	B1	.18483	.25859	1.000	7740	1.1437
	B2	29551	.25859	.998	-1.2544	.6633
	B4	60886	.25859	.590	-1.5677	.3500
	C1	64109	.25859	.509	-1.6000	.3178
	C2	05763	.25859	1.000	-1.0165	.9012
	C3	60650	.25859	.596	-1.5654	.3524
	C4	37556	.25859	.981	-1.3344	.5833
	D1	-1.05774*	.25859	.020	-2.0166	0989
	D2	63676	.25859	.519	-1.5956	.3221
	D3	50771	.25859	.827	-1.4666	.4512
	D4	36644	.25859	.984	-1.3253	.5924
B4	A1	.41142	.25859	.959	5474	1.3703
	A2	.70608	.25859	.356	2528	1.6649
	A3	37421	.25859	.981	-1.3331	.5847
	A4	.13618	.25859	1.000	8227	1.0950
	B1	.79368	.25859	.197	1652	1.7525
	B2	.31334	.25859	.997	6455	1.2722
	B3	.60886	.25859	.590	3500	1.5677
	C1	03224	.25859	1.000	9911	.9266
	C2	.55123	.25859	.733	4076	1.5101
	C3	.00236	.25859	1.000	9565	.9612
	C4	.23330	.25859	1.000	7256	1.1922
	D1	44888	.25859	.921	-1.4077	.5100
	D2	02790	.25859	1.000	9868	.9310
	D3	.10115	.25859	1.000	8577	1.0600
C1	D4	.24242	.25859	1.000	7164	1.2013
	A1 A2	.44365 .73831	.25859 .25859	.927 .290	5152 - 2205	1.4025 1.6972
					2205 -1 3008	
	A3 A4	34197 .16841	.25859 .25859	.992 1.000	-1.3008 7904	.6169 1.1273
	A4 B1	. 1664 1 .82592	.25659	.154	1329	1.1273
	B1 B2	.34558	.25859	.154	1329	1.7646
	B2 B3	.64109	.25859	.509	0133	1.6000
	B3 B4	.04109	.25859	1.000	9266	.9911
	C2	.58346	.25859	.655	3754	1.5423
	C2 C3	.03459	.25859	1.000	9243	.9935
	C3 C4	.26554	.25859	.999	6933	1.2244
	D1	41665	.25859	.955	-1.3755	.5422
	D1 D2	.00433	.25859	1.000	9545	.9632
	D2 D3	.13338	.25859	1.000	8255	1.0922
	50	.10000	.20009	1.000	0200	1.0922

	(J)	Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
	D4	.27466	.25859	.999	6842	1.2335
C2	A1	13981	.25859	1.000	-1.0987	.8190
	A2	.15485	.25859	1.000	8040	1.1137
	A3	92544	.25859	.067	-1.8843	.0334
	A4	41505	.25859	.956	-1.3739	.5438
	B1	.24245	.25859	1.000	7164	1.2013
	B2	23789	.25859	1.000	-1.1967	.7210
	B3	.05763	.25859	1.000	9012	1.0165
	B4	55123	.25859	.733	-1.5101	.4076
	C1	58346	.25859	.655	-1.5423	.3754
	C3	54887	.25859	.739	-1.5077	.4100
	C4	31793	.25859	.996	-1.2768	.6409
	D1	-1.00011*	.25859	.034	-1.9590	0413
	D2	57913	.25859	.666	-1.5380	.3797
	D3	45008	.25859	.919	-1.4089	.5088
	D4	30881	.25859	.997	-1.2677	.6501
C3	A1	.40906	.25859	.960	5498	1.3679
	A2	.70372	.25859	.361	2551	1.6626
	A3	37656	.25859	.980	-1.3354	.5823
	A4	.13382	.25859	1.000	8250	1.0927
	B1	.79133	.25859	.200	1675	1.7502
	B2	.31099	.25859	.997	6479	1.2698
	B3	.60650	.25859	.596	3524	1.5654
	B4	00236	.25859	1.000	9612	.9565
	C1	03459	.25859	1.000	9935	.9243
	C2 C4	.54887	.25859	.739 1.000	4100	1.5077
	C4 D1	.23095 45124	.25859 .25859	.918	7279 -1.4101	1.1898 .5076
	D1 D2	43124	.25859	1.000	-1.4101 9891	.9286
	D2 D3	.09879	.25859	1.000	8601	1.0577
	D3 D4	.24007	.25859	1.000	7188	1.1989
C4	A1	.17812	.25859	1.000	7807	1.1303
04	A2	.47278	.25859	.888	4861	1.4316
	A3	60751	.25859	.594	-1.5664	.3514
	A3 A4	09712	.25859	1.000	-1.0560	.8617
	B1	.56038	.25859	.711	3985	1.5192
	B2	.08004	.25859	1.000	8788	1.0389
	B3	.37556	.25859	.981	5833	1.3344
	B4	23330	.25859	1.000	-1.1922	.7256
	C1	26554	.25859	.999	-1.2244	.6933
	C2	.31793	.25859	.996	6409	1.2768
	C3	23095	.25859	1.000	-1.1898	.7279
	D1	68219	.25859	.409	-1.6410	.2767
	D2	26121	.25859	1.000	-1.2201	.6977

	(J)	Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
	D3	13215	.25859	1.000	-1.0910	.8267
	D4	.00912	.25859	1.000	9497	.9680
D1	A1	.86030	.25859	.117	0986	1.8192
	A2	1.15496 [*]	.25859	.007	.1961	2.1138
	A3	.07468	.25859	1.000	8842	1.0335
	A4	.58506	.25859	.651	3738	1.5439
	B1	1.24257*	.25859	.003	.2837	2.2014
	B2	.76223	.25859	.247	1966	1.7211
	B3	1.05774*	.25859	.020	.0989	2.0166
	B4	.44888	.25859	.921	5100	1.4077
	C1	.41665	.25859	.954	5422	1.3755
	C2	1.00011*	.25859	.034	.0413	1.9590
	C3	.45124	.25859	.918	5076	1.4101
	C4	.68219	.25859	.409	2767	1.6410
	D2 D3	.42098	.25859	.951	5379	1.3798
		.55003 .69131	.25859	.736	4088	1.5089
D2	D4 A1	.69131 .43932	.25859 .25859	.388 .932	2676 5195	1.6502 1.3982
02	A1 A2	.43932	.25859	.932	2249	1.6928
	A2 A3	34630	.25859	.290	-1.3052	.6126
	A3 A4	.16408	.25859	1.000	7948	1.1229
	B1	.82159	.25859	.160	1373	1.7804
	B2	.34125	.25859	.992	6176	1.3001
	B3	.63676	.25859	.519	3221	1.5956
	B6 B4	.02790	.25859	1.000	9310	.9868
	C1	00433	.25859	1.000	9632	.9545
	C2	.57913	.25859	.666	3797	1.5380
	C3	.03026	.25859	1.000	9286	.9891
	C4	.26121	.25859	1.000	6977	1.2201
	D1	42098	.25859	.951	-1.3798	.5379
	D3	.12905	.25859	1.000	8298	1.0879
	D4	.27033	.25859	.999	6885	1.2292
D3	A1	.31027	.25859	.997	6486	1.2691
	A2	.60493	.25859	.600	3539	1.5638
	A3	47536	.25859	.884	-1.4342	.4835
	A4	.03503	.25859	1.000	9238	.9939
	B1	.69253	.25859	.385	2663	1.6514
	B2	.21219	.25859	1.000	7467	1.1711
	B3	.50771	.25859	.827	4512	1.4666
	B4	10115	.25859	1.000	-1.0600	.8577
	C1	13338	.25859	1.000	-1.0922	.8255
	C2	.45008	.25859	.919	5088	1.4089
	C3	09879	.25859	1.000	-1.0577	.8601
	C4	.13215	.25859	1.000	8267	1.0910

	(J)	Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
	D1	55003	.25859	.736	-1.5089	.4088
	D2	12905	.25859	1.000	-1.0879	.8298
	D4	.14127	.25859	1.000	8176	1.1001
D4	A1	.16900	.25859	1.000	7899	1.1279
	A2	.46366	.25859	.901	4952	1.4225
	A3	61663	.25859	.571	-1.5755	.3422
	A4	10624	.25859	1.000	-1.0651	.8526
	B1	.55126	.25859	.733	4076	1.5101
	B2	.07092	.25859	1.000	8879	1.0298
	B3	.36644	.25859	.984	5924	1.3253
	B4	24242	.25859	1.000	-1.2013	.7164
	C1	27466	.25859	.999	-1.2335	.6842
	C2	.30881	.25859	.997	6501	1.2677
	C3	24007	.25859	1.000	-1.1989	.7188
	C4	00912	.25859	1.000	9680	.9497
	D1	69131	.25859	.388	-1.6502	.2676
	D2	27033	.25859	.999	-1.2292	.6885
	D3	14127	.25859	1.000	-1.1001	.8176

6.5 β -catenin

ANOVA

eta-catenin					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	10.926	15	.728	74.829	.000
Within Groups	.311	32	.010		
Total	11.237	47			

Multiple Comparisons

eta-catenin Tukey HSD

(J)		Mean			95% Confidence Interval	
(I) GROUP	GROUP	Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
A1	A2	.49128*	.08056	.000	.1926	.7900
	A3	-1.27307*	.08056	.000	-1.5718	9744
	A4	16538	.08056	.779	4641	.1333
	B1	.59906*	.08056	.000	.3004	.8978

	(J)	Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
	B2	.23736	.08056	.247	0614	.5361
	B3	.43835*	.08056	.001	.1396	.7371
	B4	26285	.08056	.134	5616	.0359
	C1	21650	.08056	.380	5152	.0822
	C2	.25318	.08056	.171	0455	.5519
	C3	82197 [*]	.08056	.000	-1.1207	5233
	C4	20564	.08056	.462	5043	.0931
	D1	08855	.08056	.999	3873	.2102
	D2	38150 [*]	.08056	.004	6802	0828
	D3	.15645	.08056	.838	1423	.4552
	D4	51069 [*]	.08056	.000	8094	2120
A2	A1	49128 [*]	.08056	.000	7900	1926
	A3	-1.76435*	.08056	.000	-2.0631	-1.4656
	A4	65666 [*]	.08056	.000	9554	3579
	B1	.10778	.08056	.991	1909	.4065
	B2	25392	.08056	.168	5526	.0448
	B3	05293	.08056	1.000	3516	.2458
	B4	75413 [*]	.08056	.000	-1.0528	4554
	C1 C2	70778 [*]	.08056	.000	-1.0065	4091
	C2 C3	2381023810- 1.31325 [*]	.08056 .08056	.243 .000	5368 -1.6120	.0606 -1.0145
	C3 C4	69692 [*]	.08056	.000	9956	3982
	D1	57983 [*]	.08056	.000	8785	2811
	D2	87278*	.08056	.000	-1.1715	5741
	D3	33483 [*]	.08056	.017	6335	0361
	D4	-1.00197*	.08056	.000	-1.3007	7033
A3	A1	1.27307*	.08056	.000	.9744	1.5718
	A2	1.76435*	.08056	.000	1.4656	2.0631
	A4	1.10769	.08056	.000	.8090	1.4064
	B1	1.87213 [*]	.08056	.000	1.5734	2.1708
	B2	1.51042*	.08056	.000	1.2117	1.8091
	B3	1.71142 [*]	.08056	.000	1.4127	2.0101
	B4	1.01021 [*]	.08056	.000	.7115	1.3089
	C1	1.05657 [*]	.08056	.000	.7579	1.3553
	C2 C3	1.52625 [*] .45110 [*]	.08056 .08056	.000 .000	1.2275 .1524	1.8250 .7498
	C3 C4	1.06743 [*]	.08056	.000	.1524	1.3661
	D1	1.18452*	.08056	.000	.8858	1.4832
	D2	.89156 [*]	.08056	.000	.5929	1.1903
	D3	1.42952*	.08056	.000	1.1308	1.7282
	D4	.76238*	.08056	.000	.4637	1.0611
A4	A1	.16538	.08056	.779	1333	.4641
	A2	.65666*	.08056	.000	.3579	.9554

	(J)	Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
-	A3	-1.10769 [*]	.08056	.000	-1.4064	8090
	B1	.76444*	.08056	.000	.4657	1.0631
	B2	.40273*	.08056	.002	.1040	.7014
	B3	.60373 [*]	.08056	.000	.3050	.9024
	B4	09748	.08056	.997	3962	.2012
	C1	05112	.08056	1.000	3498	.2476
	C2	.41856*	.08056	.001	.1199	.7173
	C3	65659 [*]	.08056	.000	9553	3579
	C4	04026	.08056	1.000	3390	.2584
	D1	.07683	.08056	1.000	2219	.3755
	D2	21613	.08056	.383	5148	.0826
	D3	.32183*	.08056	.025	.0231	.6205
	D4	34531 [*] 59906 [*]	.08056	.012	6440	0466 3004
	A1 A2	59906 10778	.08056 .08056	.000 .991	8978 4065	3004 .1909
	A2 A3	-1.87213 [*]	.08056	.991	4005	-1.5734
	A3 A4	-1.87213 76444 [*]	.08056	.000	-1.0631	4657
	B2	36170 [*]	.08056	.000	6604	0630
	B3	16071	.08056	.811	4594	.1380
	B4	86191*	.08056	.000	-1.1606	5632
	C1	81556*	.08056	.000	-1.1143	5168
	C2	34588 [*]	.08056	.012	6446	0472
	C3	-1.42103 [*]	.08056	.000	-1.7197	-1.1223
	C4	80470 [*]	.08056	.000	-1.1034	5060
	D1	68761 [*]	.08056	.000	9863	3889
	D2	98056 [*]	.08056	.000	-1.2793	6819
	D3	44261 [*]	.08056	.000	7413	1439
	D4	-1.10975*	.08056	.000	-1.4085	8110
	A1	23736	.08056	.247	5361	.0614
	A2	.25392	.08056	.168	0448	.5526
	A3	-1.51042*	.08056	.000	-1.8091	-1.2117
	A4	40273 [*]	.08056	.002	7014	1040
	B1	.36170 [*]	.08056	.007	.0630	.6604
	B3	.20099	.08056	.498	0977	.4997
	B4	50021 [*]	.08056	.000	7989	2015
	C1	45385*	.08056	.000	7526	1551
	C2 C3	.01583 -1.05932 [*]	.08056	1.000	2829	.3145 7606
	C3 C4	-1.05932 44300 [*]	.08056 .08056	.000 .000	-1.3580 7417	7606 1443
	C4 D1	44300 32590 [*]	.08056	.000	7417 6246	1443 0272
	D1 D2	32590 61886 [*]	.08056	.022	0246 9176	0272
	D2 D3	01000	.08056	1.000	9176	.3202
	D3 D4	74804 [*]	.08056	.000	-1.0468	4493
	A1	43835 [*]	.08056	.000	7371	1396

	(J)	Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
	A2	.05293	.08056	1.000	2458	.3516
	A3	-1.71142*	.08056	.000	-2.0101	-1.4127
	A4	60373 [*]	.08056	.000	9024	3050
	B1	.16071	.08056	.811	1380	.4594
	B2	20099	.08056	.498	4997	.0977
	B4	70120 [*]	.08056	.000	9999	4025
	C1	65485*	.08056	.000	9536	3561
	C2	18517	.08056	.627	4839	.1135
	C3	-1.26032 [*]	.08056	.000	-1.5590	9616
	C4 D1	64399 [*]	.08056	.000	9427	3453
	D1 D2	52690 [*] 81985 [*]	.08056 .08056	.000 .000	8256 -1.1186	2282 5211
	D2 D3	281905	.08056	.000	-1.1180	.0168
	D3 D4	28190 94904 [*]	.08056	.000	-1.2477	6503
B4	A1	.26285	.08056	.134	0359	.5616
5-	A2	.75413*	.08056	.000	.4554	1.0528
	A3	-1.01021*	.08056	.000	-1.3089	7115
	A4	.09748	.08056	.997	2012	.3962
	B1	.86191*	.08056	.000	.5632	1.1606
	B2	.50021*	.08056	.000	.2015	.7989
	B3	.70120*	.08056	.000	.4025	.9999
	C1	.04636	.08056	1.000	2524	.3451
	C2	.51604*	.08056	.000	.2173	.8147
	C3	55911 [*]	.08056	.000	8578	2604
	C4	.05721	.08056	1.000	2415	.3559
	D1	.17431	.08056	.714	1244	.4730
	D2	11865	.08056	.978	4174	.1801
	D3	.41931*	.08056	.001	.1206	.7180
	D4	24783	.08056	.194	5465	.0509
C1	A1	.21650	.08056	.380	0822	.5152
	A2	.70778 [*]	.08056	.000	.4091	1.0065
	A3	-1.05657*	.08056	.000	-1.3553	7579
	A4	.05112	.08056	1.000	2476	.3498
	B1	.81556*	.08056	.000	.5168	1.1143
	B2	.45385*	.08056	.000	.1551	.7526
	B3	.65485 [*] 04636	.08056	.000	.3561	.9536 2524
	B4 C2	04636 .46968 [*]	.08056 .08056	1.000 .000	3451 .1710	.2524 .7684
	C2 C3	.40908 60547 [*]	.08056	.000	9042	3068
	C3 C4	.01086	.08056	1.000	9042 2879	3008 .3096
	C4 D1	.12795	.08056	.959	2079	.3090
	D1 D2	16501	.08056	.939	4637	.4207
	D2 D3	.37295*	.08056	.005	.0742	.6717
	D3 D4	29419	.08056	.003	5929	.0045
<u> </u>	U4	29419	.00000	.007	0929	.0045

	(J)	Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
C2	A1	25318	.08056	.171	5519	.0455
	A2	.23810	.08056	.243	0606	.5368
	A3	-1.52625*	.08056	.000	-1.8250	-1.2275
	A4	41856*	.08056	.001	7173	1199
	B1	.34588*	.08056	.012	.0472	.6446
	B2	01583	.08056	1.000	3145	.2829
	B3	.18517	.08056	.627	1135	.4839
	B4	51604*	.08056	.000	8147	2173
	C1	46968*	.08056	.000	7684	1710
	C3	-1.07515	.08056	.000	-1.3739	7764
	C4	45882*	.08056	.000	7575	1601
	D1	34173*	.08056	.013	6404	0430
	D2	63469*	.08056	.000	9334	3360
	D3	09673	.08056	.997	3954	.2020
	D4	76387*	.08056	.000	-1.0626	4652
C3	A1	.82197*	.08056	.000	.5233	1.1207
	A2	1.31325	.08056	.000	1.0145	1.6120
	A3	45110 [*]	.08056	.000	7498	1524
	A4	.65659*	.08056	.000	.3579	.9553
	B1	1.42103*	.08056	.000	1.1223	1.7197
	B2	1.05932*	.08056	.000	.7606	1.3580
	B3	1.26032*	.08056	.000	.9616	1.5590
	B4	.55911*	.08056	.000	.2604	.8578
	C1	.60547*	.08056	.000	.3068	.9042
	C2	1.07515 [*]	.08056	.000	.7764	1.3739
	C4	.61633 [*]	.08056	.000	.3176	.9150
	D1 D2	.73342 [*] .44046 [*]	.08056 .08056	.000	.4347	1.0321
	D2 D3	.44046 .97842 [*]	.08056	.000 .000	.1418 .6797	.7392 1.2771
C4	D4 A1	.31128 [*] .20564	.08056 .08056	.034 .462	.0126 0931	.6100 .5043
04	A1 A2	.20504	.08056	.402	.3982	.9956
	A2 A3	-1.06743 [*]	.08056	.000	-1.3661	7687
	A3 A4	.04026	.08056	1.000	2584	.3390
	B1	.80470*	.08056	.000	.5060	1.1034
	B1 B2	.44300*	.08056	.000	.1443	.7417
	B3	.64399*	.08056	.000	.3453	.9427
	B0 B4	05721	.08056	1.000	3559	.2415
	C1	01086	.08056	1.000	3096	.2879
	C2	.45882*	.08056	.000	.1601	.7575
	C3	61633 [*]	.08056	.000	9150	3176
	D1	.11709	.08056	.980	1816	.4158
	D2	17586	.08056	.702	4746	.1228
	D3	.36209*	.08056	.007	.0634	.6608
L	5	.30209	.00000	.007	.0034	.0000

	(J)	Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
	D4	30505*	.08056	.041	6038	0063
D1	A1	.08855	.08056	.999	2102	.3873
	A2	.57983 [*]	.08056	.000	.2811	.8785
	A3	-1.18452 [*]	.08056	.000	-1.4832	8858
	A4	07683	.08056	1.000	3755	.2219
	B1	.68761*	.08056	.000	.3889	.9863
	B2	.32590*	.08056	.022	.0272	.6246
	B3	.52690*	.08056	.000	.2282	.8256
	B4	17431	.08056	.714	4730	.1244
	C1	12795	.08056	.959	4267	.1708
	C2	.34173*	.08056	.013	.0430	.6404
	C3	73342 [*]	.08056	.000	-1.0321	4347
	C4	11709	.08056	.980	4158	.1816
	D2	29296	.08056	.059	5917	.0058
	D3	.24500	.08056	.208	0537	.5437
	D4	42214*	.08056	.001	7209	1234
D2	A1	.38150 [*]	.08056	.004	.0828	.6802
	A2	.87278 [*]	.08056	.000	.5741	1.1715
	A3	89156 [*]	.08056	.000	-1.1903	5929
	A4 B1	.21613 .98056 [*]	.08056	.383	0826	.5148
	B1 B2	.98056 .61886 [*]	.08056	.000	.6819	1.2793
	в2 В3	.81985 [*]	.08056 .08056	.000 .000	.3202 .5211	.9176 1.1186
	вз В4	.01905 .11865	.08056	.000	.5211	.4174
	Б4 С1	.16501	.08056	.978	1337	.4174
	C2	.63469*	.08056	.000	.3360	.4037
	C2 C3	44046 [*]	.08056	.000	7392	1418
	C4	.17586	.08056	.702	1228	.4746
	D1	.29296	.08056	.059	0058	.5917
	D3	.53795*	.08056	.000	.2392	.8367
	D4	12919	.08056	.956	4279	.1695
D3	A1	15645	.08056	.838	4552	.1423
	A2	.33483 [*]	.08056	.017	.0361	.6335
	A3	-1.42952 [*]	.08056	.000	-1.7282	-1.1308
	A4	32183 [*]	.08056	.025	6205	0231
	B1	.44261*	.08056	.000	.1439	.7413
	B2	.08091	.08056	1.000	2178	.3796
	B3	.28190	.08056	.081	0168	.5806
	B4	41931 [*]	.08056	.001	7180	1206
	C1	37295 [*]	.08056	.005	6717	0742
	C2	.09673	.08056	.997	2020	.3954
	C3	97842 [*]	.08056	.000	-1.2771	6797
	C4	36209*	.08056	.007	6608	0634
	D1	24500	.08056	.208	5437	.0537

	(J)	Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
	D2	53795 [*]	.08056	.000	8367	2392
	D4	66714*	.08056	.000	9658	3684
D4	A1	.51069*	.08056	.000	.2120	.8094
	A2	1.00197*	.08056	.000	.7033	1.3007
	A3	76238 [*]	.08056	.000	-1.0611	4637
	A4	.34531*	.08056	.012	.0466	.6440
	B1	1.10975*	.08056	.000	.8110	1.4085
	B2	.74804 [*]	.08056	.000	.4493	1.0468
	B3	.94904*	.08056	.000	.6503	1.2477
	B4	.24783	.08056	.194	0509	.5465
	C1	.29419	.08056	.057	0045	.5929
	C2	.76387*	.08056	.000	.4652	1.0626
	C3	31128 [*]	.08056	.034	6100	0126
	C4	.30505*	.08056	.041	.0063	.6038
	D1	.42214*	.08056	.001	.1234	.7209
	D2	.12919	.08056	.956	1695	.4279
	D3	.66714 [*]	.08056	.000	.3684	.9658

6.6 dkk1

ANOVA

dkk1									
	Sum of Squares	df	Mean Square	F	Sig.				
Between Groups	5.655	15	.377	16.069	.000				
Within Groups	.751	32	.023						
Total	6.406	47							

Multiple Comparisons

dkk1 Tukey HSD

(I) GROUP	(J)	Mean	Std. Error	Sig	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Stu. Entor	Sig.	Lower Bound	Upper Bound
A1	A2	.77743*	.12507	.000	.3137	1.2412
	A3	.97461*	.12507	.000	.5108	1.4384
	A4	.73966*	.12507	.000	.2759	1.2034
	B1	.86702*	.12507	.000	.4033	1.3308
	B2	.90076*	.12507	.000	.4370	1.3645
	B3	.78213*	.12507	.000	.3184	1.2459
	B4	.69197*	.12507	.000	.2282	1.1557

	(J)	Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	C1	21945	.12507	.915	6832	.2443
	C2	.88741 [*]	.12507	.000	.4236	1.3512
	C3	.24625	.12507	.824	2175	.7100
	C4	.95536*	.12507	.000	.4916	1.4191
	D1	.62956*	.12507	.002	.1658	1.0933
	D2	.54541*	.12507	.010	.0816	1.0092
	D3	.60348*	.12507	.003	.1397	1.0672
	D4	.25205	.12507	.800	2117	.7158
A2	A1	77743 [*]	.12507	.000	-1.2412	3137
	A3	.19718	.12507	.962	2666	.6609
	A4	03776	.12507	1.000	5015	.4260
	B1	.08960	.12507	1.000	3742	.5534
	B2 B3	.12333 .00470	.12507 .12507	1.000 1.000	3404 4591	.5871 .4685
	B3 B4	08546	.12507	1.000	4391	.4005
	C1	99688*	.12507	.000	-1.4606	5331
	C2	.10998	.12507	1.000	3538	.5737
	C3	53118*	.12507	.013	9949	0674
	C4	.17793	.12507	.984	2858	.6417
	D1	14787	.12507	.997	6116	.3159
	D2	23202	.12507	.877	6958	.2317
	D3	17394	.12507	.987	6377	.2898
	D4	52538*	.12507	.015	9891	0616
A3	A1	97461*	.12507	.000	-1.4384	5108
	A2	19718	.12507	.962	6609	.2666
	A4	23494	.12507	.867	6987	.2288
	B1 B2	10759 07385	.12507 .12507	1.000 1.000	5713 5376	.3562 .3899
	B2 B3	19248	.12507	.968	6562	.3099
	B4	28264	.12507	.652	7464	.1811
	C1	-1.19406*	.12507	.000	-1.6578	7303
	C2	08720	.12507	1.000	5510	.3766
	C3	72836 [*]	.12507	.000	-1.1921	2646
	C4	01925	.12507	1.000	4830	.4445
	D1	34505	.12507	.340	8088	.1187
	D2	42920	.12507	.094	8930	.0346
	D3	37112	.12507	.238	8349	.0926
	D4	72256 [*]	.12507	.000	-1.1863	2588
A4	A1	73966 [*]	.12507	.000	-1.2034	2759
	A2	.03776	.12507	1.000	4260	.5015
	A3 B1	.23494 .12736	.12507 .12507	.867 .999	2288 3364	.6987 .5911
	B2	.12730	.12507	.999 .994	3027	.6249
	B3	.04247	.12507	1.000	4213	.5062
	00	.04247	.12007	1.000	4213	.0002

(I) GROUP	(J)	Mean	Std. Error	Sig	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)		Sig.	Lower Bound	Upper Bound
	B4	04770	.12507	1.000	5115	.4161
	C1	95911 [*]	.12507	.000	-1.4229	4954
	C2	.14775	.12507	.997	3160	.6115
	C3	49342 [*]	.12507	.028	9572	0297
	C4	.21569	.12507	.925	2481	.6795
	D1	11010	.12507	1.000	5739	.3537
	D2	19426	.12507	.966	6580	.2695
	D3	13618	.12507	.999	5999	.3276
54	D4	48762 [*]	.12507	.032	9514	0239
B1	A1	86702*	.12507	.000	-1.3308	4033
	A2	08960	.12507	1.000	5534	.3742
	A3	.10759	.12507	1.000	3562	.5713
	A4	12736	.12507	.999	5911	.3364
	B2	.03374	.12507	1.000	4300	.4975
	B3 B4	08489 17505	.12507 .12507	1.000	5487	.3789
			.12507	.986	6388	.2887
	C1 C2	-1.08647 [*] .02039	.12507	.000. 1.000	-1.5502 4434	6227 .4841
	C2 C3	.02039 62077 [*]	.12507	.002	4434 -1.0845	1570
	C3 C4	.08833	.12507	1.002	-1.0845	.1570
	D1	23746	.12507	.858	7012	.2263
	D1 D2	32162	.12507	.450	7854	.1421
	D2 D3	26354	.12507	.430	7034	.2002
	D4	61497*	.12507	.002	-1.0787	1512
B2	A1	90076*	.12507	.000	-1.3645	4370
	A2	12333	.12507	1.000	5871	.3404
	A3	.07385	.12507	1.000	3899	.5376
	A4	16110	.12507	.994	6249	.3027
	B1	03374	.12507	1.000	4975	.4300
	B3	11863	.12507	1.000	5824	.3451
	B4	20879	.12507	.940	6726	.2550
	C1	-1.12021 [*]	.12507	.000	-1.5840	6564
	C2	01335	.12507	1.000	4771	.4504
	C3	65451 [*]	.12507	.001	-1.1183	1907
	C4	.05460	.12507	1.000	4092	.5184
	D1	27120	.12507	.711	7350	.1926
	D2	35535	.12507	.297	8191	.1084
	D3	29728	.12507	.576	7610	.1665
	D4	64871 [*]	.12507	.001	-1.1125	1850
B3	A1	78213 [*]	.12507	.000	-1.2459	3184
	A2	00470	.12507	1.000	4685	.4591
	A3	.19248	.12507	.968	2713	.6562
	A4	04247	.12507	1.000	5062	.4213
	B1	.08489	.12507	1.000	3789	.5487
	B2	.11863	.12507	1.000	3451	.5824

(I) GROUP	(J)	Mean	Std. Error	Sig. 95% Confid		ence Interval
(I) GROUP	GROUP	Difference (I-J)		Sig.	Lower Bound	Upper Bound
	B4	09016	.12507	1.000	5539	.3736
	C1	-1.00158*	.12507	.000	-1.4653	5378
	C2	.10528	.12507	1.000	3585	.5690
	C3	53588*	.12507	.012	9996	0721
	C4	.17323	.12507	.987	2905	.6370
	D1 D2	15257 23672	.12507 .12507	.996 .861	6163 7005	.3112 .2270
	D2 D3	17865	.12507	.983	6424	.2270
	D3 D4	53008*	.12507	.013	9938	0663
B4	A1	69197*	.12507	.000	-1.1557	2282
	A2	.08546	.12507	1.000	3783	.5492
	A3	.28264	.12507	.652	1811	.7464
	A4	.04770	.12507	1.000	4161	.5115
	B1	.17505	.12507	.986	2887	.6388
	B2	.20879	.12507	.940	2550	.6726
	B3	.09016	.12507	1.000	3736	.5539
	C1	91142 [*]	.12507	.000	-1.3752	4477
	C2	.19544	.12507	.964	2683	.6592
	C3	44572	.12507	.070	9095	.0180
	C4	.26339	.12507	.749	2004	.7271
	D1 D2	06241 14656	.12507 .12507	1.000 .998	5262 6103	.4014 .3172
	D2 D3	08848	.12507	1.000	5522	.3753
	D0 D4	43992	.12507	.077	9037	.0238
C1	A1	.21945	.12507	.915	2443	.6832
	A2	.99688*	.12507	.000	.5331	1.4606
	A3	1.19406 [*]	.12507	.000	.7303	1.6578
	A4	.95911*	.12507	.000	.4954	1.4229
	B1	1.08647 [*]	.12507	.000	.6227	1.5502
	B2	1.12021*	.12507	.000	.6564	1.5840
	B3	1.00158*	.12507	.000	.5378	1.4653
	B4	.91142*	.12507	.000	.4477	1.3752
	C2	1.10686*	.12507	.000	.6431	1.5706
	C3	.46570 [*]	.12507	.048	.0019	.9295
	C4 D1	1.17481 [*] .84901 [*]	.12507 .12507	.000 .000	.7110 .3853	1.6386 1.3128
	D1 D2	.84901 .76486 [*]	.12507	.000	.3055	1.3128
	D2 D3	.82293*	.12507	.000	.3592	1.2260
	D3 D4	.47150*	.12507	.000	.0077	.9353
C2	A1	88741*	.12507	.000	-1.3512	4236
	A2	10998	.12507	1.000	5737	.3538
	A3	.08720	.12507	1.000	3766	.5510
	A4	14775	.12507	.997	6115	.3160
	B1	02039	.12507	1.000	4841	.4434
	B2	.01335	.12507	1.000	4504	.4771

(I) GROUP	(J)	Mean	Std. Error	Sig	95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	B3	10528	.12507	1.000	5690	.3585
	B4	19544	.12507	.964	6592	.2683
	C1	-1.10686*	.12507	.000	-1.5706	6431
	C3	64116*	.12507	.001	-1.1049	1774
	C4	.06795	.12507	1.000	3958	.5317
	D1	25785	.12507	.774	7216	.2059
	D2	34200	.12507	.353	8058	.1218
	D3	28393	.12507	.646	7477	.1798
	D4	63536*	.12507	.001	-1.0991	1716
C3	A1	24625 .53118 [*]	.12507	.824	7100 .0674	.2175
	A2		.12507	.013		.9949
	A3	.72836 [*]	.12507	.000	.2646	1.1921
	A4 B1	.49342 [*] .62077 [*]	.12507 .12507	.028 .002	.0297 .1570	.9572 1.0845
	B1 B2	.62077 .65451 [*]	.12507	.002	.1570	1.0645
	B2 B3	.53588*	.12507	.001	.0721	.9996
	B3 B4	.44572	.12507	.012	0180	.9990
	C1	46570 [*]	.12507	.078	9295	0019
	C2	.64116*	.12507	.001	.1774	1.1049
	C4	.70911*	.12507	.000	.2453	1.1729
	D1	.38331	.12507	.199	0804	.8471
	D2	.29916	.12507	.566	1646	.7629
	D3	.35724	.12507	.289	1065	.8210
	D4	.00580	.12507	1.000	4580	.4696
C4	A1	95536*	.12507	.000	-1.4191	4916
	A2	17793	.12507	.984	6417	.2858
	A3	.01925	.12507	1.000	4445	.4830
	A4	21569	.12507	.925	6795	.2481
	B1	08833	.12507	1.000	5521	.3754
	B2	05460	.12507	1.000	5184	.4092
	B3	17323	.12507	.987	6370	.2905
	B4	26339	.12507	.749	7271	.2004
	C1	-1.17481*	.12507	.000	-1.6386	7110
	C2	06795	.12507	1.000	5317	.3958
	C3	70911*	.12507	.000	-1.1729	2453
	D1	32580	.12507	.429	7896	.1380
	D2	40995	.12507	.130	8737	.0538
	D3	35187	.12507	.311	8156	.1119
D1	D4	70331 [*]	.12507	.000	-1.1671	2395
	A1 A2	62956 [*] .14787	.12507 .12507	.002 .997	-1.0933 3159	1658 .6116
	A2 A3	.14787	.12507	.997 .340	3159 1187	.8088
	A3 A4	.11010	.12507	1.000	1107 3537	.5739
	A4 B1	.23746	.12507	.858	2263	.7012
	B1 B2	.23740	.12507	.000	2203	.7012
I	DΖ	.27120	.12007	./ 11	1920	.7550

(I) GROUP (J)	Mean		C i a	95% Confide	ence Interval
(I) GROUP GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
B3	.15257	.12507	.996	3112	.6163
B4	.06241	.12507	1.000	4014	.5262
C1	84901 [*]	.12507	.000	-1.3128	3853
C2	.25785	.12507	.774	2059	.7216
C3	38331	.12507	.199	8471	.0804
C4	.32580	.12507	.429	1380	.7896
D2	08416	.12507	1.000	5479	.3796
D3	02608	.12507	1.000	4898	.4377
D4	37751	.12507	.217	8413	.0862
D2 A1	54541*	.12507	.010	-1.0092	0816
A2	.23202	.12507	.877	2317	.6958
A3	.42920	.12507	.094	0346	.8930
A4	.19426	.12507	.966	2695	.6580
B1	.32162	.12507	.450	1421	.7854
B2	.35535	.12507	.297	1084	.8191
B3	.23672	.12507	.861	2270	.7005
B4	.14656	.12507	.998	3172	.6103
C1	76486 [*]	.12507	.000	-1.2286	3011
C2	.34200	.12507	.353	1218	.8058
C3	29916	.12507	.566	7629	.1646
C4	.40995	.12507	.130	0538	.8737
D1	.08416	.12507	1.000	3796	.5479
D3	.05808	.12507	1.000	4057	.5218
D4	29336	.12507	.596	7571	.1704
D3 A1	60348 [*]	.12507	.003	-1.0672	1397
A2	.17394	.12507	.987	2898	.6377
A3	.37112	.12507	.238	0926	.8349
A4	.13618	.12507	.999	3276	.5999
B1	.26354	.12507	.748	2002	.7273
B2	.29728	.12507	.576	1665	.7610
B3	.17865	.12507	.983	2851	.6424
B4	.08848	.12507	1.000	3753	.5522
C1	82293 [*]	.12507	.000	-1.2867	3592
C2	.28393	.12507	.646	1798	.7477
C3	35724	.12507	.289	8210	.1065
C4	.35187	.12507	.311	1119	.8156
D1	.02608	.12507	1.000	4377	.4898
D2	05808	.12507	1.000	5218	.4057
D4	35144	.12507	.313	8152	.1123
D4 A1	25205	.12507	.800	7158	.2117
A2	.52538*	.12507	.015	.0616	.9891
A3	.72256*	.12507	.000	.2588	1.1863
A4	.48762*	.12507	.032	.0239	.9514
B1	.61497*	.12507	.002	.1512	1.0787

(I) GROUP	(J)	Mean	Std. Error	Sig.	95% Confide	ence Interval
	GROUP	Difference (I-J)		Siy.	Lower Bound	Upper Bound
	B2	.64871*	.12507	.001	.1850	1.1125
	B3	.53008*	.12507	.013	.0663	.9938
	B4	.43992	.12507	.077	0238	.9037
	C1	47150 [*]	.12507	.043	9353	0077
	C2	.63536*	.12507	.001	.1716	1.0991
	C3	00580	.12507	1.000	4696	.4580
	C4	.70331*	.12507	.000	.2395	1.1671
	D1	.37751	.12507	.217	0862	.8413
	D2	.29336	.12507	.596	1704	.7571
	D3	.35144	.12507	.313	1123	.8152

 ANOVA analysis of the relative ALP activity of RBMSCs induced with FGF2 and insulin

ANOVA

ALP									
	Sum of Squares	df	Mean Square	F	Sig.				
Between Groups	.095	3	.032	72.465	.000				
Within Groups	.003	8	.000						
Total	.098	11							

Multiple Comparisons

ALP	
Tukey	HSD

		Mean	Std.		95% Confide	ence Interval
(I) GROUP	(J) GROUP	Difference (I-J)	Error	Sig.	Lower Bound	Upper Bound
2%FBS	FGF2	10818*	.01705	.001	1628	0536
	INSULIN	17191 [*]	.01705	.000	2265	1173
	FGF2+INSULIN	.05489*	.01705	.049	.0003	.1095
FGF2	2%FBS	.10818*	.01705	.001	.0536	.1628
	INSULIN	06373 [*]	.01705	.024	1183	0091
	FGF2+INSULIN	.16307*	.01705	.000	.1085	.2177
INSULIN	2%FBS	.17191 [*]	.01705	.000	.1173	.2265
	FGF2	.06373*	.01705	.024	.0091	.1183
	FGF2+INSULIN	.22680*	.01705	.000	.1722	.2814
FGF2	2%FBS	05489 [*]	.01705	.049	1095	0003
+INSULIN	FGF2	16307*	.01705	.000	2177	1085
	INSULIN	22680 [*]	.01705	.000	2814	1722

*. The mean difference is significant at the 0.05 level.

 ANOVA analysis of the relative ALP activity of sequentially induced RBMSCs using FGF2/insulin followed by BMPs

ANOVA

ALP					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.840	15	.056	296.570	.000
Within Groups	.006	32	.000		
Total	.846	47			

Multiple Comparisons

ALP Tukey HSD

(I) GROUP	(J)	Mean	Std. Error	Sig.	95% Confid	ence Interval
(I) GROUF	GROUP	Difference (I-J)	-J)	Sig.	Lower Bound	Upper Bound
A1	A2	06260 [*]	.01122	.000	1042	0210
	A3	10010 [*]	.01122	.000	1417	0585
	A4	09146 [*]	.01122	.000	1331	0499
	B1	27270 [*]	.01122	.000	3143	2311
	B2	17759 [*]	.01122	.000	2192	1360
	B3	35610 [*]	.01122	.000	3977	3145
	B4	27365 [*]	.01122	.000	3152	2321
	C1	09926 [*]	.01122	.000	1409	0577
	C2	24529 [*]	.01122	.000	2869	2037
	C3	30870 [*]	.01122	.000	3503	2671
	C4	23315 [*]	.01122	.000	2747	1916
	D1	.12950*	.01122	.000	.0879	.1711
	D2	00429	.01122	1.000	0459	.0373
	D3	00424	.01122	1.000	0458	.0374
	D4	05140 [*]	.01122	.005	0930	0098
A2	A1	.06260*	.01122	.000	.0210	.1042
	A3	03750	.01122	.113	0791	.0041
	A4	02886	.01122	.449	0705	.0127
	B1	21010*	.01122	.000	2517	1685
	B2	11498*	.01122	.000	1566	0734
	B3	29350 [*]	.01122	.000	3351	2519
	B4	21104*	.01122	.000	2526	1695
	C1	03666	.01122	.133	0782	.0049
	C2	18269 [*]	.01122	.000	2243	1411
	C3	24610 [*]	.01122	.000	2877	2045
	C4 D1	17055 [*] .19211 [*]	.01122 .01122	.000 .000	2121 .1505	1290 .2337
	D1 D2	.19211 .05831*	.01122	.000	.1505 .0167	.2337 .0999
	D2 D3	.05836*	.01122	.001	.0167	.1000
	50	.05630	.01122	.001	.0100	.1000

(I) GROUP	(J)	Mean	Std. Error	Sig	95% Confid	95% Confidence Interval		
(I) GROUP	GROUP	Difference (I-J)	Slu. Enor	Sig.	Lower Bound	Upper Bound		
	D4	.01120	.01122	1.000	0304	.0528		
A3	A1	.10010*	.01122	.000	.0585	.1417		
	A2	.03750	.01122	.113	0041	.0791		
	A4	.00864	.01122	1.000	0330	.0502		
	B1	17260*	.01122	.000	2142	1310		
	B2	07749*	.01122	.000	1191	0359		
	B3	25600*	.01122	.000	2976	2144		
	B4	17355*	.01122	.000	2151	1320		
	C1	.00084	.01122	1.000	0408	.0424		
	C2	14519*	.01122	.000	1868	1036		
	C3	20860*	.01122	.000	2502	1670		
	C4	13305*	.01122	.000	1746	0915		
	D1	.22960*	.01122	.000	.1880	.2712		
	D2	.09581*	.01122	.000	.0542	.1374		
	D3	.09586*	.01122	.000	.0543	.1375		
	D4	.04869*	.01122	.010	.0071	.0903		
A4	A1	.09146*	.01122	.000	.0499	.1331		
	A2	.02886	.01122	.449	0127	.0705		
	A3	00864	.01122	1.000	0502	.0330		
	B1	18124*	.01122	.000	2228	1396		
	B2	08612*	.01122	.000	1277	0445		
	B3	26464*	.01122	.000	3062	2230		
	B4	18219*	.01122	.000	2238	1406		
	C1	00780	.01122	1.000	0494	.0338		
	C2	15383*	.01122	.000	1954	1122		
	C3	21724 [*]	.01122	.000	2588	1756		
	C4	14169 [*]	.01122	.000	1833	1001		
	D1	.22097*	.01122	.000	.1794	.2626		
	D2	.08717*	.01122	.000	.0456	.1288		
	D3 D4	.08722 [*] .04006	.01122 .01122	.000 .069	.0456 0015	.1288 .0816		
B1	A1	.04000	.01122	.009	.2311	.0010		
ы	A2	.21010*	.01122	.000	.1685	.2517		
	A3	.17260*	.01122	.000	.1310	.2142		
	A3 A4	.18124*	.01122	.000	.1396	.2142		
	B2	.09511*	.01122	.000	.0535	.1367		
	B3	08340*	.01122	.000	1250	0418		
	B3 B4	00095	.01122	1.000	0425	.0416		
	C1	.17344*	.01122	.000	.1318	.0400		
	C2	.02741	.01122	.532	0142	.0690		
	C3	03600	.01122	.150	0776	.0056		
	C4	.03955	.01122	.076	0020	.0811		
	D1	.40220*	.01122	.070	.3606	.4438		
	D1 D2	.26841*	.01122	.000	.2268	.3100		
	D3	.26846*	.01122	.000	.2269	.3101		
	50	.20040	.01122	.000	.2209	.5101		

(I) GROUP	(J)	Mean	Std. Error	Sig	95% Confid	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	D4	.22129*	.01122	.000	.1797	.2629
B2	A1	.17759*	.01122	.000	.1360	.2192
	A2	.11498 [*]	.01122	.000	.0734	.1566
	A3	.07749*	.01122	.000	.0359	.1191
	A4	.08612*	.01122	.000	.0445	.1277
	B1	09511*	.01122	.000	1367	0535
	B3	17852 [*]	.01122	.000	2201	1369
	B4	09606 [*]	.01122	.000	1377	0545
	C1	.07833*	.01122	.000	.0367	.1199
	C2	06771 [*]	.01122	.000	1093	0261
	C3	13111 [*]	.01122	.000	1727	0895
	C4	05556*	.01122	.002	0972	0140
	D1	.30709 [*]	.01122	.000	.2655	.3487
	D2 D3	.17329 [*] .17335 [*]	.01122 .01122	.000 .000	.1317 .1318	.2149 .2149
	D3 D4	.17335 .12618 [*]	.01122	.000	.1318 .0846	
B3	A1	.35610*	.01122	.000	.0040	.1678 .3977
5	A2	.29350*	.01122	.000	.2519	.3351
	A3	.25600*	.01122	.000	.2144	.2976
	A4	.26464*	.01122	.000	.2230	.3062
	B1	.08340*	.01122	.000	.0418	.1250
	B2	.17852*	.01122	.000	.1369	.2201
	B4	.08246*	.01122	.000	.0409	.1240
	C1	.25684*	.01122	.000	.2153	.2984
	C2	.11081 [*]	.01122	.000	.0692	.1524
	C3	.04740*	.01122	.014	.0058	.0890
	C4	.12295*	.01122	.000	.0814	.1645
	D1	.48561*	.01122	.000	.4440	.5272
	D2	.35181 [*]	.01122	.000	.3102	.3934
	D3	.35186*	.01122	.000	.3103	.3935
	D4	.30470*	.01122	.000	.2631	.3463
B4	A1	.27365*	.01122	.000	.2321	.3152
	A2	.21104 [*]	.01122	.000	.1695	.2526
	A3	.17355*	.01122	.000	.1320	.2151
	A4	.18219 [*]	.01122	.000	.1406	.2238
	B1	.00095	.01122	1.000	0406	.0425
	B2	.09606*	.01122	.000	.0545	.1377
	B3	08246*	.01122	.000	1240	0409
	C1	.17439*	.01122	.000	.1328	.2160
	C2	.02835	.01122	.477	0132	.0699
	C3	03505	.01122	.177	0766	.0065
	C4	.04050	.01122	.063	0011	.0821
	D1	.40315*	.01122	.000	.3616	.4447
	D2	.26935*	.01122	.000	.2278	.3109
	D3	.26941*	.01122	.000	.2278	.3110

(I) GROUP	(J)	Mean	Otd. Error	Cia	95% Confid	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	D4	.22224*	.01122	.000	.1807	.2638
C1	A1	.09926*	.01122	.000	.0577	.1409
	A2	.03666	.01122	.133	0049	.0782
	A3	00084	.01122	1.000	0424	.0408
	A4	.00780	.01122	1.000	0338	.0494
	B1	17344*	.01122	.000	2150	1318
	B2	07833 [*]	.01122	.000	1199	0367
	B3	25684 [*]	.01122	.000	2984	2153
	B4	17439 [*]	.01122	.000	2160	1328
	C2 C3	14603 [*] 20944 [*]	.01122 .01122	.000 .000	1876 2510	1044 1678
	C3 C4	13389 [*]	.01122	.000	1755	0923
	D1	.22876*	.01122	.000	.1872	.2704
	D2	.09497*	.01122	.000	.0534	.1366
	D3	.09502*	.01122	.000	.0534	.1366
	D4	.04786*	.01122	.013	.0063	.0894
C2	A1	.24529*	.01122	.000	.2037	.2869
	A2	.18269*	.01122	.000	.1411	.2243
	A3	.14519*	.01122	.000	.1036	.1868
	A4	.15383*	.01122	.000	.1122	.1954
	B1	02741	.01122	.532	0690	.0142
	B2	.06771*	.01122	.000	.0261	.1093
	B3	11081 [*]	.01122	.000	1524	0692
	B4	02835	.01122	.477	0699	.0132
	C1	.14603 [*]	.01122	.000	.1044	.1876
	C3	06341*	.01122	.000	1050	0218
	C4	.01214	.01122	.999	0294	.0537
	D1	.37480*	.01122	.000	.3332	.4164
	D2	.24100*	.01122	.000	.1994	.2826
	D3	.24105 [*]	.01122	.000	.1995	.2826
C3	D4 A1	.19389 [*] .30870 [*]	.01122	.000	.1523 .2671	.2355
03	A1 A2	.24610 [*]	.01122	.000	.2071	.3503 .2877
	A3	.20860*	.01122	.000	.1670	.2502
	A4	.21724*	.01122	.000	.1756	.2588
	B1	.03600	.01122	.150	0056	.0776
	B2	.13111*	.01122	.000	.0895	.1727
	B3	04740 [*]	.01122	.014	0890	0058
	B4	.03505	.01122	.177	0065	.0766
	C1	.20944*	.01122	.000	.1678	.2510
	C2	.06341*	.01122	.000	.0218	.1050
	C4	.07555*	.01122	.000	.0340	.1171
	D1	.43820*	.01122	.000	.3966	.4798
	D2	.30441*	.01122	.000	.2628	.3460
	D3	.30446*	.01122	.000	.2629	.3461

	(J)	Mean		Cia	95% Confid	95% Confidence Interval		
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound		
	D4	.25730*	.01122	.000	.2157	.2989		
C4	A1	.23315*	.01122	.000	.1916	.2747		
	A2	.17055 [*]	.01122	.000	.1290	.2121		
	A3	.13305*	.01122	.000	.0915	.1746		
	A4	.14169*	.01122	.000	.1001	.1833		
	B1	03955	.01122	.076	0811	.0020		
	B2	.05556*	.01122	.002	.0140	.0972		
	B3	12295*	.01122	.000	1645	0814		
	B4 C1	04050 .13389 [*]	.01122 .01122	.063 .000	0821 .0923	.0011 .1755		
	C1 C2	01214	.01122	.000	0537	.0294		
	C2 C3	07555 [*]	.01122	.000	0337	0340		
	D1	.36265*	.01122	.000	.3211	.4042		
	D2	.22886*	.01122	.000	.1873	.2704		
	D3	.22891*	.01122	.000	.1873	.2705		
	D4	.18174 [*]	.01122	.000	.1402	.2233		
D1	A1	12950 [*]	.01122	.000	1711	0879		
	A2	19211 [*]	.01122	.000	2337	1505		
	A3	22960 [*]	.01122	.000	2712	1880		
	A4	22097*	.01122	.000	2626	1794		
	B1	40220*	.01122	.000	4438	3606		
	B2	30709 [*]	.01122	.000	3487	2655		
	B3	48561*	.01122	.000	5272	4440		
	B4	40315*	.01122	.000	4447	3616		
	C1	22876*	.01122	.000	2704	1872		
	C2	37480*	.01122	.000	4164	3332		
	C3	43820 [*]	.01122	.000	4798	3966		
	C4	36265 [*]	.01122	.000	4042	3211		
	D2 D3	13380 [*] 13374 [*]	.01122 .01122	.000 .000	1754 1753	0922 0921		
	D3 D4	13374 18091 [*]	.01122	.000	1755	0921		
D2	A1	.00429	.01122	1.000	0373	.0459		
52	A2	05831*	.01122	.001	0999	0167		
	A3	09581*	.01122	.000	1374	0542		
	A4	08717*	.01122	.000	1288	0456		
	B1	26841 [*]	.01122	.000	3100	2268		
	B2	17329 [*]	.01122	.000	2149	1317		
	B3	35181 [*]	.01122	.000	3934	3102		
	B4	26935 [*]	.01122	.000	3109	2278		
	C1	09497*	.01122	.000	1366	0534		
	C2	24100 [*]	.01122	.000	2826	1994		
	C3	30441 [*]	.01122	.000	3460	2628		
	C4	22886*	.01122	.000	2704	1873		
	D1	.13380*	.01122	.000	.0922	.1754		
	D3	.00005	.01122	1.000	0415	.0416		

(I) GROUP (J)		Mean	Std. Error Sig.	95% Confid	ence Interval	
(I) GROOP	GROUP	Difference (I-J)	Sid. Ellor Sig.	Lower Bound	Upper Bound	
	D4	04711*	.01122	.015	0887	0055
D3	A1	.00424	.01122	1.000	0374	.0458
	A2	05836*	.01122	.001	1000	0168
	A3	09586*	.01122	.000	1375	0543
	A4	08722 [*]	.01122	.000	1288	0456
	B1	26846 [*]	.01122	.000	3101	2269
	B2	17335 [*]	.01122	.000	2149	1318
	B3	35186 [*]	.01122	.000	3935	3103
	B4	26941 [*]	.01122	.000	3110	2278
	C1	09502 [*]	.01122	.000	1366	0534
	C2	24105	.01122	.000	2826	1995
	C3	30446*	.01122	.000	3461	2629
	C4	22891*	.01122	.000	2705	1873
	D1	.13374 [*]	.01122	.000	.0921	.1753
	D2	00005	.01122	1.000	0416	.0415
	D4	04717*	.01122	.015	0888	0056
	A1	.05140*	.01122	.005	.0098	.0930
	A2	01120	.01122	1.000	0528	.0304
	A3	04869*	.01122	.010	0903	0071
	A4	04006	.01122	.069	0816	.0015
	B1	22129 [*]	.01122	.000	2629	1797
	B2	12618 [*]	.01122	.000	1678	0846
	B3	30470 [*]	.01122	.000	3463	2631
	B4	22224*	.01122	.000	2638	1807
	C1	04786 [*]	.01122	.013	0894	0063
	C2	19389*	.01122	.000	2355	1523
	C3	25730 [*]	.01122	.000	2989	2157
	C4	18174 [*]	.01122	.000	2233	1402
	D1	.18091*	.01122	.000	.1393	.2225
	D1 D2	.04711*	.01122	.000	.0055	.0887
	D2 D3					
		.04717 [*]	.01122	.015	.0056	.0888

9. ANOVA analysis of the relative calcium deposition of RBMSCs induced with FGF2 and insulin

ARS					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	2.036	3	.679	77.961	.000
Within Groups	.070	8	.009		
Total	2.106	11			

Multiple Comparisons

ARS	
Tukey	HSD

		Mean	Otd Freeze	<u>Cir</u>	95% Cor Inte	
(I) GROUP	(J) GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
2%FBS	FGF2	90466*	.07618	.000	-1.1486	6607
	INSULIN	-1.01109*	.07618	.000	-1.2551	7671
	FGF2+INSULIN	92461 [*]	.07618	.000	-1.1686	6806
FGF2	2%FBS	.90466*	.07618	.000	.6607	1.1486
	INSULIN	10643	.07618	.534	3504	.1375
	FGF2+INSULIN	01996	.07618	.993	2639	.2240
INSULIN	2%FBS	1.01109*	.07618	.000	.7671	1.2551
	FGF2	.10643	.07618	.534	1375	.3504
	FGF2+INSULIN	.08647	.07618	.680	1575	.3304
FGF2+INSULIN	2%FBS	.92461*	.07618	.000	.6806	1.1686
	FGF2	.01996	.07618	.993	2240	.2639
	INSULIN	08647	.07618	.680	3304	.1575

*. The mean difference is significant at the 0.05 level.

10. ANOVA analysis of the relative calcium deposition of sequentially induced RBMSCs using FGF2/insulin followed by BMPs

ANOVA

ARS					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	5.918	15	.395	31.131	.000
Within Groups	.406	32	.013		
Total	6.324	47			

Multiple Comparisons

ARS	
Tukey	HSD

	(J)	Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
A1 A2	2	-1.53659*	.09192	.000	-1.8774	-1.1957
A	3	-1.48337*	.09192	.000	-1.8242	-1.1425
A	4	-1.10421 [*]	.09192	.000	-1.4451	7634
В	1	65188 [*]	.09192	.000	9927	3110
B	2	90466*	.09192	.000	-1.2455	5638
B	3	82483 [*]	.09192	.000	-1.1657	4840
B	4	78492 [*]	.09192	.000	-1.1258	4441

(L)		Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
(C1	71840 [*]	.09192	.000	-1.0593	3776
C	22	-1.01109 [*]	.09192	.000	-1.3519	6702
C	23	-1.17738 [*]	.09192	.000	-1.5182	8365
C	C4	99778 [*]	.09192	.000	-1.3386	6569
[01	70510 [*]	.09192	.000	-1.0460	3642
[02	92461 [*]	.09192	.000	-1.2655	5838
	03	88470 [*]	.09192	.000	-1.2256	5439
	04	54545*	.09192	.000	8863	2046
	\ 1	1.53659*	.09192	.000	1.1957	1.8774
	43	.05322	.09192	1.000	2876	.3941
	4	.43237*	.09192	.004	.0915	.7732
E	31	.88470 [*]	.09192	.000	.5439	1.2256
E	32	.63193 [*]	.09192	.000	.2911	.9728
E	33	.71175*	.09192	.000	.3709	1.0526
E	34	.75166*	.09192	.000	.4108	1.0925
C	21	.81818 [*]	.09192	.000	.4773	1.1590
C	22	.52550*	.09192	.000	.1846	.8663
C	23	.35920*	.09192	.031	.0184	.7001
	C4	.53880*	.09192	.000	.1980	.8797
	D1	.83149 [*]	.09192	.000	.4906	1.1723
	02	.61197*	.09192	.000	.2711	.9528
	03	.65188*	.09192	.000	.3110	.9927
	D4	.99113*	.09192	.000	.6503	1.3320
	\1	1.48337*	.09192	.000	1.1425	1.8242
	\ 2	05322	.09192	1.000	3941	.2876
	\ 4	.37916*	.09192	.018	.0383	.7200
	31	.83149*	.09192	.000	.4906	1.1723
	32	.57871*	.09192	.000	.2379	.9196
	33	.65854*	.09192	.000	.3177	.9994
	34	.69845 [*] .76497 [*]	.09192	.000	.3576	1.0393
	C1 C2		.09192	.000	.4241	1.1058
	52 03	.47228 [*] .30599	.09192 .09192	.001 .117	.1314 0349	.8131 .6468
	23 C4	.48559*	.09192	.001	.1447	.8264
	54 D1	.77827*	.09192	.000	.1447 .4374	1.1191
	02	.55876*	.09192	.000	.4374	.8996
	02 03	.59867*	.09192	.000	.2179	.9395
	03 04	.93792*	.09192	.000	.2378	1.2788
	\1	1.10421*	.09192	.000	.7634	1.4451
	\2 \2	43237*	.09192	.000	7732	0915
	\2 \3	37916*	.09192	.018	7200	0383
	31	.45233*	.09192	.002	.1115	.7932
	32	.19956	.09192	.709	1413	.5404
	33	.27938	.09192	.209	0615	.6202

(J)		Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	B4	.31929	.09192	.085	0216	.6601
	C1	.38581*	.09192	.015	.0450	.7267
	C2	.09313	.09192	1.000	2477	.4340
	C3	07317	.09192	1.000	4140	.2677
	C4	.10643	.09192	.998	2344	.4473
	D1	.39911*	.09192	.010	.0583	.7400
	D2	.17960	.09192	.832	1612	.5205
	D3	.21951	.09192	.568	1213	.5604
D4	D4	.55876*	.09192	.000	.2179	.8996
B1	A1 A2	.65188 [*]	.09192	.000	.3110	.9927
	A2 A3	88470 [*] 83149 [*]	.09192 .09192	.000 .000	-1.2256 -1.1723	5439
	A3 A4	45233 [*]	.09192	.000	-1.1723 7932	4906 1115
	B2	25277	.09192	.345	5936	.0881
	B3	17295	.09192	.866	5138	.1679
	B4	13304	.09192	.981	4739	.2078
	C1	06652	.09192	1.000	4074	.2743
	C2	35920*	.09192	.031	7001	0184
	C3	52550 [*]	.09192	.000	8663	1846
	C4	34590 [*]	.09192	.044	6867	0050
	D1	05322	.09192	1.000	3941	.2876
	D2	27273	.09192	.238	6136	.0681
	D3	23282	.09192	.474	5737	.1080
	D4	.10643	.09192	.998	2344	.4473
B2	A1	.90466*	.09192	.000	.5638	1.2455
	A2	63193 [*]	.09192	.000	9728	2911
	A3	57871 [*]	.09192	.000	9196	2379
	A4	19956	.09192	.709	5404	.1413
	B1	.25277	.09192	.345	0881	.5936
	B3	.07982	.09192	1.000	2610	.4207
	B4	.11973	.09192	.993	2211	.4606
	C1	.18625	.09192	.794	1546	.5271
	C2	10643	.09192	.998	4473	.2344
	C3	27273	.09192	.238	6136	.0681
	C4 D1	09313 .19956	.09192 .09192	1.000 .709	4340 1413	.2477 .5404
	D1 D2	019950	.09192	1.000	1413	.3209
	D2 D3	.01996	.09192	1.000	3209	.3209
	D3 D4	.35920*	.09192	.031	.0184	.7001
B3	A1	.82483*	.09192	.000	.4840	1.1657
	A2	71175*	.09192	.000	-1.0526	3709
	A3	65854*	.09192	.000	9994	3177
	A4	27938	.09192	.209	6202	.0615
	B1	.17295	.09192	.866	1679	.5138
	B2	07982	.09192	1.000	4207	.2610

	(J)	Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	B4	.03991	.09192	1.000	3009	.3808
	C1	.10643	.09192	.998	2344	.4473
	C2	18625	.09192	.794	5271	.1546
	C3	35255 [*]	.09192	.037	6934	0117
	C4	17295	.09192	.866	5138	.1679
	D1	.11973	.09192	.993	2211	.4606
	D2	09978	.09192	.999	4406	.2411
	D3	05987	.09192	1.000	4007	.2810
	D4	.27938	.09192	.209	0615	.6202
B4	A1	.78492*	.09192	.000	.4441	1.1258
	A2	75166 [*]	.09192	.000	-1.0925	4108
	A3	69845*	.09192	.000	-1.0393	3576
	A4	31929	.09192	.085	6601	.0216
	B1	.13304	.09192	.981	2078	.4739
	B2	11973	.09192	.993	4606	.2211
	B3	03991	.09192	1.000	3808	.3009 .4074
	C1 C2	.06652 22616	.09192 .09192	1.000 .521	2743 5670	.4074 .1147
	C2 C3	39246 [*]	.09192	.012	7333	0516
	C3 C4	21286	.09192	.616	75537	.1280
	D1	.07982	.09192	1.000	2610	.4207
	D1 D2	13969	.09192	.971	4805	.2012
	D3	09978	.09192	.999	4406	.2411
	D4	.23947	.09192	.429	1014	.5803
C1	A1	.71840 [*]	.09192	.000	.3776	1.0593
	A2	81818 [*]	.09192	.000	-1.1590	4773
	A3	76497 [*]	.09192	.000	-1.1058	4241
	A4	38581 [*]	.09192	.015	7267	0450
	B1	.06652	.09192	1.000	2743	.4074
	B2	18625	.09192	.794	5271	.1546
	B3	10643	.09192	.998	4473	.2344
	B4	06652	.09192	1.000	4074	.2743
	C2	29268	.09192	.157	6335	.0482
	C3	45898 [*]	.09192	.002	7998	1181
	C4	27938	.09192	.209	6202	.0615
	D1	.01330	.09192	1.000	3275	.3542
	D2	20621	.09192	.663	5471	.1346
	D3	16630	.09192	.895	5071	.1746
	D4	.17295	.09192	.866	1679	.5138
C2	A1	1.01109*	.09192	.000	.6702	1.3519
	A2	52550 [*]	.09192	.000	8663	1846
	A3	47228*	.09192	.001	8131	1314
	A4	09313	.09192	1.000	4340	.2477
	B1	.35920*	.09192	.031	.0184	.7001
	B2	.10643	.09192	.998	2344	.4473

(J)		Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	B3	.18625	.09192	.794	1546	.5271
	B4	.22616	.09192	.521	1147	.5670
	C1	.29268	.09192	.157	0482	.6335
	C3	16630	.09192	.895	5071	.1746
	C4	.01330	.09192	1.000	3275	.3542
	D1	.30599	.09192	.117	0349	.6468
	D2	.08647	.09192	1.000	2544	.4273
	D3 D4	.12639 .46563 [*]	.09192 .09192	.988 .001	2145 .1248	.4672 .8065
C3	A1	1.17738*	.09192	.001	.1240	1.5182
00	A2	35920 [*]	.09192	.000	7001	0184
	A3	30599	.09192	.117	6468	.0349
	A4	.07317	.09192	1.000	2677	.4140
	B1	.52550*	.09192	.000	.1846	.8663
	B2	.27273	.09192	.238	0681	.6136
	B3	.35255*	.09192	.037	.0117	.6934
	B4	.39246*	.09192	.012	.0516	.7333
	C1	.45898*	.09192	.002	.1181	.7998
	C2	.16630	.09192	.895	1746	.5071
	C4	.17960	.09192	.832	1612	.5205
	D1	.47228 [*]	.09192	.001	.1314	.8131
	D2	.25277	.09192	.345	0881	.5936
	D3	.29268	.09192	.157	0482	.6335
C4	D4 A1	.63193 [*] .99778 [*]	.09192 .09192	.000 .000	.2911 .6569	.9728 1.3386
64	A1 A2	53880 [*]	.09192	.000	8797	1980
	A3	48559 [*]	.09192	.000	8264	1447
	A4	10643	.09192	.998	4473	.2344
	B1	.34590 [*]	.09192	.044	.0050	.6867
	B2	.09313	.09192	1.000	2477	.4340
	B3	.17295	.09192	.866	1679	.5138
	B4	.21286	.09192	.616	1280	.5537
	C1	.27938	.09192	.209	0615	.6202
	C2	01330	.09192	1.000	3542	.3275
	C3	17960	.09192	.832	5205	.1612
	D1	.29268	.09192	.157	0482	.6335
	D2	.07317	.09192	1.000	2677	.4140
	D3	.11308 45022*	.09192	.996	2278	.4539
D1	D4	.45233 [*] 70510 [*]	.09192	.002	.1115	.7932
	A1 A2	.70510 [*] 83149 [*]	.09192 .09192	.000 .000	.3642 -1.1723	1.0460 4906
	A2 A3	83149 77827 [*]	.09192	.000	-1.1723	4900
	A3 A4	39911 [*]	.09192	.000	7400	0583
	B1	.05322	.09192	1.000	2876	.3941
	B2	19956	.09192	.709	5404	.1413

(J)	Mean			95% Confide	ence Interval
(I) GROUP GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
B3	11973	.09192	.993	4606	.2211
B4	07982	.09192	1.000	4207	.2610
C1	01330	.09192	1.000	3542	.3275
C2	30599	.09192	.117	6468	.0349
C3	47228 [*]	.09192	.001	8131	1314
C4	29268	.09192	.157	6335	.0482
D2	21951	.09192	.568	5604	.1213
D3	17960	.09192	.832	5205	.1612
D4	.15965	.09192	.921	1812	.5005
D2 A1	.92461*	.09192	.000	.5838	1.2655
A2	61197 [*]	.09192	.000	9528	2711
A3	55876 [*]	.09192	.000	8996	2179
A4	17960	.09192	.832	5205	.1612
B1	.27273	.09192	.238	0681	.6136
B2	.01996	.09192	1.000	3209	.3608
B3	.09978	.09192	.999	2411	.4406
B4	.13969	.09192	.971	2012	.4805
C1	.20621	.09192	.663	1346	.5471
C2	08647	.09192	1.000	4273	.2544
C3	25277	.09192	.345	5936	.0881
C4	07317	.09192	1.000	4140	.2677
D1	.21951	.09192	.568	1213	.5604
D3	.03991	.09192	1.000	3009	.3808
D4	.37916*	.09192	.018	.0383	.7200
D3 A1	.88470*	.09192	.000	.5439	1.2256
A2	65188 [*]	.09192	.000	9927	3110
A3	59867*	.09192	.000	9395	2578
A4	21951	.09192	.568	5604	.1213
B1	.23282	.09192	.474	1080	.5737
B2	01996	.09192	1.000	3608	.3209
B3	.05987	.09192	1.000	2810	.4007
B4	.09978	.09192	.999	2411	.4406
C1	.16630	.09192	.895	1746	.5071
C2	12639	.09192	.988	4672	.2145
C3	29268	.09192	.157	6335	.0482
C4	11308	.09192	.996	4539	.2278
D1	.17960	.09192	.832	1612	.5205
D2	03991	.09192	1.000	3808	.3009
D4	.33925	.09192	.052	0016	.6801
D4 A1	.54545*	.09192	.000	.2046	.8863
A2	99113 [*]	.09192	.000	-1.3320	6503
A3	93792 [*]	.09192	.000	-1.2788	5971
A4	55876 [*]	.09192	.000	8996	2179
B1	10643	.09192	.000	4473	.2344
Bil	10643	.09192	.998	44/3	.2344

	(J)	Mean			95% Confide	ence Interval
(I) GROUP	GROUP	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	B2	35920*	.09192	.031	7001	0184
	B3	27938	.09192	.209	6202	.0615
	B4	23947	.09192	.429	5803	.1014
	C1	17295	.09192	.866	5138	.1679
	C2	46563 [*]	.09192	.001	8065	1248
	C3	63193 [*]	.09192	.000	9728	2911
	C4	45233 [*]	.09192	.002	7932	1115
	D1	15965	.09192	.921	5005	.1812
	D2	37916 [*]	.09192	.018	7200	0383
	D3	33925	.09192	.052	6801	.0016

11. ANOVA analysis of the relative BMP2 secretion of proliferative induced RBMSCs.

ANOVA

BMP2					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.715	7	.102	132.739	.000
Within Groups	.012	16	.001		
Total	.727	23			

Multiple Comparisons

BMP2 Tukey HSD

		Mean	Std.		95% Confide	ence Interval
(I) G4	(J) G4	Difference	Error	Sig.	Lower	Upper
		(I-J)	LIIO		Bound	Bound
2%FBS 24h	FGF2 24h	08619 [*]	.02265	.026	1646	0078
	INSULIN 24h	25316 [*]	.02265	.000	3316	1748
	FGF2+INSULIN 24h	09588 [*]	.02265	.011	1743	0175
	2%FBS 72h	.29549*	.02265	.000	.2171	.3739
	FGF2 72h	.10980*	.02265	.003	.0314	.1882
	INSULIN 72h	.10138*	.02265	.007	.0230	.1798
	FGF2+INSULIN 72h	.24603*	.02265	.000	.1676	.3244
FGF2 24h	2%FBS 24h	.08619*	.02265	.026	.0078	.1646
	INSULIN 24h	16697 [*]	.02265	.000	2454	0886
	FGF2+INSULIN 24h	00969	.02265	1.000	0881	.0687
	2%FBS 72h	.38169*	.02265	.000	.3033	.4601
	FGF2 72h	.19600*	.02265	.000	.1176	.2744
	INSULIN 72h	.18757*	.02265	.000	.1092	.2660
	FGF2+INSULIN 72h	.33222*	.02265	.000	.2538	.4106

		Mean	011		95% Confidence Interva		
(I) G4 (J) G4		Difference	Std. Error	Sig.	Lower	Upper	
		(I-J)	EIIOI		Bound	Bound	
INSULIN 24h	2%FBS 24h	.25316 [*]	.02265	.000	.1748	.3316	
	FGF2 24h	.16697*	.02265	.000	.0886	.2454	
	FGF2+INSULIN 24h	.15728*	.02265	.000	.0789	.2357	
	2%FBS 72h	.54866 [*]	.02265	.000	.4702	.6271	
	FGF2 72h	.36297*	.02265	.000	.2846	.4414	
	INSULIN 72h	.35454*	.02265	.000	.2761	.4330	
	FGF2+INSULIN 72h	.49919 [*]	.02265	.000	.4208	.5776	
FGF2	2%FBS 24h	.09588*	.02265	.011	.0175	.1743	
+INSULIN 24h	FGF2 24h	.00969	.02265	1.000	0687	.0881	
	INSULIN 24h	15728 [*]	.02265	.000	2357	0789	
	2%FBS 72h	.39138*	.02265	.000	.3130	.4698	
	FGF2 72h	.20569*	.02265	.000	.1273	.2841	
	INSULIN 72h	.19726 [*]	.02265	.000	.1189	.2757	
	FGF2+INSULIN 72h	.34191*	.02265	.000	.2635	.4203	
2%FBS 72h	2%FBS 24h	29549 [*]	.02265	.000	3739	2171	
	FGF2 24h	38169 [*]	.02265	.000	4601	3033	
	INSULIN 24h	54866*	.02265	.000	6271	4702	
	FGF2+INSULIN 24h	39138 [*]	.02265	.000	4698	3130	
	FGF2 72h	18569 [*]	.02265	.000	2641	1073	
	INSULIN 72h	19412 [°]	.02265	.000	2725	1157	
	FGF2+INSULIN 72h	04946	.02265	.409	1279	.0289	
FGF2 72h	2%FBS 24h	10980 [*]	.02265	.003	1882	0314	
	FGF2 24h	19600 [*]	.02265	.000	2744	1176	
	INSULIN 24h	36297 [*]	.02265	.000	4414	2846	
	FGF2+INSULIN 24h	20569 [*]	.02265	.000	2841	1273	
	2%FBS 72h	.18569*	.02265	.000	.1073	.2641	
	INSULIN 72h FGF2+INSULIN 72h	00843	.02265	1.000	0868	.0700	
INSULIN 72h	2%FBS 24h	.13623 [*] 10138 [*]	.02265	.000	.0578 1798	.2146	
INSULIN 721	FGF2 24h	10136 18757 [*]	.02265	.007	1798 2660	0230	
	INSULIN 24h	35454 [*]	.02265	.000	2000	1092	
	FGF2+INSULIN 24h	19726 [*]	.02265	.000	4350	1189	
	2%FBS 72h	.19412 [*]	.02265	.000	.1157	.2725	
	FGF2 72h	.00843	.02265	1.000	0700	.0868	
	FGF2+INSULIN 72h	.14465*	.02265	.000	.0662	.2231	
FGF2	2%FBS 24h	24603 [*]	.02265	.000	3244	1676	
+INSULIN 72h		33222 [*]	.02265	.000	4106	2538	
	INSULIN 24h	49919 [*]	.02265	.000	5776	4208	
	FGF2+INSULIN 24h	34191 [*]	.02265	.000	4203	2635	
	2%FBS 72h	.04946	.02265	.409	0289	.1279	
	FGF2 72h	13623 [*]	.02265	.000	2146	0578	
	INSULIN 72h ference is significant a	14465 [*]	.02265	.000	2231	0662	

12. ANOVA analysis of the relative luciferase activity of FGF2 and/or insulin induced RBMSCs

ANOVA								
		Sum of Squares	df	Mean Square	F	Sig.		
RUNX2_N	Between Groups	27.752	3	9.251	299.401	.000		
	Within Groups	.247	8	.031				
	Total	27.999	11					
RUNX2_F	Between Groups	3.322	3	1.107	150.527	.000		
	Within Groups	.059	8	.007				
	Total	3.381	11					
AP1X5	Between Groups	1.943	3	.648	19.193	.001		
	Within Groups	.270	8	.034				
	Total	2.213	11					
SRYX5	Between Groups	.565	3	.188	13.119	.002		
	Within Groups	.115	8	.014				
	Total	.680	11					

ANOVA

Multiple Comparisons

Tukey HSD							
Dependent Variable	(I) GROUP	(J) GROUP	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	
						Lower Bound	Upper Bound
RUNX2_N	2%FBS	FGF2	.41287	.14352	.079	0467	.8725
		INSULIN	-3.05741 [*]	.14352	.000	-3.5170	-2.5978
		FGF2+INSULIN	-2.54028 [*]	.14352	.000	-2.9999	-2.0807
	FGF2	2%FBS	41287	.14352	.079	8725	.0467
		INSULIN	-3.47028 [*]	.14352	.000	-3.9299	-3.0107
		FGF2+INSULIN	-2.95315 [*]	.14352	.000	-3.4128	-2.4935
	INSULIN	2%FBS	3.05741 [*]	.14352	.000	2.5978	3.5170
		FGF2	3.47028 [*]	.14352	.000	3.0107	3.9299
		FGF2+INSULIN	.51713 [*]	.14352	.029	.0575	.9767
	FGF2+INSULIN	2%FBS	2.54028 [*]	.14352	.000	2.0807	2.9999
		FGF2	2.95315^{*}	.14352	.000	2.4935	3.4128
		INSULIN	51713 [*]	.14352	.029	9767	0575
RUNX2_F	2%FBS	FGF2	40332 [*]	.07003	.002	6276	1791
		INSULIN	81331 [*]	.07003	.000	-1.0376	5890
		FGF2+INSULIN	-1.42318 [*]	.07003	.000	-1.6475	-1.1989
	FGF2	2%FBS	.40332*	.07003	.002	.1791	.6276
		INSULIN	40999*	.07003	.002	6343	1857
		FGF2+INSULIN	-1.01985*	.07003	.000	-1.2441	7956
	INSULIN	2%FBS	.81331*	.07003	.000	.5890	1.0376
		FGF2	.40999*	.07003	.002	.1857	.6343

Tukey HSD

Dependent Variable	(I) GROUP		Mean	erence Std. Frror	Sig.	95% Confidence Interval	
		(J) GROUP Di	Difference (I-J)			Lower Bound	Upper Bound
		FGF2+INSULIN	60987 [*]	.07003	.000	8341	3856
	FGF2+INSULIN	2%FBS	1.42318^{*}	.07003	.000	1.1989	1.6475
		FGF2	1.01985^{*}	.07003	.000	.7956	1.2441
		INSULIN	.60987*	.07003	.000	.3856	.8341
AP1X5	2%FBS	FGF2	19705	.14998	.580	6773	.2832
		INSULIN	00275	.14998	1.000	4830	.4775
		FGF2+INSULIN	97730 [*]	.14998	.001	-1.4576	4970
	FGF2	2%FBS	.19705	.14998	.580	2832	.6773
		INSULIN	.19430	.14998	.590	2860	.6746
		FGF2+INSULIN	78025 [*]	.14998	.004	-1.2605	3000
	INSULIN	2%FBS	.00275	.14998	1.000	4775	.4830
		FGF2	19430	.14998	.590	6746	.2860
		FGF2+INSULIN	97455 [*]	.14998	.001	-1.4548	4943
	FGF2+INSULIN	2%FBS	.97730 [*]	.14998	.001	.4970	1.4576
		FGF2	.78025*	.14998	.004	.3000	1.2605
		INSULIN	.97455 [*]	.14998	.001	.4943	1.4548
SRYX5	2%FBS	FGF2	.36802*	.09787	.023	.0546	.6814
		INSULIN	23921	.09787	.145	5526	.0742
		FGF2+INSULIN	.00027	.09787	1.000	3131	.3137
	FGF2	2%FBS	36802 [*]	.09787	.023	6814	0546
		INSULIN	60723 [*]	.09787	.001	9206	2938
		FGF2+INSULIN	36775 [*]	.09787	.023	6812	0543
	INSULIN	2%FBS	.23921	.09787	.145	0742	.5526
		FGF2	.60723 [*]	.09787	.001	.2938	.9206
		FGF2+INSULIN	.23948	.09787	.145	0739	.5529
	FGF2+INSULIN	2%FBS	00027	.09787	1.000	3137	.3131
		FGF2	.36775 [*]	.09787	.023	.0543	.6812
		INSULIN	23948	.09787	.145	5529	.0739